xref: /openbmc/linux/mm/gup.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in page_try_share_anon_rmap().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 	}
714 	if (likely(!pmd_trans_huge(pmdval)))
715 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716 
717 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
718 		return no_page_table(vma, flags);
719 
720 	ptl = pmd_lock(mm, pmd);
721 	if (unlikely(!pmd_present(*pmd))) {
722 		spin_unlock(ptl);
723 		return no_page_table(vma, flags);
724 	}
725 	if (unlikely(!pmd_trans_huge(*pmd))) {
726 		spin_unlock(ptl);
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 	}
729 	if (flags & FOLL_SPLIT_PMD) {
730 		spin_unlock(ptl);
731 		split_huge_pmd(vma, pmd, address);
732 		/* If pmd was left empty, stuff a page table in there quickly */
733 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735 	}
736 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 	spin_unlock(ptl);
738 	ctx->page_mask = HPAGE_PMD_NR - 1;
739 	return page;
740 }
741 
742 static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 				    unsigned long address, p4d_t *p4dp,
744 				    unsigned int flags,
745 				    struct follow_page_context *ctx)
746 {
747 	pud_t *pud;
748 	spinlock_t *ptl;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	pud = pud_offset(p4dp, address);
753 	if (pud_none(*pud))
754 		return no_page_table(vma, flags);
755 	if (pud_devmap(*pud)) {
756 		ptl = pud_lock(mm, pud);
757 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 		spin_unlock(ptl);
759 		if (page)
760 			return page;
761 	}
762 	if (unlikely(pud_bad(*pud)))
763 		return no_page_table(vma, flags);
764 
765 	return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767 
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 				    unsigned long address, pgd_t *pgdp,
770 				    unsigned int flags,
771 				    struct follow_page_context *ctx)
772 {
773 	p4d_t *p4d;
774 
775 	p4d = p4d_offset(pgdp, address);
776 	if (p4d_none(*p4d))
777 		return no_page_table(vma, flags);
778 	BUILD_BUG_ON(p4d_huge(*p4d));
779 	if (unlikely(p4d_bad(*p4d)))
780 		return no_page_table(vma, flags);
781 
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct mm_struct *mm = vma->vm_mm;
815 
816 	ctx->page_mask = 0;
817 
818 	/*
819 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 	 * special hugetlb page table walking code.  This eliminates the
821 	 * need to check for hugetlb entries in the general walking code.
822 	 */
823 	if (is_vm_hugetlb_page(vma))
824 		return hugetlb_follow_page_mask(vma, address, flags,
825 						&ctx->page_mask);
826 
827 	pgd = pgd_offset(mm, address);
828 
829 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830 		return no_page_table(vma, flags);
831 
832 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
833 }
834 
835 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
836 			 unsigned int foll_flags)
837 {
838 	struct follow_page_context ctx = { NULL };
839 	struct page *page;
840 
841 	if (vma_is_secretmem(vma))
842 		return NULL;
843 
844 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
845 		return NULL;
846 
847 	page = follow_page_mask(vma, address, foll_flags, &ctx);
848 	if (ctx.pgmap)
849 		put_dev_pagemap(ctx.pgmap);
850 	return page;
851 }
852 
853 static int get_gate_page(struct mm_struct *mm, unsigned long address,
854 		unsigned int gup_flags, struct vm_area_struct **vma,
855 		struct page **page)
856 {
857 	pgd_t *pgd;
858 	p4d_t *p4d;
859 	pud_t *pud;
860 	pmd_t *pmd;
861 	pte_t *pte;
862 	pte_t entry;
863 	int ret = -EFAULT;
864 
865 	/* user gate pages are read-only */
866 	if (gup_flags & FOLL_WRITE)
867 		return -EFAULT;
868 	if (address > TASK_SIZE)
869 		pgd = pgd_offset_k(address);
870 	else
871 		pgd = pgd_offset_gate(mm, address);
872 	if (pgd_none(*pgd))
873 		return -EFAULT;
874 	p4d = p4d_offset(pgd, address);
875 	if (p4d_none(*p4d))
876 		return -EFAULT;
877 	pud = pud_offset(p4d, address);
878 	if (pud_none(*pud))
879 		return -EFAULT;
880 	pmd = pmd_offset(pud, address);
881 	if (!pmd_present(*pmd))
882 		return -EFAULT;
883 	pte = pte_offset_map(pmd, address);
884 	if (!pte)
885 		return -EFAULT;
886 	entry = ptep_get(pte);
887 	if (pte_none(entry))
888 		goto unmap;
889 	*vma = get_gate_vma(mm);
890 	if (!page)
891 		goto out;
892 	*page = vm_normal_page(*vma, address, entry);
893 	if (!*page) {
894 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
895 			goto unmap;
896 		*page = pte_page(entry);
897 	}
898 	ret = try_grab_page(*page, gup_flags);
899 	if (unlikely(ret))
900 		goto unmap;
901 out:
902 	ret = 0;
903 unmap:
904 	pte_unmap(pte);
905 	return ret;
906 }
907 
908 /*
909  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
910  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
911  * to 0 and -EBUSY returned.
912  */
913 static int faultin_page(struct vm_area_struct *vma,
914 		unsigned long address, unsigned int *flags, bool unshare,
915 		int *locked)
916 {
917 	unsigned int fault_flags = 0;
918 	vm_fault_t ret;
919 
920 	if (*flags & FOLL_NOFAULT)
921 		return -EFAULT;
922 	if (*flags & FOLL_WRITE)
923 		fault_flags |= FAULT_FLAG_WRITE;
924 	if (*flags & FOLL_REMOTE)
925 		fault_flags |= FAULT_FLAG_REMOTE;
926 	if (*flags & FOLL_UNLOCKABLE) {
927 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
928 		/*
929 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
930 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
931 		 * That's because some callers may not be prepared to
932 		 * handle early exits caused by non-fatal signals.
933 		 */
934 		if (*flags & FOLL_INTERRUPTIBLE)
935 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
936 	}
937 	if (*flags & FOLL_NOWAIT)
938 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
939 	if (*flags & FOLL_TRIED) {
940 		/*
941 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
942 		 * can co-exist
943 		 */
944 		fault_flags |= FAULT_FLAG_TRIED;
945 	}
946 	if (unshare) {
947 		fault_flags |= FAULT_FLAG_UNSHARE;
948 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
949 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
950 	}
951 
952 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
953 
954 	if (ret & VM_FAULT_COMPLETED) {
955 		/*
956 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
957 		 * mmap lock in the page fault handler. Sanity check this.
958 		 */
959 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
960 		*locked = 0;
961 
962 		/*
963 		 * We should do the same as VM_FAULT_RETRY, but let's not
964 		 * return -EBUSY since that's not reflecting the reality of
965 		 * what has happened - we've just fully completed a page
966 		 * fault, with the mmap lock released.  Use -EAGAIN to show
967 		 * that we want to take the mmap lock _again_.
968 		 */
969 		return -EAGAIN;
970 	}
971 
972 	if (ret & VM_FAULT_ERROR) {
973 		int err = vm_fault_to_errno(ret, *flags);
974 
975 		if (err)
976 			return err;
977 		BUG();
978 	}
979 
980 	if (ret & VM_FAULT_RETRY) {
981 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
982 			*locked = 0;
983 		return -EBUSY;
984 	}
985 
986 	return 0;
987 }
988 
989 /*
990  * Writing to file-backed mappings which require folio dirty tracking using GUP
991  * is a fundamentally broken operation, as kernel write access to GUP mappings
992  * do not adhere to the semantics expected by a file system.
993  *
994  * Consider the following scenario:-
995  *
996  * 1. A folio is written to via GUP which write-faults the memory, notifying
997  *    the file system and dirtying the folio.
998  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
999  *    the PTE being marked read-only.
1000  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1001  *    direct mapping.
1002  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1003  *    (though it does not have to).
1004  *
1005  * This results in both data being written to a folio without writenotify, and
1006  * the folio being dirtied unexpectedly (if the caller decides to do so).
1007  */
1008 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1009 					  unsigned long gup_flags)
1010 {
1011 	/*
1012 	 * If we aren't pinning then no problematic write can occur. A long term
1013 	 * pin is the most egregious case so this is the case we disallow.
1014 	 */
1015 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1016 	    (FOLL_PIN | FOLL_LONGTERM))
1017 		return true;
1018 
1019 	/*
1020 	 * If the VMA does not require dirty tracking then no problematic write
1021 	 * can occur either.
1022 	 */
1023 	return !vma_needs_dirty_tracking(vma);
1024 }
1025 
1026 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1027 {
1028 	vm_flags_t vm_flags = vma->vm_flags;
1029 	int write = (gup_flags & FOLL_WRITE);
1030 	int foreign = (gup_flags & FOLL_REMOTE);
1031 	bool vma_anon = vma_is_anonymous(vma);
1032 
1033 	if (vm_flags & (VM_IO | VM_PFNMAP))
1034 		return -EFAULT;
1035 
1036 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1037 		return -EFAULT;
1038 
1039 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1040 		return -EOPNOTSUPP;
1041 
1042 	if (vma_is_secretmem(vma))
1043 		return -EFAULT;
1044 
1045 	if (write) {
1046 		if (!vma_anon &&
1047 		    !writable_file_mapping_allowed(vma, gup_flags))
1048 			return -EFAULT;
1049 
1050 		if (!(vm_flags & VM_WRITE)) {
1051 			if (!(gup_flags & FOLL_FORCE))
1052 				return -EFAULT;
1053 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1054 			if (is_vm_hugetlb_page(vma))
1055 				return -EFAULT;
1056 			/*
1057 			 * We used to let the write,force case do COW in a
1058 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1059 			 * set a breakpoint in a read-only mapping of an
1060 			 * executable, without corrupting the file (yet only
1061 			 * when that file had been opened for writing!).
1062 			 * Anon pages in shared mappings are surprising: now
1063 			 * just reject it.
1064 			 */
1065 			if (!is_cow_mapping(vm_flags))
1066 				return -EFAULT;
1067 		}
1068 	} else if (!(vm_flags & VM_READ)) {
1069 		if (!(gup_flags & FOLL_FORCE))
1070 			return -EFAULT;
1071 		/*
1072 		 * Is there actually any vma we can reach here which does not
1073 		 * have VM_MAYREAD set?
