xref: /openbmc/linux/mm/gup.c (revision 65ca668f)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 static struct page *follow_page_pte(struct vm_area_struct *vma,
64 		unsigned long address, pmd_t *pmd, unsigned int flags)
65 {
66 	struct mm_struct *mm = vma->vm_mm;
67 	struct dev_pagemap *pgmap = NULL;
68 	struct page *page;
69 	spinlock_t *ptl;
70 	pte_t *ptep, pte;
71 
72 retry:
73 	if (unlikely(pmd_bad(*pmd)))
74 		return no_page_table(vma, flags);
75 
76 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
77 	pte = *ptep;
78 	if (!pte_present(pte)) {
79 		swp_entry_t entry;
80 		/*
81 		 * KSM's break_ksm() relies upon recognizing a ksm page
82 		 * even while it is being migrated, so for that case we
83 		 * need migration_entry_wait().
84 		 */
85 		if (likely(!(flags & FOLL_MIGRATION)))
86 			goto no_page;
87 		if (pte_none(pte))
88 			goto no_page;
89 		entry = pte_to_swp_entry(pte);
90 		if (!is_migration_entry(entry))
91 			goto no_page;
92 		pte_unmap_unlock(ptep, ptl);
93 		migration_entry_wait(mm, pmd, address);
94 		goto retry;
95 	}
96 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
97 		goto no_page;
98 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
99 		pte_unmap_unlock(ptep, ptl);
100 		return NULL;
101 	}
102 
103 	page = vm_normal_page(vma, address, pte);
104 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
105 		/*
106 		 * Only return device mapping pages in the FOLL_GET case since
107 		 * they are only valid while holding the pgmap reference.
108 		 */
109 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
110 		if (pgmap)
111 			page = pte_page(pte);
112 		else
113 			goto no_page;
114 	} else if (unlikely(!page)) {
115 		if (flags & FOLL_DUMP) {
116 			/* Avoid special (like zero) pages in core dumps */
117 			page = ERR_PTR(-EFAULT);
118 			goto out;
119 		}
120 
121 		if (is_zero_pfn(pte_pfn(pte))) {
122 			page = pte_page(pte);
123 		} else {
124 			int ret;
125 
126 			ret = follow_pfn_pte(vma, address, ptep, flags);
127 			page = ERR_PTR(ret);
128 			goto out;
129 		}
130 	}
131 
132 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
133 		int ret;
134 		get_page(page);
135 		pte_unmap_unlock(ptep, ptl);
136 		lock_page(page);
137 		ret = split_huge_page(page);
138 		unlock_page(page);
139 		put_page(page);
140 		if (ret)
141 			return ERR_PTR(ret);
142 		goto retry;
143 	}
144 
145 	if (flags & FOLL_GET) {
146 		get_page(page);
147 
148 		/* drop the pgmap reference now that we hold the page */
149 		if (pgmap) {
150 			put_dev_pagemap(pgmap);
151 			pgmap = NULL;
152 		}
153 	}
154 	if (flags & FOLL_TOUCH) {
155 		if ((flags & FOLL_WRITE) &&
156 		    !pte_dirty(pte) && !PageDirty(page))
157 			set_page_dirty(page);
158 		/*
159 		 * pte_mkyoung() would be more correct here, but atomic care
160 		 * is needed to avoid losing the dirty bit: it is easier to use
161 		 * mark_page_accessed().
162 		 */
163 		mark_page_accessed(page);
164 	}
165 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
166 		/* Do not mlock pte-mapped THP */
167 		if (PageTransCompound(page))
168 			goto out;
169 
170 		/*
171 		 * The preliminary mapping check is mainly to avoid the
172 		 * pointless overhead of lock_page on the ZERO_PAGE
173 		 * which might bounce very badly if there is contention.
174 		 *
175 		 * If the page is already locked, we don't need to
176 		 * handle it now - vmscan will handle it later if and
177 		 * when it attempts to reclaim the page.
178 		 */
179 		if (page->mapping && trylock_page(page)) {
180 			lru_add_drain();  /* push cached pages to LRU */
181 			/*
182 			 * Because we lock page here, and migration is
183 			 * blocked by the pte's page reference, and we
184 			 * know the page is still mapped, we don't even
185 			 * need to check for file-cache page truncation.
186 			 */
187 			mlock_vma_page(page);
188 			unlock_page(page);
189 		}
190 	}
191 out:
192 	pte_unmap_unlock(ptep, ptl);
193 	return page;
194 no_page:
195 	pte_unmap_unlock(ptep, ptl);
196 	if (!pte_none(pte))
197 		return NULL;
198 	return no_page_table(vma, flags);
199 }
200 
201 /**
202  * follow_page_mask - look up a page descriptor from a user-virtual address
203  * @vma: vm_area_struct mapping @address
204  * @address: virtual address to look up
205  * @flags: flags modifying lookup behaviour
206  * @page_mask: on output, *page_mask is set according to the size of the page
207  *
208  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
209  *
210  * Returns the mapped (struct page *), %NULL if no mapping exists, or
211  * an error pointer if there is a mapping to something not represented
212  * by a page descriptor (see also vm_normal_page()).
