xref: /openbmc/linux/mm/gup.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_longterm_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		/*
162 		 * Adjust the pincount before re-checking the PTE for changes.
163 		 * This is essentially a smp_mb() and is paired with a memory
164 		 * barrier in page_try_share_anon_rmap().
165 		 */
166 		smp_mb__after_atomic();
167 
168 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169 
170 		return folio;
171 	}
172 
173 	WARN_ON_ONCE(1);
174 	return NULL;
175 }
176 
177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
178 {
179 	if (flags & FOLL_PIN) {
180 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 		if (folio_test_large(folio))
182 			atomic_sub(refs, folio_pincount_ptr(folio));
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	if (!put_devmap_managed_page_refs(&folio->page, refs))
188 		folio_put_refs(folio, refs);
189 }
190 
191 /**
192  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193  * @page:    pointer to page to be grabbed
194  * @flags:   gup flags: these are the FOLL_* flag values.
195  *
196  * This might not do anything at all, depending on the flags argument.
197  *
198  * "grab" names in this file mean, "look at flags to decide whether to use
199  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_folio() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	struct folio *folio = page_folio(page);
212 
213 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 		return false;
216 
217 	if (flags & FOLL_GET)
218 		folio_ref_inc(folio);
219 	else if (flags & FOLL_PIN) {
220 		/*
221 		 * Similar to try_grab_folio(): be sure to *also*
222 		 * increment the normal page refcount field at least once,
223 		 * so that the page really is pinned.
224 		 */
225 		if (folio_test_large(folio)) {
226 			folio_ref_add(folio, 1);
227 			atomic_add(1, folio_pincount_ptr(folio));
228 		} else {
229 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 		}
231 
232 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
233 	}
234 
235 	return true;
236 }
237 
238 /**
239  * unpin_user_page() - release a dma-pinned page
240  * @page:            pointer to page to be released
241  *
242  * Pages that were pinned via pin_user_pages*() must be released via either
243  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244  * that such pages can be separately tracked and uniquely handled. In
245  * particular, interactions with RDMA and filesystems need special handling.
246  */
247 void unpin_user_page(struct page *page)
248 {
249 	sanity_check_pinned_pages(&page, 1);
250 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
251 }
252 EXPORT_SYMBOL(unpin_user_page);
253 
254 static inline struct folio *gup_folio_range_next(struct page *start,
255 		unsigned long npages, unsigned long i, unsigned int *ntails)
256 {
257 	struct page *next = nth_page(start, i);
258 	struct folio *folio = page_folio(next);
259 	unsigned int nr = 1;
260 
261 	if (folio_test_large(folio))
262 		nr = min_t(unsigned int, npages - i,
263 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
264 
265 	*ntails = nr;
266 	return folio;
267 }
268 
269 static inline struct folio *gup_folio_next(struct page **list,
270 		unsigned long npages, unsigned long i, unsigned int *ntails)
271 {
272 	struct folio *folio = page_folio(list[i]);
273 	unsigned int nr;
274 
275 	for (nr = i + 1; nr < npages; nr++) {
276 		if (page_folio(list[nr]) != folio)
277 			break;
278 	}
279 
280 	*ntails = nr - i;
281 	return folio;
282 }
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long i;
310 	struct folio *folio;
311 	unsigned int nr;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	sanity_check_pinned_pages(pages, npages);
319 	for (i = 0; i < npages; i += nr) {
320 		folio = gup_folio_next(pages, npages, i, &nr);
321 		/*
322 		 * Checking PageDirty at this point may race with
323 		 * clear_page_dirty_for_io(), but that's OK. Two key
324 		 * cases:
325 		 *
326 		 * 1) This code sees the page as already dirty, so it
327 		 * skips the call to set_page_dirty(). That could happen
328 		 * because clear_page_dirty_for_io() called
329 		 * page_mkclean(), followed by set_page_dirty().
330 		 * However, now the page is going to get written back,
331 		 * which meets the original intention of setting it
332 		 * dirty, so all is well: clear_page_dirty_for_io() goes
333 		 * on to call TestClearPageDirty(), and write the page
334 		 * back.
335 		 *
336 		 * 2) This code sees the page as clean, so it calls
337 		 * set_page_dirty(). The page stays dirty, despite being
338 		 * written back, so it gets written back again in the
339 		 * next writeback cycle. This is harmless.
340 		 */
341 		if (!folio_test_dirty(folio)) {
342 			folio_lock(folio);
343 			folio_mark_dirty(folio);
344 			folio_unlock(folio);
345 		}
346 		gup_put_folio(folio, nr, FOLL_PIN);
347 	}
348 }
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
350 
351 /**
352  * unpin_user_page_range_dirty_lock() - release and optionally dirty
353  * gup-pinned page range
354  *
355  * @page:  the starting page of a range maybe marked dirty, and definitely released.
356  * @npages: number of consecutive pages to release.
357  * @make_dirty: whether to mark the pages dirty
358  *
359  * "gup-pinned page range" refers to a range of pages that has had one of the
360  * pin_user_pages() variants called on that page.
361  *
362  * For the page ranges defined by [page .. page+npages], make that range (or
363  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364  * page range was previously listed as clean.
365  *
366  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367  * required, then the caller should a) verify that this is really correct,
368  * because _lock() is usually required, and b) hand code it:
369  * set_page_dirty_lock(), unpin_user_page().
370  *
371  */
372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 				      bool make_dirty)
374 {
375 	unsigned long i;
376 	struct folio *folio;
377 	unsigned int nr;
378 
379 	for (i = 0; i < npages; i += nr) {
380 		folio = gup_folio_range_next(page, npages, i, &nr);
381 		if (make_dirty && !folio_test_dirty(folio)) {
382 			folio_lock(folio);
383 			folio_mark_dirty(folio);
384 			folio_unlock(folio);
385 		}
386 		gup_put_folio(folio, nr, FOLL_PIN);
387 	}
388 }
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390 
391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392 {
393 	unsigned long i;
394 	struct folio *folio;
395 	unsigned int nr;
396 
397 	/*
398 	 * Don't perform any sanity checks because we might have raced with
399 	 * fork() and some anonymous pages might now actually be shared --
400 	 * which is why we're unpinning after all.
401 	 */
402 	for (i = 0; i < npages; i += nr) {
403 		folio = gup_folio_next(pages, npages, i, &nr);
404 		gup_put_folio(folio, nr, FOLL_PIN);
405 	}
406 }
407 
408 /**
409  * unpin_user_pages() - release an array of gup-pinned pages.
410  * @pages:  array of pages to be marked dirty and released.
411  * @npages: number of pages in the @pages array.
412  *
413  * For each page in the @pages array, release the page using unpin_user_page().
414  *
415  * Please see the unpin_user_page() documentation for details.
416  */
417 void unpin_user_pages(struct page **pages, unsigned long npages)
418 {
419 	unsigned long i;
420 	struct folio *folio;
421 	unsigned int nr;
422 
423 	/*
424 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 	 * leaving them pinned), but probably not. More likely, gup/pup returned
426 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 	 */
428 	if (WARN_ON(IS_ERR_VALUE(npages)))
429 		return;
430 
431 	sanity_check_pinned_pages(pages, npages);
432 	for (i = 0; i < npages; i += nr) {
433 		folio = gup_folio_next(pages, npages, i, &nr);
434 		gup_put_folio(folio, nr, FOLL_PIN);
435 	}
436 }
437 EXPORT_SYMBOL(unpin_user_pages);
438 
439 /*
440  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
442  * cache bouncing on large SMP machines for concurrent pinned gups.
443  */
444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445 {
446 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 		set_bit(MMF_HAS_PINNED, mm_flags);
448 }
449 
450 #ifdef CONFIG_MMU
451 static struct page *no_page_table(struct vm_area_struct *vma,
452 		unsigned int flags)
453 {
454 	/*
455 	 * When core dumping an enormous anonymous area that nobody
456 	 * has touched so far, we don't want to allocate unnecessary pages or
457 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
458 	 * then get_dump_page() will return NULL to leave a hole in the dump.
459 	 * But we can only make this optimization where a hole would surely
460 	 * be zero-filled if handle_mm_fault() actually did handle it.
461 	 */
462 	if ((flags & FOLL_DUMP) &&
463 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 		return ERR_PTR(-EFAULT);
465 	return NULL;
466 }
467 
468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 		pte_t *pte, unsigned int flags)
470 {
471 	if (flags & FOLL_TOUCH) {
472 		pte_t entry = *pte;
473 
474 		if (flags & FOLL_WRITE)
475 			entry = pte_mkdirty(entry);
476 		entry = pte_mkyoung(entry);
477 
478 		if (!pte_same(*pte, entry)) {
479 			set_pte_at(vma->vm_mm, address, pte, entry);
480 			update_mmu_cache(vma, address, pte);
481 		}
482 	}
483 
484 	/* Proper page table entry exists, but no corresponding struct page */
485 	return -EEXIST;
486 }
487 
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 					struct vm_area_struct *vma,
491 					unsigned int flags)
492 {
493 	/* If the pte is writable, we can write to the page. */
494 	if (pte_write(pte))
495 		return true;
496 
497 	/* Maybe FOLL_FORCE is set to override it? */
498 	if (!(flags & FOLL_FORCE))
499 		return false;
500 
501 	/* But FOLL_FORCE has no effect on shared mappings */
502 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 		return false;
504 
505 	/* ... or read-only private ones */
506 	if (!(vma->vm_flags & VM_MAYWRITE))
507 		return false;
508 
509 	/* ... or already writable ones that just need to take a write fault */
510 	if (vma->vm_flags & VM_WRITE)
511 		return false;
512 
513 	/*
514 	 * See can_change_pte_writable(): we broke COW and could map the page
515 	 * writable if we have an exclusive anonymous page ...
516 	 */
517 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 		return false;
519 
520 	/* ... and a write-fault isn't required for other reasons. */
521 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 		return false;
523 	return !userfaultfd_pte_wp(vma, pte);
524 }
525 
526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 		unsigned long address, pmd_t *pmd, unsigned int flags,
528 		struct dev_pagemap **pgmap)
529 {
530 	struct mm_struct *mm = vma->vm_mm;
531 	struct page *page;
532 	spinlock_t *ptl;
533 	pte_t *ptep, pte;
534 	int ret;
535 
536 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 			 (FOLL_PIN | FOLL_GET)))
539 		return ERR_PTR(-EINVAL);
540 retry:
541 	if (unlikely(pmd_bad(*pmd)))
542 		return no_page_table(vma, flags);
543 
544 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
545 	pte = *ptep;
546 	if (!pte_present(pte)) {
547 		swp_entry_t entry;
548 		/*
549 		 * KSM's break_ksm() relies upon recognizing a ksm page
550 		 * even while it is being migrated, so for that case we
551 		 * need migration_entry_wait().
552 		 */
553 		if (likely(!(flags & FOLL_MIGRATION)))
554 			goto no_page;
555 		if (pte_none(pte))
556 			goto no_page;
557 		entry = pte_to_swp_entry(pte);
558 		if (!is_migration_entry(entry))
559 			goto no_page;
560 		pte_unmap_unlock(ptep, ptl);
561 		migration_entry_wait(mm, pmd, address);
562 		goto retry;
563 	}
564 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
565 		goto no_page;
566 
567 	page = vm_normal_page(vma, address, pte);
568 
569 	/*
570 	 * We only care about anon pages in can_follow_write_pte() and don't
571 	 * have to worry about pte_devmap() because they are never anon.
572 	 */
573 	if ((flags & FOLL_WRITE) &&
574 	    !can_follow_write_pte(pte, page, vma, flags)) {
575 		page = NULL;
576 		goto out;
577 	}
578 
579 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
580 		/*
581 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
582 		 * case since they are only valid while holding the pgmap
583 		 * reference.