1074 		 */
1075 		if (!(vm_flags & VM_MAYREAD))
1076 			return -EFAULT;
1077 	}
1078 	/*
1079 	 * gups are always data accesses, not instruction
1080 	 * fetches, so execute=false here
1081 	 */
1082 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1083 		return -EFAULT;
1084 	return 0;
1085 }
1086 
1087 /*
1088  * This is "vma_lookup()", but with a warning if we would have
1089  * historically expanded the stack in the GUP code.
1090  */
1091 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1092 	 unsigned long addr)
1093 {
1094 #ifdef CONFIG_STACK_GROWSUP
1095 	return vma_lookup(mm, addr);
1096 #else
1097 	static volatile unsigned long next_warn;
1098 	struct vm_area_struct *vma;
1099 	unsigned long now, next;
1100 
1101 	vma = find_vma(mm, addr);
1102 	if (!vma || (addr >= vma->vm_start))
1103 		return vma;
1104 
1105 	/* Only warn for half-way relevant accesses */
1106 	if (!(vma->vm_flags & VM_GROWSDOWN))
1107 		return NULL;
1108 	if (vma->vm_start - addr > 65536)
1109 		return NULL;
1110 
1111 	/* Let's not warn more than once an hour.. */
1112 	now = jiffies; next = next_warn;
1113 	if (next && time_before(now, next))
1114 		return NULL;
1115 	next_warn = now + 60*60*HZ;
1116 
1117 	/* Let people know things may have changed. */
1118 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1119 		current->comm, task_pid_nr(current),
1120 		vma->vm_start, vma->vm_end, addr);
1121 	dump_stack();
1122 	return NULL;
1123 #endif
1124 }
1125 
1126 /**
1127  * __get_user_pages() - pin user pages in memory
1128  * @mm:		mm_struct of target mm
1129  * @start:	starting user address
1130  * @nr_pages:	number of pages from start to pin
1131  * @gup_flags:	flags modifying pin behaviour
1132  * @pages:	array that receives pointers to the pages pinned.
1133  *		Should be at least nr_pages long. Or NULL, if caller
1134  *		only intends to ensure the pages are faulted in.
1135  * @locked:     whether we're still with the mmap_lock held
1136  *
1137  * Returns either number of pages pinned (which may be less than the
1138  * number requested), or an error. Details about the return value:
1139  *
1140  * -- If nr_pages is 0, returns 0.
1141  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1142  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1143  *    pages pinned. Again, this may be less than nr_pages.
1144  * -- 0 return value is possible when the fault would need to be retried.
1145  *
1146  * The caller is responsible for releasing returned @pages, via put_page().
1147  *
1148  * Must be called with mmap_lock held.  It may be released.  See below.
1149  *
1150  * __get_user_pages walks a process's page tables and takes a reference to
1151  * each struct page that each user address corresponds to at a given
1152  * instant. That is, it takes the page that would be accessed if a user
1153  * thread accesses the given user virtual address at that instant.
1154  *
1155  * This does not guarantee that the page exists in the user mappings when
1156  * __get_user_pages returns, and there may even be a completely different
1157  * page there in some cases (eg. if mmapped pagecache has been invalidated
1158  * and subsequently re-faulted). However it does guarantee that the page
1159  * won't be freed completely. And mostly callers simply care that the page
1160  * contains data that was valid *at some point in time*. Typically, an IO
1161  * or similar operation cannot guarantee anything stronger anyway because
1162  * locks can't be held over the syscall boundary.
1163  *
1164  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1165  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1166  * appropriate) must be called after the page is finished with, and
1167  * before put_page is called.
1168  *
1169  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1170  * be released. If this happens *@locked will be set to 0 on return.
1171  *
1172  * A caller using such a combination of @gup_flags must therefore hold the
1173  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1174  * it must be held for either reading or writing and will not be released.
1175  *
1176  * In most cases, get_user_pages or get_user_pages_fast should be used
1177  * instead of __get_user_pages. __get_user_pages should be used only if
1178  * you need some special @gup_flags.
1179  */
1180 static long __get_user_pages(struct mm_struct *mm,
1181 		unsigned long start, unsigned long nr_pages,
1182 		unsigned int gup_flags, struct page **pages,
1183 		int *locked)
1184 {
1185 	long ret = 0, i = 0;
1186 	struct vm_area_struct *vma = NULL;
1187 	struct follow_page_context ctx = { NULL };
1188 
1189 	if (!nr_pages)
1190 		return 0;
1191 
1192 	start = untagged_addr_remote(mm, start);
1193 
1194 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1195 
1196 	do {
1197 		struct page *page;
1198 		unsigned int foll_flags = gup_flags;
1199 		unsigned int page_increm;
1200 
1201 		/* first iteration or cross vma bound */
1202 		if (!vma || start >= vma->vm_end) {
1203 			vma = gup_vma_lookup(mm, start);
1204 			if (!vma && in_gate_area(mm, start)) {
1205 				ret = get_gate_page(mm, start & PAGE_MASK,
1206 						gup_flags, &vma,
1207 						pages ? &page : NULL);
1208 				if (ret)
1209 					goto out;
1210 				ctx.page_mask = 0;
1211 				goto next_page;
1212 			}
1213 
1214 			if (!vma) {
1215 				ret = -EFAULT;
1216 				goto out;
1217 			}
1218 			ret = check_vma_flags(vma, gup_flags);
1219 			if (ret)
1220 				goto out;
1221 		}
1222 retry:
1223 		/*
1224 		 * If we have a pending SIGKILL, don't keep faulting pages and
1225 		 * potentially allocating memory.
1226 		 */
1227 		if (fatal_signal_pending(current)) {
1228 			ret = -EINTR;
1229 			goto out;
1230 		}
1231 		cond_resched();
1232 
1233 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1234 		if (!page || PTR_ERR(page) == -EMLINK) {
1235 			ret = faultin_page(vma, start, &foll_flags,
1236 					   PTR_ERR(page) == -EMLINK, locked);
1237 			switch (ret) {
1238 			case 0:
1239 				goto retry;
1240 			case -EBUSY:
1241 			case -EAGAIN:
1242 				ret = 0;
1243 				fallthrough;
1244 			case -EFAULT:
1245 			case -ENOMEM:
1246 			case -EHWPOISON:
1247 				goto out;
1248 			}
1249 			BUG();
1250 		} else if (PTR_ERR(page) == -EEXIST) {
1251 			/*
1252 			 * Proper page table entry exists, but no corresponding
1253 			 * struct page. If the caller expects **pages to be
1254 			 * filled in, bail out now, because that can't be done
1255 			 * for this page.
1256 			 */
1257 			if (pages) {
1258 				ret = PTR_ERR(page);
1259 				goto out;
1260 			}
1261 		} else if (IS_ERR(page)) {
1262 			ret = PTR_ERR(page);
1263 			goto out;
1264 		}
1265 next_page:
1266 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1267 		if (page_increm > nr_pages)
1268 			page_increm = nr_pages;
1269 
1270 		if (pages) {
1271 			struct page *subpage;
1272 			unsigned int j;
1273 
1274 			/*
1275 			 * This must be a large folio (and doesn't need to
1276 			 * be the whole folio; it can be part of it), do
1277 			 * the refcount work for all the subpages too.
1278 			 *
1279 			 * NOTE: here the page may not be the head page
1280 			 * e.g. when start addr is not thp-size aligned.
1281 			 * try_grab_folio() should have taken care of tail
1282 			 * pages.
1283 			 */
1284 			if (page_increm > 1) {
1285 				struct folio *folio;
1286 
1287 				/*
1288 				 * Since we already hold refcount on the
1289 				 * large folio, this should never fail.
1290 				 */
1291 				folio = try_grab_folio(page, page_increm - 1,
1292 						       foll_flags);
1293 				if (WARN_ON_ONCE(!folio)) {
1294 					/*
1295 					 * Release the 1st page ref if the
1296 					 * folio is problematic, fail hard.
1297 					 */
1298 					gup_put_folio(page_folio(page), 1,
1299 						      foll_flags);
1300 					ret = -EFAULT;
1301 					goto out;
1302 				}
1303 			}
1304 
1305 			for (j = 0; j < page_increm; j++) {
1306 				subpage = nth_page(page, j);
1307 				pages[i + j] = subpage;
1308 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1309 				flush_dcache_page(subpage);
1310 			}
1311 		}
1312 
1313 		i += page_increm;
1314 		start += page_increm * PAGE_SIZE;
1315 		nr_pages -= page_increm;
1316 	} while (nr_pages);
1317 out:
1318 	if (ctx.pgmap)
1319 		put_dev_pagemap(ctx.pgmap);
1320 	return i ? i : ret;
1321 }
1322 
1323 static bool vma_permits_fault(struct vm_area_struct *vma,
1324 			      unsigned int fault_flags)
1325 {
1326 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1327 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1328 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1329 
1330 	if (!(vm_flags & vma->vm_flags))
1331 		return false;
1332 
1333 	/*
1334 	 * The architecture might have a hardware protection
1335 	 * mechanism other than read/write that can deny access.
1336 	 *
1337 	 * gup always represents data access, not instruction
1338 	 * fetches, so execute=false here:
1339 	 */
1340 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1341 		return false;
1342 
1343 	return true;
1344 }
1345 
1346 /**
1347  * fixup_user_fault() - manually resolve a user page fault
1348  * @mm:		mm_struct of target mm
1349  * @address:	user address
1350  * @fault_flags:flags to pass down to handle_mm_fault()
1351  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1352  *		does not allow retry. If NULL, the caller must guarantee
1353  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1354  *
1355  * This is meant to be called in the specific scenario where for locking reasons
1356  * we try to access user memory in atomic context (within a pagefault_disable()
1357  * section), this returns -EFAULT, and we want to resolve the user fault before
1358  * trying again.
1359  *
1360  * Typically this is meant to be used by the futex code.
1361  *
1362  * The main difference with get_user_pages() is that this function will
1363  * unconditionally call handle_mm_fault() which will in turn perform all the
1364  * necessary SW fixup of the dirty and young bits in the PTE, while
1365  * get_user_pages() only guarantees to update these in the struct page.
1366  *
1367  * This is important for some architectures where those bits also gate the
1368  * access permission to the page because they are maintained in software.  On
1369  * such architectures, gup() will not be enough to make a subsequent access
1370  * succeed.
