xref: /openbmc/linux/mm/gup.c (revision 60eb644b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (!folio_test_anon(folio))
56 			continue;
57 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
58 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 		else
60 			/* Either a PTE-mapped or a PMD-mapped THP. */
61 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
62 				       !PageAnonExclusive(page), page);
63 	}
64 }
65 
66 /*
67  * Return the folio with ref appropriately incremented,
68  * or NULL if that failed.
69  */
70 static inline struct folio *try_get_folio(struct page *page, int refs)
71 {
72 	struct folio *folio;
73 
74 retry:
75 	folio = page_folio(page);
76 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 		return NULL;
78 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
79 		return NULL;
80 
81 	/*
82 	 * At this point we have a stable reference to the folio; but it
83 	 * could be that between calling page_folio() and the refcount
84 	 * increment, the folio was split, in which case we'd end up
85 	 * holding a reference on a folio that has nothing to do with the page
86 	 * we were given anymore.
87 	 * So now that the folio is stable, recheck that the page still
88 	 * belongs to this folio.
89 	 */
90 	if (unlikely(page_folio(page) != folio)) {
91 		if (!put_devmap_managed_page_refs(&folio->page, refs))
92 			folio_put_refs(folio, refs);
93 		goto retry;
94 	}
95 
96 	return folio;
97 }
98 
99 /**
100  * try_grab_folio() - Attempt to get or pin a folio.
101  * @page:  pointer to page to be grabbed
102  * @refs:  the value to (effectively) add to the folio's refcount
103  * @flags: gup flags: these are the FOLL_* flag values.
104  *
105  * "grab" names in this file mean, "look at flags to decide whether to use
106  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107  *
108  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
109  * same time. (That's true throughout the get_user_pages*() and
110  * pin_user_pages*() APIs.) Cases:
111  *
112  *    FOLL_GET: folio's refcount will be incremented by @refs.
113  *
114  *    FOLL_PIN on large folios: folio's refcount will be incremented by
115  *    @refs, and its pincount will be incremented by @refs.
116  *
117  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
118  *    @refs * GUP_PIN_COUNTING_BIAS.
119  *
120  * Return: The folio containing @page (with refcount appropriately
121  * incremented) for success, or NULL upon failure. If neither FOLL_GET
122  * nor FOLL_PIN was set, that's considered failure, and furthermore,
123  * a likely bug in the caller, so a warning is also emitted.
124  */
125 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 {
127 	struct folio *folio;
128 
129 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
130 		return NULL;
131 
132 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
133 		return NULL;
134 
135 	folio = try_get_folio(page, refs);
136 
137 	if (flags & FOLL_GET)
138 		return folio;
139 
140 	/* FOLL_PIN is set */
141 	if (!folio)
142 		return NULL;
143 
144 	/*
145 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
146 	 * right zone, so fail and let the caller fall back to the slow
147 	 * path.
148 	 */
149 	if (unlikely((flags & FOLL_LONGTERM) &&
150 		     !folio_is_longterm_pinnable(folio))) {
151 		if (!put_devmap_managed_page_refs(&folio->page, refs))
152 			folio_put_refs(folio, refs);
153 		return NULL;
154 	}
155 
156 	/*
157 	 * When pinning a large folio, use an exact count to track it.
158 	 *
159 	 * However, be sure to *also* increment the normal folio
160 	 * refcount field at least once, so that the folio really
161 	 * is pinned.  That's why the refcount from the earlier
162 	 * try_get_folio() is left intact.
163 	 */
164 	if (folio_test_large(folio))
165 		atomic_add(refs, &folio->_pincount);
166 	else
167 		folio_ref_add(folio,
168 				refs * (GUP_PIN_COUNTING_BIAS - 1));
169 	/*
170 	 * Adjust the pincount before re-checking the PTE for changes.
171 	 * This is essentially a smp_mb() and is paired with a memory
172 	 * barrier in page_try_share_anon_rmap().
173 	 */
174 	smp_mb__after_atomic();
175 
176 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 
178 	return folio;
179 }
180 
181 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
182 {
183 	if (flags & FOLL_PIN) {
184 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
185 		if (folio_test_large(folio))
186 			atomic_sub(refs, &folio->_pincount);
187 		else
188 			refs *= GUP_PIN_COUNTING_BIAS;
189 	}
190 
191 	if (!put_devmap_managed_page_refs(&folio->page, refs))
192 		folio_put_refs(folio, refs);
193 }
194 
195 /**
196  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
197  * @page:    pointer to page to be grabbed
198  * @flags:   gup flags: these are the FOLL_* flag values.
199  *
200  * This might not do anything at all, depending on the flags argument.
201  *
202  * "grab" names in this file mean, "look at flags to decide whether to use
203  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
204  *
205  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
206  * time. Cases: please see the try_grab_folio() documentation, with
207  * "refs=1".
208  *
209  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
210  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
211  *
212  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
213  *			be grabbed.
214  */
215 int __must_check try_grab_page(struct page *page, unsigned int flags)
216 {
217 	struct folio *folio = page_folio(page);
218 
219 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
220 		return -ENOMEM;
221 
222 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
223 		return -EREMOTEIO;
224 
225 	if (flags & FOLL_GET)
226 		folio_ref_inc(folio);
227 	else if (flags & FOLL_PIN) {
228 		/*
229 		 * Similar to try_grab_folio(): be sure to *also*
230 		 * increment the normal page refcount field at least once,
231 		 * so that the page really is pinned.
232 		 */
233 		if (folio_test_large(folio)) {
234 			folio_ref_add(folio, 1);
235 			atomic_add(1, &folio->_pincount);
236 		} else {
237 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
238 		}
239 
240 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * unpin_user_page() - release a dma-pinned page
248  * @page:            pointer to page to be released
249  *
250  * Pages that were pinned via pin_user_pages*() must be released via either
251  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252  * that such pages can be separately tracked and uniquely handled. In
253  * particular, interactions with RDMA and filesystems need special handling.
254  */
255 void unpin_user_page(struct page *page)
256 {
257 	sanity_check_pinned_pages(&page, 1);
258 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
259 }
260 EXPORT_SYMBOL(unpin_user_page);
261 
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct page *next = nth_page(start, i);
266 	struct folio *folio = page_folio(next);
267 	unsigned int nr = 1;
268 
269 	if (folio_test_large(folio))
270 		nr = min_t(unsigned int, npages - i,
271 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
272 
273 	*ntails = nr;
274 	return folio;
275 }
276 
277 static inline struct folio *gup_folio_next(struct page **list,
278 		unsigned long npages, unsigned long i, unsigned int *ntails)
279 {
280 	struct folio *folio = page_folio(list[i]);
281 	unsigned int nr;
282 
283 	for (nr = i + 1; nr < npages; nr++) {
284 		if (page_folio(list[nr]) != folio)
285 			break;
286 	}
287 
288 	*ntails = nr - i;
289 	return folio;
290 }
291 
292 /**
293  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294  * @pages:  array of pages to be maybe marked dirty, and definitely released.
295  * @npages: number of pages in the @pages array.
296  * @make_dirty: whether to mark the pages dirty
297  *
298  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299  * variants called on that page.
300  *
301  * For each page in the @pages array, make that page (or its head page, if a
302  * compound page) dirty, if @make_dirty is true, and if the page was previously
303  * listed as clean. In any case, releases all pages using unpin_user_page(),
304  * possibly via unpin_user_pages(), for the non-dirty case.
305  *
306  * Please see the unpin_user_page() documentation for details.
307  *
308  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309  * required, then the caller should a) verify that this is really correct,
310  * because _lock() is usually required, and b) hand code it:
311  * set_page_dirty_lock(), unpin_user_page().
312  *
313  */
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
315 				 bool make_dirty)
316 {
317 	unsigned long i;
318 	struct folio *folio;
319 	unsigned int nr;
320 
321 	if (!make_dirty) {
322 		unpin_user_pages(pages, npages);
323 		return;
324 	}
325 
326 	sanity_check_pinned_pages(pages, npages);
327 	for (i = 0; i < npages; i += nr) {
328 		folio = gup_folio_next(pages, npages, i, &nr);
329 		/*
330 		 * Checking PageDirty at this point may race with
331 		 * clear_page_dirty_for_io(), but that's OK. Two key
332 		 * cases:
333 		 *
334 		 * 1) This code sees the page as already dirty, so it
335 		 * skips the call to set_page_dirty(). That could happen
336 		 * because clear_page_dirty_for_io() called
337 		 * page_mkclean(), followed by set_page_dirty().
338 		 * However, now the page is going to get written back,
339 		 * which meets the original intention of setting it
340 		 * dirty, so all is well: clear_page_dirty_for_io() goes
341 		 * on to call TestClearPageDirty(), and write the page
342 		 * back.
343 		 *
344 		 * 2) This code sees the page as clean, so it calls
345 		 * set_page_dirty(). The page stays dirty, despite being
346 		 * written back, so it gets written back again in the
347 		 * next writeback cycle. This is harmless.
348 		 */
349 		if (!folio_test_dirty(folio)) {
350 			folio_lock(folio);
351 			folio_mark_dirty(folio);
352 			folio_unlock(folio);
353 		}
354 		gup_put_folio(folio, nr, FOLL_PIN);
355 	}
356 }
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358 
359 /**
360  * unpin_user_page_range_dirty_lock() - release and optionally dirty
361  * gup-pinned page range
362  *
363  * @page:  the starting page of a range maybe marked dirty, and definitely released.
364  * @npages: number of consecutive pages to release.
365  * @make_dirty: whether to mark the pages dirty
366  *
367  * "gup-pinned page range" refers to a range of pages that has had one of the
368  * pin_user_pages() variants called on that page.
369  *
370  * For the page ranges defined by [page .. page+npages], make that range (or
371  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372  * page range was previously listed as clean.
373  *
374  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375  * required, then the caller should a) verify that this is really correct,
376  * because _lock() is usually required, and b) hand code it:
377  * set_page_dirty_lock(), unpin_user_page().
378  *
379  */
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 				      bool make_dirty)
382 {
383 	unsigned long i;
384 	struct folio *folio;
385 	unsigned int nr;
386 
387 	for (i = 0; i < npages; i += nr) {
388 		folio = gup_folio_range_next(page, npages, i, &nr);
389 		if (make_dirty && !folio_test_dirty(folio)) {
390 			folio_lock(folio);
391 			folio_mark_dirty(folio);
392 			folio_unlock(folio);
393 		}
394 		gup_put_folio(folio, nr, FOLL_PIN);
395 	}
396 }
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
398 
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
400 {
401 	unsigned long i;
402 	struct folio *folio;
403 	unsigned int nr;
404 
405 	/*
406 	 * Don't perform any sanity checks because we might have raced with
407 	 * fork() and some anonymous pages might now actually be shared --
408 	 * which is why we're unpinning after all.
409 	 */
410 	for (i = 0; i < npages; i += nr) {
411 		folio = gup_folio_next(pages, npages, i, &nr);
412 		gup_put_folio(folio, nr, FOLL_PIN);
413 	}
414 }
415 
416 /**
417  * unpin_user_pages() - release an array of gup-pinned pages.
418  * @pages:  array of pages to be marked dirty and released.
419  * @npages: number of pages in the @pages array.
420  *
421  * For each page in the @pages array, release the page using unpin_user_page().
422  *
423  * Please see the unpin_user_page() documentation for details.
424  */
425 void unpin_user_pages(struct page **pages, unsigned long npages)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	/*
432 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 	 * leaving them pinned), but probably not. More likely, gup/pup returned
434 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
435 	 */
436 	if (WARN_ON(IS_ERR_VALUE(npages)))
437 		return;
438 
439 	sanity_check_pinned_pages(pages, npages);
440 	for (i = 0; i < npages; i += nr) {
441 		folio = gup_folio_next(pages, npages, i, &nr);
442 		gup_put_folio(folio, nr, FOLL_PIN);
443 	}
444 }
445 EXPORT_SYMBOL(unpin_user_pages);
446 
447 /*
448  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
450  * cache bouncing on large SMP machines for concurrent pinned gups.
451  */
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
453 {
454 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 		set_bit(MMF_HAS_PINNED, mm_flags);
456 }
457 
458 #ifdef CONFIG_MMU
459 static struct page *no_page_table(struct vm_area_struct *vma,
460 		unsigned int flags)
461 {
462 	/*
463 	 * When core dumping an enormous anonymous area that nobody
464 	 * has touched so far, we don't want to allocate unnecessary pages or
465 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
466 	 * then get_dump_page() will return NULL to leave a hole in the dump.