584 		 */
585 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
586 		if (*pgmap)
587 			page = pte_page(pte);
588 		else
589 			goto no_page;
590 	} else if (unlikely(!page)) {
591 		if (flags & FOLL_DUMP) {
592 			/* Avoid special (like zero) pages in core dumps */
593 			page = ERR_PTR(-EFAULT);
594 			goto out;
595 		}
596 
597 		if (is_zero_pfn(pte_pfn(pte))) {
598 			page = pte_page(pte);
599 		} else {
600 			ret = follow_pfn_pte(vma, address, ptep, flags);
601 			page = ERR_PTR(ret);
602 			goto out;
603 		}
604 	}
605 
606 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
607 		page = ERR_PTR(-EMLINK);
608 		goto out;
609 	}
610 
611 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
612 		       !PageAnonExclusive(page), page);
613 
614 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
615 	if (unlikely(!try_grab_page(page, flags))) {
616 		page = ERR_PTR(-ENOMEM);
617 		goto out;
618 	}
619 	/*
620 	 * We need to make the page accessible if and only if we are going
621 	 * to access its content (the FOLL_PIN case).  Please see
622 	 * Documentation/core-api/pin_user_pages.rst for details.
623 	 */
624 	if (flags & FOLL_PIN) {
625 		ret = arch_make_page_accessible(page);
626 		if (ret) {
627 			unpin_user_page(page);
628 			page = ERR_PTR(ret);
629 			goto out;
630 		}
631 	}
632 	if (flags & FOLL_TOUCH) {
633 		if ((flags & FOLL_WRITE) &&
634 		    !pte_dirty(pte) && !PageDirty(page))
635 			set_page_dirty(page);
636 		/*
637 		 * pte_mkyoung() would be more correct here, but atomic care
638 		 * is needed to avoid losing the dirty bit: it is easier to use
639 		 * mark_page_accessed().
640 		 */
641 		mark_page_accessed(page);
642 	}
643 out:
644 	pte_unmap_unlock(ptep, ptl);
645 	return page;
646 no_page:
647 	pte_unmap_unlock(ptep, ptl);
648 	if (!pte_none(pte))
649 		return NULL;
650 	return no_page_table(vma, flags);
651 }
652 
653 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
654 				    unsigned long address, pud_t *pudp,
655 				    unsigned int flags,
656 				    struct follow_page_context *ctx)
657 {
658 	pmd_t *pmd, pmdval;
659 	spinlock_t *ptl;
660 	struct page *page;
661 	struct mm_struct *mm = vma->vm_mm;
662 
663 	pmd = pmd_offset(pudp, address);
664 	/*
665 	 * The READ_ONCE() will stabilize the pmdval in a register or
666 	 * on the stack so that it will stop changing under the code.
667 	 */
668 	pmdval = READ_ONCE(*pmd);
669 	if (pmd_none(pmdval))
670 		return no_page_table(vma, flags);
671 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
672 		page = follow_huge_pmd(mm, address, pmd, flags);
673 		if (page)
674 			return page;
675 		return no_page_table(vma, flags);
676 	}
677 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
678 		page = follow_huge_pd(vma, address,
679 				      __hugepd(pmd_val(pmdval)), flags,
680 				      PMD_SHIFT);
681 		if (page)
682 			return page;
683 		return no_page_table(vma, flags);
684 	}
685 retry:
686 	if (!pmd_present(pmdval)) {
687 		/*
688 		 * Should never reach here, if thp migration is not supported;
689 		 * Otherwise, it must be a thp migration entry.
690 		 */
691 		VM_BUG_ON(!thp_migration_supported() ||
692 				  !is_pmd_migration_entry(pmdval));
693 
694 		if (likely(!(flags & FOLL_MIGRATION)))
695 			return no_page_table(vma, flags);
696 
697 		pmd_migration_entry_wait(mm, pmd);
698 		pmdval = READ_ONCE(*pmd);
699 		/*
700 		 * MADV_DONTNEED may convert the pmd to null because
701 		 * mmap_lock is held in read mode
702 		 */
703 		if (pmd_none(pmdval))
704 			return no_page_table(vma, flags);
705 		goto retry;
706 	}
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 	}
714 	if (likely(!pmd_trans_huge(pmdval)))
715 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716 
717 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
718 		return no_page_table(vma, flags);
719 
720 retry_locked:
721 	ptl = pmd_lock(mm, pmd);
722 	if (unlikely(pmd_none(*pmd))) {
723 		spin_unlock(ptl);
724 		return no_page_table(vma, flags);
725 	}
726 	if (unlikely(!pmd_present(*pmd))) {
727 		spin_unlock(ptl);
728 		if (likely(!(flags & FOLL_MIGRATION)))
729 			return no_page_table(vma, flags);
730 		pmd_migration_entry_wait(mm, pmd);
731 		goto retry_locked;
732 	}
733 	if (unlikely(!pmd_trans_huge(*pmd))) {
734 		spin_unlock(ptl);
735 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
736 	}
737 	if (flags & FOLL_SPLIT_PMD) {
738 		int ret;
739 		page = pmd_page(*pmd);
740 		if (is_huge_zero_page(page)) {
741 			spin_unlock(ptl);
742 			ret = 0;
743 			split_huge_pmd(vma, pmd, address);
744 			if (pmd_trans_unstable(pmd))
745 				ret = -EBUSY;
746 		} else {
747 			spin_unlock(ptl);
748 			split_huge_pmd(vma, pmd, address);
749 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
750 		}
751 
752 		return ret ? ERR_PTR(ret) :
753 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
754 	}
755 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
756 	spin_unlock(ptl);
757 	ctx->page_mask = HPAGE_PMD_NR - 1;
758 	return page;
759 }
760 
761 static struct page *follow_pud_mask(struct vm_area_struct *vma,
762 				    unsigned long address, p4d_t *p4dp,
763 				    unsigned int flags,
764 				    struct follow_page_context *ctx)
765 {
766 	pud_t *pud;
767 	spinlock_t *ptl;
768 	struct page *page;
769 	struct mm_struct *mm = vma->vm_mm;
770 
771 	pud = pud_offset(p4dp, address);
772 	if (pud_none(*pud))
773 		return no_page_table(vma, flags);
774 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
775 		page = follow_huge_pud(mm, address, pud, flags);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
781 		page = follow_huge_pd(vma, address,
782 				      __hugepd(pud_val(*pud)), flags,
783 				      PUD_SHIFT);
784 		if (page)
785 			return page;
786 		return no_page_table(vma, flags);
787 	}
788 	if (pud_devmap(*pud)) {
789 		ptl = pud_lock(mm, pud);
790 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
791 		spin_unlock(ptl);
792 		if (page)
793 			return page;
794 	}
795 	if (unlikely(pud_bad(*pud)))
796 		return no_page_table(vma, flags);
797 
798 	return follow_pmd_mask(vma, address, pud, flags, ctx);
799 }
800 
801 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
802 				    unsigned long address, pgd_t *pgdp,
803 				    unsigned int flags,
804 				    struct follow_page_context *ctx)
805 {
806 	p4d_t *p4d;
807 	struct page *page;
808 
809 	p4d = p4d_offset(pgdp, address);
810 	if (p4d_none(*p4d))
811 		return no_page_table(vma, flags);
812 	BUILD_BUG_ON(p4d_huge(*p4d));
813 	if (unlikely(p4d_bad(*p4d)))
814 		return no_page_table(vma, flags);
815 
816 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
817 		page = follow_huge_pd(vma, address,
818 				      __hugepd(p4d_val(*p4d)), flags,
819 				      P4D_SHIFT);
820 		if (page)
821 			return page;
822 		return no_page_table(vma, flags);
823 	}
824 	return follow_pud_mask(vma, address, p4d, flags, ctx);
825 }
826 
827 /**
828  * follow_page_mask - look up a page descriptor from a user-virtual address
829  * @vma: vm_area_struct mapping @address
830  * @address: virtual address to look up
831  * @flags: flags modifying lookup behaviour
832  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
833  *       pointer to output page_mask
834  *
835  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
836  *
837  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
838  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
839  *
840  * When getting an anonymous page and the caller has to trigger unsharing
841  * of a shared anonymous page first, -EMLINK is returned. The caller should
842  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
843  * relevant with FOLL_PIN and !FOLL_WRITE.
844  *
845  * On output, the @ctx->page_mask is set according to the size of the page.
846  *
847  * Return: the mapped (struct page *), %NULL if no mapping exists, or
848  * an error pointer if there is a mapping to something not represented
849  * by a page descriptor (see also vm_normal_page()).
850  */
851 static struct page *follow_page_mask(struct vm_area_struct *vma,
852 			      unsigned long address, unsigned int flags,
853 			      struct follow_page_context *ctx)
854 {
855 	pgd_t *pgd;
856 	struct page *page;
857 	struct mm_struct *mm = vma->vm_mm;
858 
859 	ctx->page_mask = 0;
860 
861 	/* make this handle hugepd */
862 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
863 	if (!IS_ERR(page)) {
864 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
865 		return page;
866 	}
867 
868 	pgd = pgd_offset(mm, address);
869 
870 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
871 		return no_page_table(vma, flags);
872 
873 	if (pgd_huge(*pgd)) {
874 		page = follow_huge_pgd(mm, address, pgd, flags);
875 		if (page)
876 			return page;
877 		return no_page_table(vma, flags);
878 	}
879 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
880 		page = follow_huge_pd(vma, address,
881 				      __hugepd(pgd_val(*pgd)), flags,
882 				      PGDIR_SHIFT);
883 		if (page)
884 			return page;
885 		return no_page_table(vma, flags);
886 	}
887 
888 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
889 }
890 
891 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
892 			 unsigned int foll_flags)
893 {
894 	struct follow_page_context ctx = { NULL };
895 	struct page *page;
896 
897 	if (vma_is_secretmem(vma))
898 		return NULL;
899 
900 	if (foll_flags & FOLL_PIN)
901 		return NULL;
902 
903 	page = follow_page_mask(vma, address, foll_flags, &ctx);
904 	if (ctx.pgmap)
905 		put_dev_pagemap(ctx.pgmap);
906 	return page;
907 }
908 
909 static int get_gate_page(struct mm_struct *mm, unsigned long address,
910 		unsigned int gup_flags, struct vm_area_struct **vma,
911 		struct page **page)
912 {
913 	pgd_t *pgd;
914 	p4d_t *p4d;
915 	pud_t *pud;
916 	pmd_t *pmd;
917 	pte_t *pte;
918 	int ret = -EFAULT;
919 
920 	/* user gate pages are read-only */
921 	if (gup_flags & FOLL_WRITE)
922 		return -EFAULT;
923 	if (address > TASK_SIZE)
924 		pgd = pgd_offset_k(address);
925 	else
926 		pgd = pgd_offset_gate(mm, address);
927 	if (pgd_none(*pgd))
928 		return -EFAULT;
929 	p4d = p4d_offset(pgd, address);
930 	if (p4d_none(*p4d))
931 		return -EFAULT;
932 	pud = pud_offset(p4d, address);
933 	if (pud_none(*pud))
934 		return -EFAULT;
935 	pmd = pmd_offset(pud, address);
936 	if (!pmd_present(*pmd))
937 		return -EFAULT;
938 	VM_BUG_ON(pmd_trans_huge(*pmd));
939 	pte = pte_offset_map(pmd, address);
940 	if (pte_none(*pte))
941 		goto unmap;
942 	*vma = get_gate_vma(mm);
943 	if (!page)
944 		goto out;
945 	*page = vm_normal_page(*vma, address, *pte);
946 	if (!*page) {
947 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
948 			goto unmap;
949 		*page = pte_page(*pte);
950 	}
951 	if (unlikely(!try_grab_page(*page, gup_flags))) {
952 		ret = -ENOMEM;
953 		goto unmap;
954 	}
955 out:
956 	ret = 0;
957 unmap:
958 	pte_unmap(pte);
959 	return ret;
960 }
961 
962 /*
963  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
964  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
965  * is, *@locked will be set to 0 and -EBUSY returned.
