1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in page_try_share_anon_rmap(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 } 714 if (likely(!pmd_trans_huge(pmdval))) 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 716 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 718 return no_page_table(vma, flags); 719 720 ptl = pmd_lock(mm, pmd); 721 if (unlikely(!pmd_present(*pmd))) { 722 spin_unlock(ptl); 723 return no_page_table(vma, flags); 724 } 725 if (unlikely(!pmd_trans_huge(*pmd))) { 726 spin_unlock(ptl); 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 } 729 if (flags & FOLL_SPLIT_PMD) { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 /* If pmd was left empty, stuff a page table in there quickly */ 733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 735 } 736 page = follow_trans_huge_pmd(vma, address, pmd, flags); 737 spin_unlock(ptl); 738 ctx->page_mask = HPAGE_PMD_NR - 1; 739 return page; 740 } 741 742 static struct page *follow_pud_mask(struct vm_area_struct *vma, 743 unsigned long address, p4d_t *p4dp, 744 unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pud_t *pud; 748 spinlock_t *ptl; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 pud = pud_offset(p4dp, address); 753 if (pud_none(*pud)) 754 return no_page_table(vma, flags); 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct mm_struct *mm = vma->vm_mm; 815 816 ctx->page_mask = 0; 817 818 /* 819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 820 * special hugetlb page table walking code. This eliminates the 821 * need to check for hugetlb entries in the general walking code. 822 */ 823 if (is_vm_hugetlb_page(vma)) 824 return hugetlb_follow_page_mask(vma, address, flags, 825 &ctx->page_mask); 826 827 pgd = pgd_offset(mm, address); 828 829 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 830 return no_page_table(vma, flags); 831 832 return follow_p4d_mask(vma, address, pgd, flags, ctx); 833 } 834 835 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 836 unsigned int foll_flags) 837 { 838 struct follow_page_context ctx = { NULL }; 839 struct page *page; 840 841 if (vma_is_secretmem(vma)) 842 return NULL; 843 844 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 845 return NULL; 846 847 page = follow_page_mask(vma, address, foll_flags, &ctx); 848 if (ctx.pgmap) 849 put_dev_pagemap(ctx.pgmap); 850 return page; 851 } 852 853 static int get_gate_page(struct mm_struct *mm, unsigned long address, 854 unsigned int gup_flags, struct vm_area_struct **vma, 855 struct page **page) 856 { 857 pgd_t *pgd; 858 p4d_t *p4d; 859 pud_t *pud; 860 pmd_t *pmd; 861 pte_t *pte; 862 pte_t entry; 863 int ret = -EFAULT; 864 865 /* user gate pages are read-only */ 866 if (gup_flags & FOLL_WRITE) 867 return -EFAULT; 868 if (address > TASK_SIZE) 869 pgd = pgd_offset_k(address); 870 else 871 pgd = pgd_offset_gate(mm, address); 872 if (pgd_none(*pgd)) 873 return -EFAULT; 874 p4d = p4d_offset(pgd, address); 875 if (p4d_none(*p4d)) 876 return -EFAULT; 877 pud = pud_offset(p4d, address); 878 if (pud_none(*pud)) 879 return -EFAULT; 880 pmd = pmd_offset(pud, address); 881 if (!pmd_present(*pmd)) 882 return -EFAULT; 883 pte = pte_offset_map(pmd, address); 884 if (!pte) 885 return -EFAULT; 886 entry = ptep_get(pte); 887 if (pte_none(entry)) 888 goto unmap; 889 *vma = get_gate_vma(mm); 890 if (!page) 891 goto out; 892 *page = vm_normal_page(*vma, address, entry); 893 if (!*page) { 894 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 895 goto unmap; 896 *page = pte_page(entry); 897 } 898 ret = try_grab_page(*page, gup_flags); 899 if (unlikely(ret)) 900 goto unmap; 901 out: 902 ret = 0; 903 unmap: 904 pte_unmap(pte); 905 return ret; 906 } 907 908 /* 909 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 910 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 911 * to 0 and -EBUSY returned. 912 */ 913 static int faultin_page(struct vm_area_struct *vma, 914 unsigned long address, unsigned int *flags, bool unshare, 915 int *locked) 916 { 917 unsigned int fault_flags = 0; 918 vm_fault_t ret; 919 920 if (*flags & FOLL_NOFAULT) 921 return -EFAULT; 922 if (*flags & FOLL_WRITE) 923 fault_flags |= FAULT_FLAG_WRITE; 924 if (*flags & FOLL_REMOTE) 925 fault_flags |= FAULT_FLAG_REMOTE; 926 if (*flags & FOLL_UNLOCKABLE) { 927 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 928 /* 929 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 930 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 931 * That's because some callers may not be prepared to 932 * handle early exits caused by non-fatal signals. 933 */ 934 if (*flags & FOLL_INTERRUPTIBLE) 935 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 936 } 937 if (*flags & FOLL_NOWAIT) 938 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 939 if (*flags & FOLL_TRIED) { 940 /* 941 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 942 * can co-exist 943 */ 944 fault_flags |= FAULT_FLAG_TRIED; 945 } 946 if (unshare) { 947 fault_flags |= FAULT_FLAG_UNSHARE; 948 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 949 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 950 } 951 952 ret = handle_mm_fault(vma, address, fault_flags, NULL); 953 954 if (ret & VM_FAULT_COMPLETED) { 955 /* 956 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 957 * mmap lock in the page fault handler. Sanity check this. 958 */ 959 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 960 *locked = 0; 961 962 /* 963 * We should do the same as VM_FAULT_RETRY, but let's not 964 * return -EBUSY since that's not reflecting the reality of 965 * what has happened - we've just fully completed a page 966 * fault, with the mmap lock released. Use -EAGAIN to show 967 * that we want to take the mmap lock _again_. 968 */ 969 return -EAGAIN; 970 } 971 972 if (ret & VM_FAULT_ERROR) { 973 int err = vm_fault_to_errno(ret, *flags); 974 975 if (err) 976 return err; 977 BUG(); 978 } 979 980 if (ret & VM_FAULT_RETRY) { 981 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 982 *locked = 0; 983 return -EBUSY; 984 } 985 986 return 0; 987 } 988 989 /* 990 * Writing to file-backed mappings which require folio dirty tracking using GUP 991 * is a fundamentally broken operation, as kernel write access to GUP mappings 992 * do not adhere to the semantics expected by a file system. 993 * 994 * Consider the following scenario:- 995 * 996 * 1. A folio is written to via GUP which write-faults the memory, notifying 997 * the file system and dirtying the folio. 998 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 999 * the PTE being marked read-only. 1000 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1001 * direct mapping. 1002 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1003 * (though it does not have to). 1004 * 1005 * This results in both data being written to a folio without writenotify, and 1006 * the folio being dirtied unexpectedly (if the caller decides to do so). 1007 */ 1008 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1009 unsigned long gup_flags) 1010 { 1011 /* 1012 * If we aren't pinning then no problematic write can occur. A long term 1013 * pin is the most egregious case so this is the case we disallow. 1014 */ 1015 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1016 (FOLL_PIN | FOLL_LONGTERM)) 1017 return true; 1018 1019 /* 1020 * If the VMA does not require dirty tracking then no problematic write 1021 * can occur either. 1022 */ 1023 return !vma_needs_dirty_tracking(vma); 1024 } 1025 1026 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1027 { 1028 vm_flags_t vm_flags = vma->vm_flags; 1029 int write = (gup_flags & FOLL_WRITE); 1030 int foreign = (gup_flags & FOLL_REMOTE); 1031 bool vma_anon = vma_is_anonymous(vma); 1032 1033 if (vm_flags & (VM_IO | VM_PFNMAP)) 1034 return -EFAULT; 1035 1036 if ((gup_flags & FOLL_ANON) && !vma_anon) 1037 return -EFAULT; 1038 1039 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1040 return -EOPNOTSUPP; 1041 1042 if (vma_is_secretmem(vma)) 1043 return -EFAULT; 1044 1045 if (write) { 1046 if (!vma_anon && 1047 !writable_file_mapping_allowed(vma, gup_flags)) 1048 return -EFAULT; 1049 1050 if (!(vm_flags & VM_WRITE)) { 1051 if (!(gup_flags & FOLL_FORCE)) 1052 return -EFAULT; 1053 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1054 if (is_vm_hugetlb_page(vma)) 1055 return -EFAULT; 1056 /* 1057 * We used to let the write,force case do COW in a 1058 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1059 * set a breakpoint in a read-only mapping of an 1060 * executable, without corrupting the file (yet only 1061 * when that file had been opened for writing!). 1062 * Anon pages in shared mappings are surprising: now 1063 * just reject it. 1064 */ 1065 if (!is_cow_mapping(vm_flags)) 1066 return -EFAULT; 1067 } 1068 } else if (!(vm_flags & VM_READ)) { 1069 if (!(gup_flags & FOLL_FORCE)) 1070 return -EFAULT; 1071 /* 1072 * Is there actually any vma we can reach here which does not 1073 * have VM_MAYREAD set? 1074 */ 1075 if (!(vm_flags & VM_MAYREAD)) 1076 return -EFAULT; 1077 } 1078 /* 1079 * gups are always data accesses, not instruction 1080 * fetches, so execute=false here 1081 */ 1082 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1083 return -EFAULT; 1084 return 0; 1085 } 1086 1087 /* 1088 * This is "vma_lookup()", but with a warning if we would have 1089 * historically expanded the stack in the GUP code. 1090 */ 1091 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1092 unsigned long addr) 1093 { 1094 #ifdef CONFIG_STACK_GROWSUP 1095 return vma_lookup(mm, addr); 1096 #else 1097 static volatile unsigned long next_warn; 1098 struct vm_area_struct *vma; 1099 unsigned long now, next; 1100 1101 vma = find_vma(mm, addr); 1102 if (!vma || (addr >= vma->vm_start)) 1103 return vma; 1104 1105 /* Only warn for half-way relevant accesses */ 1106 if (!