xref: /openbmc/linux/mm/gup.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 typedef int (*set_dirty_func_t)(struct page *page);
33 
34 static void __put_user_pages_dirty(struct page **pages,
35 				   unsigned long npages,
36 				   set_dirty_func_t sdf)
37 {
38 	unsigned long index;
39 
40 	for (index = 0; index < npages; index++) {
41 		struct page *page = compound_head(pages[index]);
42 
43 		/*
44 		 * Checking PageDirty at this point may race with
45 		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 		 *
47 		 * 1) This code sees the page as already dirty, so it skips
48 		 * the call to sdf(). That could happen because
49 		 * clear_page_dirty_for_io() called page_mkclean(),
50 		 * followed by set_page_dirty(). However, now the page is
51 		 * going to get written back, which meets the original
52 		 * intention of setting it dirty, so all is well:
53 		 * clear_page_dirty_for_io() goes on to call
54 		 * TestClearPageDirty(), and write the page back.
55 		 *
56 		 * 2) This code sees the page as clean, so it calls sdf().
57 		 * The page stays dirty, despite being written back, so it
58 		 * gets written back again in the next writeback cycle.
59 		 * This is harmless.
60 		 */
61 		if (!PageDirty(page))
62 			sdf(page);
63 
64 		put_user_page(page);
65 	}
66 }
67 
68 /**
69  * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70  * @pages:  array of pages to be marked dirty and released.
71  * @npages: number of pages in the @pages array.
72  *
73  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74  * variants called on that page.
75  *
76  * For each page in the @pages array, make that page (or its head page, if a
77  * compound page) dirty, if it was previously listed as clean. Then, release
78  * the page using put_user_page().
79  *
80  * Please see the put_user_page() documentation for details.
81  *
82  * set_page_dirty(), which does not lock the page, is used here.
83  * Therefore, it is the caller's responsibility to ensure that this is
84  * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85  *
86  */
87 void put_user_pages_dirty(struct page **pages, unsigned long npages)
88 {
89 	__put_user_pages_dirty(pages, npages, set_page_dirty);
90 }
91 EXPORT_SYMBOL(put_user_pages_dirty);
92 
93 /**
94  * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95  * @pages:  array of pages to be marked dirty and released.
96  * @npages: number of pages in the @pages array.
97  *
98  * For each page in the @pages array, make that page (or its head page, if a
99  * compound page) dirty, if it was previously listed as clean. Then, release
100  * the page using put_user_page().
101  *
102  * Please see the put_user_page() documentation for details.
103  *
104  * This is just like put_user_pages_dirty(), except that it invokes
105  * set_page_dirty_lock(), instead of set_page_dirty().
106  *
107  */
108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109 {
110 	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111 }
112 EXPORT_SYMBOL(put_user_pages_dirty_lock);
113 
114 /**
115  * put_user_pages() - release an array of gup-pinned pages.
116  * @pages:  array of pages to be marked dirty and released.
117  * @npages: number of pages in the @pages array.
118  *
119  * For each page in the @pages array, release the page using put_user_page().
120  *
121  * Please see the put_user_page() documentation for details.
122  */
123 void put_user_pages(struct page **pages, unsigned long npages)
124 {
125 	unsigned long index;
126 
127 	/*
128 	 * TODO: this can be optimized for huge pages: if a series of pages is
129 	 * physically contiguous and part of the same compound page, then a
130 	 * single operation to the head page should suffice.
131 	 */
132 	for (index = 0; index < npages; index++)
133 		put_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(put_user_pages);
136 
137 #ifdef CONFIG_MMU
138 static struct page *no_page_table(struct vm_area_struct *vma,
139 		unsigned int flags)
140 {
141 	/*
142 	 * When core dumping an enormous anonymous area that nobody
143 	 * has touched so far, we don't want to allocate unnecessary pages or
144 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
145 	 * then get_dump_page() will return NULL to leave a hole in the dump.
146 	 * But we can only make this optimization where a hole would surely
147 	 * be zero-filled if handle_mm_fault() actually did handle it.
148 	 */
149 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 		return ERR_PTR(-EFAULT);
151 	return NULL;
152 }
153 
154 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 		pte_t *pte, unsigned int flags)
156 {
157 	/* No page to get reference */
158 	if (flags & FOLL_GET)
159 		return -EFAULT;
160 
161 	if (flags & FOLL_TOUCH) {
162 		pte_t entry = *pte;
163 
164 		if (flags & FOLL_WRITE)
165 			entry = pte_mkdirty(entry);
166 		entry = pte_mkyoung(entry);
167 
168 		if (!pte_same(*pte, entry)) {
169 			set_pte_at(vma->vm_mm, address, pte, entry);
170 			update_mmu_cache(vma, address, pte);
171 		}
172 	}
173 
174 	/* Proper page table entry exists, but no corresponding struct page */
175 	return -EEXIST;
176 }
177 
178 /*
179  * FOLL_FORCE can write to even unwritable pte's, but only
180  * after we've gone through a COW cycle and they are dirty.
181  */
182 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183 {
184 	return pte_write(pte) ||
185 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186 }
187 
188 static struct page *follow_page_pte(struct vm_area_struct *vma,
189 		unsigned long address, pmd_t *pmd, unsigned int flags,
190 		struct dev_pagemap **pgmap)
191 {
192 	struct mm_struct *mm = vma->vm_mm;
193 	struct page *page;
194 	spinlock_t *ptl;
195 	pte_t *ptep, pte;
196 
197 retry:
198 	if (unlikely(pmd_bad(*pmd)))
199 		return no_page_table(vma, flags);
200 
201 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
202 	pte = *ptep;
203 	if (!pte_present(pte)) {
204 		swp_entry_t entry;
205 		/*
206 		 * KSM's break_ksm() relies upon recognizing a ksm page
207 		 * even while it is being migrated, so for that case we
208 		 * need migration_entry_wait().
209 		 */
210 		if (likely(!(flags & FOLL_MIGRATION)))
211 			goto no_page;
212 		if (pte_none(pte))
213 			goto no_page;
214 		entry = pte_to_swp_entry(pte);
215 		if (!is_migration_entry(entry))
216 			goto no_page;
217 		pte_unmap_unlock(ptep, ptl);
218 		migration_entry_wait(mm, pmd, address);
219 		goto retry;
220 	}
221 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
222 		goto no_page;
223 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224 		pte_unmap_unlock(ptep, ptl);
225 		return NULL;
226 	}
227 
228 	page = vm_normal_page(vma, address, pte);
229 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
230 		/*
231 		 * Only return device mapping pages in the FOLL_GET case since
232 		 * they are only valid while holding the pgmap reference.
233 		 */
234 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
235 		if (*pgmap)
236 			page = pte_page(pte);
237 		else
238 			goto no_page;
239 	} else if (unlikely(!page)) {
240 		if (flags & FOLL_DUMP) {
241 			/* Avoid special (like zero) pages in core dumps */
242 			page = ERR_PTR(-EFAULT);
243 			goto out;
244 		}
245 
246 		if (is_zero_pfn(pte_pfn(pte))) {
247 			page = pte_page(pte);
248 		} else {
249 			int ret;
250 
251 			ret = follow_pfn_pte(vma, address, ptep, flags);
252 			page = ERR_PTR(ret);
253 			goto out;
254 		}
255 	}
256 
257 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
258 		int ret;
259 		get_page(page);
260 		pte_unmap_unlock(ptep, ptl);
261 		lock_page(page);
262 		ret = split_huge_page(page);
263 		unlock_page(page);
264 		put_page(page);
265 		if (ret)
266 			return ERR_PTR(ret);
267 		goto retry;
268 	}
269 
270 	if (flags & FOLL_GET) {
271 		if (unlikely(!try_get_page(page))) {
272 			page = ERR_PTR(-ENOMEM);
273 			goto out;
274 		}
275 	}
276 	if (flags & FOLL_TOUCH) {
277 		if ((flags & FOLL_WRITE) &&
278 		    !pte_dirty(pte) && !PageDirty(page))
279 			set_page_dirty(page);
280 		/*
281 		 * pte_mkyoung() would be more correct here, but atomic care
282 		 * is needed to avoid losing the dirty bit: it is easier to use
283 		 * mark_page_accessed().
284 		 */
285 		mark_page_accessed(page);
286 	}
287 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288 		/* Do not mlock pte-mapped THP */
289 		if (PageTransCompound(page))
290 			goto out;
291 
292 		/*
293 		 * The preliminary mapping check is mainly to avoid the
294 		 * pointless overhead of lock_page on the ZERO_PAGE
295 		 * which might bounce very badly if there is contention.
296 		 *
297 		 * If the page is already locked, we don't need to
298 		 * handle it now - vmscan will handle it later if and
299 		 * when it attempts to reclaim the page.
300 		 */
301 		if (page->mapping && trylock_page(page)) {
302 			lru_add_drain();  /* push cached pages to LRU */
303 			/*
304 			 * Because we lock page here, and migration is
305 			 * blocked by the pte's page reference, and we
306 			 * know the page is still mapped, we don't even
307 			 * need to check for file-cache page truncation.