966  */
967 static int faultin_page(struct vm_area_struct *vma,
968 		unsigned long address, unsigned int *flags, bool unshare,
969 		int *locked)
970 {
971 	unsigned int fault_flags = 0;
972 	vm_fault_t ret;
973 
974 	if (*flags & FOLL_NOFAULT)
975 		return -EFAULT;
976 	if (*flags & FOLL_WRITE)
977 		fault_flags |= FAULT_FLAG_WRITE;
978 	if (*flags & FOLL_REMOTE)
979 		fault_flags |= FAULT_FLAG_REMOTE;
980 	if (locked)
981 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
982 	if (*flags & FOLL_NOWAIT)
983 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
984 	if (*flags & FOLL_TRIED) {
985 		/*
986 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
987 		 * can co-exist
988 		 */
989 		fault_flags |= FAULT_FLAG_TRIED;
990 	}
991 	if (unshare) {
992 		fault_flags |= FAULT_FLAG_UNSHARE;
993 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
994 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
995 	}
996 
997 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
998 
999 	if (ret & VM_FAULT_COMPLETED) {
1000 		/*
1001 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1002 		 * mmap lock in the page fault handler. Sanity check this.
1003 		 */
1004 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1005 		if (locked)
1006 			*locked = 0;
1007 		/*
1008 		 * We should do the same as VM_FAULT_RETRY, but let's not
1009 		 * return -EBUSY since that's not reflecting the reality of
1010 		 * what has happened - we've just fully completed a page
1011 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1012 		 * that we want to take the mmap lock _again_.
1013 		 */
1014 		return -EAGAIN;
1015 	}
1016 
1017 	if (ret & VM_FAULT_ERROR) {
1018 		int err = vm_fault_to_errno(ret, *flags);
1019 
1020 		if (err)
1021 			return err;
1022 		BUG();
1023 	}
1024 
1025 	if (ret & VM_FAULT_RETRY) {
1026 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1027 			*locked = 0;
1028 		return -EBUSY;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1035 {
1036 	vm_flags_t vm_flags = vma->vm_flags;
1037 	int write = (gup_flags & FOLL_WRITE);
1038 	int foreign = (gup_flags & FOLL_REMOTE);
1039 
1040 	if (vm_flags & (VM_IO | VM_PFNMAP))
1041 		return -EFAULT;
1042 
1043 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1044 		return -EFAULT;
1045 
1046 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047 		return -EOPNOTSUPP;
1048 
1049 	if (vma_is_secretmem(vma))
1050 		return -EFAULT;
1051 
1052 	if (write) {
1053 		if (!(vm_flags & VM_WRITE)) {
1054 			if (!(gup_flags & FOLL_FORCE))
1055 				return -EFAULT;
1056 			/*
1057 			 * We used to let the write,force case do COW in a
1058 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1059 			 * set a breakpoint in a read-only mapping of an
1060 			 * executable, without corrupting the file (yet only
1061 			 * when that file had been opened for writing!).
1062 			 * Anon pages in shared mappings are surprising: now
1063 			 * just reject it.
1064 			 */
1065 			if (!is_cow_mapping(vm_flags))
1066 				return -EFAULT;
1067 		}
1068 	} else if (!(vm_flags & VM_READ)) {
1069 		if (!(gup_flags & FOLL_FORCE))
1070 			return -EFAULT;
1071 		/*
1072 		 * Is there actually any vma we can reach here which does not
1073 		 * have VM_MAYREAD set?
1074 		 */
1075 		if (!(vm_flags & VM_MAYREAD))
1076 			return -EFAULT;
1077 	}
1078 	/*
1079 	 * gups are always data accesses, not instruction
1080 	 * fetches, so execute=false here
1081 	 */
1082 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1083 		return -EFAULT;
1084 	return 0;
1085 }
1086 
1087 /**
1088  * __get_user_pages() - pin user pages in memory
1089  * @mm:		mm_struct of target mm
1090  * @start:	starting user address
1091  * @nr_pages:	number of pages from start to pin
1092  * @gup_flags:	flags modifying pin behaviour
1093  * @pages:	array that receives pointers to the pages pinned.
1094  *		Should be at least nr_pages long. Or NULL, if caller
1095  *		only intends to ensure the pages are faulted in.
1096  * @vmas:	array of pointers to vmas corresponding to each page.
1097  *		Or NULL if the caller does not require them.
1098  * @locked:     whether we're still with the mmap_lock held
1099  *
1100  * Returns either number of pages pinned (which may be less than the
1101  * number requested), or an error. Details about the return value:
1102  *
1103  * -- If nr_pages is 0, returns 0.
1104  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1105  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1106  *    pages pinned. Again, this may be less than nr_pages.
1107  * -- 0 return value is possible when the fault would need to be retried.
1108  *
1109  * The caller is responsible for releasing returned @pages, via put_page().
1110  *
1111  * @vmas are valid only as long as mmap_lock is held.
1112  *
1113  * Must be called with mmap_lock held.  It may be released.  See below.
1114  *
1115  * __get_user_pages walks a process's page tables and takes a reference to
1116  * each struct page that each user address corresponds to at a given
1117  * instant. That is, it takes the page that would be accessed if a user
1118  * thread accesses the given user virtual address at that instant.
1119  *
1120  * This does not guarantee that the page exists in the user mappings when
1121  * __get_user_pages returns, and there may even be a completely different
1122  * page there in some cases (eg. if mmapped pagecache has been invalidated
1123  * and subsequently re faulted). However it does guarantee that the page
1124  * won't be freed completely. And mostly callers simply care that the page
1125  * contains data that was valid *at some point in time*. Typically, an IO
1126  * or similar operation cannot guarantee anything stronger anyway because
1127  * locks can't be held over the syscall boundary.
1128  *
1129  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1130  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1131  * appropriate) must be called after the page is finished with, and
1132  * before put_page is called.
1133  *
1134  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1135  * released by an up_read().  That can happen if @gup_flags does not
1136  * have FOLL_NOWAIT.
1137  *
1138  * A caller using such a combination of @locked and @gup_flags
1139  * must therefore hold the mmap_lock for reading only, and recognize
1140  * when it's been released.  Otherwise, it must be held for either
1141  * reading or writing and will not be released.
1142  *
1143  * In most cases, get_user_pages or get_user_pages_fast should be used
1144  * instead of __get_user_pages. __get_user_pages should be used only if
1145  * you need some special @gup_flags.
1146  */
1147 static long __get_user_pages(struct mm_struct *mm,
1148 		unsigned long start, unsigned long nr_pages,
1149 		unsigned int gup_flags, struct page **pages,
1150 		struct vm_area_struct **vmas, int *locked)
1151 {
1152 	long ret = 0, i = 0;
1153 	struct vm_area_struct *vma = NULL;
1154 	struct follow_page_context ctx = { NULL };
1155 
1156 	if (!nr_pages)
1157 		return 0;
1158 
1159 	start = untagged_addr(start);
1160 
1161 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1162 
1163 	/*
1164 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1165 	 * fault information is unrelated to the reference behaviour of a task
1166 	 * using the address space
1167 	 */
1168 	if (!(gup_flags & FOLL_FORCE))
1169 		gup_flags |= FOLL_NUMA;
1170 
1171 	do {
1172 		struct page *page;
1173 		unsigned int foll_flags = gup_flags;
1174 		unsigned int page_increm;
1175 
1176 		/* first iteration or cross vma bound */
1177 		if (!vma || start >= vma->vm_end) {
1178 			vma = find_extend_vma(mm, start);
1179 			if (!vma && in_gate_area(mm, start)) {
1180 				ret = get_gate_page(mm, start & PAGE_MASK,
1181 						gup_flags, &vma,
1182 						pages ? &pages[i] : NULL);
1183 				if (ret)
1184 					goto out;
1185 				ctx.page_mask = 0;
1186 				goto next_page;
1187 			}
1188 
1189 			if (!vma) {
1190 				ret = -EFAULT;
1191 				goto out;
1192 			}
1193 			ret = check_vma_flags(vma, gup_flags);
1194 			if (ret)
1195 				goto out;
1196 
1197 			if (is_vm_hugetlb_page(vma)) {
1198 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1199 						&start, &nr_pages, i,
1200 						gup_flags, locked);
1201 				if (locked && *locked == 0) {
1202 					/*
1203 					 * We've got a VM_FAULT_RETRY
1204 					 * and we've lost mmap_lock.
1205 					 * We must stop here.
1206 					 */
1207 					BUG_ON(gup_flags & FOLL_NOWAIT);
1208 					goto out;
1209 				}
1210 				continue;
1211 			}
1212 		}
1213 retry:
1214 		/*
1215 		 * If we have a pending SIGKILL, don't keep faulting pages and
1216 		 * potentially allocating memory.
1217 		 */
1218 		if (fatal_signal_pending(current)) {
1219 			ret = -EINTR;
1220 			goto out;
1221 		}
1222 		cond_resched();
1223 
1224 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1225 		if (!page || PTR_ERR(page) == -EMLINK) {
1226 			ret = faultin_page(vma, start, &foll_flags,
1227 					   PTR_ERR(page) == -EMLINK, locked);
1228 			switch (ret) {
1229 			case 0:
1230 				goto retry;
1231 			case -EBUSY:
1232 			case -EAGAIN:
1233 				ret = 0;
1234 				fallthrough;
1235 			case -EFAULT:
1236 			case -ENOMEM:
1237 			case -EHWPOISON:
1238 				goto out;
1239 			}
1240 			BUG();
1241 		} else if (PTR_ERR(page) == -EEXIST) {
1242 			/*
1243 			 * Proper page table entry exists, but no corresponding
1244 			 * struct page. If the caller expects **pages to be
1245 			 * filled in, bail out now, because that can't be done
1246 			 * for this page.
1247 			 */
1248 			if (pages) {
1249 				ret = PTR_ERR(page);
1250 				goto out;
1251 			}
1252 
1253 			goto next_page;
1254 		} else if (IS_ERR(page)) {
1255 			ret = PTR_ERR(page);
1256 			goto out;
1257 		}
1258 		if (pages) {
1259 			pages[i] = page;
1260 			flush_anon_page(vma, page, start);
1261 			flush_dcache_page(page);
1262 			ctx.page_mask = 0;
1263 		}
1264 next_page:
1265 		if (vmas) {
1266 			vmas[i] = vma;
1267 			ctx.page_mask = 0;
1268 		}
1269 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1270 		if (page_increm > nr_pages)
1271 			page_increm = nr_pages;
1272 		i += page_increm;
1273 		start += page_increm * PAGE_SIZE;
1274 		nr_pages -= page_increm;
1275 	} while (nr_pages);
1276 out:
1277 	if (ctx.pgmap)
1278 		put_dev_pagemap(ctx.pgmap);
1279 	return i ? i : ret;
1280 }
1281 
1282 static bool vma_permits_fault(struct vm_area_struct *vma,
1283 			      unsigned int fault_flags)
1284 {
1285 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1286 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1287 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1288 
1289 	if (!(vm_flags & vma->vm_flags))
1290 		return false;
1291 
1292 	/*
1293 	 * The architecture might have a hardware protection
1294 	 * mechanism other than read/write that can deny access.
1295 	 *
1296 	 * gup always represents data access, not instruction
1297 	 * fetches, so execute=false here:
1298 	 */
1299 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1300 		return false;
1301 
1302 	return true;
1303 }
1304 
1305 /**
1306  * fixup_user_fault() - manually resolve a user page fault
1307  * @mm:		mm_struct of target mm
1308  * @address:	user address
1309  * @fault_flags:flags to pass down to handle_mm_fault()
1310  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1311  *		does not allow retry. If NULL, the caller must guarantee
1312  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1313  *
1314  * This is meant to be called in the specific scenario where for locking reasons
1315  * we try to access user memory in atomic context (within a pagefault_disable()
1316  * section), this returns -EFAULT, and we want to resolve the user fault before
1317  * trying again.
1318  *
1319  * Typically this is meant to be used by the futex code.
1320  *
1321  * The main difference with get_user_pages() is that this function will
1322  * unconditionally call handle_mm_fault() which will in turn perform all the
1323  * necessary SW fixup of the dirty and young bits in the PTE, while
1324  * get_user_pages() only guarantees to update these in the struct page.
1325  *
1326  * This is important for some architectures where those bits also gate the
1327  * access permission to the page because they are maintained in software.  On
1328  * such architectures, gup() will not be enough to make a subsequent access
1329  * succeed.
