1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 /* 64 * FOLL_FORCE can write to even unwritable pte's, but only 65 * after we've gone through a COW cycle and they are dirty. 66 */ 67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 68 { 69 return pte_write(pte) || 70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 71 } 72 73 static struct page *follow_page_pte(struct vm_area_struct *vma, 74 unsigned long address, pmd_t *pmd, unsigned int flags) 75 { 76 struct mm_struct *mm = vma->vm_mm; 77 struct dev_pagemap *pgmap = NULL; 78 struct page *page; 79 spinlock_t *ptl; 80 pte_t *ptep, pte; 81 82 retry: 83 if (unlikely(pmd_bad(*pmd))) 84 return no_page_table(vma, flags); 85 86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 87 pte = *ptep; 88 if (!pte_present(pte)) { 89 swp_entry_t entry; 90 /* 91 * KSM's break_ksm() relies upon recognizing a ksm page 92 * even while it is being migrated, so for that case we 93 * need migration_entry_wait(). 94 */ 95 if (likely(!(flags & FOLL_MIGRATION))) 96 goto no_page; 97 if (pte_none(pte)) 98 goto no_page; 99 entry = pte_to_swp_entry(pte); 100 if (!is_migration_entry(entry)) 101 goto no_page; 102 pte_unmap_unlock(ptep, ptl); 103 migration_entry_wait(mm, pmd, address); 104 goto retry; 105 } 106 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 107 goto no_page; 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 109 pte_unmap_unlock(ptep, ptl); 110 return NULL; 111 } 112 113 page = vm_normal_page(vma, address, pte); 114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 115 /* 116 * Only return device mapping pages in the FOLL_GET case since 117 * they are only valid while holding the pgmap reference. 118 */ 119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 120 if (pgmap) 121 page = pte_page(pte); 122 else 123 goto no_page; 124 } else if (unlikely(!page)) { 125 if (flags & FOLL_DUMP) { 126 /* Avoid special (like zero) pages in core dumps */ 127 page = ERR_PTR(-EFAULT); 128 goto out; 129 } 130 131 if (is_zero_pfn(pte_pfn(pte))) { 132 page = pte_page(pte); 133 } else { 134 int ret; 135 136 ret = follow_pfn_pte(vma, address, ptep, flags); 137 page = ERR_PTR(ret); 138 goto out; 139 } 140 } 141 142 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 143 int ret; 144 get_page(page); 145 pte_unmap_unlock(ptep, ptl); 146 lock_page(page); 147 ret = split_huge_page(page); 148 unlock_page(page); 149 put_page(page); 150 if (ret) 151 return ERR_PTR(ret); 152 goto retry; 153 } 154 155 if (flags & FOLL_GET) { 156 get_page(page); 157 158 /* drop the pgmap reference now that we hold the page */ 159 if (pgmap) { 160 put_dev_pagemap(pgmap); 161 pgmap = NULL; 162 } 163 } 164 if (flags & FOLL_TOUCH) { 165 if ((flags & FOLL_WRITE) && 166 !pte_dirty(pte) && !PageDirty(page)) 167 set_page_dirty(page); 168 /* 169 * pte_mkyoung() would be more correct here, but atomic care 170 * is needed to avoid losing the dirty bit: it is easier to use 171 * mark_page_accessed(). 172 */ 173 mark_page_accessed(page); 174 } 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 176 /* Do not mlock pte-mapped THP */ 177 if (PageTransCompound(page)) 178 goto out; 179 180 /* 181 * The preliminary mapping check is mainly to avoid the 182 * pointless overhead of lock_page on the ZERO_PAGE 183 * which might bounce very badly if there is contention. 184 * 185 * If the page is already locked, we don't need to 186 * handle it now - vmscan will handle it later if and 187 * when it attempts to reclaim the page. 188 */ 189 if (page->mapping && trylock_page(page)) { 190 lru_add_drain(); /* push cached pages to LRU */ 191 /* 192 * Because we lock page here, and migration is 193 * blocked by the pte's page reference, and we 194 * know the page is still mapped, we don't even 195 * need to check for file-cache page truncation. 196 */ 197 mlock_vma_page(page); 198 unlock_page(page); 199 } 200 } 201 out: 202 pte_unmap_unlock(ptep, ptl); 203 return page; 204 no_page: 205 pte_unmap_unlock(ptep, ptl); 206 if (!pte_none(pte)) 207 return NULL; 208 return no_page_table(vma, flags); 209 } 210 211 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 212 unsigned long address, pud_t *pudp, 213 unsigned int flags, unsigned int *page_mask) 214 { 215 pmd_t *pmd, pmdval; 216 spinlock_t *ptl; 217 struct page *page; 218 struct mm_struct *mm = vma->vm_mm; 219 220 pmd = pmd_offset(pudp, address); 221 /* 222 * The READ_ONCE() will stabilize the pmdval in a register or 223 * on the stack so that it will stop changing under the code. 224 */ 225 pmdval = READ_ONCE(*pmd); 226 if (pmd_none(pmdval)) 227 return no_page_table(vma, flags); 228 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 229 page = follow_huge_pmd(mm, address, pmd, flags); 230 if (page) 231 return page; 232 return no_page_table(vma, flags); 233 } 234 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 235 page = follow_huge_pd(vma, address, 236 __hugepd(pmd_val(pmdval)), flags, 237 PMD_SHIFT); 238 if (page) 239 return page; 240 return no_page_table(vma, flags); 241 } 242 retry: 243 if (!pmd_present(pmdval)) { 244 if (likely(!(flags & FOLL_MIGRATION))) 245 return no_page_table(vma, flags); 246 VM_BUG_ON(thp_migration_supported() && 247 !is_pmd_migration_entry(pmdval)); 248 if (is_pmd_migration_entry(pmdval)) 249 pmd_migration_entry_wait(mm, pmd); 250 pmdval = READ_ONCE(*pmd); 251 /* 252 * MADV_DONTNEED may convert the pmd to null because 253 * mmap_sem is held in read mode 254 */ 255 if (pmd_none(pmdval)) 256 return no_page_table(vma, flags); 257 goto retry; 258 } 259 if (pmd_devmap(pmdval)) { 260 ptl = pmd_lock(mm, pmd); 261 page = follow_devmap_pmd(vma, address, pmd, flags); 262 spin_unlock(ptl); 263 if (page) 264 return page; 265 } 266 if (likely(!pmd_trans_huge(pmdval))) 267 return follow_page_pte(vma, address, pmd, flags); 268 269 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 270 return no_page_table(vma, flags); 271 272 retry_locked: 273 ptl = pmd_lock(mm, pmd); 274 if (unlikely(pmd_none(*pmd))) { 275 spin_unlock(ptl); 276 return no_page_table(vma, flags); 277 } 278 if (unlikely(!pmd_present(*pmd))) { 279 spin_unlock(ptl); 280 if (likely(!