xref: /openbmc/linux/mm/gup.c (revision 6a613ac6)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
15 
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
18 
19 #include "internal.h"
20 
21 static struct page *no_page_table(struct vm_area_struct *vma,
22 		unsigned int flags)
23 {
24 	/*
25 	 * When core dumping an enormous anonymous area that nobody
26 	 * has touched so far, we don't want to allocate unnecessary pages or
27 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
28 	 * then get_dump_page() will return NULL to leave a hole in the dump.
29 	 * But we can only make this optimization where a hole would surely
30 	 * be zero-filled if handle_mm_fault() actually did handle it.
31 	 */
32 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
33 		return ERR_PTR(-EFAULT);
34 	return NULL;
35 }
36 
37 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
38 		pte_t *pte, unsigned int flags)
39 {
40 	/* No page to get reference */
41 	if (flags & FOLL_GET)
42 		return -EFAULT;
43 
44 	if (flags & FOLL_TOUCH) {
45 		pte_t entry = *pte;
46 
47 		if (flags & FOLL_WRITE)
48 			entry = pte_mkdirty(entry);
49 		entry = pte_mkyoung(entry);
50 
51 		if (!pte_same(*pte, entry)) {
52 			set_pte_at(vma->vm_mm, address, pte, entry);
53 			update_mmu_cache(vma, address, pte);
54 		}
55 	}
56 
57 	/* Proper page table entry exists, but no corresponding struct page */
58 	return -EEXIST;
59 }
60 
61 static struct page *follow_page_pte(struct vm_area_struct *vma,
62 		unsigned long address, pmd_t *pmd, unsigned int flags)
63 {
64 	struct mm_struct *mm = vma->vm_mm;
65 	struct page *page;
66 	spinlock_t *ptl;
67 	pte_t *ptep, pte;
68 
69 retry:
70 	if (unlikely(pmd_bad(*pmd)))
71 		return no_page_table(vma, flags);
72 
73 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
74 	pte = *ptep;
75 	if (!pte_present(pte)) {
76 		swp_entry_t entry;
77 		/*
78 		 * KSM's break_ksm() relies upon recognizing a ksm page
79 		 * even while it is being migrated, so for that case we
80 		 * need migration_entry_wait().
81 		 */
82 		if (likely(!(flags & FOLL_MIGRATION)))
83 			goto no_page;
84 		if (pte_none(pte))
85 			goto no_page;
86 		entry = pte_to_swp_entry(pte);
87 		if (!is_migration_entry(entry))
88 			goto no_page;
89 		pte_unmap_unlock(ptep, ptl);
90 		migration_entry_wait(mm, pmd, address);
91 		goto retry;
92 	}
93 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
94 		goto no_page;
95 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
96 		pte_unmap_unlock(ptep, ptl);
97 		return NULL;
98 	}
99 
100 	page = vm_normal_page(vma, address, pte);
101 	if (unlikely(!page)) {
102 		if (flags & FOLL_DUMP) {
103 			/* Avoid special (like zero) pages in core dumps */
104 			page = ERR_PTR(-EFAULT);
105 			goto out;
106 		}
107 
108 		if (is_zero_pfn(pte_pfn(pte))) {
109 			page = pte_page(pte);
110 		} else {
111 			int ret;
112 
113 			ret = follow_pfn_pte(vma, address, ptep, flags);
114 			page = ERR_PTR(ret);
115 			goto out;
116 		}
117 	}
118 
119 	if (flags & FOLL_GET)
120 		get_page_foll(page);
121 	if (flags & FOLL_TOUCH) {
122 		if ((flags & FOLL_WRITE) &&
123 		    !pte_dirty(pte) && !PageDirty(page))
124 			set_page_dirty(page);
125 		/*
126 		 * pte_mkyoung() would be more correct here, but atomic care
127 		 * is needed to avoid losing the dirty bit: it is easier to use
128 		 * mark_page_accessed().
129 		 */
130 		mark_page_accessed(page);
131 	}
132 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
133 		/*
134 		 * The preliminary mapping check is mainly to avoid the
135 		 * pointless overhead of lock_page on the ZERO_PAGE
136 		 * which might bounce very badly if there is contention.
137 		 *
138 		 * If the page is already locked, we don't need to
139 		 * handle it now - vmscan will handle it later if and
140 		 * when it attempts to reclaim the page.
141 		 */
142 		if (page->mapping && trylock_page(page)) {
143 			lru_add_drain();  /* push cached pages to LRU */
144 			/*
145 			 * Because we lock page here, and migration is
146 			 * blocked by the pte's page reference, and we
147 			 * know the page is still mapped, we don't even
148 			 * need to check for file-cache page truncation.
149 			 */
150 			mlock_vma_page(page);
151 			unlock_page(page);
152 		}
153 	}
154 out:
155 	pte_unmap_unlock(ptep, ptl);
156 	return page;
157 no_page:
158 	pte_unmap_unlock(ptep, ptl);
159 	if (!pte_none(pte))
160 		return NULL;
161 	return no_page_table(vma, flags);
162 }
163 
164 /**
165  * follow_page_mask - look up a page descriptor from a user-virtual address
166  * @vma: vm_area_struct mapping @address
167  * @address: virtual address to look up
168  * @flags: flags modifying lookup behaviour
169  * @page_mask: on output, *page_mask is set according to the size of the page
170  *
171  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
172  *
173  * Returns the mapped (struct page *), %NULL if no mapping exists, or
174  * an error pointer if there is a mapping to something not represented
175  * by a page descriptor (see also vm_normal_page()).