1371  *
1372  * This function will not return with an unlocked mmap_lock. So it has not the
1373  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1374  */
1375 int fixup_user_fault(struct mm_struct *mm,
1376 		     unsigned long address, unsigned int fault_flags,
1377 		     bool *unlocked)
1378 {
1379 	struct vm_area_struct *vma;
1380 	vm_fault_t ret;
1381 
1382 	address = untagged_addr_remote(mm, address);
1383 
1384 	if (unlocked)
1385 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1386 
1387 retry:
1388 	vma = gup_vma_lookup(mm, address);
1389 	if (!vma)
1390 		return -EFAULT;
1391 
1392 	if (!vma_permits_fault(vma, fault_flags))
1393 		return -EFAULT;
1394 
1395 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1396 	    fatal_signal_pending(current))
1397 		return -EINTR;
1398 
1399 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1400 
1401 	if (ret & VM_FAULT_COMPLETED) {
1402 		/*
1403 		 * NOTE: it's a pity that we need to retake the lock here
1404 		 * to pair with the unlock() in the callers. Ideally we
1405 		 * could tell the callers so they do not need to unlock.
1406 		 */
1407 		mmap_read_lock(mm);
1408 		*unlocked = true;
1409 		return 0;
1410 	}
1411 
1412 	if (ret & VM_FAULT_ERROR) {
1413 		int err = vm_fault_to_errno(ret, 0);
1414 
1415 		if (err)
1416 			return err;
1417 		BUG();
1418 	}
1419 
1420 	if (ret & VM_FAULT_RETRY) {
1421 		mmap_read_lock(mm);
1422 		*unlocked = true;
1423 		fault_flags |= FAULT_FLAG_TRIED;
1424 		goto retry;
1425 	}
1426 
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(fixup_user_fault);
1430 
1431 /*
1432  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1433  * specified, it'll also respond to generic signals.  The caller of GUP
1434  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1435  */
1436 static bool gup_signal_pending(unsigned int flags)
1437 {
1438 	if (fatal_signal_pending(current))
1439 		return true;
1440 
1441 	if (!(flags & FOLL_INTERRUPTIBLE))
1442 		return false;
1443 
1444 	return signal_pending(current);
1445 }
1446 
1447 /*
1448  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1449  * the caller. This function may drop the mmap_lock. If it does so, then it will
1450  * set (*locked = 0).
1451  *
1452  * (*locked == 0) means that the caller expects this function to acquire and
1453  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1454  * the function returns, even though it may have changed temporarily during
1455  * function execution.
1456  *
1457  * Please note that this function, unlike __get_user_pages(), will not return 0
1458  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1459  */
1460 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1461 						unsigned long start,
1462 						unsigned long nr_pages,
1463 						struct page **pages,
1464 						int *locked,
1465 						unsigned int flags)
1466 {
1467 	long ret, pages_done;
1468 	bool must_unlock = false;
1469 
1470 	/*
1471 	 * The internal caller expects GUP to manage the lock internally and the
1472 	 * lock must be released when this returns.
1473 	 */
1474 	if (!*locked) {
1475 		if (mmap_read_lock_killable(mm))
1476 			return -EAGAIN;
1477 		must_unlock = true;
1478 		*locked = 1;
1479 	}
1480 	else
1481 		mmap_assert_locked(mm);
1482 
1483 	if (flags & FOLL_PIN)
1484 		mm_set_has_pinned_flag(&mm->flags);
1485 
1486 	/*
1487 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1488 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1489 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1490 	 * for FOLL_GET, not for the newer FOLL_PIN.
1491 	 *
1492 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1493 	 * that here, as any failures will be obvious enough.
1494 	 */
1495 	if (pages && !(flags & FOLL_PIN))
1496 		flags |= FOLL_GET;
1497 
1498 	pages_done = 0;
1499 	for (;;) {
1500 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1501 				       locked);
1502 		if (!(flags & FOLL_UNLOCKABLE)) {
1503 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1504 			pages_done = ret;
1505 			break;
1506 		}
1507 
1508 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1509 		if (!*locked) {
1510 			BUG_ON(ret < 0);
1511 			BUG_ON(ret >= nr_pages);
1512 		}
1513 
1514 		if (ret > 0) {
1515 			nr_pages -= ret;
1516 			pages_done += ret;
1517 			if (!nr_pages)
1518 				break;
1519 		}
1520 		if (*locked) {
1521 			/*
1522 			 * VM_FAULT_RETRY didn't trigger or it was a
1523 			 * FOLL_NOWAIT.
1524 			 */
1525 			if (!pages_done)
1526 				pages_done = ret;
1527 			break;
1528 		}
1529 		/*
1530 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1531 		 * For the prefault case (!pages) we only update counts.
1532 		 */
1533 		if (likely(pages))
1534 			pages += ret;
1535 		start += ret << PAGE_SHIFT;
1536 
1537 		/* The lock was temporarily dropped, so we must unlock later */
1538 		must_unlock = true;
1539 
1540 retry:
1541 		/*
1542 		 * Repeat on the address that fired VM_FAULT_RETRY
1543 		 * with both FAULT_FLAG_ALLOW_RETRY and
1544 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1545 		 * by fatal signals of even common signals, depending on
1546 		 * the caller's request. So we need to check it before we
1547 		 * start trying again otherwise it can loop forever.
1548 		 */
1549 		if (gup_signal_pending(flags)) {
1550 			if (!pages_done)
1551 				pages_done = -EINTR;
1552 			break;
1553 		}
1554 
1555 		ret = mmap_read_lock_killable(mm);
1556 		if (ret) {
1557 			BUG_ON(ret > 0);
1558 			if (!pages_done)
1559 				pages_done = ret;
1560 			break;
1561 		}
1562 
1563 		*locked = 1;
1564 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1565 				       pages, locked);
1566 		if (!*locked) {
1567 			/* Continue to retry until we succeeded */
1568 			BUG_ON(ret != 0);
1569 			goto retry;
1570 		}
1571 		if (ret != 1) {
1572 			BUG_ON(ret > 1);
1573 			if (!pages_done)
1574 				pages_done = ret;
1575 			break;
1576 		}
1577 		nr_pages--;
1578 		pages_done++;
1579 		if (!nr_pages)
1580 			break;
1581 		if (likely(pages))
1582 			pages++;
1583 		start += PAGE_SIZE;
1584 	}
1585 	if (must_unlock && *locked) {
1586 		/*
1587 		 * We either temporarily dropped the lock, or the caller
1588 		 * requested that we both acquire and drop the lock. Either way,
1589 		 * we must now unlock, and notify the caller of that state.
1590 		 */
1591 		mmap_read_unlock(mm);
1592 		*locked = 0;
1593 	}
1594 	return pages_done;
1595 }
1596 
1597 /**
1598  * populate_vma_page_range() -  populate a range of pages in the vma.
1599  * @vma:   target vma
1600  * @start: start address
1601  * @end:   end address
1602  * @locked: whether the mmap_lock is still held
1603  *
1604  * This takes care of mlocking the pages too if VM_LOCKED is set.
1605  *
1606  * Return either number of pages pinned in the vma, or a negative error
1607  * code on error.
1608  *
1609  * vma->vm_mm->mmap_lock must be held.
1610  *
1611  * If @locked is NULL, it may be held for read or write and will
1612  * be unperturbed.
1613  *
1614  * If @locked is non-NULL, it must held for read only and may be
1615  * released.  If it's released, *@locked will be set to 0.
1616  */
1617 long populate_vma_page_range(struct vm_area_struct *vma,
1618 		unsigned long start, unsigned long end, int *locked)
1619 {
1620 	struct mm_struct *mm = vma->vm_mm;
1621 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1622 	int local_locked = 1;
1623 	int gup_flags;
1624 	long ret;
1625 
1626 	VM_BUG_ON(!PAGE_ALIGNED(start));
1627 	VM_BUG_ON(!PAGE_ALIGNED(end));
1628 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1629 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1630 	mmap_assert_locked(mm);
1631 
1632 	/*
1633 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1634 	 * faultin_page() to break COW, so it has no work to do here.
1635 	 */
1636 	if (vma->vm_flags & VM_LOCKONFAULT)
1637 		return nr_pages;
1638 
1639 	gup_flags = FOLL_TOUCH;
1640 	/*
1641 	 * We want to touch writable mappings with a write fault in order
1642 	 * to break COW, except for shared mappings because these don't COW
1643 	 * and we would not want to dirty them for nothing.
1644 	 */
1645 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1646 		gup_flags |= FOLL_WRITE;
1647 
1648 	/*
1649 	 * We want mlock to succeed for regions that have any permissions
1650 	 * other than PROT_NONE.
1651 	 */
1652 	if (vma_is_accessible(vma))
1653 		gup_flags |= FOLL_FORCE;
1654 
1655 	if (locked)
1656 		gup_flags |= FOLL_UNLOCKABLE;
1657 
1658 	/*
1659 	 * We made sure addr is within a VMA, so the following will
1660 	 * not result in a stack expansion that recurses back here.
1661 	 */
1662 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1663 			       NULL, locked ? locked : &local_locked);
1664 	lru_add_drain();
1665 	return ret;
1666 }
1667 
1668 /*
1669  * faultin_vma_page_range() - populate (prefault) page tables inside the
1670  *			      given VMA range readable/writable
1671  *
1672  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1673  *
1674  * @vma: target vma
1675  * @start: start address
1676  * @end: end address
1677  * @write: whether to prefault readable or writable
1678  * @locked: whether the mmap_lock is still held
1679  *
1680  * Returns either number of processed pages in the vma, or a negative error
1681  * code on error (see __get_user_pages()).
1682  *
1683  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1684  * covered by the VMA. If it's released, *@locked will be set to 0.
1685  */
1686 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1687 			    unsigned long end, bool write, int *locked)
1688 {
1689 	struct mm_struct *mm = vma->vm_mm;
1690 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1691 	int gup_flags;
1692 	long ret;
1693 
1694 	VM_BUG_ON(!PAGE_ALIGNED(start));
1695 	VM_BUG_ON(!PAGE_ALIGNED(end));
1696 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1697 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1698 	mmap_assert_locked(mm);
1699 
1700 	/*
1701 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1702 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1703 	 *	       difference with !FOLL_FORCE, because the page is writable
1704 	 *	       in the page table.
1705 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1706 	 *		  a poisoned page.
1707 	 * !FOLL_FORCE: Require proper access permissions.