(vma->vm_flags & VM_GROWSDOWN)) 1107 return NULL; 1108 if (vma->vm_start - addr > 65536) 1109 return NULL; 1110 1111 /* Let's not warn more than once an hour.. */ 1112 now = jiffies; next = next_warn; 1113 if (next && time_before(now, next)) 1114 return NULL; 1115 next_warn = now + 60*60*HZ; 1116 1117 /* Let people know things may have changed. */ 1118 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1119 current->comm, task_pid_nr(current), 1120 vma->vm_start, vma->vm_end, addr); 1121 dump_stack(); 1122 return NULL; 1123 #endif 1124 } 1125 1126 /** 1127 * __get_user_pages() - pin user pages in memory 1128 * @mm: mm_struct of target mm 1129 * @start: starting user address 1130 * @nr_pages: number of pages from start to pin 1131 * @gup_flags: flags modifying pin behaviour 1132 * @pages: array that receives pointers to the pages pinned. 1133 * Should be at least nr_pages long. Or NULL, if caller 1134 * only intends to ensure the pages are faulted in. 1135 * @locked: whether we're still with the mmap_lock held 1136 * 1137 * Returns either number of pages pinned (which may be less than the 1138 * number requested), or an error. Details about the return value: 1139 * 1140 * -- If nr_pages is 0, returns 0. 1141 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1142 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1143 * pages pinned. Again, this may be less than nr_pages. 1144 * -- 0 return value is possible when the fault would need to be retried. 1145 * 1146 * The caller is responsible for releasing returned @pages, via put_page(). 1147 * 1148 * Must be called with mmap_lock held. It may be released. See below. 1149 * 1150 * __get_user_pages walks a process's page tables and takes a reference to 1151 * each struct page that each user address corresponds to at a given 1152 * instant. That is, it takes the page that would be accessed if a user 1153 * thread accesses the given user virtual address at that instant. 1154 * 1155 * This does not guarantee that the page exists in the user mappings when 1156 * __get_user_pages returns, and there may even be a completely different 1157 * page there in some cases (eg. if mmapped pagecache has been invalidated 1158 * and subsequently re-faulted). However it does guarantee that the page 1159 * won't be freed completely. And mostly callers simply care that the page 1160 * contains data that was valid *at some point in time*. Typically, an IO 1161 * or similar operation cannot guarantee anything stronger anyway because 1162 * locks can't be held over the syscall boundary. 1163 * 1164 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1165 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1166 * appropriate) must be called after the page is finished with, and 1167 * before put_page is called. 1168 * 1169 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1170 * be released. If this happens *@locked will be set to 0 on return. 1171 * 1172 * A caller using such a combination of @gup_flags must therefore hold the 1173 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1174 * it must be held for either reading or writing and will not be released. 1175 * 1176 * In most cases, get_user_pages or get_user_pages_fast should be used 1177 * instead of __get_user_pages. __get_user_pages should be used only if 1178 * you need some special @gup_flags. 1179 */ 1180 static long __get_user_pages(struct mm_struct *mm, 1181 unsigned long start, unsigned long nr_pages, 1182 unsigned int gup_flags, struct page **pages, 1183 int *locked) 1184 { 1185 long ret = 0, i = 0; 1186 struct vm_area_struct *vma = NULL; 1187 struct follow_page_context ctx = { NULL }; 1188 1189 if (!nr_pages) 1190 return 0; 1191 1192 start = untagged_addr_remote(mm, start); 1193 1194 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1195 1196 do { 1197 struct page *page; 1198 unsigned int foll_flags = gup_flags; 1199 unsigned int page_increm; 1200 1201 /* first iteration or cross vma bound */ 1202 if (!vma || start >= vma->vm_end) { 1203 vma = gup_vma_lookup(mm, start); 1204 if (!vma && in_gate_area(mm, start)) { 1205 ret = get_gate_page(mm, start & PAGE_MASK, 1206 gup_flags, &vma, 1207 pages ? &page : NULL); 1208 if (ret) 1209 goto out; 1210 ctx.page_mask = 0; 1211 goto next_page; 1212 } 1213 1214 if (!vma) { 1215 ret = -EFAULT; 1216 goto out; 1217 } 1218 ret = check_vma_flags(vma, gup_flags); 1219 if (ret) 1220 goto out; 1221 } 1222 retry: 1223 /* 1224 * If we have a pending SIGKILL, don't keep faulting pages and 1225 * potentially allocating memory. 1226 */ 1227 if (fatal_signal_pending(current)) { 1228 ret = -EINTR; 1229 goto out; 1230 } 1231 cond_resched(); 1232 1233 page = follow_page_mask(vma, start, foll_flags, &ctx); 1234 if (!page || PTR_ERR(page) == -EMLINK) { 1235 ret = faultin_page(vma, start, &foll_flags, 1236 PTR_ERR(page) == -EMLINK, locked); 1237 switch (ret) { 1238 case 0: 1239 goto retry; 1240 case -EBUSY: 1241 case -EAGAIN: 1242 ret = 0; 1243 fallthrough; 1244 case -EFAULT: 1245 case -ENOMEM: 1246 case -EHWPOISON: 1247 goto out; 1248 } 1249 BUG(); 1250 } else if (PTR_ERR(page) == -EEXIST) { 1251 /* 1252 * Proper page table entry exists, but no corresponding 1253 * struct page. If the caller expects **pages to be 1254 * filled in, bail out now, because that can't be done 1255 * for this page. 1256 */ 1257 if (pages) { 1258 ret = PTR_ERR(page); 1259 goto out; 1260 } 1261 } else if (IS_ERR(page)) { 1262 ret = PTR_ERR(page); 1263 goto out; 1264 } 1265 next_page: 1266 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1267 if (page_increm > nr_pages) 1268 page_increm = nr_pages; 1269 1270 if (pages) { 1271 struct page *subpage; 1272 unsigned int j; 1273 1274 /* 1275 * This must be a large folio (and doesn't need to 1276 * be the whole folio; it can be part of it), do 1277 * the refcount work for all the subpages too. 1278 * 1279 * NOTE: here the page may not be the head page 1280 * e.g. when start addr is not thp-size aligned. 1281 * try_grab_folio() should have taken care of tail 1282 * pages. 1283 */ 1284 if (page_increm > 1) { 1285 struct folio *folio; 1286 1287 /* 1288 * Since we already hold refcount on the 1289 * large folio, this should never fail. 1290 */ 1291 folio = try_grab_folio(page, page_increm - 1, 1292 foll_flags); 1293 if (WARN_ON_ONCE(!folio)) { 1294 /* 1295 * Release the 1st page ref if the 1296 * folio is problematic, fail hard. 1297 */ 1298 gup_put_folio(page_folio(page), 1, 1299 foll_flags); 1300 ret = -EFAULT; 1301 goto out; 1302 } 1303 } 1304 1305 for (j = 0; j < page_increm; j++) { 1306 subpage = nth_page(page, j); 1307 pages[i + j] = subpage; 1308 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1309 flush_dcache_page(subpage); 1310 } 1311 } 1312 1313 i += page_increm; 1314 start += page_increm * PAGE_SIZE; 1315 nr_pages -= page_increm; 1316 } while (nr_pages); 1317 out: 1318 if (ctx.pgmap) 1319 put_dev_pagemap(ctx.pgmap); 1320 return i ? i : ret; 1321 } 1322 1323 static bool vma_permits_fault(struct vm_area_struct *vma, 1324 unsigned int fault_flags) 1325 { 1326 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1327 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1328 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1329 1330 if (!(vm_flags & vma->vm_flags)) 1331 return false; 1332 1333 /* 1334 * The architecture might have a hardware protection 1335 * mechanism other than read/write that can deny access. 1336 * 1337 * gup always represents data access, not instruction 1338 * fetches, so execute=false here: 1339 */ 1340 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 /** 1347 * fixup_user_fault() - manually resolve a user page fault 1348 * @mm: mm_struct of target mm 1349 * @address: user address 1350 * @fault_flags:flags to pass down to handle_mm_fault() 1351 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1352 * does not allow retry. If NULL, the caller must guarantee 1353 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1354 * 1355 * This is meant to be called in the specific scenario where for locking reasons 1356 * we try to access user memory in atomic context (within a pagefault_disable() 1357 * section), this returns -EFAULT, and we want to resolve the user fault before 1358 * trying again. 1359 * 1360 * Typically this is meant to be used by the futex code. 1361 * 1362 * The main difference with get_user_pages() is that this function will 1363 * unconditionally call handle_mm_fault() which will in turn perform all the 1364 * necessary SW fixup of the dirty and young bits in the PTE, while 1365 * get_user_pages() only guarantees to update these in the struct page. 1366 * 1367 * This is important for some architectures where those bits also gate the 1368 * access permission to the page because they are maintained in software. On 1369 * such architectures, gup() will not be enough to make a subsequent access 1370 * succeed. 1371 * 1372 * This function will not return with an unlocked mmap_lock. So it has not the 1373 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1374 */ 1375 int fixup_user_fault(struct mm_struct *mm, 1376 unsigned long address, unsigned int fault_flags, 1377 bool *unlocked) 1378 { 1379 struct vm_area_struct *vma; 1380 vm_fault_t ret; 1381 1382 address = untagged_addr_remote(mm, address); 1383 1384 if (unlocked) 1385 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1386 1387 retry: 1388 vma = gup_vma_lookup(mm, address); 1389 if (!vma) 1390 return -EFAULT; 1391 1392 if (!vma_permits_fault(vma, fault_flags)) 1393 return -EFAULT; 1394 1395 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1396 fatal_signal_pending(current)) 1397 return -EINTR; 1398 1399 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1400 1401 if (ret & VM_FAULT_COMPLETED) { 1402 /* 1403 * NOTE: it's a pity that we need to retake the lock here 1404 * to pair with the unlock() in the callers. Ideally we 1405 * could tell the callers so they do not need to unlock. 1406 */ 1407 mmap_read_lock(mm); 1408 *unlocked = true; 1409 return 0; 1410 } 1411 1412 if (ret & VM_FAULT_ERROR) { 1413 int err = vm_fault_to_errno(ret, 0); 1414 1415 if (err) 1416 return err; 1417 BUG(); 1418 } 1419 1420 if (ret & VM_FAULT_RETRY) { 1421 mmap_read_lock(mm); 1422 *unlocked = true; 1423 fault_flags |= FAULT_FLAG_TRIED; 1424 goto retry; 1425 } 1426 1427 return 0; 1428 } 1429 EXPORT_SYMBOL_GPL(fixup_user_fault); 1430 1431 /* 1432 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1433 * specified, it'll also respond to generic signals. The caller of GUP 1434 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1435 */ 1436 static bool gup_signal_pending(unsigned int flags) 1437 { 1438 if (fatal_signal_pending(current)) 1439 return true; 1440 1441 if (!