176  */
177 struct page *follow_page_mask(struct vm_area_struct *vma,
178 			      unsigned long address, unsigned int flags,
179 			      unsigned int *page_mask)
180 {
181 	pgd_t *pgd;
182 	pud_t *pud;
183 	pmd_t *pmd;
184 	spinlock_t *ptl;
185 	struct page *page;
186 	struct mm_struct *mm = vma->vm_mm;
187 
188 	*page_mask = 0;
189 
190 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
191 	if (!IS_ERR(page)) {
192 		BUG_ON(flags & FOLL_GET);
193 		return page;
194 	}
195 
196 	pgd = pgd_offset(mm, address);
197 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
198 		return no_page_table(vma, flags);
199 
200 	pud = pud_offset(pgd, address);
201 	if (pud_none(*pud))
202 		return no_page_table(vma, flags);
203 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
204 		page = follow_huge_pud(mm, address, pud, flags);
205 		if (page)
206 			return page;
207 		return no_page_table(vma, flags);
208 	}
209 	if (unlikely(pud_bad(*pud)))
210 		return no_page_table(vma, flags);
211 
212 	pmd = pmd_offset(pud, address);
213 	if (pmd_none(*pmd))
214 		return no_page_table(vma, flags);
215 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
216 		page = follow_huge_pmd(mm, address, pmd, flags);
217 		if (page)
218 			return page;
219 		return no_page_table(vma, flags);
220 	}
221 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
222 		return no_page_table(vma, flags);
223 	if (pmd_trans_huge(*pmd)) {
224 		if (flags & FOLL_SPLIT) {
225 			split_huge_page_pmd(vma, address, pmd);
226 			return follow_page_pte(vma, address, pmd, flags);
227 		}
228 		ptl = pmd_lock(mm, pmd);
229 		if (likely(pmd_trans_huge(*pmd))) {
230 			if (unlikely(pmd_trans_splitting(*pmd))) {
231 				spin_unlock(ptl);
232 				wait_split_huge_page(vma->anon_vma, pmd);
233 			} else {
234 				page = follow_trans_huge_pmd(vma, address,
235 							     pmd, flags);
236 				spin_unlock(ptl);
237 				*page_mask = HPAGE_PMD_NR - 1;
238 				return page;
239 			}
240 		} else
241 			spin_unlock(ptl);
242 	}
243 	return follow_page_pte(vma, address, pmd, flags);
244 }
245 
246 static int get_gate_page(struct mm_struct *mm, unsigned long address,
247 		unsigned int gup_flags, struct vm_area_struct **vma,
248 		struct page **page)
249 {
250 	pgd_t *pgd;
251 	pud_t *pud;
252 	pmd_t *pmd;
253 	pte_t *pte;
254 	int ret = -EFAULT;
255 
256 	/* user gate pages are read-only */
257 	if (gup_flags & FOLL_WRITE)
258 		return -EFAULT;
259 	if (address > TASK_SIZE)
260 		pgd = pgd_offset_k(address);
261 	else
262 		pgd = pgd_offset_gate(mm, address);
263 	BUG_ON(pgd_none(*pgd));
264 	pud = pud_offset(pgd, address);
265 	BUG_ON(pud_none(*pud));
266 	pmd = pmd_offset(pud, address);
267 	if (pmd_none(*pmd))
268 		return -EFAULT;
269 	VM_BUG_ON(pmd_trans_huge(*pmd));
270 	pte = pte_offset_map(pmd, address);
271 	if (pte_none(*pte))
272 		goto unmap;
273 	*vma = get_gate_vma(mm);
274 	if (!page)
275 		goto out;
276 	*page = vm_normal_page(*vma, address, *pte);
277 	if (!*page) {
278 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
279 			goto unmap;
280 		*page = pte_page(*pte);
281 	}
282 	get_page(*page);
283 out:
284 	ret = 0;
285 unmap:
286 	pte_unmap(pte);
287 	return ret;
288 }
289 
290 /*
291  * mmap_sem must be held on entry.  If @nonblocking != NULL and
292  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
293  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
294  */
295 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
296 		unsigned long address, unsigned int *flags, int *nonblocking)
297 {
298 	struct mm_struct *mm = vma->vm_mm;
299 	unsigned int fault_flags = 0;
300 	int ret;
301 
302 	/* mlock all present pages, but do not fault in new pages */
303 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
304 		return -ENOENT;
305 	/* For mm_populate(), just skip the stack guard page. */
306 	if ((*flags & FOLL_POPULATE) &&
307 			(stack_guard_page_start(vma, address) ||
308 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
309 		return -ENOENT;
310 	if (*flags & FOLL_WRITE)
311 		fault_flags |= FAULT_FLAG_WRITE;
312 	if (nonblocking)
313 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
314 	if (*flags & FOLL_NOWAIT)
315 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
316 	if (*flags & FOLL_TRIED) {
317 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
318 		fault_flags |= FAULT_FLAG_TRIED;
319 	}
320 
321 	ret = handle_mm_fault(mm, vma, address, fault_flags);
322 	if (ret & VM_FAULT_ERROR) {
323 		if (ret & VM_FAULT_OOM)
324 			return -ENOMEM;
325 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
326 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
327 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
328 			return -EFAULT;
329 		BUG();
330 	}
331 
332 	if (tsk) {
333 		if (ret & VM_FAULT_MAJOR)
334 			tsk->maj_flt++;
335 		else
336 			tsk->min_flt++;
337 	}
338 
339 	if (ret & VM_FAULT_RETRY) {
340 		if (nonblocking)
341 			*nonblocking = 0;
342 		return -EBUSY;
343 	}
344 
345 	/*
346 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
347 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
348 	 * can thus safely do subsequent page lookups as if they were reads.
349 	 * But only do so when looping for pte_write is futile: in some cases
350 	 * userspace may also be wanting to write to the gotten user page,
351 	 * which a read fault here might prevent (a readonly page might get
352 	 * reCOWed by userspace write).