(flags & FOLL_MIGRATION))) 281 return no_page_table(vma, flags); 282 pmd_migration_entry_wait(mm, pmd); 283 goto retry_locked; 284 } 285 if (unlikely(!pmd_trans_huge(*pmd))) { 286 spin_unlock(ptl); 287 return follow_page_pte(vma, address, pmd, flags); 288 } 289 if (flags & FOLL_SPLIT) { 290 int ret; 291 page = pmd_page(*pmd); 292 if (is_huge_zero_page(page)) { 293 spin_unlock(ptl); 294 ret = 0; 295 split_huge_pmd(vma, pmd, address); 296 if (pmd_trans_unstable(pmd)) 297 ret = -EBUSY; 298 } else { 299 get_page(page); 300 spin_unlock(ptl); 301 lock_page(page); 302 ret = split_huge_page(page); 303 unlock_page(page); 304 put_page(page); 305 if (pmd_none(*pmd)) 306 return no_page_table(vma, flags); 307 } 308 309 return ret ? ERR_PTR(ret) : 310 follow_page_pte(vma, address, pmd, flags); 311 } 312 page = follow_trans_huge_pmd(vma, address, pmd, flags); 313 spin_unlock(ptl); 314 *page_mask = HPAGE_PMD_NR - 1; 315 return page; 316 } 317 318 319 static struct page *follow_pud_mask(struct vm_area_struct *vma, 320 unsigned long address, p4d_t *p4dp, 321 unsigned int flags, unsigned int *page_mask) 322 { 323 pud_t *pud; 324 spinlock_t *ptl; 325 struct page *page; 326 struct mm_struct *mm = vma->vm_mm; 327 328 pud = pud_offset(p4dp, address); 329 if (pud_none(*pud)) 330 return no_page_table(vma, flags); 331 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 332 page = follow_huge_pud(mm, address, pud, flags); 333 if (page) 334 return page; 335 return no_page_table(vma, flags); 336 } 337 if (is_hugepd(__hugepd(pud_val(*pud)))) { 338 page = follow_huge_pd(vma, address, 339 __hugepd(pud_val(*pud)), flags, 340 PUD_SHIFT); 341 if (page) 342 return page; 343 return no_page_table(vma, flags); 344 } 345 if (pud_devmap(*pud)) { 346 ptl = pud_lock(mm, pud); 347 page = follow_devmap_pud(vma, address, pud, flags); 348 spin_unlock(ptl); 349 if (page) 350 return page; 351 } 352 if (unlikely(pud_bad(*pud))) 353 return no_page_table(vma, flags); 354 355 return follow_pmd_mask(vma, address, pud, flags, page_mask); 356 } 357 358 359 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 360 unsigned long address, pgd_t *pgdp, 361 unsigned int flags, unsigned int *page_mask) 362 { 363 p4d_t *p4d; 364 struct page *page; 365 366 p4d = p4d_offset(pgdp, address); 367 if (p4d_none(*p4d)) 368 return no_page_table(vma, flags); 369 BUILD_BUG_ON(p4d_huge(*p4d)); 370 if (unlikely(p4d_bad(*p4d))) 371 return no_page_table(vma, flags); 372 373 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 374 page = follow_huge_pd(vma, address, 375 __hugepd(p4d_val(*p4d)), flags, 376 P4D_SHIFT); 377 if (page) 378 return page; 379 return no_page_table(vma, flags); 380 } 381 return follow_pud_mask(vma, address, p4d, flags, page_mask); 382 } 383 384 /** 385 * follow_page_mask - look up a page descriptor from a user-virtual address 386 * @vma: vm_area_struct mapping @address 387 * @address: virtual address to look up 388 * @flags: flags modifying lookup behaviour 389 * @page_mask: on output, *page_mask is set according to the size of the page 390 * 391 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 392 * 393 * Returns the mapped (struct page *), %NULL if no mapping exists, or 394 * an error pointer if there is a mapping to something not represented 395 * by a page descriptor (see also vm_normal_page()). 396 */ 397 struct page *follow_page_mask(struct vm_area_struct *vma, 398 unsigned long address, unsigned int flags, 399 unsigned int *page_mask) 400 { 401 pgd_t *pgd; 402 struct page *page; 403 struct mm_struct *mm = vma->vm_mm; 404 405 *page_mask = 0; 406 407 /* make this handle hugepd */ 408 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 409 if (!IS_ERR(page)) { 410 BUG_ON(flags & FOLL_GET); 411 return page; 412 } 413 414 pgd = pgd_offset(mm, address); 415 416 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 417 return no_page_table(vma, flags); 418 419 if (pgd_huge(*pgd)) { 420 page = follow_huge_pgd(mm, address, pgd, flags); 421 if (page) 422 return page; 423 return no_page_table(vma, flags); 424 } 425 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 426 page = follow_huge_pd(vma, address, 427 __hugepd(pgd_val(*pgd)), flags, 428 PGDIR_SHIFT); 429 if (page) 430 return page; 431 return no_page_table(vma, flags); 432 } 433 434 return follow_p4d_mask(vma, address, pgd, flags, page_mask); 435 } 436 437 static int get_gate_page(struct mm_struct *mm, unsigned long address, 438 unsigned int gup_flags, struct vm_area_struct **vma, 439 struct page **page) 440 { 441 pgd_t *pgd; 442 p4d_t *p4d; 443 pud_t *pud; 444 pmd_t *pmd; 445 pte_t *pte; 446 int ret = -EFAULT; 447 448 /* user gate pages are read-only */ 449 if (gup_flags & FOLL_WRITE) 450 return -EFAULT; 451 if (address > TASK_SIZE) 452 pgd = pgd_offset_k(address); 453 else 454 pgd = pgd_offset_gate(mm, address); 455 BUG_ON(pgd_none(*pgd)); 456 p4d = p4d_offset(pgd, address); 457 BUG_ON(p4d_none(*p4d)); 458 pud = pud_offset(p4d, address); 459 BUG_ON(pud_none(*pud)); 460 pmd = pmd_offset(pud, address); 461 if (!pmd_present(*pmd)) 462 return -EFAULT; 463 VM_BUG_ON(pmd_trans_huge(*pmd)); 464 pte = pte_offset_map(pmd, address); 465 if (pte_none(*pte)) 466 goto unmap; 467 *vma = get_gate_vma(mm); 468 if (!page) 469 goto out; 470 *page = vm_normal_page(*vma, address, *pte); 471 if (!*page) { 472 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 473 goto unmap; 474 *page = pte_page(*pte); 475 476 /* 477 * This should never happen (a device public page in the gate 478 * area). 479 */ 480 if (is_device_public_page(*page)) 481 goto unmap; 482 } 483 get_page(*page); 484 out: 485 ret = 0; 486 unmap: 487 pte_unmap(pte); 488 return ret; 489 } 490 491 /* 492 * mmap_sem must be held on entry. If @nonblocking != NULL and 493 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 494 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 495 */ 496 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 497 unsigned long address, unsigned int *flags, int *nonblocking) 498 { 499 unsigned int fault_flags = 0; 500 int ret; 501 502 /* mlock all present pages, but do not fault in new pages */ 503 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 504 return -ENOENT; 505 if (*flags & FOLL_WRITE) 506 fault_flags |= FAULT_FLAG_WRITE; 507 if (*flags & FOLL_REMOTE) 508 fault_flags |= FAULT_FLAG_REMOTE; 509 if (nonblocking) 510 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 511 if (*flags & FOLL_NOWAIT) 512 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 513 if (*flags & FOLL_TRIED) { 514 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 515 fault_flags |= FAULT_FLAG_TRIED; 516 } 517 518 ret = handle_mm_fault(vma, address, fault_flags); 519 if (ret & VM_FAULT_ERROR) { 520 int err = vm_fault_to_errno(ret, *flags); 521 522 if (err) 523 return err; 524 BUG(); 525 } 526 527 if (tsk) { 528 if (ret & VM_FAULT_MAJOR) 529 tsk->maj_flt++; 530 else 531 tsk->min_flt++; 532 } 533 534 if (ret & VM_FAULT_RETRY) { 535 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 536 *nonblocking = 0; 537 return -EBUSY; 538 } 539 540 /* 541 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 542 * necessary, even if maybe_mkwrite decided not to set pte_write. We 543 * can thus safely do subsequent page lookups as if they were reads. 544 * But only do so when looping for pte_write is futile: in some cases 545 * userspace may also be wanting to write to the gotten user page, 546 * which a read fault here might prevent (a readonly page might get 547 * reCOWed by userspace write). 