213  */
214 struct page *follow_page_mask(struct vm_area_struct *vma,
215 			      unsigned long address, unsigned int flags,
216 			      unsigned int *page_mask)
217 {
218 	pgd_t *pgd;
219 	pud_t *pud;
220 	pmd_t *pmd;
221 	spinlock_t *ptl;
222 	struct page *page;
223 	struct mm_struct *mm = vma->vm_mm;
224 
225 	*page_mask = 0;
226 
227 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
228 	if (!IS_ERR(page)) {
229 		BUG_ON(flags & FOLL_GET);
230 		return page;
231 	}
232 
233 	pgd = pgd_offset(mm, address);
234 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
235 		return no_page_table(vma, flags);
236 
237 	pud = pud_offset(pgd, address);
238 	if (pud_none(*pud))
239 		return no_page_table(vma, flags);
240 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
241 		page = follow_huge_pud(mm, address, pud, flags);
242 		if (page)
243 			return page;
244 		return no_page_table(vma, flags);
245 	}
246 	if (unlikely(pud_bad(*pud)))
247 		return no_page_table(vma, flags);
248 
249 	pmd = pmd_offset(pud, address);
250 	if (pmd_none(*pmd))
251 		return no_page_table(vma, flags);
252 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
253 		page = follow_huge_pmd(mm, address, pmd, flags);
254 		if (page)
255 			return page;
256 		return no_page_table(vma, flags);
257 	}
258 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
259 		return no_page_table(vma, flags);
260 	if (pmd_devmap(*pmd)) {
261 		ptl = pmd_lock(mm, pmd);
262 		page = follow_devmap_pmd(vma, address, pmd, flags);
263 		spin_unlock(ptl);
264 		if (page)
265 			return page;
266 	}
267 	if (likely(!pmd_trans_huge(*pmd)))
268 		return follow_page_pte(vma, address, pmd, flags);
269 
270 	ptl = pmd_lock(mm, pmd);
271 	if (unlikely(!pmd_trans_huge(*pmd))) {
272 		spin_unlock(ptl);
273 		return follow_page_pte(vma, address, pmd, flags);
274 	}
275 	if (flags & FOLL_SPLIT) {
276 		int ret;
277 		page = pmd_page(*pmd);
278 		if (is_huge_zero_page(page)) {
279 			spin_unlock(ptl);
280 			ret = 0;
281 			split_huge_pmd(vma, pmd, address);
282 			if (pmd_trans_unstable(pmd))
283 				ret = -EBUSY;
284 		} else {
285 			get_page(page);
286 			spin_unlock(ptl);
287 			lock_page(page);
288 			ret = split_huge_page(page);
289 			unlock_page(page);
290 			put_page(page);
291 			if (pmd_none(*pmd))
292 				return no_page_table(vma, flags);
293 		}
294 
295 		return ret ? ERR_PTR(ret) :
296 			follow_page_pte(vma, address, pmd, flags);
297 	}
298 
299 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
300 	spin_unlock(ptl);
301 	*page_mask = HPAGE_PMD_NR - 1;
302 	return page;
303 }
304 
305 static int get_gate_page(struct mm_struct *mm, unsigned long address,
306 		unsigned int gup_flags, struct vm_area_struct **vma,
307 		struct page **page)
308 {
309 	pgd_t *pgd;
310 	pud_t *pud;
311 	pmd_t *pmd;
312 	pte_t *pte;
313 	int ret = -EFAULT;
314 
315 	/* user gate pages are read-only */
316 	if (gup_flags & FOLL_WRITE)
317 		return -EFAULT;
318 	if (address > TASK_SIZE)
319 		pgd = pgd_offset_k(address);
320 	else
321 		pgd = pgd_offset_gate(mm, address);
322 	BUG_ON(pgd_none(*pgd));
323 	pud = pud_offset(pgd, address);
324 	BUG_ON(pud_none(*pud));
325 	pmd = pmd_offset(pud, address);
326 	if (pmd_none(*pmd))
327 		return -EFAULT;
328 	VM_BUG_ON(pmd_trans_huge(*pmd));
329 	pte = pte_offset_map(pmd, address);
330 	if (pte_none(*pte))
331 		goto unmap;
332 	*vma = get_gate_vma(mm);
333 	if (!page)
334 		goto out;
335 	*page = vm_normal_page(*vma, address, *pte);
336 	if (!*page) {
337 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
338 			goto unmap;
339 		*page = pte_page(*pte);
340 	}
341 	get_page(*page);
342 out:
343 	ret = 0;
344 unmap:
345 	pte_unmap(pte);
346 	return ret;
347 }
348 
349 /*
350  * mmap_sem must be held on entry.  If @nonblocking != NULL and
351  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
352  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
353  */
354 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
355 		unsigned long address, unsigned int *flags, int *nonblocking)
356 {
357 	unsigned int fault_flags = 0;
358 	int ret;
359 
360 	/* mlock all present pages, but do not fault in new pages */
361 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
362 		return -ENOENT;
363 	/* For mm_populate(), just skip the stack guard page. */
364 	if ((*flags & FOLL_POPULATE) &&
365 			(stack_guard_page_start(vma, address) ||
366 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
367 		return -ENOENT;
368 	if (*flags & FOLL_WRITE)
369 		fault_flags |= FAULT_FLAG_WRITE;
370 	if (*flags & FOLL_REMOTE)
371 		fault_flags |= FAULT_FLAG_REMOTE;
372 	if (nonblocking)
373 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
374 	if (*flags & FOLL_NOWAIT)
375 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
376 	if (*flags & FOLL_TRIED) {
377 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
378 		fault_flags |= FAULT_FLAG_TRIED;
379 	}
380 
381 	ret = handle_mm_fault(vma, address, fault_flags);
382 	if (ret & VM_FAULT_ERROR) {
383 		if (ret & VM_FAULT_OOM)
384 			return -ENOMEM;
385 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
386 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
387 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
388 			return -EFAULT;
389 		BUG();
390 	}
391 
392 	if (tsk) {
393 		if (ret & VM_FAULT_MAJOR)
394 			tsk->maj_flt++;
395 		else
396 			tsk->min_flt++;
397 	}
398 
399 	if (ret & VM_FAULT_RETRY) {
400 		if (nonblocking)
401 			*nonblocking = 0;
402 		return -EBUSY;
403 	}
404 
405 	/*
406 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
407 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
408 	 * can thus safely do subsequent page lookups as if they were reads.
409 	 * But only do so when looping for pte_write is futile: in some cases
410 	 * userspace may also be wanting to write to the gotten user page,
411 	 * which a read fault here might prevent (a readonly page might get
412 	 * reCOWed by userspace write).