1708 	 */
1709 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1710 	if (write)
1711 		gup_flags |= FOLL_WRITE;
1712 
1713 	/*
1714 	 * We want to report -EINVAL instead of -EFAULT for any permission
1715 	 * problems or incompatible mappings.
1716 	 */
1717 	if (check_vma_flags(vma, gup_flags))
1718 		return -EINVAL;
1719 
1720 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1721 			       NULL, locked);
1722 	lru_add_drain();
1723 	return ret;
1724 }
1725 
1726 /*
1727  * __mm_populate - populate and/or mlock pages within a range of address space.
1728  *
1729  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1730  * flags. VMAs must be already marked with the desired vm_flags, and
1731  * mmap_lock must not be held.
1732  */
1733 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1734 {
1735 	struct mm_struct *mm = current->mm;
1736 	unsigned long end, nstart, nend;
1737 	struct vm_area_struct *vma = NULL;
1738 	int locked = 0;
1739 	long ret = 0;
1740 
1741 	end = start + len;
1742 
1743 	for (nstart = start; nstart < end; nstart = nend) {
1744 		/*
1745 		 * We want to fault in pages for [nstart; end) address range.
1746 		 * Find first corresponding VMA.
1747 		 */
1748 		if (!locked) {
1749 			locked = 1;
1750 			mmap_read_lock(mm);
1751 			vma = find_vma_intersection(mm, nstart, end);
1752 		} else if (nstart >= vma->vm_end)
1753 			vma = find_vma_intersection(mm, vma->vm_end, end);
1754 
1755 		if (!vma)
1756 			break;
1757 		/*
1758 		 * Set [nstart; nend) to intersection of desired address
1759 		 * range with the first VMA. Also, skip undesirable VMA types.
1760 		 */
1761 		nend = min(end, vma->vm_end);
1762 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1763 			continue;
1764 		if (nstart < vma->vm_start)
1765 			nstart = vma->vm_start;
1766 		/*
1767 		 * Now fault in a range of pages. populate_vma_page_range()
1768 		 * double checks the vma flags, so that it won't mlock pages
1769 		 * if the vma was already munlocked.
1770 		 */
1771 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1772 		if (ret < 0) {
1773 			if (ignore_errors) {
1774 				ret = 0;
1775 				continue;	/* continue at next VMA */
1776 			}
1777 			break;
1778 		}
1779 		nend = nstart + ret * PAGE_SIZE;
1780 		ret = 0;
1781 	}
1782 	if (locked)
1783 		mmap_read_unlock(mm);
1784 	return ret;	/* 0 or negative error code */
1785 }
1786 #else /* CONFIG_MMU */
1787 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1788 		unsigned long nr_pages, struct page **pages,
1789 		int *locked, unsigned int foll_flags)
1790 {
1791 	struct vm_area_struct *vma;
1792 	bool must_unlock = false;
1793 	unsigned long vm_flags;
1794 	long i;
1795 
1796 	if (!nr_pages)
1797 		return 0;
1798 
1799 	/*
1800 	 * The internal caller expects GUP to manage the lock internally and the
1801 	 * lock must be released when this returns.
1802 	 */
1803 	if (!*locked) {
1804 		if (mmap_read_lock_killable(mm))
1805 			return -EAGAIN;
1806 		must_unlock = true;
1807 		*locked = 1;
1808 	}
1809 
1810 	/* calculate required read or write permissions.
1811 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1812 	 */
1813 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1814 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1815 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1816 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1817 
1818 	for (i = 0; i < nr_pages; i++) {
1819 		vma = find_vma(mm, start);
1820 		if (!vma)
1821 			break;
1822 
1823 		/* protect what we can, including chardevs */
1824 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1825 		    !(vm_flags & vma->vm_flags))
1826 			break;
1827 
1828 		if (pages) {
1829 			pages[i] = virt_to_page((void *)start);
1830 			if (pages[i])
1831 				get_page(pages[i]);
1832 		}
1833 
1834 		start = (start + PAGE_SIZE) & PAGE_MASK;
1835 	}
1836 
1837 	if (must_unlock && *locked) {
1838 		mmap_read_unlock(mm);
1839 		*locked = 0;
1840 	}
1841 
1842 	return i ? : -EFAULT;
1843 }
1844 #endif /* !CONFIG_MMU */
1845 
1846 /**
1847  * fault_in_writeable - fault in userspace address range for writing
1848  * @uaddr: start of address range
1849  * @size: size of address range
1850  *
1851  * Returns the number of bytes not faulted in (like copy_to_user() and
1852  * copy_from_user()).
1853  */
1854 size_t fault_in_writeable(char __user *uaddr, size_t size)
1855 {
1856 	char __user *start = uaddr, *end;
1857 
1858 	if (unlikely(size == 0))
1859 		return 0;
1860 	if (!user_write_access_begin(uaddr, size))
1861 		return size;
1862 	if (!PAGE_ALIGNED(uaddr)) {
1863 		unsafe_put_user(0, uaddr, out);
1864 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1865 	}
1866 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1867 	if (unlikely(end < start))
1868 		end = NULL;
1869 	while (uaddr != end) {
1870 		unsafe_put_user(0, uaddr, out);
1871 		uaddr += PAGE_SIZE;
1872 	}
1873 
1874 out:
1875 	user_write_access_end();
1876 	if (size > uaddr - start)
1877 		return size - (uaddr - start);
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL(fault_in_writeable);
1881 
1882 /**
1883  * fault_in_subpage_writeable - fault in an address range for writing
1884  * @uaddr: start of address range
1885  * @size: size of address range
1886  *
1887  * Fault in a user address range for writing while checking for permissions at
1888  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1889  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1890  *
1891  * Returns the number of bytes not faulted in (like copy_to_user() and
1892  * copy_from_user()).
1893  */
1894 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1895 {
1896 	size_t faulted_in;
1897 
1898 	/*
1899 	 * Attempt faulting in at page granularity first for page table
1900 	 * permission checking. The arch-specific probe_subpage_writeable()
1901 	 * functions may not check for this.
1902 	 */
1903 	faulted_in = size - fault_in_writeable(uaddr, size);
1904 	if (faulted_in)
1905 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1906 
1907 	return size - faulted_in;
1908 }
1909 EXPORT_SYMBOL(fault_in_subpage_writeable);
1910 
1911 /*
1912  * fault_in_safe_writeable - fault in an address range for writing
1913  * @uaddr: start of address range
1914  * @size: length of address range
1915  *
1916  * Faults in an address range for writing.  This is primarily useful when we
1917  * already know that some or all of the pages in the address range aren't in
1918  * memory.
1919  *
1920  * Unlike fault_in_writeable(), this function is non-destructive.
1921  *
1922  * Note that we don't pin or otherwise hold the pages referenced that we fault
1923  * in.  There's no guarantee that they'll stay in memory for any duration of
1924  * time.
1925  *
1926  * Returns the number of bytes not faulted in, like copy_to_user() and
1927  * copy_from_user().
1928  */
1929 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1930 {
1931 	unsigned long start = (unsigned long)uaddr, end;
1932 	struct mm_struct *mm = current->mm;
1933 	bool unlocked = false;
1934 
1935 	if (unlikely(size == 0))
1936 		return 0;
1937 	end = PAGE_ALIGN(start + size);
1938 	if (end < start)
1939 		end = 0;
1940 
1941 	mmap_read_lock(mm);
1942 	do {
1943 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1944 			break;
1945 		start = (start + PAGE_SIZE) & PAGE_MASK;
1946 	} while (start != end);
1947 	mmap_read_unlock(mm);
1948 
1949 	if (size > (unsigned long)uaddr - start)
1950 		return size - ((unsigned long)uaddr - start);
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL(fault_in_safe_writeable);
1954 
1955 /**
1956  * fault_in_readable - fault in userspace address range for reading
1957  * @uaddr: start of user address range
1958  * @size: size of user address range
1959  *
1960  * Returns the number of bytes not faulted in (like copy_to_user() and
1961  * copy_from_user()).
1962  */
1963 size_t fault_in_readable(const char __user *uaddr, size_t size)
1964 {
1965 	const char __user *start = uaddr, *end;
1966 	volatile char c;
1967 
1968 	if (unlikely(size == 0))
1969 		return 0;
1970 	if (!user_read_access_begin(uaddr, size))
1971 		return size;
1972 	if (!PAGE_ALIGNED(uaddr)) {
1973 		unsafe_get_user(c, uaddr, out);
1974 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1975 	}
1976 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1977 	if (unlikely(end < start))
1978 		end = NULL;
1979 	while (uaddr != end) {
1980 		unsafe_get_user(c, uaddr, out);
1981 		uaddr += PAGE_SIZE;
1982 	}
1983 
1984 out:
1985 	user_read_access_end();
1986 	(void)c;
1987 	if (size > uaddr - start)
1988 		return size - (uaddr - start);
1989 	return 0;
1990 }
1991 EXPORT_SYMBOL(fault_in_readable);
1992 
1993 /**
1994  * get_dump_page() - pin user page in memory while writing it to core dump
1995  * @addr: user address
1996  *
1997  * Returns struct page pointer of user page pinned for dump,
1998  * to be freed afterwards by put_page().
1999  *
2000  * Returns NULL on any kind of failure - a hole must then be inserted into
2001  * the corefile, to preserve alignment with its headers; and also returns
2002  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2003  * allowing a hole to be left in the corefile to save disk space.
2004  *
2005  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2006  */
2007 #ifdef CONFIG_ELF_CORE
2008 struct page *get_dump_page(unsigned long addr)
2009 {
2010 	struct page *page;
2011 	int locked = 0;
2012 	int ret;
2013 
2014 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2015 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2016 	return (ret == 1) ? page : NULL;
2017 }
2018 #endif /* CONFIG_ELF_CORE */
2019 
2020 #ifdef CONFIG_MIGRATION
2021 /*
2022  * Returns the number of collected pages. Return value is always >= 0.