548 */ 549 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 550 *flags |= FOLL_COW; 551 return 0; 552 } 553 554 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 555 { 556 vm_flags_t vm_flags = vma->vm_flags; 557 int write = (gup_flags & FOLL_WRITE); 558 int foreign = (gup_flags & FOLL_REMOTE); 559 560 if (vm_flags & (VM_IO | VM_PFNMAP)) 561 return -EFAULT; 562 563 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 564 return -EFAULT; 565 566 if (write) { 567 if (!(vm_flags & VM_WRITE)) { 568 if (!(gup_flags & FOLL_FORCE)) 569 return -EFAULT; 570 /* 571 * We used to let the write,force case do COW in a 572 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 573 * set a breakpoint in a read-only mapping of an 574 * executable, without corrupting the file (yet only 575 * when that file had been opened for writing!). 576 * Anon pages in shared mappings are surprising: now 577 * just reject it. 578 */ 579 if (!is_cow_mapping(vm_flags)) 580 return -EFAULT; 581 } 582 } else if (!(vm_flags & VM_READ)) { 583 if (!(gup_flags & FOLL_FORCE)) 584 return -EFAULT; 585 /* 586 * Is there actually any vma we can reach here which does not 587 * have VM_MAYREAD set? 588 */ 589 if (!(vm_flags & VM_MAYREAD)) 590 return -EFAULT; 591 } 592 /* 593 * gups are always data accesses, not instruction 594 * fetches, so execute=false here 595 */ 596 if (!arch_vma_access_permitted(vma, write, false, foreign)) 597 return -EFAULT; 598 return 0; 599 } 600 601 /** 602 * __get_user_pages() - pin user pages in memory 603 * @tsk: task_struct of target task 604 * @mm: mm_struct of target mm 605 * @start: starting user address 606 * @nr_pages: number of pages from start to pin 607 * @gup_flags: flags modifying pin behaviour 608 * @pages: array that receives pointers to the pages pinned. 609 * Should be at least nr_pages long. Or NULL, if caller 610 * only intends to ensure the pages are faulted in. 611 * @vmas: array of pointers to vmas corresponding to each page. 612 * Or NULL if the caller does not require them. 613 * @nonblocking: whether waiting for disk IO or mmap_sem contention 614 * 615 * Returns number of pages pinned. This may be fewer than the number 616 * requested. If nr_pages is 0 or negative, returns 0. If no pages 617 * were pinned, returns -errno. Each page returned must be released 618 * with a put_page() call when it is finished with. vmas will only 619 * remain valid while mmap_sem is held. 620 * 621 * Must be called with mmap_sem held. It may be released. See below. 622 * 623 * __get_user_pages walks a process's page tables and takes a reference to 624 * each struct page that each user address corresponds to at a given 625 * instant. That is, it takes the page that would be accessed if a user 626 * thread accesses the given user virtual address at that instant. 627 * 628 * This does not guarantee that the page exists in the user mappings when 629 * __get_user_pages returns, and there may even be a completely different 630 * page there in some cases (eg. if mmapped pagecache has been invalidated 631 * and subsequently re faulted). However it does guarantee that the page 632 * won't be freed completely. And mostly callers simply care that the page 633 * contains data that was valid *at some point in time*. Typically, an IO 634 * or similar operation cannot guarantee anything stronger anyway because 635 * locks can't be held over the syscall boundary. 636 * 637 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 638 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 639 * appropriate) must be called after the page is finished with, and 640 * before put_page is called. 641 * 642 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 643 * or mmap_sem contention, and if waiting is needed to pin all pages, 644 * *@nonblocking will be set to 0. Further, if @gup_flags does not 645 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 646 * this case. 647 * 648 * A caller using such a combination of @nonblocking and @gup_flags 649 * must therefore hold the mmap_sem for reading only, and recognize 650 * when it's been released. Otherwise, it must be held for either 651 * reading or writing and will not be released. 652 * 653 * In most cases, get_user_pages or get_user_pages_fast should be used 654 * instead of __get_user_pages. __get_user_pages should be used only if 655 * you need some special @gup_flags. 656 */ 657 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 658 unsigned long start, unsigned long nr_pages, 659 unsigned int gup_flags, struct page **pages, 660 struct vm_area_struct **vmas, int *nonblocking) 661 { 662 long i = 0; 663 unsigned int page_mask; 664 struct vm_area_struct *vma = NULL; 665 666 if (!nr_pages) 667 return 0; 668 669 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 670 671 /* 672 * If FOLL_FORCE is set then do not force a full fault as the hinting 673 * fault information is unrelated to the reference behaviour of a task 674 * using the address space 675 */ 676 if (!(gup_flags & FOLL_FORCE)) 677 gup_flags |= FOLL_NUMA; 678 679 do { 680 struct page *page; 681 unsigned int foll_flags = gup_flags; 682 unsigned int page_increm; 683 684 /* first iteration or cross vma bound */ 685 if (!vma || start >= vma->vm_end) { 686 vma = find_extend_vma(mm, start); 687 if (!vma && in_gate_area(mm, start)) { 688 int ret; 689 ret = get_gate_page(mm, start & PAGE_MASK, 690 gup_flags, &vma, 691 pages ? &pages[i] : NULL); 692 if (ret) 693 return i ? : ret; 694 page_mask = 0; 695 goto next_page; 696 } 697 698 if (!vma || check_vma_flags(vma, gup_flags)) 699 return i ? : -EFAULT; 700 if (is_vm_hugetlb_page(vma)) { 701 i = follow_hugetlb_page(mm, vma, pages, vmas, 702 &start, &nr_pages, i, 703 gup_flags, nonblocking); 704 continue; 705 } 706 } 707 retry: 708 /* 709 * If we have a pending SIGKILL, don't keep faulting pages and 710 * potentially allocating memory. 711 */ 712 if (unlikely(fatal_signal_pending(current))) 713 return i ? i : -ERESTARTSYS; 714 cond_resched(); 715 page = follow_page_mask(vma, start, foll_flags, &page_mask); 716 if (!page) { 717 int ret; 718 ret = faultin_page(tsk, vma, start, &foll_flags, 719 nonblocking); 720 switch (ret) { 721 case 0: 722 goto retry; 723 case -EFAULT: 724 case -ENOMEM: 725 case -EHWPOISON: 726 return i ? i : ret; 727 case -EBUSY: 728 return i; 729 case -ENOENT: 730 goto next_page; 731 } 732 BUG(); 733 } else if (PTR_ERR(page) == -EEXIST) { 734 /* 735 * Proper page table entry exists, but no corresponding 736 * struct page. 737 */ 738 goto next_page; 739 } else if (IS_ERR(page)) { 740 return i ? i : PTR_ERR(page); 741 } 742 if (pages) { 743 pages[i] = page; 744 flush_anon_page(vma, page, start); 745 flush_dcache_page(page); 746 page_mask = 0; 747 } 748 next_page: 749 if (vmas) { 750 vmas[i] = vma; 751 page_mask = 0; 752 } 753 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 754 if (page_increm > nr_pages) 755 page_increm = nr_pages; 756 i += page_increm; 757 start += page_increm * PAGE_SIZE; 758 nr_pages -= page_increm; 759 } while (nr_pages); 760 return i; 761 } 762 763 static bool vma_permits_fault(struct vm_area_struct *vma, 764 unsigned int fault_flags) 765 { 766 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 767 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 768 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 769 770 if (!