(flags & FOLL_INTERRUPTIBLE)) 1442 return false; 1443 1444 return signal_pending(current); 1445 } 1446 1447 /* 1448 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1449 * the caller. This function may drop the mmap_lock. If it does so, then it will 1450 * set (*locked = 0). 1451 * 1452 * (*locked == 0) means that the caller expects this function to acquire and 1453 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1454 * the function returns, even though it may have changed temporarily during 1455 * function execution. 1456 * 1457 * Please note that this function, unlike __get_user_pages(), will not return 0 1458 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1459 */ 1460 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1461 unsigned long start, 1462 unsigned long nr_pages, 1463 struct page **pages, 1464 int *locked, 1465 unsigned int flags) 1466 { 1467 long ret, pages_done; 1468 bool must_unlock = false; 1469 1470 /* 1471 * The internal caller expects GUP to manage the lock internally and the 1472 * lock must be released when this returns. 1473 */ 1474 if (!*locked) { 1475 if (mmap_read_lock_killable(mm)) 1476 return -EAGAIN; 1477 must_unlock = true; 1478 *locked = 1; 1479 } 1480 else 1481 mmap_assert_locked(mm); 1482 1483 if (flags & FOLL_PIN) 1484 mm_set_has_pinned_flag(&mm->flags); 1485 1486 /* 1487 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1488 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1489 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1490 * for FOLL_GET, not for the newer FOLL_PIN. 1491 * 1492 * FOLL_PIN always expects pages to be non-null, but no need to assert 1493 * that here, as any failures will be obvious enough. 1494 */ 1495 if (pages && !(flags & FOLL_PIN)) 1496 flags |= FOLL_GET; 1497 1498 pages_done = 0; 1499 for (;;) { 1500 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1501 locked); 1502 if (!(flags & FOLL_UNLOCKABLE)) { 1503 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1504 pages_done = ret; 1505 break; 1506 } 1507 1508 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1509 if (!*locked) { 1510 BUG_ON(ret < 0); 1511 BUG_ON(ret >= nr_pages); 1512 } 1513 1514 if (ret > 0) { 1515 nr_pages -= ret; 1516 pages_done += ret; 1517 if (!nr_pages) 1518 break; 1519 } 1520 if (*locked) { 1521 /* 1522 * VM_FAULT_RETRY didn't trigger or it was a 1523 * FOLL_NOWAIT. 1524 */ 1525 if (!pages_done) 1526 pages_done = ret; 1527 break; 1528 } 1529 /* 1530 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1531 * For the prefault case (!pages) we only update counts. 1532 */ 1533 if (likely(pages)) 1534 pages += ret; 1535 start += ret << PAGE_SHIFT; 1536 1537 /* The lock was temporarily dropped, so we must unlock later */ 1538 must_unlock = true; 1539 1540 retry: 1541 /* 1542 * Repeat on the address that fired VM_FAULT_RETRY 1543 * with both FAULT_FLAG_ALLOW_RETRY and 1544 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1545 * by fatal signals of even common signals, depending on 1546 * the caller's request. So we need to check it before we 1547 * start trying again otherwise it can loop forever. 1548 */ 1549 if (gup_signal_pending(flags)) { 1550 if (!pages_done) 1551 pages_done = -EINTR; 1552 break; 1553 } 1554 1555 ret = mmap_read_lock_killable(mm); 1556 if (ret) { 1557 BUG_ON(ret > 0); 1558 if (!pages_done) 1559 pages_done = ret; 1560 break; 1561 } 1562 1563 *locked = 1; 1564 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1565 pages, locked); 1566 if (!*locked) { 1567 /* Continue to retry until we succeeded */ 1568 BUG_ON(ret != 0); 1569 goto retry; 1570 } 1571 if (ret != 1) { 1572 BUG_ON(ret > 1); 1573 if (!pages_done) 1574 pages_done = ret; 1575 break; 1576 } 1577 nr_pages--; 1578 pages_done++; 1579 if (!nr_pages) 1580 break; 1581 if (likely(pages)) 1582 pages++; 1583 start += PAGE_SIZE; 1584 } 1585 if (must_unlock && *locked) { 1586 /* 1587 * We either temporarily dropped the lock, or the caller 1588 * requested that we both acquire and drop the lock. Either way, 1589 * we must now unlock, and notify the caller of that state. 1590 */ 1591 mmap_read_unlock(mm); 1592 *locked = 0; 1593 } 1594 return pages_done; 1595 } 1596 1597 /** 1598 * populate_vma_page_range() - populate a range of pages in the vma. 1599 * @vma: target vma 1600 * @start: start address 1601 * @end: end address 1602 * @locked: whether the mmap_lock is still held 1603 * 1604 * This takes care of mlocking the pages too if VM_LOCKED is set. 1605 * 1606 * Return either number of pages pinned in the vma, or a negative error 1607 * code on error. 1608 * 1609 * vma->vm_mm->mmap_lock must be held. 1610 * 1611 * If @locked is NULL, it may be held for read or write and will 1612 * be unperturbed. 1613 * 1614 * If @locked is non-NULL, it must held for read only and may be 1615 * released. If it's released, *@locked will be set to 0. 1616 */ 1617 long populate_vma_page_range(struct vm_area_struct *vma, 1618 unsigned long start, unsigned long end, int *locked) 1619 { 1620 struct mm_struct *mm = vma->vm_mm; 1621 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1622 int local_locked = 1; 1623 int gup_flags; 1624 long ret; 1625 1626 VM_BUG_ON(!PAGE_ALIGNED(start)); 1627 VM_BUG_ON(!PAGE_ALIGNED(end)); 1628 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1629 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1630 mmap_assert_locked(mm); 1631 1632 /* 1633 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1634 * faultin_page() to break COW, so it has no work to do here. 1635 */ 1636 if (vma->vm_flags & VM_LOCKONFAULT) 1637 return nr_pages; 1638 1639 gup_flags = FOLL_TOUCH; 1640 /* 1641 * We want to touch writable mappings with a write fault in order 1642 * to break COW, except for shared mappings because these don't COW 1643 * and we would not want to dirty them for nothing. 1644 */ 1645 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1646 gup_flags |= FOLL_WRITE; 1647 1648 /* 1649 * We want mlock to succeed for regions that have any permissions 1650 * other than PROT_NONE. 1651 */ 1652 if (vma_is_accessible(vma)) 1653 gup_flags |= FOLL_FORCE; 1654 1655 if (locked) 1656 gup_flags |= FOLL_UNLOCKABLE; 1657 1658 /* 1659 * We made sure addr is within a VMA, so the following will 1660 * not result in a stack expansion that recurses back here. 1661 */ 1662 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1663 NULL, locked ? locked : &local_locked); 1664 lru_add_drain(); 1665 return ret; 1666 } 1667 1668 /* 1669 * faultin_vma_page_range() - populate (prefault) page tables inside the 1670 * given VMA range readable/writable 1671 * 1672 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1673 * 1674 * @vma: target vma 1675 * @start: start address 1676 * @end: end address 1677 * @write: whether to prefault readable or writable 1678 * @locked: whether the mmap_lock is still held 1679 * 1680 * Returns either number of processed pages in the vma, or a negative error 1681 * code on error (see __get_user_pages()). 1682 * 1683 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1684 * covered by the VMA. If it's released, *@locked will be set to 0. 1685 */ 1686 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1687 unsigned long end, bool write, int *locked) 1688 { 1689 struct mm_struct *mm = vma->vm_mm; 1690 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1691 int gup_flags; 1692 long ret; 1693 1694 VM_BUG_ON(!PAGE_ALIGNED(start)); 1695 VM_BUG_ON(!PAGE_ALIGNED(end)); 1696 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1697 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1698 mmap_assert_locked(mm); 1699 1700 /* 1701 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1702 * the page dirty with FOLL_WRITE -- which doesn't make a 1703 * difference with !FOLL_FORCE, because the page is writable 1704 * in the page table. 1705 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1706 * a poisoned page. 1707 * !FOLL_FORCE: Require proper access permissions. 1708 */ 1709 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1710 if (write) 1711 gup_flags |= FOLL_WRITE; 1712 1713 /* 1714 * We want to report -EINVAL instead of -EFAULT for any permission 1715 * problems or incompatible mappings. 1716 */ 1717 if (check_vma_flags(vma, gup_flags)) 1718 return -EINVAL; 1719 1720 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1721 NULL, locked); 1722 lru_add_drain(); 1723 return ret; 1724 } 1725 1726 /* 1727 * __mm_populate - populate and/or mlock pages within a range of address space. 1728 * 1729 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1730 * flags. VMAs must be already marked with the desired vm_flags, and 1731 * mmap_lock must not be held. 1732 */ 1733 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1734 { 1735 struct mm_struct *mm = current->mm; 1736 unsigned long end, nstart, nend; 1737 struct vm_area_struct *vma = NULL; 1738 int locked = 0; 1739 long ret = 0; 1740 1741 end = start + len; 1742 1743 for (nstart = start; nstart < end; nstart = nend) { 1744 /* 1745 * We want to fault in pages for [nstart; end) address range. 1746 * Find first corresponding VMA. 1747 */ 1748 if (!locked) { 1749 locked = 1; 1750 mmap_read_lock(mm); 1751 vma = find_vma_intersection(mm, nstart, end); 1752 } else if (nstart >= vma->vm_end) 1753 vma = find_vma_intersection(mm, vma->vm_end, end); 1754 1755 if (!vma) 1756 break; 1757 /* 1758 * Set [nstart; nend) to intersection of desired address 1759 * range with the first VMA. Also, skip undesirable VMA types. 1760 */ 1761 nend = min(end, vma->vm_end); 1762 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1763 continue; 1764 if (nstart < vma->vm_start) 1765 nstart = vma->vm_start; 1766 /* 1767 * Now fault in a range of pages. populate_vma_page_range() 1768 * double checks the vma flags, so that it won't mlock pages 1769 * if the vma was already munlocked. 