1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 127 return NULL; 128 129 if (flags & FOLL_GET) 130 return try_get_folio(page, refs); 131 else if (flags & FOLL_PIN) { 132 struct folio *folio; 133 134 /* 135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 136 * right zone, so fail and let the caller fall back to the slow 137 * path. 138 */ 139 if (unlikely((flags & FOLL_LONGTERM) && 140 !is_longterm_pinnable_page(page))) 141 return NULL; 142 143 /* 144 * CAUTION: Don't use compound_head() on the page before this 145 * point, the result won't be stable. 146 */ 147 folio = try_get_folio(page, refs); 148 if (!folio) 149 return NULL; 150 151 /* 152 * When pinning a large folio, use an exact count to track it. 153 * 154 * However, be sure to *also* increment the normal folio 155 * refcount field at least once, so that the folio really 156 * is pinned. That's why the refcount from the earlier 157 * try_get_folio() is left intact. 158 */ 159 if (folio_test_large(folio)) 160 atomic_add(refs, &folio->_pincount); 161 else 162 folio_ref_add(folio, 163 refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 /* 165 * Adjust the pincount before re-checking the PTE for changes. 166 * This is essentially a smp_mb() and is paired with a memory 167 * barrier in page_try_share_anon_rmap(). 168 */ 169 smp_mb__after_atomic(); 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 173 return folio; 174 } 175 176 WARN_ON_ONCE(1); 177 return NULL; 178 } 179 180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 181 { 182 if (flags & FOLL_PIN) { 183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 184 if (folio_test_large(folio)) 185 atomic_sub(refs, &folio->_pincount); 186 else 187 refs *= GUP_PIN_COUNTING_BIAS; 188 } 189 190 if (!put_devmap_managed_page_refs(&folio->page, refs)) 191 folio_put_refs(folio, refs); 192 } 193 194 /** 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 196 * @page: pointer to page to be grabbed 197 * @flags: gup flags: these are the FOLL_* flag values. 198 * 199 * This might not do anything at all, depending on the flags argument. 200 * 201 * "grab" names in this file mean, "look at flags to decide whether to use 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 203 * 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 205 * time. Cases: please see the try_grab_folio() documentation, with 206 * "refs=1". 207 * 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 210 * 211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 212 * be grabbed. 213 */ 214 int __must_check try_grab_page(struct page *page, unsigned int flags) 215 { 216 struct folio *folio = page_folio(page); 217 218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 220 return -ENOMEM; 221 222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 223 return -EREMOTEIO; 224 225 if (flags & FOLL_GET) 226 folio_ref_inc(folio); 227 else if (flags & FOLL_PIN) { 228 /* 229 * Similar to try_grab_folio(): be sure to *also* 230 * increment the normal page refcount field at least once, 231 * so that the page really is pinned. 232 */ 233 if (folio_test_large(folio)) { 234 folio_ref_add(folio, 1); 235 atomic_add(1, &folio->_pincount); 236 } else { 237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 238 } 239 240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 241 } 242 243 return 0; 244 } 245 246 /** 247 * unpin_user_page() - release a dma-pinned page 248 * @page: pointer to page to be released 249 * 250 * Pages that were pinned via pin_user_pages*() must be released via either 251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 252 * that such pages can be separately tracked and uniquely handled. In 253 * particular, interactions with RDMA and filesystems need special handling. 254 */ 255 void unpin_user_page(struct page *page) 256 { 257 sanity_check_pinned_pages(&page, 1); 258 gup_put_folio(page_folio(page), 1, FOLL_PIN); 259 } 260 EXPORT_SYMBOL(unpin_user_page); 261 262 static inline struct folio *gup_folio_range_next(struct page *start, 263 unsigned long npages, unsigned long i, unsigned int *ntails) 264 { 265 struct page *next = nth_page(start, i); 266 struct folio *folio = page_folio(next); 267 unsigned int nr = 1; 268 269 if (folio_test_large(folio)) 270 nr = min_t(unsigned int, npages - i, 271 folio_nr_pages(folio) - folio_page_idx(folio, next)); 272 273 *ntails = nr; 274 return folio; 275 } 276 277 static inline struct folio *gup_folio_next(struct page **list, 278 unsigned long npages, unsigned long i, unsigned int *ntails) 279 { 280 struct folio *folio = page_folio(list[i]); 281 unsigned int nr; 282 283 for (nr = i + 1; nr < npages; nr++) { 284 if (page_folio(list[nr]) != folio) 285 break; 286 } 287 288 *ntails = nr - i; 289 return folio; 290 } 291 292 /** 293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 294 * @pages: array of pages to be maybe marked dirty, and definitely released. 295 * @npages: number of pages in the @pages array. 296 * @make_dirty: whether to mark the pages dirty 297 * 298 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 299 * variants called on that page. 300 * 301 * For each page in the @pages array, make that page (or its head page, if a 302 * compound page) dirty, if @make_dirty is true, and if the page was previously 303 * listed as clean. In any case, releases all pages using unpin_user_page(), 304 * possibly via unpin_user_pages(), for the non-dirty case. 305 * 306 * Please see the unpin_user_page() documentation for details. 307 * 308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 309 * required, then the caller should a) verify that this is really correct, 310 * because _lock() is usually required, and b) hand code it: 311 * set_page_dirty_lock(), unpin_user_page(). 312 * 313 */ 314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 315 bool make_dirty) 316 { 317 unsigned long i; 318 struct folio *folio; 319 unsigned int nr; 320 321 if (!make_dirty) { 322 unpin_user_pages(pages, npages); 323 return; 324 } 325 326 sanity_check_pinned_pages(pages, npages); 327 for (i = 0; i < npages; i += nr) { 328 folio = gup_folio_next(pages, npages, i, &nr); 329 /* 330 * Checking PageDirty at this point may race with 331 * clear_page_dirty_for_io(), but that's OK. Two key 332 * cases: 333 * 334 * 1) This code sees the page as already dirty, so it 335 * skips the call to set_page_dirty(). That could happen 336 * because clear_page_dirty_for_io() called 337 * page_mkclean(), followed by set_page_dirty(). 338 * However, now the page is going to get written back, 339 * which meets the original intention of setting it 340 * dirty, so all is well: clear_page_dirty_for_io() goes 341 * on to call TestClearPageDirty(), and write the page 342 * back. 343 * 344 * 2) This code sees the page as clean, so it calls 345 * set_page_dirty(). The page stays dirty, despite being 346 * written back, so it gets written back again in the 347 * next writeback cycle. This is harmless. 348 */ 349 if (!folio_test_dirty(folio)) { 350 folio_lock(folio); 351 folio_mark_dirty(folio); 352 folio_unlock(folio); 353 } 354 gup_put_folio(folio, nr, FOLL_PIN); 355 } 356 } 357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 358 359 /** 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty 361 * gup-pinned page range 362 * 363 * @page: the starting page of a range maybe marked dirty, and definitely released. 364 * @npages: number of consecutive pages to release. 365 * @make_dirty: whether to mark the pages dirty 366 * 367 * "gup-pinned page range" refers to a range of pages that has had one of the 368 * pin_user_pages() variants called on that page. 369 * 370 * For the page ranges defined by [page .. page+npages], make that range (or 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 372 * page range was previously listed as clean. 373 * 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 375 * required, then the caller should a) verify that this is really correct, 376 * because _lock() is usually required, and b) hand code it: 377 * set_page_dirty_lock(), unpin_user_page(). 378 * 379 */ 380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 381 bool make_dirty) 382 { 383 unsigned long i; 384 struct folio *folio; 385 unsigned int nr; 386 387 for (i = 0; i < npages; i += nr) { 388 folio = gup_folio_range_next(page, npages, i, &nr); 389 if (make_dirty && !folio_test_dirty(folio)) { 390 folio_lock(folio); 391 folio_mark_dirty(folio); 392 folio_unlock(folio); 393 } 394 gup_put_folio(folio, nr, FOLL_PIN); 395 } 396 } 397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 398 399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 400 { 401 unsigned long i; 402 struct folio *folio; 403 unsigned int nr; 404 405 /* 406 * Don't perform any sanity checks because we might have raced with 407 * fork() and some anonymous pages might now actually be shared -- 408 * which is why we're unpinning after all. 409 */ 410 for (i = 0; i < npages; i += nr) { 411 folio = gup_folio_next(pages, npages, i, &nr); 412 gup_put_folio(folio, nr, FOLL_PIN); 413 } 414 } 415 416 /** 417 * unpin_user_pages() - release an array of gup-pinned pages. 418 * @pages: array of pages to be marked dirty and released. 419 * @npages: number of pages in the @pages array. 420 * 421 * For each page in the @pages array, release the page using unpin_user_page(). 422 * 423 * Please see the unpin_user_page() documentation for details. 424 */ 425 void unpin_user_pages(struct page **pages, unsigned long npages) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 /* 432 * If this WARN_ON() fires, then the system *might* be leaking pages (by 433 * leaving them pinned), but probably not. More likely, gup/pup returned 434 * a hard -ERRNO error to the caller, who erroneously passed it here. 435 */ 436 if (WARN_ON(IS_ERR_VALUE(npages))) 437 return; 438 439 sanity_check_pinned_pages(pages, npages); 440 for (i = 0; i < npages; i += nr) { 441 folio = gup_folio_next(pages, npages, i, &nr); 442 gup_put_folio(folio, nr, FOLL_PIN); 443 } 444 } 445 EXPORT_SYMBOL(unpin_user_pages); 446 447 /* 448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 450 * cache bouncing on large SMP machines for concurrent pinned gups. 451 */ 452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 453 { 454 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 455 set_bit(MMF_HAS_PINNED, mm_flags); 456 } 457 458 #ifdef CONFIG_MMU 459 static struct page *no_page_table(struct vm_area_struct *vma, 460 unsigned int flags) 461 { 462 /* 463 * When core dumping an enormous anonymous area that nobody 464 * has touched so far, we don't want to allocate unnecessary pages or 465 * page tables. Return error instead of NULL to skip handle_mm_fault, 466 * then get_dump_page() will return NULL to leave a hole in the dump. 467 * But we can only make this optimization where a hole would surely 468 * be zero-filled if handle_mm_fault() actually did handle it. 469 */ 470 if ((flags & FOLL_DUMP) && 471 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 472 return ERR_PTR(-EFAULT); 473 return NULL; 474 } 475 476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 477 pte_t *pte, unsigned int flags) 478 { 479 if (flags & FOLL_TOUCH) { 480 pte_t entry = *pte; 481 482 if (flags & FOLL_WRITE) 483 entry = pte_mkdirty(entry); 484 entry = pte_mkyoung(entry); 485 486 if (!pte_same(*pte, entry)) { 487 set_pte_at(vma->vm_mm, address, pte, entry); 488 update_mmu_cache(vma, address, pte); 489 } 490 } 491 492 /* Proper page table entry exists, but no corresponding struct page */ 493 return -EEXIST; 494 } 495 496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 497 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 498 struct vm_area_struct *vma, 499 unsigned int flags) 500 { 501 /* If the pte is writable, we can write to the page. */ 502 if (pte_write(pte)) 503 return true; 504 505 /* Maybe FOLL_FORCE is set to override it? */ 506 if (!