467 	 * But we can only make this optimization where a hole would surely
468 	 * be zero-filled if handle_mm_fault() actually did handle it.
469 	 */
470 	if ((flags & FOLL_DUMP) &&
471 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 		return ERR_PTR(-EFAULT);
473 	return NULL;
474 }
475 
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 		pte_t *pte, unsigned int flags)
478 {
479 	if (flags & FOLL_TOUCH) {
480 		pte_t orig_entry = ptep_get(pte);
481 		pte_t entry = orig_entry;
482 
483 		if (flags & FOLL_WRITE)
484 			entry = pte_mkdirty(entry);
485 		entry = pte_mkyoung(entry);
486 
487 		if (!pte_same(orig_entry, entry)) {
488 			set_pte_at(vma->vm_mm, address, pte, entry);
489 			update_mmu_cache(vma, address, pte);
490 		}
491 	}
492 
493 	/* Proper page table entry exists, but no corresponding struct page */
494 	return -EEXIST;
495 }
496 
497 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
498 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
499 					struct vm_area_struct *vma,
500 					unsigned int flags)
501 {
502 	/* If the pte is writable, we can write to the page. */
503 	if (pte_write(pte))
504 		return true;
505 
506 	/* Maybe FOLL_FORCE is set to override it? */
507 	if (!(flags & FOLL_FORCE))
508 		return false;
509 
510 	/* But FOLL_FORCE has no effect on shared mappings */
511 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
512 		return false;
513 
514 	/* ... or read-only private ones */
515 	if (!(vma->vm_flags & VM_MAYWRITE))
516 		return false;
517 
518 	/* ... or already writable ones that just need to take a write fault */
519 	if (vma->vm_flags & VM_WRITE)
520 		return false;
521 
522 	/*
523 	 * See can_change_pte_writable(): we broke COW and could map the page
524 	 * writable if we have an exclusive anonymous page ...
525 	 */
526 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
527 		return false;
528 
529 	/* ... and a write-fault isn't required for other reasons. */
530 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
531 		return false;
532 	return !userfaultfd_pte_wp(vma, pte);
533 }
534 
535 static struct page *follow_page_pte(struct vm_area_struct *vma,
536 		unsigned long address, pmd_t *pmd, unsigned int flags,
537 		struct dev_pagemap **pgmap)
538 {
539 	struct mm_struct *mm = vma->vm_mm;
540 	struct page *page;
541 	spinlock_t *ptl;
542 	pte_t *ptep, pte;
543 	int ret;
544 
545 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
546 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
547 			 (FOLL_PIN | FOLL_GET)))
548 		return ERR_PTR(-EINVAL);
549 
550 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
551 	if (!ptep)
552 		return no_page_table(vma, flags);
553 	pte = ptep_get(ptep);
554 	if (!pte_present(pte))
555 		goto no_page;
556 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
557 		goto no_page;
558 
559 	page = vm_normal_page(vma, address, pte);
560 
561 	/*
562 	 * We only care about anon pages in can_follow_write_pte() and don't
563 	 * have to worry about pte_devmap() because they are never anon.
564 	 */
565 	if ((flags & FOLL_WRITE) &&
566 	    !can_follow_write_pte(pte, page, vma, flags)) {
567 		page = NULL;
568 		goto out;
569 	}
570 
571 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
572 		/*
573 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
574 		 * case since they are only valid while holding the pgmap
575 		 * reference.
576 		 */
577 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
578 		if (*pgmap)
579 			page = pte_page(pte);
580 		else
581 			goto no_page;
582 	} else if (unlikely(!page)) {
583 		if (flags & FOLL_DUMP) {
584 			/* Avoid special (like zero) pages in core dumps */
585 			page = ERR_PTR(-EFAULT);
586 			goto out;
587 		}
588 
589 		if (is_zero_pfn(pte_pfn(pte))) {
590 			page = pte_page(pte);
591 		} else {
592 			ret = follow_pfn_pte(vma, address, ptep, flags);
593 			page = ERR_PTR(ret);
594 			goto out;
595 		}
596 	}
597 
598 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
599 		page = ERR_PTR(-EMLINK);
600 		goto out;
601 	}
602 
603 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
604 		       !PageAnonExclusive(page), page);
605 
606 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
607 	ret = try_grab_page(page, flags);
608 	if (unlikely(ret)) {
609 		page = ERR_PTR(ret);
610 		goto out;
611 	}
612 
613 	/*
614 	 * We need to make the page accessible if and only if we are going
615 	 * to access its content (the FOLL_PIN case).  Please see
616 	 * Documentation/core-api/pin_user_pages.rst for details.
617 	 */
618 	if (flags & FOLL_PIN) {
619 		ret = arch_make_page_accessible(page);
620 		if (ret) {
621 			unpin_user_page(page);
622 			page = ERR_PTR(ret);
623 			goto out;
624 		}
625 	}
626 	if (flags & FOLL_TOUCH) {
627 		if ((flags & FOLL_WRITE) &&
628 		    !pte_dirty(pte) && !PageDirty(page))
629 			set_page_dirty(page);
630 		/*
631 		 * pte_mkyoung() would be more correct here, but atomic care
632 		 * is needed to avoid losing the dirty bit: it is easier to use
633 		 * mark_page_accessed().
634 		 */
635 		mark_page_accessed(page);
636 	}
637 out:
638 	pte_unmap_unlock(ptep, ptl);
639 	return page;
640 no_page:
641 	pte_unmap_unlock(ptep, ptl);
642 	if (!pte_none(pte))
643 		return NULL;
644 	return no_page_table(vma, flags);
645 }
646 
647 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
648 				    unsigned long address, pud_t *pudp,
649 				    unsigned int flags,
650 				    struct follow_page_context *ctx)
651 {
652 	pmd_t *pmd, pmdval;
653 	spinlock_t *ptl;
654 	struct page *page;
655 	struct mm_struct *mm = vma->vm_mm;
656 
657 	pmd = pmd_offset(pudp, address);
658 	pmdval = pmdp_get_lockless(pmd);
659 	if (pmd_none(pmdval))
660 		return no_page_table(vma, flags);
661 	if (!pmd_present(pmdval))
662 		return no_page_table(vma, flags);
663 	if (pmd_devmap(pmdval)) {
664 		ptl = pmd_lock(mm, pmd);
665 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
666 		spin_unlock(ptl);
667 		if (page)
668 			return page;
669 	}
670 	if (likely(!pmd_trans_huge(pmdval)))
671 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
672 
673 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
674 		return no_page_table(vma, flags);
675 
676 	ptl = pmd_lock(mm, pmd);
677 	if (unlikely(!pmd_present(*pmd))) {
678 		spin_unlock(ptl);
679 		return no_page_table(vma, flags);
680 	}
681 	if (unlikely(!pmd_trans_huge(*pmd))) {
682 		spin_unlock(ptl);
683 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
684 	}
685 	if (flags & FOLL_SPLIT_PMD) {
686 		spin_unlock(ptl);
687 		split_huge_pmd(vma, pmd, address);
688 		/* If pmd was left empty, stuff a page table in there quickly */
689 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
690 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
691 	}
692 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
693 	spin_unlock(ptl);
694 	ctx->page_mask = HPAGE_PMD_NR - 1;
695 	return page;
696 }
697 
698 static struct page *follow_pud_mask(struct vm_area_struct *vma,
699 				    unsigned long address, p4d_t *p4dp,
700 				    unsigned int flags,
701 				    struct follow_page_context *ctx)
702 {
703 	pud_t *pud;
704 	spinlock_t *ptl;
705 	struct page *page;
706 	struct mm_struct *mm = vma->vm_mm;
707 
708 	pud = pud_offset(p4dp, address);
709 	if (pud_none(*pud))
710 		return no_page_table(vma, flags);
711 	if (pud_devmap(*pud)) {
712 		ptl = pud_lock(mm, pud);
713 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
714 		spin_unlock(ptl);
715 		if (page)
716 			return page;
717 	}
718 	if (unlikely(pud_bad(*pud)))
719 		return no_page_table(vma, flags);
720 
721 	return follow_pmd_mask(vma, address, pud, flags, ctx);
722 }
723 
724 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
725 				    unsigned long address, pgd_t *pgdp,
726 				    unsigned int flags,
727 				    struct follow_page_context *ctx)
728 {
729 	p4d_t *p4d;
730 
731 	p4d = p4d_offset(pgdp, address);
732 	if (p4d_none(*p4d))
733 		return no_page_table(vma, flags);
734 	BUILD_BUG_ON(p4d_huge(*p4d));
735 	if (unlikely(p4d_bad(*p4d)))
736 		return no_page_table(vma, flags);
737 
738 	return follow_pud_mask(vma, address, p4d, flags, ctx);
739 }
740 
741 /**
742  * follow_page_mask - look up a page descriptor from a user-virtual address
743  * @vma: vm_area_struct mapping @address
744  * @address: virtual address to look up
745  * @flags: flags modifying lookup behaviour
746  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
747  *       pointer to output page_mask
748  *
749  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
750  *
751  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
752  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
753  *
754  * When getting an anonymous page and the caller has to trigger unsharing
755  * of a shared anonymous page first, -EMLINK is returned. The caller should
756  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
757  * relevant with FOLL_PIN and !FOLL_WRITE.
758  *
759  * On output, the @ctx->page_mask is set according to the size of the page.
760  *
761  * Return: the mapped (struct page *), %NULL if no mapping exists, or
762  * an error pointer if there is a mapping to something not represented
763  * by a page descriptor (see also vm_normal_page()).
764  */
765 static struct page *follow_page_mask(struct vm_area_struct *vma,
766 			      unsigned long address, unsigned int flags,
767 			      struct follow_page_context *ctx)
768 {
769 	pgd_t *pgd;
770 	struct page *page;
771 	struct mm_struct *mm = vma->vm_mm;
772 
773 	ctx->page_mask = 0;
774 
775 	/*
776 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
777 	 * special hugetlb page table walking code.  This eliminates the
778 	 * need to check for hugetlb entries in the general walking code.
779 	 *
780 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
781 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
782 	 */
783 	if (is_vm_hugetlb_page(vma)) {
784 		page = hugetlb_follow_page_mask(vma, address, flags);
785 		if (!page)
786 			page = no_page_table(vma, flags);
787 		return page;
788 	}
789 
790 	pgd = pgd_offset(mm, address);
791 
792 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
793 		return no_page_table(vma, flags);
794 
795 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
796 }
797 
798 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
799 			 unsigned int foll_flags)
800 {
801 	struct follow_page_context ctx = { NULL };
802 	struct page *page;
803 
804 	if (vma_is_secretmem(vma))
805 		return NULL;
806 
807 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
808 		return NULL;
809 
810 	page = follow_page_mask(vma, address, foll_flags, &ctx);
811 	if (ctx.pgmap)
812 		put_dev_pagemap(ctx.pgmap);
813 	return page;
814 }
815 
816 static int get_gate_page(struct mm_struct *mm, unsigned long address,
817 		unsigned int gup_flags, struct vm_area_struct **vma,
818 		struct page **page)
819 {
820 	pgd_t *pgd;
821 	p4d_t *p4d;
822 	pud_t *pud;
823 	pmd_t *pmd;
824 	pte_t *pte;
825 	pte_t entry;
826 	int ret = -EFAULT;
827 
828 	/* user gate pages are read-only */
829 	if (gup_flags & FOLL_WRITE)
830 		return -EFAULT;
831 	if (address > TASK_SIZE)
832 		pgd = pgd_offset_k(address);
833 	else
834 		pgd = pgd_offset_gate(mm, address);
835 	if (pgd_none(*pgd))
836 		return -EFAULT;
837 	p4d = p4d_offset(pgd, address);
838 	if (p4d_none(*p4d))
839 		return -EFAULT;
840 	pud = pud_offset(p4d, address);
841 	if (pud_none(*pud))
842 		return -EFAULT;
843 	pmd = pmd_offset(pud, address);
844 	if (!pmd_present(*pmd))
845 		return -EFAULT;
846 	pte = pte_offset_map(pmd, address);
847 	if (!pte)
848 		return -EFAULT;
849 	entry = ptep_get(pte);
850 	if (pte_none(entry))
851 		goto unmap;
852 	*vma = get_gate_vma(mm);
853 	if (!page)
854 		goto out;
855 	*page = vm_normal_page(*vma, address, entry);
856 	if (!*page) {
857 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
858 			goto unmap;
859 		*page = pte_page(entry);
860 	}
861 	ret = try_grab_page(*page, gup_flags);
862 	if (unlikely(ret))
863 		goto unmap;
864 out:
865 	ret = 0;
866 unmap:
867 	pte_unmap(pte);
868 	return ret;
869 }
870 
871 /*
872  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
873  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
874  * to 0 and -EBUSY returned.