308 			 */
309 			mlock_vma_page(page);
310 			unlock_page(page);
311 		}
312 	}
313 out:
314 	pte_unmap_unlock(ptep, ptl);
315 	return page;
316 no_page:
317 	pte_unmap_unlock(ptep, ptl);
318 	if (!pte_none(pte))
319 		return NULL;
320 	return no_page_table(vma, flags);
321 }
322 
323 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
324 				    unsigned long address, pud_t *pudp,
325 				    unsigned int flags,
326 				    struct follow_page_context *ctx)
327 {
328 	pmd_t *pmd, pmdval;
329 	spinlock_t *ptl;
330 	struct page *page;
331 	struct mm_struct *mm = vma->vm_mm;
332 
333 	pmd = pmd_offset(pudp, address);
334 	/*
335 	 * The READ_ONCE() will stabilize the pmdval in a register or
336 	 * on the stack so that it will stop changing under the code.
337 	 */
338 	pmdval = READ_ONCE(*pmd);
339 	if (pmd_none(pmdval))
340 		return no_page_table(vma, flags);
341 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
342 		page = follow_huge_pmd(mm, address, pmd, flags);
343 		if (page)
344 			return page;
345 		return no_page_table(vma, flags);
346 	}
347 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348 		page = follow_huge_pd(vma, address,
349 				      __hugepd(pmd_val(pmdval)), flags,
350 				      PMD_SHIFT);
351 		if (page)
352 			return page;
353 		return no_page_table(vma, flags);
354 	}
355 retry:
356 	if (!pmd_present(pmdval)) {
357 		if (likely(!(flags & FOLL_MIGRATION)))
358 			return no_page_table(vma, flags);
359 		VM_BUG_ON(thp_migration_supported() &&
360 				  !is_pmd_migration_entry(pmdval));
361 		if (is_pmd_migration_entry(pmdval))
362 			pmd_migration_entry_wait(mm, pmd);
363 		pmdval = READ_ONCE(*pmd);
364 		/*
365 		 * MADV_DONTNEED may convert the pmd to null because
366 		 * mmap_sem is held in read mode
367 		 */
368 		if (pmd_none(pmdval))
369 			return no_page_table(vma, flags);
370 		goto retry;
371 	}
372 	if (pmd_devmap(pmdval)) {
373 		ptl = pmd_lock(mm, pmd);
374 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375 		spin_unlock(ptl);
376 		if (page)
377 			return page;
378 	}
379 	if (likely(!pmd_trans_huge(pmdval)))
380 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381 
382 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383 		return no_page_table(vma, flags);
384 
385 retry_locked:
386 	ptl = pmd_lock(mm, pmd);
387 	if (unlikely(pmd_none(*pmd))) {
388 		spin_unlock(ptl);
389 		return no_page_table(vma, flags);
390 	}
391 	if (unlikely(!pmd_present(*pmd))) {
392 		spin_unlock(ptl);
393 		if (likely(!(flags & FOLL_MIGRATION)))
394 			return no_page_table(vma, flags);
395 		pmd_migration_entry_wait(mm, pmd);
396 		goto retry_locked;
397 	}
398 	if (unlikely(!pmd_trans_huge(*pmd))) {
399 		spin_unlock(ptl);
400 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401 	}
402 	if (flags & FOLL_SPLIT) {
403 		int ret;
404 		page = pmd_page(*pmd);
405 		if (is_huge_zero_page(page)) {
406 			spin_unlock(ptl);
407 			ret = 0;
408 			split_huge_pmd(vma, pmd, address);
409 			if (pmd_trans_unstable(pmd))
410 				ret = -EBUSY;
411 		} else {
412 			if (unlikely(!try_get_page(page))) {
413 				spin_unlock(ptl);
414 				return ERR_PTR(-ENOMEM);
415 			}
416 			spin_unlock(ptl);
417 			lock_page(page);
418 			ret = split_huge_page(page);
419 			unlock_page(page);
420 			put_page(page);
421 			if (pmd_none(*pmd))
422 				return no_page_table(vma, flags);
423 		}
424 
425 		return ret ? ERR_PTR(ret) :
426 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
427 	}
428 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
429 	spin_unlock(ptl);
430 	ctx->page_mask = HPAGE_PMD_NR - 1;
431 	return page;
432 }
433 
434 static struct page *follow_pud_mask(struct vm_area_struct *vma,
435 				    unsigned long address, p4d_t *p4dp,
436 				    unsigned int flags,
437 				    struct follow_page_context *ctx)
438 {
439 	pud_t *pud;
440 	spinlock_t *ptl;
441 	struct page *page;
442 	struct mm_struct *mm = vma->vm_mm;
443 
444 	pud = pud_offset(p4dp, address);
445 	if (pud_none(*pud))
446 		return no_page_table(vma, flags);
447 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
448 		page = follow_huge_pud(mm, address, pud, flags);
449 		if (page)
450 			return page;
451 		return no_page_table(vma, flags);
452 	}
453 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
454 		page = follow_huge_pd(vma, address,
455 				      __hugepd(pud_val(*pud)), flags,
456 				      PUD_SHIFT);
457 		if (page)
458 			return page;
459 		return no_page_table(vma, flags);
460 	}
461 	if (pud_devmap(*pud)) {
462 		ptl = pud_lock(mm, pud);
463 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
464 		spin_unlock(ptl);
465 		if (page)
466 			return page;
467 	}
468 	if (unlikely(pud_bad(*pud)))
469 		return no_page_table(vma, flags);
470 
471 	return follow_pmd_mask(vma, address, pud, flags, ctx);
472 }
473 
474 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
475 				    unsigned long address, pgd_t *pgdp,
476 				    unsigned int flags,
477 				    struct follow_page_context *ctx)
478 {
479 	p4d_t *p4d;
480 	struct page *page;
481 
482 	p4d = p4d_offset(pgdp, address);
483 	if (p4d_none(*p4d))
484 		return no_page_table(vma, flags);
485 	BUILD_BUG_ON(p4d_huge(*p4d));
486 	if (unlikely(p4d_bad(*p4d)))
487 		return no_page_table(vma, flags);
488 
489 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
490 		page = follow_huge_pd(vma, address,
491 				      __hugepd(p4d_val(*p4d)), flags,
492 				      P4D_SHIFT);
493 		if (page)
494 			return page;
495 		return no_page_table(vma, flags);
496 	}
497 	return follow_pud_mask(vma, address, p4d, flags, ctx);
498 }
499 
500 /**
501  * follow_page_mask - look up a page descriptor from a user-virtual address
502  * @vma: vm_area_struct mapping @address
503  * @address: virtual address to look up
504  * @flags: flags modifying lookup behaviour
505  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
506  *       pointer to output page_mask
507  *
508  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
509  *
510  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
511  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
512  *
513  * On output, the @ctx->page_mask is set according to the size of the page.
514  *
515  * Return: the mapped (struct page *), %NULL if no mapping exists, or
516  * an error pointer if there is a mapping to something not represented
517  * by a page descriptor (see also vm_normal_page()).
518  */
519 static struct page *follow_page_mask(struct vm_area_struct *vma,
520 			      unsigned long address, unsigned int flags,
521 			      struct follow_page_context *ctx)
522 {
523 	pgd_t *pgd;
524 	struct page *page;
525 	struct mm_struct *mm = vma->vm_mm;
526 
527 	ctx->page_mask = 0;
528 
529 	/* make this handle hugepd */
530 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
531 	if (!IS_ERR(page)) {
532 		BUG_ON(flags & FOLL_GET);
533 		return page;
534 	}
535 
536 	pgd = pgd_offset(mm, address);
537 
538 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
539 		return no_page_table(vma, flags);
540 
541 	if (pgd_huge(*pgd)) {
542 		page = follow_huge_pgd(mm, address, pgd, flags);
543 		if (page)
544 			return page;
545 		return no_page_table(vma, flags);
546 	}
547 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
548 		page = follow_huge_pd(vma, address,
549 				      __hugepd(pgd_val(*pgd)), flags,
550 				      PGDIR_SHIFT);
551 		if (page)
552 			return page;
553 		return no_page_table(vma, flags);
554 	}
555 
556 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
557 }
558 
559 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
560 			 unsigned int foll_flags)
561 {
562 	struct follow_page_context ctx = { NULL };
563 	struct page *page;
564 
565 	page = follow_page_mask(vma, address, foll_flags, &ctx);
566 	if (ctx.pgmap)
567 		put_dev_pagemap(ctx.pgmap);
568 	return page;
569 }
570 
571 static int get_gate_page(struct mm_struct *mm, unsigned long address,
572 		unsigned int gup_flags, struct vm_area_struct **vma,
573 		struct page **page)
574 {
575 	pgd_t *pgd;
576 	p4d_t *p4d;
577 	pud_t *pud;
578 	pmd_t *pmd;
579 	pte_t *pte;
580 	int ret = -EFAULT;
581 
582 	/* user gate pages are read-only */
583 	if (gup_flags & FOLL_WRITE)
584 		return -EFAULT;
585 	if (address > TASK_SIZE)
586 		pgd = pgd_offset_k(address);
587 	else
588 		pgd = pgd_offset_gate(mm, address);
589 	if (pgd_none(*pgd))
590 		return -EFAULT;
591 	p4d = p4d_offset(pgd, address);
592 	if (p4d_none(*p4d))
593 		return -EFAULT;
594 	pud = pud_offset(p4d, address);
595 	if (pud_none(*pud))
596 		return -EFAULT;
597 	pmd = pmd_offset(pud, address);
598 	if (!pmd_present(*pmd))
599 		return -EFAULT;
600 	VM_BUG_ON(pmd_trans_huge(*pmd));
601 	pte = pte_offset_map(pmd, address);
602 	if (pte_none(*pte))
603 		goto unmap;
604 	*vma = get_gate_vma(mm);
605 	if (!page)
606 		goto out;
607 	*page = vm_normal_page(*vma, address, *pte);
608 	if (!*page) {
609 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
610 			goto unmap;
611 		*page = pte_page(*pte);
612 	}
613 	if (unlikely(!try_get_page(*page))) {
614 		ret = -ENOMEM;
615 		goto unmap;
616 	}
617 out:
618 	ret = 0;
619 unmap:
620 	pte_unmap(pte);
621 	return ret;
622 }
623 
624 /*
625  * mmap_sem must be held on entry.  If @nonblocking != NULL and
626  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
627  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
628  */
629 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
630 		unsigned long address, unsigned int *flags, int *nonblocking)
631 {
632 	unsigned int fault_flags = 0;
633 	vm_fault_t ret;
634 
635 	/* mlock all present pages, but do not fault in new pages */
636 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
637 		return -ENOENT;
638 	if (*flags & FOLL_WRITE)
639 		fault_flags |= FAULT_FLAG_WRITE;
640 	if (*flags & FOLL_REMOTE)
641 		fault_flags |= FAULT_FLAG_REMOTE;
642 	if (nonblocking)
643 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
644 	if (*flags & FOLL_NOWAIT)
645 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
646 	if (*flags & FOLL_TRIED) {
647 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
648 		fault_flags |= FAULT_FLAG_TRIED;
649 	}
650 
651 	ret = handle_mm_fault(vma, address, fault_flags);
652 	if (ret & VM_FAULT_ERROR) {
653 		int err = vm_fault_to_errno(ret, *flags);
654 
655 		if (err)
656 			return err;
657 		BUG();
658 	}
659 
660 	if (tsk) {
661 		if (ret & VM_FAULT_MAJOR)
662 			tsk->maj_flt++;
663 		else
664 			tsk->min_flt++;
665 	}
666 
667 	if (ret & VM_FAULT_RETRY) {
668 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
669 			*nonblocking = 0;
670 		return -EBUSY;
671 	}
672 
673 	/*
674 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
675 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
676 	 * can thus safely do subsequent page lookups as if they were reads.