(flags & FOLL_FORCE)) 507 return false; 508 509 /* But FOLL_FORCE has no effect on shared mappings */ 510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 511 return false; 512 513 /* ... or read-only private ones */ 514 if (!(vma->vm_flags & VM_MAYWRITE)) 515 return false; 516 517 /* ... or already writable ones that just need to take a write fault */ 518 if (vma->vm_flags & VM_WRITE) 519 return false; 520 521 /* 522 * See can_change_pte_writable(): we broke COW and could map the page 523 * writable if we have an exclusive anonymous page ... 524 */ 525 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 526 return false; 527 528 /* ... and a write-fault isn't required for other reasons. */ 529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 530 return false; 531 return !userfaultfd_pte_wp(vma, pte); 532 } 533 534 static struct page *follow_page_pte(struct vm_area_struct *vma, 535 unsigned long address, pmd_t *pmd, unsigned int flags, 536 struct dev_pagemap **pgmap) 537 { 538 struct mm_struct *mm = vma->vm_mm; 539 struct page *page; 540 spinlock_t *ptl; 541 pte_t *ptep, pte; 542 int ret; 543 544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 546 (FOLL_PIN | FOLL_GET))) 547 return ERR_PTR(-EINVAL); 548 if (unlikely(pmd_bad(*pmd))) 549 return no_page_table(vma, flags); 550 551 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 552 pte = *ptep; 553 if (!pte_present(pte)) 554 goto no_page; 555 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 556 goto no_page; 557 558 page = vm_normal_page(vma, address, pte); 559 560 /* 561 * We only care about anon pages in can_follow_write_pte() and don't 562 * have to worry about pte_devmap() because they are never anon. 563 */ 564 if ((flags & FOLL_WRITE) && 565 !can_follow_write_pte(pte, page, vma, flags)) { 566 page = NULL; 567 goto out; 568 } 569 570 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 571 /* 572 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 573 * case since they are only valid while holding the pgmap 574 * reference. 575 */ 576 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 577 if (*pgmap) 578 page = pte_page(pte); 579 else 580 goto no_page; 581 } else if (unlikely(!page)) { 582 if (flags & FOLL_DUMP) { 583 /* Avoid special (like zero) pages in core dumps */ 584 page = ERR_PTR(-EFAULT); 585 goto out; 586 } 587 588 if (is_zero_pfn(pte_pfn(pte))) { 589 page = pte_page(pte); 590 } else { 591 ret = follow_pfn_pte(vma, address, ptep, flags); 592 page = ERR_PTR(ret); 593 goto out; 594 } 595 } 596 597 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 598 page = ERR_PTR(-EMLINK); 599 goto out; 600 } 601 602 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 603 !PageAnonExclusive(page), page); 604 605 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 606 ret = try_grab_page(page, flags); 607 if (unlikely(ret)) { 608 page = ERR_PTR(ret); 609 goto out; 610 } 611 612 /* 613 * We need to make the page accessible if and only if we are going 614 * to access its content (the FOLL_PIN case). Please see 615 * Documentation/core-api/pin_user_pages.rst for details. 616 */ 617 if (flags & FOLL_PIN) { 618 ret = arch_make_page_accessible(page); 619 if (ret) { 620 unpin_user_page(page); 621 page = ERR_PTR(ret); 622 goto out; 623 } 624 } 625 if (flags & FOLL_TOUCH) { 626 if ((flags & FOLL_WRITE) && 627 !pte_dirty(pte) && !PageDirty(page)) 628 set_page_dirty(page); 629 /* 630 * pte_mkyoung() would be more correct here, but atomic care 631 * is needed to avoid losing the dirty bit: it is easier to use 632 * mark_page_accessed(). 633 */ 634 mark_page_accessed(page); 635 } 636 out: 637 pte_unmap_unlock(ptep, ptl); 638 return page; 639 no_page: 640 pte_unmap_unlock(ptep, ptl); 641 if (!pte_none(pte)) 642 return NULL; 643 return no_page_table(vma, flags); 644 } 645 646 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 647 unsigned long address, pud_t *pudp, 648 unsigned int flags, 649 struct follow_page_context *ctx) 650 { 651 pmd_t *pmd, pmdval; 652 spinlock_t *ptl; 653 struct page *page; 654 struct mm_struct *mm = vma->vm_mm; 655 656 pmd = pmd_offset(pudp, address); 657 /* 658 * The READ_ONCE() will stabilize the pmdval in a register or 659 * on the stack so that it will stop changing under the code. 660 */ 661 pmdval = READ_ONCE(*pmd); 662 if (pmd_none(pmdval)) 663 return no_page_table(vma, flags); 664 if (!pmd_present(pmdval)) 665 return no_page_table(vma, flags); 666 if (pmd_devmap(pmdval)) { 667 ptl = pmd_lock(mm, pmd); 668 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 669 spin_unlock(ptl); 670 if (page) 671 return page; 672 } 673 if (likely(!pmd_trans_huge(pmdval))) 674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 675 676 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 677 return no_page_table(vma, flags); 678 679 ptl = pmd_lock(mm, pmd); 680 if (unlikely(!pmd_present(*pmd))) { 681 spin_unlock(ptl); 682 return no_page_table(vma, flags); 683 } 684 if (unlikely(!pmd_trans_huge(*pmd))) { 685 spin_unlock(ptl); 686 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 687 } 688 if (flags & FOLL_SPLIT_PMD) { 689 int ret; 690 page = pmd_page(*pmd); 691 if (is_huge_zero_page(page)) { 692 spin_unlock(ptl); 693 ret = 0; 694 split_huge_pmd(vma, pmd, address); 695 if (pmd_trans_unstable(pmd)) 696 ret = -EBUSY; 697 } else { 698 spin_unlock(ptl); 699 split_huge_pmd(vma, pmd, address); 700 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 701 } 702 703 return ret ? ERR_PTR(ret) : 704 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 705 } 706 page = follow_trans_huge_pmd(vma, address, pmd, flags); 707 spin_unlock(ptl); 708 ctx->page_mask = HPAGE_PMD_NR - 1; 709 return page; 710 } 711 712 static struct page *follow_pud_mask(struct vm_area_struct *vma, 713 unsigned long address, p4d_t *p4dp, 714 unsigned int flags, 715 struct follow_page_context *ctx) 716 { 717 pud_t *pud; 718 spinlock_t *ptl; 719 struct page *page; 720 struct mm_struct *mm = vma->vm_mm; 721 722 pud = pud_offset(p4dp, address); 723 if (pud_none(*pud)) 724 return no_page_table(vma, flags); 725 if (pud_devmap(*pud)) { 726 ptl = pud_lock(mm, pud); 727 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 728 spin_unlock(ptl); 729 if (page) 730 return page; 731 } 732 if (unlikely(pud_bad(*pud))) 733 return no_page_table(vma, flags); 734 735 return follow_pmd_mask(vma, address, pud, flags, ctx); 736 } 737 738 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 739 unsigned long address, pgd_t *pgdp, 740 unsigned int flags, 741 struct follow_page_context *ctx) 742 { 743 p4d_t *p4d; 744 745 p4d = p4d_offset(pgdp, address); 746 if (p4d_none(*p4d)) 747 return no_page_table(vma, flags); 748 BUILD_BUG_ON(p4d_huge(*p4d)); 749 if (unlikely(p4d_bad(*p4d))) 750 return no_page_table(vma, flags); 751 752 return follow_pud_mask(vma, address, p4d, flags, ctx); 753 } 754 755 /** 756 * follow_page_mask - look up a page descriptor from a user-virtual address 757 * @vma: vm_area_struct mapping @address 758 * @address: virtual address to look up 759 * @flags: flags modifying lookup behaviour 760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 761 * pointer to output page_mask 762 * 763 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 764 * 765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 766 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 767 * 768 * When getting an anonymous page and the caller has to trigger unsharing 769 * of a shared anonymous page first, -EMLINK is returned. The caller should 770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 771 * relevant with FOLL_PIN and !FOLL_WRITE. 772 * 773 * On output, the @ctx->page_mask is set according to the size of the page. 774 * 775 * Return: the mapped (struct page *), %NULL if no mapping exists, or 776 * an error pointer if there is a mapping to something not represented 777 * by a page descriptor (see also vm_normal_page()). 778 */ 779 static struct page *follow_page_mask(struct vm_area_struct *vma, 780 unsigned long address, unsigned int flags, 781 struct follow_page_context *ctx) 782 { 783 pgd_t *pgd; 784 struct page *page; 785 struct mm_struct *mm = vma->vm_mm; 786 787 ctx->page_mask = 0; 788 789 /* 790 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 791 * special hugetlb page table walking code. This eliminates the 792 * need to check for hugetlb entries in the general walking code. 793 * 794 * hugetlb_follow_page_mask is only for follow_page() handling here. 795 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 796 */ 797 if (is_vm_hugetlb_page(vma)) { 798 page = hugetlb_follow_page_mask(vma, address, flags); 799 if (!page) 800 page = no_page_table(vma, flags); 801 return page; 802 } 803 804 pgd = pgd_offset(mm, address); 805 806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 807 return no_page_table(vma, flags); 808 809 return follow_p4d_mask(vma, address, pgd, flags, ctx); 810 } 811 812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 813 unsigned int foll_flags) 814 { 815 struct follow_page_context ctx = { NULL }; 816 struct page *page; 817 818 if (vma_is_secretmem(vma)) 819 return NULL; 820 821 if (foll_flags & FOLL_PIN) 822 return NULL; 823 824 page = follow_page_mask(vma, address, foll_flags, &ctx); 825 if (ctx.pgmap) 826 put_dev_pagemap(ctx.pgmap); 827 return page; 828 } 829 830 static int get_gate_page(struct mm_struct *mm, unsigned long address, 831 unsigned int gup_flags, struct vm_area_struct **vma, 832 struct page **page) 833 { 834 pgd_t *pgd; 835 p4d_t *p4d; 836 pud_t *pud; 837 pmd_t *pmd; 838 pte_t *pte; 839 int ret = -EFAULT; 840 841 /* user gate pages are read-only */ 842 if (gup_flags & FOLL_WRITE) 843 return -EFAULT; 844 if (address > TASK_SIZE) 845 pgd = pgd_offset_k(address); 846 else 847 pgd = pgd_offset_gate(mm, address); 848 if (pgd_none(*pgd)) 849 return -EFAULT; 850 p4d = p4d_offset(pgd, address); 851 if (p4d_none(*p4d)) 852 return -EFAULT; 853 pud = pud_offset(p4d, address); 854 if (pud_none(*pud)) 855 return -EFAULT; 856 pmd = pmd_offset(pud, address); 857 if (!pmd_present(*pmd)) 858 return -EFAULT; 859 VM_BUG_ON(pmd_trans_huge(*pmd)); 860 pte = pte_offset_map(pmd, address); 861 if (pte_none(*pte)) 862 goto unmap; 863 *vma = get_gate_vma(mm); 864 if (!page) 865 goto out; 866 *page = vm_normal_page(*vma, address, *pte); 867 if (!*page) { 868 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 869 goto unmap; 870 *page = pte_page(*pte); 871 } 872 ret = try_grab_page(*page, gup_flags); 873 if (unlikely(ret)) 874 goto unmap; 875 out: 876 ret = 0; 877 unmap: 878 pte_unmap(pte); 879 return ret; 880 } 881 882 /* 883 * mmap_lock must be held on entry. If @locked != NULL and *@flags 884 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 885 * is, *@locked will be set to 0 and -EBUSY returned. 886 */ 887 static int faultin_page(struct vm_area_struct *vma, 888 unsigned long address, unsigned int *flags, bool unshare, 889 int *locked) 890 { 891 unsigned int fault_flags = 0; 892 vm_fault_t ret; 893 894 if (*flags & FOLL_NOFAULT) 895 return -EFAULT; 896 if (*flags & FOLL_WRITE) 897 fault_flags |= FAULT_FLAG_WRITE; 898 if (*flags & FOLL_REMOTE) 899 fault_flags |= FAULT_FLAG_REMOTE; 900 if (locked) { 901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 902 /* 903 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 904 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 905 * That's because some callers may not be prepared to 906 * handle early exits caused by non-fatal signals. 