2023  */
2024 static unsigned long collect_longterm_unpinnable_pages(
2025 					struct list_head *movable_page_list,
2026 					unsigned long nr_pages,
2027 					struct page **pages)
2028 {
2029 	unsigned long i, collected = 0;
2030 	struct folio *prev_folio = NULL;
2031 	bool drain_allow = true;
2032 
2033 	for (i = 0; i < nr_pages; i++) {
2034 		struct folio *folio = page_folio(pages[i]);
2035 
2036 		if (folio == prev_folio)
2037 			continue;
2038 		prev_folio = folio;
2039 
2040 		if (folio_is_longterm_pinnable(folio))
2041 			continue;
2042 
2043 		collected++;
2044 
2045 		if (folio_is_device_coherent(folio))
2046 			continue;
2047 
2048 		if (folio_test_hugetlb(folio)) {
2049 			isolate_hugetlb(folio, movable_page_list);
2050 			continue;
2051 		}
2052 
2053 		if (!folio_test_lru(folio) && drain_allow) {
2054 			lru_add_drain_all();
2055 			drain_allow = false;
2056 		}
2057 
2058 		if (!folio_isolate_lru(folio))
2059 			continue;
2060 
2061 		list_add_tail(&folio->lru, movable_page_list);
2062 		node_stat_mod_folio(folio,
2063 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2064 				    folio_nr_pages(folio));
2065 	}
2066 
2067 	return collected;
2068 }
2069 
2070 /*
2071  * Unpins all pages and migrates device coherent pages and movable_page_list.
2072  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2073  * (or partial success).
2074  */
2075 static int migrate_longterm_unpinnable_pages(
2076 					struct list_head *movable_page_list,
2077 					unsigned long nr_pages,
2078 					struct page **pages)
2079 {
2080 	int ret;
2081 	unsigned long i;
2082 
2083 	for (i = 0; i < nr_pages; i++) {
2084 		struct folio *folio = page_folio(pages[i]);
2085 
2086 		if (folio_is_device_coherent(folio)) {
2087 			/*
2088 			 * Migration will fail if the page is pinned, so convert
2089 			 * the pin on the source page to a normal reference.
2090 			 */
2091 			pages[i] = NULL;
2092 			folio_get(folio);
2093 			gup_put_folio(folio, 1, FOLL_PIN);
2094 
2095 			if (migrate_device_coherent_page(&folio->page)) {
2096 				ret = -EBUSY;
2097 				goto err;
2098 			}
2099 
2100 			continue;
2101 		}
2102 
2103 		/*
2104 		 * We can't migrate pages with unexpected references, so drop
2105 		 * the reference obtained by __get_user_pages_locked().
2106 		 * Migrating pages have been added to movable_page_list after
2107 		 * calling folio_isolate_lru() which takes a reference so the
2108 		 * page won't be freed if it's migrating.
2109 		 */
2110 		unpin_user_page(pages[i]);
2111 		pages[i] = NULL;
2112 	}
2113 
2114 	if (!list_empty(movable_page_list)) {
2115 		struct migration_target_control mtc = {
2116 			.nid = NUMA_NO_NODE,
2117 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2118 		};
2119 
2120 		if (migrate_pages(movable_page_list, alloc_migration_target,
2121 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2122 				  MR_LONGTERM_PIN, NULL)) {
2123 			ret = -ENOMEM;
2124 			goto err;
2125 		}
2126 	}
2127 
2128 	putback_movable_pages(movable_page_list);
2129 
2130 	return -EAGAIN;
2131 
2132 err:
2133 	for (i = 0; i < nr_pages; i++)
2134 		if (pages[i])
2135 			unpin_user_page(pages[i]);
2136 	putback_movable_pages(movable_page_list);
2137 
2138 	return ret;
2139 }
2140 
2141 /*
2142  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2143  * pages in the range are required to be pinned via FOLL_PIN, before calling
2144  * this routine.
2145  *
2146  * If any pages in the range are not allowed to be pinned, then this routine
2147  * will migrate those pages away, unpin all the pages in the range and return
2148  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2149  * call this routine again.
2150  *
2151  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2152  * The caller should give up, and propagate the error back up the call stack.
2153  *
2154  * If everything is OK and all pages in the range are allowed to be pinned, then
2155  * this routine leaves all pages pinned and returns zero for success.
2156  */
2157 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2158 					    struct page **pages)
2159 {
2160 	unsigned long collected;
2161 	LIST_HEAD(movable_page_list);
2162 
2163 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2164 						nr_pages, pages);
2165 	if (!collected)
2166 		return 0;
2167 
2168 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2169 						pages);
2170 }
2171 #else
2172 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2173 					    struct page **pages)
2174 {
2175 	return 0;
2176 }
2177 #endif /* CONFIG_MIGRATION */
2178 
2179 /*
2180  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2181  * allows us to process the FOLL_LONGTERM flag.
2182  */
2183 static long __gup_longterm_locked(struct mm_struct *mm,
2184 				  unsigned long start,
2185 				  unsigned long nr_pages,
2186 				  struct page **pages,
2187 				  int *locked,
2188 				  unsigned int gup_flags)
2189 {
2190 	unsigned int flags;
2191 	long rc, nr_pinned_pages;
2192 
2193 	if (!(gup_flags & FOLL_LONGTERM))
2194 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2195 					       locked, gup_flags);
2196 
2197 	flags = memalloc_pin_save();
2198 	do {
2199 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2200 							  pages, locked,
2201 							  gup_flags);
2202 		if (nr_pinned_pages <= 0) {
2203 			rc = nr_pinned_pages;
2204 			break;
2205 		}
2206 
2207 		/* FOLL_LONGTERM implies FOLL_PIN */
2208 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2209 	} while (rc == -EAGAIN);
2210 	memalloc_pin_restore(flags);
2211 	return rc ? rc : nr_pinned_pages;
2212 }
2213 
2214 /*
2215  * Check that the given flags are valid for the exported gup/pup interface, and
2216  * update them with the required flags that the caller must have set.
2217  */
2218 static bool is_valid_gup_args(struct page **pages, int *locked,
2219 			      unsigned int *gup_flags_p, unsigned int to_set)
2220 {
2221 	unsigned int gup_flags = *gup_flags_p;
2222 
2223 	/*
2224 	 * These flags not allowed to be specified externally to the gup
2225 	 * interfaces:
2226 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2227 	 * - FOLL_REMOTE is internal only and used on follow_page()
2228 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2229 	 */
2230 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2231 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2232 		return false;
2233 
2234 	gup_flags |= to_set;
2235 	if (locked) {
2236 		/* At the external interface locked must be set */
2237 		if (WARN_ON_ONCE(*locked != 1))
2238 			return false;
2239 
2240 		gup_flags |= FOLL_UNLOCKABLE;
2241 	}
2242 
2243 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2244 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2245 			 (FOLL_PIN | FOLL_GET)))
2246 		return false;
2247 
2248 	/* LONGTERM can only be specified when pinning */
2249 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2250 		return false;
2251 
2252 	/* Pages input must be given if using GET/PIN */
2253 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2254 		return false;
2255 
2256 	/* We want to allow the pgmap to be hot-unplugged at all times */
2257 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2258 			 (gup_flags & FOLL_PCI_P2PDMA)))
2259 		return false;
2260 
2261 	*gup_flags_p = gup_flags;
2262 	return true;
2263 }
2264 
2265 #ifdef CONFIG_MMU
2266 /**
2267  * get_user_pages_remote() - pin user pages in memory
2268  * @mm:		mm_struct of target mm
2269  * @start:	starting user address
2270  * @nr_pages:	number of pages from start to pin
2271  * @gup_flags:	flags modifying lookup behaviour
2272  * @pages:	array that receives pointers to the pages pinned.
2273  *		Should be at least nr_pages long. Or NULL, if caller
2274  *		only intends to ensure the pages are faulted in.
2275  * @locked:	pointer to lock flag indicating whether lock is held and
2276  *		subsequently whether VM_FAULT_RETRY functionality can be
2277  *		utilised. Lock must initially be held.
2278  *
2279  * Returns either number of pages pinned (which may be less than the
2280  * number requested), or an error. Details about the return value:
2281  *
2282  * -- If nr_pages is 0, returns 0.
2283  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2284  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2285  *    pages pinned. Again, this may be less than nr_pages.
2286  *
2287  * The caller is responsible for releasing returned @pages, via put_page().
2288  *
2289  * Must be called with mmap_lock held for read or write.
2290  *
2291  * get_user_pages_remote walks a process's page tables and takes a reference
2292  * to each struct page that each user address corresponds to at a given
2293  * instant. That is, it takes the page that would be accessed if a user
2294  * thread accesses the given user virtual address at that instant.
2295  *
2296  * This does not guarantee that the page exists in the user mappings when
2297  * get_user_pages_remote returns, and there may even be a completely different
2298  * page there in some cases (eg. if mmapped pagecache has been invalidated
2299  * and subsequently re-faulted). However it does guarantee that the page
2300  * won't be freed completely. And mostly callers simply care that the page
2301  * contains data that was valid *at some point in time*. Typically, an IO
2302  * or similar operation cannot guarantee anything stronger anyway because
2303  * locks can't be held over the syscall boundary.
2304  *
2305  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2306  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2307  * be called after the page is finished with, and before put_page is called.
2308  *
2309  * get_user_pages_remote is typically used for fewer-copy IO operations,
2310  * to get a handle on the memory by some means other than accesses
2311  * via the user virtual addresses. The pages may be submitted for
2312  * DMA to devices or accessed via their kernel linear mapping (via the
2313  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2314  *
2315  * See also get_user_pages_fast, for performance critical applications.
2316  *
2317  * get_user_pages_remote should be phased out in favor of
2318  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2319  * should use get_user_pages_remote because it cannot pass
2320  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2321  */
2322 long get_user_pages_remote(struct mm_struct *mm,
2323 		unsigned long start, unsigned long nr_pages,
2324 		unsigned int gup_flags, struct page **pages,
2325 		int *locked)
2326 {
2327 	int local_locked = 1;
2328 
2329 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2330 			       FOLL_TOUCH | FOLL_REMOTE))
2331 		return -EINVAL;
2332 
2333 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2334 				       locked ? locked : &local_locked,
2335 				       gup_flags);
2336 }
2337 EXPORT_SYMBOL(get_user_pages_remote);
2338 
2339 #else /* CONFIG_MMU */
2340 long get_user_pages_remote(struct mm_struct *mm,
2341 			   unsigned long start, unsigned long nr_pages,
2342 			   unsigned int gup_flags, struct page **pages,
2343 			   int *locked)
2344 {
2345 	return 0;
2346 }
2347 #endif /* !CONFIG_MMU */
2348 
2349 /**
2350  * get_user_pages() - pin user pages in memory
2351  * @start:      starting user address
2352  * @nr_pages:   number of pages from start to pin
2353  * @gup_flags:  flags modifying lookup behaviour
2354  * @pages:      array that receives pointers to the pages pinned.