677 	 * But only do so when looping for pte_write is futile: in some cases
678 	 * userspace may also be wanting to write to the gotten user page,
679 	 * which a read fault here might prevent (a readonly page might get
680 	 * reCOWed by userspace write).
681 	 */
682 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
683 		*flags |= FOLL_COW;
684 	return 0;
685 }
686 
687 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
688 {
689 	vm_flags_t vm_flags = vma->vm_flags;
690 	int write = (gup_flags & FOLL_WRITE);
691 	int foreign = (gup_flags & FOLL_REMOTE);
692 
693 	if (vm_flags & (VM_IO | VM_PFNMAP))
694 		return -EFAULT;
695 
696 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
697 		return -EFAULT;
698 
699 	if (write) {
700 		if (!(vm_flags & VM_WRITE)) {
701 			if (!(gup_flags & FOLL_FORCE))
702 				return -EFAULT;
703 			/*
704 			 * We used to let the write,force case do COW in a
705 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
706 			 * set a breakpoint in a read-only mapping of an
707 			 * executable, without corrupting the file (yet only
708 			 * when that file had been opened for writing!).
709 			 * Anon pages in shared mappings are surprising: now
710 			 * just reject it.
711 			 */
712 			if (!is_cow_mapping(vm_flags))
713 				return -EFAULT;
714 		}
715 	} else if (!(vm_flags & VM_READ)) {
716 		if (!(gup_flags & FOLL_FORCE))
717 			return -EFAULT;
718 		/*
719 		 * Is there actually any vma we can reach here which does not
720 		 * have VM_MAYREAD set?
721 		 */
722 		if (!(vm_flags & VM_MAYREAD))
723 			return -EFAULT;
724 	}
725 	/*
726 	 * gups are always data accesses, not instruction
727 	 * fetches, so execute=false here
728 	 */
729 	if (!arch_vma_access_permitted(vma, write, false, foreign))
730 		return -EFAULT;
731 	return 0;
732 }
733 
734 /**
735  * __get_user_pages() - pin user pages in memory
736  * @tsk:	task_struct of target task
737  * @mm:		mm_struct of target mm
738  * @start:	starting user address
739  * @nr_pages:	number of pages from start to pin
740  * @gup_flags:	flags modifying pin behaviour
741  * @pages:	array that receives pointers to the pages pinned.
742  *		Should be at least nr_pages long. Or NULL, if caller
743  *		only intends to ensure the pages are faulted in.
744  * @vmas:	array of pointers to vmas corresponding to each page.
745  *		Or NULL if the caller does not require them.
746  * @nonblocking: whether waiting for disk IO or mmap_sem contention
747  *
748  * Returns number of pages pinned. This may be fewer than the number
749  * requested. If nr_pages is 0 or negative, returns 0. If no pages
750  * were pinned, returns -errno. Each page returned must be released
751  * with a put_page() call when it is finished with. vmas will only
752  * remain valid while mmap_sem is held.
753  *
754  * Must be called with mmap_sem held.  It may be released.  See below.
755  *
756  * __get_user_pages walks a process's page tables and takes a reference to
757  * each struct page that each user address corresponds to at a given
758  * instant. That is, it takes the page that would be accessed if a user
759  * thread accesses the given user virtual address at that instant.
760  *
761  * This does not guarantee that the page exists in the user mappings when
762  * __get_user_pages returns, and there may even be a completely different
763  * page there in some cases (eg. if mmapped pagecache has been invalidated
764  * and subsequently re faulted). However it does guarantee that the page
765  * won't be freed completely. And mostly callers simply care that the page
766  * contains data that was valid *at some point in time*. Typically, an IO
767  * or similar operation cannot guarantee anything stronger anyway because
768  * locks can't be held over the syscall boundary.
769  *
770  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
771  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
772  * appropriate) must be called after the page is finished with, and
773  * before put_page is called.
774  *
775  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
776  * or mmap_sem contention, and if waiting is needed to pin all pages,
777  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
778  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
779  * this case.
780  *
781  * A caller using such a combination of @nonblocking and @gup_flags
782  * must therefore hold the mmap_sem for reading only, and recognize
783  * when it's been released.  Otherwise, it must be held for either
784  * reading or writing and will not be released.
785  *
786  * In most cases, get_user_pages or get_user_pages_fast should be used
787  * instead of __get_user_pages. __get_user_pages should be used only if
788  * you need some special @gup_flags.
789  */
790 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
791 		unsigned long start, unsigned long nr_pages,
792 		unsigned int gup_flags, struct page **pages,
793 		struct vm_area_struct **vmas, int *nonblocking)
794 {
795 	long ret = 0, i = 0;
796 	struct vm_area_struct *vma = NULL;
797 	struct follow_page_context ctx = { NULL };
798 
799 	if (!nr_pages)
800 		return 0;
801 
802 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
803 
804 	/*
805 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
806 	 * fault information is unrelated to the reference behaviour of a task
807 	 * using the address space
808 	 */
809 	if (!(gup_flags & FOLL_FORCE))
810 		gup_flags |= FOLL_NUMA;
811 
812 	do {
813 		struct page *page;
814 		unsigned int foll_flags = gup_flags;
815 		unsigned int page_increm;
816 
817 		/* first iteration or cross vma bound */
818 		if (!vma || start >= vma->vm_end) {
819 			vma = find_extend_vma(mm, start);
820 			if (!vma && in_gate_area(mm, start)) {
821 				ret = get_gate_page(mm, start & PAGE_MASK,
822 						gup_flags, &vma,
823 						pages ? &pages[i] : NULL);
824 				if (ret)
825 					goto out;
826 				ctx.page_mask = 0;
827 				goto next_page;
828 			}
829 
830 			if (!vma || check_vma_flags(vma, gup_flags)) {
831 				ret = -EFAULT;
832 				goto out;
833 			}
834 			if (is_vm_hugetlb_page(vma)) {
835 				i = follow_hugetlb_page(mm, vma, pages, vmas,
836 						&start, &nr_pages, i,
837 						gup_flags, nonblocking);
838 				continue;
839 			}
840 		}
841 retry:
842 		/*
843 		 * If we have a pending SIGKILL, don't keep faulting pages and
844 		 * potentially allocating memory.
845 		 */
846 		if (fatal_signal_pending(current)) {
847 			ret = -ERESTARTSYS;
848 			goto out;
849 		}
850 		cond_resched();
851 
852 		page = follow_page_mask(vma, start, foll_flags, &ctx);
853 		if (!page) {
854 			ret = faultin_page(tsk, vma, start, &foll_flags,
855 					nonblocking);
856 			switch (ret) {
857 			case 0:
858 				goto retry;
859 			case -EBUSY:
860 				ret = 0;
861 				/* FALLTHRU */
862 			case -EFAULT:
863 			case -ENOMEM:
864 			case -EHWPOISON:
865 				goto out;
866 			case -ENOENT:
867 				goto next_page;
868 			}
869 			BUG();
870 		} else if (PTR_ERR(page) == -EEXIST) {
871 			/*
872 			 * Proper page table entry exists, but no corresponding
873 			 * struct page.