907 */ 908 if (*flags & FOLL_INTERRUPTIBLE) 909 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 910 } 911 if (*flags & FOLL_NOWAIT) 912 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 913 if (*flags & FOLL_TRIED) { 914 /* 915 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 916 * can co-exist 917 */ 918 fault_flags |= FAULT_FLAG_TRIED; 919 } 920 if (unshare) { 921 fault_flags |= FAULT_FLAG_UNSHARE; 922 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 923 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 924 } 925 926 ret = handle_mm_fault(vma, address, fault_flags, NULL); 927 928 if (ret & VM_FAULT_COMPLETED) { 929 /* 930 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 931 * mmap lock in the page fault handler. Sanity check this. 932 */ 933 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 934 if (locked) 935 *locked = 0; 936 /* 937 * We should do the same as VM_FAULT_RETRY, but let's not 938 * return -EBUSY since that's not reflecting the reality of 939 * what has happened - we've just fully completed a page 940 * fault, with the mmap lock released. Use -EAGAIN to show 941 * that we want to take the mmap lock _again_. 942 */ 943 return -EAGAIN; 944 } 945 946 if (ret & VM_FAULT_ERROR) { 947 int err = vm_fault_to_errno(ret, *flags); 948 949 if (err) 950 return err; 951 BUG(); 952 } 953 954 if (ret & VM_FAULT_RETRY) { 955 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 956 *locked = 0; 957 return -EBUSY; 958 } 959 960 return 0; 961 } 962 963 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 964 { 965 vm_flags_t vm_flags = vma->vm_flags; 966 int write = (gup_flags & FOLL_WRITE); 967 int foreign = (gup_flags & FOLL_REMOTE); 968 969 if (vm_flags & (VM_IO | VM_PFNMAP)) 970 return -EFAULT; 971 972 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 973 return -EFAULT; 974 975 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 976 return -EOPNOTSUPP; 977 978 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA)) 979 return -EOPNOTSUPP; 980 981 if (vma_is_secretmem(vma)) 982 return -EFAULT; 983 984 if (write) { 985 if (!(vm_flags & VM_WRITE)) { 986 if (!(gup_flags & FOLL_FORCE)) 987 return -EFAULT; 988 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 989 if (is_vm_hugetlb_page(vma)) 990 return -EFAULT; 991 /* 992 * We used to let the write,force case do COW in a 993 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 994 * set a breakpoint in a read-only mapping of an 995 * executable, without corrupting the file (yet only 996 * when that file had been opened for writing!). 997 * Anon pages in shared mappings are surprising: now 998 * just reject it. 999 */ 1000 if (!is_cow_mapping(vm_flags)) 1001 return -EFAULT; 1002 } 1003 } else if (!(vm_flags & VM_READ)) { 1004 if (!(gup_flags & FOLL_FORCE)) 1005 return -EFAULT; 1006 /* 1007 * Is there actually any vma we can reach here which does not 1008 * have VM_MAYREAD set? 1009 */ 1010 if (!(vm_flags & VM_MAYREAD)) 1011 return -EFAULT; 1012 } 1013 /* 1014 * gups are always data accesses, not instruction 1015 * fetches, so execute=false here 1016 */ 1017 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1018 return -EFAULT; 1019 return 0; 1020 } 1021 1022 /** 1023 * __get_user_pages() - pin user pages in memory 1024 * @mm: mm_struct of target mm 1025 * @start: starting user address 1026 * @nr_pages: number of pages from start to pin 1027 * @gup_flags: flags modifying pin behaviour 1028 * @pages: array that receives pointers to the pages pinned. 1029 * Should be at least nr_pages long. Or NULL, if caller 1030 * only intends to ensure the pages are faulted in. 1031 * @vmas: array of pointers to vmas corresponding to each page. 1032 * Or NULL if the caller does not require them. 1033 * @locked: whether we're still with the mmap_lock held 1034 * 1035 * Returns either number of pages pinned (which may be less than the 1036 * number requested), or an error. Details about the return value: 1037 * 1038 * -- If nr_pages is 0, returns 0. 1039 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1040 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1041 * pages pinned. Again, this may be less than nr_pages. 1042 * -- 0 return value is possible when the fault would need to be retried. 1043 * 1044 * The caller is responsible for releasing returned @pages, via put_page(). 1045 * 1046 * @vmas are valid only as long as mmap_lock is held. 1047 * 1048 * Must be called with mmap_lock held. It may be released. See below. 1049 * 1050 * __get_user_pages walks a process's page tables and takes a reference to 1051 * each struct page that each user address corresponds to at a given 1052 * instant. That is, it takes the page that would be accessed if a user 1053 * thread accesses the given user virtual address at that instant. 1054 * 1055 * This does not guarantee that the page exists in the user mappings when 1056 * __get_user_pages returns, and there may even be a completely different 1057 * page there in some cases (eg. if mmapped pagecache has been invalidated 1058 * and subsequently re faulted). However it does guarantee that the page 1059 * won't be freed completely. And mostly callers simply care that the page 1060 * contains data that was valid *at some point in time*. Typically, an IO 1061 * or similar operation cannot guarantee anything stronger anyway because 1062 * locks can't be held over the syscall boundary. 1063 * 1064 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1065 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1066 * appropriate) must be called after the page is finished with, and 1067 * before put_page is called. 1068 * 1069 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1070 * released by an up_read(). That can happen if @gup_flags does not 1071 * have FOLL_NOWAIT. 1072 * 1073 * A caller using such a combination of @locked and @gup_flags 1074 * must therefore hold the mmap_lock for reading only, and recognize 1075 * when it's been released. Otherwise, it must be held for either 1076 * reading or writing and will not be released. 1077 * 1078 * In most cases, get_user_pages or get_user_pages_fast should be used 1079 * instead of __get_user_pages. __get_user_pages should be used only if 1080 * you need some special @gup_flags. 1081 */ 1082 static long __get_user_pages(struct mm_struct *mm, 1083 unsigned long start, unsigned long nr_pages, 1084 unsigned int gup_flags, struct page **pages, 1085 struct vm_area_struct **vmas, int *locked) 1086 { 1087 long ret = 0, i = 0; 1088 struct vm_area_struct *vma = NULL; 1089 struct follow_page_context ctx = { NULL }; 1090 1091 if (!nr_pages) 1092 return 0; 1093 1094 start = untagged_addr(start); 1095 1096 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1097 1098 do { 1099 struct page *page; 1100 unsigned int foll_flags = gup_flags; 1101 unsigned int page_increm; 1102 1103 /* first iteration or cross vma bound */ 1104 if (!vma || start >= vma->vm_end) { 1105 vma = find_extend_vma(mm, start); 1106 if (!vma && in_gate_area(mm, start)) { 1107 ret = get_gate_page(mm, start & PAGE_MASK, 1108 gup_flags, &vma, 1109 pages ? &pages[i] : NULL); 1110 if (ret) 1111 goto out; 1112 ctx.page_mask = 0; 1113 goto next_page; 1114 } 1115 1116 if (!vma) { 1117 ret = -EFAULT; 1118 goto out; 1119 } 1120 ret = check_vma_flags(vma, gup_flags); 1121 if (ret) 1122 goto out; 1123 1124 if (is_vm_hugetlb_page(vma)) { 1125 i = follow_hugetlb_page(mm, vma, pages, vmas, 1126 &start, &nr_pages, i, 1127 gup_flags, locked); 1128 if (locked && *locked == 0) { 1129 /* 1130 * We've got a VM_FAULT_RETRY 1131 * and we've lost mmap_lock. 1132 * We must stop here. 1133 */ 1134 BUG_ON(gup_flags & FOLL_NOWAIT); 1135 goto out; 1136 } 1137 continue; 1138 } 1139 } 1140 retry: 1141 /* 1142 * If we have a pending SIGKILL, don't keep faulting pages and 1143 * potentially allocating memory. 1144 */ 1145 if (fatal_signal_pending(current)) { 1146 ret = -EINTR; 1147 goto out; 1148 } 1149 cond_resched(); 1150 1151 page = follow_page_mask(vma, start, foll_flags, &ctx); 1152 if (!page || PTR_ERR(page) == -EMLINK) { 1153 ret = faultin_page(vma, start, &foll_flags, 1154 PTR_ERR(page) == -EMLINK, locked); 1155 switch (ret) { 1156 case 0: 1157 goto retry; 1158 case -EBUSY: 1159 case -EAGAIN: 1160 ret = 0; 1161 fallthrough; 1162 case -EFAULT: 1163 case -ENOMEM: 1164 case -EHWPOISON: 1165 goto out; 1166 } 1167 BUG(); 1168 } else if (PTR_ERR(page) == -EEXIST) { 1169 /* 1170 * Proper page table entry exists, but no corresponding 1171 * struct page. If the caller expects **pages to be 1172 * filled in, bail out now, because that can't be done 1173 * for this page. 1174 */ 1175 if (pages) { 1176 ret = PTR_ERR(page); 1177 goto out; 1178 } 1179 1180 goto next_page; 1181 } else if (IS_ERR(page)) { 1182 ret = PTR_ERR(page); 1183 goto out; 1184 } 1185 if (pages) { 1186 pages[i] = page; 1187 flush_anon_page(vma, page, start); 1188 flush_dcache_page(page); 1189 ctx.page_mask = 0; 1190 } 1191 next_page: 1192 if (vmas) { 1193 vmas[i] = vma; 1194 ctx.page_mask = 0; 1195 } 1196 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1197 if (page_increm > nr_pages) 1198 page_increm = nr_pages; 1199 i += page_increm; 1200 start += page_increm * PAGE_SIZE; 1201 nr_pages -= page_increm; 1202 } while (nr_pages); 1203 out: 1204 if (ctx.pgmap) 1205 put_dev_pagemap(ctx.pgmap); 1206 return i ? i : ret; 1207 } 1208 1209 static bool vma_permits_fault(struct vm_area_struct *vma, 1210 unsigned int fault_flags) 1211 { 1212 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1213 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1214 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1215 1216 if (!(vm_flags & vma->vm_flags)) 1217 return false; 1218 1219 /* 1220 * The architecture might have a hardware protection 1221 * mechanism other than read/write that can deny access. 1222 * 1223 * gup always represents data access, not instruction 1224 * fetches, so execute=false here: 1225 */ 1226 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1227 return false; 1228 1229 return true; 1230 } 1231 1232 /** 1233 * fixup_user_fault() - manually resolve a user page fault 1234 * @mm: mm_struct of target mm 1235 * @address: user address 1236 * @fault_flags:flags to pass down to handle_mm_fault() 1237 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1238 * does not allow retry. If NULL, the caller must guarantee 1239 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1240 * 1241 * This is meant to be called in the specific scenario where for locking reasons 1242 * we try to access user memory in atomic context (within a pagefault_disable() 1243 * section), this returns -EFAULT, and we want to resolve the user fault before 1244 * trying again. 1245 * 1246 * Typically this is meant to be used by the futex code. 1247 * 1248 * The main difference with get_user_pages() is that this function will 1249 * unconditionally call handle_mm_fault() which will in turn perform all the 1250 * necessary SW fixup of the dirty and young bits in the PTE, while 1251 * get_user_pages() only guarantees to update these in the struct page. 1252 * 1253 * This is important for some architectures where those bits also gate the 1254 * access permission to the page because they are maintained in software. On 1255 * such architectures, gup() will not be enough to make a subsequent access 1256 * succeed. 1257 * 1258 * This function will not return with an unlocked mmap_lock. So it has not the 1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1260 */ 1261 int fixup_user_fault(struct mm_struct *mm, 1262 unsigned long address, unsigned int fault_flags, 1263 bool *unlocked) 1264 { 1265 struct vm_area_struct *vma; 1266 vm_fault_t ret; 1267 1268 address = untagged_addr(address); 1269 1270 if (unlocked) 1271 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1272 1273 retry: 1274 vma = find_extend_vma(mm, address); 1275 if (!vma || address < vma->vm_start) 1276 return -EFAULT; 1277 1278 if (!vma_permits_fault(vma, fault_flags)) 1279 return -EFAULT; 1280 1281 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1282 fatal_signal_pending(current)) 1283 return -EINTR; 1284 1285 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1286 1287 if (ret & VM_FAULT_COMPLETED) { 1288 /* 1289 * NOTE: it's a pity that we need to retake the lock here 1290 * to pair with the unlock() in the callers. Ideally we 1291 * could tell the callers so they do not need to unlock. 