413 	 */
414 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
415 		*flags &= ~FOLL_WRITE;
416 	return 0;
417 }
418 
419 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
420 {
421 	vm_flags_t vm_flags = vma->vm_flags;
422 	int write = (gup_flags & FOLL_WRITE);
423 	int foreign = (gup_flags & FOLL_REMOTE);
424 
425 	if (vm_flags & (VM_IO | VM_PFNMAP))
426 		return -EFAULT;
427 
428 	if (write) {
429 		if (!(vm_flags & VM_WRITE)) {
430 			if (!(gup_flags & FOLL_FORCE))
431 				return -EFAULT;
432 			/*
433 			 * We used to let the write,force case do COW in a
434 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
435 			 * set a breakpoint in a read-only mapping of an
436 			 * executable, without corrupting the file (yet only
437 			 * when that file had been opened for writing!).
438 			 * Anon pages in shared mappings are surprising: now
439 			 * just reject it.
440 			 */
441 			if (!is_cow_mapping(vm_flags))
442 				return -EFAULT;
443 		}
444 	} else if (!(vm_flags & VM_READ)) {
445 		if (!(gup_flags & FOLL_FORCE))
446 			return -EFAULT;
447 		/*
448 		 * Is there actually any vma we can reach here which does not
449 		 * have VM_MAYREAD set?
450 		 */
451 		if (!(vm_flags & VM_MAYREAD))
452 			return -EFAULT;
453 	}
454 	/*
455 	 * gups are always data accesses, not instruction
456 	 * fetches, so execute=false here
457 	 */
458 	if (!arch_vma_access_permitted(vma, write, false, foreign))
459 		return -EFAULT;
460 	return 0;
461 }
462 
463 /**
464  * __get_user_pages() - pin user pages in memory
465  * @tsk:	task_struct of target task
466  * @mm:		mm_struct of target mm
467  * @start:	starting user address
468  * @nr_pages:	number of pages from start to pin
469  * @gup_flags:	flags modifying pin behaviour
470  * @pages:	array that receives pointers to the pages pinned.
471  *		Should be at least nr_pages long. Or NULL, if caller
472  *		only intends to ensure the pages are faulted in.
473  * @vmas:	array of pointers to vmas corresponding to each page.
474  *		Or NULL if the caller does not require them.
475  * @nonblocking: whether waiting for disk IO or mmap_sem contention
476  *
477  * Returns number of pages pinned. This may be fewer than the number
478  * requested. If nr_pages is 0 or negative, returns 0. If no pages
479  * were pinned, returns -errno. Each page returned must be released
480  * with a put_page() call when it is finished with. vmas will only
481  * remain valid while mmap_sem is held.
482  *
483  * Must be called with mmap_sem held.  It may be released.  See below.
484  *
485  * __get_user_pages walks a process's page tables and takes a reference to
486  * each struct page that each user address corresponds to at a given
487  * instant. That is, it takes the page that would be accessed if a user
488  * thread accesses the given user virtual address at that instant.
489  *
490  * This does not guarantee that the page exists in the user mappings when
491  * __get_user_pages returns, and there may even be a completely different
492  * page there in some cases (eg. if mmapped pagecache has been invalidated
493  * and subsequently re faulted). However it does guarantee that the page
494  * won't be freed completely. And mostly callers simply care that the page
495  * contains data that was valid *at some point in time*. Typically, an IO
496  * or similar operation cannot guarantee anything stronger anyway because
497  * locks can't be held over the syscall boundary.
498  *
499  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
500  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
501  * appropriate) must be called after the page is finished with, and
502  * before put_page is called.
503  *
504  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
505  * or mmap_sem contention, and if waiting is needed to pin all pages,
506  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
507  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
508  * this case.
509  *
510  * A caller using such a combination of @nonblocking and @gup_flags
511  * must therefore hold the mmap_sem for reading only, and recognize
512  * when it's been released.  Otherwise, it must be held for either
513  * reading or writing and will not be released.
514  *
515  * In most cases, get_user_pages or get_user_pages_fast should be used
516  * instead of __get_user_pages. __get_user_pages should be used only if
517  * you need some special @gup_flags.
518  */
519 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
520 		unsigned long start, unsigned long nr_pages,
521 		unsigned int gup_flags, struct page **pages,
522 		struct vm_area_struct **vmas, int *nonblocking)
523 {
524 	long i = 0;
525 	unsigned int page_mask;
526 	struct vm_area_struct *vma = NULL;
527 
528 	if (!nr_pages)
529 		return 0;
530 
531 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
532 
533 	/*
534 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
535 	 * fault information is unrelated to the reference behaviour of a task
536 	 * using the address space
537 	 */
538 	if (!(gup_flags & FOLL_FORCE))
539 		gup_flags |= FOLL_NUMA;
540 
541 	do {
542 		struct page *page;
543 		unsigned int foll_flags = gup_flags;
544 		unsigned int page_increm;
545 
546 		/* first iteration or cross vma bound */
547 		if (!vma || start >= vma->vm_end) {
548 			vma = find_extend_vma(mm, start);
549 			if (!vma && in_gate_area(mm, start)) {
550 				int ret;
551 				ret = get_gate_page(mm, start & PAGE_MASK,
552 						gup_flags, &vma,
553 						pages ? &pages[i] : NULL);
554 				if (ret)
555 					return i ? : ret;
556 				page_mask = 0;
557 				goto next_page;
558 			}
559 
560 			if (!vma || check_vma_flags(vma, gup_flags))
561 				return i ? : -EFAULT;
562 			if (is_vm_hugetlb_page(vma)) {
563 				i = follow_hugetlb_page(mm, vma, pages, vmas,
564 						&start, &nr_pages, i,
565 						gup_flags);
566 				continue;
567 			}
568 		}
569 retry:
570 		/*
571 		 * If we have a pending SIGKILL, don't keep faulting pages and
572 		 * potentially allocating memory.