2355  *              Should be at least nr_pages long. Or NULL, if caller
2356  *              only intends to ensure the pages are faulted in.
2357  *
2358  * This is the same as get_user_pages_remote(), just with a less-flexible
2359  * calling convention where we assume that the mm being operated on belongs to
2360  * the current task, and doesn't allow passing of a locked parameter.  We also
2361  * obviously don't pass FOLL_REMOTE in here.
2362  */
2363 long get_user_pages(unsigned long start, unsigned long nr_pages,
2364 		    unsigned int gup_flags, struct page **pages)
2365 {
2366 	int locked = 1;
2367 
2368 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2369 		return -EINVAL;
2370 
2371 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2372 				       &locked, gup_flags);
2373 }
2374 EXPORT_SYMBOL(get_user_pages);
2375 
2376 /*
2377  * get_user_pages_unlocked() is suitable to replace the form:
2378  *
2379  *      mmap_read_lock(mm);
2380  *      get_user_pages(mm, ..., pages, NULL);
2381  *      mmap_read_unlock(mm);
2382  *
2383  *  with:
2384  *
2385  *      get_user_pages_unlocked(mm, ..., pages);
2386  *
2387  * It is functionally equivalent to get_user_pages_fast so
2388  * get_user_pages_fast should be used instead if specific gup_flags
2389  * (e.g. FOLL_FORCE) are not required.
2390  */
2391 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2392 			     struct page **pages, unsigned int gup_flags)
2393 {
2394 	int locked = 0;
2395 
2396 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2397 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2398 		return -EINVAL;
2399 
2400 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2401 				       &locked, gup_flags);
2402 }
2403 EXPORT_SYMBOL(get_user_pages_unlocked);
2404 
2405 /*
2406  * Fast GUP
2407  *
2408  * get_user_pages_fast attempts to pin user pages by walking the page
2409  * tables directly and avoids taking locks. Thus the walker needs to be
2410  * protected from page table pages being freed from under it, and should
2411  * block any THP splits.
2412  *
2413  * One way to achieve this is to have the walker disable interrupts, and
2414  * rely on IPIs from the TLB flushing code blocking before the page table
2415  * pages are freed. This is unsuitable for architectures that do not need
2416  * to broadcast an IPI when invalidating TLBs.
2417  *
2418  * Another way to achieve this is to batch up page table containing pages
2419  * belonging to more than one mm_user, then rcu_sched a callback to free those
2420  * pages. Disabling interrupts will allow the fast_gup walker to both block
2421  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2422  * (which is a relatively rare event). The code below adopts this strategy.
2423  *
2424  * Before activating this code, please be aware that the following assumptions
2425  * are currently made:
2426  *
2427  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2428  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2429  *
2430  *  *) ptes can be read atomically by the architecture.
2431  *
2432  *  *) access_ok is sufficient to validate userspace address ranges.
2433  *
2434  * The last two assumptions can be relaxed by the addition of helper functions.
2435  *
2436  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2437  */
2438 #ifdef CONFIG_HAVE_FAST_GUP
2439 
2440 /*
2441  * Used in the GUP-fast path to determine whether a pin is permitted for a
2442  * specific folio.
2443  *
2444  * This call assumes the caller has pinned the folio, that the lowest page table
2445  * level still points to this folio, and that interrupts have been disabled.
2446  *
2447  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2448  * (see comment describing the writable_file_mapping_allowed() function). We
2449  * therefore try to avoid the most egregious case of a long-term mapping doing
2450  * so.
2451  *
2452  * This function cannot be as thorough as that one as the VMA is not available
2453  * in the fast path, so instead we whitelist known good cases and if in doubt,
2454  * fall back to the slow path.
2455  */
2456 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2457 {
2458 	struct address_space *mapping;
2459 	unsigned long mapping_flags;
2460 
2461 	/*
2462 	 * If we aren't pinning then no problematic write can occur. A long term
2463 	 * pin is the most egregious case so this is the one we disallow.
2464 	 */
2465 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2466 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2467 		return true;
2468 
2469 	/* The folio is pinned, so we can safely access folio fields. */
2470 
2471 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2472 		return false;
2473 
2474 	/* hugetlb mappings do not require dirty-tracking. */
2475 	if (folio_test_hugetlb(folio))
2476 		return true;
2477 
2478 	/*
2479 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2480 	 * cannot proceed, which means no actions performed under RCU can
2481 	 * proceed either.
2482 	 *
2483 	 * inodes and thus their mappings are freed under RCU, which means the
2484 	 * mapping cannot be freed beneath us and thus we can safely dereference
2485 	 * it.
2486 	 */
2487 	lockdep_assert_irqs_disabled();
2488 
2489 	/*
2490 	 * However, there may be operations which _alter_ the mapping, so ensure
2491 	 * we read it once and only once.
2492 	 */
2493 	mapping = READ_ONCE(folio->mapping);
2494 
2495 	/*
2496 	 * The mapping may have been truncated, in any case we cannot determine
2497 	 * if this mapping is safe - fall back to slow path to determine how to
2498 	 * proceed.
2499 	 */
2500 	if (!mapping)
2501 		return false;
2502 
2503 	/* Anonymous folios pose no problem. */
2504 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2505 	if (mapping_flags)
2506 		return mapping_flags & PAGE_MAPPING_ANON;
2507 
2508 	/*
2509 	 * At this point, we know the mapping is non-null and points to an
2510 	 * address_space object. The only remaining whitelisted file system is
2511 	 * shmem.
2512 	 */
2513 	return shmem_mapping(mapping);
2514 }
2515 
2516 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2517 					    unsigned int flags,
2518 					    struct page **pages)
2519 {
2520 	while ((*nr) - nr_start) {
2521 		struct page *page = pages[--(*nr)];
2522 
2523 		ClearPageReferenced(page);
2524 		if (flags & FOLL_PIN)
2525 			unpin_user_page(page);
2526 		else
2527 			put_page(page);
2528 	}
2529 }
2530 
2531 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2532 /*
2533  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2534  * operations.
2535  *
2536  * To pin the page, fast-gup needs to do below in order:
2537  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2538  *
2539  * For the rest of pgtable operations where pgtable updates can be racy
2540  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2541  * is pinned.
2542  *
2543  * Above will work for all pte-level operations, including THP split.
2544  *
2545  * For THP collapse, it's a bit more complicated because fast-gup may be
2546  * walking a pgtable page that is being freed (pte is still valid but pmd
2547  * can be cleared already).  To avoid race in such condition, we need to
2548  * also check pmd here to make sure pmd doesn't change (corresponds to
2549  * pmdp_collapse_flush() in the THP collapse code path).
2550  */
2551 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2552 			 unsigned long end, unsigned int flags,
2553 			 struct page **pages, int *nr)
2554 {
2555 	struct dev_pagemap *pgmap = NULL;
2556 	int nr_start = *nr, ret = 0;
2557 	pte_t *ptep, *ptem;
2558 
2559 	ptem = ptep = pte_offset_map(&pmd, addr);
2560 	if (!ptep)
2561 		return 0;
2562 	do {
2563 		pte_t pte = ptep_get_lockless(ptep);
2564 		struct page *page;
2565 		struct folio *folio;
2566 
2567 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2568 			goto pte_unmap;
2569 
2570 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2571 			goto pte_unmap;
2572 
2573 		if (pte_devmap(pte)) {
2574 			if (unlikely(flags & FOLL_LONGTERM))
2575 				goto pte_unmap;
2576 
2577 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2578 			if (unlikely(!pgmap)) {
2579 				undo_dev_pagemap(nr, nr_start, flags, pages);
2580 				goto pte_unmap;
2581 			}
2582 		} else if (pte_special(pte))
2583 			goto pte_unmap;
2584 
2585 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2586 		page = pte_page(pte);
2587 
2588 		folio = try_grab_folio(page, 1, flags);
2589 		if (!folio)
2590 			goto pte_unmap;
2591 
2592 		if (unlikely(page_is_secretmem(page))) {
2593 			gup_put_folio(folio, 1, flags);
2594 			goto pte_unmap;
2595 		}
2596 
2597 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2598 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2599 			gup_put_folio(folio, 1, flags);
2600 			goto pte_unmap;
2601 		}
2602 
2603 		if (!folio_fast_pin_allowed(folio, flags)) {
2604 			gup_put_folio(folio, 1, flags);
2605 			goto pte_unmap;
2606 		}
2607 
2608 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2609 			gup_put_folio(folio, 1, flags);
2610 			goto pte_unmap;
2611 		}
2612 
2613 		/*
2614 		 * We need to make the page accessible if and only if we are
2615 		 * going to access its content (the FOLL_PIN case).  Please
2616 		 * see Documentation/core-api/pin_user_pages.rst for
2617 		 * details.
2618 		 */
2619 		if (flags & FOLL_PIN) {
2620 			ret = arch_make_page_accessible(page);
2621 			if (ret) {
2622 				gup_put_folio(folio, 1, flags);
2623 				goto pte_unmap;
2624 			}
2625 		}
2626 		folio_set_referenced(folio);
2627 		pages[*nr] = page;
2628 		(*nr)++;
2629 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2630 
2631 	ret = 1;
2632 
2633 pte_unmap:
2634 	if (pgmap)
2635 		put_dev_pagemap(pgmap);
2636 	pte_unmap(ptem);
2637 	return ret;
2638 }
2639 #else
2640 
2641 /*
2642  * If we can't determine whether or not a pte is special, then fail immediately
2643  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2644  * to be special.
2645  *
2646  * For a futex to be placed on a THP tail page, get_futex_key requires a
2647  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2648  * useful to have gup_huge_pmd even if we can't operate on ptes.