875  */
876 static int faultin_page(struct vm_area_struct *vma,
877 		unsigned long address, unsigned int *flags, bool unshare,
878 		int *locked)
879 {
880 	unsigned int fault_flags = 0;
881 	vm_fault_t ret;
882 
883 	if (*flags & FOLL_NOFAULT)
884 		return -EFAULT;
885 	if (*flags & FOLL_WRITE)
886 		fault_flags |= FAULT_FLAG_WRITE;
887 	if (*flags & FOLL_REMOTE)
888 		fault_flags |= FAULT_FLAG_REMOTE;
889 	if (*flags & FOLL_UNLOCKABLE) {
890 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
891 		/*
892 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
893 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
894 		 * That's because some callers may not be prepared to
895 		 * handle early exits caused by non-fatal signals.
896 		 */
897 		if (*flags & FOLL_INTERRUPTIBLE)
898 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
899 	}
900 	if (*flags & FOLL_NOWAIT)
901 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
902 	if (*flags & FOLL_TRIED) {
903 		/*
904 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
905 		 * can co-exist
906 		 */
907 		fault_flags |= FAULT_FLAG_TRIED;
908 	}
909 	if (unshare) {
910 		fault_flags |= FAULT_FLAG_UNSHARE;
911 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
912 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
913 	}
914 
915 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
916 
917 	if (ret & VM_FAULT_COMPLETED) {
918 		/*
919 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
920 		 * mmap lock in the page fault handler. Sanity check this.
921 		 */
922 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
923 		*locked = 0;
924 
925 		/*
926 		 * We should do the same as VM_FAULT_RETRY, but let's not
927 		 * return -EBUSY since that's not reflecting the reality of
928 		 * what has happened - we've just fully completed a page
929 		 * fault, with the mmap lock released.  Use -EAGAIN to show
930 		 * that we want to take the mmap lock _again_.
931 		 */
932 		return -EAGAIN;
933 	}
934 
935 	if (ret & VM_FAULT_ERROR) {
936 		int err = vm_fault_to_errno(ret, *flags);
937 
938 		if (err)
939 			return err;
940 		BUG();
941 	}
942 
943 	if (ret & VM_FAULT_RETRY) {
944 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
945 			*locked = 0;
946 		return -EBUSY;
947 	}
948 
949 	return 0;
950 }
951 
952 /*
953  * Writing to file-backed mappings which require folio dirty tracking using GUP
954  * is a fundamentally broken operation, as kernel write access to GUP mappings
955  * do not adhere to the semantics expected by a file system.
956  *
957  * Consider the following scenario:-
958  *
959  * 1. A folio is written to via GUP which write-faults the memory, notifying
960  *    the file system and dirtying the folio.
961  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
962  *    the PTE being marked read-only.
963  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
964  *    direct mapping.
965  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
966  *    (though it does not have to).
967  *
968  * This results in both data being written to a folio without writenotify, and
969  * the folio being dirtied unexpectedly (if the caller decides to do so).
970  */
971 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
972 					  unsigned long gup_flags)
973 {
974 	/*
975 	 * If we aren't pinning then no problematic write can occur. A long term
976 	 * pin is the most egregious case so this is the case we disallow.
977 	 */
978 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
979 	    (FOLL_PIN | FOLL_LONGTERM))
980 		return true;
981 
982 	/*
983 	 * If the VMA does not require dirty tracking then no problematic write
984 	 * can occur either.
985 	 */
986 	return !vma_needs_dirty_tracking(vma);
987 }
988 
989 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
990 {
991 	vm_flags_t vm_flags = vma->vm_flags;
992 	int write = (gup_flags & FOLL_WRITE);
993 	int foreign = (gup_flags & FOLL_REMOTE);
994 	bool vma_anon = vma_is_anonymous(vma);
995 
996 	if (vm_flags & (VM_IO | VM_PFNMAP))
997 		return -EFAULT;
998 
999 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1000 		return -EFAULT;
1001 
1002 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1003 		return -EOPNOTSUPP;
1004 
1005 	if (vma_is_secretmem(vma))
1006 		return -EFAULT;
1007 
1008 	if (write) {
1009 		if (!vma_anon &&
1010 		    !writable_file_mapping_allowed(vma, gup_flags))
1011 			return -EFAULT;
1012 
1013 		if (!(vm_flags & VM_WRITE)) {
1014 			if (!(gup_flags & FOLL_FORCE))
1015 				return -EFAULT;
1016 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1017 			if (is_vm_hugetlb_page(vma))
1018 				return -EFAULT;
1019 			/*
1020 			 * We used to let the write,force case do COW in a
1021 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1022 			 * set a breakpoint in a read-only mapping of an
1023 			 * executable, without corrupting the file (yet only
1024 			 * when that file had been opened for writing!).
1025 			 * Anon pages in shared mappings are surprising: now
1026 			 * just reject it.
1027 			 */
1028 			if (!is_cow_mapping(vm_flags))
1029 				return -EFAULT;
1030 		}
1031 	} else if (!(vm_flags & VM_READ)) {
1032 		if (!(gup_flags & FOLL_FORCE))
1033 			return -EFAULT;
1034 		/*
1035 		 * Is there actually any vma we can reach here which does not
1036 		 * have VM_MAYREAD set?
1037 		 */
1038 		if (!(vm_flags & VM_MAYREAD))
1039 			return -EFAULT;
1040 	}
1041 	/*
1042 	 * gups are always data accesses, not instruction
1043 	 * fetches, so execute=false here
1044 	 */
1045 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1046 		return -EFAULT;
1047 	return 0;
1048 }
1049 
1050 /**
1051  * __get_user_pages() - pin user pages in memory
1052  * @mm:		mm_struct of target mm
1053  * @start:	starting user address
1054  * @nr_pages:	number of pages from start to pin
1055  * @gup_flags:	flags modifying pin behaviour
1056  * @pages:	array that receives pointers to the pages pinned.
1057  *		Should be at least nr_pages long. Or NULL, if caller
1058  *		only intends to ensure the pages are faulted in.
1059  * @locked:     whether we're still with the mmap_lock held
1060  *
1061  * Returns either number of pages pinned (which may be less than the
1062  * number requested), or an error. Details about the return value:
1063  *
1064  * -- If nr_pages is 0, returns 0.
1065  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1066  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1067  *    pages pinned. Again, this may be less than nr_pages.
1068  * -- 0 return value is possible when the fault would need to be retried.
1069  *
1070  * The caller is responsible for releasing returned @pages, via put_page().
1071  *
1072  * Must be called with mmap_lock held.  It may be released.  See below.
1073  *
1074  * __get_user_pages walks a process's page tables and takes a reference to
1075  * each struct page that each user address corresponds to at a given
1076  * instant. That is, it takes the page that would be accessed if a user
1077  * thread accesses the given user virtual address at that instant.
1078  *
1079  * This does not guarantee that the page exists in the user mappings when
1080  * __get_user_pages returns, and there may even be a completely different
1081  * page there in some cases (eg. if mmapped pagecache has been invalidated
1082  * and subsequently re-faulted). However it does guarantee that the page
1083  * won't be freed completely. And mostly callers simply care that the page
1084  * contains data that was valid *at some point in time*. Typically, an IO
1085  * or similar operation cannot guarantee anything stronger anyway because
1086  * locks can't be held over the syscall boundary.
1087  *
1088  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1089  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1090  * appropriate) must be called after the page is finished with, and
1091  * before put_page is called.
1092  *
1093  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1094  * be released. If this happens *@locked will be set to 0 on return.
1095  *
1096  * A caller using such a combination of @gup_flags must therefore hold the
1097  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1098  * it must be held for either reading or writing and will not be released.
1099  *
1100  * In most cases, get_user_pages or get_user_pages_fast should be used
1101  * instead of __get_user_pages. __get_user_pages should be used only if
1102  * you need some special @gup_flags.
1103  */
1104 static long __get_user_pages(struct mm_struct *mm,
1105 		unsigned long start, unsigned long nr_pages,
1106 		unsigned int gup_flags, struct page **pages,
1107 		int *locked)
1108 {
1109 	long ret = 0, i = 0;
1110 	struct vm_area_struct *vma = NULL;
1111 	struct follow_page_context ctx = { NULL };
1112 
1113 	if (!nr_pages)
1114 		return 0;
1115 
1116 	start = untagged_addr_remote(mm, start);
1117 
1118 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1119 
1120 	do {
1121 		struct page *page;
1122 		unsigned int foll_flags = gup_flags;
1123 		unsigned int page_increm;
1124 
1125 		/* first iteration or cross vma bound */
1126 		if (!vma || start >= vma->vm_end) {
1127 			vma = find_extend_vma(mm, start);
1128 			if (!vma && in_gate_area(mm, start)) {
1129 				ret = get_gate_page(mm, start & PAGE_MASK,
1130 						gup_flags, &vma,
1131 						pages ? &pages[i] : NULL);
1132 				if (ret)
1133 					goto out;
1134 				ctx.page_mask = 0;
1135 				goto next_page;
1136 			}
1137 
1138 			if (!vma) {
1139 				ret = -EFAULT;
1140 				goto out;
1141 			}
1142 			ret = check_vma_flags(vma, gup_flags);
1143 			if (ret)
1144 				goto out;
1145 
1146 			if (is_vm_hugetlb_page(vma)) {
1147 				i = follow_hugetlb_page(mm, vma, pages,
1148 							&start, &nr_pages, i,
1149 							gup_flags, locked);
1150 				if (!*locked) {
1151 					/*
1152 					 * We've got a VM_FAULT_RETRY
1153 					 * and we've lost mmap_lock.
1154 					 * We must stop here.
1155 					 */
1156 					BUG_ON(gup_flags & FOLL_NOWAIT);
1157 					goto out;
1158 				}
1159 				continue;
1160 			}
1161 		}
1162 retry:
1163 		/*
1164 		 * If we have a pending SIGKILL, don't keep faulting pages and
1165 		 * potentially allocating memory.
1166 		 */
1167 		if (fatal_signal_pending(current)) {
1168 			ret = -EINTR;
1169 			goto out;
1170 		}
1171 		cond_resched();
1172 
1173 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1174 		if (!page || PTR_ERR(page) == -EMLINK) {
1175 			ret = faultin_page(vma, start, &foll_flags,
1176 					   PTR_ERR(page) == -EMLINK, locked);
1177 			switch (ret) {
1178 			case 0:
1179 				goto retry;
1180 			case -EBUSY:
1181 			case -EAGAIN:
1182 				ret = 0;
1183 				fallthrough;
1184 			case -EFAULT:
1185 			case -ENOMEM:
1186 			case -EHWPOISON:
1187 				goto out;
1188 			}
1189 			BUG();
1190 		} else if (PTR_ERR(page) == -EEXIST) {
1191 			/*
1192 			 * Proper page table entry exists, but no corresponding
1193 			 * struct page. If the caller expects **pages to be
1194 			 * filled in, bail out now, because that can't be done
1195 			 * for this page.
1196 			 */
1197 			if (pages) {
1198 				ret = PTR_ERR(page);
1199 				goto out;
1200 			}
1201 
1202 			goto next_page;
1203 		} else if (IS_ERR(page)) {
1204 			ret = PTR_ERR(page);
1205 			goto out;
1206 		}
1207 		if (pages) {
1208 			pages[i] = page;
1209 			flush_anon_page(vma, page, start);
1210 			flush_dcache_page(page);
1211 			ctx.page_mask = 0;
1212 		}
1213 next_page:
1214 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1215 		if (page_increm > nr_pages)
1216 			page_increm = nr_pages;
1217 		i += page_increm;
1218 		start += page_increm * PAGE_SIZE;
1219 		nr_pages -= page_increm;
1220 	} while (nr_pages);
1221 out:
1222 	if (ctx.pgmap)
1223 		put_dev_pagemap(ctx.pgmap);
1224 	return i ? i : ret;
1225 }
1226 
1227 static bool vma_permits_fault(struct vm_area_struct *vma,
1228 			      unsigned int fault_flags)
1229 {
1230 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1231 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1232 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1233 
1234 	if (!(vm_flags & vma->vm_flags))
1235 		return false;
1236 
1237 	/*
1238 	 * The architecture might have a hardware protection
1239 	 * mechanism other than read/write that can deny access.