353 	 */
354 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
355 		*flags &= ~FOLL_WRITE;
356 	return 0;
357 }
358 
359 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
360 {
361 	vm_flags_t vm_flags = vma->vm_flags;
362 
363 	if (vm_flags & (VM_IO | VM_PFNMAP))
364 		return -EFAULT;
365 
366 	if (gup_flags & FOLL_WRITE) {
367 		if (!(vm_flags & VM_WRITE)) {
368 			if (!(gup_flags & FOLL_FORCE))
369 				return -EFAULT;
370 			/*
371 			 * We used to let the write,force case do COW in a
372 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
373 			 * set a breakpoint in a read-only mapping of an
374 			 * executable, without corrupting the file (yet only
375 			 * when that file had been opened for writing!).
376 			 * Anon pages in shared mappings are surprising: now
377 			 * just reject it.
378 			 */
379 			if (!is_cow_mapping(vm_flags)) {
380 				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
381 				return -EFAULT;
382 			}
383 		}
384 	} else if (!(vm_flags & VM_READ)) {
385 		if (!(gup_flags & FOLL_FORCE))
386 			return -EFAULT;
387 		/*
388 		 * Is there actually any vma we can reach here which does not
389 		 * have VM_MAYREAD set?
390 		 */
391 		if (!(vm_flags & VM_MAYREAD))
392 			return -EFAULT;
393 	}
394 	return 0;
395 }
396 
397 /**
398  * __get_user_pages() - pin user pages in memory
399  * @tsk:	task_struct of target task
400  * @mm:		mm_struct of target mm
401  * @start:	starting user address
402  * @nr_pages:	number of pages from start to pin
403  * @gup_flags:	flags modifying pin behaviour
404  * @pages:	array that receives pointers to the pages pinned.
405  *		Should be at least nr_pages long. Or NULL, if caller
406  *		only intends to ensure the pages are faulted in.
407  * @vmas:	array of pointers to vmas corresponding to each page.
408  *		Or NULL if the caller does not require them.
409  * @nonblocking: whether waiting for disk IO or mmap_sem contention
410  *
411  * Returns number of pages pinned. This may be fewer than the number
412  * requested. If nr_pages is 0 or negative, returns 0. If no pages
413  * were pinned, returns -errno. Each page returned must be released
414  * with a put_page() call when it is finished with. vmas will only
415  * remain valid while mmap_sem is held.
416  *
417  * Must be called with mmap_sem held.  It may be released.  See below.
418  *
419  * __get_user_pages walks a process's page tables and takes a reference to
420  * each struct page that each user address corresponds to at a given
421  * instant. That is, it takes the page that would be accessed if a user
422  * thread accesses the given user virtual address at that instant.
423  *
424  * This does not guarantee that the page exists in the user mappings when
425  * __get_user_pages returns, and there may even be a completely different
426  * page there in some cases (eg. if mmapped pagecache has been invalidated
427  * and subsequently re faulted). However it does guarantee that the page
428  * won't be freed completely. And mostly callers simply care that the page
429  * contains data that was valid *at some point in time*. Typically, an IO
430  * or similar operation cannot guarantee anything stronger anyway because
431  * locks can't be held over the syscall boundary.
432  *
433  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
434  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
435  * appropriate) must be called after the page is finished with, and
436  * before put_page is called.
437  *
438  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
439  * or mmap_sem contention, and if waiting is needed to pin all pages,
440  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
441  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
442  * this case.
443  *
444  * A caller using such a combination of @nonblocking and @gup_flags
445  * must therefore hold the mmap_sem for reading only, and recognize
446  * when it's been released.  Otherwise, it must be held for either
447  * reading or writing and will not be released.
448  *
449  * In most cases, get_user_pages or get_user_pages_fast should be used
450  * instead of __get_user_pages. __get_user_pages should be used only if
451  * you need some special @gup_flags.
452  */
453 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
454 		unsigned long start, unsigned long nr_pages,
455 		unsigned int gup_flags, struct page **pages,
456 		struct vm_area_struct **vmas, int *nonblocking)
457 {
458 	long i = 0;
459 	unsigned int page_mask;
460 	struct vm_area_struct *vma = NULL;
461 
462 	if (!nr_pages)
463 		return 0;
464 
465 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
466 
467 	/*
468 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
469 	 * fault information is unrelated to the reference behaviour of a task
470 	 * using the address space
471 	 */
472 	if (!(gup_flags & FOLL_FORCE))
473 		gup_flags |= FOLL_NUMA;
474 
475 	do {
476 		struct page *page;
477 		unsigned int foll_flags = gup_flags;
478 		unsigned int page_increm;
479 
480 		/* first iteration or cross vma bound */
481 		if (!vma || start >= vma->vm_end) {
482 			vma = find_extend_vma(mm, start);
483 			if (!vma && in_gate_area(mm, start)) {
484 				int ret;
485 				ret = get_gate_page(mm, start & PAGE_MASK,
486 						gup_flags, &vma,
487 						pages ? &pages[i] : NULL);
488 				if (ret)
489 					return i ? : ret;
490 				page_mask = 0;
491 				goto next_page;
492 			}
493 
494 			if (!vma || check_vma_flags(vma, gup_flags))
495 				return i ? : -EFAULT;
496 			if (is_vm_hugetlb_page(vma)) {
497 				i = follow_hugetlb_page(mm, vma, pages, vmas,
498 						&start, &nr_pages, i,
499 						gup_flags);
500 				continue;
501 			}
502 		}
503 retry:
504 		/*
505 		 * If we have a pending SIGKILL, don't keep faulting pages and
506 		 * potentially allocating memory.
