1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 127 return NULL; 128 129 if (flags & FOLL_GET) 130 return try_get_folio(page, refs); 131 else if (flags & FOLL_PIN) { 132 struct folio *folio; 133 134 /* 135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 136 * right zone, so fail and let the caller fall back to the slow 137 * path. 138 */ 139 if (unlikely((flags & FOLL_LONGTERM) && 140 !is_longterm_pinnable_page(page))) 141 return NULL; 142 143 /* 144 * CAUTION: Don't use compound_head() on the page before this 145 * point, the result won't be stable. 146 */ 147 folio = try_get_folio(page, refs); 148 if (!folio) 149 return NULL; 150 151 /* 152 * When pinning a large folio, use an exact count to track it. 153 * 154 * However, be sure to *also* increment the normal folio 155 * refcount field at least once, so that the folio really 156 * is pinned. That's why the refcount from the earlier 157 * try_get_folio() is left intact. 158 */ 159 if (folio_test_large(folio)) 160 atomic_add(refs, &folio->_pincount); 161 else 162 folio_ref_add(folio, 163 refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 /* 165 * Adjust the pincount before re-checking the PTE for changes. 166 * This is essentially a smp_mb() and is paired with a memory 167 * barrier in page_try_share_anon_rmap(). 168 */ 169 smp_mb__after_atomic(); 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 173 return folio; 174 } 175 176 WARN_ON_ONCE(1); 177 return NULL; 178 } 179 180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 181 { 182 if (flags & FOLL_PIN) { 183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 184 if (folio_test_large(folio)) 185 atomic_sub(refs, &folio->_pincount); 186 else 187 refs *= GUP_PIN_COUNTING_BIAS; 188 } 189 190 if (!put_devmap_managed_page_refs(&folio->page, refs)) 191 folio_put_refs(folio, refs); 192 } 193 194 /** 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 196 * @page: pointer to page to be grabbed 197 * @flags: gup flags: these are the FOLL_* flag values. 198 * 199 * This might not do anything at all, depending on the flags argument. 200 * 201 * "grab" names in this file mean, "look at flags to decide whether to use 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 203 * 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 205 * time. Cases: please see the try_grab_folio() documentation, with 206 * "refs=1". 207 * 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 210 * 211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 212 * be grabbed. 213 */ 214 int __must_check try_grab_page(struct page *page, unsigned int flags) 215 { 216 struct folio *folio = page_folio(page); 217 218 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 219 return -ENOMEM; 220 221 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 222 return -EREMOTEIO; 223 224 if (flags & FOLL_GET) 225 folio_ref_inc(folio); 226 else if (flags & FOLL_PIN) { 227 /* 228 * Similar to try_grab_folio(): be sure to *also* 229 * increment the normal page refcount field at least once, 230 * so that the page really is pinned. 231 */ 232 if (folio_test_large(folio)) { 233 folio_ref_add(folio, 1); 234 atomic_add(1, &folio->_pincount); 235 } else { 236 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 237 } 238 239 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 240 } 241 242 return 0; 243 } 244 245 /** 246 * unpin_user_page() - release a dma-pinned page 247 * @page: pointer to page to be released 248 * 249 * Pages that were pinned via pin_user_pages*() must be released via either 250 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 251 * that such pages can be separately tracked and uniquely handled. In 252 * particular, interactions with RDMA and filesystems need special handling. 253 */ 254 void unpin_user_page(struct page *page) 255 { 256 sanity_check_pinned_pages(&page, 1); 257 gup_put_folio(page_folio(page), 1, FOLL_PIN); 258 } 259 EXPORT_SYMBOL(unpin_user_page); 260 261 static inline struct folio *gup_folio_range_next(struct page *start, 262 unsigned long npages, unsigned long i, unsigned int *ntails) 263 { 264 struct page *next = nth_page(start, i); 265 struct folio *folio = page_folio(next); 266 unsigned int nr = 1; 267 268 if (folio_test_large(folio)) 269 nr = min_t(unsigned int, npages - i, 270 folio_nr_pages(folio) - folio_page_idx(folio, next)); 271 272 *ntails = nr; 273 return folio; 274 } 275 276 static inline struct folio *gup_folio_next(struct page **list, 277 unsigned long npages, unsigned long i, unsigned int *ntails) 278 { 279 struct folio *folio = page_folio(list[i]); 280 unsigned int nr; 281 282 for (nr = i + 1; nr < npages; nr++) { 283 if (page_folio(list[nr]) != folio) 284 break; 285 } 286 287 *ntails = nr - i; 288 return folio; 289 } 290 291 /** 292 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 293 * @pages: array of pages to be maybe marked dirty, and definitely released. 