(vm_flags & vma->vm_flags)) 771 return false; 772 773 /* 774 * The architecture might have a hardware protection 775 * mechanism other than read/write that can deny access. 776 * 777 * gup always represents data access, not instruction 778 * fetches, so execute=false here: 779 */ 780 if (!arch_vma_access_permitted(vma, write, false, foreign)) 781 return false; 782 783 return true; 784 } 785 786 /* 787 * fixup_user_fault() - manually resolve a user page fault 788 * @tsk: the task_struct to use for page fault accounting, or 789 * NULL if faults are not to be recorded. 790 * @mm: mm_struct of target mm 791 * @address: user address 792 * @fault_flags:flags to pass down to handle_mm_fault() 793 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 794 * does not allow retry 795 * 796 * This is meant to be called in the specific scenario where for locking reasons 797 * we try to access user memory in atomic context (within a pagefault_disable() 798 * section), this returns -EFAULT, and we want to resolve the user fault before 799 * trying again. 800 * 801 * Typically this is meant to be used by the futex code. 802 * 803 * The main difference with get_user_pages() is that this function will 804 * unconditionally call handle_mm_fault() which will in turn perform all the 805 * necessary SW fixup of the dirty and young bits in the PTE, while 806 * get_user_pages() only guarantees to update these in the struct page. 807 * 808 * This is important for some architectures where those bits also gate the 809 * access permission to the page because they are maintained in software. On 810 * such architectures, gup() will not be enough to make a subsequent access 811 * succeed. 812 * 813 * This function will not return with an unlocked mmap_sem. So it has not the 814 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 815 */ 816 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 817 unsigned long address, unsigned int fault_flags, 818 bool *unlocked) 819 { 820 struct vm_area_struct *vma; 821 int ret, major = 0; 822 823 if (unlocked) 824 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 825 826 retry: 827 vma = find_extend_vma(mm, address); 828 if (!vma || address < vma->vm_start) 829 return -EFAULT; 830 831 if (!vma_permits_fault(vma, fault_flags)) 832 return -EFAULT; 833 834 ret = handle_mm_fault(vma, address, fault_flags); 835 major |= ret & VM_FAULT_MAJOR; 836 if (ret & VM_FAULT_ERROR) { 837 int err = vm_fault_to_errno(ret, 0); 838 839 if (err) 840 return err; 841 BUG(); 842 } 843 844 if (ret & VM_FAULT_RETRY) { 845 down_read(&mm->mmap_sem); 846 if (!(fault_flags & FAULT_FLAG_TRIED)) { 847 *unlocked = true; 848 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 849 fault_flags |= FAULT_FLAG_TRIED; 850 goto retry; 851 } 852 } 853 854 if (tsk) { 855 if (major) 856 tsk->maj_flt++; 857 else 858 tsk->min_flt++; 859 } 860 return 0; 861 } 862 EXPORT_SYMBOL_GPL(fixup_user_fault); 863 864 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 865 struct mm_struct *mm, 866 unsigned long start, 867 unsigned long nr_pages, 868 struct page **pages, 869 struct vm_area_struct **vmas, 870 int *locked, 871 unsigned int flags) 872 { 873 long ret, pages_done; 874 bool lock_dropped; 875 876 if (locked) { 877 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 878 BUG_ON(vmas); 879 /* check caller initialized locked */ 880 BUG_ON(*locked != 1); 881 } 882 883 if (pages) 884 flags |= FOLL_GET; 885 886 pages_done = 0; 887 lock_dropped = false; 888 for (;;) { 889 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 890 vmas, locked); 891 if (!locked) 892 /* VM_FAULT_RETRY couldn't trigger, bypass */ 893 return ret; 894 895 /* VM_FAULT_RETRY cannot return errors */ 896 if (!*locked) { 897 BUG_ON(ret < 0); 898 BUG_ON(ret >= nr_pages); 899 } 900 901 if (!pages) 902 /* If it's a prefault don't insist harder */ 903 return ret; 904 905 if (ret > 0) { 906 nr_pages -= ret; 907 pages_done += ret; 908 if (!nr_pages) 909 break; 910 } 911 if (*locked) { 912 /* 913 * VM_FAULT_RETRY didn't trigger or it was a 914 * FOLL_NOWAIT. 915 */ 916 if (!pages_done) 917 pages_done = ret; 918 break; 919 } 920 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 921 pages += ret; 922 start += ret << PAGE_SHIFT; 923 924 /* 925 * Repeat on the address that fired VM_FAULT_RETRY 926 * without FAULT_FLAG_ALLOW_RETRY but with 927 * FAULT_FLAG_TRIED. 928 */ 929 *locked = 1; 930 lock_dropped = true; 931 down_read(&mm->mmap_sem); 932 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 933 pages, NULL, NULL); 934 if (ret != 1) { 935 BUG_ON(ret > 1); 936 if (!pages_done) 937 pages_done = ret; 938 break; 939 } 940 nr_pages--; 941 pages_done++; 942 if (!nr_pages) 943 break; 944 pages++; 945 start += PAGE_SIZE; 946 } 947 if (lock_dropped && *locked) { 948 /* 949 * We must let the caller know we temporarily dropped the lock 950 * and so the critical section protected by it was lost. 951 */ 952 up_read(&mm->mmap_sem); 953 *locked = 0; 954 } 955 return pages_done; 956 } 957 958 /* 959 * We can leverage the VM_FAULT_RETRY functionality in the page fault 960 * paths better by using either get_user_pages_locked() or 961 * get_user_pages_unlocked(). 962 * 963 * get_user_pages_locked() is suitable to replace the form: 964 * 965 * down_read(&mm->mmap_sem); 966 * do_something() 967 * get_user_pages(tsk, mm, ..., pages, NULL); 968 * up_read(&mm->mmap_sem); 969 * 970 * to: 971 * 972 * int locked = 1; 973 * down_read(&mm->mmap_sem); 974 * do_something() 975 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 976 * if (locked) 977 * up_read(&mm->mmap_sem); 978 */ 979 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 980 unsigned int gup_flags, struct page **pages, 981 int *locked) 982 { 983 return __get_user_pages_locked(current, current->mm, start, nr_pages, 984 pages, NULL, locked, 985 gup_flags | FOLL_TOUCH); 986 } 987 EXPORT_SYMBOL(get_user_pages_locked); 988 989 /* 990 * get_user_pages_unlocked() is suitable to replace the form: 991 * 992 * down_read(&mm->mmap_sem); 993 * get_user_pages(tsk, mm, ..., pages, NULL); 994 * up_read(&mm->mmap_sem); 995 * 996 * with: 997 * 998 * get_user_pages_unlocked(tsk, mm, ..., pages); 999 * 1000 * It is functionally equivalent to get_user_pages_fast so 1001 * get_user_pages_fast should be used instead if specific gup_flags 1002 * (e.g. FOLL_FORCE) are not required. 