1240 	 *
1241 	 * gup always represents data access, not instruction
1242 	 * fetches, so execute=false here:
1243 	 */
1244 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1245 		return false;
1246 
1247 	return true;
1248 }
1249 
1250 /**
1251  * fixup_user_fault() - manually resolve a user page fault
1252  * @mm:		mm_struct of target mm
1253  * @address:	user address
1254  * @fault_flags:flags to pass down to handle_mm_fault()
1255  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1256  *		does not allow retry. If NULL, the caller must guarantee
1257  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1258  *
1259  * This is meant to be called in the specific scenario where for locking reasons
1260  * we try to access user memory in atomic context (within a pagefault_disable()
1261  * section), this returns -EFAULT, and we want to resolve the user fault before
1262  * trying again.
1263  *
1264  * Typically this is meant to be used by the futex code.
1265  *
1266  * The main difference with get_user_pages() is that this function will
1267  * unconditionally call handle_mm_fault() which will in turn perform all the
1268  * necessary SW fixup of the dirty and young bits in the PTE, while
1269  * get_user_pages() only guarantees to update these in the struct page.
1270  *
1271  * This is important for some architectures where those bits also gate the
1272  * access permission to the page because they are maintained in software.  On
1273  * such architectures, gup() will not be enough to make a subsequent access
1274  * succeed.
1275  *
1276  * This function will not return with an unlocked mmap_lock. So it has not the
1277  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1278  */
1279 int fixup_user_fault(struct mm_struct *mm,
1280 		     unsigned long address, unsigned int fault_flags,
1281 		     bool *unlocked)
1282 {
1283 	struct vm_area_struct *vma;
1284 	vm_fault_t ret;
1285 
1286 	address = untagged_addr_remote(mm, address);
1287 
1288 	if (unlocked)
1289 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1290 
1291 retry:
1292 	vma = find_extend_vma(mm, address);
1293 	if (!vma || address < vma->vm_start)
1294 		return -EFAULT;
1295 
1296 	if (!vma_permits_fault(vma, fault_flags))
1297 		return -EFAULT;
1298 
1299 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1300 	    fatal_signal_pending(current))
1301 		return -EINTR;
1302 
1303 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1304 
1305 	if (ret & VM_FAULT_COMPLETED) {
1306 		/*
1307 		 * NOTE: it's a pity that we need to retake the lock here
1308 		 * to pair with the unlock() in the callers. Ideally we
1309 		 * could tell the callers so they do not need to unlock.
1310 		 */
1311 		mmap_read_lock(mm);
1312 		*unlocked = true;
1313 		return 0;
1314 	}
1315 
1316 	if (ret & VM_FAULT_ERROR) {
1317 		int err = vm_fault_to_errno(ret, 0);
1318 
1319 		if (err)
1320 			return err;
1321 		BUG();
1322 	}
1323 
1324 	if (ret & VM_FAULT_RETRY) {
1325 		mmap_read_lock(mm);
1326 		*unlocked = true;
1327 		fault_flags |= FAULT_FLAG_TRIED;
1328 		goto retry;
1329 	}
1330 
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(fixup_user_fault);
1334 
1335 /*
1336  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1337  * specified, it'll also respond to generic signals.  The caller of GUP
1338  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1339  */
1340 static bool gup_signal_pending(unsigned int flags)
1341 {
1342 	if (fatal_signal_pending(current))
1343 		return true;
1344 
1345 	if (!(flags & FOLL_INTERRUPTIBLE))
1346 		return false;
1347 
1348 	return signal_pending(current);
1349 }
1350 
1351 /*
1352  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1353  * the caller. This function may drop the mmap_lock. If it does so, then it will
1354  * set (*locked = 0).
1355  *
1356  * (*locked == 0) means that the caller expects this function to acquire and
1357  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1358  * the function returns, even though it may have changed temporarily during
1359  * function execution.
1360  *
1361  * Please note that this function, unlike __get_user_pages(), will not return 0
1362  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1363  */
1364 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1365 						unsigned long start,
1366 						unsigned long nr_pages,
1367 						struct page **pages,
1368 						int *locked,
1369 						unsigned int flags)
1370 {
1371 	long ret, pages_done;
1372 	bool must_unlock = false;
1373 
1374 	/*
1375 	 * The internal caller expects GUP to manage the lock internally and the
1376 	 * lock must be released when this returns.
1377 	 */
1378 	if (!*locked) {
1379 		if (mmap_read_lock_killable(mm))
1380 			return -EAGAIN;
1381 		must_unlock = true;
1382 		*locked = 1;
1383 	}
1384 	else
1385 		mmap_assert_locked(mm);
1386 
1387 	if (flags & FOLL_PIN)
1388 		mm_set_has_pinned_flag(&mm->flags);
1389 
1390 	/*
1391 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1392 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1393 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1394 	 * for FOLL_GET, not for the newer FOLL_PIN.
1395 	 *
1396 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1397 	 * that here, as any failures will be obvious enough.
1398 	 */
1399 	if (pages && !(flags & FOLL_PIN))
1400 		flags |= FOLL_GET;
1401 
1402 	pages_done = 0;
1403 	for (;;) {
1404 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1405 				       locked);
1406 		if (!(flags & FOLL_UNLOCKABLE)) {
1407 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1408 			pages_done = ret;
1409 			break;
1410 		}
1411 
1412 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1413 		if (!*locked) {
1414 			BUG_ON(ret < 0);
1415 			BUG_ON(ret >= nr_pages);
1416 		}
1417 
1418 		if (ret > 0) {
1419 			nr_pages -= ret;
1420 			pages_done += ret;
1421 			if (!nr_pages)
1422 				break;
1423 		}
1424 		if (*locked) {
1425 			/*
1426 			 * VM_FAULT_RETRY didn't trigger or it was a
1427 			 * FOLL_NOWAIT.
1428 			 */
1429 			if (!pages_done)
1430 				pages_done = ret;
1431 			break;
1432 		}
1433 		/*
1434 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1435 		 * For the prefault case (!pages) we only update counts.
1436 		 */
1437 		if (likely(pages))
1438 			pages += ret;
1439 		start += ret << PAGE_SHIFT;
1440 
1441 		/* The lock was temporarily dropped, so we must unlock later */
1442 		must_unlock = true;
1443 
1444 retry:
1445 		/*
1446 		 * Repeat on the address that fired VM_FAULT_RETRY
1447 		 * with both FAULT_FLAG_ALLOW_RETRY and
1448 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1449 		 * by fatal signals of even common signals, depending on
1450 		 * the caller's request. So we need to check it before we
1451 		 * start trying again otherwise it can loop forever.
1452 		 */
1453 		if (gup_signal_pending(flags)) {
1454 			if (!pages_done)
1455 				pages_done = -EINTR;
1456 			break;
1457 		}
1458 
1459 		ret = mmap_read_lock_killable(mm);
1460 		if (ret) {
1461 			BUG_ON(ret > 0);
1462 			if (!pages_done)
1463 				pages_done = ret;
1464 			break;
1465 		}
1466 
1467 		*locked = 1;
1468 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1469 				       pages, locked);
1470 		if (!*locked) {
1471 			/* Continue to retry until we succeeded */
1472 			BUG_ON(ret != 0);
1473 			goto retry;
1474 		}
1475 		if (ret != 1) {
1476 			BUG_ON(ret > 1);
1477 			if (!pages_done)
1478 				pages_done = ret;
1479 			break;
1480 		}
1481 		nr_pages--;
1482 		pages_done++;
1483 		if (!nr_pages)
1484 			break;
1485 		if (likely(pages))
1486 			pages++;
1487 		start += PAGE_SIZE;
1488 	}
1489 	if (must_unlock && *locked) {
1490 		/*
1491 		 * We either temporarily dropped the lock, or the caller
1492 		 * requested that we both acquire and drop the lock. Either way,
1493 		 * we must now unlock, and notify the caller of that state.
1494 		 */
1495 		mmap_read_unlock(mm);
1496 		*locked = 0;
1497 	}
1498 	return pages_done;
1499 }
1500 
1501 /**
1502  * populate_vma_page_range() -  populate a range of pages in the vma.
1503  * @vma:   target vma
1504  * @start: start address
1505  * @end:   end address
1506  * @locked: whether the mmap_lock is still held
1507  *
1508  * This takes care of mlocking the pages too if VM_LOCKED is set.
1509  *
1510  * Return either number of pages pinned in the vma, or a negative error
1511  * code on error.
1512  *
1513  * vma->vm_mm->mmap_lock must be held.
1514  *
1515  * If @locked is NULL, it may be held for read or write and will
1516  * be unperturbed.
1517  *
1518  * If @locked is non-NULL, it must held for read only and may be
1519  * released.  If it's released, *@locked will be set to 0.
1520  */
1521 long populate_vma_page_range(struct vm_area_struct *vma,
1522 		unsigned long start, unsigned long end, int *locked)
1523 {
1524 	struct mm_struct *mm = vma->vm_mm;
1525 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1526 	int local_locked = 1;
1527 	int gup_flags;
1528 	long ret;
1529 
1530 	VM_BUG_ON(!PAGE_ALIGNED(start));
1531 	VM_BUG_ON(!PAGE_ALIGNED(end));
1532 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1533 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1534 	mmap_assert_locked(mm);
1535 
1536 	/*
1537 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1538 	 * faultin_page() to break COW, so it has no work to do here.
1539 	 */
1540 	if (vma->vm_flags & VM_LOCKONFAULT)
1541 		return nr_pages;
1542 
1543 	gup_flags = FOLL_TOUCH;
1544 	/*
1545 	 * We want to touch writable mappings with a write fault in order
1546 	 * to break COW, except for shared mappings because these don't COW
1547 	 * and we would not want to dirty them for nothing.
1548 	 */
1549 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1550 		gup_flags |= FOLL_WRITE;
1551 
1552 	/*
1553 	 * We want mlock to succeed for regions that have any permissions
1554 	 * other than PROT_NONE.
1555 	 */
1556 	if (vma_is_accessible(vma))
1557 		gup_flags |= FOLL_FORCE;
1558 
1559 	if (locked)
1560 		gup_flags |= FOLL_UNLOCKABLE;
1561 
1562 	/*
1563 	 * We made sure addr is within a VMA, so the following will
1564 	 * not result in a stack expansion that recurses back here.
1565 	 */
1566 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1567 			       NULL, locked ? locked : &local_locked);
1568 	lru_add_drain();
1569 	return ret;
1570 }
1571 
1572 /*
1573  * faultin_vma_page_range() - populate (prefault) page tables inside the
1574  *			      given VMA range readable/writable
1575  *
1576  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1577  *
1578  * @vma: target vma
1579  * @start: start address
1580  * @end: end address
1581  * @write: whether to prefault readable or writable
1582  * @locked: whether the mmap_lock is still held
1583  *
1584  * Returns either number of processed pages in the vma, or a negative error
1585  * code on error (see __get_user_pages()).
1586  *
1587  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1588  * covered by the VMA. If it's released, *@locked will be set to 0.
1589  */
1590 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1591 			    unsigned long end, bool write, int *locked)
1592 {
1593 	struct mm_struct *mm = vma->vm_mm;
1594 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1595 	int gup_flags;
1596 	long ret;
1597 
1598 	VM_BUG_ON(!PAGE_ALIGNED(start));
1599 	VM_BUG_ON(!PAGE_ALIGNED(end));
1600 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1601 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1602 	mmap_assert_locked(mm);
1603 
1604 	/*
1605 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1606 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1607 	 *	       difference with !FOLL_FORCE, because the page is writable
1608 	 *	       in the page table.
1609 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1610 	 *		  a poisoned page.
1611 	 * !FOLL_FORCE: Require proper access permissions.
1612 	 */
1613 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1614 	if (write)
1615 		gup_flags |= FOLL_WRITE;
1616 
1617 	/*
1618 	 * We want to report -EINVAL instead of -EFAULT for any permission
1619 	 * problems or incompatible mappings.
1620 	 */
1621 	if (check_vma_flags(vma, gup_flags))
1622 		return -EINVAL;
1623 
1624 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1625 			       NULL, locked);
1626 	lru_add_drain();
1627 	return ret;
1628 }
1629 
1630 /*
1631  * __mm_populate - populate and/or mlock pages within a range of address space.
1632  *
1633  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1634  * flags. VMAs must be already marked with the desired vm_flags, and
1635  * mmap_lock must not be held.
1636  */
1637 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1638 {
1639 	struct mm_struct *mm = current->mm;
1640 	unsigned long end, nstart, nend;
1641 	struct vm_area_struct *vma = NULL;
1642 	int locked = 0;
1643 	long ret = 0;
1644 
1645 	end = start + len;
1646 
1647 	for (nstart = start; nstart < end; nstart = nend) {
1648 		/*
1649 		 * We want to fault in pages for [nstart; end) address range.