1330  *
1331  * This function will not return with an unlocked mmap_lock. So it has not the
1332  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1333  */
1334 int fixup_user_fault(struct mm_struct *mm,
1335 		     unsigned long address, unsigned int fault_flags,
1336 		     bool *unlocked)
1337 {
1338 	struct vm_area_struct *vma;
1339 	vm_fault_t ret;
1340 
1341 	address = untagged_addr(address);
1342 
1343 	if (unlocked)
1344 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1345 
1346 retry:
1347 	vma = find_extend_vma(mm, address);
1348 	if (!vma || address < vma->vm_start)
1349 		return -EFAULT;
1350 
1351 	if (!vma_permits_fault(vma, fault_flags))
1352 		return -EFAULT;
1353 
1354 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1355 	    fatal_signal_pending(current))
1356 		return -EINTR;
1357 
1358 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1359 
1360 	if (ret & VM_FAULT_COMPLETED) {
1361 		/*
1362 		 * NOTE: it's a pity that we need to retake the lock here
1363 		 * to pair with the unlock() in the callers. Ideally we
1364 		 * could tell the callers so they do not need to unlock.
1365 		 */
1366 		mmap_read_lock(mm);
1367 		*unlocked = true;
1368 		return 0;
1369 	}
1370 
1371 	if (ret & VM_FAULT_ERROR) {
1372 		int err = vm_fault_to_errno(ret, 0);
1373 
1374 		if (err)
1375 			return err;
1376 		BUG();
1377 	}
1378 
1379 	if (ret & VM_FAULT_RETRY) {
1380 		mmap_read_lock(mm);
1381 		*unlocked = true;
1382 		fault_flags |= FAULT_FLAG_TRIED;
1383 		goto retry;
1384 	}
1385 
1386 	return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(fixup_user_fault);
1389 
1390 /*
1391  * Please note that this function, unlike __get_user_pages will not
1392  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1393  */
1394 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1395 						unsigned long start,
1396 						unsigned long nr_pages,
1397 						struct page **pages,
1398 						struct vm_area_struct **vmas,
1399 						int *locked,
1400 						unsigned int flags)
1401 {
1402 	long ret, pages_done;
1403 	bool lock_dropped;
1404 
1405 	if (locked) {
1406 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1407 		BUG_ON(vmas);
1408 		/* check caller initialized locked */
1409 		BUG_ON(*locked != 1);
1410 	}
1411 
1412 	if (flags & FOLL_PIN)
1413 		mm_set_has_pinned_flag(&mm->flags);
1414 
1415 	/*
1416 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1417 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1418 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1419 	 * for FOLL_GET, not for the newer FOLL_PIN.
1420 	 *
1421 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1422 	 * that here, as any failures will be obvious enough.
1423 	 */
1424 	if (pages && !(flags & FOLL_PIN))
1425 		flags |= FOLL_GET;
1426 
1427 	pages_done = 0;
1428 	lock_dropped = false;
1429 	for (;;) {
1430 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1431 				       vmas, locked);
1432 		if (!locked)
1433 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1434 			return ret;
1435 
1436 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1437 		if (!*locked) {
1438 			BUG_ON(ret < 0);
1439 			BUG_ON(ret >= nr_pages);
1440 		}
1441 
1442 		if (ret > 0) {
1443 			nr_pages -= ret;
1444 			pages_done += ret;
1445 			if (!nr_pages)
1446 				break;
1447 		}
1448 		if (*locked) {
1449 			/*
1450 			 * VM_FAULT_RETRY didn't trigger or it was a
1451 			 * FOLL_NOWAIT.
1452 			 */
1453 			if (!pages_done)
1454 				pages_done = ret;
1455 			break;
1456 		}
1457 		/*
1458 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1459 		 * For the prefault case (!pages) we only update counts.
1460 		 */
1461 		if (likely(pages))
1462 			pages += ret;
1463 		start += ret << PAGE_SHIFT;
1464 		lock_dropped = true;
1465 
1466 retry:
1467 		/*
1468 		 * Repeat on the address that fired VM_FAULT_RETRY
1469 		 * with both FAULT_FLAG_ALLOW_RETRY and
1470 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1471 		 * by fatal signals, so we need to check it before we
1472 		 * start trying again otherwise it can loop forever.
1473 		 */
1474 
1475 		if (fatal_signal_pending(current)) {
1476 			if (!pages_done)
1477 				pages_done = -EINTR;
1478 			break;
1479 		}
1480 
1481 		ret = mmap_read_lock_killable(mm);
1482 		if (ret) {
1483 			BUG_ON(ret > 0);
1484 			if (!pages_done)
1485 				pages_done = ret;
1486 			break;
1487 		}
1488 
1489 		*locked = 1;
1490 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1491 				       pages, NULL, locked);
1492 		if (!*locked) {
1493 			/* Continue to retry until we succeeded */
1494 			BUG_ON(ret != 0);
1495 			goto retry;
1496 		}
1497 		if (ret != 1) {
1498 			BUG_ON(ret > 1);
1499 			if (!pages_done)
1500 				pages_done = ret;
1501 			break;
1502 		}
1503 		nr_pages--;
1504 		pages_done++;
1505 		if (!nr_pages)
1506 			break;
1507 		if (likely(pages))
1508 			pages++;
1509 		start += PAGE_SIZE;
1510 	}
1511 	if (lock_dropped && *locked) {
1512 		/*
1513 		 * We must let the caller know we temporarily dropped the lock
1514 		 * and so the critical section protected by it was lost.
1515 		 */
1516 		mmap_read_unlock(mm);
1517 		*locked = 0;
1518 	}
1519 	return pages_done;
1520 }
1521 
1522 /**
1523  * populate_vma_page_range() -  populate a range of pages in the vma.
1524  * @vma:   target vma
1525  * @start: start address
1526  * @end:   end address
1527  * @locked: whether the mmap_lock is still held
1528  *
1529  * This takes care of mlocking the pages too if VM_LOCKED is set.
1530  *
1531  * Return either number of pages pinned in the vma, or a negative error
1532  * code on error.
1533  *
1534  * vma->vm_mm->mmap_lock must be held.
1535  *
1536  * If @locked is NULL, it may be held for read or write and will
1537  * be unperturbed.
1538  *
1539  * If @locked is non-NULL, it must held for read only and may be
1540  * released.  If it's released, *@locked will be set to 0.
1541  */
1542 long populate_vma_page_range(struct vm_area_struct *vma,
1543 		unsigned long start, unsigned long end, int *locked)
1544 {
1545 	struct mm_struct *mm = vma->vm_mm;
1546 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1547 	int gup_flags;
1548 	long ret;
1549 
1550 	VM_BUG_ON(!PAGE_ALIGNED(start));
1551 	VM_BUG_ON(!PAGE_ALIGNED(end));
1552 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1553 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1554 	mmap_assert_locked(mm);
1555 
1556 	/*
1557 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1558 	 * faultin_page() to break COW, so it has no work to do here.
1559 	 */
1560 	if (vma->vm_flags & VM_LOCKONFAULT)
1561 		return nr_pages;
1562 
1563 	gup_flags = FOLL_TOUCH;
1564 	/*
1565 	 * We want to touch writable mappings with a write fault in order
1566 	 * to break COW, except for shared mappings because these don't COW
1567 	 * and we would not want to dirty them for nothing.
1568 	 */
1569 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1570 		gup_flags |= FOLL_WRITE;
1571 
1572 	/*
1573 	 * We want mlock to succeed for regions that have any permissions
1574 	 * other than PROT_NONE.
1575 	 */
1576 	if (vma_is_accessible(vma))
1577 		gup_flags |= FOLL_FORCE;
1578 
1579 	/*
1580 	 * We made sure addr is within a VMA, so the following will
1581 	 * not result in a stack expansion that recurses back here.
1582 	 */
1583 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1584 				NULL, NULL, locked);
1585 	lru_add_drain();
1586 	return ret;
1587 }
1588 
1589 /*
1590  * faultin_vma_page_range() - populate (prefault) page tables inside the
1591  *			      given VMA range readable/writable
1592  *
1593  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1594  *
1595  * @vma: target vma
1596  * @start: start address
1597  * @end: end address
1598  * @write: whether to prefault readable or writable
1599  * @locked: whether the mmap_lock is still held
1600  *
1601  * Returns either number of processed pages in the vma, or a negative error
1602  * code on error (see __get_user_pages()).
1603  *
1604  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1605  * covered by the VMA.
1606  *
1607  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1608  *
1609  * If @locked is non-NULL, it must held for read only and may be released.  If
1610  * it's released, *@locked will be set to 0.
1611  */
1612 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1613 			    unsigned long end, bool write, int *locked)
1614 {
1615 	struct mm_struct *mm = vma->vm_mm;
1616 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1617 	int gup_flags;
1618 	long ret;
1619 
1620 	VM_BUG_ON(!PAGE_ALIGNED(start));
1621 	VM_BUG_ON(!PAGE_ALIGNED(end));
1622 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1623 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1624 	mmap_assert_locked(mm);
1625 
1626 	/*
1627 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1628 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1629 	 *	       difference with !FOLL_FORCE, because the page is writable
1630 	 *	       in the page table.
1631 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1632 	 *		  a poisoned page.
1633 	 * !FOLL_FORCE: Require proper access permissions.
1634 	 */
1635 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1636 	if (write)
1637 		gup_flags |= FOLL_WRITE;
1638 
1639 	/*
1640 	 * We want to report -EINVAL instead of -EFAULT for any permission
1641 	 * problems or incompatible mappings.
1642 	 */
1643 	if (check_vma_flags(vma, gup_flags))
1644 		return -EINVAL;
1645 
1646 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1647 				NULL, NULL, locked);
1648 	lru_add_drain();
1649 	return ret;
1650 }
1651 
1652 /*
1653  * __mm_populate - populate and/or mlock pages within a range of address space.
1654  *
1655  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1656  * flags. VMAs must be already marked with the desired vm_flags, and
1657  * mmap_lock must not be held.
1658  */
1659 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1660 {
1661 	struct mm_struct *mm = current->mm;
1662 	unsigned long end, nstart, nend;
1663 	struct vm_area_struct *vma = NULL;
1664 	int locked = 0;
1665 	long ret = 0;
1666 
1667 	end = start + len;
1668 
1669 	for (nstart = start; nstart < end; nstart = nend) {
1670 		/*
1671 		 * We want to fault in pages for [nstart; end) address range.
1672 		 * Find first corresponding VMA.
1673 		 */
1674 		if (!locked) {
1675 			locked = 1;
1676 			mmap_read_lock(mm);
1677 			vma = find_vma(mm, nstart);
1678 		} else if (nstart >= vma->vm_end)
1679 			vma = vma->vm_next;
1680 		if (!vma || vma->vm_start >= end)
1681 			break;
1682 		/*
1683 		 * Set [nstart; nend) to intersection of desired address
1684 		 * range with the first VMA. Also, skip undesirable VMA types.
1685 		 */
1686 		nend = min(end, vma->vm_end);
1687 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1688 			continue;
1689 		if (nstart < vma->vm_start)
1690 			nstart = vma->vm_start;
1691 		/*
1692 		 * Now fault in a range of pages. populate_vma_page_range()
1693 		 * double checks the vma flags, so that it won't mlock pages
1694 		 * if the vma was already munlocked.
1695 		 */
1696 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1697 		if (ret < 0) {
1698 			if (ignore_errors) {
1699 				ret = 0;
1700 				continue;	/* continue at next VMA */
1701 			}
1702 			break;
1703 		}
1704 		nend = nstart + ret * PAGE_SIZE;
1705 		ret = 0;
1706 	}
1707 	if (locked)
1708 		mmap_read_unlock(mm);
1709 	return ret;	/* 0 or negative error code */
1710 }
1711 #else /* CONFIG_MMU */
1712 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1713 		unsigned long nr_pages, struct page **pages,
1714 		struct vm_area_struct **vmas, int *locked,
1715 		unsigned int foll_flags)
1716 {
1717 	struct vm_area_struct *vma;
1718 	unsigned long vm_flags;
1719 	long i;
1720 
1721 	/* calculate required read or write permissions.