2649  */
2650 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2651 			 unsigned long end, unsigned int flags,
2652 			 struct page **pages, int *nr)
2653 {
2654 	return 0;
2655 }
2656 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2657 
2658 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2659 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2660 			     unsigned long end, unsigned int flags,
2661 			     struct page **pages, int *nr)
2662 {
2663 	int nr_start = *nr;
2664 	struct dev_pagemap *pgmap = NULL;
2665 
2666 	do {
2667 		struct page *page = pfn_to_page(pfn);
2668 
2669 		pgmap = get_dev_pagemap(pfn, pgmap);
2670 		if (unlikely(!pgmap)) {
2671 			undo_dev_pagemap(nr, nr_start, flags, pages);
2672 			break;
2673 		}
2674 
2675 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2676 			undo_dev_pagemap(nr, nr_start, flags, pages);
2677 			break;
2678 		}
2679 
2680 		SetPageReferenced(page);
2681 		pages[*nr] = page;
2682 		if (unlikely(try_grab_page(page, flags))) {
2683 			undo_dev_pagemap(nr, nr_start, flags, pages);
2684 			break;
2685 		}
2686 		(*nr)++;
2687 		pfn++;
2688 	} while (addr += PAGE_SIZE, addr != end);
2689 
2690 	put_dev_pagemap(pgmap);
2691 	return addr == end;
2692 }
2693 
2694 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2695 				 unsigned long end, unsigned int flags,
2696 				 struct page **pages, int *nr)
2697 {
2698 	unsigned long fault_pfn;
2699 	int nr_start = *nr;
2700 
2701 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2702 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2703 		return 0;
2704 
2705 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2706 		undo_dev_pagemap(nr, nr_start, flags, pages);
2707 		return 0;
2708 	}
2709 	return 1;
2710 }
2711 
2712 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2713 				 unsigned long end, unsigned int flags,
2714 				 struct page **pages, int *nr)
2715 {
2716 	unsigned long fault_pfn;
2717 	int nr_start = *nr;
2718 
2719 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2720 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2721 		return 0;
2722 
2723 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2724 		undo_dev_pagemap(nr, nr_start, flags, pages);
2725 		return 0;
2726 	}
2727 	return 1;
2728 }
2729 #else
2730 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2731 				 unsigned long end, unsigned int flags,
2732 				 struct page **pages, int *nr)
2733 {
2734 	BUILD_BUG();
2735 	return 0;
2736 }
2737 
2738 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2739 				 unsigned long end, unsigned int flags,
2740 				 struct page **pages, int *nr)
2741 {
2742 	BUILD_BUG();
2743 	return 0;
2744 }
2745 #endif
2746 
2747 static int record_subpages(struct page *page, unsigned long addr,
2748 			   unsigned long end, struct page **pages)
2749 {
2750 	int nr;
2751 
2752 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2753 		pages[nr] = nth_page(page, nr);
2754 
2755 	return nr;
2756 }
2757 
2758 #ifdef CONFIG_ARCH_HAS_HUGEPD
2759 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2760 				      unsigned long sz)
2761 {
2762 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2763 	return (__boundary - 1 < end - 1) ? __boundary : end;
2764 }
2765 
2766 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2767 		       unsigned long end, unsigned int flags,
2768 		       struct page **pages, int *nr)
2769 {
2770 	unsigned long pte_end;
2771 	struct page *page;
2772 	struct folio *folio;
2773 	pte_t pte;
2774 	int refs;
2775 
2776 	pte_end = (addr + sz) & ~(sz-1);
2777 	if (pte_end < end)
2778 		end = pte_end;
2779 
2780 	pte = huge_ptep_get(ptep);
2781 
2782 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2783 		return 0;
2784 
2785 	/* hugepages are never "special" */
2786 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2787 
2788 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2789 	refs = record_subpages(page, addr, end, pages + *nr);
2790 
2791 	folio = try_grab_folio(page, refs, flags);
2792 	if (!folio)
2793 		return 0;
2794 
2795 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2796 		gup_put_folio(folio, refs, flags);
2797 		return 0;
2798 	}
2799 
2800 	if (!folio_fast_pin_allowed(folio, flags)) {
2801 		gup_put_folio(folio, refs, flags);
2802 		return 0;
2803 	}
2804 
2805 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2806 		gup_put_folio(folio, refs, flags);
2807 		return 0;
2808 	}
2809 
2810 	*nr += refs;
2811 	folio_set_referenced(folio);
2812 	return 1;
2813 }
2814 
2815 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2816 		unsigned int pdshift, unsigned long end, unsigned int flags,
2817 		struct page **pages, int *nr)
2818 {
2819 	pte_t *ptep;
2820 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2821 	unsigned long next;
2822 
2823 	ptep = hugepte_offset(hugepd, addr, pdshift);
2824 	do {
2825 		next = hugepte_addr_end(addr, end, sz);
2826 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2827 			return 0;
2828 	} while (ptep++, addr = next, addr != end);
2829 
2830 	return 1;
2831 }
2832 #else
2833 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2834 		unsigned int pdshift, unsigned long end, unsigned int flags,
2835 		struct page **pages, int *nr)
2836 {
2837 	return 0;
2838 }
2839 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2840 
2841 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2842 			unsigned long end, unsigned int flags,
2843 			struct page **pages, int *nr)
2844 {
2845 	struct page *page;
2846 	struct folio *folio;
2847 	int refs;
2848 
2849 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2850 		return 0;
2851 
2852 	if (pmd_devmap(orig)) {
2853 		if (unlikely(flags & FOLL_LONGTERM))
2854 			return 0;
2855 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2856 					     pages, nr);
2857 	}
2858 
2859 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2860 	refs = record_subpages(page, addr, end, pages + *nr);
2861 
2862 	folio = try_grab_folio(page, refs, flags);
2863 	if (!folio)
2864 		return 0;
2865 
2866 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2867 		gup_put_folio(folio, refs, flags);
2868 		return 0;
2869 	}
2870 
2871 	if (!folio_fast_pin_allowed(folio, flags)) {
2872 		gup_put_folio(folio, refs, flags);
2873 		return 0;
2874 	}
2875 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2876 		gup_put_folio(folio, refs, flags);
2877 		return 0;
2878 	}
2879 
2880 	*nr += refs;
2881 	folio_set_referenced(folio);
2882 	return 1;
2883 }
2884 
2885 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2886 			unsigned long end, unsigned int flags,
2887 			struct page **pages, int *nr)
2888 {
2889 	struct page *page;
2890 	struct folio *folio;
2891 	int refs;
2892 
2893 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2894 		return 0;
2895 
2896 	if (pud_devmap(orig)) {
2897 		if (unlikely(flags & FOLL_LONGTERM))
2898 			return 0;
2899 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2900 					     pages, nr);
2901 	}
2902 
2903 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2904 	refs = record_subpages(page, addr, end, pages + *nr);
2905 
2906 	folio = try_grab_folio(page, refs, flags);
2907 	if (!folio)
2908 		return 0;
2909 
2910 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2911 		gup_put_folio(folio, refs, flags);
2912 		return 0;
2913 	}
2914 
2915 	if (!folio_fast_pin_allowed(folio, flags)) {
2916 		gup_put_folio(folio, refs, flags);
2917 		return 0;
2918 	}
2919 
2920 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2921 		gup_put_folio(folio, refs, flags);
2922 		return 0;
2923 	}
2924 
2925 	*nr += refs;
2926 	folio_set_referenced(folio);
2927 	return 1;
2928 }
2929 
2930 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2931 			unsigned long end, unsigned int flags,
2932 			struct page **pages, int *nr)
2933 {
2934 	int refs;
2935 	struct page *page;
2936 	struct folio *folio;
2937 
2938 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2939 		return 0;
2940 
2941 	BUILD_BUG_ON(pgd_devmap(orig));
2942 
2943 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2944 	refs = record_subpages(page, addr, end, pages + *nr);
2945 
2946 	folio = try_grab_folio(page, refs, flags);
2947 	if (!folio)
2948 		return 0;
2949 
2950 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2951 		gup_put_folio(folio, refs, flags);
2952 		return 0;
2953 	}
2954 
2955 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2956 		gup_put_folio(folio, refs, flags);
2957 		return 0;
2958 	}
2959 
2960 	if (!folio_fast_pin_allowed(folio, flags)) {
2961 		gup_put_folio(folio, refs, flags);
2962 		return 0;
2963 	}
2964 
2965 	*nr += refs;
2966 	folio_set_referenced(folio);
2967 	return 1;
2968 }
2969 
2970 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2971 		unsigned int flags, struct page **pages, int *nr)
2972 {
2973 	unsigned long next;
2974 	pmd_t *pmdp;
2975 
2976 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2977 	do {
2978 		pmd_t pmd = pmdp_get_lockless(pmdp);
2979 
2980 		next = pmd_addr_end(addr, end);
2981 		if (!pmd_present(pmd))
2982 			return 0;
2983 
2984 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2985 			     pmd_devmap(pmd))) {
2986 			if (pmd_protnone(pmd) &&
2987 			    !gup_can_follow_protnone(flags))
2988 				return 0;
2989 
2990 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2991 				pages, nr))
2992 				return 0;
2993 
2994 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2995 			/*
2996 			 * architecture have different format for hugetlbfs
2997 			 * pmd format and THP pmd format
2998 			 */
2999 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3000 					 PMD_SHIFT, next, flags, pages, nr))
3001 				return 0;
3002 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3003 			return 0;
3004 	} while (pmdp++, addr = next, addr != end);
3005 
3006 	return 1;
3007 }
3008 
3009 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3010 			 unsigned int flags, struct page **pages, int *nr)
3011 {
3012 	unsigned long next;
3013 	pud_t *pudp;
3014 
3015 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3016 	do {
3017 		pud_t pud = READ_ONCE(*pudp);
3018 
3019 		next = pud_addr_end(addr, end);
3020 		if (unlikely(!pud_present(pud)))
3021 			return 0;
3022 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3023 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3024 					  pages, nr))
3025 				return 0;
3026 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3027 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3028 					 PUD_SHIFT, next, flags, pages, nr))
3029 				return 0;
3030 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3031 			return 0;
3032 	} while (pudp++, addr = next, addr != end);
3033 
3034 	return 1;
3035 }
3036 
3037 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3038 			 unsigned int flags, struct page **pages, int *nr)
3039 {
3040 	unsigned long next;
3041 	p4d_t *p4dp;
3042 
3043 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3044 	do {
3045 		p4d_t p4d = READ_ONCE(*p4dp);
3046 
3047 		next = p4d_addr_end(addr, end);
3048 		if (p4d_none(p4d))
3049 			return 0;
3050 		BUILD_BUG_ON(p4d_huge(p4d));
3051 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3052 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3053 					 P4D_SHIFT, next, flags, pages, nr))
3054 				return 0;
3055 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3056 			return 0;
3057 	} while (p4dp++, addr = next, addr != end);
3058 
3059 	return 1;
3060 }
3061 
3062 static void gup_pgd_range(unsigned long addr, unsigned long end,
3063 		unsigned int flags, struct page **pages, int *nr)
3064 {
3065 	unsigned long next;
3066 	pgd_t *pgdp;
3067 
3068 	pgdp = pgd_offset(current->mm, addr);
3069 	do {
3070 		pgd_t pgd = READ_ONCE(*pgdp);
3071 
3072 		next = pgd_addr_end(addr, end);
3073 		if (pgd_none(pgd))
3074 			return;
3075 		if (unlikely(pgd_huge(pgd))) {
3076 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3077 					  pages, nr))
3078 				return;
3079 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3080 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3081 					 PGDIR_SHIFT, next, flags, pages, nr))
3082 				return;
3083 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3084 			return;
3085 	} while (pgdp++, addr = next, addr != end);
3086 }
3087 #else
3088 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3089 		unsigned int flags, struct page **pages, int *nr)
3090 {
3091 }
3092 #endif /* CONFIG_HAVE_FAST_GUP */
3093 
3094 #ifndef gup_fast_permitted
3095 /*
3096  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3097  * we need to fall back to the slow version:
3098  */
3099 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3100 {
3101 	return true;
3102 }
3103 #endif
3104 
3105 static unsigned long lockless_pages_from_mm(unsigned long start,
3106 					    unsigned long end,
3107 					    unsigned int gup_flags,
3108 					    struct page **pages)
3109 {
3110 	unsigned long flags;
3111 	int nr_pinned = 0;
3112 	unsigned seq;
3113 
3114 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3115 	    !gup_fast_permitted(start, end))
3116 		return 0;
3117 
3118 	if (gup_flags & FOLL_PIN) {
3119 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3120 		if (seq & 1)
3121 			return 0;
3122 	}
3123 
3124 	/*
3125 	 * Disable interrupts. The nested form is used, in order to allow full,
3126 	 * general purpose use of this routine.