507 		 */
508 		if (unlikely(fatal_signal_pending(current)))
509 			return i ? i : -ERESTARTSYS;
510 		cond_resched();
511 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
512 		if (!page) {
513 			int ret;
514 			ret = faultin_page(tsk, vma, start, &foll_flags,
515 					nonblocking);
516 			switch (ret) {
517 			case 0:
518 				goto retry;
519 			case -EFAULT:
520 			case -ENOMEM:
521 			case -EHWPOISON:
522 				return i ? i : ret;
523 			case -EBUSY:
524 				return i;
525 			case -ENOENT:
526 				goto next_page;
527 			}
528 			BUG();
529 		} else if (PTR_ERR(page) == -EEXIST) {
530 			/*
531 			 * Proper page table entry exists, but no corresponding
532 			 * struct page.
533 			 */
534 			goto next_page;
535 		} else if (IS_ERR(page)) {
536 			return i ? i : PTR_ERR(page);
537 		}
538 		if (pages) {
539 			pages[i] = page;
540 			flush_anon_page(vma, page, start);
541 			flush_dcache_page(page);
542 			page_mask = 0;
543 		}
544 next_page:
545 		if (vmas) {
546 			vmas[i] = vma;
547 			page_mask = 0;
548 		}
549 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
550 		if (page_increm > nr_pages)
551 			page_increm = nr_pages;
552 		i += page_increm;
553 		start += page_increm * PAGE_SIZE;
554 		nr_pages -= page_increm;
555 	} while (nr_pages);
556 	return i;
557 }
558 EXPORT_SYMBOL(__get_user_pages);
559 
560 /*
561  * fixup_user_fault() - manually resolve a user page fault
562  * @tsk:	the task_struct to use for page fault accounting, or
563  *		NULL if faults are not to be recorded.
564  * @mm:		mm_struct of target mm
565  * @address:	user address
566  * @fault_flags:flags to pass down to handle_mm_fault()
567  *
568  * This is meant to be called in the specific scenario where for locking reasons
569  * we try to access user memory in atomic context (within a pagefault_disable()
570  * section), this returns -EFAULT, and we want to resolve the user fault before
571  * trying again.
572  *
573  * Typically this is meant to be used by the futex code.
574  *
575  * The main difference with get_user_pages() is that this function will
576  * unconditionally call handle_mm_fault() which will in turn perform all the
577  * necessary SW fixup of the dirty and young bits in the PTE, while
578  * handle_mm_fault() only guarantees to update these in the struct page.
579  *
580  * This is important for some architectures where those bits also gate the
581  * access permission to the page because they are maintained in software.  On
582  * such architectures, gup() will not be enough to make a subsequent access
583  * succeed.
584  *
585  * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
586  */
587 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
588 		     unsigned long address, unsigned int fault_flags)
589 {
590 	struct vm_area_struct *vma;
591 	vm_flags_t vm_flags;
592 	int ret;
593 
594 	vma = find_extend_vma(mm, address);
595 	if (!vma || address < vma->vm_start)
596 		return -EFAULT;
597 
598 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
599 	if (!(vm_flags & vma->vm_flags))
600 		return -EFAULT;
601 
602 	ret = handle_mm_fault(mm, vma, address, fault_flags);
603 	if (ret & VM_FAULT_ERROR) {
604 		if (ret & VM_FAULT_OOM)
605 			return -ENOMEM;
606 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
607 			return -EHWPOISON;
608 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
609 			return -EFAULT;
610 		BUG();
611 	}
612 	if (tsk) {
613 		if (ret & VM_FAULT_MAJOR)
614 			tsk->maj_flt++;
615 		else
616 			tsk->min_flt++;
617 	}
618 	return 0;
619 }
620 
621 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
622 						struct mm_struct *mm,
623 						unsigned long start,
624 						unsigned long nr_pages,
625 						int write, int force,
626 						struct page **pages,
627 						struct vm_area_struct **vmas,
628 						int *locked, bool notify_drop,
629 						unsigned int flags)
630 {
631 	long ret, pages_done;
632 	bool lock_dropped;
633 
634 	if (locked) {
635 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
636 		BUG_ON(vmas);
637 		/* check caller initialized locked */
638 		BUG_ON(*locked != 1);
639 	}
640 
641 	if (pages)
642 		flags |= FOLL_GET;
643 	if (write)
644 		flags |= FOLL_WRITE;
645 	if (force)
646 		flags |= FOLL_FORCE;
647 
648 	pages_done = 0;
649 	lock_dropped = false;
650 	for (;;) {
651 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
652 				       vmas, locked);
653 		if (!locked)
654 			/* VM_FAULT_RETRY couldn't trigger, bypass */
655 			return ret;
656 
657 		/* VM_FAULT_RETRY cannot return errors */
658 		if (!*locked) {
659 			BUG_ON(ret < 0);
660 			BUG_ON(ret >= nr_pages);
661 		}
662 
663 		if (!pages)
664 			/* If it's a prefault don't insist harder */
665 			return ret;
666 
667 		if (ret > 0) {
668 			nr_pages -= ret;
669 			pages_done += ret;
670 			if (!nr_pages)
671 				break;
672 		}
673 		if (*locked) {
674 			/* VM_FAULT_RETRY didn't trigger */
675 			if (!pages_done)
676 				pages_done = ret;
677 			break;
678 		}
679 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
680 		pages += ret;
681 		start += ret << PAGE_SHIFT;
682 
683 		/*
684 		 * Repeat on the address that fired VM_FAULT_RETRY
685 		 * without FAULT_FLAG_ALLOW_RETRY but with
686 		 * FAULT_FLAG_TRIED.