1722 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1723 	 */
1724 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1725 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1726 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1727 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1728 
1729 	for (i = 0; i < nr_pages; i++) {
1730 		vma = find_vma(mm, start);
1731 		if (!vma)
1732 			goto finish_or_fault;
1733 
1734 		/* protect what we can, including chardevs */
1735 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736 		    !(vm_flags & vma->vm_flags))
1737 			goto finish_or_fault;
1738 
1739 		if (pages) {
1740 			pages[i] = virt_to_page((void *)start);
1741 			if (pages[i])
1742 				get_page(pages[i]);
1743 		}
1744 		if (vmas)
1745 			vmas[i] = vma;
1746 		start = (start + PAGE_SIZE) & PAGE_MASK;
1747 	}
1748 
1749 	return i;
1750 
1751 finish_or_fault:
1752 	return i ? : -EFAULT;
1753 }
1754 #endif /* !CONFIG_MMU */
1755 
1756 /**
1757  * fault_in_writeable - fault in userspace address range for writing
1758  * @uaddr: start of address range
1759  * @size: size of address range
1760  *
1761  * Returns the number of bytes not faulted in (like copy_to_user() and
1762  * copy_from_user()).
1763  */
1764 size_t fault_in_writeable(char __user *uaddr, size_t size)
1765 {
1766 	char __user *start = uaddr, *end;
1767 
1768 	if (unlikely(size == 0))
1769 		return 0;
1770 	if (!user_write_access_begin(uaddr, size))
1771 		return size;
1772 	if (!PAGE_ALIGNED(uaddr)) {
1773 		unsafe_put_user(0, uaddr, out);
1774 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1775 	}
1776 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1777 	if (unlikely(end < start))
1778 		end = NULL;
1779 	while (uaddr != end) {
1780 		unsafe_put_user(0, uaddr, out);
1781 		uaddr += PAGE_SIZE;
1782 	}
1783 
1784 out:
1785 	user_write_access_end();
1786 	if (size > uaddr - start)
1787 		return size - (uaddr - start);
1788 	return 0;
1789 }
1790 EXPORT_SYMBOL(fault_in_writeable);
1791 
1792 /**
1793  * fault_in_subpage_writeable - fault in an address range for writing
1794  * @uaddr: start of address range
1795  * @size: size of address range
1796  *
1797  * Fault in a user address range for writing while checking for permissions at
1798  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1799  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1800  *
1801  * Returns the number of bytes not faulted in (like copy_to_user() and
1802  * copy_from_user()).
1803  */
1804 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1805 {
1806 	size_t faulted_in;
1807 
1808 	/*
1809 	 * Attempt faulting in at page granularity first for page table
1810 	 * permission checking. The arch-specific probe_subpage_writeable()
1811 	 * functions may not check for this.
1812 	 */
1813 	faulted_in = size - fault_in_writeable(uaddr, size);
1814 	if (faulted_in)
1815 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1816 
1817 	return size - faulted_in;
1818 }
1819 EXPORT_SYMBOL(fault_in_subpage_writeable);
1820 
1821 /*
1822  * fault_in_safe_writeable - fault in an address range for writing
1823  * @uaddr: start of address range
1824  * @size: length of address range
1825  *
1826  * Faults in an address range for writing.  This is primarily useful when we
1827  * already know that some or all of the pages in the address range aren't in
1828  * memory.
1829  *
1830  * Unlike fault_in_writeable(), this function is non-destructive.
1831  *
1832  * Note that we don't pin or otherwise hold the pages referenced that we fault
1833  * in.  There's no guarantee that they'll stay in memory for any duration of
1834  * time.
1835  *
1836  * Returns the number of bytes not faulted in, like copy_to_user() and
1837  * copy_from_user().
1838  */
1839 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1840 {
1841 	unsigned long start = (unsigned long)uaddr, end;
1842 	struct mm_struct *mm = current->mm;
1843 	bool unlocked = false;
1844 
1845 	if (unlikely(size == 0))
1846 		return 0;
1847 	end = PAGE_ALIGN(start + size);
1848 	if (end < start)
1849 		end = 0;
1850 
1851 	mmap_read_lock(mm);
1852 	do {
1853 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1854 			break;
1855 		start = (start + PAGE_SIZE) & PAGE_MASK;
1856 	} while (start != end);
1857 	mmap_read_unlock(mm);
1858 
1859 	if (size > (unsigned long)uaddr - start)
1860 		return size - ((unsigned long)uaddr - start);
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(fault_in_safe_writeable);
1864 
1865 /**
1866  * fault_in_readable - fault in userspace address range for reading
1867  * @uaddr: start of user address range
1868  * @size: size of user address range
1869  *
1870  * Returns the number of bytes not faulted in (like copy_to_user() and
1871  * copy_from_user()).
1872  */
1873 size_t fault_in_readable(const char __user *uaddr, size_t size)
1874 {
1875 	const char __user *start = uaddr, *end;
1876 	volatile char c;
1877 
1878 	if (unlikely(size == 0))
1879 		return 0;
1880 	if (!user_read_access_begin(uaddr, size))
1881 		return size;
1882 	if (!PAGE_ALIGNED(uaddr)) {
1883 		unsafe_get_user(c, uaddr, out);
1884 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1885 	}
1886 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1887 	if (unlikely(end < start))
1888 		end = NULL;
1889 	while (uaddr != end) {
1890 		unsafe_get_user(c, uaddr, out);
1891 		uaddr += PAGE_SIZE;
1892 	}
1893 
1894 out:
1895 	user_read_access_end();
1896 	(void)c;
1897 	if (size > uaddr - start)
1898 		return size - (uaddr - start);
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL(fault_in_readable);
1902 
1903 /**
1904  * get_dump_page() - pin user page in memory while writing it to core dump
1905  * @addr: user address
1906  *
1907  * Returns struct page pointer of user page pinned for dump,
1908  * to be freed afterwards by put_page().
1909  *
1910  * Returns NULL on any kind of failure - a hole must then be inserted into
1911  * the corefile, to preserve alignment with its headers; and also returns
1912  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1913  * allowing a hole to be left in the corefile to save disk space.
1914  *
1915  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1916  */
1917 #ifdef CONFIG_ELF_CORE
1918 struct page *get_dump_page(unsigned long addr)
1919 {
1920 	struct mm_struct *mm = current->mm;
1921 	struct page *page;
1922 	int locked = 1;
1923 	int ret;
1924 
1925 	if (mmap_read_lock_killable(mm))
1926 		return NULL;
1927 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1928 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1929 	if (locked)
1930 		mmap_read_unlock(mm);
1931 	return (ret == 1) ? page : NULL;
1932 }
1933 #endif /* CONFIG_ELF_CORE */
1934 
1935 #ifdef CONFIG_MIGRATION
1936 /*
1937  * Returns the number of collected pages. Return value is always >= 0.
1938  */
1939 static unsigned long collect_longterm_unpinnable_pages(
1940 					struct list_head *movable_page_list,
1941 					unsigned long nr_pages,
1942 					struct page **pages)
1943 {
1944 	unsigned long i, collected = 0;
1945 	struct folio *prev_folio = NULL;
1946 	bool drain_allow = true;
1947 
1948 	for (i = 0; i < nr_pages; i++) {
1949 		struct folio *folio = page_folio(pages[i]);
1950 
1951 		if (folio == prev_folio)
1952 			continue;
1953 		prev_folio = folio;
1954 
1955 		if (folio_is_longterm_pinnable(folio))
1956 			continue;
1957 
1958 		collected++;
1959 
1960 		if (folio_is_device_coherent(folio))
1961 			continue;
1962 
1963 		if (folio_test_hugetlb(folio)) {
1964 			isolate_hugetlb(&folio->page, movable_page_list);
1965 			continue;
1966 		}
1967 
1968 		if (!folio_test_lru(folio) && drain_allow) {
1969 			lru_add_drain_all();
1970 			drain_allow = false;
1971 		}
1972 
1973 		if (!folio_isolate_lru(folio))
1974 			continue;
1975 
1976 		list_add_tail(&folio->lru, movable_page_list);
1977 		node_stat_mod_folio(folio,
1978 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1979 				    folio_nr_pages(folio));
1980 	}
1981 
1982 	return collected;
1983 }
1984 
1985 /*
1986  * Unpins all pages and migrates device coherent pages and movable_page_list.
1987  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1988  * (or partial success).
1989  */
1990 static int migrate_longterm_unpinnable_pages(
1991 					struct list_head *movable_page_list,
1992 					unsigned long nr_pages,
1993 					struct page **pages)
1994 {
1995 	int ret;
1996 	unsigned long i;
1997 
1998 	for (i = 0; i < nr_pages; i++) {
1999 		struct folio *folio = page_folio(pages[i]);
2000 
2001 		if (folio_is_device_coherent(folio)) {
2002 			/*
2003 			 * Migration will fail if the page is pinned, so convert
2004 			 * the pin on the source page to a normal reference.
2005 			 */
2006 			pages[i] = NULL;
2007 			folio_get(folio);
2008 			gup_put_folio(folio, 1, FOLL_PIN);
2009 
2010 			if (migrate_device_coherent_page(&folio->page)) {
2011 				ret = -EBUSY;
2012 				goto err;
2013 			}
2014 
2015 			continue;
2016 		}
2017 
2018 		/*
2019 		 * We can't migrate pages with unexpected references, so drop
2020 		 * the reference obtained by __get_user_pages_locked().
2021 		 * Migrating pages have been added to movable_page_list after
2022 		 * calling folio_isolate_lru() which takes a reference so the
2023 		 * page won't be freed if it's migrating.
2024 		 */
2025 		unpin_user_page(pages[i]);
2026 		pages[i] = NULL;
2027 	}
2028 
2029 	if (!list_empty(movable_page_list)) {
2030 		struct migration_target_control mtc = {
2031 			.nid = NUMA_NO_NODE,
2032 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2033 		};
2034 
2035 		if (migrate_pages(movable_page_list, alloc_migration_target,
2036 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2037 				  MR_LONGTERM_PIN, NULL)) {
2038 			ret = -ENOMEM;
2039 			goto err;
2040 		}
2041 	}
2042 
2043 	putback_movable_pages(movable_page_list);
2044 
2045 	return -EAGAIN;
2046 
2047 err:
2048 	for (i = 0; i < nr_pages; i++)
2049 		if (pages[i])
2050 			unpin_user_page(pages[i]);
2051 	putback_movable_pages(movable_page_list);
2052 
2053 	return ret;
2054 }
2055 
2056 /*
2057  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2058  * pages in the range are required to be pinned via FOLL_PIN, before calling
2059  * this routine.
2060  *
2061  * If any pages in the range are not allowed to be pinned, then this routine
2062  * will migrate those pages away, unpin all the pages in the range and return
2063  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2064  * call this routine again.
2065  *
2066  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2067  * The caller should give up, and propagate the error back up the call stack.
2068  *
2069  * If everything is OK and all pages in the range are allowed to be pinned, then
2070  * this routine leaves all pages pinned and returns zero for success.
2071  */
2072 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2073 					    struct page **pages)
2074 {
2075 	unsigned long collected;
2076 	LIST_HEAD(movable_page_list);
2077 
2078 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2079 						nr_pages, pages);
2080 	if (!collected)
2081 		return 0;
2082 
2083 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2084 						pages);
2085 }
2086 #else
2087 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2088 					    struct page **pages)
2089 {
2090 	return 0;
2091 }
2092 #endif /* CONFIG_MIGRATION */
2093 
2094 /*
2095  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2096  * allows us to process the FOLL_LONGTERM flag.
2097  */
2098 static long __gup_longterm_locked(struct mm_struct *mm,
2099 				  unsigned long start,
2100 				  unsigned long nr_pages,
2101 				  struct page **pages,
2102 				  struct vm_area_struct **vmas,
2103 				  unsigned int gup_flags)
2104 {
2105 	unsigned int flags;
2106 	long rc, nr_pinned_pages;
2107 
2108 	if (!(gup_flags & FOLL_LONGTERM))
2109 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2110 					       NULL, gup_flags);
2111 
2112 	/*
2113 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2114 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2115 	 * correct to unconditionally call check_and_migrate_movable_pages()
2116 	 * which assumes pages have been pinned via FOLL_PIN.