1292 */ 1293 mmap_read_lock(mm); 1294 *unlocked = true; 1295 return 0; 1296 } 1297 1298 if (ret & VM_FAULT_ERROR) { 1299 int err = vm_fault_to_errno(ret, 0); 1300 1301 if (err) 1302 return err; 1303 BUG(); 1304 } 1305 1306 if (ret & VM_FAULT_RETRY) { 1307 mmap_read_lock(mm); 1308 *unlocked = true; 1309 fault_flags |= FAULT_FLAG_TRIED; 1310 goto retry; 1311 } 1312 1313 return 0; 1314 } 1315 EXPORT_SYMBOL_GPL(fixup_user_fault); 1316 1317 /* 1318 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1319 * specified, it'll also respond to generic signals. The caller of GUP 1320 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1321 */ 1322 static bool gup_signal_pending(unsigned int flags) 1323 { 1324 if (fatal_signal_pending(current)) 1325 return true; 1326 1327 if (!(flags & FOLL_INTERRUPTIBLE)) 1328 return false; 1329 1330 return signal_pending(current); 1331 } 1332 1333 /* 1334 * Please note that this function, unlike __get_user_pages will not 1335 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1336 */ 1337 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1338 unsigned long start, 1339 unsigned long nr_pages, 1340 struct page **pages, 1341 struct vm_area_struct **vmas, 1342 int *locked, 1343 unsigned int flags) 1344 { 1345 long ret, pages_done; 1346 bool lock_dropped; 1347 1348 if (locked) { 1349 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1350 BUG_ON(vmas); 1351 /* check caller initialized locked */ 1352 BUG_ON(*locked != 1); 1353 } 1354 1355 if (flags & FOLL_PIN) 1356 mm_set_has_pinned_flag(&mm->flags); 1357 1358 /* 1359 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1360 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1361 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1362 * for FOLL_GET, not for the newer FOLL_PIN. 1363 * 1364 * FOLL_PIN always expects pages to be non-null, but no need to assert 1365 * that here, as any failures will be obvious enough. 1366 */ 1367 if (pages && !(flags & FOLL_PIN)) 1368 flags |= FOLL_GET; 1369 1370 pages_done = 0; 1371 lock_dropped = false; 1372 for (;;) { 1373 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1374 vmas, locked); 1375 if (!locked) 1376 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1377 return ret; 1378 1379 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1380 if (!*locked) { 1381 BUG_ON(ret < 0); 1382 BUG_ON(ret >= nr_pages); 1383 } 1384 1385 if (ret > 0) { 1386 nr_pages -= ret; 1387 pages_done += ret; 1388 if (!nr_pages) 1389 break; 1390 } 1391 if (*locked) { 1392 /* 1393 * VM_FAULT_RETRY didn't trigger or it was a 1394 * FOLL_NOWAIT. 1395 */ 1396 if (!pages_done) 1397 pages_done = ret; 1398 break; 1399 } 1400 /* 1401 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1402 * For the prefault case (!pages) we only update counts. 1403 */ 1404 if (likely(pages)) 1405 pages += ret; 1406 start += ret << PAGE_SHIFT; 1407 lock_dropped = true; 1408 1409 retry: 1410 /* 1411 * Repeat on the address that fired VM_FAULT_RETRY 1412 * with both FAULT_FLAG_ALLOW_RETRY and 1413 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1414 * by fatal signals of even common signals, depending on 1415 * the caller's request. So we need to check it before we 1416 * start trying again otherwise it can loop forever. 1417 */ 1418 if (gup_signal_pending(flags)) { 1419 if (!pages_done) 1420 pages_done = -EINTR; 1421 break; 1422 } 1423 1424 ret = mmap_read_lock_killable(mm); 1425 if (ret) { 1426 BUG_ON(ret > 0); 1427 if (!pages_done) 1428 pages_done = ret; 1429 break; 1430 } 1431 1432 *locked = 1; 1433 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1434 pages, NULL, locked); 1435 if (!*locked) { 1436 /* Continue to retry until we succeeded */ 1437 BUG_ON(ret != 0); 1438 goto retry; 1439 } 1440 if (ret != 1) { 1441 BUG_ON(ret > 1); 1442 if (!pages_done) 1443 pages_done = ret; 1444 break; 1445 } 1446 nr_pages--; 1447 pages_done++; 1448 if (!nr_pages) 1449 break; 1450 if (likely(pages)) 1451 pages++; 1452 start += PAGE_SIZE; 1453 } 1454 if (lock_dropped && *locked) { 1455 /* 1456 * We must let the caller know we temporarily dropped the lock 1457 * and so the critical section protected by it was lost. 1458 */ 1459 mmap_read_unlock(mm); 1460 *locked = 0; 1461 } 1462 return pages_done; 1463 } 1464 1465 /** 1466 * populate_vma_page_range() - populate a range of pages in the vma. 1467 * @vma: target vma 1468 * @start: start address 1469 * @end: end address 1470 * @locked: whether the mmap_lock is still held 1471 * 1472 * This takes care of mlocking the pages too if VM_LOCKED is set. 1473 * 1474 * Return either number of pages pinned in the vma, or a negative error 1475 * code on error. 1476 * 1477 * vma->vm_mm->mmap_lock must be held. 1478 * 1479 * If @locked is NULL, it may be held for read or write and will 1480 * be unperturbed. 1481 * 1482 * If @locked is non-NULL, it must held for read only and may be 1483 * released. If it's released, *@locked will be set to 0. 1484 */ 1485 long populate_vma_page_range(struct vm_area_struct *vma, 1486 unsigned long start, unsigned long end, int *locked) 1487 { 1488 struct mm_struct *mm = vma->vm_mm; 1489 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1490 int gup_flags; 1491 long ret; 1492 1493 VM_BUG_ON(!PAGE_ALIGNED(start)); 1494 VM_BUG_ON(!PAGE_ALIGNED(end)); 1495 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1496 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1497 mmap_assert_locked(mm); 1498 1499 /* 1500 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1501 * faultin_page() to break COW, so it has no work to do here. 1502 */ 1503 if (vma->vm_flags & VM_LOCKONFAULT) 1504 return nr_pages; 1505 1506 gup_flags = FOLL_TOUCH; 1507 /* 1508 * We want to touch writable mappings with a write fault in order 1509 * to break COW, except for shared mappings because these don't COW 1510 * and we would not want to dirty them for nothing. 1511 */ 1512 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1513 gup_flags |= FOLL_WRITE; 1514 1515 /* 1516 * We want mlock to succeed for regions that have any permissions 1517 * other than PROT_NONE. 1518 */ 1519 if (vma_is_accessible(vma)) 1520 gup_flags |= FOLL_FORCE; 1521 1522 /* 1523 * We made sure addr is within a VMA, so the following will 1524 * not result in a stack expansion that recurses back here. 1525 */ 1526 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1527 NULL, NULL, locked); 1528 lru_add_drain(); 1529 return ret; 1530 } 1531 1532 /* 1533 * faultin_vma_page_range() - populate (prefault) page tables inside the 1534 * given VMA range readable/writable 1535 * 1536 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1537 * 1538 * @vma: target vma 1539 * @start: start address 1540 * @end: end address 1541 * @write: whether to prefault readable or writable 1542 * @locked: whether the mmap_lock is still held 1543 * 1544 * Returns either number of processed pages in the vma, or a negative error 1545 * code on error (see __get_user_pages()). 1546 * 1547 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1548 * covered by the VMA. 1549 * 1550 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1551 * 1552 * If @locked is non-NULL, it must held for read only and may be released. If 1553 * it's released, *@locked will be set to 0. 1554 */ 1555 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1556 unsigned long end, bool write, int *locked) 1557 { 1558 struct mm_struct *mm = vma->vm_mm; 1559 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1560 int gup_flags; 1561 long ret; 1562 1563 VM_BUG_ON(!PAGE_ALIGNED(start)); 1564 VM_BUG_ON(!PAGE_ALIGNED(end)); 1565 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1566 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1567 mmap_assert_locked(mm); 1568 1569 /* 1570 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1571 * the page dirty with FOLL_WRITE -- which doesn't make a 1572 * difference with !FOLL_FORCE, because the page is writable 1573 * in the page table. 1574 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1575 * a poisoned page. 1576 * !FOLL_FORCE: Require proper access permissions. 1577 */ 1578 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1579 if (write) 1580 gup_flags |= FOLL_WRITE; 1581 1582 /* 1583 * We want to report -EINVAL instead of -EFAULT for any permission 1584 * problems or incompatible mappings. 1585 */ 1586 if (check_vma_flags(vma, gup_flags)) 1587 return -EINVAL; 1588 1589 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1590 NULL, NULL, locked); 1591 lru_add_drain(); 1592 return ret; 1593 } 1594 1595 /* 1596 * __mm_populate - populate and/or mlock pages within a range of address space. 1597 * 1598 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1599 * flags. VMAs must be already marked with the desired vm_flags, and 1600 * mmap_lock must not be held. 1601 */ 1602 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1603 { 1604 struct mm_struct *mm = current->mm; 1605 unsigned long end, nstart, nend; 1606 struct vm_area_struct *vma = NULL; 1607 int locked = 0; 1608 long ret = 0; 1609 1610 end = start + len; 1611 1612 for (nstart = start; nstart < end; nstart = nend) { 1613 /* 1614 * We want to fault in pages for [nstart; end) address range. 1615 * Find first corresponding VMA. 1616 */ 1617 if (!locked) { 1618 locked = 1; 1619 mmap_read_lock(mm); 1620 vma = find_vma_intersection(mm, nstart, end); 1621 } else if (nstart >= vma->vm_end) 1622 vma = find_vma_intersection(mm, vma->vm_end, end); 1623 1624 if (!vma) 1625 break; 1626 /* 1627 * Set [nstart; nend) to intersection of desired address 1628 * range with the first VMA. Also, skip undesirable VMA types. 1629 */ 1630 nend = min(end, vma->vm_end); 1631 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1632 continue; 1633 if (nstart < vma->vm_start) 1634 nstart = vma->vm_start; 1635 /* 1636 * Now fault in a range of pages. populate_vma_page_range() 1637 * double checks the vma flags, so that it won't mlock pages 1638 * if the vma was already munlocked. 1639 */ 1640 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1641 if (ret < 0) { 1642 if (ignore_errors) { 1643 ret = 0; 1644 continue; /* continue at next VMA */ 1645 } 1646 break; 1647 } 1648 nend = nstart + ret * PAGE_SIZE; 1649 ret = 0; 1650 } 1651 if (locked) 1652 mmap_read_unlock(mm); 1653 return ret; /* 0 or negative error code */ 1654 } 1655 #else /* CONFIG_MMU */ 1656 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1657 unsigned long nr_pages, struct page **pages, 1658 struct vm_area_struct **vmas, int *locked, 1659 unsigned int foll_flags) 1660 { 1661 struct vm_area_struct *vma; 1662 unsigned long vm_flags; 1663 long i; 1664 1665 /* calculate required read or write permissions. 1666 * If FOLL_FORCE is set, we only require the "MAY" flags. 1667 */ 1668 vm_flags = (foll_flags & FOLL_WRITE) ? 1669 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1670 vm_flags &= (foll_flags & FOLL_FORCE) ? 1671 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1672 1673 for (i = 0; i < nr_pages; i++) { 1674 vma = find_vma(mm, start); 1675 if (!vma) 1676 goto finish_or_fault; 1677 1678 /* protect what we can, including chardevs */ 1679 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1680 !