1003 */ 1004 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1005 struct page **pages, unsigned int gup_flags) 1006 { 1007 struct mm_struct *mm = current->mm; 1008 int locked = 1; 1009 long ret; 1010 1011 down_read(&mm->mmap_sem); 1012 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1013 &locked, gup_flags | FOLL_TOUCH); 1014 if (locked) 1015 up_read(&mm->mmap_sem); 1016 return ret; 1017 } 1018 EXPORT_SYMBOL(get_user_pages_unlocked); 1019 1020 /* 1021 * get_user_pages_remote() - pin user pages in memory 1022 * @tsk: the task_struct to use for page fault accounting, or 1023 * NULL if faults are not to be recorded. 1024 * @mm: mm_struct of target mm 1025 * @start: starting user address 1026 * @nr_pages: number of pages from start to pin 1027 * @gup_flags: flags modifying lookup behaviour 1028 * @pages: array that receives pointers to the pages pinned. 1029 * Should be at least nr_pages long. Or NULL, if caller 1030 * only intends to ensure the pages are faulted in. 1031 * @vmas: array of pointers to vmas corresponding to each page. 1032 * Or NULL if the caller does not require them. 1033 * @locked: pointer to lock flag indicating whether lock is held and 1034 * subsequently whether VM_FAULT_RETRY functionality can be 1035 * utilised. Lock must initially be held. 1036 * 1037 * Returns number of pages pinned. This may be fewer than the number 1038 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1039 * were pinned, returns -errno. Each page returned must be released 1040 * with a put_page() call when it is finished with. vmas will only 1041 * remain valid while mmap_sem is held. 1042 * 1043 * Must be called with mmap_sem held for read or write. 1044 * 1045 * get_user_pages walks a process's page tables and takes a reference to 1046 * each struct page that each user address corresponds to at a given 1047 * instant. That is, it takes the page that would be accessed if a user 1048 * thread accesses the given user virtual address at that instant. 1049 * 1050 * This does not guarantee that the page exists in the user mappings when 1051 * get_user_pages returns, and there may even be a completely different 1052 * page there in some cases (eg. if mmapped pagecache has been invalidated 1053 * and subsequently re faulted). However it does guarantee that the page 1054 * won't be freed completely. And mostly callers simply care that the page 1055 * contains data that was valid *at some point in time*. Typically, an IO 1056 * or similar operation cannot guarantee anything stronger anyway because 1057 * locks can't be held over the syscall boundary. 1058 * 1059 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1060 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1061 * be called after the page is finished with, and before put_page is called. 1062 * 1063 * get_user_pages is typically used for fewer-copy IO operations, to get a 1064 * handle on the memory by some means other than accesses via the user virtual 1065 * addresses. The pages may be submitted for DMA to devices or accessed via 1066 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1067 * use the correct cache flushing APIs. 1068 * 1069 * See also get_user_pages_fast, for performance critical applications. 1070 * 1071 * get_user_pages should be phased out in favor of 1072 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1073 * should use get_user_pages because it cannot pass 1074 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1075 */ 1076 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1077 unsigned long start, unsigned long nr_pages, 1078 unsigned int gup_flags, struct page **pages, 1079 struct vm_area_struct **vmas, int *locked) 1080 { 1081 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1082 locked, 1083 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1084 } 1085 EXPORT_SYMBOL(get_user_pages_remote); 1086 1087 /* 1088 * This is the same as get_user_pages_remote(), just with a 1089 * less-flexible calling convention where we assume that the task 1090 * and mm being operated on are the current task's and don't allow 1091 * passing of a locked parameter. We also obviously don't pass 1092 * FOLL_REMOTE in here. 1093 */ 1094 long get_user_pages(unsigned long start, unsigned long nr_pages, 1095 unsigned int gup_flags, struct page **pages, 1096 struct vm_area_struct **vmas) 1097 { 1098 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1099 pages, vmas, NULL, 1100 gup_flags | FOLL_TOUCH); 1101 } 1102 EXPORT_SYMBOL(get_user_pages); 1103 1104 #ifdef CONFIG_FS_DAX 1105 /* 1106 * This is the same as get_user_pages() in that it assumes we are 1107 * operating on the current task's mm, but it goes further to validate 1108 * that the vmas associated with the address range are suitable for 1109 * longterm elevated page reference counts. For example, filesystem-dax 1110 * mappings are subject to the lifetime enforced by the filesystem and 1111 * we need guarantees that longterm users like RDMA and V4L2 only 1112 * establish mappings that have a kernel enforced revocation mechanism. 1113 * 1114 * "longterm" == userspace controlled elevated page count lifetime. 1115 * Contrast this to iov_iter_get_pages() usages which are transient. 1116 */ 1117 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1118 unsigned int gup_flags, struct page **pages, 1119 struct vm_area_struct **vmas_arg) 1120 { 1121 struct vm_area_struct **vmas = vmas_arg; 1122 struct vm_area_struct *vma_prev = NULL; 1123 long rc, i; 1124 1125 if (!pages) 1126 return -EINVAL; 1127 1128 if (!vmas) { 1129 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1130 GFP_KERNEL); 1131 if (!vmas) 1132 return -ENOMEM; 1133 } 1134 1135 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1136 1137 for (i = 0; i < rc; i++) { 1138 struct vm_area_struct *vma = vmas[i]; 1139 1140 if (vma == vma_prev) 1141 continue; 1142 1143 vma_prev = vma; 1144 1145 if (vma_is_fsdax(vma)) 1146 break; 1147 } 1148 1149 /* 1150 * Either get_user_pages() failed, or the vma validation 1151 * succeeded, in either case we don't need to put_page() before 1152 * returning. 1153 */ 1154 if (i >= rc) 1155 goto out; 1156 1157 for (i = 0; i < rc; i++) 1158 put_page(pages[i]); 1159 rc = -EOPNOTSUPP; 1160 out: 1161 if (vmas != vmas_arg) 1162 kfree(vmas); 1163 return rc; 1164 } 1165 EXPORT_SYMBOL(get_user_pages_longterm); 1166 #endif /* CONFIG_FS_DAX */ 1167 1168 /** 1169 * populate_vma_page_range() - populate a range of pages in the vma. 1170 * @vma: target vma 1171 * @start: start address 1172 * @end: end address 1173 * @nonblocking: 1174 * 1175 * This takes care of mlocking the pages too if VM_LOCKED is set. 1176 * 1177 * return 0 on success, negative error code on error. 