874 			 */
875 			goto next_page;
876 		} else if (IS_ERR(page)) {
877 			ret = PTR_ERR(page);
878 			goto out;
879 		}
880 		if (pages) {
881 			pages[i] = page;
882 			flush_anon_page(vma, page, start);
883 			flush_dcache_page(page);
884 			ctx.page_mask = 0;
885 		}
886 next_page:
887 		if (vmas) {
888 			vmas[i] = vma;
889 			ctx.page_mask = 0;
890 		}
891 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
892 		if (page_increm > nr_pages)
893 			page_increm = nr_pages;
894 		i += page_increm;
895 		start += page_increm * PAGE_SIZE;
896 		nr_pages -= page_increm;
897 	} while (nr_pages);
898 out:
899 	if (ctx.pgmap)
900 		put_dev_pagemap(ctx.pgmap);
901 	return i ? i : ret;
902 }
903 
904 static bool vma_permits_fault(struct vm_area_struct *vma,
905 			      unsigned int fault_flags)
906 {
907 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
908 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
909 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
910 
911 	if (!(vm_flags & vma->vm_flags))
912 		return false;
913 
914 	/*
915 	 * The architecture might have a hardware protection
916 	 * mechanism other than read/write that can deny access.
917 	 *
918 	 * gup always represents data access, not instruction
919 	 * fetches, so execute=false here:
920 	 */
921 	if (!arch_vma_access_permitted(vma, write, false, foreign))
922 		return false;
923 
924 	return true;
925 }
926 
927 /*
928  * fixup_user_fault() - manually resolve a user page fault
929  * @tsk:	the task_struct to use for page fault accounting, or
930  *		NULL if faults are not to be recorded.
931  * @mm:		mm_struct of target mm
932  * @address:	user address
933  * @fault_flags:flags to pass down to handle_mm_fault()
934  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
935  *		does not allow retry
936  *
937  * This is meant to be called in the specific scenario where for locking reasons
938  * we try to access user memory in atomic context (within a pagefault_disable()
939  * section), this returns -EFAULT, and we want to resolve the user fault before
940  * trying again.
941  *
942  * Typically this is meant to be used by the futex code.
943  *
944  * The main difference with get_user_pages() is that this function will
945  * unconditionally call handle_mm_fault() which will in turn perform all the
946  * necessary SW fixup of the dirty and young bits in the PTE, while
947  * get_user_pages() only guarantees to update these in the struct page.
948  *
949  * This is important for some architectures where those bits also gate the
950  * access permission to the page because they are maintained in software.  On
951  * such architectures, gup() will not be enough to make a subsequent access
952  * succeed.
953  *
954  * This function will not return with an unlocked mmap_sem. So it has not the
955  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
956  */
957 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
958 		     unsigned long address, unsigned int fault_flags,
959 		     bool *unlocked)
960 {
961 	struct vm_area_struct *vma;
962 	vm_fault_t ret, major = 0;
963 
964 	if (unlocked)
965 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
966 
967 retry:
968 	vma = find_extend_vma(mm, address);
969 	if (!vma || address < vma->vm_start)
970 		return -EFAULT;
971 
972 	if (!vma_permits_fault(vma, fault_flags))
973 		return -EFAULT;
974 
975 	ret = handle_mm_fault(vma, address, fault_flags);
976 	major |= ret & VM_FAULT_MAJOR;
977 	if (ret & VM_FAULT_ERROR) {
978 		int err = vm_fault_to_errno(ret, 0);
979 
980 		if (err)
981 			return err;
982 		BUG();
983 	}
984 
985 	if (ret & VM_FAULT_RETRY) {
986 		down_read(&mm->mmap_sem);
987 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
988 			*unlocked = true;
989 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
990 			fault_flags |= FAULT_FLAG_TRIED;
991 			goto retry;
992 		}
993 	}
994 
995 	if (tsk) {
996 		if (major)
997 			tsk->maj_flt++;
998 		else
999 			tsk->min_flt++;
1000 	}
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(fixup_user_fault);
1004 
1005 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1006 						struct mm_struct *mm,
1007 						unsigned long start,
1008 						unsigned long nr_pages,
1009 						struct page **pages,
1010 						struct vm_area_struct **vmas,
1011 						int *locked,
1012 						unsigned int flags)
1013 {
1014 	long ret, pages_done;
1015 	bool lock_dropped;
1016 
1017 	if (locked) {
1018 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1019 		BUG_ON(vmas);
1020 		/* check caller initialized locked */
1021 		BUG_ON(*locked != 1);
1022 	}
1023 
1024 	if (pages)
1025 		flags |= FOLL_GET;
1026 
1027 	pages_done = 0;
1028 	lock_dropped = false;
1029 	for (;;) {
1030 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1031 				       vmas, locked);
1032 		if (!locked)
1033 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1034 			return ret;
1035 
1036 		/* VM_FAULT_RETRY cannot return errors */
1037 		if (!*locked) {
1038 			BUG_ON(ret < 0);
1039 			BUG_ON(ret >= nr_pages);
1040 		}
1041 
1042 		if (ret > 0) {
1043 			nr_pages -= ret;
1044 			pages_done += ret;
1045 			if (!nr_pages)
1046 				break;
1047 		}
1048 		if (*locked) {
1049 			/*
1050 			 * VM_FAULT_RETRY didn't trigger or it was a
1051 			 * FOLL_NOWAIT.
1052 			 */
1053 			if (!pages_done)
1054 				pages_done = ret;
1055 			break;
1056 		}
1057 		/*
1058 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1059 		 * For the prefault case (!pages) we only update counts.
1060 		 */
1061 		if (likely(pages))
1062 			pages += ret;
1063 		start += ret << PAGE_SHIFT;
1064 
1065 		/*
1066 		 * Repeat on the address that fired VM_FAULT_RETRY
1067 		 * without FAULT_FLAG_ALLOW_RETRY but with
1068 		 * FAULT_FLAG_TRIED.
1069 		 */
1070 		*locked = 1;
1071 		lock_dropped = true;
1072 		down_read(&mm->mmap_sem);
1073 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1074 				       pages, NULL, NULL);
1075 		if (ret != 1) {
1076 			BUG_ON(ret > 1);
1077 			if (!pages_done)
1078 				pages_done = ret;
1079 			break;
1080 		}
1081 		nr_pages--;
1082 		pages_done++;
1083 		if (!nr_pages)
1084 			break;
1085 		if (likely(pages))
1086 			pages++;
1087 		start += PAGE_SIZE;
1088 	}
1089 	if (lock_dropped && *locked) {
1090 		/*
1091 		 * We must let the caller know we temporarily dropped the lock
1092 		 * and so the critical section protected by it was lost.
1093 		 */
1094 		up_read(&mm->mmap_sem);
1095 		*locked = 0;
1096 	}
1097 	return pages_done;
1098 }
1099 
1100 /*
1101  * get_user_pages_remote() - pin user pages in memory
1102  * @tsk:	the task_struct to use for page fault accounting, or
1103  *		NULL if faults are not to be recorded.
1104  * @mm:		mm_struct of target mm
1105  * @start:	starting user address
1106  * @nr_pages:	number of pages from start to pin
1107  * @gup_flags:	flags modifying lookup behaviour
1108  * @pages:	array that receives pointers to the pages pinned.
1109  *		Should be at least nr_pages long. Or NULL, if caller
1110  *		only intends to ensure the pages are faulted in.
1111  * @vmas:	array of pointers to vmas corresponding to each page.
1112  *		Or NULL if the caller does not require them.
1113  * @locked:	pointer to lock flag indicating whether lock is held and
1114  *		subsequently whether VM_FAULT_RETRY functionality can be
1115  *		utilised. Lock must initially be held.
1116  *
1117  * Returns number of pages pinned. This may be fewer than the number
1118  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1119  * were pinned, returns -errno. Each page returned must be released
1120  * with a put_page() call when it is finished with. vmas will only
1121  * remain valid while mmap_sem is held.
1122  *
1123  * Must be called with mmap_sem held for read or write.
1124  *
1125  * get_user_pages walks a process's page tables and takes a reference to
1126  * each struct page that each user address corresponds to at a given
1127  * instant. That is, it takes the page that would be accessed if a user
1128  * thread accesses the given user virtual address at that instant.
1129  *
1130  * This does not guarantee that the page exists in the user mappings when
1131  * get_user_pages returns, and there may even be a completely different
1132  * page there in some cases (eg. if mmapped pagecache has been invalidated
1133  * and subsequently re faulted). However it does guarantee that the page
1134  * won't be freed completely. And mostly callers simply care that the page
1135  * contains data that was valid *at some point in time*. Typically, an IO
1136  * or similar operation cannot guarantee anything stronger anyway because
1137  * locks can't be held over the syscall boundary.
1138  *
1139  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1140  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1141  * be called after the page is finished with, and before put_page is called.
1142  *
1143  * get_user_pages is typically used for fewer-copy IO operations, to get a
1144  * handle on the memory by some means other than accesses via the user virtual
1145  * addresses. The pages may be submitted for DMA to devices or accessed via
1146  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1147  * use the correct cache flushing APIs.
1148  *
1149  * See also get_user_pages_fast, for performance critical applications.
1150  *
1151  * get_user_pages should be phased out in favor of
1152  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1153  * should use get_user_pages because it cannot pass
1154  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1155  */
1156 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1157 		unsigned long start, unsigned long nr_pages,
1158 		unsigned int gup_flags, struct page **pages,
1159 		struct vm_area_struct **vmas, int *locked)
1160 {
1161 	/*
1162 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1163 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1164 	 * vmas.  As there are no users of this flag in this call we simply
1165 	 * disallow this option for now.
1166 	 */
1167 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1168 		return -EINVAL;
1169 
1170 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1171 				       locked,
1172 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1173 }
1174 EXPORT_SYMBOL(get_user_pages_remote);
1175 
1176 /**
1177  * populate_vma_page_range() -  populate a range of pages in the vma.