(vm_flags & vma->vm_flags)) 1681 goto finish_or_fault; 1682 1683 if (pages) { 1684 pages[i] = virt_to_page((void *)start); 1685 if (pages[i]) 1686 get_page(pages[i]); 1687 } 1688 if (vmas) 1689 vmas[i] = vma; 1690 start = (start + PAGE_SIZE) & PAGE_MASK; 1691 } 1692 1693 return i; 1694 1695 finish_or_fault: 1696 return i ? : -EFAULT; 1697 } 1698 #endif /* !CONFIG_MMU */ 1699 1700 /** 1701 * fault_in_writeable - fault in userspace address range for writing 1702 * @uaddr: start of address range 1703 * @size: size of address range 1704 * 1705 * Returns the number of bytes not faulted in (like copy_to_user() and 1706 * copy_from_user()). 1707 */ 1708 size_t fault_in_writeable(char __user *uaddr, size_t size) 1709 { 1710 char __user *start = uaddr, *end; 1711 1712 if (unlikely(size == 0)) 1713 return 0; 1714 if (!user_write_access_begin(uaddr, size)) 1715 return size; 1716 if (!PAGE_ALIGNED(uaddr)) { 1717 unsafe_put_user(0, uaddr, out); 1718 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1719 } 1720 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1721 if (unlikely(end < start)) 1722 end = NULL; 1723 while (uaddr != end) { 1724 unsafe_put_user(0, uaddr, out); 1725 uaddr += PAGE_SIZE; 1726 } 1727 1728 out: 1729 user_write_access_end(); 1730 if (size > uaddr - start) 1731 return size - (uaddr - start); 1732 return 0; 1733 } 1734 EXPORT_SYMBOL(fault_in_writeable); 1735 1736 /** 1737 * fault_in_subpage_writeable - fault in an address range for writing 1738 * @uaddr: start of address range 1739 * @size: size of address range 1740 * 1741 * Fault in a user address range for writing while checking for permissions at 1742 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1743 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1744 * 1745 * Returns the number of bytes not faulted in (like copy_to_user() and 1746 * copy_from_user()). 1747 */ 1748 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1749 { 1750 size_t faulted_in; 1751 1752 /* 1753 * Attempt faulting in at page granularity first for page table 1754 * permission checking. The arch-specific probe_subpage_writeable() 1755 * functions may not check for this. 1756 */ 1757 faulted_in = size - fault_in_writeable(uaddr, size); 1758 if (faulted_in) 1759 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1760 1761 return size - faulted_in; 1762 } 1763 EXPORT_SYMBOL(fault_in_subpage_writeable); 1764 1765 /* 1766 * fault_in_safe_writeable - fault in an address range for writing 1767 * @uaddr: start of address range 1768 * @size: length of address range 1769 * 1770 * Faults in an address range for writing. This is primarily useful when we 1771 * already know that some or all of the pages in the address range aren't in 1772 * memory. 1773 * 1774 * Unlike fault_in_writeable(), this function is non-destructive. 1775 * 1776 * Note that we don't pin or otherwise hold the pages referenced that we fault 1777 * in. There's no guarantee that they'll stay in memory for any duration of 1778 * time. 1779 * 1780 * Returns the number of bytes not faulted in, like copy_to_user() and 1781 * copy_from_user(). 1782 */ 1783 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1784 { 1785 unsigned long start = (unsigned long)uaddr, end; 1786 struct mm_struct *mm = current->mm; 1787 bool unlocked = false; 1788 1789 if (unlikely(size == 0)) 1790 return 0; 1791 end = PAGE_ALIGN(start + size); 1792 if (end < start) 1793 end = 0; 1794 1795 mmap_read_lock(mm); 1796 do { 1797 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1798 break; 1799 start = (start + PAGE_SIZE) & PAGE_MASK; 1800 } while (start != end); 1801 mmap_read_unlock(mm); 1802 1803 if (size > (unsigned long)uaddr - start) 1804 return size - ((unsigned long)uaddr - start); 1805 return 0; 1806 } 1807 EXPORT_SYMBOL(fault_in_safe_writeable); 1808 1809 /** 1810 * fault_in_readable - fault in userspace address range for reading 1811 * @uaddr: start of user address range 1812 * @size: size of user address range 1813 * 1814 * Returns the number of bytes not faulted in (like copy_to_user() and 1815 * copy_from_user()). 1816 */ 1817 size_t fault_in_readable(const char __user *uaddr, size_t size) 1818 { 1819 const char __user *start = uaddr, *end; 1820 volatile char c; 1821 1822 if (unlikely(size == 0)) 1823 return 0; 1824 if (!user_read_access_begin(uaddr, size)) 1825 return size; 1826 if (!PAGE_ALIGNED(uaddr)) { 1827 unsafe_get_user(c, uaddr, out); 1828 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1829 } 1830 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1831 if (unlikely(end < start)) 1832 end = NULL; 1833 while (uaddr != end) { 1834 unsafe_get_user(c, uaddr, out); 1835 uaddr += PAGE_SIZE; 1836 } 1837 1838 out: 1839 user_read_access_end(); 1840 (void)c; 1841 if (size > uaddr - start) 1842 return size - (uaddr - start); 1843 return 0; 1844 } 1845 EXPORT_SYMBOL(fault_in_readable); 1846 1847 /** 1848 * get_dump_page() - pin user page in memory while writing it to core dump 1849 * @addr: user address 1850 * 1851 * Returns struct page pointer of user page pinned for dump, 1852 * to be freed afterwards by put_page(). 1853 * 1854 * Returns NULL on any kind of failure - a hole must then be inserted into 1855 * the corefile, to preserve alignment with its headers; and also returns 1856 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1857 * allowing a hole to be left in the corefile to save disk space. 1858 * 1859 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1860 */ 1861 #ifdef CONFIG_ELF_CORE 1862 struct page *get_dump_page(unsigned long addr) 1863 { 1864 struct mm_struct *mm = current->mm; 1865 struct page *page; 1866 int locked = 1; 1867 int ret; 1868 1869 if (mmap_read_lock_killable(mm)) 1870 return NULL; 1871 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1872 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1873 if (locked) 1874 mmap_read_unlock(mm); 1875 return (ret == 1) ? page : NULL; 1876 } 1877 #endif /* CONFIG_ELF_CORE */ 1878 1879 #ifdef CONFIG_MIGRATION 1880 /* 1881 * Returns the number of collected pages. Return value is always >= 0. 1882 */ 1883 static unsigned long collect_longterm_unpinnable_pages( 1884 struct list_head *movable_page_list, 1885 unsigned long nr_pages, 1886 struct page **pages) 1887 { 1888 unsigned long i, collected = 0; 1889 struct folio *prev_folio = NULL; 1890 bool drain_allow = true; 1891 1892 for (i = 0; i < nr_pages; i++) { 1893 struct folio *folio = page_folio(pages[i]); 1894 1895 if (folio == prev_folio) 1896 continue; 1897 prev_folio = folio; 1898 1899 if (folio_is_longterm_pinnable(folio)) 1900 continue; 1901 1902 collected++; 1903 1904 if (folio_is_device_coherent(folio)) 1905 continue; 1906 1907 if (folio_test_hugetlb(folio)) { 1908 isolate_hugetlb(&folio->page, movable_page_list); 1909 continue; 1910 } 1911 1912 if (!folio_test_lru(folio) && drain_allow) { 1913 lru_add_drain_all(); 1914 drain_allow = false; 1915 } 1916 1917 if (!folio_isolate_lru(folio)) 1918 continue; 1919 1920 list_add_tail(&folio->lru, movable_page_list); 1921 node_stat_mod_folio(folio, 1922 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1923 folio_nr_pages(folio)); 1924 } 1925 1926 return collected; 1927 } 1928 1929 /* 1930 * Unpins all pages and migrates device coherent pages and movable_page_list. 1931 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 1932 * (or partial success). 1933 */ 1934 static int migrate_longterm_unpinnable_pages( 1935 struct list_head *movable_page_list, 1936 unsigned long nr_pages, 1937 struct page **pages) 1938 { 1939 int ret; 1940 unsigned long i; 1941 1942 for (i = 0; i < nr_pages; i++) { 1943 struct folio *folio = page_folio(pages[i]); 1944 1945 if (folio_is_device_coherent(folio)) { 1946 /* 1947 * Migration will fail if the page is pinned, so convert 1948 * the pin on the source page to a normal reference. 1949 */ 1950 pages[i] = NULL; 1951 folio_get(folio); 1952 gup_put_folio(folio, 1, FOLL_PIN); 1953 1954 if (migrate_device_coherent_page(&folio->page)) { 1955 ret = -EBUSY; 1956 goto err; 1957 } 1958 1959 continue; 1960 } 1961 1962 /* 1963 * We can't migrate pages with unexpected references, so drop 1964 * the reference obtained by __get_user_pages_locked(). 1965 * Migrating pages have been added to movable_page_list after 1966 * calling folio_isolate_lru() which takes a reference so the 1967 * page won't be freed if it's migrating. 1968 */ 1969 unpin_user_page(pages[i]); 1970 pages[i] = NULL; 1971 } 1972 1973 if (!list_empty(movable_page_list)) { 1974 struct migration_target_control mtc = { 1975 .nid = NUMA_NO_NODE, 1976 .gfp_mask = GFP_USER | __GFP_NOWARN, 1977 }; 1978 1979 if (migrate_pages(movable_page_list, alloc_migration_target, 1980 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1981 MR_LONGTERM_PIN, NULL)) { 1982 ret = -ENOMEM; 1983 goto err; 1984 } 1985 } 1986 1987 putback_movable_pages(movable_page_list); 1988 1989 return -EAGAIN; 1990 1991 err: 1992 for (i = 0; i < nr_pages; i++) 1993 if (pages[i]) 1994 unpin_user_page(pages[i]); 1995 putback_movable_pages(movable_page_list); 1996 1997 return ret; 1998 } 1999 2000 /* 2001 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2002 * pages in the range are required to be pinned via FOLL_PIN, before calling 2003 * this routine. 2004 * 2005 * If any pages in the range are not allowed to be pinned, then this routine 2006 * will migrate those pages away, unpin all the pages in the range and return 2007 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2008 * call this routine again. 2009 * 2010 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2011 * The caller should give up, and propagate the error back up the call stack. 2012 * 2013 * If everything is OK and all pages in the range are allowed to be pinned, then 2014 * this routine leaves all pages pinned and returns zero for success. 2015 */ 2016 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2017 struct page **pages) 2018 { 2019 unsigned long collected; 2020 LIST_HEAD(movable_page_list); 2021 2022 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2023 nr_pages, pages); 2024 if (!collected) 2025 return 0; 2026 2027 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2028 pages); 2029 } 2030 #else 2031 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2032 struct page **pages) 2033 { 2034 return 0; 2035 } 2036 #endif /* CONFIG_MIGRATION */ 2037 2038 /* 2039 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2040 * allows us to process the FOLL_LONGTERM flag. 2041 */ 2042 static long __gup_longterm_locked(struct mm_struct *mm, 2043 unsigned long start, 2044 unsigned long nr_pages, 2045 struct page **pages, 2046 struct vm_area_struct **vmas, 2047 int *locked, 2048 unsigned int gup_flags) 2049 { 2050 bool must_unlock = false; 2051 unsigned int flags; 2052 long rc, nr_pinned_pages; 2053 2054 if (locked && WARN_ON_ONCE(!*locked)) 2055 return -EINVAL; 2056 2057 if (!(gup_flags & FOLL_LONGTERM)) 2058 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2059 locked, gup_flags); 2060 2061 /* 2062 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM 2063 * implies FOLL_PIN (although the reverse is not true). Therefore it is 2064 * correct to unconditionally call check_and_migrate_movable_pages() 2065 * which assumes pages have been pinned via FOLL_PIN. 2066 * 2067 * Enforce the above reasoning by asserting that FOLL_PIN is set. 2068 */ 2069 if (WARN_ON(!(gup_flags & FOLL_PIN))) 2070 return -EINVAL; 2071 flags = memalloc_pin_save(); 2072 do { 2073 if (locked && !