1650 		 * Find first corresponding VMA.
1651 		 */
1652 		if (!locked) {
1653 			locked = 1;
1654 			mmap_read_lock(mm);
1655 			vma = find_vma_intersection(mm, nstart, end);
1656 		} else if (nstart >= vma->vm_end)
1657 			vma = find_vma_intersection(mm, vma->vm_end, end);
1658 
1659 		if (!vma)
1660 			break;
1661 		/*
1662 		 * Set [nstart; nend) to intersection of desired address
1663 		 * range with the first VMA. Also, skip undesirable VMA types.
1664 		 */
1665 		nend = min(end, vma->vm_end);
1666 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1667 			continue;
1668 		if (nstart < vma->vm_start)
1669 			nstart = vma->vm_start;
1670 		/*
1671 		 * Now fault in a range of pages. populate_vma_page_range()
1672 		 * double checks the vma flags, so that it won't mlock pages
1673 		 * if the vma was already munlocked.
1674 		 */
1675 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1676 		if (ret < 0) {
1677 			if (ignore_errors) {
1678 				ret = 0;
1679 				continue;	/* continue at next VMA */
1680 			}
1681 			break;
1682 		}
1683 		nend = nstart + ret * PAGE_SIZE;
1684 		ret = 0;
1685 	}
1686 	if (locked)
1687 		mmap_read_unlock(mm);
1688 	return ret;	/* 0 or negative error code */
1689 }
1690 #else /* CONFIG_MMU */
1691 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1692 		unsigned long nr_pages, struct page **pages,
1693 		int *locked, unsigned int foll_flags)
1694 {
1695 	struct vm_area_struct *vma;
1696 	bool must_unlock = false;
1697 	unsigned long vm_flags;
1698 	long i;
1699 
1700 	if (!nr_pages)
1701 		return 0;
1702 
1703 	/*
1704 	 * The internal caller expects GUP to manage the lock internally and the
1705 	 * lock must be released when this returns.
1706 	 */
1707 	if (!*locked) {
1708 		if (mmap_read_lock_killable(mm))
1709 			return -EAGAIN;
1710 		must_unlock = true;
1711 		*locked = 1;
1712 	}
1713 
1714 	/* calculate required read or write permissions.
1715 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1716 	 */
1717 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1718 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1719 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1720 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1721 
1722 	for (i = 0; i < nr_pages; i++) {
1723 		vma = find_vma(mm, start);
1724 		if (!vma)
1725 			break;
1726 
1727 		/* protect what we can, including chardevs */
1728 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1729 		    !(vm_flags & vma->vm_flags))
1730 			break;
1731 
1732 		if (pages) {
1733 			pages[i] = virt_to_page((void *)start);
1734 			if (pages[i])
1735 				get_page(pages[i]);
1736 		}
1737 
1738 		start = (start + PAGE_SIZE) & PAGE_MASK;
1739 	}
1740 
1741 	if (must_unlock && *locked) {
1742 		mmap_read_unlock(mm);
1743 		*locked = 0;
1744 	}
1745 
1746 	return i ? : -EFAULT;
1747 }
1748 #endif /* !CONFIG_MMU */
1749 
1750 /**
1751  * fault_in_writeable - fault in userspace address range for writing
1752  * @uaddr: start of address range
1753  * @size: size of address range
1754  *
1755  * Returns the number of bytes not faulted in (like copy_to_user() and
1756  * copy_from_user()).
1757  */
1758 size_t fault_in_writeable(char __user *uaddr, size_t size)
1759 {
1760 	char __user *start = uaddr, *end;
1761 
1762 	if (unlikely(size == 0))
1763 		return 0;
1764 	if (!user_write_access_begin(uaddr, size))
1765 		return size;
1766 	if (!PAGE_ALIGNED(uaddr)) {
1767 		unsafe_put_user(0, uaddr, out);
1768 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1769 	}
1770 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1771 	if (unlikely(end < start))
1772 		end = NULL;
1773 	while (uaddr != end) {
1774 		unsafe_put_user(0, uaddr, out);
1775 		uaddr += PAGE_SIZE;
1776 	}
1777 
1778 out:
1779 	user_write_access_end();
1780 	if (size > uaddr - start)
1781 		return size - (uaddr - start);
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL(fault_in_writeable);
1785 
1786 /**
1787  * fault_in_subpage_writeable - fault in an address range for writing
1788  * @uaddr: start of address range
1789  * @size: size of address range
1790  *
1791  * Fault in a user address range for writing while checking for permissions at
1792  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1793  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1794  *
1795  * Returns the number of bytes not faulted in (like copy_to_user() and
1796  * copy_from_user()).
1797  */
1798 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1799 {
1800 	size_t faulted_in;
1801 
1802 	/*
1803 	 * Attempt faulting in at page granularity first for page table
1804 	 * permission checking. The arch-specific probe_subpage_writeable()
1805 	 * functions may not check for this.
1806 	 */
1807 	faulted_in = size - fault_in_writeable(uaddr, size);
1808 	if (faulted_in)
1809 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1810 
1811 	return size - faulted_in;
1812 }
1813 EXPORT_SYMBOL(fault_in_subpage_writeable);
1814 
1815 /*
1816  * fault_in_safe_writeable - fault in an address range for writing
1817  * @uaddr: start of address range
1818  * @size: length of address range
1819  *
1820  * Faults in an address range for writing.  This is primarily useful when we
1821  * already know that some or all of the pages in the address range aren't in
1822  * memory.
1823  *
1824  * Unlike fault_in_writeable(), this function is non-destructive.
1825  *
1826  * Note that we don't pin or otherwise hold the pages referenced that we fault
1827  * in.  There's no guarantee that they'll stay in memory for any duration of
1828  * time.
1829  *
1830  * Returns the number of bytes not faulted in, like copy_to_user() and
1831  * copy_from_user().
1832  */
1833 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1834 {
1835 	unsigned long start = (unsigned long)uaddr, end;
1836 	struct mm_struct *mm = current->mm;
1837 	bool unlocked = false;
1838 
1839 	if (unlikely(size == 0))
1840 		return 0;
1841 	end = PAGE_ALIGN(start + size);
1842 	if (end < start)
1843 		end = 0;
1844 
1845 	mmap_read_lock(mm);
1846 	do {
1847 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1848 			break;
1849 		start = (start + PAGE_SIZE) & PAGE_MASK;
1850 	} while (start != end);
1851 	mmap_read_unlock(mm);
1852 
1853 	if (size > (unsigned long)uaddr - start)
1854 		return size - ((unsigned long)uaddr - start);
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL(fault_in_safe_writeable);
1858 
1859 /**
1860  * fault_in_readable - fault in userspace address range for reading
1861  * @uaddr: start of user address range
1862  * @size: size of user address range
1863  *
1864  * Returns the number of bytes not faulted in (like copy_to_user() and
1865  * copy_from_user()).
1866  */
1867 size_t fault_in_readable(const char __user *uaddr, size_t size)
1868 {
1869 	const char __user *start = uaddr, *end;
1870 	volatile char c;
1871 
1872 	if (unlikely(size == 0))
1873 		return 0;
1874 	if (!user_read_access_begin(uaddr, size))
1875 		return size;
1876 	if (!PAGE_ALIGNED(uaddr)) {
1877 		unsafe_get_user(c, uaddr, out);
1878 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1879 	}
1880 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1881 	if (unlikely(end < start))
1882 		end = NULL;
1883 	while (uaddr != end) {
1884 		unsafe_get_user(c, uaddr, out);
1885 		uaddr += PAGE_SIZE;
1886 	}
1887 
1888 out:
1889 	user_read_access_end();
1890 	(void)c;
1891 	if (size > uaddr - start)
1892 		return size - (uaddr - start);
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(fault_in_readable);
1896 
1897 /**
1898  * get_dump_page() - pin user page in memory while writing it to core dump
1899  * @addr: user address
1900  *
1901  * Returns struct page pointer of user page pinned for dump,
1902  * to be freed afterwards by put_page().
1903  *
1904  * Returns NULL on any kind of failure - a hole must then be inserted into
1905  * the corefile, to preserve alignment with its headers; and also returns
1906  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1907  * allowing a hole to be left in the corefile to save disk space.
1908  *
1909  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1910  */
1911 #ifdef CONFIG_ELF_CORE
1912 struct page *get_dump_page(unsigned long addr)
1913 {
1914 	struct page *page;
1915 	int locked = 0;
1916 	int ret;
1917 
1918 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
1919 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1920 	return (ret == 1) ? page : NULL;
1921 }
1922 #endif /* CONFIG_ELF_CORE */
1923 
1924 #ifdef CONFIG_MIGRATION
1925 /*
1926  * Returns the number of collected pages. Return value is always >= 0.
1927  */
1928 static unsigned long collect_longterm_unpinnable_pages(
1929 					struct list_head *movable_page_list,
1930 					unsigned long nr_pages,
1931 					struct page **pages)
1932 {
1933 	unsigned long i, collected = 0;
1934 	struct folio *prev_folio = NULL;
1935 	bool drain_allow = true;
1936 
1937 	for (i = 0; i < nr_pages; i++) {
1938 		struct folio *folio = page_folio(pages[i]);
1939 
1940 		if (folio == prev_folio)
1941 			continue;
1942 		prev_folio = folio;
1943 
1944 		if (folio_is_longterm_pinnable(folio))
1945 			continue;
1946 
1947 		collected++;
1948 
1949 		if (folio_is_device_coherent(folio))
1950 			continue;
1951 
1952 		if (folio_test_hugetlb(folio)) {
1953 			isolate_hugetlb(folio, movable_page_list);
1954 			continue;
1955 		}
1956 
1957 		if (!folio_test_lru(folio) && drain_allow) {
1958 			lru_add_drain_all();
1959 			drain_allow = false;
1960 		}
1961 
1962 		if (!folio_isolate_lru(folio))
1963 			continue;
1964 
1965 		list_add_tail(&folio->lru, movable_page_list);
1966 		node_stat_mod_folio(folio,
1967 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1968 				    folio_nr_pages(folio));
1969 	}
1970 
1971 	return collected;
1972 }
1973 
1974 /*
1975  * Unpins all pages and migrates device coherent pages and movable_page_list.
1976  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1977  * (or partial success).
1978  */
1979 static int migrate_longterm_unpinnable_pages(
1980 					struct list_head *movable_page_list,
1981 					unsigned long nr_pages,
1982 					struct page **pages)
1983 {
1984 	int ret;
1985 	unsigned long i;
1986 
1987 	for (i = 0; i < nr_pages; i++) {
1988 		struct folio *folio = page_folio(pages[i]);
1989 
1990 		if (folio_is_device_coherent(folio)) {
1991 			/*
1992 			 * Migration will fail if the page is pinned, so convert
1993 			 * the pin on the source page to a normal reference.
1994 			 */
1995 			pages[i] = NULL;
1996 			folio_get(folio);
1997 			gup_put_folio(folio, 1, FOLL_PIN);
1998 
1999 			if (migrate_device_coherent_page(&folio->page)) {
2000 				ret = -EBUSY;
2001 				goto err;
2002 			}
2003 
2004 			continue;
2005 		}
2006 
2007 		/*
2008 		 * We can't migrate pages with unexpected references, so drop
2009 		 * the reference obtained by __get_user_pages_locked().
2010 		 * Migrating pages have been added to movable_page_list after
2011 		 * calling folio_isolate_lru() which takes a reference so the
2012 		 * page won't be freed if it's migrating.
2013 		 */
2014 		unpin_user_page(pages[i]);
2015 		pages[i] = NULL;
2016 	}
2017 
2018 	if (!list_empty(movable_page_list)) {
2019 		struct migration_target_control mtc = {
2020 			.nid = NUMA_NO_NODE,
2021 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2022 		};
2023 
2024 		if (migrate_pages(movable_page_list, alloc_migration_target,
2025 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2026 				  MR_LONGTERM_PIN, NULL)) {
2027 			ret = -ENOMEM;
2028 			goto err;
2029 		}
2030 	}
2031 
2032 	putback_movable_pages(movable_page_list);
2033 
2034 	return -EAGAIN;
2035 
2036 err:
2037 	for (i = 0; i < nr_pages; i++)
2038 		if (pages[i])
2039 			unpin_user_page(pages[i]);
2040 	putback_movable_pages(movable_page_list);
2041 
2042 	return ret;
2043 }
2044 
2045 /*
2046  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2047  * pages in the range are required to be pinned via FOLL_PIN, before calling
2048  * this routine.