1178  * @vma:   target vma
1179  * @start: start address
1180  * @end:   end address
1181  * @nonblocking:
1182  *
1183  * This takes care of mlocking the pages too if VM_LOCKED is set.
1184  *
1185  * return 0 on success, negative error code on error.
1186  *
1187  * vma->vm_mm->mmap_sem must be held.
1188  *
1189  * If @nonblocking is NULL, it may be held for read or write and will
1190  * be unperturbed.
1191  *
1192  * If @nonblocking is non-NULL, it must held for read only and may be
1193  * released.  If it's released, *@nonblocking will be set to 0.
1194  */
1195 long populate_vma_page_range(struct vm_area_struct *vma,
1196 		unsigned long start, unsigned long end, int *nonblocking)
1197 {
1198 	struct mm_struct *mm = vma->vm_mm;
1199 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1200 	int gup_flags;
1201 
1202 	VM_BUG_ON(start & ~PAGE_MASK);
1203 	VM_BUG_ON(end   & ~PAGE_MASK);
1204 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1205 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1206 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1207 
1208 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1209 	if (vma->vm_flags & VM_LOCKONFAULT)
1210 		gup_flags &= ~FOLL_POPULATE;
1211 	/*
1212 	 * We want to touch writable mappings with a write fault in order
1213 	 * to break COW, except for shared mappings because these don't COW
1214 	 * and we would not want to dirty them for nothing.
1215 	 */
1216 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1217 		gup_flags |= FOLL_WRITE;
1218 
1219 	/*
1220 	 * We want mlock to succeed for regions that have any permissions
1221 	 * other than PROT_NONE.
1222 	 */
1223 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1224 		gup_flags |= FOLL_FORCE;
1225 
1226 	/*
1227 	 * We made sure addr is within a VMA, so the following will
1228 	 * not result in a stack expansion that recurses back here.
1229 	 */
1230 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1231 				NULL, NULL, nonblocking);
1232 }
1233 
1234 /*
1235  * __mm_populate - populate and/or mlock pages within a range of address space.
1236  *
1237  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1238  * flags. VMAs must be already marked with the desired vm_flags, and
1239  * mmap_sem must not be held.
1240  */
1241 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1242 {
1243 	struct mm_struct *mm = current->mm;
1244 	unsigned long end, nstart, nend;
1245 	struct vm_area_struct *vma = NULL;
1246 	int locked = 0;
1247 	long ret = 0;
1248 
1249 	end = start + len;
1250 
1251 	for (nstart = start; nstart < end; nstart = nend) {
1252 		/*
1253 		 * We want to fault in pages for [nstart; end) address range.
1254 		 * Find first corresponding VMA.
1255 		 */
1256 		if (!locked) {
1257 			locked = 1;
1258 			down_read(&mm->mmap_sem);
1259 			vma = find_vma(mm, nstart);
1260 		} else if (nstart >= vma->vm_end)
1261 			vma = vma->vm_next;
1262 		if (!vma || vma->vm_start >= end)
1263 			break;
1264 		/*
1265 		 * Set [nstart; nend) to intersection of desired address
1266 		 * range with the first VMA. Also, skip undesirable VMA types.
1267 		 */
1268 		nend = min(end, vma->vm_end);
1269 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1270 			continue;
1271 		if (nstart < vma->vm_start)
1272 			nstart = vma->vm_start;
1273 		/*
1274 		 * Now fault in a range of pages. populate_vma_page_range()
1275 		 * double checks the vma flags, so that it won't mlock pages
1276 		 * if the vma was already munlocked.
1277 		 */
1278 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1279 		if (ret < 0) {
1280 			if (ignore_errors) {
1281 				ret = 0;
1282 				continue;	/* continue at next VMA */
1283 			}
1284 			break;
1285 		}
1286 		nend = nstart + ret * PAGE_SIZE;
1287 		ret = 0;
1288 	}
1289 	if (locked)
1290 		up_read(&mm->mmap_sem);
1291 	return ret;	/* 0 or negative error code */
1292 }
1293 
1294 /**
1295  * get_dump_page() - pin user page in memory while writing it to core dump
1296  * @addr: user address
1297  *
1298  * Returns struct page pointer of user page pinned for dump,
1299  * to be freed afterwards by put_page().
1300  *
1301  * Returns NULL on any kind of failure - a hole must then be inserted into
1302  * the corefile, to preserve alignment with its headers; and also returns
1303  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1304  * allowing a hole to be left in the corefile to save diskspace.
1305  *
1306  * Called without mmap_sem, but after all other threads have been killed.
1307  */
1308 #ifdef CONFIG_ELF_CORE
1309 struct page *get_dump_page(unsigned long addr)
1310 {
1311 	struct vm_area_struct *vma;
1312 	struct page *page;
1313 
1314 	if (__get_user_pages(current, current->mm, addr, 1,
1315 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1316 			     NULL) < 1)
1317 		return NULL;
1318 	flush_cache_page(vma, addr, page_to_pfn(page));
1319 	return page;
1320 }
1321 #endif /* CONFIG_ELF_CORE */
1322 #else /* CONFIG_MMU */
1323 static long __get_user_pages_locked(struct task_struct *tsk,
1324 		struct mm_struct *mm, unsigned long start,
1325 		unsigned long nr_pages, struct page **pages,
1326 		struct vm_area_struct **vmas, int *locked,
1327 		unsigned int foll_flags)
1328 {
1329 	struct vm_area_struct *vma;
1330 	unsigned long vm_flags;
1331 	int i;
1332 
1333 	/* calculate required read or write permissions.
1334 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1335 	 */
1336 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1337 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1338 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1339 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1340 
1341 	for (i = 0; i < nr_pages; i++) {
1342 		vma = find_vma(mm, start);
1343 		if (!vma)
1344 			goto finish_or_fault;
1345 
1346 		/* protect what we can, including chardevs */
1347 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1348 		    !(vm_flags & vma->vm_flags))
1349 			goto finish_or_fault;
1350 
1351 		if (pages) {
1352 			pages[i] = virt_to_page(start);
1353 			if (pages[i])
1354 				get_page(pages[i]);
1355 		}
1356 		if (vmas)
1357 			vmas[i] = vma;
1358 		start = (start + PAGE_SIZE) & PAGE_MASK;
1359 	}
1360 
1361 	return i;
1362 
1363 finish_or_fault:
1364 	return i ? : -EFAULT;
1365 }
1366 #endif /* !CONFIG_MMU */
1367 
1368 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1369 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1370 {
1371 	long i;
1372 	struct vm_area_struct *vma_prev = NULL;
1373 
1374 	for (i = 0; i < nr_pages; i++) {
1375 		struct vm_area_struct *vma = vmas[i];
1376 
1377 		if (vma == vma_prev)
1378 			continue;
1379 
1380 		vma_prev = vma;
1381 
1382 		if (vma_is_fsdax(vma))
1383 			return true;
1384 	}
1385 	return false;
1386 }
1387 
1388 #ifdef CONFIG_CMA
1389 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1390 {
1391 	/*
1392 	 * We want to make sure we allocate the new page from the same node
1393 	 * as the source page.
1394 	 */
1395 	int nid = page_to_nid(page);
1396 	/*
1397 	 * Trying to allocate a page for migration. Ignore allocation
1398 	 * failure warnings. We don't force __GFP_THISNODE here because
1399 	 * this node here is the node where we have CMA reservation and
1400 	 * in some case these nodes will have really less non movable
1401 	 * allocation memory.
1402 	 */
1403 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1404 
1405 	if (PageHighMem(page))
1406 		gfp_mask |= __GFP_HIGHMEM;
1407 
1408 #ifdef CONFIG_HUGETLB_PAGE
1409 	if (PageHuge(page)) {
1410 		struct hstate *h = page_hstate(page);
1411 		/*
1412 		 * We don't want to dequeue from the pool because pool pages will
1413 		 * mostly be from the CMA region.
1414 		 */
1415 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1416 	}
1417 #endif
1418 	if (PageTransHuge(page)) {
1419 		struct page *thp;
1420 		/*
1421 		 * ignore allocation failure warnings
1422 		 */
1423 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1424 
1425 		/*
1426 		 * Remove the movable mask so that we don't allocate from
1427 		 * CMA area again.
1428 		 */
1429 		thp_gfpmask &= ~__GFP_MOVABLE;
1430 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1431 		if (!thp)
1432 			return NULL;
1433 		prep_transhuge_page(thp);
1434 		return thp;
1435 	}
1436 
1437 	return __alloc_pages_node(nid, gfp_mask, 0);
1438 }
1439 
1440 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1441 					struct mm_struct *mm,
1442 					unsigned long start,
1443 					unsigned long nr_pages,
1444 					struct page **pages,
1445 					struct vm_area_struct **vmas,
1446 					unsigned int gup_flags)
1447 {
1448 	unsigned long i;
1449 	unsigned long step;
1450 	bool drain_allow = true;
1451 	bool migrate_allow = true;
1452 	LIST_HEAD(cma_page_list);
1453 
1454 check_again:
1455 	for (i = 0; i < nr_pages;) {
1456 
1457 		struct page *head = compound_head(pages[i]);
1458 
1459 		/*
1460 		 * gup may start from a tail page. Advance step by the left
1461 		 * part.
1462 		 */
1463 		step = (1 << compound_order(head)) - (pages[i] - head);
1464 		/*
1465 		 * If we get a page from the CMA zone, since we are going to
1466 		 * be pinning these entries, we might as well move them out
1467 		 * of the CMA zone if possible.