573 		 */
574 		if (unlikely(fatal_signal_pending(current)))
575 			return i ? i : -ERESTARTSYS;
576 		cond_resched();
577 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
578 		if (!page) {
579 			int ret;
580 			ret = faultin_page(tsk, vma, start, &foll_flags,
581 					nonblocking);
582 			switch (ret) {
583 			case 0:
584 				goto retry;
585 			case -EFAULT:
586 			case -ENOMEM:
587 			case -EHWPOISON:
588 				return i ? i : ret;
589 			case -EBUSY:
590 				return i;
591 			case -ENOENT:
592 				goto next_page;
593 			}
594 			BUG();
595 		} else if (PTR_ERR(page) == -EEXIST) {
596 			/*
597 			 * Proper page table entry exists, but no corresponding
598 			 * struct page.
599 			 */
600 			goto next_page;
601 		} else if (IS_ERR(page)) {
602 			return i ? i : PTR_ERR(page);
603 		}
604 		if (pages) {
605 			pages[i] = page;
606 			flush_anon_page(vma, page, start);
607 			flush_dcache_page(page);
608 			page_mask = 0;
609 		}
610 next_page:
611 		if (vmas) {
612 			vmas[i] = vma;
613 			page_mask = 0;
614 		}
615 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
616 		if (page_increm > nr_pages)
617 			page_increm = nr_pages;
618 		i += page_increm;
619 		start += page_increm * PAGE_SIZE;
620 		nr_pages -= page_increm;
621 	} while (nr_pages);
622 	return i;
623 }
624 EXPORT_SYMBOL(__get_user_pages);
625 
626 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
627 {
628 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
629 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
630 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
631 
632 	if (!(vm_flags & vma->vm_flags))
633 		return false;
634 
635 	/*
636 	 * The architecture might have a hardware protection
637 	 * mechanism other than read/write that can deny access.
638 	 *
639 	 * gup always represents data access, not instruction
640 	 * fetches, so execute=false here:
641 	 */
642 	if (!arch_vma_access_permitted(vma, write, false, foreign))
643 		return false;
644 
645 	return true;
646 }
647 
648 /*
649  * fixup_user_fault() - manually resolve a user page fault
650  * @tsk:	the task_struct to use for page fault accounting, or
651  *		NULL if faults are not to be recorded.
652  * @mm:		mm_struct of target mm
653  * @address:	user address
654  * @fault_flags:flags to pass down to handle_mm_fault()
655  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
656  *		does not allow retry
657  *
658  * This is meant to be called in the specific scenario where for locking reasons
659  * we try to access user memory in atomic context (within a pagefault_disable()
660  * section), this returns -EFAULT, and we want to resolve the user fault before
661  * trying again.
662  *
663  * Typically this is meant to be used by the futex code.
664  *
665  * The main difference with get_user_pages() is that this function will
666  * unconditionally call handle_mm_fault() which will in turn perform all the
667  * necessary SW fixup of the dirty and young bits in the PTE, while
668  * get_user_pages() only guarantees to update these in the struct page.
669  *
670  * This is important for some architectures where those bits also gate the
671  * access permission to the page because they are maintained in software.  On
672  * such architectures, gup() will not be enough to make a subsequent access
673  * succeed.
674  *
675  * This function will not return with an unlocked mmap_sem. So it has not the
676  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
677  */
678 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
679 		     unsigned long address, unsigned int fault_flags,
680 		     bool *unlocked)
681 {
682 	struct vm_area_struct *vma;
683 	int ret, major = 0;
684 
685 	if (unlocked)
686 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
687 
688 retry:
689 	vma = find_extend_vma(mm, address);
690 	if (!vma || address < vma->vm_start)
691 		return -EFAULT;
692 
693 	if (!vma_permits_fault(vma, fault_flags))
694 		return -EFAULT;
695 
696 	ret = handle_mm_fault(vma, address, fault_flags);
697 	major |= ret & VM_FAULT_MAJOR;
698 	if (ret & VM_FAULT_ERROR) {
699 		if (ret & VM_FAULT_OOM)
700 			return -ENOMEM;
701 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
702 			return -EHWPOISON;
703 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
704 			return -EFAULT;
705 		BUG();
706 	}
707 
708 	if (ret & VM_FAULT_RETRY) {
709 		down_read(&mm->mmap_sem);
710 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
711 			*unlocked = true;
712 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
713 			fault_flags |= FAULT_FLAG_TRIED;
714 			goto retry;
715 		}
716 	}
717 
718 	if (tsk) {
719 		if (major)
720 			tsk->maj_flt++;
721 		else
722 			tsk->min_flt++;
723 	}
724 	return 0;
725 }
726 EXPORT_SYMBOL_GPL(fixup_user_fault);
727 
728 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
729 						struct mm_struct *mm,
730 						unsigned long start,
731 						unsigned long nr_pages,
732 						int write, int force,
733 						struct page **pages,
734 						struct vm_area_struct **vmas,
735 						int *locked, bool notify_drop,
736 						unsigned int flags)
737 {
738 	long ret, pages_done;
739 	bool lock_dropped;
740 
741 	if (locked) {
742 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
743 		BUG_ON(vmas);
744 		/* check caller initialized locked */
745 		BUG_ON(*locked != 1);
746 	}
747 
748 	if (pages)
749 		flags |= FOLL_GET;
750 	if (write)
751 		flags |= FOLL_WRITE;
752 	if (force)
753 		flags |= FOLL_FORCE;
754 
755 	pages_done = 0;
756 	lock_dropped = false;
757 	for (;;) {
758 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
759 				       vmas, locked);
760 		if (!locked)
761 			/* VM_FAULT_RETRY couldn't trigger, bypass */
762 			return ret;
763 
764 		/* VM_FAULT_RETRY cannot return errors */
765 		if (!*locked) {
766 			BUG_ON(ret < 0);
767 			BUG_ON(ret >= nr_pages);
768 		}
769 
770 		if (!pages)
771 			/* If it's a prefault don't insist harder */
772 			return ret;
773 
774 		if (ret > 0) {
775 			nr_pages -= ret;
776 			pages_done += ret;
777 			if (!nr_pages)
778 				break;
779 		}
780 		if (*locked) {
781 			/* VM_FAULT_RETRY didn't trigger */
782 			if (!pages_done)
783 				pages_done = ret;
784 			break;
785 		}
786 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
787 		pages += ret;
788 		start += ret << PAGE_SHIFT;
789 
790 		/*
791 		 * Repeat on the address that fired VM_FAULT_RETRY
792 		 * without FAULT_FLAG_ALLOW_RETRY but with
793 		 * FAULT_FLAG_TRIED.