687 		 */
688 		*locked = 1;
689 		lock_dropped = true;
690 		down_read(&mm->mmap_sem);
691 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
692 				       pages, NULL, NULL);
693 		if (ret != 1) {
694 			BUG_ON(ret > 1);
695 			if (!pages_done)
696 				pages_done = ret;
697 			break;
698 		}
699 		nr_pages--;
700 		pages_done++;
701 		if (!nr_pages)
702 			break;
703 		pages++;
704 		start += PAGE_SIZE;
705 	}
706 	if (notify_drop && lock_dropped && *locked) {
707 		/*
708 		 * We must let the caller know we temporarily dropped the lock
709 		 * and so the critical section protected by it was lost.
710 		 */
711 		up_read(&mm->mmap_sem);
712 		*locked = 0;
713 	}
714 	return pages_done;
715 }
716 
717 /*
718  * We can leverage the VM_FAULT_RETRY functionality in the page fault
719  * paths better by using either get_user_pages_locked() or
720  * get_user_pages_unlocked().
721  *
722  * get_user_pages_locked() is suitable to replace the form:
723  *
724  *      down_read(&mm->mmap_sem);
725  *      do_something()
726  *      get_user_pages(tsk, mm, ..., pages, NULL);
727  *      up_read(&mm->mmap_sem);
728  *
729  *  to:
730  *
731  *      int locked = 1;
732  *      down_read(&mm->mmap_sem);
733  *      do_something()
734  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
735  *      if (locked)
736  *          up_read(&mm->mmap_sem);
737  */
738 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
739 			   unsigned long start, unsigned long nr_pages,
740 			   int write, int force, struct page **pages,
741 			   int *locked)
742 {
743 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
744 				       pages, NULL, locked, true, FOLL_TOUCH);
745 }
746 EXPORT_SYMBOL(get_user_pages_locked);
747 
748 /*
749  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
750  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
751  *
752  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
753  * caller if required (just like with __get_user_pages). "FOLL_GET",
754  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
755  * according to the parameters "pages", "write", "force"
756  * respectively.
757  */
758 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
759 					       unsigned long start, unsigned long nr_pages,
760 					       int write, int force, struct page **pages,
761 					       unsigned int gup_flags)
762 {
763 	long ret;
764 	int locked = 1;
765 	down_read(&mm->mmap_sem);
766 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
767 				      pages, NULL, &locked, false, gup_flags);
768 	if (locked)
769 		up_read(&mm->mmap_sem);
770 	return ret;
771 }
772 EXPORT_SYMBOL(__get_user_pages_unlocked);
773 
774 /*
775  * get_user_pages_unlocked() is suitable to replace the form:
776  *
777  *      down_read(&mm->mmap_sem);
778  *      get_user_pages(tsk, mm, ..., pages, NULL);
779  *      up_read(&mm->mmap_sem);
780  *
781  *  with:
782  *
783  *      get_user_pages_unlocked(tsk, mm, ..., pages);
784  *
785  * It is functionally equivalent to get_user_pages_fast so
786  * get_user_pages_fast should be used instead, if the two parameters
787  * "tsk" and "mm" are respectively equal to current and current->mm,
788  * or if "force" shall be set to 1 (get_user_pages_fast misses the
789  * "force" parameter).
790  */
791 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
792 			     unsigned long start, unsigned long nr_pages,
793 			     int write, int force, struct page **pages)
794 {
795 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
796 					 force, pages, FOLL_TOUCH);
797 }
798 EXPORT_SYMBOL(get_user_pages_unlocked);
799 
800 /*
801  * get_user_pages() - pin user pages in memory
802  * @tsk:	the task_struct to use for page fault accounting, or
803  *		NULL if faults are not to be recorded.
804  * @mm:		mm_struct of target mm
805  * @start:	starting user address
806  * @nr_pages:	number of pages from start to pin
807  * @write:	whether pages will be written to by the caller
808  * @force:	whether to force access even when user mapping is currently
809  *		protected (but never forces write access to shared mapping).
810  * @pages:	array that receives pointers to the pages pinned.
811  *		Should be at least nr_pages long. Or NULL, if caller
812  *		only intends to ensure the pages are faulted in.
813  * @vmas:	array of pointers to vmas corresponding to each page.
814  *		Or NULL if the caller does not require them.
815  *
816  * Returns number of pages pinned. This may be fewer than the number
817  * requested. If nr_pages is 0 or negative, returns 0. If no pages
818  * were pinned, returns -errno. Each page returned must be released
819  * with a put_page() call when it is finished with. vmas will only
820  * remain valid while mmap_sem is held.
821  *
822  * Must be called with mmap_sem held for read or write.
823  *
824  * get_user_pages walks a process's page tables and takes a reference to
825  * each struct page that each user address corresponds to at a given
826  * instant. That is, it takes the page that would be accessed if a user
827  * thread accesses the given user virtual address at that instant.
828  *
829  * This does not guarantee that the page exists in the user mappings when
830  * get_user_pages returns, and there may even be a completely different
831  * page there in some cases (eg. if mmapped pagecache has been invalidated
832  * and subsequently re faulted). However it does guarantee that the page
833  * won't be freed completely. And mostly callers simply care that the page
834  * contains data that was valid *at some point in time*. Typically, an IO
835  * or similar operation cannot guarantee anything stronger anyway because
836  * locks can't be held over the syscall boundary.
837  *
838  * If write=0, the page must not be written to. If the page is written to,
839  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
840  * after the page is finished with, and before put_page is called.
841  *
842  * get_user_pages is typically used for fewer-copy IO operations, to get a
843  * handle on the memory by some means other than accesses via the user virtual
844  * addresses. The pages may be submitted for DMA to devices or accessed via
845  * their kernel linear mapping (via the kmap APIs). Care should be taken to
846  * use the correct cache flushing APIs.