*locked) { 2074 mmap_read_lock(mm); 2075 must_unlock = true; 2076 *locked = 1; 2077 } 2078 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2079 pages, vmas, locked, 2080 gup_flags); 2081 if (nr_pinned_pages <= 0) { 2082 rc = nr_pinned_pages; 2083 break; 2084 } 2085 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2086 } while (rc == -EAGAIN); 2087 memalloc_pin_restore(flags); 2088 2089 if (locked && *locked && must_unlock) { 2090 mmap_read_unlock(mm); 2091 *locked = 0; 2092 } 2093 return rc ? rc : nr_pinned_pages; 2094 } 2095 2096 static bool is_valid_gup_flags(unsigned int gup_flags) 2097 { 2098 /* 2099 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2100 * never directly by the caller, so enforce that with an assertion: 2101 */ 2102 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2103 return false; 2104 /* 2105 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2106 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2107 * FOLL_PIN. 2108 */ 2109 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2110 return false; 2111 2112 return true; 2113 } 2114 2115 #ifdef CONFIG_MMU 2116 /** 2117 * get_user_pages_remote() - pin user pages in memory 2118 * @mm: mm_struct of target mm 2119 * @start: starting user address 2120 * @nr_pages: number of pages from start to pin 2121 * @gup_flags: flags modifying lookup behaviour 2122 * @pages: array that receives pointers to the pages pinned. 2123 * Should be at least nr_pages long. Or NULL, if caller 2124 * only intends to ensure the pages are faulted in. 2125 * @vmas: array of pointers to vmas corresponding to each page. 2126 * Or NULL if the caller does not require them. 2127 * @locked: pointer to lock flag indicating whether lock is held and 2128 * subsequently whether VM_FAULT_RETRY functionality can be 2129 * utilised. Lock must initially be held. 2130 * 2131 * Returns either number of pages pinned (which may be less than the 2132 * number requested), or an error. Details about the return value: 2133 * 2134 * -- If nr_pages is 0, returns 0. 2135 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2136 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2137 * pages pinned. Again, this may be less than nr_pages. 2138 * 2139 * The caller is responsible for releasing returned @pages, via put_page(). 2140 * 2141 * @vmas are valid only as long as mmap_lock is held. 2142 * 2143 * Must be called with mmap_lock held for read or write. 2144 * 2145 * get_user_pages_remote walks a process's page tables and takes a reference 2146 * to each struct page that each user address corresponds to at a given 2147 * instant. That is, it takes the page that would be accessed if a user 2148 * thread accesses the given user virtual address at that instant. 2149 * 2150 * This does not guarantee that the page exists in the user mappings when 2151 * get_user_pages_remote returns, and there may even be a completely different 2152 * page there in some cases (eg. if mmapped pagecache has been invalidated 2153 * and subsequently re faulted). However it does guarantee that the page 2154 * won't be freed completely. And mostly callers simply care that the page 2155 * contains data that was valid *at some point in time*. Typically, an IO 2156 * or similar operation cannot guarantee anything stronger anyway because 2157 * locks can't be held over the syscall boundary. 2158 * 2159 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2160 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2161 * be called after the page is finished with, and before put_page is called. 2162 * 2163 * get_user_pages_remote is typically used for fewer-copy IO operations, 2164 * to get a handle on the memory by some means other than accesses 2165 * via the user virtual addresses. The pages may be submitted for 2166 * DMA to devices or accessed via their kernel linear mapping (via the 2167 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2168 * 2169 * See also get_user_pages_fast, for performance critical applications. 2170 * 2171 * get_user_pages_remote should be phased out in favor of 2172 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2173 * should use get_user_pages_remote because it cannot pass 2174 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2175 */ 2176 long get_user_pages_remote(struct mm_struct *mm, 2177 unsigned long start, unsigned long nr_pages, 2178 unsigned int gup_flags, struct page **pages, 2179 struct vm_area_struct **vmas, int *locked) 2180 { 2181 if (!is_valid_gup_flags(gup_flags)) 2182 return -EINVAL; 2183 2184 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked, 2185 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2186 } 2187 EXPORT_SYMBOL(get_user_pages_remote); 2188 2189 #else /* CONFIG_MMU */ 2190 long get_user_pages_remote(struct mm_struct *mm, 2191 unsigned long start, unsigned long nr_pages, 2192 unsigned int gup_flags, struct page **pages, 2193 struct vm_area_struct **vmas, int *locked) 2194 { 2195 return 0; 2196 } 2197 #endif /* !CONFIG_MMU */ 2198 2199 /** 2200 * get_user_pages() - pin user pages in memory 2201 * @start: starting user address 2202 * @nr_pages: number of pages from start to pin 2203 * @gup_flags: flags modifying lookup behaviour 2204 * @pages: array that receives pointers to the pages pinned. 2205 * Should be at least nr_pages long. Or NULL, if caller 2206 * only intends to ensure the pages are faulted in. 2207 * @vmas: array of pointers to vmas corresponding to each page. 2208 * Or NULL if the caller does not require them. 2209 * 2210 * This is the same as get_user_pages_remote(), just with a less-flexible 2211 * calling convention where we assume that the mm being operated on belongs to 2212 * the current task, and doesn't allow passing of a locked parameter. We also 2213 * obviously don't pass FOLL_REMOTE in here. 2214 */ 2215 long get_user_pages(unsigned long start, unsigned long nr_pages, 2216 unsigned int gup_flags, struct page **pages, 2217 struct vm_area_struct **vmas) 2218 { 2219 if (!is_valid_gup_flags(gup_flags)) 2220 return -EINVAL; 2221 2222 return __gup_longterm_locked(current->mm, start, nr_pages, 2223 pages, vmas, NULL, gup_flags | FOLL_TOUCH); 2224 } 2225 EXPORT_SYMBOL(get_user_pages); 2226 2227 /* 2228 * get_user_pages_unlocked() is suitable to replace the form: 2229 * 2230 * mmap_read_lock(mm); 2231 * get_user_pages(mm, ..., pages, NULL); 2232 * mmap_read_unlock(mm); 2233 * 2234 * with: 2235 * 2236 * get_user_pages_unlocked(mm, ..., pages); 2237 * 2238 * It is functionally equivalent to get_user_pages_fast so 2239 * get_user_pages_fast should be used instead if specific gup_flags 2240 * (e.g. FOLL_FORCE) are not required. 2241 */ 2242 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2243 struct page **pages, unsigned int gup_flags) 2244 { 2245 struct mm_struct *mm = current->mm; 2246 int locked = 1; 2247 long ret; 2248 2249 mmap_read_lock(mm); 2250 ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked, 2251 gup_flags | FOLL_TOUCH); 2252 if (locked) 2253 mmap_read_unlock(mm); 2254 return ret; 2255 } 2256 EXPORT_SYMBOL(get_user_pages_unlocked); 2257 2258 /* 2259 * Fast GUP 2260 * 2261 * get_user_pages_fast attempts to pin user pages by walking the page 2262 * tables directly and avoids taking locks. Thus the walker needs to be 2263 * protected from page table pages being freed from under it, and should 2264 * block any THP splits. 2265 * 2266 * One way to achieve this is to have the walker disable interrupts, and 2267 * rely on IPIs from the TLB flushing code blocking before the page table 2268 * pages are freed. This is unsuitable for architectures that do not need 2269 * to broadcast an IPI when invalidating TLBs. 2270 * 2271 * Another way to achieve this is to batch up page table containing pages 2272 * belonging to more than one mm_user, then rcu_sched a callback to free those 2273 * pages. Disabling interrupts will allow the fast_gup walker to both block 2274 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2275 * (which is a relatively rare event). The code below adopts this strategy. 2276 * 2277 * Before activating this code, please be aware that the following assumptions 2278 * are currently made: 2279 * 2280 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2281 * free pages containing page tables or TLB flushing requires IPI broadcast. 2282 * 2283 * *) ptes can be read atomically by the architecture. 2284 * 2285 * *) access_ok is sufficient to validate userspace address ranges. 2286 * 2287 * The last two assumptions can be relaxed by the addition of helper functions. 2288 * 2289 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2290 */ 2291 #ifdef CONFIG_HAVE_FAST_GUP 2292 2293 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2294 unsigned int flags, 2295 struct page **pages) 2296 { 2297 while ((*nr) - nr_start) { 2298 struct page *page = pages[--(*nr)]; 2299 2300 ClearPageReferenced(page); 2301 if (flags & FOLL_PIN) 2302 unpin_user_page(page); 2303 else 2304 put_page(page); 2305 } 2306 } 2307 2308 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2309 /* 2310 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2311 * operations. 2312 * 2313 * To pin the page, fast-gup needs to do below in order: 2314 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2315 * 2316 * For the rest of pgtable operations where pgtable updates can be racy 2317 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2318 * is pinned. 2319 * 2320 * Above will work for all pte-level operations, including THP split. 2321 * 2322 * For THP collapse, it's a bit more complicated because fast-gup may be 2323 * walking a pgtable page that is being freed (pte is still valid but pmd 2324 * can be cleared already). To avoid race in such condition, we need to 2325 * also check pmd here to make sure pmd doesn't change (corresponds to 2326 * pmdp_collapse_flush() in the THP collapse code path). 2327 */ 2328 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2329 unsigned long end, unsigned int flags, 2330 struct page **pages, int *nr) 2331 { 2332 struct dev_pagemap *pgmap = NULL; 2333 int nr_start = *nr, ret = 0; 2334 pte_t *ptep, *ptem; 2335 2336 ptem = ptep = pte_offset_map(&pmd, addr); 2337 do { 2338 pte_t pte = ptep_get_lockless(ptep); 2339 struct page *page; 2340 struct folio *folio; 2341 2342 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2343 goto pte_unmap; 2344 2345 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2346 goto pte_unmap; 2347 2348 if (pte_devmap(pte)) { 2349 if (unlikely(flags & FOLL_LONGTERM)) 2350 goto pte_unmap; 2351 2352 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2353 if (unlikely(!pgmap)) { 2354 undo_dev_pagemap(nr, nr_start, flags, pages); 2355 goto pte_unmap; 2356 } 2357 } else if (pte_special(pte)) 2358 goto pte_unmap; 2359 2360 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2361 page = pte_page(pte); 2362 2363 folio = try_grab_folio(page, 1, flags); 2364 if (!folio) 2365 goto pte_unmap; 2366 2367 if (unlikely(page_is_secretmem(page))) { 2368 gup_put_folio(folio, 1, flags); 2369 goto pte_unmap; 2370 } 2371 2372 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2373 unlikely(pte_val(pte) != pte_val(*ptep))) { 2374 gup_put_folio(folio, 1, flags); 2375 goto pte_unmap; 2376 } 2377 2378 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2379 gup_put_folio(folio, 1, flags); 2380 goto pte_unmap; 2381 } 2382 2383 /* 2384 * We need to make the page accessible if and only if we are 2385 * going to access its content (the FOLL_PIN case). Please 2386 * see Documentation/core-api/pin_user_pages.rst for 2387 * details. 2388 */ 2389 if (flags & FOLL_PIN) { 2390 ret = arch_make_page_accessible(page); 2391 if (ret) { 2392 gup_put_folio(folio, 1, flags); 2393 goto pte_unmap; 2394 } 2395 } 2396 folio_set_referenced(folio); 2397 pages[*nr] = page; 2398 (*nr)++; 2399 } while (ptep++, addr += PAGE_SIZE, addr != end); 2400 2401 ret = 1; 2402 2403 pte_unmap: 2404 if (pgmap) 2405 put_dev_pagemap(pgmap); 2406 pte_unmap(ptem); 2407 return ret; 2408 } 2409 #else 2410 2411 /* 2412 * If we can't determine whether or not a pte is special, then fail immediately 2413 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2414 * to be special. 