794 		 */
795 		*locked = 1;
796 		lock_dropped = true;
797 		down_read(&mm->mmap_sem);
798 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
799 				       pages, NULL, NULL);
800 		if (ret != 1) {
801 			BUG_ON(ret > 1);
802 			if (!pages_done)
803 				pages_done = ret;
804 			break;
805 		}
806 		nr_pages--;
807 		pages_done++;
808 		if (!nr_pages)
809 			break;
810 		pages++;
811 		start += PAGE_SIZE;
812 	}
813 	if (notify_drop && lock_dropped && *locked) {
814 		/*
815 		 * We must let the caller know we temporarily dropped the lock
816 		 * and so the critical section protected by it was lost.
817 		 */
818 		up_read(&mm->mmap_sem);
819 		*locked = 0;
820 	}
821 	return pages_done;
822 }
823 
824 /*
825  * We can leverage the VM_FAULT_RETRY functionality in the page fault
826  * paths better by using either get_user_pages_locked() or
827  * get_user_pages_unlocked().
828  *
829  * get_user_pages_locked() is suitable to replace the form:
830  *
831  *      down_read(&mm->mmap_sem);
832  *      do_something()
833  *      get_user_pages(tsk, mm, ..., pages, NULL);
834  *      up_read(&mm->mmap_sem);
835  *
836  *  to:
837  *
838  *      int locked = 1;
839  *      down_read(&mm->mmap_sem);
840  *      do_something()
841  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
842  *      if (locked)
843  *          up_read(&mm->mmap_sem);
844  */
845 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
846 			   int write, int force, struct page **pages,
847 			   int *locked)
848 {
849 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
850 				       write, force, pages, NULL, locked, true,
851 				       FOLL_TOUCH);
852 }
853 EXPORT_SYMBOL(get_user_pages_locked);
854 
855 /*
856  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
857  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
858  *
859  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
860  * caller if required (just like with __get_user_pages). "FOLL_GET",
861  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
862  * according to the parameters "pages", "write", "force"
863  * respectively.
864  */
865 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
866 					       unsigned long start, unsigned long nr_pages,
867 					       int write, int force, struct page **pages,
868 					       unsigned int gup_flags)
869 {
870 	long ret;
871 	int locked = 1;
872 	down_read(&mm->mmap_sem);
873 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
874 				      pages, NULL, &locked, false, gup_flags);
875 	if (locked)
876 		up_read(&mm->mmap_sem);
877 	return ret;
878 }
879 EXPORT_SYMBOL(__get_user_pages_unlocked);
880 
881 /*
882  * get_user_pages_unlocked() is suitable to replace the form:
883  *
884  *      down_read(&mm->mmap_sem);
885  *      get_user_pages(tsk, mm, ..., pages, NULL);
886  *      up_read(&mm->mmap_sem);
887  *
888  *  with:
889  *
890  *      get_user_pages_unlocked(tsk, mm, ..., pages);
891  *
892  * It is functionally equivalent to get_user_pages_fast so
893  * get_user_pages_fast should be used instead, if the two parameters
894  * "tsk" and "mm" are respectively equal to current and current->mm,
895  * or if "force" shall be set to 1 (get_user_pages_fast misses the
896  * "force" parameter).
897  */
898 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
899 			     int write, int force, struct page **pages)
900 {
901 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
902 					 write, force, pages, FOLL_TOUCH);
903 }
904 EXPORT_SYMBOL(get_user_pages_unlocked);
905 
906 /*
907  * get_user_pages_remote() - pin user pages in memory
908  * @tsk:	the task_struct to use for page fault accounting, or
909  *		NULL if faults are not to be recorded.
910  * @mm:		mm_struct of target mm
911  * @start:	starting user address
912  * @nr_pages:	number of pages from start to pin
913  * @write:	whether pages will be written to by the caller
914  * @force:	whether to force access even when user mapping is currently
915  *		protected (but never forces write access to shared mapping).
916  * @pages:	array that receives pointers to the pages pinned.
917  *		Should be at least nr_pages long. Or NULL, if caller
918  *		only intends to ensure the pages are faulted in.
919  * @vmas:	array of pointers to vmas corresponding to each page.
920  *		Or NULL if the caller does not require them.
921  *
922  * Returns number of pages pinned. This may be fewer than the number
923  * requested. If nr_pages is 0 or negative, returns 0. If no pages
924  * were pinned, returns -errno. Each page returned must be released
925  * with a put_page() call when it is finished with. vmas will only
926  * remain valid while mmap_sem is held.
927  *
928  * Must be called with mmap_sem held for read or write.
929  *
930  * get_user_pages walks a process's page tables and takes a reference to
931  * each struct page that each user address corresponds to at a given
932  * instant. That is, it takes the page that would be accessed if a user
933  * thread accesses the given user virtual address at that instant.
934  *
935  * This does not guarantee that the page exists in the user mappings when
936  * get_user_pages returns, and there may even be a completely different
937  * page there in some cases (eg. if mmapped pagecache has been invalidated
938  * and subsequently re faulted). However it does guarantee that the page
939  * won't be freed completely. And mostly callers simply care that the page
940  * contains data that was valid *at some point in time*. Typically, an IO
941  * or similar operation cannot guarantee anything stronger anyway because
942  * locks can't be held over the syscall boundary.