1178 * 1179 * vma->vm_mm->mmap_sem must be held. 1180 * 1181 * If @nonblocking is NULL, it may be held for read or write and will 1182 * be unperturbed. 1183 * 1184 * If @nonblocking is non-NULL, it must held for read only and may be 1185 * released. If it's released, *@nonblocking will be set to 0. 1186 */ 1187 long populate_vma_page_range(struct vm_area_struct *vma, 1188 unsigned long start, unsigned long end, int *nonblocking) 1189 { 1190 struct mm_struct *mm = vma->vm_mm; 1191 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1192 int gup_flags; 1193 1194 VM_BUG_ON(start & ~PAGE_MASK); 1195 VM_BUG_ON(end & ~PAGE_MASK); 1196 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1197 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1198 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1199 1200 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1201 if (vma->vm_flags & VM_LOCKONFAULT) 1202 gup_flags &= ~FOLL_POPULATE; 1203 /* 1204 * We want to touch writable mappings with a write fault in order 1205 * to break COW, except for shared mappings because these don't COW 1206 * and we would not want to dirty them for nothing. 1207 */ 1208 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1209 gup_flags |= FOLL_WRITE; 1210 1211 /* 1212 * We want mlock to succeed for regions that have any permissions 1213 * other than PROT_NONE. 1214 */ 1215 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1216 gup_flags |= FOLL_FORCE; 1217 1218 /* 1219 * We made sure addr is within a VMA, so the following will 1220 * not result in a stack expansion that recurses back here. 1221 */ 1222 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1223 NULL, NULL, nonblocking); 1224 } 1225 1226 /* 1227 * __mm_populate - populate and/or mlock pages within a range of address space. 1228 * 1229 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1230 * flags. VMAs must be already marked with the desired vm_flags, and 1231 * mmap_sem must not be held. 1232 */ 1233 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1234 { 1235 struct mm_struct *mm = current->mm; 1236 unsigned long end, nstart, nend; 1237 struct vm_area_struct *vma = NULL; 1238 int locked = 0; 1239 long ret = 0; 1240 1241 VM_BUG_ON(start & ~PAGE_MASK); 1242 VM_BUG_ON(len != PAGE_ALIGN(len)); 1243 end = start + len; 1244 1245 for (nstart = start; nstart < end; nstart = nend) { 1246 /* 1247 * We want to fault in pages for [nstart; end) address range. 1248 * Find first corresponding VMA. 1249 */ 1250 if (!locked) { 1251 locked = 1; 1252 down_read(&mm->mmap_sem); 1253 vma = find_vma(mm, nstart); 1254 } else if (nstart >= vma->vm_end) 1255 vma = vma->vm_next; 1256 if (!vma || vma->vm_start >= end) 1257 break; 1258 /* 1259 * Set [nstart; nend) to intersection of desired address 1260 * range with the first VMA. Also, skip undesirable VMA types. 1261 */ 1262 nend = min(end, vma->vm_end); 1263 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1264 continue; 1265 if (nstart < vma->vm_start) 1266 nstart = vma->vm_start; 1267 /* 1268 * Now fault in a range of pages. populate_vma_page_range() 1269 * double checks the vma flags, so that it won't mlock pages 1270 * if the vma was already munlocked. 1271 */ 1272 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1273 if (ret < 0) { 1274 if (ignore_errors) { 1275 ret = 0; 1276 continue; /* continue at next VMA */ 1277 } 1278 break; 1279 } 1280 nend = nstart + ret * PAGE_SIZE; 1281 ret = 0; 1282 } 1283 if (locked) 1284 up_read(&mm->mmap_sem); 1285 return ret; /* 0 or negative error code */ 1286 } 1287 1288 /** 1289 * get_dump_page() - pin user page in memory while writing it to core dump 1290 * @addr: user address 1291 * 1292 * Returns struct page pointer of user page pinned for dump, 1293 * to be freed afterwards by put_page(). 1294 * 1295 * Returns NULL on any kind of failure - a hole must then be inserted into 1296 * the corefile, to preserve alignment with its headers; and also returns 1297 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1298 * allowing a hole to be left in the corefile to save diskspace. 1299 * 1300 * Called without mmap_sem, but after all other threads have been killed. 1301 */ 1302 #ifdef CONFIG_ELF_CORE 1303 struct page *get_dump_page(unsigned long addr) 1304 { 1305 struct vm_area_struct *vma; 1306 struct page *page; 1307 1308 if (__get_user_pages(current, current->mm, addr, 1, 1309 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1310 NULL) < 1) 1311 return NULL; 1312 flush_cache_page(vma, addr, page_to_pfn(page)); 1313 return page; 1314 } 1315 #endif /* CONFIG_ELF_CORE */ 1316 1317 /* 1318 * Generic Fast GUP 1319 * 1320 * get_user_pages_fast attempts to pin user pages by walking the page 1321 * tables directly and avoids taking locks. Thus the walker needs to be 1322 * protected from page table pages being freed from under it, and should 1323 * block any THP splits. 1324 * 1325 * One way to achieve this is to have the walker disable interrupts, and 1326 * rely on IPIs from the TLB flushing code blocking before the page table 1327 * pages are freed. This is unsuitable for architectures that do not need 1328 * to broadcast an IPI when invalidating TLBs. 1329 * 1330 * Another way to achieve this is to batch up page table containing pages 1331 * belonging to more than one mm_user, then rcu_sched a callback to free those 1332 * pages. Disabling interrupts will allow the fast_gup walker to both block 1333 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1334 * (which is a relatively rare event). The code below adopts this strategy. 1335 * 1336 * Before activating this code, please be aware that the following assumptions 1337 * are currently made: 1338 * 1339 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1340 * free pages containing page tables or TLB flushing requires IPI broadcast. 1341 * 1342 * *) ptes can be read atomically by the architecture. 1343 * 1344 * *) access_ok is sufficient to validate userspace address ranges. 1345 * 1346 * The last two assumptions can be relaxed by the addition of helper functions. 1347 * 1348 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1349 */ 1350 #ifdef CONFIG_HAVE_GENERIC_GUP 1351 1352 #ifndef gup_get_pte 1353 /* 1354 * We assume that the PTE can be read atomically. If this is not the case for 1355 * your architecture, please provide the helper. 