2049  *
2050  * If any pages in the range are not allowed to be pinned, then this routine
2051  * will migrate those pages away, unpin all the pages in the range and return
2052  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2053  * call this routine again.
2054  *
2055  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2056  * The caller should give up, and propagate the error back up the call stack.
2057  *
2058  * If everything is OK and all pages in the range are allowed to be pinned, then
2059  * this routine leaves all pages pinned and returns zero for success.
2060  */
2061 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2062 					    struct page **pages)
2063 {
2064 	unsigned long collected;
2065 	LIST_HEAD(movable_page_list);
2066 
2067 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2068 						nr_pages, pages);
2069 	if (!collected)
2070 		return 0;
2071 
2072 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2073 						pages);
2074 }
2075 #else
2076 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2077 					    struct page **pages)
2078 {
2079 	return 0;
2080 }
2081 #endif /* CONFIG_MIGRATION */
2082 
2083 /*
2084  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2085  * allows us to process the FOLL_LONGTERM flag.
2086  */
2087 static long __gup_longterm_locked(struct mm_struct *mm,
2088 				  unsigned long start,
2089 				  unsigned long nr_pages,
2090 				  struct page **pages,
2091 				  int *locked,
2092 				  unsigned int gup_flags)
2093 {
2094 	unsigned int flags;
2095 	long rc, nr_pinned_pages;
2096 
2097 	if (!(gup_flags & FOLL_LONGTERM))
2098 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2099 					       locked, gup_flags);
2100 
2101 	flags = memalloc_pin_save();
2102 	do {
2103 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2104 							  pages, locked,
2105 							  gup_flags);
2106 		if (nr_pinned_pages <= 0) {
2107 			rc = nr_pinned_pages;
2108 			break;
2109 		}
2110 
2111 		/* FOLL_LONGTERM implies FOLL_PIN */
2112 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2113 	} while (rc == -EAGAIN);
2114 	memalloc_pin_restore(flags);
2115 	return rc ? rc : nr_pinned_pages;
2116 }
2117 
2118 /*
2119  * Check that the given flags are valid for the exported gup/pup interface, and
2120  * update them with the required flags that the caller must have set.
2121  */
2122 static bool is_valid_gup_args(struct page **pages, int *locked,
2123 			      unsigned int *gup_flags_p, unsigned int to_set)
2124 {
2125 	unsigned int gup_flags = *gup_flags_p;
2126 
2127 	/*
2128 	 * These flags not allowed to be specified externally to the gup
2129 	 * interfaces:
2130 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2131 	 * - FOLL_REMOTE is internal only and used on follow_page()
2132 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2133 	 */
2134 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2135 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2136 		return false;
2137 
2138 	gup_flags |= to_set;
2139 	if (locked) {
2140 		/* At the external interface locked must be set */
2141 		if (WARN_ON_ONCE(*locked != 1))
2142 			return false;
2143 
2144 		gup_flags |= FOLL_UNLOCKABLE;
2145 	}
2146 
2147 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2148 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2149 			 (FOLL_PIN | FOLL_GET)))
2150 		return false;
2151 
2152 	/* LONGTERM can only be specified when pinning */
2153 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2154 		return false;
2155 
2156 	/* Pages input must be given if using GET/PIN */
2157 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2158 		return false;
2159 
2160 	/* We want to allow the pgmap to be hot-unplugged at all times */
2161 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2162 			 (gup_flags & FOLL_PCI_P2PDMA)))
2163 		return false;
2164 
2165 	*gup_flags_p = gup_flags;
2166 	return true;
2167 }
2168 
2169 #ifdef CONFIG_MMU
2170 /**
2171  * get_user_pages_remote() - pin user pages in memory
2172  * @mm:		mm_struct of target mm
2173  * @start:	starting user address
2174  * @nr_pages:	number of pages from start to pin
2175  * @gup_flags:	flags modifying lookup behaviour
2176  * @pages:	array that receives pointers to the pages pinned.
2177  *		Should be at least nr_pages long. Or NULL, if caller
2178  *		only intends to ensure the pages are faulted in.
2179  * @locked:	pointer to lock flag indicating whether lock is held and
2180  *		subsequently whether VM_FAULT_RETRY functionality can be
2181  *		utilised. Lock must initially be held.
2182  *
2183  * Returns either number of pages pinned (which may be less than the
2184  * number requested), or an error. Details about the return value:
2185  *
2186  * -- If nr_pages is 0, returns 0.
2187  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2188  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2189  *    pages pinned. Again, this may be less than nr_pages.
2190  *
2191  * The caller is responsible for releasing returned @pages, via put_page().
2192  *
2193  * Must be called with mmap_lock held for read or write.
2194  *
2195  * get_user_pages_remote walks a process's page tables and takes a reference
2196  * to each struct page that each user address corresponds to at a given
2197  * instant. That is, it takes the page that would be accessed if a user
2198  * thread accesses the given user virtual address at that instant.
2199  *
2200  * This does not guarantee that the page exists in the user mappings when
2201  * get_user_pages_remote returns, and there may even be a completely different
2202  * page there in some cases (eg. if mmapped pagecache has been invalidated
2203  * and subsequently re-faulted). However it does guarantee that the page
2204  * won't be freed completely. And mostly callers simply care that the page
2205  * contains data that was valid *at some point in time*. Typically, an IO
2206  * or similar operation cannot guarantee anything stronger anyway because
2207  * locks can't be held over the syscall boundary.
2208  *
2209  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2210  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2211  * be called after the page is finished with, and before put_page is called.
2212  *
2213  * get_user_pages_remote is typically used for fewer-copy IO operations,
2214  * to get a handle on the memory by some means other than accesses
2215  * via the user virtual addresses. The pages may be submitted for
2216  * DMA to devices or accessed via their kernel linear mapping (via the
2217  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2218  *
2219  * See also get_user_pages_fast, for performance critical applications.
2220  *
2221  * get_user_pages_remote should be phased out in favor of
2222  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2223  * should use get_user_pages_remote because it cannot pass
2224  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2225  */
2226 long get_user_pages_remote(struct mm_struct *mm,
2227 		unsigned long start, unsigned long nr_pages,
2228 		unsigned int gup_flags, struct page **pages,
2229 		int *locked)
2230 {
2231 	int local_locked = 1;
2232 
2233 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2234 			       FOLL_TOUCH | FOLL_REMOTE))
2235 		return -EINVAL;
2236 
2237 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2238 				       locked ? locked : &local_locked,
2239 				       gup_flags);
2240 }
2241 EXPORT_SYMBOL(get_user_pages_remote);
2242 
2243 #else /* CONFIG_MMU */
2244 long get_user_pages_remote(struct mm_struct *mm,
2245 			   unsigned long start, unsigned long nr_pages,
2246 			   unsigned int gup_flags, struct page **pages,
2247 			   int *locked)
2248 {
2249 	return 0;
2250 }
2251 #endif /* !CONFIG_MMU */
2252 
2253 /**
2254  * get_user_pages() - pin user pages in memory
2255  * @start:      starting user address
2256  * @nr_pages:   number of pages from start to pin
2257  * @gup_flags:  flags modifying lookup behaviour
2258  * @pages:      array that receives pointers to the pages pinned.
2259  *              Should be at least nr_pages long. Or NULL, if caller
2260  *              only intends to ensure the pages are faulted in.
2261  *
2262  * This is the same as get_user_pages_remote(), just with a less-flexible
2263  * calling convention where we assume that the mm being operated on belongs to
2264  * the current task, and doesn't allow passing of a locked parameter.  We also
2265  * obviously don't pass FOLL_REMOTE in here.
2266  */
2267 long get_user_pages(unsigned long start, unsigned long nr_pages,
2268 		    unsigned int gup_flags, struct page **pages)
2269 {
2270 	int locked = 1;
2271 
2272 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2273 		return -EINVAL;
2274 
2275 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2276 				       &locked, gup_flags);
2277 }
2278 EXPORT_SYMBOL(get_user_pages);
2279 
2280 /*
2281  * get_user_pages_unlocked() is suitable to replace the form:
2282  *
2283  *      mmap_read_lock(mm);
2284  *      get_user_pages(mm, ..., pages, NULL);
2285  *      mmap_read_unlock(mm);
2286  *
2287  *  with:
2288  *
2289  *      get_user_pages_unlocked(mm, ..., pages);
2290  *
2291  * It is functionally equivalent to get_user_pages_fast so
2292  * get_user_pages_fast should be used instead if specific gup_flags
2293  * (e.g. FOLL_FORCE) are not required.
2294  */
2295 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2296 			     struct page **pages, unsigned int gup_flags)
2297 {
2298 	int locked = 0;
2299 
2300 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2301 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2302 		return -EINVAL;
2303 
2304 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2305 				       &locked, gup_flags);
2306 }
2307 EXPORT_SYMBOL(get_user_pages_unlocked);
2308 
2309 /*
2310  * Fast GUP
2311  *
2312  * get_user_pages_fast attempts to pin user pages by walking the page
2313  * tables directly and avoids taking locks. Thus the walker needs to be
2314  * protected from page table pages being freed from under it, and should
2315  * block any THP splits.
2316  *
2317  * One way to achieve this is to have the walker disable interrupts, and
2318  * rely on IPIs from the TLB flushing code blocking before the page table
2319  * pages are freed. This is unsuitable for architectures that do not need
2320  * to broadcast an IPI when invalidating TLBs.
2321  *
2322  * Another way to achieve this is to batch up page table containing pages
2323  * belonging to more than one mm_user, then rcu_sched a callback to free those
2324  * pages. Disabling interrupts will allow the fast_gup walker to both block
2325  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2326  * (which is a relatively rare event). The code below adopts this strategy.
2327  *
2328  * Before activating this code, please be aware that the following assumptions
2329  * are currently made:
2330  *
2331  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2332  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2333  *
2334  *  *) ptes can be read atomically by the architecture.
2335  *
2336  *  *) access_ok is sufficient to validate userspace address ranges.
2337  *
2338  * The last two assumptions can be relaxed by the addition of helper functions.
2339  *
2340  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2341  */
2342 #ifdef CONFIG_HAVE_FAST_GUP
2343 
2344 /*
2345  * Used in the GUP-fast path to determine whether a pin is permitted for a
2346  * specific folio.
2347  *
2348  * This call assumes the caller has pinned the folio, that the lowest page table
2349  * level still points to this folio, and that interrupts have been disabled.
2350  *
2351  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2352  * (see comment describing the writable_file_mapping_allowed() function). We
2353  * therefore try to avoid the most egregious case of a long-term mapping doing
2354  * so.
2355  *
2356  * This function cannot be as thorough as that one as the VMA is not available
2357  * in the fast path, so instead we whitelist known good cases and if in doubt,
2358  * fall back to the slow path.
2359  */
2360 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2361 {
2362 	struct address_space *mapping;
2363 	unsigned long mapping_flags;
2364 
2365 	/*
2366 	 * If we aren't pinning then no problematic write can occur. A long term
2367 	 * pin is the most egregious case so this is the one we disallow.
2368 	 */
2369 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2370 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2371 		return true;
2372 
2373 	/* The folio is pinned, so we can safely access folio fields. */
2374 
2375 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2376 		return false;
2377 
2378 	/* hugetlb mappings do not require dirty-tracking. */
2379 	if (folio_test_hugetlb(folio))
2380 		return true;
2381 
2382 	/*
2383 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2384 	 * cannot proceed, which means no actions performed under RCU can
2385 	 * proceed either.
2386 	 *
2387 	 * inodes and thus their mappings are freed under RCU, which means the
2388 	 * mapping cannot be freed beneath us and thus we can safely dereference
2389 	 * it.
2390 	 */
2391 	lockdep_assert_irqs_disabled();
2392 
2393 	/*
2394 	 * However, there may be operations which _alter_ the mapping, so ensure
2395 	 * we read it once and only once.
2396 	 */
2397 	mapping = READ_ONCE(folio->mapping);
2398 
2399 	/*
2400 	 * The mapping may have been truncated, in any case we cannot determine
2401 	 * if this mapping is safe - fall back to slow path to determine how to
2402 	 * proceed.
2403 	 */
2404 	if (!mapping)
2405 		return false;
2406 
2407 	/* Anonymous folios pose no problem. */
2408 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2409 	if (mapping_flags)
2410 		return mapping_flags & PAGE_MAPPING_ANON;
2411 
2412 	/*
2413 	 * At this point, we know the mapping is non-null and points to an
2414 	 * address_space object. The only remaining whitelisted file system is
2415 	 * shmem.