847  *
848  * See also get_user_pages_fast, for performance critical applications.
849  *
850  * get_user_pages should be phased out in favor of
851  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
852  * should use get_user_pages because it cannot pass
853  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
854  */
855 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
856 		unsigned long start, unsigned long nr_pages, int write,
857 		int force, struct page **pages, struct vm_area_struct **vmas)
858 {
859 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
860 				       pages, vmas, NULL, false, FOLL_TOUCH);
861 }
862 EXPORT_SYMBOL(get_user_pages);
863 
864 /**
865  * populate_vma_page_range() -  populate a range of pages in the vma.
866  * @vma:   target vma
867  * @start: start address
868  * @end:   end address
869  * @nonblocking:
870  *
871  * This takes care of mlocking the pages too if VM_LOCKED is set.
872  *
873  * return 0 on success, negative error code on error.
874  *
875  * vma->vm_mm->mmap_sem must be held.
876  *
877  * If @nonblocking is NULL, it may be held for read or write and will
878  * be unperturbed.
879  *
880  * If @nonblocking is non-NULL, it must held for read only and may be
881  * released.  If it's released, *@nonblocking will be set to 0.
882  */
883 long populate_vma_page_range(struct vm_area_struct *vma,
884 		unsigned long start, unsigned long end, int *nonblocking)
885 {
886 	struct mm_struct *mm = vma->vm_mm;
887 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
888 	int gup_flags;
889 
890 	VM_BUG_ON(start & ~PAGE_MASK);
891 	VM_BUG_ON(end   & ~PAGE_MASK);
892 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
893 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
894 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
895 
896 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
897 	if (vma->vm_flags & VM_LOCKONFAULT)
898 		gup_flags &= ~FOLL_POPULATE;
899 
900 	/*
901 	 * We want to touch writable mappings with a write fault in order
902 	 * to break COW, except for shared mappings because these don't COW
903 	 * and we would not want to dirty them for nothing.
904 	 */
905 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
906 		gup_flags |= FOLL_WRITE;
907 
908 	/*
909 	 * We want mlock to succeed for regions that have any permissions
910 	 * other than PROT_NONE.
911 	 */
912 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
913 		gup_flags |= FOLL_FORCE;
914 
915 	/*
916 	 * We made sure addr is within a VMA, so the following will
917 	 * not result in a stack expansion that recurses back here.
918 	 */
919 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
920 				NULL, NULL, nonblocking);
921 }
922 
923 /*
924  * __mm_populate - populate and/or mlock pages within a range of address space.
925  *
926  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
927  * flags. VMAs must be already marked with the desired vm_flags, and
928  * mmap_sem must not be held.
929  */
930 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
931 {
932 	struct mm_struct *mm = current->mm;
933 	unsigned long end, nstart, nend;
934 	struct vm_area_struct *vma = NULL;
935 	int locked = 0;
936 	long ret = 0;
937 
938 	VM_BUG_ON(start & ~PAGE_MASK);
939 	VM_BUG_ON(len != PAGE_ALIGN(len));
940 	end = start + len;
941 
942 	for (nstart = start; nstart < end; nstart = nend) {
943 		/*
944 		 * We want to fault in pages for [nstart; end) address range.
945 		 * Find first corresponding VMA.
946 		 */
947 		if (!locked) {
948 			locked = 1;
949 			down_read(&mm->mmap_sem);
950 			vma = find_vma(mm, nstart);
951 		} else if (nstart >= vma->vm_end)
952 			vma = vma->vm_next;
953 		if (!vma || vma->vm_start >= end)
954 			break;
955 		/*
956 		 * Set [nstart; nend) to intersection of desired address
957 		 * range with the first VMA. Also, skip undesirable VMA types.
958 		 */
959 		nend = min(end, vma->vm_end);
960 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
961 			continue;
962 		if (nstart < vma->vm_start)
963 			nstart = vma->vm_start;
964 		/*
965 		 * Now fault in a range of pages. populate_vma_page_range()
966 		 * double checks the vma flags, so that it won't mlock pages
967 		 * if the vma was already munlocked.
968 		 */
969 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
970 		if (ret < 0) {
971 			if (ignore_errors) {
972 				ret = 0;
973 				continue;	/* continue at next VMA */
974 			}
975 			break;
976 		}
977 		nend = nstart + ret * PAGE_SIZE;
978 		ret = 0;
979 	}
980 	if (locked)
981 		up_read(&mm->mmap_sem);
982 	return ret;	/* 0 or negative error code */
983 }
984 
985 /**
986  * get_dump_page() - pin user page in memory while writing it to core dump
987  * @addr: user address
988  *
989  * Returns struct page pointer of user page pinned for dump,
990  * to be freed afterwards by page_cache_release() or put_page().
991  *
992  * Returns NULL on any kind of failure - a hole must then be inserted into
993  * the corefile, to preserve alignment with its headers; and also returns
994  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
995  * allowing a hole to be left in the corefile to save diskspace.
996  *
997  * Called without mmap_sem, but after all other threads have been killed.
998  */
999 #ifdef CONFIG_ELF_CORE
1000 struct page *get_dump_page(unsigned long addr)
1001 {
1002 	struct vm_area_struct *vma;
1003 	struct page *page;
1004 
1005 	if (__get_user_pages(current, current->mm, addr, 1,
1006 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1007 			     NULL) < 1)
1008 		return NULL;
1009 	flush_cache_page(vma, addr, page_to_pfn(page));
1010 	return page;
1011 }
1012 #endif /* CONFIG_ELF_CORE */
1013 
1014 /*
1015  * Generic RCU Fast GUP
1016  *
1017  * get_user_pages_fast attempts to pin user pages by walking the page
1018  * tables directly and avoids taking locks. Thus the walker needs to be
1019  * protected from page table pages being freed from under it, and should
1020  * block any THP splits.