3127 	 *
3128 	 * With interrupts disabled, we block page table pages from being freed
3129 	 * from under us. See struct mmu_table_batch comments in
3130 	 * include/asm-generic/tlb.h for more details.
3131 	 *
3132 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3133 	 * that come from THPs splitting.
3134 	 */
3135 	local_irq_save(flags);
3136 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3137 	local_irq_restore(flags);
3138 
3139 	/*
3140 	 * When pinning pages for DMA there could be a concurrent write protect
3141 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3142 	 */
3143 	if (gup_flags & FOLL_PIN) {
3144 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3145 			unpin_user_pages_lockless(pages, nr_pinned);
3146 			return 0;
3147 		} else {
3148 			sanity_check_pinned_pages(pages, nr_pinned);
3149 		}
3150 	}
3151 	return nr_pinned;
3152 }
3153 
3154 static int internal_get_user_pages_fast(unsigned long start,
3155 					unsigned long nr_pages,
3156 					unsigned int gup_flags,
3157 					struct page **pages)
3158 {
3159 	unsigned long len, end;
3160 	unsigned long nr_pinned;
3161 	int locked = 0;
3162 	int ret;
3163 
3164 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3165 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3166 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3167 				       FOLL_PCI_P2PDMA)))
3168 		return -EINVAL;
3169 
3170 	if (gup_flags & FOLL_PIN)
3171 		mm_set_has_pinned_flag(&current->mm->flags);
3172 
3173 	if (!(gup_flags & FOLL_FAST_ONLY))
3174 		might_lock_read(&current->mm->mmap_lock);
3175 
3176 	start = untagged_addr(start) & PAGE_MASK;
3177 	len = nr_pages << PAGE_SHIFT;
3178 	if (check_add_overflow(start, len, &end))
3179 		return -EOVERFLOW;
3180 	if (end > TASK_SIZE_MAX)
3181 		return -EFAULT;
3182 	if (unlikely(!access_ok((void __user *)start, len)))
3183 		return -EFAULT;
3184 
3185 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3186 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3187 		return nr_pinned;
3188 
3189 	/* Slow path: try to get the remaining pages with get_user_pages */
3190 	start += nr_pinned << PAGE_SHIFT;
3191 	pages += nr_pinned;
3192 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3193 				    pages, &locked,
3194 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3195 	if (ret < 0) {
3196 		/*
3197 		 * The caller has to unpin the pages we already pinned so
3198 		 * returning -errno is not an option
3199 		 */
3200 		if (nr_pinned)
3201 			return nr_pinned;
3202 		return ret;
3203 	}
3204 	return ret + nr_pinned;
3205 }
3206 
3207 /**
3208  * get_user_pages_fast_only() - pin user pages in memory
3209  * @start:      starting user address
3210  * @nr_pages:   number of pages from start to pin
3211  * @gup_flags:  flags modifying pin behaviour
3212  * @pages:      array that receives pointers to the pages pinned.
3213  *              Should be at least nr_pages long.
3214  *
3215  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3216  * the regular GUP.
3217  *
3218  * If the architecture does not support this function, simply return with no
3219  * pages pinned.
3220  *
3221  * Careful, careful! COW breaking can go either way, so a non-write
3222  * access can get ambiguous page results. If you call this function without
3223  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3224  */
3225 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3226 			     unsigned int gup_flags, struct page **pages)
3227 {
3228 	/*
3229 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3230 	 * because gup fast is always a "pin with a +1 page refcount" request.
3231 	 *
3232 	 * FOLL_FAST_ONLY is required in order to match the API description of
3233 	 * this routine: no fall back to regular ("slow") GUP.
3234 	 */
3235 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3236 			       FOLL_GET | FOLL_FAST_ONLY))
3237 		return -EINVAL;
3238 
3239 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3240 }
3241 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3242 
3243 /**
3244  * get_user_pages_fast() - pin user pages in memory
3245  * @start:      starting user address
3246  * @nr_pages:   number of pages from start to pin
3247  * @gup_flags:  flags modifying pin behaviour
3248  * @pages:      array that receives pointers to the pages pinned.
3249  *              Should be at least nr_pages long.
3250  *
3251  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3252  * If not successful, it will fall back to taking the lock and
3253  * calling get_user_pages().
3254  *
3255  * Returns number of pages pinned. This may be fewer than the number requested.
3256  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3257  * -errno.
3258  */
3259 int get_user_pages_fast(unsigned long start, int nr_pages,
3260 			unsigned int gup_flags, struct page **pages)
3261 {
3262 	/*
3263 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3264 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3265 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3266 	 * request.
3267 	 */
3268 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3269 		return -EINVAL;
3270 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3271 }
3272 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3273 
3274 /**
3275  * pin_user_pages_fast() - pin user pages in memory without taking locks
3276  *
3277  * @start:      starting user address
3278  * @nr_pages:   number of pages from start to pin
3279  * @gup_flags:  flags modifying pin behaviour
3280  * @pages:      array that receives pointers to the pages pinned.
3281  *              Should be at least nr_pages long.
3282  *
3283  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3284  * get_user_pages_fast() for documentation on the function arguments, because
3285  * the arguments here are identical.
3286  *
3287  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3288  * see Documentation/core-api/pin_user_pages.rst for further details.
3289  *
3290  * Note that if a zero_page is amongst the returned pages, it will not have
3291  * pins in it and unpin_user_page() will not remove pins from it.
3292  */
3293 int pin_user_pages_fast(unsigned long start, int nr_pages,
3294 			unsigned int gup_flags, struct page **pages)
3295 {
3296 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3297 		return -EINVAL;
3298 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3299 }
3300 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3301 
3302 /**
3303  * pin_user_pages_remote() - pin pages of a remote process
3304  *
3305  * @mm:		mm_struct of target mm
3306  * @start:	starting user address
3307  * @nr_pages:	number of pages from start to pin
3308  * @gup_flags:	flags modifying lookup behaviour
3309  * @pages:	array that receives pointers to the pages pinned.
3310  *		Should be at least nr_pages long.
3311  * @locked:	pointer to lock flag indicating whether lock is held and
3312  *		subsequently whether VM_FAULT_RETRY functionality can be
3313  *		utilised. Lock must initially be held.
3314  *
3315  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3316  * get_user_pages_remote() for documentation on the function arguments, because
3317  * the arguments here are identical.
3318  *
3319  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3320  * see Documentation/core-api/pin_user_pages.rst for details.
3321  *
3322  * Note that if a zero_page is amongst the returned pages, it will not have
3323  * pins in it and unpin_user_page*() will not remove pins from it.
3324  */
3325 long pin_user_pages_remote(struct mm_struct *mm,
3326 			   unsigned long start, unsigned long nr_pages,
3327 			   unsigned int gup_flags, struct page **pages,
3328 			   int *locked)
3329 {
3330 	int local_locked = 1;
3331 
3332 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3333 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3334 		return 0;
3335 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3336 				     locked ? locked : &local_locked,
3337 				     gup_flags);
3338 }
3339 EXPORT_SYMBOL(pin_user_pages_remote);
3340 
3341 /**
3342  * pin_user_pages() - pin user pages in memory for use by other devices
3343  *
3344  * @start:	starting user address
3345  * @nr_pages:	number of pages from start to pin
3346  * @gup_flags:	flags modifying lookup behaviour
3347  * @pages:	array that receives pointers to the pages pinned.
3348  *		Should be at least nr_pages long.
3349  *
3350  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3351  * FOLL_PIN is set.
3352  *
3353  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3354  * see Documentation/core-api/pin_user_pages.rst for details.
3355  *
3356  * Note that if a zero_page is amongst the returned pages, it will not have
3357  * pins in it and unpin_user_page*() will not remove pins from it.
3358  */
3359 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3360 		    unsigned int gup_flags, struct page **pages)
3361 {
3362 	int locked = 1;
3363 
3364 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3365 		return 0;
3366 	return __gup_longterm_locked(current->mm, start, nr_pages,
3367 				     pages, &locked, gup_flags);
3368 }
3369 EXPORT_SYMBOL(pin_user_pages);
3370 
3371 /*
3372  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3373  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3374  * FOLL_PIN and rejects FOLL_GET.
3375  *
3376  * Note that if a zero_page is amongst the returned pages, it will not have
3377  * pins in it and unpin_user_page*() will not remove pins from it.
3378  */
3379 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3380 			     struct page **pages, unsigned int gup_flags)
3381 {
3382 	int locked = 0;
3383 
3384 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3385 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3386 		return 0;
3387 
3388 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3389 				     &locked, gup_flags);
3390 }
3391 EXPORT_SYMBOL(pin_user_pages_unlocked);
3392