2416 	 */
2417 	return shmem_mapping(mapping);
2418 }
2419 
2420 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2421 					    unsigned int flags,
2422 					    struct page **pages)
2423 {
2424 	while ((*nr) - nr_start) {
2425 		struct page *page = pages[--(*nr)];
2426 
2427 		ClearPageReferenced(page);
2428 		if (flags & FOLL_PIN)
2429 			unpin_user_page(page);
2430 		else
2431 			put_page(page);
2432 	}
2433 }
2434 
2435 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2436 /*
2437  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2438  * operations.
2439  *
2440  * To pin the page, fast-gup needs to do below in order:
2441  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2442  *
2443  * For the rest of pgtable operations where pgtable updates can be racy
2444  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2445  * is pinned.
2446  *
2447  * Above will work for all pte-level operations, including THP split.
2448  *
2449  * For THP collapse, it's a bit more complicated because fast-gup may be
2450  * walking a pgtable page that is being freed (pte is still valid but pmd
2451  * can be cleared already).  To avoid race in such condition, we need to
2452  * also check pmd here to make sure pmd doesn't change (corresponds to
2453  * pmdp_collapse_flush() in the THP collapse code path).
2454  */
2455 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2456 			 unsigned long end, unsigned int flags,
2457 			 struct page **pages, int *nr)
2458 {
2459 	struct dev_pagemap *pgmap = NULL;
2460 	int nr_start = *nr, ret = 0;
2461 	pte_t *ptep, *ptem;
2462 
2463 	ptem = ptep = pte_offset_map(&pmd, addr);
2464 	if (!ptep)
2465 		return 0;
2466 	do {
2467 		pte_t pte = ptep_get_lockless(ptep);
2468 		struct page *page;
2469 		struct folio *folio;
2470 
2471 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2472 			goto pte_unmap;
2473 
2474 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2475 			goto pte_unmap;
2476 
2477 		if (pte_devmap(pte)) {
2478 			if (unlikely(flags & FOLL_LONGTERM))
2479 				goto pte_unmap;
2480 
2481 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2482 			if (unlikely(!pgmap)) {
2483 				undo_dev_pagemap(nr, nr_start, flags, pages);
2484 				goto pte_unmap;
2485 			}
2486 		} else if (pte_special(pte))
2487 			goto pte_unmap;
2488 
2489 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2490 		page = pte_page(pte);
2491 
2492 		folio = try_grab_folio(page, 1, flags);
2493 		if (!folio)
2494 			goto pte_unmap;
2495 
2496 		if (unlikely(page_is_secretmem(page))) {
2497 			gup_put_folio(folio, 1, flags);
2498 			goto pte_unmap;
2499 		}
2500 
2501 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2502 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2503 			gup_put_folio(folio, 1, flags);
2504 			goto pte_unmap;
2505 		}
2506 
2507 		if (!folio_fast_pin_allowed(folio, flags)) {
2508 			gup_put_folio(folio, 1, flags);
2509 			goto pte_unmap;
2510 		}
2511 
2512 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2513 			gup_put_folio(folio, 1, flags);
2514 			goto pte_unmap;
2515 		}
2516 
2517 		/*
2518 		 * We need to make the page accessible if and only if we are
2519 		 * going to access its content (the FOLL_PIN case).  Please
2520 		 * see Documentation/core-api/pin_user_pages.rst for
2521 		 * details.
2522 		 */
2523 		if (flags & FOLL_PIN) {
2524 			ret = arch_make_page_accessible(page);
2525 			if (ret) {
2526 				gup_put_folio(folio, 1, flags);
2527 				goto pte_unmap;
2528 			}
2529 		}
2530 		folio_set_referenced(folio);
2531 		pages[*nr] = page;
2532 		(*nr)++;
2533 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2534 
2535 	ret = 1;
2536 
2537 pte_unmap:
2538 	if (pgmap)
2539 		put_dev_pagemap(pgmap);
2540 	pte_unmap(ptem);
2541 	return ret;
2542 }
2543 #else
2544 
2545 /*
2546  * If we can't determine whether or not a pte is special, then fail immediately
2547  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2548  * to be special.
2549  *
2550  * For a futex to be placed on a THP tail page, get_futex_key requires a
2551  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2552  * useful to have gup_huge_pmd even if we can't operate on ptes.
2553  */
2554 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2555 			 unsigned long end, unsigned int flags,
2556 			 struct page **pages, int *nr)
2557 {
2558 	return 0;
2559 }
2560 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2561 
2562 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2563 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2564 			     unsigned long end, unsigned int flags,
2565 			     struct page **pages, int *nr)
2566 {
2567 	int nr_start = *nr;
2568 	struct dev_pagemap *pgmap = NULL;
2569 
2570 	do {
2571 		struct page *page = pfn_to_page(pfn);
2572 
2573 		pgmap = get_dev_pagemap(pfn, pgmap);
2574 		if (unlikely(!pgmap)) {
2575 			undo_dev_pagemap(nr, nr_start, flags, pages);
2576 			break;
2577 		}
2578 
2579 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2580 			undo_dev_pagemap(nr, nr_start, flags, pages);
2581 			break;
2582 		}
2583 
2584 		SetPageReferenced(page);
2585 		pages[*nr] = page;
2586 		if (unlikely(try_grab_page(page, flags))) {
2587 			undo_dev_pagemap(nr, nr_start, flags, pages);
2588 			break;
2589 		}
2590 		(*nr)++;
2591 		pfn++;
2592 	} while (addr += PAGE_SIZE, addr != end);
2593 
2594 	put_dev_pagemap(pgmap);
2595 	return addr == end;
2596 }
2597 
2598 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2599 				 unsigned long end, unsigned int flags,
2600 				 struct page **pages, int *nr)
2601 {
2602 	unsigned long fault_pfn;
2603 	int nr_start = *nr;
2604 
2605 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2606 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2607 		return 0;
2608 
2609 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2610 		undo_dev_pagemap(nr, nr_start, flags, pages);
2611 		return 0;
2612 	}
2613 	return 1;
2614 }
2615 
2616 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2617 				 unsigned long end, unsigned int flags,
2618 				 struct page **pages, int *nr)
2619 {
2620 	unsigned long fault_pfn;
2621 	int nr_start = *nr;
2622 
2623 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2624 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2625 		return 0;
2626 
2627 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2628 		undo_dev_pagemap(nr, nr_start, flags, pages);
2629 		return 0;
2630 	}
2631 	return 1;
2632 }
2633 #else
2634 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2635 				 unsigned long end, unsigned int flags,
2636 				 struct page **pages, int *nr)
2637 {
2638 	BUILD_BUG();
2639 	return 0;
2640 }
2641 
2642 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2643 				 unsigned long end, unsigned int flags,
2644 				 struct page **pages, int *nr)
2645 {
2646 	BUILD_BUG();
2647 	return 0;
2648 }
2649 #endif
2650 
2651 static int record_subpages(struct page *page, unsigned long addr,
2652 			   unsigned long end, struct page **pages)
2653 {
2654 	int nr;
2655 
2656 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2657 		pages[nr] = nth_page(page, nr);
2658 
2659 	return nr;
2660 }
2661 
2662 #ifdef CONFIG_ARCH_HAS_HUGEPD
2663 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2664 				      unsigned long sz)
2665 {
2666 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2667 	return (__boundary - 1 < end - 1) ? __boundary : end;
2668 }
2669 
2670 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2671 		       unsigned long end, unsigned int flags,
2672 		       struct page **pages, int *nr)
2673 {
2674 	unsigned long pte_end;
2675 	struct page *page;
2676 	struct folio *folio;
2677 	pte_t pte;
2678 	int refs;
2679 
2680 	pte_end = (addr + sz) & ~(sz-1);
2681 	if (pte_end < end)
2682 		end = pte_end;
2683 
2684 	pte = huge_ptep_get(ptep);
2685 
2686 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2687 		return 0;
2688 
2689 	/* hugepages are never "special" */
2690 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2691 
2692 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2693 	refs = record_subpages(page, addr, end, pages + *nr);
2694 
2695 	folio = try_grab_folio(page, refs, flags);
2696 	if (!folio)
2697 		return 0;
2698 
2699 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2700 		gup_put_folio(folio, refs, flags);
2701 		return 0;
2702 	}
2703 
2704 	if (!folio_fast_pin_allowed(folio, flags)) {
2705 		gup_put_folio(folio, refs, flags);
2706 		return 0;
2707 	}
2708 
2709 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2710 		gup_put_folio(folio, refs, flags);
2711 		return 0;
2712 	}
2713 
2714 	*nr += refs;
2715 	folio_set_referenced(folio);
2716 	return 1;
2717 }
2718 
2719 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2720 		unsigned int pdshift, unsigned long end, unsigned int flags,
2721 		struct page **pages, int *nr)
2722 {
2723 	pte_t *ptep;
2724 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2725 	unsigned long next;
2726 
2727 	ptep = hugepte_offset(hugepd, addr, pdshift);
2728 	do {
2729 		next = hugepte_addr_end(addr, end, sz);
2730 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2731 			return 0;
2732 	} while (ptep++, addr = next, addr != end);
2733 
2734 	return 1;
2735 }
2736 #else
2737 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2738 		unsigned int pdshift, unsigned long end, unsigned int flags,
2739 		struct page **pages, int *nr)
2740 {
2741 	return 0;
2742 }
2743 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2744 
2745 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2746 			unsigned long end, unsigned int flags,
2747 			struct page **pages, int *nr)
2748 {
2749 	struct page *page;
2750 	struct folio *folio;
2751 	int refs;
2752 
2753 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2754 		return 0;
2755 
2756 	if (pmd_devmap(orig)) {
2757 		if (unlikely(flags & FOLL_LONGTERM))
2758 			return 0;
2759 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2760 					     pages, nr);
2761 	}
2762 
2763 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2764 	refs = record_subpages(page, addr, end, pages + *nr);
2765 
2766 	folio = try_grab_folio(page, refs, flags);
2767 	if (!folio)
2768 		return 0;
2769 
2770 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2771 		gup_put_folio(folio, refs, flags);
2772 		return 0;
2773 	}
2774 
2775 	if (!folio_fast_pin_allowed(folio, flags)) {
2776 		gup_put_folio(folio, refs, flags);
2777 		return 0;
2778 	}
2779 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2780 		gup_put_folio(folio, refs, flags);
2781 		return 0;
2782 	}
2783 
2784 	*nr += refs;
2785 	folio_set_referenced(folio);
2786 	return 1;
2787 }
2788 
2789 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2790 			unsigned long end, unsigned int flags,
2791 			struct page **pages, int *nr)
2792 {
2793 	struct page *page;
2794 	struct folio *folio;
2795 	int refs;
2796 
2797 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2798 		return 0;
2799 
2800 	if (pud_devmap(orig)) {
2801 		if (unlikely(flags & FOLL_LONGTERM))
2802 			return 0;
2803 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2804 					     pages, nr);
2805 	}
2806 
2807 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2808 	refs = record_subpages(page, addr, end, pages + *nr);
2809 
2810 	folio = try_grab_folio(page, refs, flags);
2811 	if (!folio)
2812 		return 0;
2813 
2814 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2815 		gup_put_folio(folio, refs, flags);
2816 		return 0;
2817 	}
2818 
2819 	if (!folio_fast_pin_allowed(folio, flags)) {
2820 		gup_put_folio(folio, refs, flags);
2821 		return 0;
2822 	}
2823 
2824 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2825 		gup_put_folio(folio, refs, flags);
2826 		return 0;
2827 	}
2828 
2829 	*nr += refs;
2830 	folio_set_referenced(folio);
2831 	return 1;
2832 }
2833 
2834 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2835 			unsigned long end, unsigned int flags,
2836 			struct page **pages, int *nr)
2837 {
2838 	int refs;
2839 	struct page *page;
2840 	struct folio *folio;
2841 
2842 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2843 		return 0;
2844 
2845 	BUILD_BUG_ON(pgd_devmap(orig));
2846 
2847 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2848 	refs = record_subpages(page, addr, end, pages + *nr);
2849 
2850 	folio = try_grab_folio(page, refs, flags);
2851 	if (!folio)
2852 		return 0;
2853 
2854 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2855 		gup_put_folio(folio, refs, flags);
2856 		return 0;
2857 	}
2858 
2859 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2860 		gup_put_folio(folio, refs, flags);
2861 		return 0;
2862 	}
2863 
2864 	if (!folio_fast_pin_allowed(folio, flags)) {
2865 		gup_put_folio(folio, refs, flags);
2866 		return 0;
2867 	}
2868 
2869 	*nr += refs;
2870 	folio_set_referenced(folio);
2871 	return 1;
2872 }
2873 
2874 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2875 		unsigned int flags, struct page **pages, int *nr)
2876 {
2877 	unsigned long next;
2878 	pmd_t *pmdp;
2879 
2880 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2881 	do {
2882 		pmd_t pmd = pmdp_get_lockless(pmdp);
2883 
2884 		next = pmd_addr_end(addr, end);
2885 		if (!pmd_present(pmd))
2886 			return 0;
2887 
2888 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2889 			     pmd_devmap(pmd))) {
2890 			if (pmd_protnone(pmd) &&
2891 			    !gup_can_follow_protnone(flags))