1468 		 */
1469 		if (is_migrate_cma_page(head)) {
1470 			if (PageHuge(head))
1471 				isolate_huge_page(head, &cma_page_list);
1472 			else {
1473 				if (!PageLRU(head) && drain_allow) {
1474 					lru_add_drain_all();
1475 					drain_allow = false;
1476 				}
1477 
1478 				if (!isolate_lru_page(head)) {
1479 					list_add_tail(&head->lru, &cma_page_list);
1480 					mod_node_page_state(page_pgdat(head),
1481 							    NR_ISOLATED_ANON +
1482 							    page_is_file_cache(head),
1483 							    hpage_nr_pages(head));
1484 				}
1485 			}
1486 		}
1487 
1488 		i += step;
1489 	}
1490 
1491 	if (!list_empty(&cma_page_list)) {
1492 		/*
1493 		 * drop the above get_user_pages reference.
1494 		 */
1495 		for (i = 0; i < nr_pages; i++)
1496 			put_page(pages[i]);
1497 
1498 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1499 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1500 			/*
1501 			 * some of the pages failed migration. Do get_user_pages
1502 			 * without migration.
1503 			 */
1504 			migrate_allow = false;
1505 
1506 			if (!list_empty(&cma_page_list))
1507 				putback_movable_pages(&cma_page_list);
1508 		}
1509 		/*
1510 		 * We did migrate all the pages, Try to get the page references
1511 		 * again migrating any new CMA pages which we failed to isolate
1512 		 * earlier.
1513 		 */
1514 		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1515 						   pages, vmas, NULL,
1516 						   gup_flags);
1517 
1518 		if ((nr_pages > 0) && migrate_allow) {
1519 			drain_allow = true;
1520 			goto check_again;
1521 		}
1522 	}
1523 
1524 	return nr_pages;
1525 }
1526 #else
1527 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1528 					struct mm_struct *mm,
1529 					unsigned long start,
1530 					unsigned long nr_pages,
1531 					struct page **pages,
1532 					struct vm_area_struct **vmas,
1533 					unsigned int gup_flags)
1534 {
1535 	return nr_pages;
1536 }
1537 #endif /* CONFIG_CMA */
1538 
1539 /*
1540  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1541  * allows us to process the FOLL_LONGTERM flag.
1542  */
1543 static long __gup_longterm_locked(struct task_struct *tsk,
1544 				  struct mm_struct *mm,
1545 				  unsigned long start,
1546 				  unsigned long nr_pages,
1547 				  struct page **pages,
1548 				  struct vm_area_struct **vmas,
1549 				  unsigned int gup_flags)
1550 {
1551 	struct vm_area_struct **vmas_tmp = vmas;
1552 	unsigned long flags = 0;
1553 	long rc, i;
1554 
1555 	if (gup_flags & FOLL_LONGTERM) {
1556 		if (!pages)
1557 			return -EINVAL;
1558 
1559 		if (!vmas_tmp) {
1560 			vmas_tmp = kcalloc(nr_pages,
1561 					   sizeof(struct vm_area_struct *),
1562 					   GFP_KERNEL);
1563 			if (!vmas_tmp)
1564 				return -ENOMEM;
1565 		}
1566 		flags = memalloc_nocma_save();
1567 	}
1568 
1569 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1570 				     vmas_tmp, NULL, gup_flags);
1571 
1572 	if (gup_flags & FOLL_LONGTERM) {
1573 		memalloc_nocma_restore(flags);
1574 		if (rc < 0)
1575 			goto out;
1576 
1577 		if (check_dax_vmas(vmas_tmp, rc)) {
1578 			for (i = 0; i < rc; i++)
1579 				put_page(pages[i]);
1580 			rc = -EOPNOTSUPP;
1581 			goto out;
1582 		}
1583 
1584 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1585 						 vmas_tmp, gup_flags);
1586 	}
1587 
1588 out:
1589 	if (vmas_tmp != vmas)
1590 		kfree(vmas_tmp);
1591 	return rc;
1592 }
1593 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1594 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1595 						  struct mm_struct *mm,
1596 						  unsigned long start,
1597 						  unsigned long nr_pages,
1598 						  struct page **pages,
1599 						  struct vm_area_struct **vmas,
1600 						  unsigned int flags)
1601 {
1602 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1603 				       NULL, flags);
1604 }
1605 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1606 
1607 /*
1608  * This is the same as get_user_pages_remote(), just with a
1609  * less-flexible calling convention where we assume that the task
1610  * and mm being operated on are the current task's and don't allow
1611  * passing of a locked parameter.  We also obviously don't pass
1612  * FOLL_REMOTE in here.
1613  */
1614 long get_user_pages(unsigned long start, unsigned long nr_pages,
1615 		unsigned int gup_flags, struct page **pages,
1616 		struct vm_area_struct **vmas)
1617 {
1618 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1619 				     pages, vmas, gup_flags | FOLL_TOUCH);
1620 }
1621 EXPORT_SYMBOL(get_user_pages);
1622 
1623 /*
1624  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1625  * paths better by using either get_user_pages_locked() or
1626  * get_user_pages_unlocked().
1627  *
1628  * get_user_pages_locked() is suitable to replace the form:
1629  *
1630  *      down_read(&mm->mmap_sem);
1631  *      do_something()
1632  *      get_user_pages(tsk, mm, ..., pages, NULL);
1633  *      up_read(&mm->mmap_sem);
1634  *
1635  *  to:
1636  *
1637  *      int locked = 1;
1638  *      down_read(&mm->mmap_sem);
1639  *      do_something()
1640  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1641  *      if (locked)
1642  *          up_read(&mm->mmap_sem);
1643  */
1644 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1645 			   unsigned int gup_flags, struct page **pages,
1646 			   int *locked)
1647 {
1648 	/*
1649 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1650 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1651 	 * vmas.  As there are no users of this flag in this call we simply
1652 	 * disallow this option for now.
1653 	 */
1654 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1655 		return -EINVAL;
1656 
1657 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1658 				       pages, NULL, locked,
1659 				       gup_flags | FOLL_TOUCH);
1660 }
1661 EXPORT_SYMBOL(get_user_pages_locked);
1662 
1663 /*
1664  * get_user_pages_unlocked() is suitable to replace the form:
1665  *
1666  *      down_read(&mm->mmap_sem);
1667  *      get_user_pages(tsk, mm, ..., pages, NULL);
1668  *      up_read(&mm->mmap_sem);
1669  *
1670  *  with:
1671  *
1672  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1673  *
1674  * It is functionally equivalent to get_user_pages_fast so
1675  * get_user_pages_fast should be used instead if specific gup_flags
1676  * (e.g. FOLL_FORCE) are not required.
1677  */
1678 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1679 			     struct page **pages, unsigned int gup_flags)
1680 {
1681 	struct mm_struct *mm = current->mm;
1682 	int locked = 1;
1683 	long ret;
1684 
1685 	/*
1686 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1687 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1688 	 * vmas.  As there are no users of this flag in this call we simply
1689 	 * disallow this option for now.
1690 	 */
1691 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1692 		return -EINVAL;
1693 
1694 	down_read(&mm->mmap_sem);
1695 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1696 				      &locked, gup_flags | FOLL_TOUCH);
1697 	if (locked)
1698 		up_read(&mm->mmap_sem);
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL(get_user_pages_unlocked);
1702 
1703 /*
1704  * Fast GUP
1705  *
1706  * get_user_pages_fast attempts to pin user pages by walking the page
1707  * tables directly and avoids taking locks. Thus the walker needs to be
1708  * protected from page table pages being freed from under it, and should
1709  * block any THP splits.
1710  *
1711  * One way to achieve this is to have the walker disable interrupts, and
1712  * rely on IPIs from the TLB flushing code blocking before the page table
1713  * pages are freed. This is unsuitable for architectures that do not need
1714  * to broadcast an IPI when invalidating TLBs.
1715  *
1716  * Another way to achieve this is to batch up page table containing pages
1717  * belonging to more than one mm_user, then rcu_sched a callback to free those
1718  * pages. Disabling interrupts will allow the fast_gup walker to both block
1719  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1720  * (which is a relatively rare event). The code below adopts this strategy.
1721  *
1722  * Before activating this code, please be aware that the following assumptions
1723  * are currently made:
1724  *
1725  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1726  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1727  *
1728  *  *) ptes can be read atomically by the architecture.
1729  *
1730  *  *) access_ok is sufficient to validate userspace address ranges.
1731  *
1732  * The last two assumptions can be relaxed by the addition of helper functions.
1733  *
1734  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1735  */
1736 #ifdef CONFIG_HAVE_FAST_GUP
1737 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1738 /*
1739  * WARNING: only to be used in the get_user_pages_fast() implementation.
1740  *
1741  * With get_user_pages_fast(), we walk down the pagetables without taking any
1742  * locks.  For this we would like to load the pointers atomically, but sometimes
1743  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1744  * we do have is the guarantee that a PTE will only either go from not present
1745  * to present, or present to not present or both -- it will not switch to a
1746  * completely different present page without a TLB flush in between; something
1747  * that we are blocking by holding interrupts off.
1748  *
1749  * Setting ptes from not present to present goes:
1750  *
1751  *   ptep->pte_high = h;
1752  *   smp_wmb();
1753  *   ptep->pte_low = l;
1754  *
1755  * And present to not present goes:
1756  *
1757  *   ptep->pte_low = 0;
1758  *   smp_wmb();
1759  *   ptep->pte_high = 0;
1760  *
1761  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1762  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1763  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1764  * picked up a changed pte high. We might have gotten rubbish values from
1765  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1766  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1767  * operates on present ptes we're safe.