1770 */ 1771 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1772 if (ret < 0) { 1773 if (ignore_errors) { 1774 ret = 0; 1775 continue; /* continue at next VMA */ 1776 } 1777 break; 1778 } 1779 nend = nstart + ret * PAGE_SIZE; 1780 ret = 0; 1781 } 1782 if (locked) 1783 mmap_read_unlock(mm); 1784 return ret; /* 0 or negative error code */ 1785 } 1786 #else /* CONFIG_MMU */ 1787 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1788 unsigned long nr_pages, struct page **pages, 1789 int *locked, unsigned int foll_flags) 1790 { 1791 struct vm_area_struct *vma; 1792 bool must_unlock = false; 1793 unsigned long vm_flags; 1794 long i; 1795 1796 if (!nr_pages) 1797 return 0; 1798 1799 /* 1800 * The internal caller expects GUP to manage the lock internally and the 1801 * lock must be released when this returns. 1802 */ 1803 if (!*locked) { 1804 if (mmap_read_lock_killable(mm)) 1805 return -EAGAIN; 1806 must_unlock = true; 1807 *locked = 1; 1808 } 1809 1810 /* calculate required read or write permissions. 1811 * If FOLL_FORCE is set, we only require the "MAY" flags. 1812 */ 1813 vm_flags = (foll_flags & FOLL_WRITE) ? 1814 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1815 vm_flags &= (foll_flags & FOLL_FORCE) ? 1816 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1817 1818 for (i = 0; i < nr_pages; i++) { 1819 vma = find_vma(mm, start); 1820 if (!vma) 1821 break; 1822 1823 /* protect what we can, including chardevs */ 1824 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1825 !(vm_flags & vma->vm_flags)) 1826 break; 1827 1828 if (pages) { 1829 pages[i] = virt_to_page((void *)start); 1830 if (pages[i]) 1831 get_page(pages[i]); 1832 } 1833 1834 start = (start + PAGE_SIZE) & PAGE_MASK; 1835 } 1836 1837 if (must_unlock && *locked) { 1838 mmap_read_unlock(mm); 1839 *locked = 0; 1840 } 1841 1842 return i ? : -EFAULT; 1843 } 1844 #endif /* !CONFIG_MMU */ 1845 1846 /** 1847 * fault_in_writeable - fault in userspace address range for writing 1848 * @uaddr: start of address range 1849 * @size: size of address range 1850 * 1851 * Returns the number of bytes not faulted in (like copy_to_user() and 1852 * copy_from_user()). 1853 */ 1854 size_t fault_in_writeable(char __user *uaddr, size_t size) 1855 { 1856 char __user *start = uaddr, *end; 1857 1858 if (unlikely(size == 0)) 1859 return 0; 1860 if (!user_write_access_begin(uaddr, size)) 1861 return size; 1862 if (!PAGE_ALIGNED(uaddr)) { 1863 unsafe_put_user(0, uaddr, out); 1864 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1865 } 1866 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1867 if (unlikely(end < start)) 1868 end = NULL; 1869 while (uaddr != end) { 1870 unsafe_put_user(0, uaddr, out); 1871 uaddr += PAGE_SIZE; 1872 } 1873 1874 out: 1875 user_write_access_end(); 1876 if (size > uaddr - start) 1877 return size - (uaddr - start); 1878 return 0; 1879 } 1880 EXPORT_SYMBOL(fault_in_writeable); 1881 1882 /** 1883 * fault_in_subpage_writeable - fault in an address range for writing 1884 * @uaddr: start of address range 1885 * @size: size of address range 1886 * 1887 * Fault in a user address range for writing while checking for permissions at 1888 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1889 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1890 * 1891 * Returns the number of bytes not faulted in (like copy_to_user() and 1892 * copy_from_user()). 1893 */ 1894 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1895 { 1896 size_t faulted_in; 1897 1898 /* 1899 * Attempt faulting in at page granularity first for page table 1900 * permission checking. The arch-specific probe_subpage_writeable() 1901 * functions may not check for this. 1902 */ 1903 faulted_in = size - fault_in_writeable(uaddr, size); 1904 if (faulted_in) 1905 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1906 1907 return size - faulted_in; 1908 } 1909 EXPORT_SYMBOL(fault_in_subpage_writeable); 1910 1911 /* 1912 * fault_in_safe_writeable - fault in an address range for writing 1913 * @uaddr: start of address range 1914 * @size: length of address range 1915 * 1916 * Faults in an address range for writing. This is primarily useful when we 1917 * already know that some or all of the pages in the address range aren't in 1918 * memory. 1919 * 1920 * Unlike fault_in_writeable(), this function is non-destructive. 1921 * 1922 * Note that we don't pin or otherwise hold the pages referenced that we fault 1923 * in. There's no guarantee that they'll stay in memory for any duration of 1924 * time. 1925 * 1926 * Returns the number of bytes not faulted in, like copy_to_user() and 1927 * copy_from_user(). 1928 */ 1929 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1930 { 1931 unsigned long start = (unsigned long)uaddr, end; 1932 struct mm_struct *mm = current->mm; 1933 bool unlocked = false; 1934 1935 if (unlikely(size == 0)) 1936 return 0; 1937 end = PAGE_ALIGN(start + size); 1938 if (end < start) 1939 end = 0; 1940 1941 mmap_read_lock(mm); 1942 do { 1943 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1944 break; 1945 start = (start + PAGE_SIZE) & PAGE_MASK; 1946 } while (start != end); 1947 mmap_read_unlock(mm); 1948 1949 if (size > (unsigned long)uaddr - start) 1950 return size - ((unsigned long)uaddr - start); 1951 return 0; 1952 } 1953 EXPORT_SYMBOL(fault_in_safe_writeable); 1954 1955 /** 1956 * fault_in_readable - fault in userspace address range for reading 1957 * @uaddr: start of user address range 1958 * @size: size of user address range 1959 * 1960 * Returns the number of bytes not faulted in (like copy_to_user() and 1961 * copy_from_user()). 1962 */ 1963 size_t fault_in_readable(const char __user *uaddr, size_t size) 1964 { 1965 const char __user *start = uaddr, *end; 1966 volatile char c; 1967 1968 if (unlikely(size == 0)) 1969 return 0; 1970 if (!user_read_access_begin(uaddr, size)) 1971 return size; 1972 if (!PAGE_ALIGNED(uaddr)) { 1973 unsafe_get_user(c, uaddr, out); 1974 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1975 } 1976 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1977 if (unlikely(end < start)) 1978 end = NULL; 1979 while (uaddr != end) { 1980 unsafe_get_user(c, uaddr, out); 1981 uaddr += PAGE_SIZE; 1982 } 1983 1984 out: 1985 user_read_access_end(); 1986 (void)c; 1987 if (size > uaddr - start) 1988 return size - (uaddr - start); 1989 return 0; 1990 } 1991 EXPORT_SYMBOL(fault_in_readable); 1992 1993 /** 1994 * get_dump_page() - pin user page in memory while writing it to core dump 1995 * @addr: user address 1996 * 1997 * Returns struct page pointer of user page pinned for dump, 1998 * to be freed afterwards by put_page(). 1999 * 2000 * Returns NULL on any kind of failure - a hole must then be inserted into 2001 * the corefile, to preserve alignment with its headers; and also returns 2002 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2003 * allowing a hole to be left in the corefile to save disk space. 2004 * 2005 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2006 */ 2007 #ifdef CONFIG_ELF_CORE 2008 struct page *get_dump_page(unsigned long addr) 2009 { 2010 struct page *page; 2011 int locked = 0; 2012 int ret; 2013 2014 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2015 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2016 return (ret == 1) ? page : NULL; 2017 } 2018 #endif /* CONFIG_ELF_CORE */ 2019 2020 #ifdef CONFIG_MIGRATION 2021 /* 2022 * Returns the number of collected pages. Return value is always >= 0. 2023 */ 2024 static unsigned long collect_longterm_unpinnable_pages( 2025 struct list_head *movable_page_list, 2026 unsigned long nr_pages, 2027 struct page **pages) 2028 { 2029 unsigned long i, collected = 0; 2030 struct folio *prev_folio = NULL; 2031 bool drain_allow = true; 2032 2033 for (i = 0; i < nr_pages; i++) { 2034 struct folio *folio = page_folio(pages[i]); 2035 2036 if (folio == prev_folio) 2037 continue; 2038 prev_folio = folio; 2039 2040 if (folio_is_longterm_pinnable(folio)) 2041 continue; 2042 2043 collected++; 2044 2045 if (folio_is_device_coherent(folio)) 2046 continue; 2047 2048 if (folio_test_hugetlb(folio)) { 2049 isolate_hugetlb(folio, movable_page_list); 2050 continue; 2051 } 2052 2053 if (!folio_test_lru(folio) && drain_allow) { 2054 lru_add_drain_all(); 2055 drain_allow = false; 2056 } 2057 2058 if (!folio_isolate_lru(folio)) 2059 continue; 2060 2061 list_add_tail(&folio->lru, movable_page_list); 2062 node_stat_mod_folio(folio, 2063 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2064 folio_nr_pages(folio)); 2065 } 2066 2067 return collected; 2068 } 2069 2070 /* 2071 * Unpins all pages and migrates device coherent pages and movable_page_list. 2072 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2073 * (or partial success). 2074 */ 2075 static int migrate_longterm_unpinnable_pages( 2076 struct list_head *movable_page_list, 2077 unsigned long nr_pages, 2078 struct page **pages) 2079 { 2080 int ret; 2081 unsigned long i; 2082 2083 for (i = 0; i < nr_pages; i++) { 2084 struct folio *folio = page_folio(pages[i]); 2085 2086 if (folio_is_device_coherent(folio)) { 2087 /* 2088 * Migration will fail if the page is pinned, so convert 2089 * the pin on the source page to a normal reference. 2090 */ 2091 pages[i] = NULL; 2092 folio_get(folio); 2093 gup_put_folio(folio, 1, FOLL_PIN); 2094 2095 if (migrate_device_coherent_page(&folio->page)) { 2096 ret = -EBUSY; 2097 goto err; 2098 } 2099 2100 continue; 2101 } 2102 2103 /* 2104 * We can't migrate pages with unexpected references, so drop 2105 * the reference obtained by __get_user_pages_locked(). 2106 * Migrating pages have been added to movable_page_list after 2107 * calling folio_isolate_lru() which takes a reference so the 2108 * page won't be freed if it's migrating. 