2117 	 *
2118 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2119 	 */
2120 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2121 		return -EINVAL;
2122 	flags = memalloc_pin_save();
2123 	do {
2124 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2125 							  pages, vmas, NULL,
2126 							  gup_flags);
2127 		if (nr_pinned_pages <= 0) {
2128 			rc = nr_pinned_pages;
2129 			break;
2130 		}
2131 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2132 	} while (rc == -EAGAIN);
2133 	memalloc_pin_restore(flags);
2134 
2135 	return rc ? rc : nr_pinned_pages;
2136 }
2137 
2138 static bool is_valid_gup_flags(unsigned int gup_flags)
2139 {
2140 	/*
2141 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2142 	 * never directly by the caller, so enforce that with an assertion:
2143 	 */
2144 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2145 		return false;
2146 	/*
2147 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2148 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2149 	 * FOLL_PIN.
2150 	 */
2151 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2152 		return false;
2153 
2154 	return true;
2155 }
2156 
2157 #ifdef CONFIG_MMU
2158 static long __get_user_pages_remote(struct mm_struct *mm,
2159 				    unsigned long start, unsigned long nr_pages,
2160 				    unsigned int gup_flags, struct page **pages,
2161 				    struct vm_area_struct **vmas, int *locked)
2162 {
2163 	/*
2164 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2165 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2166 	 * vmas. However, this only comes up if locked is set, and there are
2167 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2168 	 * allow what we can.
2169 	 */
2170 	if (gup_flags & FOLL_LONGTERM) {
2171 		if (WARN_ON_ONCE(locked))
2172 			return -EINVAL;
2173 		/*
2174 		 * This will check the vmas (even if our vmas arg is NULL)
2175 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2176 		 */
2177 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2178 					     vmas, gup_flags | FOLL_TOUCH |
2179 					     FOLL_REMOTE);
2180 	}
2181 
2182 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2183 				       locked,
2184 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2185 }
2186 
2187 /**
2188  * get_user_pages_remote() - pin user pages in memory
2189  * @mm:		mm_struct of target mm
2190  * @start:	starting user address
2191  * @nr_pages:	number of pages from start to pin
2192  * @gup_flags:	flags modifying lookup behaviour
2193  * @pages:	array that receives pointers to the pages pinned.
2194  *		Should be at least nr_pages long. Or NULL, if caller
2195  *		only intends to ensure the pages are faulted in.
2196  * @vmas:	array of pointers to vmas corresponding to each page.
2197  *		Or NULL if the caller does not require them.
2198  * @locked:	pointer to lock flag indicating whether lock is held and
2199  *		subsequently whether VM_FAULT_RETRY functionality can be
2200  *		utilised. Lock must initially be held.
2201  *
2202  * Returns either number of pages pinned (which may be less than the
2203  * number requested), or an error. Details about the return value:
2204  *
2205  * -- If nr_pages is 0, returns 0.
2206  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2207  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2208  *    pages pinned. Again, this may be less than nr_pages.
2209  *
2210  * The caller is responsible for releasing returned @pages, via put_page().
2211  *
2212  * @vmas are valid only as long as mmap_lock is held.
2213  *
2214  * Must be called with mmap_lock held for read or write.
2215  *
2216  * get_user_pages_remote walks a process's page tables and takes a reference
2217  * to each struct page that each user address corresponds to at a given
2218  * instant. That is, it takes the page that would be accessed if a user
2219  * thread accesses the given user virtual address at that instant.
2220  *
2221  * This does not guarantee that the page exists in the user mappings when
2222  * get_user_pages_remote returns, and there may even be a completely different
2223  * page there in some cases (eg. if mmapped pagecache has been invalidated
2224  * and subsequently re faulted). However it does guarantee that the page
2225  * won't be freed completely. And mostly callers simply care that the page
2226  * contains data that was valid *at some point in time*. Typically, an IO
2227  * or similar operation cannot guarantee anything stronger anyway because
2228  * locks can't be held over the syscall boundary.
2229  *
2230  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2231  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2232  * be called after the page is finished with, and before put_page is called.
2233  *
2234  * get_user_pages_remote is typically used for fewer-copy IO operations,
2235  * to get a handle on the memory by some means other than accesses
2236  * via the user virtual addresses. The pages may be submitted for
2237  * DMA to devices or accessed via their kernel linear mapping (via the
2238  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2239  *
2240  * See also get_user_pages_fast, for performance critical applications.
2241  *
2242  * get_user_pages_remote should be phased out in favor of
2243  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2244  * should use get_user_pages_remote because it cannot pass
2245  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2246  */
2247 long get_user_pages_remote(struct mm_struct *mm,
2248 		unsigned long start, unsigned long nr_pages,
2249 		unsigned int gup_flags, struct page **pages,
2250 		struct vm_area_struct **vmas, int *locked)
2251 {
2252 	if (!is_valid_gup_flags(gup_flags))
2253 		return -EINVAL;
2254 
2255 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2256 				       pages, vmas, locked);
2257 }
2258 EXPORT_SYMBOL(get_user_pages_remote);
2259 
2260 #else /* CONFIG_MMU */
2261 long get_user_pages_remote(struct mm_struct *mm,
2262 			   unsigned long start, unsigned long nr_pages,
2263 			   unsigned int gup_flags, struct page **pages,
2264 			   struct vm_area_struct **vmas, int *locked)
2265 {
2266 	return 0;
2267 }
2268 
2269 static long __get_user_pages_remote(struct mm_struct *mm,
2270 				    unsigned long start, unsigned long nr_pages,
2271 				    unsigned int gup_flags, struct page **pages,
2272 				    struct vm_area_struct **vmas, int *locked)
2273 {
2274 	return 0;
2275 }
2276 #endif /* !CONFIG_MMU */
2277 
2278 /**
2279  * get_user_pages() - pin user pages in memory
2280  * @start:      starting user address
2281  * @nr_pages:   number of pages from start to pin
2282  * @gup_flags:  flags modifying lookup behaviour
2283  * @pages:      array that receives pointers to the pages pinned.
2284  *              Should be at least nr_pages long. Or NULL, if caller
2285  *              only intends to ensure the pages are faulted in.
2286  * @vmas:       array of pointers to vmas corresponding to each page.
2287  *              Or NULL if the caller does not require them.
2288  *
2289  * This is the same as get_user_pages_remote(), just with a less-flexible
2290  * calling convention where we assume that the mm being operated on belongs to
2291  * the current task, and doesn't allow passing of a locked parameter.  We also
2292  * obviously don't pass FOLL_REMOTE in here.
2293  */
2294 long get_user_pages(unsigned long start, unsigned long nr_pages,
2295 		unsigned int gup_flags, struct page **pages,
2296 		struct vm_area_struct **vmas)
2297 {
2298 	if (!is_valid_gup_flags(gup_flags))
2299 		return -EINVAL;
2300 
2301 	return __gup_longterm_locked(current->mm, start, nr_pages,
2302 				     pages, vmas, gup_flags | FOLL_TOUCH);
2303 }
2304 EXPORT_SYMBOL(get_user_pages);
2305 
2306 /*
2307  * get_user_pages_unlocked() is suitable to replace the form:
2308  *
2309  *      mmap_read_lock(mm);
2310  *      get_user_pages(mm, ..., pages, NULL);
2311  *      mmap_read_unlock(mm);
2312  *
2313  *  with:
2314  *
2315  *      get_user_pages_unlocked(mm, ..., pages);
2316  *
2317  * It is functionally equivalent to get_user_pages_fast so
2318  * get_user_pages_fast should be used instead if specific gup_flags
2319  * (e.g. FOLL_FORCE) are not required.
2320  */
2321 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2322 			     struct page **pages, unsigned int gup_flags)
2323 {
2324 	struct mm_struct *mm = current->mm;
2325 	int locked = 1;
2326 	long ret;
2327 
2328 	/*
2329 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2330 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2331 	 * vmas.  As there are no users of this flag in this call we simply
2332 	 * disallow this option for now.
2333 	 */
2334 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2335 		return -EINVAL;
2336 
2337 	mmap_read_lock(mm);
2338 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2339 				      &locked, gup_flags | FOLL_TOUCH);
2340 	if (locked)
2341 		mmap_read_unlock(mm);
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL(get_user_pages_unlocked);
2345 
2346 /*
2347  * Fast GUP
2348  *
2349  * get_user_pages_fast attempts to pin user pages by walking the page
2350  * tables directly and avoids taking locks. Thus the walker needs to be
2351  * protected from page table pages being freed from under it, and should
2352  * block any THP splits.
2353  *
2354  * One way to achieve this is to have the walker disable interrupts, and
2355  * rely on IPIs from the TLB flushing code blocking before the page table
2356  * pages are freed. This is unsuitable for architectures that do not need
2357  * to broadcast an IPI when invalidating TLBs.
2358  *
2359  * Another way to achieve this is to batch up page table containing pages
2360  * belonging to more than one mm_user, then rcu_sched a callback to free those
2361  * pages. Disabling interrupts will allow the fast_gup walker to both block
2362  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2363  * (which is a relatively rare event). The code below adopts this strategy.
2364  *
2365  * Before activating this code, please be aware that the following assumptions
2366  * are currently made:
2367  *
2368  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2369  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2370  *
2371  *  *) ptes can be read atomically by the architecture.
2372  *
2373  *  *) access_ok is sufficient to validate userspace address ranges.
2374  *
2375  * The last two assumptions can be relaxed by the addition of helper functions.
2376  *
2377  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2378  */
2379 #ifdef CONFIG_HAVE_FAST_GUP
2380 
2381 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2382 					    unsigned int flags,
2383 					    struct page **pages)
2384 {
2385 	while ((*nr) - nr_start) {
2386 		struct page *page = pages[--(*nr)];
2387 
2388 		ClearPageReferenced(page);
2389 		if (flags & FOLL_PIN)
2390 			unpin_user_page(page);
2391 		else
2392 			put_page(page);
2393 	}
2394 }
2395 
2396 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2397 /*
2398  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2399  * operations.
2400  *
2401  * To pin the page, fast-gup needs to do below in order:
2402  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2403  *
2404  * For the rest of pgtable operations where pgtable updates can be racy
2405  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2406  * is pinned.
2407  *
2408  * Above will work for all pte-level operations, including THP split.
2409  *
2410  * For THP collapse, it's a bit more complicated because fast-gup may be
2411  * walking a pgtable page that is being freed (pte is still valid but pmd
2412  * can be cleared already).  To avoid race in such condition, we need to
2413  * also check pmd here to make sure pmd doesn't change (corresponds to
2414  * pmdp_collapse_flush() in the THP collapse code path).
2415  */
2416 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2417 			 unsigned long end, unsigned int flags,
2418 			 struct page **pages, int *nr)
2419 {
2420 	struct dev_pagemap *pgmap = NULL;
2421 	int nr_start = *nr, ret = 0;
2422 	pte_t *ptep, *ptem;
2423 
2424 	ptem = ptep = pte_offset_map(&pmd, addr);
2425 	do {
2426 		pte_t pte = ptep_get_lockless(ptep);
2427 		struct page *page;
2428 		struct folio *folio;
2429 
2430 		/*
2431 		 * Similar to the PMD case below, NUMA hinting must take slow
2432 		 * path using the pte_protnone check.
2433 		 */
2434 		if (pte_protnone(pte))
2435 			goto pte_unmap;
2436 
2437 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2438 			goto pte_unmap;
2439 
2440 		if (pte_devmap(pte)) {
2441 			if (unlikely(flags & FOLL_LONGTERM))
2442 				goto pte_unmap;
2443 
2444 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2445 			if (unlikely(!pgmap)) {
2446 				undo_dev_pagemap(nr, nr_start, flags, pages);
2447 				goto pte_unmap;
2448 			}
2449 		} else if (pte_special(pte))
2450 			goto pte_unmap;
2451 
2452 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2453 		page = pte_page(pte);
2454 
2455 		folio = try_grab_folio(page, 1, flags);
2456 		if (!folio)
2457 			goto pte_unmap;
2458 
2459 		if (unlikely(page_is_secretmem(page))) {
2460 			gup_put_folio(folio, 1, flags);
2461 			goto pte_unmap;
2462 		}
2463 
2464 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2465 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2466 			gup_put_folio(folio, 1, flags);
2467 			goto pte_unmap;
2468 		}
2469 
2470 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2471 			gup_put_folio(folio, 1, flags);
2472 			goto pte_unmap;
2473 		}
2474 
2475 		/*
2476 		 * We need to make the page accessible if and only if we are
2477 		 * going to access its content (the FOLL_PIN case).  Please
2478 		 * see Documentation/core-api/pin_user_pages.rst for
2479 		 * details.