943  *
944  * If write=0, the page must not be written to. If the page is written to,
945  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
946  * after the page is finished with, and before put_page is called.
947  *
948  * get_user_pages is typically used for fewer-copy IO operations, to get a
949  * handle on the memory by some means other than accesses via the user virtual
950  * addresses. The pages may be submitted for DMA to devices or accessed via
951  * their kernel linear mapping (via the kmap APIs). Care should be taken to
952  * use the correct cache flushing APIs.
953  *
954  * See also get_user_pages_fast, for performance critical applications.
955  *
956  * get_user_pages should be phased out in favor of
957  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
958  * should use get_user_pages because it cannot pass
959  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
960  */
961 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
962 		unsigned long start, unsigned long nr_pages,
963 		int write, int force, struct page **pages,
964 		struct vm_area_struct **vmas)
965 {
966 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
967 				       pages, vmas, NULL, false,
968 				       FOLL_TOUCH | FOLL_REMOTE);
969 }
970 EXPORT_SYMBOL(get_user_pages_remote);
971 
972 /*
973  * This is the same as get_user_pages_remote(), just with a
974  * less-flexible calling convention where we assume that the task
975  * and mm being operated on are the current task's.  We also
976  * obviously don't pass FOLL_REMOTE in here.
977  */
978 long get_user_pages(unsigned long start, unsigned long nr_pages,
979 		int write, int force, struct page **pages,
980 		struct vm_area_struct **vmas)
981 {
982 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
983 				       write, force, pages, vmas, NULL, false,
984 				       FOLL_TOUCH);
985 }
986 EXPORT_SYMBOL(get_user_pages);
987 
988 /**
989  * populate_vma_page_range() -  populate a range of pages in the vma.
990  * @vma:   target vma
991  * @start: start address
992  * @end:   end address
993  * @nonblocking:
994  *
995  * This takes care of mlocking the pages too if VM_LOCKED is set.
996  *
997  * return 0 on success, negative error code on error.
998  *
999  * vma->vm_mm->mmap_sem must be held.
1000  *
1001  * If @nonblocking is NULL, it may be held for read or write and will
1002  * be unperturbed.
1003  *
1004  * If @nonblocking is non-NULL, it must held for read only and may be
1005  * released.  If it's released, *@nonblocking will be set to 0.
1006  */
1007 long populate_vma_page_range(struct vm_area_struct *vma,
1008 		unsigned long start, unsigned long end, int *nonblocking)
1009 {
1010 	struct mm_struct *mm = vma->vm_mm;
1011 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1012 	int gup_flags;
1013 
1014 	VM_BUG_ON(start & ~PAGE_MASK);
1015 	VM_BUG_ON(end   & ~PAGE_MASK);
1016 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1017 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1018 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1019 
1020 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1021 	if (vma->vm_flags & VM_LOCKONFAULT)
1022 		gup_flags &= ~FOLL_POPULATE;
1023 	/*
1024 	 * We want to touch writable mappings with a write fault in order
1025 	 * to break COW, except for shared mappings because these don't COW
1026 	 * and we would not want to dirty them for nothing.
1027 	 */
1028 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1029 		gup_flags |= FOLL_WRITE;
1030 
1031 	/*
1032 	 * We want mlock to succeed for regions that have any permissions
1033 	 * other than PROT_NONE.
1034 	 */
1035 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1036 		gup_flags |= FOLL_FORCE;
1037 
1038 	/*
1039 	 * We made sure addr is within a VMA, so the following will
1040 	 * not result in a stack expansion that recurses back here.
1041 	 */
1042 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1043 				NULL, NULL, nonblocking);
1044 }
1045 
1046 /*
1047  * __mm_populate - populate and/or mlock pages within a range of address space.
1048  *
1049  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1050  * flags. VMAs must be already marked with the desired vm_flags, and
1051  * mmap_sem must not be held.
1052  */
1053 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1054 {
1055 	struct mm_struct *mm = current->mm;
1056 	unsigned long end, nstart, nend;
1057 	struct vm_area_struct *vma = NULL;
1058 	int locked = 0;
1059 	long ret = 0;
1060 
1061 	VM_BUG_ON(start & ~PAGE_MASK);
1062 	VM_BUG_ON(len != PAGE_ALIGN(len));
1063 	end = start + len;
1064 
1065 	for (nstart = start; nstart < end; nstart = nend) {
1066 		/*
1067 		 * We want to fault in pages for [nstart; end) address range.
1068 		 * Find first corresponding VMA.
1069 		 */
1070 		if (!locked) {
1071 			locked = 1;
1072 			down_read(&mm->mmap_sem);
1073 			vma = find_vma(mm, nstart);
1074 		} else if (nstart >= vma->vm_end)
1075 			vma = vma->vm_next;
1076 		if (!vma || vma->vm_start >= end)
1077 			break;
1078 		/*
1079 		 * Set [nstart; nend) to intersection of desired address
1080 		 * range with the first VMA. Also, skip undesirable VMA types.
1081 		 */
1082 		nend = min(end, vma->vm_end);
1083 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1084 			continue;
1085 		if (nstart < vma->vm_start)
1086 			nstart = vma->vm_start;
1087 		/*
1088 		 * Now fault in a range of pages. populate_vma_page_range()
1089 		 * double checks the vma flags, so that it won't mlock pages
1090 		 * if the vma was already munlocked.
1091 		 */
1092 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1093 		if (ret < 0) {
1094 			if (ignore_errors) {
1095 				ret = 0;
1096 				continue;	/* continue at next VMA */
1097 			}
1098 			break;
1099 		}
1100 		nend = nstart + ret * PAGE_SIZE;
1101 		ret = 0;
1102 	}
1103 	if (locked)
1104 		up_read(&mm->mmap_sem);
1105 	return ret;	/* 0 or negative error code */
1106 }
1107 
1108 /**
1109  * get_dump_page() - pin user page in memory while writing it to core dump
1110  * @addr: user address
1111  *
1112  * Returns struct page pointer of user page pinned for dump,
1113  * to be freed afterwards by put_page().