2109 */ 2110 unpin_user_page(pages[i]); 2111 pages[i] = NULL; 2112 } 2113 2114 if (!list_empty(movable_page_list)) { 2115 struct migration_target_control mtc = { 2116 .nid = NUMA_NO_NODE, 2117 .gfp_mask = GFP_USER | __GFP_NOWARN, 2118 }; 2119 2120 if (migrate_pages(movable_page_list, alloc_migration_target, 2121 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2122 MR_LONGTERM_PIN, NULL)) { 2123 ret = -ENOMEM; 2124 goto err; 2125 } 2126 } 2127 2128 putback_movable_pages(movable_page_list); 2129 2130 return -EAGAIN; 2131 2132 err: 2133 for (i = 0; i < nr_pages; i++) 2134 if (pages[i]) 2135 unpin_user_page(pages[i]); 2136 putback_movable_pages(movable_page_list); 2137 2138 return ret; 2139 } 2140 2141 /* 2142 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2143 * pages in the range are required to be pinned via FOLL_PIN, before calling 2144 * this routine. 2145 * 2146 * If any pages in the range are not allowed to be pinned, then this routine 2147 * will migrate those pages away, unpin all the pages in the range and return 2148 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2149 * call this routine again. 2150 * 2151 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2152 * The caller should give up, and propagate the error back up the call stack. 2153 * 2154 * If everything is OK and all pages in the range are allowed to be pinned, then 2155 * this routine leaves all pages pinned and returns zero for success. 2156 */ 2157 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2158 struct page **pages) 2159 { 2160 unsigned long collected; 2161 LIST_HEAD(movable_page_list); 2162 2163 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2164 nr_pages, pages); 2165 if (!collected) 2166 return 0; 2167 2168 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2169 pages); 2170 } 2171 #else 2172 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2173 struct page **pages) 2174 { 2175 return 0; 2176 } 2177 #endif /* CONFIG_MIGRATION */ 2178 2179 /* 2180 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2181 * allows us to process the FOLL_LONGTERM flag. 2182 */ 2183 static long __gup_longterm_locked(struct mm_struct *mm, 2184 unsigned long start, 2185 unsigned long nr_pages, 2186 struct page **pages, 2187 int *locked, 2188 unsigned int gup_flags) 2189 { 2190 unsigned int flags; 2191 long rc, nr_pinned_pages; 2192 2193 if (!(gup_flags & FOLL_LONGTERM)) 2194 return __get_user_pages_locked(mm, start, nr_pages, pages, 2195 locked, gup_flags); 2196 2197 flags = memalloc_pin_save(); 2198 do { 2199 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2200 pages, locked, 2201 gup_flags); 2202 if (nr_pinned_pages <= 0) { 2203 rc = nr_pinned_pages; 2204 break; 2205 } 2206 2207 /* FOLL_LONGTERM implies FOLL_PIN */ 2208 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2209 } while (rc == -EAGAIN); 2210 memalloc_pin_restore(flags); 2211 return rc ? rc : nr_pinned_pages; 2212 } 2213 2214 /* 2215 * Check that the given flags are valid for the exported gup/pup interface, and 2216 * update them with the required flags that the caller must have set. 2217 */ 2218 static bool is_valid_gup_args(struct page **pages, int *locked, 2219 unsigned int *gup_flags_p, unsigned int to_set) 2220 { 2221 unsigned int gup_flags = *gup_flags_p; 2222 2223 /* 2224 * These flags not allowed to be specified externally to the gup 2225 * interfaces: 2226 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2227 * - FOLL_REMOTE is internal only and used on follow_page() 2228 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2229 */ 2230 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2231 FOLL_REMOTE | FOLL_FAST_ONLY))) 2232 return false; 2233 2234 gup_flags |= to_set; 2235 if (locked) { 2236 /* At the external interface locked must be set */ 2237 if (WARN_ON_ONCE(*locked != 1)) 2238 return false; 2239 2240 gup_flags |= FOLL_UNLOCKABLE; 2241 } 2242 2243 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2244 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2245 (FOLL_PIN | FOLL_GET))) 2246 return false; 2247 2248 /* LONGTERM can only be specified when pinning */ 2249 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2250 return false; 2251 2252 /* Pages input must be given if using GET/PIN */ 2253 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2254 return false; 2255 2256 /* We want to allow the pgmap to be hot-unplugged at all times */ 2257 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2258 (gup_flags & FOLL_PCI_P2PDMA))) 2259 return false; 2260 2261 *gup_flags_p = gup_flags; 2262 return true; 2263 } 2264 2265 #ifdef CONFIG_MMU 2266 /** 2267 * get_user_pages_remote() - pin user pages in memory 2268 * @mm: mm_struct of target mm 2269 * @start: starting user address 2270 * @nr_pages: number of pages from start to pin 2271 * @gup_flags: flags modifying lookup behaviour 2272 * @pages: array that receives pointers to the pages pinned. 2273 * Should be at least nr_pages long. Or NULL, if caller 2274 * only intends to ensure the pages are faulted in. 2275 * @locked: pointer to lock flag indicating whether lock is held and 2276 * subsequently whether VM_FAULT_RETRY functionality can be 2277 * utilised. Lock must initially be held. 2278 * 2279 * Returns either number of pages pinned (which may be less than the 2280 * number requested), or an error. Details about the return value: 2281 * 2282 * -- If nr_pages is 0, returns 0. 2283 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2284 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2285 * pages pinned. Again, this may be less than nr_pages. 2286 * 2287 * The caller is responsible for releasing returned @pages, via put_page(). 2288 * 2289 * Must be called with mmap_lock held for read or write. 2290 * 2291 * get_user_pages_remote walks a process's page tables and takes a reference 2292 * to each struct page that each user address corresponds to at a given 2293 * instant. That is, it takes the page that would be accessed if a user 2294 * thread accesses the given user virtual address at that instant. 2295 * 2296 * This does not guarantee that the page exists in the user mappings when 2297 * get_user_pages_remote returns, and there may even be a completely different 2298 * page there in some cases (eg. if mmapped pagecache has been invalidated 2299 * and subsequently re-faulted). However it does guarantee that the page 2300 * won't be freed completely. And mostly callers simply care that the page 2301 * contains data that was valid *at some point in time*. Typically, an IO 2302 * or similar operation cannot guarantee anything stronger anyway because 2303 * locks can't be held over the syscall boundary. 2304 * 2305 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2306 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2307 * be called after the page is finished with, and before put_page is called. 2308 * 2309 * get_user_pages_remote is typically used for fewer-copy IO operations, 2310 * to get a handle on the memory by some means other than accesses 2311 * via the user virtual addresses. The pages may be submitted for 2312 * DMA to devices or accessed via their kernel linear mapping (via the 2313 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2314 * 2315 * See also get_user_pages_fast, for performance critical applications. 2316 * 2317 * get_user_pages_remote should be phased out in favor of 2318 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2319 * should use get_user_pages_remote because it cannot pass 2320 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2321 */ 2322 long get_user_pages_remote(struct mm_struct *mm, 2323 unsigned long start, unsigned long nr_pages, 2324 unsigned int gup_flags, struct page **pages, 2325 int *locked) 2326 { 2327 int local_locked = 1; 2328 2329 if (!is_valid_gup_args(pages, locked, &gup_flags, 2330 FOLL_TOUCH | FOLL_REMOTE)) 2331 return -EINVAL; 2332 2333 return __get_user_pages_locked(mm, start, nr_pages, pages, 2334 locked ? locked : &local_locked, 2335 gup_flags); 2336 } 2337 EXPORT_SYMBOL(get_user_pages_remote); 2338 2339 #else /* CONFIG_MMU */ 2340 long get_user_pages_remote(struct mm_struct *mm, 2341 unsigned long start, unsigned long nr_pages, 2342 unsigned int gup_flags, struct page **pages, 2343 int *locked) 2344 { 2345 return 0; 2346 } 2347 #endif /* !CONFIG_MMU */ 2348 2349 /** 2350 * get_user_pages() - pin user pages in memory 2351 * @start: starting user address 2352 * @nr_pages: number of pages from start to pin 2353 * @gup_flags: flags modifying lookup behaviour 2354 * @pages: array that receives pointers to the pages pinned. 2355 * Should be at least nr_pages long. Or NULL, if caller 2356 * only intends to ensure the pages are faulted in. 2357 * 2358 * This is the same as get_user_pages_remote(), just with a less-flexible 2359 * calling convention where we assume that the mm being operated on belongs to 2360 * the current task, and doesn't allow passing of a locked parameter. We also 2361 * obviously don't pass FOLL_REMOTE in here. 2362 */ 2363 long get_user_pages(unsigned long start, unsigned long nr_pages, 2364 unsigned int gup_flags, struct page **pages) 2365 { 2366 int locked = 1; 2367 2368 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2369 return -EINVAL; 2370 2371 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2372 &locked, gup_flags); 2373 } 2374 EXPORT_SYMBOL(get_user_pages); 2375 2376 /* 2377 * get_user_pages_unlocked() is suitable to replace the form: 2378 * 2379 * mmap_read_lock(mm); 2380 * get_user_pages(mm, ..., pages, NULL); 2381 * mmap_read_unlock(mm); 2382 * 2383 * with: 2384 * 2385 * get_user_pages_unlocked(mm, ..., pages); 2386 * 2387 * It is functionally equivalent to get_user_pages_fast so 2388 * get_user_pages_fast should be used instead if specific gup_flags 2389 * (e.g. FOLL_FORCE) are not required. 2390 */ 2391 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2392 struct page **pages, unsigned int gup_flags) 2393 { 2394 int locked = 0; 2395 2396 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2397 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2398 return -EINVAL; 2399 2400 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2401 &locked, gup_flags); 2402 } 2403 EXPORT_SYMBOL(get_user_pages_unlocked); 2404 2405 /* 2406 * Fast GUP 2407 * 2408 * get_user_pages_fast attempts to pin user pages by walking the page 2409 * tables directly and avoids taking locks. Thus the walker needs to be 2410 * protected from page table pages being freed from under it, and should 2411 * block any THP splits. 