1768  */
1769 static inline pte_t gup_get_pte(pte_t *ptep)
1770 {
1771 	pte_t pte;
1772 
1773 	do {
1774 		pte.pte_low = ptep->pte_low;
1775 		smp_rmb();
1776 		pte.pte_high = ptep->pte_high;
1777 		smp_rmb();
1778 	} while (unlikely(pte.pte_low != ptep->pte_low));
1779 
1780 	return pte;
1781 }
1782 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1783 /*
1784  * We require that the PTE can be read atomically.
1785  */
1786 static inline pte_t gup_get_pte(pte_t *ptep)
1787 {
1788 	return READ_ONCE(*ptep);
1789 }
1790 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1791 
1792 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1793 					    struct page **pages)
1794 {
1795 	while ((*nr) - nr_start) {
1796 		struct page *page = pages[--(*nr)];
1797 
1798 		ClearPageReferenced(page);
1799 		put_page(page);
1800 	}
1801 }
1802 
1803 /*
1804  * Return the compund head page with ref appropriately incremented,
1805  * or NULL if that failed.
1806  */
1807 static inline struct page *try_get_compound_head(struct page *page, int refs)
1808 {
1809 	struct page *head = compound_head(page);
1810 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1811 		return NULL;
1812 	if (unlikely(!page_cache_add_speculative(head, refs)))
1813 		return NULL;
1814 	return head;
1815 }
1816 
1817 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1818 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1819 			 unsigned int flags, struct page **pages, int *nr)
1820 {
1821 	struct dev_pagemap *pgmap = NULL;
1822 	int nr_start = *nr, ret = 0;
1823 	pte_t *ptep, *ptem;
1824 
1825 	ptem = ptep = pte_offset_map(&pmd, addr);
1826 	do {
1827 		pte_t pte = gup_get_pte(ptep);
1828 		struct page *head, *page;
1829 
1830 		/*
1831 		 * Similar to the PMD case below, NUMA hinting must take slow
1832 		 * path using the pte_protnone check.
1833 		 */
1834 		if (pte_protnone(pte))
1835 			goto pte_unmap;
1836 
1837 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1838 			goto pte_unmap;
1839 
1840 		if (pte_devmap(pte)) {
1841 			if (unlikely(flags & FOLL_LONGTERM))
1842 				goto pte_unmap;
1843 
1844 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1845 			if (unlikely(!pgmap)) {
1846 				undo_dev_pagemap(nr, nr_start, pages);
1847 				goto pte_unmap;
1848 			}
1849 		} else if (pte_special(pte))
1850 			goto pte_unmap;
1851 
1852 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1853 		page = pte_page(pte);
1854 
1855 		head = try_get_compound_head(page, 1);
1856 		if (!head)
1857 			goto pte_unmap;
1858 
1859 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1860 			put_page(head);
1861 			goto pte_unmap;
1862 		}
1863 
1864 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1865 
1866 		SetPageReferenced(page);
1867 		pages[*nr] = page;
1868 		(*nr)++;
1869 
1870 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1871 
1872 	ret = 1;
1873 
1874 pte_unmap:
1875 	if (pgmap)
1876 		put_dev_pagemap(pgmap);
1877 	pte_unmap(ptem);
1878 	return ret;
1879 }
1880 #else
1881 
1882 /*
1883  * If we can't determine whether or not a pte is special, then fail immediately
1884  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1885  * to be special.
1886  *
1887  * For a futex to be placed on a THP tail page, get_futex_key requires a
1888  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1889  * useful to have gup_huge_pmd even if we can't operate on ptes.
1890  */
1891 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1892 			 unsigned int flags, struct page **pages, int *nr)
1893 {
1894 	return 0;
1895 }
1896 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1897 
1898 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1900 		unsigned long end, struct page **pages, int *nr)
1901 {
1902 	int nr_start = *nr;
1903 	struct dev_pagemap *pgmap = NULL;
1904 
1905 	do {
1906 		struct page *page = pfn_to_page(pfn);
1907 
1908 		pgmap = get_dev_pagemap(pfn, pgmap);
1909 		if (unlikely(!pgmap)) {
1910 			undo_dev_pagemap(nr, nr_start, pages);
1911 			return 0;
1912 		}
1913 		SetPageReferenced(page);
1914 		pages[*nr] = page;
1915 		get_page(page);
1916 		(*nr)++;
1917 		pfn++;
1918 	} while (addr += PAGE_SIZE, addr != end);
1919 
1920 	if (pgmap)
1921 		put_dev_pagemap(pgmap);
1922 	return 1;
1923 }
1924 
1925 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1926 		unsigned long end, struct page **pages, int *nr)
1927 {
1928 	unsigned long fault_pfn;
1929 	int nr_start = *nr;
1930 
1931 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1932 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1933 		return 0;
1934 
1935 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1936 		undo_dev_pagemap(nr, nr_start, pages);
1937 		return 0;
1938 	}
1939 	return 1;
1940 }
1941 
1942 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1943 		unsigned long end, struct page **pages, int *nr)
1944 {
1945 	unsigned long fault_pfn;
1946 	int nr_start = *nr;
1947 
1948 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1949 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1950 		return 0;
1951 
1952 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1953 		undo_dev_pagemap(nr, nr_start, pages);
1954 		return 0;
1955 	}
1956 	return 1;
1957 }
1958 #else
1959 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1960 		unsigned long end, struct page **pages, int *nr)
1961 {
1962 	BUILD_BUG();
1963 	return 0;
1964 }
1965 
1966 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1967 		unsigned long end, struct page **pages, int *nr)
1968 {
1969 	BUILD_BUG();
1970 	return 0;
1971 }
1972 #endif
1973 
1974 #ifdef CONFIG_ARCH_HAS_HUGEPD
1975 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1976 				      unsigned long sz)
1977 {
1978 	unsigned long __boundary = (addr + sz) & ~(sz-1);
1979 	return (__boundary - 1 < end - 1) ? __boundary : end;
1980 }
1981 
1982 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1983 		       unsigned long end, int write, struct page **pages, int *nr)
1984 {
1985 	unsigned long pte_end;
1986 	struct page *head, *page;
1987 	pte_t pte;
1988 	int refs;
1989 
1990 	pte_end = (addr + sz) & ~(sz-1);
1991 	if (pte_end < end)
1992 		end = pte_end;
1993 
1994 	pte = READ_ONCE(*ptep);
1995 
1996 	if (!pte_access_permitted(pte, write))
1997 		return 0;
1998 
1999 	/* hugepages are never "special" */
2000 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2001 
2002 	refs = 0;
2003 	head = pte_page(pte);
2004 
2005 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2006 	do {
2007 		VM_BUG_ON(compound_head(page) != head);
2008 		pages[*nr] = page;
2009 		(*nr)++;
2010 		page++;
2011 		refs++;
2012 	} while (addr += PAGE_SIZE, addr != end);
2013 
2014 	head = try_get_compound_head(head, refs);
2015 	if (!head) {
2016 		*nr -= refs;
2017 		return 0;
2018 	}
2019 
2020 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2021 		/* Could be optimized better */
2022 		*nr -= refs;
2023 		while (refs--)
2024 			put_page(head);
2025 		return 0;
2026 	}
2027 
2028 	SetPageReferenced(head);
2029 	return 1;
2030 }
2031 
2032 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2033 		unsigned int pdshift, unsigned long end, int write,
2034 		struct page **pages, int *nr)
2035 {
2036 	pte_t *ptep;
2037 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2038 	unsigned long next;
2039 
2040 	ptep = hugepte_offset(hugepd, addr, pdshift);
2041 	do {
2042 		next = hugepte_addr_end(addr, end, sz);
2043 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2044 			return 0;
2045 	} while (ptep++, addr = next, addr != end);
2046 
2047 	return 1;
2048 }
2049 #else
2050 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2051 		unsigned pdshift, unsigned long end, int write,
2052 		struct page **pages, int *nr)
2053 {
2054 	return 0;
2055 }
2056 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2057 
2058 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2059 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2060 {
2061 	struct page *head, *page;
2062 	int refs;
2063 
2064 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2065 		return 0;
2066 
2067 	if (pmd_devmap(orig)) {
2068 		if (unlikely(flags & FOLL_LONGTERM))
2069 			return 0;
2070 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2071 	}
2072 
2073 	refs = 0;
2074 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2075 	do {
2076 		pages[*nr] = page;
2077 		(*nr)++;
2078 		page++;
2079 		refs++;
2080 	} while (addr += PAGE_SIZE, addr != end);
2081 
2082 	head = try_get_compound_head(pmd_page(orig), refs);
2083 	if (!head) {
2084 		*nr -= refs;
2085 		return 0;
2086 	}
2087 
2088 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2089 		*nr -= refs;
2090 		while (refs--)
2091 			put_page(head);
2092 		return 0;
2093 	}
2094 
2095 	SetPageReferenced(head);
2096 	return 1;
2097 }
2098 
2099 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2100 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2101 {
2102 	struct page *head, *page;
2103 	int refs;
2104 
2105 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2106 		return 0;
2107 
2108 	if (pud_devmap(orig)) {
2109 		if (unlikely(flags & FOLL_LONGTERM))
2110 			return 0;
2111 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2112 	}
2113 
2114 	refs = 0;
2115 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2116 	do {
2117 		pages[*nr] = page;
2118 		(*nr)++;
2119 		page++;
2120 		refs++;
2121 	} while (addr += PAGE_SIZE, addr != end);
2122 
2123 	head = try_get_compound_head(pud_page(orig), refs);
2124 	if (!head) {
2125 		*nr -= refs;
2126 		return 0;
2127 	}
2128 
2129 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2130 		*nr -= refs;
2131 		while (refs--)
2132 			put_page(head);
2133 		return 0;
2134 	}
2135 
2136 	SetPageReferenced(head);
2137 	return 1;
2138 }
2139 
2140 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2141 			unsigned long end, unsigned int flags,
2142 			struct page **pages, int *nr)
2143 {
2144 	int refs;
2145 	struct page *head, *page;
2146 
2147 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2148 		return 0;
2149 
2150 	BUILD_BUG_ON(pgd_devmap(orig));
2151 	refs = 0;
2152 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2153 	do {
2154 		pages[*nr] = page;
2155 		(*nr)++;
2156 		page++;
2157 		refs++;
2158 	} while (addr += PAGE_SIZE, addr != end);
2159 
2160 	head = try_get_compound_head(pgd_page(orig), refs);
2161 	if (!head) {
2162 		*nr -= refs;
2163 		return 0;
2164 	}
2165 
2166 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2167 		*nr -= refs;
2168 		while (refs--)
2169 			put_page(head);
2170 		return 0;
2171 	}
2172 
2173 	SetPageReferenced(head);
2174 	return 1;
2175 }
2176 
2177 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2178 		unsigned int flags, struct page **pages, int *nr)
2179 {
2180 	unsigned long next;
2181 	pmd_t *pmdp;
2182 
2183 	pmdp = pmd_offset(&pud, addr);
2184 	do {
2185 		pmd_t pmd = READ_ONCE(*pmdp);
2186 
2187 		next = pmd_addr_end(addr, end);
2188 		if (!pmd_present(pmd))
2189 			return 0;
2190 
2191 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2192 			     pmd_devmap(pmd))) {
2193 			/*
2194 			 * NUMA hinting faults need to be handled in the GUP
2195 			 * slowpath for accounting purposes and so that they
2196 			 * can be serialised against THP migration.