2415 * 2416 * For a futex to be placed on a THP tail page, get_futex_key requires a 2417 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2418 * useful to have gup_huge_pmd even if we can't operate on ptes. 2419 */ 2420 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2421 unsigned long end, unsigned int flags, 2422 struct page **pages, int *nr) 2423 { 2424 return 0; 2425 } 2426 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2427 2428 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2429 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2430 unsigned long end, unsigned int flags, 2431 struct page **pages, int *nr) 2432 { 2433 int nr_start = *nr; 2434 struct dev_pagemap *pgmap = NULL; 2435 2436 do { 2437 struct page *page = pfn_to_page(pfn); 2438 2439 pgmap = get_dev_pagemap(pfn, pgmap); 2440 if (unlikely(!pgmap)) { 2441 undo_dev_pagemap(nr, nr_start, flags, pages); 2442 break; 2443 } 2444 2445 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2446 undo_dev_pagemap(nr, nr_start, flags, pages); 2447 break; 2448 } 2449 2450 SetPageReferenced(page); 2451 pages[*nr] = page; 2452 if (unlikely(try_grab_page(page, flags))) { 2453 undo_dev_pagemap(nr, nr_start, flags, pages); 2454 break; 2455 } 2456 (*nr)++; 2457 pfn++; 2458 } while (addr += PAGE_SIZE, addr != end); 2459 2460 put_dev_pagemap(pgmap); 2461 return addr == end; 2462 } 2463 2464 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2465 unsigned long end, unsigned int flags, 2466 struct page **pages, int *nr) 2467 { 2468 unsigned long fault_pfn; 2469 int nr_start = *nr; 2470 2471 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2472 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2473 return 0; 2474 2475 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2476 undo_dev_pagemap(nr, nr_start, flags, pages); 2477 return 0; 2478 } 2479 return 1; 2480 } 2481 2482 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2483 unsigned long end, unsigned int flags, 2484 struct page **pages, int *nr) 2485 { 2486 unsigned long fault_pfn; 2487 int nr_start = *nr; 2488 2489 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2490 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2491 return 0; 2492 2493 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2494 undo_dev_pagemap(nr, nr_start, flags, pages); 2495 return 0; 2496 } 2497 return 1; 2498 } 2499 #else 2500 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2501 unsigned long end, unsigned int flags, 2502 struct page **pages, int *nr) 2503 { 2504 BUILD_BUG(); 2505 return 0; 2506 } 2507 2508 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2509 unsigned long end, unsigned int flags, 2510 struct page **pages, int *nr) 2511 { 2512 BUILD_BUG(); 2513 return 0; 2514 } 2515 #endif 2516 2517 static int record_subpages(struct page *page, unsigned long addr, 2518 unsigned long end, struct page **pages) 2519 { 2520 int nr; 2521 2522 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2523 pages[nr] = nth_page(page, nr); 2524 2525 return nr; 2526 } 2527 2528 #ifdef CONFIG_ARCH_HAS_HUGEPD 2529 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2530 unsigned long sz) 2531 { 2532 unsigned long __boundary = (addr + sz) & ~(sz-1); 2533 return (__boundary - 1 < end - 1) ? __boundary : end; 2534 } 2535 2536 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2537 unsigned long end, unsigned int flags, 2538 struct page **pages, int *nr) 2539 { 2540 unsigned long pte_end; 2541 struct page *page; 2542 struct folio *folio; 2543 pte_t pte; 2544 int refs; 2545 2546 pte_end = (addr + sz) & ~(sz-1); 2547 if (pte_end < end) 2548 end = pte_end; 2549 2550 pte = huge_ptep_get(ptep); 2551 2552 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2553 return 0; 2554 2555 /* hugepages are never "special" */ 2556 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2557 2558 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2559 refs = record_subpages(page, addr, end, pages + *nr); 2560 2561 folio = try_grab_folio(page, refs, flags); 2562 if (!folio) 2563 return 0; 2564 2565 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2566 gup_put_folio(folio, refs, flags); 2567 return 0; 2568 } 2569 2570 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2571 gup_put_folio(folio, refs, flags); 2572 return 0; 2573 } 2574 2575 *nr += refs; 2576 folio_set_referenced(folio); 2577 return 1; 2578 } 2579 2580 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2581 unsigned int pdshift, unsigned long end, unsigned int flags, 2582 struct page **pages, int *nr) 2583 { 2584 pte_t *ptep; 2585 unsigned long sz = 1UL << hugepd_shift(hugepd); 2586 unsigned long next; 2587 2588 ptep = hugepte_offset(hugepd, addr, pdshift); 2589 do { 2590 next = hugepte_addr_end(addr, end, sz); 2591 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2592 return 0; 2593 } while (ptep++, addr = next, addr != end); 2594 2595 return 1; 2596 } 2597 #else 2598 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2599 unsigned int pdshift, unsigned long end, unsigned int flags, 2600 struct page **pages, int *nr) 2601 { 2602 return 0; 2603 } 2604 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2605 2606 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2607 unsigned long end, unsigned int flags, 2608 struct page **pages, int *nr) 2609 { 2610 struct page *page; 2611 struct folio *folio; 2612 int refs; 2613 2614 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2615 return 0; 2616 2617 if (pmd_devmap(orig)) { 2618 if (unlikely(flags & FOLL_LONGTERM)) 2619 return 0; 2620 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2621 pages, nr); 2622 } 2623 2624 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2625 refs = record_subpages(page, addr, end, pages + *nr); 2626 2627 folio = try_grab_folio(page, refs, flags); 2628 if (!folio) 2629 return 0; 2630 2631 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2632 gup_put_folio(folio, refs, flags); 2633 return 0; 2634 } 2635 2636 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2637 gup_put_folio(folio, refs, flags); 2638 return 0; 2639 } 2640 2641 *nr += refs; 2642 folio_set_referenced(folio); 2643 return 1; 2644 } 2645 2646 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2647 unsigned long end, unsigned int flags, 2648 struct page **pages, int *nr) 2649 { 2650 struct page *page; 2651 struct folio *folio; 2652 int refs; 2653 2654 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2655 return 0; 2656 2657 if (pud_devmap(orig)) { 2658 if (unlikely(flags & FOLL_LONGTERM)) 2659 return 0; 2660 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2661 pages, nr); 2662 } 2663 2664 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2665 refs = record_subpages(page, addr, end, pages + *nr); 2666 2667 folio = try_grab_folio(page, refs, flags); 2668 if (!folio) 2669 return 0; 2670 2671 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2672 gup_put_folio(folio, refs, flags); 2673 return 0; 2674 } 2675 2676 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2677 gup_put_folio(folio, refs, flags); 2678 return 0; 2679 } 2680 2681 *nr += refs; 2682 folio_set_referenced(folio); 2683 return 1; 2684 } 2685 2686 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2687 unsigned long end, unsigned int flags, 2688 struct page **pages, int *nr) 2689 { 2690 int refs; 2691 struct page *page; 2692 struct folio *folio; 2693 2694 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2695 return 0; 2696 2697 BUILD_BUG_ON(pgd_devmap(orig)); 2698 2699 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2700 refs = record_subpages(page, addr, end, pages + *nr); 2701 2702 folio = try_grab_folio(page, refs, flags); 2703 if (!folio) 2704 return 0; 2705 2706 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2707 gup_put_folio(folio, refs, flags); 2708 return 0; 2709 } 2710 2711 *nr += refs; 2712 folio_set_referenced(folio); 2713 return 1; 2714 } 2715 2716 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2717 unsigned int flags, struct page **pages, int *nr) 2718 { 2719 unsigned long next; 2720 pmd_t *pmdp; 2721 2722 pmdp = pmd_offset_lockless(pudp, pud, addr); 2723 do { 2724 pmd_t pmd = pmdp_get_lockless(pmdp); 2725 2726 next = pmd_addr_end(addr, end); 2727 if (!pmd_present(pmd)) 2728 return 0; 2729 2730 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2731 pmd_devmap(pmd))) { 2732 if (pmd_protnone(pmd) && 2733 !gup_can_follow_protnone(flags)) 2734 return 0; 2735 2736 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2737 pages, nr)) 2738 return 0; 2739 2740 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2741 /* 2742 * architecture have different format for hugetlbfs 2743 * pmd format and THP pmd format 2744 */ 2745 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2746 PMD_SHIFT, next, flags, pages, nr)) 2747 return 0; 2748 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2749 return 0; 2750 } while (pmdp++, addr = next, addr != end); 2751 2752 return 1; 2753 } 2754 2755 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2756 unsigned int flags, struct page **pages, int *nr) 2757 { 2758 unsigned long next; 2759 pud_t *pudp; 2760 2761 pudp = pud_offset_lockless(p4dp, p4d, addr); 2762 do { 2763 pud_t pud = READ_ONCE(*pudp); 2764 2765 next = pud_addr_end(addr, end); 2766 if (unlikely(!pud_present(pud))) 2767 return 0; 2768 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2769 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2770 pages, nr)) 2771 return 0; 2772 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2773 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2774 PUD_SHIFT, next, flags, pages, nr)) 2775 return 0; 2776 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2777 return 0; 2778 } while (pudp++, addr = next, addr != end); 2779 2780 return 1; 2781 } 2782 2783 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2784 unsigned int flags, struct page **pages, int *nr) 2785 { 2786 unsigned long next; 2787 p4d_t *p4dp; 2788 2789 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2790 do { 2791 p4d_t p4d = READ_ONCE(*p4dp); 2792 2793 next = p4d_addr_end(addr, end); 2794 if (p4d_none(p4d)) 2795 return 0; 2796 BUILD_BUG_ON(p4d_huge(p4d)); 2797 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2798 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2799 P4D_SHIFT, next, flags, pages, nr)) 2800 return 0; 2801 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2802 return 0; 2803 } while (p4dp++, addr = next, addr != end); 2804 2805 return 1; 2806 } 2807 2808 static void gup_pgd_range(unsigned long addr, unsigned long end, 2809 unsigned int flags, struct page **pages, int *nr) 2810 { 2811 unsigned long next; 2812 pgd_t *pgdp; 2813 2814 pgdp = pgd_offset(current->mm, addr); 2815 do { 2816 pgd_t pgd = READ_ONCE(*pgdp); 2817 2818 next = pgd_addr_end(addr, end); 2819 if (pgd_none(pgd)) 2820 return; 2821 if (unlikely(pgd_huge(pgd))) { 2822 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2823 pages, nr)) 2824 return; 2825 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2826 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2827 PGDIR_SHIFT, next, flags, pages, nr)) 2828 return; 2829 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2830 return; 2831 } while (pgdp++, addr = next, addr != end); 2832 } 2833 #else 2834 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2835 unsigned int flags, struct page **pages, int *nr) 2836 { 2837 } 2838 #endif /* CONFIG_HAVE_FAST_GUP */ 2839 2840 #ifndef gup_fast_permitted 2841 /* 2842 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2843 * we need to fall back to the slow version: 2844 */ 2845 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2846 { 2847 return true; 2848 } 2849 #endif 2850 2851 static unsigned long lockless_pages_from_mm(unsigned long start, 2852 unsigned long end, 2853 unsigned int gup_flags, 2854 struct page **pages) 2855 { 2856 unsigned long flags; 2857 int nr_pinned = 0; 2858 unsigned seq; 2859 2860 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2861 !gup_fast_permitted(start, end)) 2862 return 0; 2863 2864 if (gup_flags & FOLL_PIN) { 2865 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2866 if (seq & 1) 2867 return 0; 2868 } 2869 2870 /* 2871 * Disable interrupts. The nested form is used, in order to allow full, 2872 * general purpose use of this routine. 