1021  *
1022  * One way to achieve this is to have the walker disable interrupts, and
1023  * rely on IPIs from the TLB flushing code blocking before the page table
1024  * pages are freed. This is unsuitable for architectures that do not need
1025  * to broadcast an IPI when invalidating TLBs.
1026  *
1027  * Another way to achieve this is to batch up page table containing pages
1028  * belonging to more than one mm_user, then rcu_sched a callback to free those
1029  * pages. Disabling interrupts will allow the fast_gup walker to both block
1030  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1031  * (which is a relatively rare event). The code below adopts this strategy.
1032  *
1033  * Before activating this code, please be aware that the following assumptions
1034  * are currently made:
1035  *
1036  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1037  *      pages containing page tables.
1038  *
1039  *  *) THP splits will broadcast an IPI, this can be achieved by overriding
1040  *      pmdp_splitting_flush.
1041  *
1042  *  *) ptes can be read atomically by the architecture.
1043  *
1044  *  *) access_ok is sufficient to validate userspace address ranges.
1045  *
1046  * The last two assumptions can be relaxed by the addition of helper functions.
1047  *
1048  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1049  */
1050 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1051 
1052 #ifdef __HAVE_ARCH_PTE_SPECIAL
1053 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1054 			 int write, struct page **pages, int *nr)
1055 {
1056 	pte_t *ptep, *ptem;
1057 	int ret = 0;
1058 
1059 	ptem = ptep = pte_offset_map(&pmd, addr);
1060 	do {
1061 		/*
1062 		 * In the line below we are assuming that the pte can be read
1063 		 * atomically. If this is not the case for your architecture,
1064 		 * please wrap this in a helper function!
1065 		 *
1066 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1067 		 */
1068 		pte_t pte = READ_ONCE(*ptep);
1069 		struct page *page;
1070 
1071 		/*
1072 		 * Similar to the PMD case below, NUMA hinting must take slow
1073 		 * path using the pte_protnone check.
1074 		 */
1075 		if (!pte_present(pte) || pte_special(pte) ||
1076 			pte_protnone(pte) || (write && !pte_write(pte)))
1077 			goto pte_unmap;
1078 
1079 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1080 		page = pte_page(pte);
1081 
1082 		if (!page_cache_get_speculative(page))
1083 			goto pte_unmap;
1084 
1085 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1086 			put_page(page);
1087 			goto pte_unmap;
1088 		}
1089 
1090 		pages[*nr] = page;
1091 		(*nr)++;
1092 
1093 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1094 
1095 	ret = 1;
1096 
1097 pte_unmap:
1098 	pte_unmap(ptem);
1099 	return ret;
1100 }
1101 #else
1102 
1103 /*
1104  * If we can't determine whether or not a pte is special, then fail immediately
1105  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1106  * to be special.
1107  *
1108  * For a futex to be placed on a THP tail page, get_futex_key requires a
1109  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1110  * useful to have gup_huge_pmd even if we can't operate on ptes.
1111  */
1112 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1113 			 int write, struct page **pages, int *nr)
1114 {
1115 	return 0;
1116 }
1117 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1118 
1119 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1120 		unsigned long end, int write, struct page **pages, int *nr)
1121 {
1122 	struct page *head, *page, *tail;
1123 	int refs;
1124 
1125 	if (write && !pmd_write(orig))
1126 		return 0;
1127 
1128 	refs = 0;
1129 	head = pmd_page(orig);
1130 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1131 	tail = page;
1132 	do {
1133 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1134 		pages[*nr] = page;
1135 		(*nr)++;
1136 		page++;
1137 		refs++;
1138 	} while (addr += PAGE_SIZE, addr != end);
1139 
1140 	if (!page_cache_add_speculative(head, refs)) {
1141 		*nr -= refs;
1142 		return 0;
1143 	}
1144 
1145 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1146 		*nr -= refs;
1147 		while (refs--)
1148 			put_page(head);
1149 		return 0;
1150 	}
1151 
1152 	/*
1153 	 * Any tail pages need their mapcount reference taken before we
1154 	 * return. (This allows the THP code to bump their ref count when
1155 	 * they are split into base pages).
1156 	 */
1157 	while (refs--) {
1158 		if (PageTail(tail))
1159 			get_huge_page_tail(tail);
1160 		tail++;
1161 	}
1162 
1163 	return 1;
1164 }
1165 
1166 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1167 		unsigned long end, int write, struct page **pages, int *nr)
1168 {
1169 	struct page *head, *page, *tail;
1170 	int refs;
1171 
1172 	if (write && !pud_write(orig))
1173 		return 0;
1174 
1175 	refs = 0;
1176 	head = pud_page(orig);
1177 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1178 	tail = page;
1179 	do {
1180 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1181 		pages[*nr] = page;
1182 		(*nr)++;
1183 		page++;
1184 		refs++;
1185 	} while (addr += PAGE_SIZE, addr != end);
1186 
1187 	if (!page_cache_add_speculative(head, refs)) {
1188 		*nr -= refs;
1189 		return 0;
1190 	}
1191 
1192 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1193 		*nr -= refs;
1194 		while (refs--)
1195 			put_page(head);
1196 		return 0;
1197 	}
1198 
1199 	while (refs--) {
1200 		if (PageTail(tail))
1201 			get_huge_page_tail(tail);
1202 		tail++;
1203 	}
1204 
1205 	return 1;
1206 }
1207 
1208 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1209 			unsigned long end, int write,
1210 			struct page **pages, int *nr)
1211 {
1212 	int refs;
1213 	struct page *head, *page, *tail;
1214 
1215 	if (write && !pgd_write(orig))
1216 		return 0;
1217 
1218 	refs = 0;
1219 	head = pgd_page(orig);
1220 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1221 	tail = page;
1222 	do {
1223 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1224 		pages[*nr] = page;
1225 		(*nr)++;
1226 		page++;
1227 		refs++;
1228 	} while (addr += PAGE_SIZE, addr != end);
1229 
1230 	if (!page_cache_add_speculative(head, refs)) {
1231 		*nr -= refs;
1232 		return 0;
1233 	}
1234 
1235 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1236 		*nr -= refs;
1237 		while (refs--)
1238 			put_page(head);
1239 		return 0;
1240 	}
1241 
1242 	while (refs--) {
1243 		if (PageTail(tail))
1244 			get_huge_page_tail(tail);
1245 		tail++;
1246 	}
1247 
1248 	return 1;
1249 }
1250 
1251 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1252 		int write, struct page **pages, int *nr)
1253 {
1254 	unsigned long next;
1255 	pmd_t *pmdp;
1256 
1257 	pmdp = pmd_offset(&pud, addr);
1258 	do {
1259 		pmd_t pmd = READ_ONCE(*pmdp);
1260 
1261 		next = pmd_addr_end(addr, end);
1262 		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1263 			return 0;
1264 
1265 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1266 			/*
1267 			 * NUMA hinting faults need to be handled in the GUP
1268 			 * slowpath for accounting purposes and so that they
1269 			 * can be serialised against THP migration.