2412 * 2413 * One way to achieve this is to have the walker disable interrupts, and 2414 * rely on IPIs from the TLB flushing code blocking before the page table 2415 * pages are freed. This is unsuitable for architectures that do not need 2416 * to broadcast an IPI when invalidating TLBs. 2417 * 2418 * Another way to achieve this is to batch up page table containing pages 2419 * belonging to more than one mm_user, then rcu_sched a callback to free those 2420 * pages. Disabling interrupts will allow the fast_gup walker to both block 2421 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2422 * (which is a relatively rare event). The code below adopts this strategy. 2423 * 2424 * Before activating this code, please be aware that the following assumptions 2425 * are currently made: 2426 * 2427 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2428 * free pages containing page tables or TLB flushing requires IPI broadcast. 2429 * 2430 * *) ptes can be read atomically by the architecture. 2431 * 2432 * *) access_ok is sufficient to validate userspace address ranges. 2433 * 2434 * The last two assumptions can be relaxed by the addition of helper functions. 2435 * 2436 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2437 */ 2438 #ifdef CONFIG_HAVE_FAST_GUP 2439 2440 /* 2441 * Used in the GUP-fast path to determine whether a pin is permitted for a 2442 * specific folio. 2443 * 2444 * This call assumes the caller has pinned the folio, that the lowest page table 2445 * level still points to this folio, and that interrupts have been disabled. 2446 * 2447 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2448 * (see comment describing the writable_file_mapping_allowed() function). We 2449 * therefore try to avoid the most egregious case of a long-term mapping doing 2450 * so. 2451 * 2452 * This function cannot be as thorough as that one as the VMA is not available 2453 * in the fast path, so instead we whitelist known good cases and if in doubt, 2454 * fall back to the slow path. 2455 */ 2456 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2457 { 2458 struct address_space *mapping; 2459 unsigned long mapping_flags; 2460 2461 /* 2462 * If we aren't pinning then no problematic write can occur. A long term 2463 * pin is the most egregious case so this is the one we disallow. 2464 */ 2465 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2466 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2467 return true; 2468 2469 /* The folio is pinned, so we can safely access folio fields. */ 2470 2471 if (WARN_ON_ONCE(folio_test_slab(folio))) 2472 return false; 2473 2474 /* hugetlb mappings do not require dirty-tracking. */ 2475 if (folio_test_hugetlb(folio)) 2476 return true; 2477 2478 /* 2479 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2480 * cannot proceed, which means no actions performed under RCU can 2481 * proceed either. 2482 * 2483 * inodes and thus their mappings are freed under RCU, which means the 2484 * mapping cannot be freed beneath us and thus we can safely dereference 2485 * it. 2486 */ 2487 lockdep_assert_irqs_disabled(); 2488 2489 /* 2490 * However, there may be operations which _alter_ the mapping, so ensure 2491 * we read it once and only once. 2492 */ 2493 mapping = READ_ONCE(folio->mapping); 2494 2495 /* 2496 * The mapping may have been truncated, in any case we cannot determine 2497 * if this mapping is safe - fall back to slow path to determine how to 2498 * proceed. 2499 */ 2500 if (!mapping) 2501 return false; 2502 2503 /* Anonymous folios pose no problem. */ 2504 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2505 if (mapping_flags) 2506 return mapping_flags & PAGE_MAPPING_ANON; 2507 2508 /* 2509 * At this point, we know the mapping is non-null and points to an 2510 * address_space object. The only remaining whitelisted file system is 2511 * shmem. 2512 */ 2513 return shmem_mapping(mapping); 2514 } 2515 2516 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2517 unsigned int flags, 2518 struct page **pages) 2519 { 2520 while ((*nr) - nr_start) { 2521 struct page *page = pages[--(*nr)]; 2522 2523 ClearPageReferenced(page); 2524 if (flags & FOLL_PIN) 2525 unpin_user_page(page); 2526 else 2527 put_page(page); 2528 } 2529 } 2530 2531 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2532 /* 2533 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2534 * operations. 2535 * 2536 * To pin the page, fast-gup needs to do below in order: 2537 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2538 * 2539 * For the rest of pgtable operations where pgtable updates can be racy 2540 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2541 * is pinned. 2542 * 2543 * Above will work for all pte-level operations, including THP split. 2544 * 2545 * For THP collapse, it's a bit more complicated because fast-gup may be 2546 * walking a pgtable page that is being freed (pte is still valid but pmd 2547 * can be cleared already). To avoid race in such condition, we need to 2548 * also check pmd here to make sure pmd doesn't change (corresponds to 2549 * pmdp_collapse_flush() in the THP collapse code path). 2550 */ 2551 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2552 unsigned long end, unsigned int flags, 2553 struct page **pages, int *nr) 2554 { 2555 struct dev_pagemap *pgmap = NULL; 2556 int nr_start = *nr, ret = 0; 2557 pte_t *ptep, *ptem; 2558 2559 ptem = ptep = pte_offset_map(&pmd, addr); 2560 if (!ptep) 2561 return 0; 2562 do { 2563 pte_t pte = ptep_get_lockless(ptep); 2564 struct page *page; 2565 struct folio *folio; 2566 2567 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2568 goto pte_unmap; 2569 2570 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2571 goto pte_unmap; 2572 2573 if (pte_devmap(pte)) { 2574 if (unlikely(flags & FOLL_LONGTERM)) 2575 goto pte_unmap; 2576 2577 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2578 if (unlikely(!pgmap)) { 2579 undo_dev_pagemap(nr, nr_start, flags, pages); 2580 goto pte_unmap; 2581 } 2582 } else if (pte_special(pte)) 2583 goto pte_unmap; 2584 2585 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2586 page = pte_page(pte); 2587 2588 folio = try_grab_folio(page, 1, flags); 2589 if (!folio) 2590 goto pte_unmap; 2591 2592 if (unlikely(page_is_secretmem(page))) { 2593 gup_put_folio(folio, 1, flags); 2594 goto pte_unmap; 2595 } 2596 2597 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2598 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2599 gup_put_folio(folio, 1, flags); 2600 goto pte_unmap; 2601 } 2602 2603 if (!folio_fast_pin_allowed(folio, flags)) { 2604 gup_put_folio(folio, 1, flags); 2605 goto pte_unmap; 2606 } 2607 2608 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2609 gup_put_folio(folio, 1, flags); 2610 goto pte_unmap; 2611 } 2612 2613 /* 2614 * We need to make the page accessible if and only if we are 2615 * going to access its content (the FOLL_PIN case). Please 2616 * see Documentation/core-api/pin_user_pages.rst for 2617 * details. 2618 */ 2619 if (flags & FOLL_PIN) { 2620 ret = arch_make_page_accessible(page); 2621 if (ret) { 2622 gup_put_folio(folio, 1, flags); 2623 goto pte_unmap; 2624 } 2625 } 2626 folio_set_referenced(folio); 2627 pages[*nr] = page; 2628 (*nr)++; 2629 } while (ptep++, addr += PAGE_SIZE, addr != end); 2630 2631 ret = 1; 2632 2633 pte_unmap: 2634 if (pgmap) 2635 put_dev_pagemap(pgmap); 2636 pte_unmap(ptem); 2637 return ret; 2638 } 2639 #else 2640 2641 /* 2642 * If we can't determine whether or not a pte is special, then fail immediately 2643 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2644 * to be special. 2645 * 2646 * For a futex to be placed on a THP tail page, get_futex_key requires a 2647 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2648 * useful to have gup_huge_pmd even if we can't operate on ptes. 2649 */ 2650 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2651 unsigned long end, unsigned int flags, 2652 struct page **pages, int *nr) 2653 { 2654 return 0; 2655 } 2656 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2657 2658 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2659 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2660 unsigned long end, unsigned int flags, 2661 struct page **pages, int *nr) 2662 { 2663 int nr_start = *nr; 2664 struct dev_pagemap *pgmap = NULL; 2665 2666 do { 2667 struct page *page = pfn_to_page(pfn); 2668 2669 pgmap = get_dev_pagemap(pfn, pgmap); 2670 if (unlikely(!pgmap)) { 2671 undo_dev_pagemap(nr, nr_start, flags, pages); 2672 break; 2673 } 2674 2675 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2676 undo_dev_pagemap(nr, nr_start, flags, pages); 2677 break; 2678 } 2679 2680 SetPageReferenced(page); 2681 pages[*nr] = page; 2682 if (unlikely(try_grab_page(page, flags))) { 2683 undo_dev_pagemap(nr, nr_start, flags, pages); 2684 break; 2685 } 2686 (*nr)++; 2687 pfn++; 2688 } while (addr += PAGE_SIZE, addr != end); 2689 2690 put_dev_pagemap(pgmap); 2691 return addr == end; 2692 } 2693 2694 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2695 unsigned long end, unsigned int flags, 2696 struct page **pages, int *nr) 2697 { 2698 unsigned long fault_pfn; 2699 int nr_start = *nr; 2700 2701 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2702 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2703 return 0; 2704 2705 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2706 undo_dev_pagemap(nr, nr_start, flags, pages); 2707 return 0; 2708 } 2709 return 1; 2710 } 2711 2712 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2713 unsigned long end, unsigned int flags, 2714 struct page **pages, int *nr) 2715 { 2716 unsigned long fault_pfn; 2717 int nr_start = *nr; 2718 2719 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2720 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2721 return 0; 2722 2723 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2724 undo_dev_pagemap(nr, nr_start, flags, pages); 