2873 * 2874 * With interrupts disabled, we block page table pages from being freed 2875 * from under us. See struct mmu_table_batch comments in 2876 * include/asm-generic/tlb.h for more details. 2877 * 2878 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2879 * that come from THPs splitting. 2880 */ 2881 local_irq_save(flags); 2882 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2883 local_irq_restore(flags); 2884 2885 /* 2886 * When pinning pages for DMA there could be a concurrent write protect 2887 * from fork() via copy_page_range(), in this case always fail fast GUP. 2888 */ 2889 if (gup_flags & FOLL_PIN) { 2890 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2891 unpin_user_pages_lockless(pages, nr_pinned); 2892 return 0; 2893 } else { 2894 sanity_check_pinned_pages(pages, nr_pinned); 2895 } 2896 } 2897 return nr_pinned; 2898 } 2899 2900 static int internal_get_user_pages_fast(unsigned long start, 2901 unsigned long nr_pages, 2902 unsigned int gup_flags, 2903 struct page **pages) 2904 { 2905 unsigned long len, end; 2906 unsigned long nr_pinned; 2907 int ret; 2908 2909 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2910 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2911 FOLL_FAST_ONLY | FOLL_NOFAULT | 2912 FOLL_PCI_P2PDMA))) 2913 return -EINVAL; 2914 2915 if (gup_flags & FOLL_PIN) 2916 mm_set_has_pinned_flag(¤t->mm->flags); 2917 2918 if (!(gup_flags & FOLL_FAST_ONLY)) 2919 might_lock_read(¤t->mm->mmap_lock); 2920 2921 start = untagged_addr(start) & PAGE_MASK; 2922 len = nr_pages << PAGE_SHIFT; 2923 if (check_add_overflow(start, len, &end)) 2924 return 0; 2925 if (unlikely(!access_ok((void __user *)start, len))) 2926 return -EFAULT; 2927 2928 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2929 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2930 return nr_pinned; 2931 2932 /* Slow path: try to get the remaining pages with get_user_pages */ 2933 start += nr_pinned << PAGE_SHIFT; 2934 pages += nr_pinned; 2935 ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages, 2936 gup_flags); 2937 if (ret < 0) { 2938 /* 2939 * The caller has to unpin the pages we already pinned so 2940 * returning -errno is not an option 2941 */ 2942 if (nr_pinned) 2943 return nr_pinned; 2944 return ret; 2945 } 2946 return ret + nr_pinned; 2947 } 2948 2949 /** 2950 * get_user_pages_fast_only() - pin user pages in memory 2951 * @start: starting user address 2952 * @nr_pages: number of pages from start to pin 2953 * @gup_flags: flags modifying pin behaviour 2954 * @pages: array that receives pointers to the pages pinned. 2955 * Should be at least nr_pages long. 2956 * 2957 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2958 * the regular GUP. 2959 * Note a difference with get_user_pages_fast: this always returns the 2960 * number of pages pinned, 0 if no pages were pinned. 2961 * 2962 * If the architecture does not support this function, simply return with no 2963 * pages pinned. 2964 * 2965 * Careful, careful! COW breaking can go either way, so a non-write 2966 * access can get ambiguous page results. If you call this function without 2967 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2968 */ 2969 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2970 unsigned int gup_flags, struct page **pages) 2971 { 2972 int nr_pinned; 2973 /* 2974 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2975 * because gup fast is always a "pin with a +1 page refcount" request. 2976 * 2977 * FOLL_FAST_ONLY is required in order to match the API description of 2978 * this routine: no fall back to regular ("slow") GUP. 2979 */ 2980 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2981 2982 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2983 pages); 2984 2985 /* 2986 * As specified in the API description above, this routine is not 2987 * allowed to return negative values. However, the common core 2988 * routine internal_get_user_pages_fast() *can* return -errno. 2989 * Therefore, correct for that here: 2990 */ 2991 if (nr_pinned < 0) 2992 nr_pinned = 0; 2993 2994 return nr_pinned; 2995 } 2996 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2997 2998 /** 2999 * get_user_pages_fast() - pin user pages in memory 3000 * @start: starting user address 3001 * @nr_pages: number of pages from start to pin 3002 * @gup_flags: flags modifying pin behaviour 3003 * @pages: array that receives pointers to the pages pinned. 3004 * Should be at least nr_pages long. 3005 * 3006 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3007 * If not successful, it will fall back to taking the lock and 3008 * calling get_user_pages(). 3009 * 3010 * Returns number of pages pinned. This may be fewer than the number requested. 3011 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3012 * -errno. 3013 */ 3014 int get_user_pages_fast(unsigned long start, int nr_pages, 3015 unsigned int gup_flags, struct page **pages) 3016 { 3017 if (!is_valid_gup_flags(gup_flags)) 3018 return -EINVAL; 3019 3020 /* 3021 * The caller may or may not have explicitly set FOLL_GET; either way is 3022 * OK. However, internally (within mm/gup.c), gup fast variants must set 3023 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3024 * request. 3025 */ 3026 gup_flags |= FOLL_GET; 3027 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3028 } 3029 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3030 3031 /** 3032 * pin_user_pages_fast() - pin user pages in memory without taking locks 3033 * 3034 * @start: starting user address 3035 * @nr_pages: number of pages from start to pin 3036 * @gup_flags: flags modifying pin behaviour 3037 * @pages: array that receives pointers to the pages pinned. 3038 * Should be at least nr_pages long. 3039 * 3040 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3041 * get_user_pages_fast() for documentation on the function arguments, because 3042 * the arguments here are identical. 3043 * 3044 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3045 * see Documentation/core-api/pin_user_pages.rst for further details. 3046 */ 3047 int pin_user_pages_fast(unsigned long start, int nr_pages, 3048 unsigned int gup_flags, struct page **pages) 3049 { 3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3052 return -EINVAL; 3053 3054 if (WARN_ON_ONCE(!pages)) 3055 return -EINVAL; 3056 3057 gup_flags |= FOLL_PIN; 3058 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3059 } 3060 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3061 3062 /* 3063 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3064 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3065 * 3066 * The API rules are the same, too: no negative values may be returned. 3067 */ 3068 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3069 unsigned int gup_flags, struct page **pages) 3070 { 3071 int nr_pinned; 3072 3073 /* 3074 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3075 * rules require returning 0, rather than -errno: 3076 */ 3077 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3078 return 0; 3079 3080 if (WARN_ON_ONCE(!pages)) 3081 return 0; 3082 /* 3083 * FOLL_FAST_ONLY is required in order to match the API description of 3084 * this routine: no fall back to regular ("slow") GUP. 3085 */ 3086 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3087 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3088 pages); 3089 /* 3090 * This routine is not allowed to return negative values. However, 3091 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3092 * correct for that here: 3093 */ 3094 if (nr_pinned < 0) 3095 nr_pinned = 0; 3096 3097 return nr_pinned; 3098 } 3099 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3100 3101 /** 3102 * pin_user_pages_remote() - pin pages of a remote process 3103 * 3104 * @mm: mm_struct of target mm 3105 * @start: starting user address 3106 * @nr_pages: number of pages from start to pin 3107 * @gup_flags: flags modifying lookup behaviour 3108 * @pages: array that receives pointers to the pages pinned. 3109 * Should be at least nr_pages long. 3110 * @vmas: array of pointers to vmas corresponding to each page. 3111 * Or NULL if the caller does not require them. 3112 * @locked: pointer to lock flag indicating whether lock is held and 3113 * subsequently whether VM_FAULT_RETRY functionality can be 3114 * utilised. Lock must initially be held. 3115 * 3116 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3117 * get_user_pages_remote() for documentation on the function arguments, because 3118 * the arguments here are identical. 3119 * 3120 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3121 * see Documentation/core-api/pin_user_pages.rst for details. 3122 */ 3123 long pin_user_pages_remote(struct mm_struct *mm, 3124 unsigned long start, unsigned long nr_pages, 3125 unsigned int gup_flags, struct page **pages, 3126 struct vm_area_struct **vmas, int *locked) 3127 { 3128 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3129 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3130 return -EINVAL; 3131 3132 if (WARN_ON_ONCE(!pages)) 3133 return -EINVAL; 3134 3135 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked, 3136 gup_flags | FOLL_PIN | FOLL_TOUCH | 3137 FOLL_REMOTE); 3138 } 3139 EXPORT_SYMBOL(pin_user_pages_remote); 3140 3141 /** 3142 * pin_user_pages() - pin user pages in memory for use by other devices 3143 * 3144 * @start: starting user address 3145 * @nr_pages: number of pages from start to pin 3146 * @gup_flags: flags modifying lookup behaviour 3147 * @pages: array that receives pointers to the pages pinned. 3148 * Should be at least nr_pages long. 3149 * @vmas: array of pointers to vmas corresponding to each page. 3150 * Or NULL if the caller does not require them. 3151 * 3152 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3153 * FOLL_PIN is set. 3154 * 3155 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3156 * see Documentation/core-api/pin_user_pages.rst for details. 3157 */ 3158 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3159 unsigned int gup_flags, struct page **pages, 3160 struct vm_area_struct **vmas) 3161 { 3162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3163 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3164 return -EINVAL; 3165 3166 if (WARN_ON_ONCE(!pages)) 3167 return -EINVAL; 3168 3169 gup_flags |= FOLL_PIN; 3170 return __gup_longterm_locked(current->mm, start, nr_pages, 3171 pages, vmas, NULL, gup_flags); 3172 } 3173 EXPORT_SYMBOL(pin_user_pages); 3174 3175 /* 3176 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3177 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3178 * FOLL_PIN and rejects FOLL_GET. 3179 */ 3180 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3181 struct page **pages, unsigned int gup_flags) 3182 { 3183 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3184 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3185 return -EINVAL; 3186 3187 if (WARN_ON_ONCE(!pages)) 3188 return -EINVAL; 3189 3190 gup_flags |= FOLL_PIN; 3191 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3192 } 3193 EXPORT_SYMBOL(pin_user_pages_unlocked); 3194