1356 */ 1357 static inline pte_t gup_get_pte(pte_t *ptep) 1358 { 1359 return READ_ONCE(*ptep); 1360 } 1361 #endif 1362 1363 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1364 { 1365 while ((*nr) - nr_start) { 1366 struct page *page = pages[--(*nr)]; 1367 1368 ClearPageReferenced(page); 1369 put_page(page); 1370 } 1371 } 1372 1373 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1374 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1375 int write, struct page **pages, int *nr) 1376 { 1377 struct dev_pagemap *pgmap = NULL; 1378 int nr_start = *nr, ret = 0; 1379 pte_t *ptep, *ptem; 1380 1381 ptem = ptep = pte_offset_map(&pmd, addr); 1382 do { 1383 pte_t pte = gup_get_pte(ptep); 1384 struct page *head, *page; 1385 1386 /* 1387 * Similar to the PMD case below, NUMA hinting must take slow 1388 * path using the pte_protnone check. 1389 */ 1390 if (pte_protnone(pte)) 1391 goto pte_unmap; 1392 1393 if (!pte_access_permitted(pte, write)) 1394 goto pte_unmap; 1395 1396 if (pte_devmap(pte)) { 1397 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1398 if (unlikely(!pgmap)) { 1399 undo_dev_pagemap(nr, nr_start, pages); 1400 goto pte_unmap; 1401 } 1402 } else if (pte_special(pte)) 1403 goto pte_unmap; 1404 1405 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1406 page = pte_page(pte); 1407 head = compound_head(page); 1408 1409 if (!page_cache_get_speculative(head)) 1410 goto pte_unmap; 1411 1412 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1413 put_page(head); 1414 goto pte_unmap; 1415 } 1416 1417 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1418 1419 SetPageReferenced(page); 1420 pages[*nr] = page; 1421 (*nr)++; 1422 1423 } while (ptep++, addr += PAGE_SIZE, addr != end); 1424 1425 ret = 1; 1426 1427 pte_unmap: 1428 if (pgmap) 1429 put_dev_pagemap(pgmap); 1430 pte_unmap(ptem); 1431 return ret; 1432 } 1433 #else 1434 1435 /* 1436 * If we can't determine whether or not a pte is special, then fail immediately 1437 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1438 * to be special. 1439 * 1440 * For a futex to be placed on a THP tail page, get_futex_key requires a 1441 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1442 * useful to have gup_huge_pmd even if we can't operate on ptes. 1443 */ 1444 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1445 int write, struct page **pages, int *nr) 1446 { 1447 return 0; 1448 } 1449 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1450 1451 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1452 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1453 unsigned long end, struct page **pages, int *nr) 1454 { 1455 int nr_start = *nr; 1456 struct dev_pagemap *pgmap = NULL; 1457 1458 do { 1459 struct page *page = pfn_to_page(pfn); 1460 1461 pgmap = get_dev_pagemap(pfn, pgmap); 1462 if (unlikely(!pgmap)) { 1463 undo_dev_pagemap(nr, nr_start, pages); 1464 return 0; 1465 } 1466 SetPageReferenced(page); 1467 pages[*nr] = page; 1468 get_page(page); 1469 (*nr)++; 1470 pfn++; 1471 } while (addr += PAGE_SIZE, addr != end); 1472 1473 if (pgmap) 1474 put_dev_pagemap(pgmap); 1475 return 1; 1476 } 1477 1478 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1479 unsigned long end, struct page **pages, int *nr) 1480 { 1481 unsigned long fault_pfn; 1482 int nr_start = *nr; 1483 1484 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1485 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1486 return 0; 1487 1488 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1489 undo_dev_pagemap(nr, nr_start, pages); 1490 return 0; 1491 } 1492 return 1; 1493 } 1494 1495 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1496 unsigned long end, struct page **pages, int *nr) 1497 { 1498 unsigned long fault_pfn; 1499 int nr_start = *nr; 1500 1501 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1502 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1503 return 0; 1504 1505 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1506 undo_dev_pagemap(nr, nr_start, pages); 1507 return 0; 1508 } 1509 return 1; 1510 } 1511 #else 1512 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1513 unsigned long end, struct page **pages, int *nr) 1514 { 1515 BUILD_BUG(); 1516 return 0; 1517 } 1518 1519 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1520 unsigned long end, struct page **pages, int *nr) 1521 { 1522 BUILD_BUG(); 1523 return 0; 1524 } 1525 #endif 1526 1527 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1528 unsigned long end, int write, struct page **pages, int *nr) 1529 { 1530 struct page *head, *page; 1531 int refs; 1532 1533 if (!pmd_access_permitted(orig, write)) 1534 return 0; 1535 1536 if (pmd_devmap(orig)) 1537 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 1538 1539 refs = 0; 1540 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1541 do { 1542 pages[*nr] = page; 1543 (*nr)++; 1544 page++; 1545 refs++; 1546 } while (addr += PAGE_SIZE, addr != end); 1547 1548 head = compound_head(pmd_page(orig)); 1549 if (!page_cache_add_speculative(head, refs)) { 1550 *nr -= refs; 1551 return 0; 1552 } 1553 1554 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1555 *nr -= refs; 1556 while (refs--) 1557 put_page(head); 1558 return 0; 1559 } 1560 1561 SetPageReferenced(head); 1562 return 1; 1563 } 1564 1565 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1566 unsigned long end, int write, struct page **pages, int *nr) 1567 { 1568 struct page *head, *page; 1569 int refs; 1570 1571 if (!pud_access_permitted(orig, write)) 1572 return 0; 1573 1574 if (pud_devmap(orig)) 1575 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 1576 1577 refs = 0; 1578 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1579 do { 1580 pages[*nr] = page; 1581 (*nr)++; 1582 page++; 1583 refs++; 1584 } while (addr += PAGE_SIZE, addr != end); 1585 1586 head = compound_head(pud_page(orig)); 1587 if (!page_cache_add_speculative(head, refs)) { 1588 *nr -= refs; 1589 return 0; 1590 } 1591 1592 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1593 *nr -= refs; 1594 while (refs--) 1595 put_page(head); 1596 return 0; 1597 } 1598 1599 SetPageReferenced(head); 1600 return 1; 1601 } 1602 1603 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1604 unsigned long end, int write, 1605 struct page **pages, int *nr) 1606 { 1607 int refs; 1608 struct page *head, *page; 1609 1610 if (!pgd_access_permitted(orig, write)) 1611 return 0; 1612 1613 BUILD_BUG_ON(pgd_devmap(orig)); 1614 refs = 0; 1615 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1616 do { 1617 pages[*nr] = page; 1618 (*nr)++; 1619 page++; 1620 refs++; 1621 } while (addr += PAGE_SIZE, addr != end); 1622 1623 head = compound_head(pgd_page(orig)); 1624 if (!page_cache_add_speculative(head, refs)) { 1625 *nr -= refs; 1626 return 0; 1627 } 1628 1629 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1630 *nr -= refs; 1631 while (refs--) 1632 put_page(head); 1633 return 0; 1634 } 1635 1636 SetPageReferenced(head); 1637 return 1; 1638 } 1639 1640 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1641 int write, struct page **pages, int *nr) 1642 { 1643 unsigned long next; 1644 pmd_t *pmdp; 1645 1646 pmdp = pmd_offset(&pud, addr); 1647 do { 1648 pmd_t pmd = READ_ONCE(*pmdp); 1649 1650 next = pmd_addr_end(addr, end); 1651 if (!pmd_present(pmd)) 1652 return 0; 1653 1654 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1655 /* 1656 * NUMA hinting faults need to be handled in the GUP 1657 * slowpath for accounting purposes and so that they 1658 * can be serialised against THP migration. 