1114  *
1115  * Returns NULL on any kind of failure - a hole must then be inserted into
1116  * the corefile, to preserve alignment with its headers; and also returns
1117  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1118  * allowing a hole to be left in the corefile to save diskspace.
1119  *
1120  * Called without mmap_sem, but after all other threads have been killed.
1121  */
1122 #ifdef CONFIG_ELF_CORE
1123 struct page *get_dump_page(unsigned long addr)
1124 {
1125 	struct vm_area_struct *vma;
1126 	struct page *page;
1127 
1128 	if (__get_user_pages(current, current->mm, addr, 1,
1129 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1130 			     NULL) < 1)
1131 		return NULL;
1132 	flush_cache_page(vma, addr, page_to_pfn(page));
1133 	return page;
1134 }
1135 #endif /* CONFIG_ELF_CORE */
1136 
1137 /*
1138  * Generic RCU Fast GUP
1139  *
1140  * get_user_pages_fast attempts to pin user pages by walking the page
1141  * tables directly and avoids taking locks. Thus the walker needs to be
1142  * protected from page table pages being freed from under it, and should
1143  * block any THP splits.
1144  *
1145  * One way to achieve this is to have the walker disable interrupts, and
1146  * rely on IPIs from the TLB flushing code blocking before the page table
1147  * pages are freed. This is unsuitable for architectures that do not need
1148  * to broadcast an IPI when invalidating TLBs.
1149  *
1150  * Another way to achieve this is to batch up page table containing pages
1151  * belonging to more than one mm_user, then rcu_sched a callback to free those
1152  * pages. Disabling interrupts will allow the fast_gup walker to both block
1153  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1154  * (which is a relatively rare event). The code below adopts this strategy.
1155  *
1156  * Before activating this code, please be aware that the following assumptions
1157  * are currently made:
1158  *
1159  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1160  *      pages containing page tables.
1161  *
1162  *  *) ptes can be read atomically by the architecture.
1163  *
1164  *  *) access_ok is sufficient to validate userspace address ranges.
1165  *
1166  * The last two assumptions can be relaxed by the addition of helper functions.
1167  *
1168  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1169  */
1170 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1171 
1172 #ifdef __HAVE_ARCH_PTE_SPECIAL
1173 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1174 			 int write, struct page **pages, int *nr)
1175 {
1176 	pte_t *ptep, *ptem;
1177 	int ret = 0;
1178 
1179 	ptem = ptep = pte_offset_map(&pmd, addr);
1180 	do {
1181 		/*
1182 		 * In the line below we are assuming that the pte can be read
1183 		 * atomically. If this is not the case for your architecture,
1184 		 * please wrap this in a helper function!
1185 		 *
1186 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1187 		 */
1188 		pte_t pte = READ_ONCE(*ptep);
1189 		struct page *head, *page;
1190 
1191 		/*
1192 		 * Similar to the PMD case below, NUMA hinting must take slow
1193 		 * path using the pte_protnone check.
1194 		 */
1195 		if (!pte_present(pte) || pte_special(pte) ||
1196 			pte_protnone(pte) || (write && !pte_write(pte)))
1197 			goto pte_unmap;
1198 
1199 		if (!arch_pte_access_permitted(pte, write))
1200 			goto pte_unmap;
1201 
1202 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1203 		page = pte_page(pte);
1204 		head = compound_head(page);
1205 
1206 		if (!page_cache_get_speculative(head))
1207 			goto pte_unmap;
1208 
1209 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1210 			put_page(head);
1211 			goto pte_unmap;
1212 		}
1213 
1214 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1215 		pages[*nr] = page;
1216 		(*nr)++;
1217 
1218 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1219 
1220 	ret = 1;
1221 
1222 pte_unmap:
1223 	pte_unmap(ptem);
1224 	return ret;
1225 }
1226 #else
1227 
1228 /*
1229  * If we can't determine whether or not a pte is special, then fail immediately
1230  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1231  * to be special.
1232  *
1233  * For a futex to be placed on a THP tail page, get_futex_key requires a
1234  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1235  * useful to have gup_huge_pmd even if we can't operate on ptes.
1236  */
1237 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1238 			 int write, struct page **pages, int *nr)
1239 {
1240 	return 0;
1241 }
1242 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1243 
1244 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1245 		unsigned long end, int write, struct page **pages, int *nr)
1246 {
1247 	struct page *head, *page;
1248 	int refs;
1249 
1250 	if (write && !pmd_write(orig))
1251 		return 0;
1252 
1253 	refs = 0;
1254 	head = pmd_page(orig);
1255 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1256 	do {
1257 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1258 		pages[*nr] = page;
1259 		(*nr)++;
1260 		page++;
1261 		refs++;
1262 	} while (addr += PAGE_SIZE, addr != end);
1263 
1264 	if (!page_cache_add_speculative(head, refs)) {
1265 		*nr -= refs;
1266 		return 0;
1267 	}
1268 
1269 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1270 		*nr -= refs;
1271 		while (refs--)
1272 			put_page(head);
1273 		return 0;
1274 	}
1275 
1276 	return 1;
1277 }
1278 
1279 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1280 		unsigned long end, int write, struct page **pages, int *nr)
1281 {
1282 	struct page *head, *page;
1283 	int refs;
1284 
1285 	if (write && !pud_write(orig))
1286 		return 0;
1287 
1288 	refs = 0;
1289 	head = pud_page(orig);
1290 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1291 	do {
1292 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1293 		pages[*nr] = page;
1294 		(*nr)++;
1295 		page++;
1296 		refs++;
1297 	} while (addr += PAGE_SIZE, addr != end);
1298 
1299 	if (!page_cache_add_speculative(head, refs)) {
1300 		*nr -= refs;
1301 		return 0;
1302 	}
1303 
1304 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1305 		*nr -= refs;
1306 		while (refs--)
1307 			put_page(head);
1308 		return 0;
1309 	}
1310 
1311 	return 1;
1312 }
1313 
1314 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1315 			unsigned long end, int write,
1316 			struct page **pages, int *nr)
1317 {
1318 	int refs;
1319 	struct page *head, *page;
1320 
1321 	if (write && !pgd_write(orig))
1322 		return 0;
1323 
1324 	refs = 0;
1325 	head = pgd_page(orig);
1326 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1327 	do {
1328 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1329 		pages[*nr] = page;
1330 		(*nr)++;
1331 		page++;
1332 		refs++;
1333 	} while (addr += PAGE_SIZE, addr != end);
1334 
1335 	if (!page_cache_add_speculative(head, refs)) {
1336 		*nr -= refs;
1337 		return 0;
1338 	}
1339 
1340 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1341 		*nr -= refs;
1342 		while (refs--)
1343 			put_page(head);
1344 		return 0;
1345 	}
1346 
1347 	return 1;
1348 }
1349 
1350 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1351 		int write, struct page **pages, int *nr)
1352 {
1353 	unsigned long next;
1354 	pmd_t *pmdp;
1355 
1356 	pmdp = pmd_offset(&pud, addr);
1357 	do {
1358 		pmd_t pmd = READ_ONCE(*pmdp);
1359 
1360 		next = pmd_addr_end(addr, end);
1361 		if (pmd_none(pmd))
1362 			return 0;
1363 
1364 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1365 			/*
1366 			 * NUMA hinting faults need to be handled in the GUP
1367 			 * slowpath for accounting purposes and so that they
1368 			 * can be serialised against THP migration.