2480 		 */
2481 		if (flags & FOLL_PIN) {
2482 			ret = arch_make_page_accessible(page);
2483 			if (ret) {
2484 				gup_put_folio(folio, 1, flags);
2485 				goto pte_unmap;
2486 			}
2487 		}
2488 		folio_set_referenced(folio);
2489 		pages[*nr] = page;
2490 		(*nr)++;
2491 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2492 
2493 	ret = 1;
2494 
2495 pte_unmap:
2496 	if (pgmap)
2497 		put_dev_pagemap(pgmap);
2498 	pte_unmap(ptem);
2499 	return ret;
2500 }
2501 #else
2502 
2503 /*
2504  * If we can't determine whether or not a pte is special, then fail immediately
2505  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2506  * to be special.
2507  *
2508  * For a futex to be placed on a THP tail page, get_futex_key requires a
2509  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2510  * useful to have gup_huge_pmd even if we can't operate on ptes.
2511  */
2512 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2513 			 unsigned long end, unsigned int flags,
2514 			 struct page **pages, int *nr)
2515 {
2516 	return 0;
2517 }
2518 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2519 
2520 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2521 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2522 			     unsigned long end, unsigned int flags,
2523 			     struct page **pages, int *nr)
2524 {
2525 	int nr_start = *nr;
2526 	struct dev_pagemap *pgmap = NULL;
2527 
2528 	do {
2529 		struct page *page = pfn_to_page(pfn);
2530 
2531 		pgmap = get_dev_pagemap(pfn, pgmap);
2532 		if (unlikely(!pgmap)) {
2533 			undo_dev_pagemap(nr, nr_start, flags, pages);
2534 			break;
2535 		}
2536 		SetPageReferenced(page);
2537 		pages[*nr] = page;
2538 		if (unlikely(!try_grab_page(page, flags))) {
2539 			undo_dev_pagemap(nr, nr_start, flags, pages);
2540 			break;
2541 		}
2542 		(*nr)++;
2543 		pfn++;
2544 	} while (addr += PAGE_SIZE, addr != end);
2545 
2546 	put_dev_pagemap(pgmap);
2547 	return addr == end;
2548 }
2549 
2550 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2551 				 unsigned long end, unsigned int flags,
2552 				 struct page **pages, int *nr)
2553 {
2554 	unsigned long fault_pfn;
2555 	int nr_start = *nr;
2556 
2557 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2558 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2559 		return 0;
2560 
2561 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2562 		undo_dev_pagemap(nr, nr_start, flags, pages);
2563 		return 0;
2564 	}
2565 	return 1;
2566 }
2567 
2568 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2569 				 unsigned long end, unsigned int flags,
2570 				 struct page **pages, int *nr)
2571 {
2572 	unsigned long fault_pfn;
2573 	int nr_start = *nr;
2574 
2575 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2576 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2577 		return 0;
2578 
2579 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2580 		undo_dev_pagemap(nr, nr_start, flags, pages);
2581 		return 0;
2582 	}
2583 	return 1;
2584 }
2585 #else
2586 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2587 				 unsigned long end, unsigned int flags,
2588 				 struct page **pages, int *nr)
2589 {
2590 	BUILD_BUG();
2591 	return 0;
2592 }
2593 
2594 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2595 				 unsigned long end, unsigned int flags,
2596 				 struct page **pages, int *nr)
2597 {
2598 	BUILD_BUG();
2599 	return 0;
2600 }
2601 #endif
2602 
2603 static int record_subpages(struct page *page, unsigned long addr,
2604 			   unsigned long end, struct page **pages)
2605 {
2606 	int nr;
2607 
2608 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2609 		pages[nr] = nth_page(page, nr);
2610 
2611 	return nr;
2612 }
2613 
2614 #ifdef CONFIG_ARCH_HAS_HUGEPD
2615 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2616 				      unsigned long sz)
2617 {
2618 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2619 	return (__boundary - 1 < end - 1) ? __boundary : end;
2620 }
2621 
2622 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2623 		       unsigned long end, unsigned int flags,
2624 		       struct page **pages, int *nr)
2625 {
2626 	unsigned long pte_end;
2627 	struct page *page;
2628 	struct folio *folio;
2629 	pte_t pte;
2630 	int refs;
2631 
2632 	pte_end = (addr + sz) & ~(sz-1);
2633 	if (pte_end < end)
2634 		end = pte_end;
2635 
2636 	pte = huge_ptep_get(ptep);
2637 
2638 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2639 		return 0;
2640 
2641 	/* hugepages are never "special" */
2642 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2643 
2644 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2645 	refs = record_subpages(page, addr, end, pages + *nr);
2646 
2647 	folio = try_grab_folio(page, refs, flags);
2648 	if (!folio)
2649 		return 0;
2650 
2651 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2652 		gup_put_folio(folio, refs, flags);
2653 		return 0;
2654 	}
2655 
2656 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2657 		gup_put_folio(folio, refs, flags);
2658 		return 0;
2659 	}
2660 
2661 	*nr += refs;
2662 	folio_set_referenced(folio);
2663 	return 1;
2664 }
2665 
2666 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2667 		unsigned int pdshift, unsigned long end, unsigned int flags,
2668 		struct page **pages, int *nr)
2669 {
2670 	pte_t *ptep;
2671 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2672 	unsigned long next;
2673 
2674 	ptep = hugepte_offset(hugepd, addr, pdshift);
2675 	do {
2676 		next = hugepte_addr_end(addr, end, sz);
2677 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2678 			return 0;
2679 	} while (ptep++, addr = next, addr != end);
2680 
2681 	return 1;
2682 }
2683 #else
2684 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2685 		unsigned int pdshift, unsigned long end, unsigned int flags,
2686 		struct page **pages, int *nr)
2687 {
2688 	return 0;
2689 }
2690 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2691 
2692 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2693 			unsigned long end, unsigned int flags,
2694 			struct page **pages, int *nr)
2695 {
2696 	struct page *page;
2697 	struct folio *folio;
2698 	int refs;
2699 
2700 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2701 		return 0;
2702 
2703 	if (pmd_devmap(orig)) {
2704 		if (unlikely(flags & FOLL_LONGTERM))
2705 			return 0;
2706 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2707 					     pages, nr);
2708 	}
2709 
2710 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2711 	refs = record_subpages(page, addr, end, pages + *nr);
2712 
2713 	folio = try_grab_folio(page, refs, flags);
2714 	if (!folio)
2715 		return 0;
2716 
2717 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2718 		gup_put_folio(folio, refs, flags);
2719 		return 0;
2720 	}
2721 
2722 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2723 		gup_put_folio(folio, refs, flags);
2724 		return 0;
2725 	}
2726 
2727 	*nr += refs;
2728 	folio_set_referenced(folio);
2729 	return 1;
2730 }
2731 
2732 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2733 			unsigned long end, unsigned int flags,
2734 			struct page **pages, int *nr)
2735 {
2736 	struct page *page;
2737 	struct folio *folio;
2738 	int refs;
2739 
2740 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2741 		return 0;
2742 
2743 	if (pud_devmap(orig)) {
2744 		if (unlikely(flags & FOLL_LONGTERM))
2745 			return 0;
2746 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2747 					     pages, nr);
2748 	}
2749 
2750 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2751 	refs = record_subpages(page, addr, end, pages + *nr);
2752 
2753 	folio = try_grab_folio(page, refs, flags);
2754 	if (!folio)
2755 		return 0;
2756 
2757 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2758 		gup_put_folio(folio, refs, flags);
2759 		return 0;
2760 	}
2761 
2762 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2763 		gup_put_folio(folio, refs, flags);
2764 		return 0;
2765 	}
2766 
2767 	*nr += refs;
2768 	folio_set_referenced(folio);
2769 	return 1;
2770 }
2771 
2772 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2773 			unsigned long end, unsigned int flags,
2774 			struct page **pages, int *nr)
2775 {
2776 	int refs;
2777 	struct page *page;
2778 	struct folio *folio;
2779 
2780 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2781 		return 0;
2782 
2783 	BUILD_BUG_ON(pgd_devmap(orig));
2784 
2785 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2786 	refs = record_subpages(page, addr, end, pages + *nr);
2787 
2788 	folio = try_grab_folio(page, refs, flags);
2789 	if (!folio)
2790 		return 0;
2791 
2792 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2793 		gup_put_folio(folio, refs, flags);
2794 		return 0;
2795 	}
2796 
2797 	*nr += refs;
2798 	folio_set_referenced(folio);
2799 	return 1;
2800 }
2801 
2802 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2803 		unsigned int flags, struct page **pages, int *nr)
2804 {
2805 	unsigned long next;
2806 	pmd_t *pmdp;
2807 
2808 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2809 	do {
2810 		pmd_t pmd = READ_ONCE(*pmdp);
2811 
2812 		next = pmd_addr_end(addr, end);
2813 		if (!pmd_present(pmd))
2814 			return 0;
2815 
2816 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2817 			     pmd_devmap(pmd))) {
2818 			/*
2819 			 * NUMA hinting faults need to be handled in the GUP
2820 			 * slowpath for accounting purposes and so that they
2821 			 * can be serialised against THP migration.
2822 			 */
2823 			if (pmd_protnone(pmd))
2824 				return 0;
2825 
2826 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2827 				pages, nr))
2828 				return 0;
2829 
2830 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2831 			/*
2832 			 * architecture have different format for hugetlbfs
2833 			 * pmd format and THP pmd format
2834 			 */
2835 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2836 					 PMD_SHIFT, next, flags, pages, nr))
2837 				return 0;
2838 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2839 			return 0;
2840 	} while (pmdp++, addr = next, addr != end);
2841 
2842 	return 1;
2843 }
2844 
2845 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2846 			 unsigned int flags, struct page **pages, int *nr)
2847 {
2848 	unsigned long next;
2849 	pud_t *pudp;
2850 
2851 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2852 	do {
2853 		pud_t pud = READ_ONCE(*pudp);
2854 
2855 		next = pud_addr_end(addr, end);
2856 		if (unlikely(!pud_present(pud)))
2857 			return 0;
2858 		if (unlikely(pud_huge(pud))) {
2859 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2860 					  pages, nr))
2861 				return 0;
2862 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2863 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2864 					 PUD_SHIFT, next, flags, pages, nr))
2865 				return 0;
2866 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2867 			return 0;
2868 	} while (pudp++, addr = next, addr != end);
2869 
2870 	return 1;
2871 }
2872 
2873 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2874 			 unsigned int flags, struct page **pages, int *nr)
2875 {
2876 	unsigned long next;
2877 	p4d_t *p4dp;
2878 
2879 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2880 	do {
2881 		p4d_t p4d = READ_ONCE(*p4dp);
2882 
2883 		next = p4d_addr_end(addr, end);
2884 		if (p4d_none(p4d))
2885 			return 0;
2886 		BUILD_BUG_ON(p4d_huge(p4d));
2887 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2888 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2889 					 P4D_SHIFT, next, flags, pages, nr))
2890 				return 0;
2891 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2892 			return 0;
2893 	} while (p4dp++, addr = next, addr != end);
2894 
2895 	return 1;
2896 }
2897 
2898 static void gup_pgd_range(unsigned long addr, unsigned long end,
2899 		unsigned int flags, struct page **pages, int *nr)
2900 {
2901 	unsigned long next;
2902 	pgd_t *pgdp;
2903 
2904 	pgdp = pgd_offset(current->mm, addr);
2905 	do {
2906 		pgd_t pgd = READ_ONCE(*pgdp);
2907 
2908 		next = pgd_addr_end(addr, end);
2909 		if (pgd_none(pgd))
2910 			return;
2911 		if (unlikely(pgd_huge(pgd))) {
2912 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2913 					  pages, nr))
2914 				return;
2915 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2916 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2917 					 PGDIR_SHIFT, next, flags, pages, nr))
2918 				return;
2919 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2920 			return;
2921 	} while (pgdp++, addr = next, addr != end);
2922 }
2923 #else
2924 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2925 		unsigned int flags, struct page **pages, int *nr)
2926 {
2927 }
2928 #endif /* CONFIG_HAVE_FAST_GUP */
2929 
2930 #ifndef gup_fast_permitted
2931 /*
2932  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2933  * we need to fall back to the slow version:
2934  */
2935 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2936 {
2937 	return true;
2938 }
2939 #endif
2940 
2941 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2942 				   unsigned int gup_flags, struct page **pages)
2943 {
2944 	int ret;
2945 
2946 	/*
2947 	 * FIXME: FOLL_LONGTERM does not work with
2948 	 * get_user_pages_unlocked() (see comments in that function)
2949 	 */
2950 	if (gup_flags & FOLL_LONGTERM) {
2951 		mmap_read_lock(current->mm);
2952 		ret = __gup_longterm_locked(current->mm,
2953 					    start, nr_pages,
2954 					    pages, NULL, gup_flags);
2955 		mmap_read_unlock(current->mm);
2956 	} else {
2957 		ret = get_user_pages_unlocked(start, nr_pages,
2958 					      pages, gup_flags);
2959 	}
2960 
2961 	return ret;
2962 }
2963 
2964 static unsigned long lockless_pages_from_mm(unsigned long start,
2965 					    unsigned long end,
2966 					    unsigned int gup_flags,
2967 					    struct page **pages)
2968 {
2969 	unsigned long flags;
2970 	int nr_pinned = 0;
2971 	unsigned seq;
2972 
2973 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2974 	    !gup_fast_permitted(start, end))
2975 		return 0;
2976 
2977 	if (gup_flags & FOLL_PIN) {
2978 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2979 		if (seq & 1)
2980 			return 0;
2981 	}
2982 
2983 	/*
2984 	 * Disable interrupts. The nested form is used, in order to allow full,
2985 	 * general purpose use of this routine.