2725 return 0; 2726 } 2727 return 1; 2728 } 2729 #else 2730 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2731 unsigned long end, unsigned int flags, 2732 struct page **pages, int *nr) 2733 { 2734 BUILD_BUG(); 2735 return 0; 2736 } 2737 2738 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2739 unsigned long end, unsigned int flags, 2740 struct page **pages, int *nr) 2741 { 2742 BUILD_BUG(); 2743 return 0; 2744 } 2745 #endif 2746 2747 static int record_subpages(struct page *page, unsigned long addr, 2748 unsigned long end, struct page **pages) 2749 { 2750 int nr; 2751 2752 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2753 pages[nr] = nth_page(page, nr); 2754 2755 return nr; 2756 } 2757 2758 #ifdef CONFIG_ARCH_HAS_HUGEPD 2759 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2760 unsigned long sz) 2761 { 2762 unsigned long __boundary = (addr + sz) & ~(sz-1); 2763 return (__boundary - 1 < end - 1) ? __boundary : end; 2764 } 2765 2766 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2767 unsigned long end, unsigned int flags, 2768 struct page **pages, int *nr) 2769 { 2770 unsigned long pte_end; 2771 struct page *page; 2772 struct folio *folio; 2773 pte_t pte; 2774 int refs; 2775 2776 pte_end = (addr + sz) & ~(sz-1); 2777 if (pte_end < end) 2778 end = pte_end; 2779 2780 pte = huge_ptep_get(ptep); 2781 2782 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2783 return 0; 2784 2785 /* hugepages are never "special" */ 2786 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2787 2788 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2789 refs = record_subpages(page, addr, end, pages + *nr); 2790 2791 folio = try_grab_folio(page, refs, flags); 2792 if (!folio) 2793 return 0; 2794 2795 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2796 gup_put_folio(folio, refs, flags); 2797 return 0; 2798 } 2799 2800 if (!folio_fast_pin_allowed(folio, flags)) { 2801 gup_put_folio(folio, refs, flags); 2802 return 0; 2803 } 2804 2805 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2806 gup_put_folio(folio, refs, flags); 2807 return 0; 2808 } 2809 2810 *nr += refs; 2811 folio_set_referenced(folio); 2812 return 1; 2813 } 2814 2815 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2816 unsigned int pdshift, unsigned long end, unsigned int flags, 2817 struct page **pages, int *nr) 2818 { 2819 pte_t *ptep; 2820 unsigned long sz = 1UL << hugepd_shift(hugepd); 2821 unsigned long next; 2822 2823 ptep = hugepte_offset(hugepd, addr, pdshift); 2824 do { 2825 next = hugepte_addr_end(addr, end, sz); 2826 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2827 return 0; 2828 } while (ptep++, addr = next, addr != end); 2829 2830 return 1; 2831 } 2832 #else 2833 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2834 unsigned int pdshift, unsigned long end, unsigned int flags, 2835 struct page **pages, int *nr) 2836 { 2837 return 0; 2838 } 2839 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2840 2841 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2842 unsigned long end, unsigned int flags, 2843 struct page **pages, int *nr) 2844 { 2845 struct page *page; 2846 struct folio *folio; 2847 int refs; 2848 2849 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2850 return 0; 2851 2852 if (pmd_devmap(orig)) { 2853 if (unlikely(flags & FOLL_LONGTERM)) 2854 return 0; 2855 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2856 pages, nr); 2857 } 2858 2859 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2860 refs = record_subpages(page, addr, end, pages + *nr); 2861 2862 folio = try_grab_folio(page, refs, flags); 2863 if (!folio) 2864 return 0; 2865 2866 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2867 gup_put_folio(folio, refs, flags); 2868 return 0; 2869 } 2870 2871 if (!folio_fast_pin_allowed(folio, flags)) { 2872 gup_put_folio(folio, refs, flags); 2873 return 0; 2874 } 2875 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2876 gup_put_folio(folio, refs, flags); 2877 return 0; 2878 } 2879 2880 *nr += refs; 2881 folio_set_referenced(folio); 2882 return 1; 2883 } 2884 2885 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2886 unsigned long end, unsigned int flags, 2887 struct page **pages, int *nr) 2888 { 2889 struct page *page; 2890 struct folio *folio; 2891 int refs; 2892 2893 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2894 return 0; 2895 2896 if (pud_devmap(orig)) { 2897 if (unlikely(flags & FOLL_LONGTERM)) 2898 return 0; 2899 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2900 pages, nr); 2901 } 2902 2903 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2904 refs = record_subpages(page, addr, end, pages + *nr); 2905 2906 folio = try_grab_folio(page, refs, flags); 2907 if (!folio) 2908 return 0; 2909 2910 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2911 gup_put_folio(folio, refs, flags); 2912 return 0; 2913 } 2914 2915 if (!folio_fast_pin_allowed(folio, flags)) { 2916 gup_put_folio(folio, refs, flags); 2917 return 0; 2918 } 2919 2920 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2921 gup_put_folio(folio, refs, flags); 2922 return 0; 2923 } 2924 2925 *nr += refs; 2926 folio_set_referenced(folio); 2927 return 1; 2928 } 2929 2930 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2931 unsigned long end, unsigned int flags, 2932 struct page **pages, int *nr) 2933 { 2934 int refs; 2935 struct page *page; 2936 struct folio *folio; 2937 2938 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2939 return 0; 2940 2941 BUILD_BUG_ON(pgd_devmap(orig)); 2942 2943 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2944 refs = record_subpages(page, addr, end, pages + *nr); 2945 2946 folio = try_grab_folio(page, refs, flags); 2947 if (!folio) 2948 return 0; 2949 2950 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2951 gup_put_folio(folio, refs, flags); 2952 return 0; 2953 } 2954 2955 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2956 gup_put_folio(folio, refs, flags); 2957 return 0; 2958 } 2959 2960 if (!folio_fast_pin_allowed(folio, flags)) { 2961 gup_put_folio(folio, refs, flags); 2962 return 0; 2963 } 2964 2965 *nr += refs; 2966 folio_set_referenced(folio); 2967 return 1; 2968 } 2969 2970 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2971 unsigned int flags, struct page **pages, int *nr) 2972 { 2973 unsigned long next; 2974 pmd_t *pmdp; 2975 2976 pmdp = pmd_offset_lockless(pudp, pud, addr); 2977 do { 2978 pmd_t pmd = pmdp_get_lockless(pmdp); 2979 2980 next = pmd_addr_end(addr, end); 2981 if (!pmd_present(pmd)) 2982 return 0; 2983 2984 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2985 pmd_devmap(pmd))) { 2986 if (pmd_protnone(pmd) && 2987 !gup_can_follow_protnone(flags)) 2988 return 0; 2989 2990 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2991 pages, nr)) 2992 return 0; 2993 2994 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2995 /* 2996 * architecture have different format for hugetlbfs 2997 * pmd format and THP pmd format 2998 */ 2999 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 3000 PMD_SHIFT, next, flags, pages, nr)) 3001 return 0; 3002 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 3003 return 0; 3004 } while (pmdp++, addr = next, addr != end); 3005 3006 return 1; 3007 } 3008 3009 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 3010 unsigned int flags, struct page **pages, int *nr) 3011 { 3012 unsigned long next; 3013 pud_t *pudp; 3014 3015 pudp = pud_offset_lockless(p4dp, p4d, addr); 3016 do { 3017 pud_t pud = READ_ONCE(*pudp); 3018 3019 next = pud_addr_end(addr, end); 3020 if (unlikely(!pud_present(pud))) 3021 return 0; 3022 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 3023 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3024 pages, nr)) 3025 return 0; 3026 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3027 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3028 PUD_SHIFT, next, flags, pages, nr)) 3029 return 0; 3030 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3031 return 0; 3032 } while (pudp++, addr = next, addr != end); 3033 3034 return 1; 3035 } 3036 3037 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3038 unsigned int flags, struct page **pages, int *nr) 3039 { 3040 unsigned long next; 3041 p4d_t *p4dp; 3042 3043 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3044 do { 3045 p4d_t p4d = READ_ONCE(*p4dp); 3046 3047 next = p4d_addr_end(addr, end); 3048 if (p4d_none(p4d)) 3049 return 0; 3050 BUILD_BUG_ON(p4d_huge(p4d)); 3051 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3052 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3053 P4D_SHIFT, next, flags, pages, nr)) 3054 return 0; 3055 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3056 return 0; 3057 } while (p4dp++, addr = next, addr != end); 3058 3059 return 1; 3060 } 3061 3062 static void gup_pgd_range(unsigned long addr, unsigned long end, 3063 unsigned int flags, struct page **pages, int *nr) 3064 { 3065 unsigned long next; 3066 pgd_t *pgdp; 3067 3068 pgdp = pgd_offset(current->mm, addr); 3069 do { 3070 pgd_t pgd = READ_ONCE(*pgdp); 3071 3072 next = pgd_addr_end(addr, end); 3073 if (pgd_none(pgd)) 3074 return; 3075 if (unlikely(pgd_huge(pgd))) { 3076 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3077 pages, nr)) 3078 return; 3079 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3080 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3081 PGDIR_SHIFT, next, flags, pages, nr)) 3082 return; 3083 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3084 return; 3085 } while (pgdp++, addr = next, addr != end); 3086 } 3087 #else 3088 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3089 unsigned int flags, struct page **pages, int *nr) 3090 { 3091 } 3092 #endif /* CONFIG_HAVE_FAST_GUP */ 3093 3094 #ifndef gup_fast_permitted 3095 /* 3096 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3097 * we need to fall back to the slow version: 3098 */ 3099 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3100 { 3101 return true; 3102 } 3103 #endif 3104 3105 static unsigned long lockless_pages_from_mm(unsigned long start, 3106 unsigned long end, 3107 unsigned int gup_flags, 3108 struct page **pages) 3109 { 3110 unsigned long flags; 3111 int nr_pinned = 0; 3112 unsigned seq; 3113 3114 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3115 !gup_fast_permitted(start, end)) 3116 return 0; 3117 3118 if (gup_flags & FOLL_PIN) { 3119 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3120 if (seq & 1) 3121 return 0; 3122 } 3123 3124 /* 3125 * Disable interrupts. The nested form is used, in order to allow full, 3126 * general purpose use of this routine. 