1369 			 */
1370 			if (pmd_protnone(pmd))
1371 				return 0;
1372 
1373 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1374 				pages, nr))
1375 				return 0;
1376 
1377 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1378 			/*
1379 			 * architecture have different format for hugetlbfs
1380 			 * pmd format and THP pmd format
1381 			 */
1382 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1383 					 PMD_SHIFT, next, write, pages, nr))
1384 				return 0;
1385 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1386 				return 0;
1387 	} while (pmdp++, addr = next, addr != end);
1388 
1389 	return 1;
1390 }
1391 
1392 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1393 			 int write, struct page **pages, int *nr)
1394 {
1395 	unsigned long next;
1396 	pud_t *pudp;
1397 
1398 	pudp = pud_offset(&pgd, addr);
1399 	do {
1400 		pud_t pud = READ_ONCE(*pudp);
1401 
1402 		next = pud_addr_end(addr, end);
1403 		if (pud_none(pud))
1404 			return 0;
1405 		if (unlikely(pud_huge(pud))) {
1406 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1407 					  pages, nr))
1408 				return 0;
1409 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1410 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1411 					 PUD_SHIFT, next, write, pages, nr))
1412 				return 0;
1413 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1414 			return 0;
1415 	} while (pudp++, addr = next, addr != end);
1416 
1417 	return 1;
1418 }
1419 
1420 /*
1421  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1422  * the regular GUP. It will only return non-negative values.
1423  */
1424 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1425 			  struct page **pages)
1426 {
1427 	struct mm_struct *mm = current->mm;
1428 	unsigned long addr, len, end;
1429 	unsigned long next, flags;
1430 	pgd_t *pgdp;
1431 	int nr = 0;
1432 
1433 	start &= PAGE_MASK;
1434 	addr = start;
1435 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1436 	end = start + len;
1437 
1438 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1439 					start, len)))
1440 		return 0;
1441 
1442 	/*
1443 	 * Disable interrupts.  We use the nested form as we can already have
1444 	 * interrupts disabled by get_futex_key.
1445 	 *
1446 	 * With interrupts disabled, we block page table pages from being
1447 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1448 	 * for more details.
1449 	 *
1450 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1451 	 * block IPIs that come from THPs splitting.
1452 	 */
1453 
1454 	local_irq_save(flags);
1455 	pgdp = pgd_offset(mm, addr);
1456 	do {
1457 		pgd_t pgd = READ_ONCE(*pgdp);
1458 
1459 		next = pgd_addr_end(addr, end);
1460 		if (pgd_none(pgd))
1461 			break;
1462 		if (unlikely(pgd_huge(pgd))) {
1463 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1464 					  pages, &nr))
1465 				break;
1466 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1467 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1468 					 PGDIR_SHIFT, next, write, pages, &nr))
1469 				break;
1470 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1471 			break;
1472 	} while (pgdp++, addr = next, addr != end);
1473 	local_irq_restore(flags);
1474 
1475 	return nr;
1476 }
1477 
1478 /**
1479  * get_user_pages_fast() - pin user pages in memory
1480  * @start:	starting user address
1481  * @nr_pages:	number of pages from start to pin
1482  * @write:	whether pages will be written to
1483  * @pages:	array that receives pointers to the pages pinned.
1484  *		Should be at least nr_pages long.
1485  *
1486  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1487  * If not successful, it will fall back to taking the lock and
1488  * calling get_user_pages().
1489  *
1490  * Returns number of pages pinned. This may be fewer than the number
1491  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1492  * were pinned, returns -errno.
1493  */
1494 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1495 			struct page **pages)
1496 {
1497 	int nr, ret;
1498 
1499 	start &= PAGE_MASK;
1500 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1501 	ret = nr;
1502 
1503 	if (nr < nr_pages) {
1504 		/* Try to get the remaining pages with get_user_pages */
1505 		start += nr << PAGE_SHIFT;
1506 		pages += nr;
1507 
1508 		ret = get_user_pages_unlocked(start, nr_pages - nr, write, 0, pages);
1509 
1510 		/* Have to be a bit careful with return values */
1511 		if (nr > 0) {
1512 			if (ret < 0)
1513 				ret = nr;
1514 			else
1515 				ret += nr;
1516 		}
1517 	}
1518 
1519 	return ret;
1520 }
1521 
1522 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1523