1270 			 */
1271 			if (pmd_protnone(pmd))
1272 				return 0;
1273 
1274 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1275 				pages, nr))
1276 				return 0;
1277 
1278 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1279 			/*
1280 			 * architecture have different format for hugetlbfs
1281 			 * pmd format and THP pmd format
1282 			 */
1283 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1284 					 PMD_SHIFT, next, write, pages, nr))
1285 				return 0;
1286 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1287 				return 0;
1288 	} while (pmdp++, addr = next, addr != end);
1289 
1290 	return 1;
1291 }
1292 
1293 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1294 			 int write, struct page **pages, int *nr)
1295 {
1296 	unsigned long next;
1297 	pud_t *pudp;
1298 
1299 	pudp = pud_offset(&pgd, addr);
1300 	do {
1301 		pud_t pud = READ_ONCE(*pudp);
1302 
1303 		next = pud_addr_end(addr, end);
1304 		if (pud_none(pud))
1305 			return 0;
1306 		if (unlikely(pud_huge(pud))) {
1307 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1308 					  pages, nr))
1309 				return 0;
1310 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1311 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1312 					 PUD_SHIFT, next, write, pages, nr))
1313 				return 0;
1314 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1315 			return 0;
1316 	} while (pudp++, addr = next, addr != end);
1317 
1318 	return 1;
1319 }
1320 
1321 /*
1322  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1323  * the regular GUP. It will only return non-negative values.
1324  */
1325 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1326 			  struct page **pages)
1327 {
1328 	struct mm_struct *mm = current->mm;
1329 	unsigned long addr, len, end;
1330 	unsigned long next, flags;
1331 	pgd_t *pgdp;
1332 	int nr = 0;
1333 
1334 	start &= PAGE_MASK;
1335 	addr = start;
1336 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1337 	end = start + len;
1338 
1339 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1340 					start, len)))
1341 		return 0;
1342 
1343 	/*
1344 	 * Disable interrupts.  We use the nested form as we can already have
1345 	 * interrupts disabled by get_futex_key.
1346 	 *
1347 	 * With interrupts disabled, we block page table pages from being
1348 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1349 	 * for more details.
1350 	 *
1351 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1352 	 * block IPIs that come from THPs splitting.
1353 	 */
1354 
1355 	local_irq_save(flags);
1356 	pgdp = pgd_offset(mm, addr);
1357 	do {
1358 		pgd_t pgd = READ_ONCE(*pgdp);
1359 
1360 		next = pgd_addr_end(addr, end);
1361 		if (pgd_none(pgd))
1362 			break;
1363 		if (unlikely(pgd_huge(pgd))) {
1364 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1365 					  pages, &nr))
1366 				break;
1367 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1368 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1369 					 PGDIR_SHIFT, next, write, pages, &nr))
1370 				break;
1371 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1372 			break;
1373 	} while (pgdp++, addr = next, addr != end);
1374 	local_irq_restore(flags);
1375 
1376 	return nr;
1377 }
1378 
1379 /**
1380  * get_user_pages_fast() - pin user pages in memory
1381  * @start:	starting user address
1382  * @nr_pages:	number of pages from start to pin
1383  * @write:	whether pages will be written to
1384  * @pages:	array that receives pointers to the pages pinned.
1385  *		Should be at least nr_pages long.
1386  *
1387  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1388  * If not successful, it will fall back to taking the lock and
1389  * calling get_user_pages().
1390  *
1391  * Returns number of pages pinned. This may be fewer than the number
1392  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1393  * were pinned, returns -errno.
1394  */
1395 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1396 			struct page **pages)
1397 {
1398 	struct mm_struct *mm = current->mm;
1399 	int nr, ret;
1400 
1401 	start &= PAGE_MASK;
1402 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1403 	ret = nr;
1404 
1405 	if (nr < nr_pages) {
1406 		/* Try to get the remaining pages with get_user_pages */
1407 		start += nr << PAGE_SHIFT;
1408 		pages += nr;
1409 
1410 		ret = get_user_pages_unlocked(current, mm, start,
1411 					      nr_pages - nr, write, 0, pages);
1412 
1413 		/* Have to be a bit careful with return values */
1414 		if (nr > 0) {
1415 			if (ret < 0)
1416 				ret = nr;
1417 			else
1418 				ret += nr;
1419 		}
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1426