2892 				return 0;
2893 
2894 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2895 				pages, nr))
2896 				return 0;
2897 
2898 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2899 			/*
2900 			 * architecture have different format for hugetlbfs
2901 			 * pmd format and THP pmd format
2902 			 */
2903 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2904 					 PMD_SHIFT, next, flags, pages, nr))
2905 				return 0;
2906 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2907 			return 0;
2908 	} while (pmdp++, addr = next, addr != end);
2909 
2910 	return 1;
2911 }
2912 
2913 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2914 			 unsigned int flags, struct page **pages, int *nr)
2915 {
2916 	unsigned long next;
2917 	pud_t *pudp;
2918 
2919 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2920 	do {
2921 		pud_t pud = READ_ONCE(*pudp);
2922 
2923 		next = pud_addr_end(addr, end);
2924 		if (unlikely(!pud_present(pud)))
2925 			return 0;
2926 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2927 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2928 					  pages, nr))
2929 				return 0;
2930 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2931 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2932 					 PUD_SHIFT, next, flags, pages, nr))
2933 				return 0;
2934 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2935 			return 0;
2936 	} while (pudp++, addr = next, addr != end);
2937 
2938 	return 1;
2939 }
2940 
2941 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2942 			 unsigned int flags, struct page **pages, int *nr)
2943 {
2944 	unsigned long next;
2945 	p4d_t *p4dp;
2946 
2947 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2948 	do {
2949 		p4d_t p4d = READ_ONCE(*p4dp);
2950 
2951 		next = p4d_addr_end(addr, end);
2952 		if (p4d_none(p4d))
2953 			return 0;
2954 		BUILD_BUG_ON(p4d_huge(p4d));
2955 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2956 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2957 					 P4D_SHIFT, next, flags, pages, nr))
2958 				return 0;
2959 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2960 			return 0;
2961 	} while (p4dp++, addr = next, addr != end);
2962 
2963 	return 1;
2964 }
2965 
2966 static void gup_pgd_range(unsigned long addr, unsigned long end,
2967 		unsigned int flags, struct page **pages, int *nr)
2968 {
2969 	unsigned long next;
2970 	pgd_t *pgdp;
2971 
2972 	pgdp = pgd_offset(current->mm, addr);
2973 	do {
2974 		pgd_t pgd = READ_ONCE(*pgdp);
2975 
2976 		next = pgd_addr_end(addr, end);
2977 		if (pgd_none(pgd))
2978 			return;
2979 		if (unlikely(pgd_huge(pgd))) {
2980 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2981 					  pages, nr))
2982 				return;
2983 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2984 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2985 					 PGDIR_SHIFT, next, flags, pages, nr))
2986 				return;
2987 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2988 			return;
2989 	} while (pgdp++, addr = next, addr != end);
2990 }
2991 #else
2992 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2993 		unsigned int flags, struct page **pages, int *nr)
2994 {
2995 }
2996 #endif /* CONFIG_HAVE_FAST_GUP */
2997 
2998 #ifndef gup_fast_permitted
2999 /*
3000  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3001  * we need to fall back to the slow version:
3002  */
3003 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3004 {
3005 	return true;
3006 }
3007 #endif
3008 
3009 static unsigned long lockless_pages_from_mm(unsigned long start,
3010 					    unsigned long end,
3011 					    unsigned int gup_flags,
3012 					    struct page **pages)
3013 {
3014 	unsigned long flags;
3015 	int nr_pinned = 0;
3016 	unsigned seq;
3017 
3018 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3019 	    !gup_fast_permitted(start, end))
3020 		return 0;
3021 
3022 	if (gup_flags & FOLL_PIN) {
3023 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3024 		if (seq & 1)
3025 			return 0;
3026 	}
3027 
3028 	/*
3029 	 * Disable interrupts. The nested form is used, in order to allow full,
3030 	 * general purpose use of this routine.
3031 	 *
3032 	 * With interrupts disabled, we block page table pages from being freed
3033 	 * from under us. See struct mmu_table_batch comments in
3034 	 * include/asm-generic/tlb.h for more details.
3035 	 *
3036 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3037 	 * that come from THPs splitting.
3038 	 */
3039 	local_irq_save(flags);
3040 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3041 	local_irq_restore(flags);
3042 
3043 	/*
3044 	 * When pinning pages for DMA there could be a concurrent write protect
3045 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3046 	 */
3047 	if (gup_flags & FOLL_PIN) {
3048 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3049 			unpin_user_pages_lockless(pages, nr_pinned);
3050 			return 0;
3051 		} else {
3052 			sanity_check_pinned_pages(pages, nr_pinned);
3053 		}
3054 	}
3055 	return nr_pinned;
3056 }
3057 
3058 static int internal_get_user_pages_fast(unsigned long start,
3059 					unsigned long nr_pages,
3060 					unsigned int gup_flags,
3061 					struct page **pages)
3062 {
3063 	unsigned long len, end;
3064 	unsigned long nr_pinned;
3065 	int locked = 0;
3066 	int ret;
3067 
3068 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3069 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3070 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3071 				       FOLL_PCI_P2PDMA)))
3072 		return -EINVAL;
3073 
3074 	if (gup_flags & FOLL_PIN)
3075 		mm_set_has_pinned_flag(&current->mm->flags);
3076 
3077 	if (!(gup_flags & FOLL_FAST_ONLY))
3078 		might_lock_read(&current->mm->mmap_lock);
3079 
3080 	start = untagged_addr(start) & PAGE_MASK;
3081 	len = nr_pages << PAGE_SHIFT;
3082 	if (check_add_overflow(start, len, &end))
3083 		return 0;
3084 	if (end > TASK_SIZE_MAX)
3085 		return -EFAULT;
3086 	if (unlikely(!access_ok((void __user *)start, len)))
3087 		return -EFAULT;
3088 
3089 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3090 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3091 		return nr_pinned;
3092 
3093 	/* Slow path: try to get the remaining pages with get_user_pages */
3094 	start += nr_pinned << PAGE_SHIFT;
3095 	pages += nr_pinned;
3096 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3097 				    pages, &locked,
3098 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3099 	if (ret < 0) {
3100 		/*
3101 		 * The caller has to unpin the pages we already pinned so
3102 		 * returning -errno is not an option
3103 		 */
3104 		if (nr_pinned)
3105 			return nr_pinned;
3106 		return ret;
3107 	}
3108 	return ret + nr_pinned;
3109 }
3110 
3111 /**
3112  * get_user_pages_fast_only() - pin user pages in memory
3113  * @start:      starting user address
3114  * @nr_pages:   number of pages from start to pin
3115  * @gup_flags:  flags modifying pin behaviour
3116  * @pages:      array that receives pointers to the pages pinned.
3117  *              Should be at least nr_pages long.
3118  *
3119  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3120  * the regular GUP.
3121  *
3122  * If the architecture does not support this function, simply return with no
3123  * pages pinned.
3124  *
3125  * Careful, careful! COW breaking can go either way, so a non-write
3126  * access can get ambiguous page results. If you call this function without
3127  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3128  */
3129 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3130 			     unsigned int gup_flags, struct page **pages)
3131 {
3132 	/*
3133 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3134 	 * because gup fast is always a "pin with a +1 page refcount" request.
3135 	 *
3136 	 * FOLL_FAST_ONLY is required in order to match the API description of
3137 	 * this routine: no fall back to regular ("slow") GUP.
3138 	 */
3139 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3140 			       FOLL_GET | FOLL_FAST_ONLY))
3141 		return -EINVAL;
3142 
3143 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3144 }
3145 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3146 
3147 /**
3148  * get_user_pages_fast() - pin user pages in memory
3149  * @start:      starting user address
3150  * @nr_pages:   number of pages from start to pin
3151  * @gup_flags:  flags modifying pin behaviour
3152  * @pages:      array that receives pointers to the pages pinned.
3153  *              Should be at least nr_pages long.
3154  *
3155  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3156  * If not successful, it will fall back to taking the lock and
3157  * calling get_user_pages().
3158  *
3159  * Returns number of pages pinned. This may be fewer than the number requested.
3160  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3161  * -errno.
3162  */
3163 int get_user_pages_fast(unsigned long start, int nr_pages,
3164 			unsigned int gup_flags, struct page **pages)
3165 {
3166 	/*
3167 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3168 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3169 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3170 	 * request.
3171 	 */
3172 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3173 		return -EINVAL;
3174 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3175 }
3176 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3177 
3178 /**
3179  * pin_user_pages_fast() - pin user pages in memory without taking locks
3180  *
3181  * @start:      starting user address
3182  * @nr_pages:   number of pages from start to pin
3183  * @gup_flags:  flags modifying pin behaviour
3184  * @pages:      array that receives pointers to the pages pinned.
3185  *              Should be at least nr_pages long.
3186  *
3187  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3188  * get_user_pages_fast() for documentation on the function arguments, because
3189  * the arguments here are identical.
3190  *
3191  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3192  * see Documentation/core-api/pin_user_pages.rst for further details.
3193  */
3194 int pin_user_pages_fast(unsigned long start, int nr_pages,
3195 			unsigned int gup_flags, struct page **pages)
3196 {
3197 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3198 		return -EINVAL;
3199 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3200 }
3201 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3202 
3203 /**
3204  * pin_user_pages_remote() - pin pages of a remote process
3205  *
3206  * @mm:		mm_struct of target mm
3207  * @start:	starting user address
3208  * @nr_pages:	number of pages from start to pin
3209  * @gup_flags:	flags modifying lookup behaviour
3210  * @pages:	array that receives pointers to the pages pinned.
3211  *		Should be at least nr_pages long.
3212  * @locked:	pointer to lock flag indicating whether lock is held and
3213  *		subsequently whether VM_FAULT_RETRY functionality can be
3214  *		utilised. Lock must initially be held.
3215  *
3216  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3217  * get_user_pages_remote() for documentation on the function arguments, because
3218  * the arguments here are identical.
3219  *
3220  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3221  * see Documentation/core-api/pin_user_pages.rst for details.
3222  */
3223 long pin_user_pages_remote(struct mm_struct *mm,
3224 			   unsigned long start, unsigned long nr_pages,
3225 			   unsigned int gup_flags, struct page **pages,
3226 			   int *locked)
3227 {
3228 	int local_locked = 1;
3229 
3230 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3231 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3232 		return 0;
3233 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3234 				     locked ? locked : &local_locked,
3235 				     gup_flags);
3236 }
3237 EXPORT_SYMBOL(pin_user_pages_remote);
3238 
3239 /**
3240  * pin_user_pages() - pin user pages in memory for use by other devices
3241  *
3242  * @start:	starting user address
3243  * @nr_pages:	number of pages from start to pin
3244  * @gup_flags:	flags modifying lookup behaviour
3245  * @pages:	array that receives pointers to the pages pinned.
3246  *		Should be at least nr_pages long.
3247  *
3248  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3249  * FOLL_PIN is set.
3250  *
3251  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3252  * see Documentation/core-api/pin_user_pages.rst for details.
3253  */
3254 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3255 		    unsigned int gup_flags, struct page **pages)
3256 {
3257 	int locked = 1;
3258 
3259 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3260 		return 0;
3261 	return __gup_longterm_locked(current->mm, start, nr_pages,
3262 				     pages, &locked, gup_flags);
3263 }
3264 EXPORT_SYMBOL(pin_user_pages);
3265 
3266 /*
3267  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3268  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3269  * FOLL_PIN and rejects FOLL_GET.
3270  */
3271 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3272 			     struct page **pages, unsigned int gup_flags)
3273 {
3274 	int locked = 0;
3275 
3276 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3277 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3278 		return 0;
3279 
3280 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3281 				     &locked, gup_flags);
3282 }
3283 EXPORT_SYMBOL(pin_user_pages_unlocked);
3284