1659 */ 1660 if (pmd_protnone(pmd)) 1661 return 0; 1662 1663 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1664 pages, nr)) 1665 return 0; 1666 1667 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1668 /* 1669 * architecture have different format for hugetlbfs 1670 * pmd format and THP pmd format 1671 */ 1672 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1673 PMD_SHIFT, next, write, pages, nr)) 1674 return 0; 1675 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1676 return 0; 1677 } while (pmdp++, addr = next, addr != end); 1678 1679 return 1; 1680 } 1681 1682 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1683 int write, struct page **pages, int *nr) 1684 { 1685 unsigned long next; 1686 pud_t *pudp; 1687 1688 pudp = pud_offset(&p4d, addr); 1689 do { 1690 pud_t pud = READ_ONCE(*pudp); 1691 1692 next = pud_addr_end(addr, end); 1693 if (pud_none(pud)) 1694 return 0; 1695 if (unlikely(pud_huge(pud))) { 1696 if (!gup_huge_pud(pud, pudp, addr, next, write, 1697 pages, nr)) 1698 return 0; 1699 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1700 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1701 PUD_SHIFT, next, write, pages, nr)) 1702 return 0; 1703 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1704 return 0; 1705 } while (pudp++, addr = next, addr != end); 1706 1707 return 1; 1708 } 1709 1710 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1711 int write, struct page **pages, int *nr) 1712 { 1713 unsigned long next; 1714 p4d_t *p4dp; 1715 1716 p4dp = p4d_offset(&pgd, addr); 1717 do { 1718 p4d_t p4d = READ_ONCE(*p4dp); 1719 1720 next = p4d_addr_end(addr, end); 1721 if (p4d_none(p4d)) 1722 return 0; 1723 BUILD_BUG_ON(p4d_huge(p4d)); 1724 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1725 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1726 P4D_SHIFT, next, write, pages, nr)) 1727 return 0; 1728 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1729 return 0; 1730 } while (p4dp++, addr = next, addr != end); 1731 1732 return 1; 1733 } 1734 1735 static void gup_pgd_range(unsigned long addr, unsigned long end, 1736 int write, struct page **pages, int *nr) 1737 { 1738 unsigned long next; 1739 pgd_t *pgdp; 1740 1741 pgdp = pgd_offset(current->mm, addr); 1742 do { 1743 pgd_t pgd = READ_ONCE(*pgdp); 1744 1745 next = pgd_addr_end(addr, end); 1746 if (pgd_none(pgd)) 1747 return; 1748 if (unlikely(pgd_huge(pgd))) { 1749 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1750 pages, nr)) 1751 return; 1752 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1753 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1754 PGDIR_SHIFT, next, write, pages, nr)) 1755 return; 1756 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1757 return; 1758 } while (pgdp++, addr = next, addr != end); 1759 } 1760 1761 #ifndef gup_fast_permitted 1762 /* 1763 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1764 * we need to fall back to the slow version: 1765 */ 1766 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1767 { 1768 unsigned long len, end; 1769 1770 len = (unsigned long) nr_pages << PAGE_SHIFT; 1771 end = start + len; 1772 return end >= start; 1773 } 1774 #endif 1775 1776 /* 1777 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1778 * the regular GUP. 1779 * Note a difference with get_user_pages_fast: this always returns the 1780 * number of pages pinned, 0 if no pages were pinned. 1781 */ 1782 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1783 struct page **pages) 1784 { 1785 unsigned long addr, len, end; 1786 unsigned long flags; 1787 int nr = 0; 1788 1789 start &= PAGE_MASK; 1790 addr = start; 1791 len = (unsigned long) nr_pages << PAGE_SHIFT; 1792 end = start + len; 1793 1794 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1795 (void __user *)start, len))) 1796 return 0; 1797 1798 /* 1799 * Disable interrupts. We use the nested form as we can already have 1800 * interrupts disabled by get_futex_key. 1801 * 1802 * With interrupts disabled, we block page table pages from being 1803 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1804 * for more details. 1805 * 1806 * We do not adopt an rcu_read_lock(.) here as we also want to 1807 * block IPIs that come from THPs splitting. 1808 */ 1809 1810 if (gup_fast_permitted(start, nr_pages, write)) { 1811 local_irq_save(flags); 1812 gup_pgd_range(addr, end, write, pages, &nr); 1813 local_irq_restore(flags); 1814 } 1815 1816 return nr; 1817 } 1818 1819 /** 1820 * get_user_pages_fast() - pin user pages in memory 1821 * @start: starting user address 1822 * @nr_pages: number of pages from start to pin 1823 * @write: whether pages will be written to 1824 * @pages: array that receives pointers to the pages pinned. 1825 * Should be at least nr_pages long. 1826 * 1827 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1828 * If not successful, it will fall back to taking the lock and 1829 * calling get_user_pages(). 1830 * 1831 * Returns number of pages pinned. This may be fewer than the number 1832 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1833 * were pinned, returns -errno. 1834 */ 1835 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1836 struct page **pages) 1837 { 1838 unsigned long addr, len, end; 1839 int nr = 0, ret = 0; 1840 1841 start &= PAGE_MASK; 1842 addr = start; 1843 len = (unsigned long) nr_pages << PAGE_SHIFT; 1844 end = start + len; 1845 1846 if (nr_pages <= 0) 1847 return 0; 1848 1849 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1850 (void __user *)start, len))) 1851 return -EFAULT; 1852 1853 if (gup_fast_permitted(start, nr_pages, write)) { 1854 local_irq_disable(); 1855 gup_pgd_range(addr, end, write, pages, &nr); 1856 local_irq_enable(); 1857 ret = nr; 1858 } 1859 1860 if (nr < nr_pages) { 1861 /* Try to get the remaining pages with get_user_pages */ 1862 start += nr << PAGE_SHIFT; 1863 pages += nr; 1864 1865 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1866 write ? FOLL_WRITE : 0); 1867 1868 /* Have to be a bit careful with return values */ 1869 if (nr > 0) { 1870 if (ret < 0) 1871 ret = nr; 1872 else 1873 ret += nr; 1874 } 1875 } 1876 1877 return ret; 1878 } 1879 1880 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1881