2986 	 *
2987 	 * With interrupts disabled, we block page table pages from being freed
2988 	 * from under us. See struct mmu_table_batch comments in
2989 	 * include/asm-generic/tlb.h for more details.
2990 	 *
2991 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2992 	 * that come from THPs splitting.
2993 	 */
2994 	local_irq_save(flags);
2995 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2996 	local_irq_restore(flags);
2997 
2998 	/*
2999 	 * When pinning pages for DMA there could be a concurrent write protect
3000 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3001 	 */
3002 	if (gup_flags & FOLL_PIN) {
3003 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3004 			unpin_user_pages_lockless(pages, nr_pinned);
3005 			return 0;
3006 		} else {
3007 			sanity_check_pinned_pages(pages, nr_pinned);
3008 		}
3009 	}
3010 	return nr_pinned;
3011 }
3012 
3013 static int internal_get_user_pages_fast(unsigned long start,
3014 					unsigned long nr_pages,
3015 					unsigned int gup_flags,
3016 					struct page **pages)
3017 {
3018 	unsigned long len, end;
3019 	unsigned long nr_pinned;
3020 	int ret;
3021 
3022 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3023 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3024 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
3025 		return -EINVAL;
3026 
3027 	if (gup_flags & FOLL_PIN)
3028 		mm_set_has_pinned_flag(&current->mm->flags);
3029 
3030 	if (!(gup_flags & FOLL_FAST_ONLY))
3031 		might_lock_read(&current->mm->mmap_lock);
3032 
3033 	start = untagged_addr(start) & PAGE_MASK;
3034 	len = nr_pages << PAGE_SHIFT;
3035 	if (check_add_overflow(start, len, &end))
3036 		return 0;
3037 	if (unlikely(!access_ok((void __user *)start, len)))
3038 		return -EFAULT;
3039 
3040 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3041 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3042 		return nr_pinned;
3043 
3044 	/* Slow path: try to get the remaining pages with get_user_pages */
3045 	start += nr_pinned << PAGE_SHIFT;
3046 	pages += nr_pinned;
3047 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3048 				      pages);
3049 	if (ret < 0) {
3050 		/*
3051 		 * The caller has to unpin the pages we already pinned so
3052 		 * returning -errno is not an option
3053 		 */
3054 		if (nr_pinned)
3055 			return nr_pinned;
3056 		return ret;
3057 	}
3058 	return ret + nr_pinned;
3059 }
3060 
3061 /**
3062  * get_user_pages_fast_only() - pin user pages in memory
3063  * @start:      starting user address
3064  * @nr_pages:   number of pages from start to pin
3065  * @gup_flags:  flags modifying pin behaviour
3066  * @pages:      array that receives pointers to the pages pinned.
3067  *              Should be at least nr_pages long.
3068  *
3069  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3070  * the regular GUP.
3071  * Note a difference with get_user_pages_fast: this always returns the
3072  * number of pages pinned, 0 if no pages were pinned.
3073  *
3074  * If the architecture does not support this function, simply return with no
3075  * pages pinned.
3076  *
3077  * Careful, careful! COW breaking can go either way, so a non-write
3078  * access can get ambiguous page results. If you call this function without
3079  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3080  */
3081 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3082 			     unsigned int gup_flags, struct page **pages)
3083 {
3084 	int nr_pinned;
3085 	/*
3086 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3087 	 * because gup fast is always a "pin with a +1 page refcount" request.
3088 	 *
3089 	 * FOLL_FAST_ONLY is required in order to match the API description of
3090 	 * this routine: no fall back to regular ("slow") GUP.
3091 	 */
3092 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3093 
3094 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3095 						 pages);
3096 
3097 	/*
3098 	 * As specified in the API description above, this routine is not
3099 	 * allowed to return negative values. However, the common core
3100 	 * routine internal_get_user_pages_fast() *can* return -errno.
3101 	 * Therefore, correct for that here:
3102 	 */
3103 	if (nr_pinned < 0)
3104 		nr_pinned = 0;
3105 
3106 	return nr_pinned;
3107 }
3108 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3109 
3110 /**
3111  * get_user_pages_fast() - pin user pages in memory
3112  * @start:      starting user address
3113  * @nr_pages:   number of pages from start to pin
3114  * @gup_flags:  flags modifying pin behaviour
3115  * @pages:      array that receives pointers to the pages pinned.
3116  *              Should be at least nr_pages long.
3117  *
3118  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3119  * If not successful, it will fall back to taking the lock and
3120  * calling get_user_pages().
3121  *
3122  * Returns number of pages pinned. This may be fewer than the number requested.
3123  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3124  * -errno.
3125  */
3126 int get_user_pages_fast(unsigned long start, int nr_pages,
3127 			unsigned int gup_flags, struct page **pages)
3128 {
3129 	if (!is_valid_gup_flags(gup_flags))
3130 		return -EINVAL;
3131 
3132 	/*
3133 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3134 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3135 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3136 	 * request.
3137 	 */
3138 	gup_flags |= FOLL_GET;
3139 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3140 }
3141 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3142 
3143 /**
3144  * pin_user_pages_fast() - pin user pages in memory without taking locks
3145  *
3146  * @start:      starting user address
3147  * @nr_pages:   number of pages from start to pin
3148  * @gup_flags:  flags modifying pin behaviour
3149  * @pages:      array that receives pointers to the pages pinned.
3150  *              Should be at least nr_pages long.
3151  *
3152  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3153  * get_user_pages_fast() for documentation on the function arguments, because
3154  * the arguments here are identical.
3155  *
3156  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3157  * see Documentation/core-api/pin_user_pages.rst for further details.
3158  */
3159 int pin_user_pages_fast(unsigned long start, int nr_pages,
3160 			unsigned int gup_flags, struct page **pages)
3161 {
3162 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164 		return -EINVAL;
3165 
3166 	if (WARN_ON_ONCE(!pages))
3167 		return -EINVAL;
3168 
3169 	gup_flags |= FOLL_PIN;
3170 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3171 }
3172 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3173 
3174 /*
3175  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3176  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3177  *
3178  * The API rules are the same, too: no negative values may be returned.
3179  */
3180 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3181 			     unsigned int gup_flags, struct page **pages)
3182 {
3183 	int nr_pinned;
3184 
3185 	/*
3186 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3187 	 * rules require returning 0, rather than -errno:
3188 	 */
3189 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3190 		return 0;
3191 
3192 	if (WARN_ON_ONCE(!pages))
3193 		return 0;
3194 	/*
3195 	 * FOLL_FAST_ONLY is required in order to match the API description of
3196 	 * this routine: no fall back to regular ("slow") GUP.
3197 	 */
3198 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3199 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3200 						 pages);
3201 	/*
3202 	 * This routine is not allowed to return negative values. However,
3203 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3204 	 * correct for that here:
3205 	 */
3206 	if (nr_pinned < 0)
3207 		nr_pinned = 0;
3208 
3209 	return nr_pinned;
3210 }
3211 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3212 
3213 /**
3214  * pin_user_pages_remote() - pin pages of a remote process
3215  *
3216  * @mm:		mm_struct of target mm
3217  * @start:	starting user address
3218  * @nr_pages:	number of pages from start to pin
3219  * @gup_flags:	flags modifying lookup behaviour
3220  * @pages:	array that receives pointers to the pages pinned.
3221  *		Should be at least nr_pages long.
3222  * @vmas:	array of pointers to vmas corresponding to each page.
3223  *		Or NULL if the caller does not require them.
3224  * @locked:	pointer to lock flag indicating whether lock is held and
3225  *		subsequently whether VM_FAULT_RETRY functionality can be
3226  *		utilised. Lock must initially be held.
3227  *
3228  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3229  * get_user_pages_remote() for documentation on the function arguments, because
3230  * the arguments here are identical.
3231  *
3232  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3233  * see Documentation/core-api/pin_user_pages.rst for details.
3234  */
3235 long pin_user_pages_remote(struct mm_struct *mm,
3236 			   unsigned long start, unsigned long nr_pages,
3237 			   unsigned int gup_flags, struct page **pages,
3238 			   struct vm_area_struct **vmas, int *locked)
3239 {
3240 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3241 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3242 		return -EINVAL;
3243 
3244 	if (WARN_ON_ONCE(!pages))
3245 		return -EINVAL;
3246 
3247 	gup_flags |= FOLL_PIN;
3248 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3249 				       pages, vmas, locked);
3250 }
3251 EXPORT_SYMBOL(pin_user_pages_remote);
3252 
3253 /**
3254  * pin_user_pages() - pin user pages in memory for use by other devices
3255  *
3256  * @start:	starting user address
3257  * @nr_pages:	number of pages from start to pin
3258  * @gup_flags:	flags modifying lookup behaviour
3259  * @pages:	array that receives pointers to the pages pinned.
3260  *		Should be at least nr_pages long.
3261  * @vmas:	array of pointers to vmas corresponding to each page.
3262  *		Or NULL if the caller does not require them.
3263  *
3264  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3265  * FOLL_PIN is set.
3266  *
3267  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3268  * see Documentation/core-api/pin_user_pages.rst for details.
3269  */
3270 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3271 		    unsigned int gup_flags, struct page **pages,
3272 		    struct vm_area_struct **vmas)
3273 {
3274 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3275 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3276 		return -EINVAL;
3277 
3278 	if (WARN_ON_ONCE(!pages))
3279 		return -EINVAL;
3280 
3281 	gup_flags |= FOLL_PIN;
3282 	return __gup_longterm_locked(current->mm, start, nr_pages,
3283 				     pages, vmas, gup_flags);
3284 }
3285 EXPORT_SYMBOL(pin_user_pages);
3286 
3287 /*
3288  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3289  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3290  * FOLL_PIN and rejects FOLL_GET.
3291  */
3292 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3293 			     struct page **pages, unsigned int gup_flags)
3294 {
3295 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3296 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3297 		return -EINVAL;
3298 
3299 	if (WARN_ON_ONCE(!pages))
3300 		return -EINVAL;
3301 
3302 	gup_flags |= FOLL_PIN;
3303 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3304 }
3305 EXPORT_SYMBOL(pin_user_pages_unlocked);
3306