2197 			 */
2198 			if (pmd_protnone(pmd))
2199 				return 0;
2200 
2201 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2202 				pages, nr))
2203 				return 0;
2204 
2205 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2206 			/*
2207 			 * architecture have different format for hugetlbfs
2208 			 * pmd format and THP pmd format
2209 			 */
2210 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2211 					 PMD_SHIFT, next, flags, pages, nr))
2212 				return 0;
2213 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2214 			return 0;
2215 	} while (pmdp++, addr = next, addr != end);
2216 
2217 	return 1;
2218 }
2219 
2220 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2221 			 unsigned int flags, struct page **pages, int *nr)
2222 {
2223 	unsigned long next;
2224 	pud_t *pudp;
2225 
2226 	pudp = pud_offset(&p4d, addr);
2227 	do {
2228 		pud_t pud = READ_ONCE(*pudp);
2229 
2230 		next = pud_addr_end(addr, end);
2231 		if (pud_none(pud))
2232 			return 0;
2233 		if (unlikely(pud_huge(pud))) {
2234 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2235 					  pages, nr))
2236 				return 0;
2237 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2238 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2239 					 PUD_SHIFT, next, flags, pages, nr))
2240 				return 0;
2241 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2242 			return 0;
2243 	} while (pudp++, addr = next, addr != end);
2244 
2245 	return 1;
2246 }
2247 
2248 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2249 			 unsigned int flags, struct page **pages, int *nr)
2250 {
2251 	unsigned long next;
2252 	p4d_t *p4dp;
2253 
2254 	p4dp = p4d_offset(&pgd, addr);
2255 	do {
2256 		p4d_t p4d = READ_ONCE(*p4dp);
2257 
2258 		next = p4d_addr_end(addr, end);
2259 		if (p4d_none(p4d))
2260 			return 0;
2261 		BUILD_BUG_ON(p4d_huge(p4d));
2262 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2263 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2264 					 P4D_SHIFT, next, flags, pages, nr))
2265 				return 0;
2266 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2267 			return 0;
2268 	} while (p4dp++, addr = next, addr != end);
2269 
2270 	return 1;
2271 }
2272 
2273 static void gup_pgd_range(unsigned long addr, unsigned long end,
2274 		unsigned int flags, struct page **pages, int *nr)
2275 {
2276 	unsigned long next;
2277 	pgd_t *pgdp;
2278 
2279 	pgdp = pgd_offset(current->mm, addr);
2280 	do {
2281 		pgd_t pgd = READ_ONCE(*pgdp);
2282 
2283 		next = pgd_addr_end(addr, end);
2284 		if (pgd_none(pgd))
2285 			return;
2286 		if (unlikely(pgd_huge(pgd))) {
2287 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2288 					  pages, nr))
2289 				return;
2290 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2291 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2292 					 PGDIR_SHIFT, next, flags, pages, nr))
2293 				return;
2294 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2295 			return;
2296 	} while (pgdp++, addr = next, addr != end);
2297 }
2298 #else
2299 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2300 		unsigned int flags, struct page **pages, int *nr)
2301 {
2302 }
2303 #endif /* CONFIG_HAVE_FAST_GUP */
2304 
2305 #ifndef gup_fast_permitted
2306 /*
2307  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2308  * we need to fall back to the slow version:
2309  */
2310 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2311 {
2312 	return true;
2313 }
2314 #endif
2315 
2316 /*
2317  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2318  * the regular GUP.
2319  * Note a difference with get_user_pages_fast: this always returns the
2320  * number of pages pinned, 0 if no pages were pinned.
2321  *
2322  * If the architecture does not support this function, simply return with no
2323  * pages pinned.
2324  */
2325 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2326 			  struct page **pages)
2327 {
2328 	unsigned long len, end;
2329 	unsigned long flags;
2330 	int nr = 0;
2331 
2332 	start = untagged_addr(start) & PAGE_MASK;
2333 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2334 	end = start + len;
2335 
2336 	if (end <= start)
2337 		return 0;
2338 	if (unlikely(!access_ok((void __user *)start, len)))
2339 		return 0;
2340 
2341 	/*
2342 	 * Disable interrupts.  We use the nested form as we can already have
2343 	 * interrupts disabled by get_futex_key.
2344 	 *
2345 	 * With interrupts disabled, we block page table pages from being
2346 	 * freed from under us. See struct mmu_table_batch comments in
2347 	 * include/asm-generic/tlb.h for more details.
2348 	 *
2349 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2350 	 * block IPIs that come from THPs splitting.
2351 	 */
2352 
2353 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2354 	    gup_fast_permitted(start, end)) {
2355 		local_irq_save(flags);
2356 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2357 		local_irq_restore(flags);
2358 	}
2359 
2360 	return nr;
2361 }
2362 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2363 
2364 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2365 				   unsigned int gup_flags, struct page **pages)
2366 {
2367 	int ret;
2368 
2369 	/*
2370 	 * FIXME: FOLL_LONGTERM does not work with
2371 	 * get_user_pages_unlocked() (see comments in that function)
2372 	 */
2373 	if (gup_flags & FOLL_LONGTERM) {
2374 		down_read(&current->mm->mmap_sem);
2375 		ret = __gup_longterm_locked(current, current->mm,
2376 					    start, nr_pages,
2377 					    pages, NULL, gup_flags);
2378 		up_read(&current->mm->mmap_sem);
2379 	} else {
2380 		ret = get_user_pages_unlocked(start, nr_pages,
2381 					      pages, gup_flags);
2382 	}
2383 
2384 	return ret;
2385 }
2386 
2387 /**
2388  * get_user_pages_fast() - pin user pages in memory
2389  * @start:	starting user address
2390  * @nr_pages:	number of pages from start to pin
2391  * @gup_flags:	flags modifying pin behaviour
2392  * @pages:	array that receives pointers to the pages pinned.
2393  *		Should be at least nr_pages long.
2394  *
2395  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2396  * If not successful, it will fall back to taking the lock and
2397  * calling get_user_pages().
2398  *
2399  * Returns number of pages pinned. This may be fewer than the number
2400  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2401  * were pinned, returns -errno.
2402  */
2403 int get_user_pages_fast(unsigned long start, int nr_pages,
2404 			unsigned int gup_flags, struct page **pages)
2405 {
2406 	unsigned long addr, len, end;
2407 	int nr = 0, ret = 0;
2408 
2409 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2410 		return -EINVAL;
2411 
2412 	start = untagged_addr(start) & PAGE_MASK;
2413 	addr = start;
2414 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2415 	end = start + len;
2416 
2417 	if (end <= start)
2418 		return 0;
2419 	if (unlikely(!access_ok((void __user *)start, len)))
2420 		return -EFAULT;
2421 
2422 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2423 	    gup_fast_permitted(start, end)) {
2424 		local_irq_disable();
2425 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2426 		local_irq_enable();
2427 		ret = nr;
2428 	}
2429 
2430 	if (nr < nr_pages) {
2431 		/* Try to get the remaining pages with get_user_pages */
2432 		start += nr << PAGE_SHIFT;
2433 		pages += nr;
2434 
2435 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2436 					      gup_flags, pages);
2437 
2438 		/* Have to be a bit careful with return values */
2439 		if (nr > 0) {
2440 			if (ret < 0)
2441 				ret = nr;
2442 			else
2443 				ret += nr;
2444 		}
2445 	}
2446 
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2450