3127 * 3128 * With interrupts disabled, we block page table pages from being freed 3129 * from under us. See struct mmu_table_batch comments in 3130 * include/asm-generic/tlb.h for more details. 3131 * 3132 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3133 * that come from THPs splitting. 3134 */ 3135 local_irq_save(flags); 3136 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3137 local_irq_restore(flags); 3138 3139 /* 3140 * When pinning pages for DMA there could be a concurrent write protect 3141 * from fork() via copy_page_range(), in this case always fail fast GUP. 3142 */ 3143 if (gup_flags & FOLL_PIN) { 3144 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3145 unpin_user_pages_lockless(pages, nr_pinned); 3146 return 0; 3147 } else { 3148 sanity_check_pinned_pages(pages, nr_pinned); 3149 } 3150 } 3151 return nr_pinned; 3152 } 3153 3154 static int internal_get_user_pages_fast(unsigned long start, 3155 unsigned long nr_pages, 3156 unsigned int gup_flags, 3157 struct page **pages) 3158 { 3159 unsigned long len, end; 3160 unsigned long nr_pinned; 3161 int locked = 0; 3162 int ret; 3163 3164 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3165 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3166 FOLL_FAST_ONLY | FOLL_NOFAULT | 3167 FOLL_PCI_P2PDMA))) 3168 return -EINVAL; 3169 3170 if (gup_flags & FOLL_PIN) 3171 mm_set_has_pinned_flag(¤t->mm->flags); 3172 3173 if (!(gup_flags & FOLL_FAST_ONLY)) 3174 might_lock_read(¤t->mm->mmap_lock); 3175 3176 start = untagged_addr(start) & PAGE_MASK; 3177 len = nr_pages << PAGE_SHIFT; 3178 if (check_add_overflow(start, len, &end)) 3179 return -EOVERFLOW; 3180 if (end > TASK_SIZE_MAX) 3181 return -EFAULT; 3182 if (unlikely(!access_ok((void __user *)start, len))) 3183 return -EFAULT; 3184 3185 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3186 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3187 return nr_pinned; 3188 3189 /* Slow path: try to get the remaining pages with get_user_pages */ 3190 start += nr_pinned << PAGE_SHIFT; 3191 pages += nr_pinned; 3192 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3193 pages, &locked, 3194 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3195 if (ret < 0) { 3196 /* 3197 * The caller has to unpin the pages we already pinned so 3198 * returning -errno is not an option 3199 */ 3200 if (nr_pinned) 3201 return nr_pinned; 3202 return ret; 3203 } 3204 return ret + nr_pinned; 3205 } 3206 3207 /** 3208 * get_user_pages_fast_only() - pin user pages in memory 3209 * @start: starting user address 3210 * @nr_pages: number of pages from start to pin 3211 * @gup_flags: flags modifying pin behaviour 3212 * @pages: array that receives pointers to the pages pinned. 3213 * Should be at least nr_pages long. 3214 * 3215 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3216 * the regular GUP. 3217 * 3218 * If the architecture does not support this function, simply return with no 3219 * pages pinned. 3220 * 3221 * Careful, careful! COW breaking can go either way, so a non-write 3222 * access can get ambiguous page results. If you call this function without 3223 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3224 */ 3225 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3226 unsigned int gup_flags, struct page **pages) 3227 { 3228 /* 3229 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3230 * because gup fast is always a "pin with a +1 page refcount" request. 3231 * 3232 * FOLL_FAST_ONLY is required in order to match the API description of 3233 * this routine: no fall back to regular ("slow") GUP. 3234 */ 3235 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3236 FOLL_GET | FOLL_FAST_ONLY)) 3237 return -EINVAL; 3238 3239 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3240 } 3241 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3242 3243 /** 3244 * get_user_pages_fast() - pin user pages in memory 3245 * @start: starting user address 3246 * @nr_pages: number of pages from start to pin 3247 * @gup_flags: flags modifying pin behaviour 3248 * @pages: array that receives pointers to the pages pinned. 3249 * Should be at least nr_pages long. 3250 * 3251 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3252 * If not successful, it will fall back to taking the lock and 3253 * calling get_user_pages(). 3254 * 3255 * Returns number of pages pinned. This may be fewer than the number requested. 3256 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3257 * -errno. 3258 */ 3259 int get_user_pages_fast(unsigned long start, int nr_pages, 3260 unsigned int gup_flags, struct page **pages) 3261 { 3262 /* 3263 * The caller may or may not have explicitly set FOLL_GET; either way is 3264 * OK. However, internally (within mm/gup.c), gup fast variants must set 3265 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3266 * request. 3267 */ 3268 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3269 return -EINVAL; 3270 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3271 } 3272 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3273 3274 /** 3275 * pin_user_pages_fast() - pin user pages in memory without taking locks 3276 * 3277 * @start: starting user address 3278 * @nr_pages: number of pages from start to pin 3279 * @gup_flags: flags modifying pin behaviour 3280 * @pages: array that receives pointers to the pages pinned. 3281 * Should be at least nr_pages long. 3282 * 3283 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3284 * get_user_pages_fast() for documentation on the function arguments, because 3285 * the arguments here are identical. 3286 * 3287 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3288 * see Documentation/core-api/pin_user_pages.rst for further details. 3289 * 3290 * Note that if a zero_page is amongst the returned pages, it will not have 3291 * pins in it and unpin_user_page() will not remove pins from it. 3292 */ 3293 int pin_user_pages_fast(unsigned long start, int nr_pages, 3294 unsigned int gup_flags, struct page **pages) 3295 { 3296 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3297 return -EINVAL; 3298 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3299 } 3300 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3301 3302 /** 3303 * pin_user_pages_remote() - pin pages of a remote process 3304 * 3305 * @mm: mm_struct of target mm 3306 * @start: starting user address 3307 * @nr_pages: number of pages from start to pin 3308 * @gup_flags: flags modifying lookup behaviour 3309 * @pages: array that receives pointers to the pages pinned. 3310 * Should be at least nr_pages long. 3311 * @locked: pointer to lock flag indicating whether lock is held and 3312 * subsequently whether VM_FAULT_RETRY functionality can be 3313 * utilised. Lock must initially be held. 3314 * 3315 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3316 * get_user_pages_remote() for documentation on the function arguments, because 3317 * the arguments here are identical. 3318 * 3319 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3320 * see Documentation/core-api/pin_user_pages.rst for details. 3321 * 3322 * Note that if a zero_page is amongst the returned pages, it will not have 3323 * pins in it and unpin_user_page*() will not remove pins from it. 3324 */ 3325 long pin_user_pages_remote(struct mm_struct *mm, 3326 unsigned long start, unsigned long nr_pages, 3327 unsigned int gup_flags, struct page **pages, 3328 int *locked) 3329 { 3330 int local_locked = 1; 3331 3332 if (!is_valid_gup_args(pages, locked, &gup_flags, 3333 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3334 return 0; 3335 return __gup_longterm_locked(mm, start, nr_pages, pages, 3336 locked ? locked : &local_locked, 3337 gup_flags); 3338 } 3339 EXPORT_SYMBOL(pin_user_pages_remote); 3340 3341 /** 3342 * pin_user_pages() - pin user pages in memory for use by other devices 3343 * 3344 * @start: starting user address 3345 * @nr_pages: number of pages from start to pin 3346 * @gup_flags: flags modifying lookup behaviour 3347 * @pages: array that receives pointers to the pages pinned. 3348 * Should be at least nr_pages long. 3349 * 3350 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3351 * FOLL_PIN is set. 3352 * 3353 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3354 * see Documentation/core-api/pin_user_pages.rst for details. 3355 * 3356 * Note that if a zero_page is amongst the returned pages, it will not have 3357 * pins in it and unpin_user_page*() will not remove pins from it. 3358 */ 3359 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3360 unsigned int gup_flags, struct page **pages) 3361 { 3362 int locked = 1; 3363 3364 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3365 return 0; 3366 return __gup_longterm_locked(current->mm, start, nr_pages, 3367 pages, &locked, gup_flags); 3368 } 3369 EXPORT_SYMBOL(pin_user_pages); 3370 3371 /* 3372 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3373 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3374 * FOLL_PIN and rejects FOLL_GET. 3375 * 3376 * Note that if a zero_page is amongst the returned pages, it will not have 3377 * pins in it and unpin_user_page*() will not remove pins from it. 3378 */ 3379 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3380 struct page **pages, unsigned int gup_flags) 3381 { 3382 int locked = 0; 3383 3384 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3385 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3386 return 0; 3387 3388 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3389 &locked, gup_flags); 3390 } 3391 EXPORT_SYMBOL(pin_user_pages_unlocked); 3392