294 * @npages: number of pages in the @pages array. 295 * @make_dirty: whether to mark the pages dirty 296 * 297 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 298 * variants called on that page. 299 * 300 * For each page in the @pages array, make that page (or its head page, if a 301 * compound page) dirty, if @make_dirty is true, and if the page was previously 302 * listed as clean. In any case, releases all pages using unpin_user_page(), 303 * possibly via unpin_user_pages(), for the non-dirty case. 304 * 305 * Please see the unpin_user_page() documentation for details. 306 * 307 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 308 * required, then the caller should a) verify that this is really correct, 309 * because _lock() is usually required, and b) hand code it: 310 * set_page_dirty_lock(), unpin_user_page(). 311 * 312 */ 313 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 314 bool make_dirty) 315 { 316 unsigned long i; 317 struct folio *folio; 318 unsigned int nr; 319 320 if (!make_dirty) { 321 unpin_user_pages(pages, npages); 322 return; 323 } 324 325 sanity_check_pinned_pages(pages, npages); 326 for (i = 0; i < npages; i += nr) { 327 folio = gup_folio_next(pages, npages, i, &nr); 328 /* 329 * Checking PageDirty at this point may race with 330 * clear_page_dirty_for_io(), but that's OK. Two key 331 * cases: 332 * 333 * 1) This code sees the page as already dirty, so it 334 * skips the call to set_page_dirty(). That could happen 335 * because clear_page_dirty_for_io() called 336 * page_mkclean(), followed by set_page_dirty(). 337 * However, now the page is going to get written back, 338 * which meets the original intention of setting it 339 * dirty, so all is well: clear_page_dirty_for_io() goes 340 * on to call TestClearPageDirty(), and write the page 341 * back. 342 * 343 * 2) This code sees the page as clean, so it calls 344 * set_page_dirty(). The page stays dirty, despite being 345 * written back, so it gets written back again in the 346 * next writeback cycle. This is harmless. 347 */ 348 if (!folio_test_dirty(folio)) { 349 folio_lock(folio); 350 folio_mark_dirty(folio); 351 folio_unlock(folio); 352 } 353 gup_put_folio(folio, nr, FOLL_PIN); 354 } 355 } 356 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 357 358 /** 359 * unpin_user_page_range_dirty_lock() - release and optionally dirty 360 * gup-pinned page range 361 * 362 * @page: the starting page of a range maybe marked dirty, and definitely released. 363 * @npages: number of consecutive pages to release. 364 * @make_dirty: whether to mark the pages dirty 365 * 366 * "gup-pinned page range" refers to a range of pages that has had one of the 367 * pin_user_pages() variants called on that page. 368 * 369 * For the page ranges defined by [page .. page+npages], make that range (or 370 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 371 * page range was previously listed as clean. 372 * 373 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 374 * required, then the caller should a) verify that this is really correct, 375 * because _lock() is usually required, and b) hand code it: 376 * set_page_dirty_lock(), unpin_user_page(). 377 * 378 */ 379 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 380 bool make_dirty) 381 { 382 unsigned long i; 383 struct folio *folio; 384 unsigned int nr; 385 386 for (i = 0; i < npages; i += nr) { 387 folio = gup_folio_range_next(page, npages, i, &nr); 388 if (make_dirty && !folio_test_dirty(folio)) { 389 folio_lock(folio); 390 folio_mark_dirty(folio); 391 folio_unlock(folio); 392 } 393 gup_put_folio(folio, nr, FOLL_PIN); 394 } 395 } 396 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 397 398 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 399 { 400 unsigned long i; 401 struct folio *folio; 402 unsigned int nr; 403 404 /* 405 * Don't perform any sanity checks because we might have raced with 406 * fork() and some anonymous pages might now actually be shared -- 407 * which is why we're unpinning after all. 408 */ 409 for (i = 0; i < npages; i += nr) { 410 folio = gup_folio_next(pages, npages, i, &nr); 411 gup_put_folio(folio, nr, FOLL_PIN); 412 } 413 } 414 415 /** 416 * unpin_user_pages() - release an array of gup-pinned pages. 417 * @pages: array of pages to be marked dirty and released. 418 * @npages: number of pages in the @pages array. 419 * 420 * For each page in the @pages array, release the page using unpin_user_page(). 421 * 422 * Please see the unpin_user_page() documentation for details. 423 */ 424 void unpin_user_pages(struct page **pages, unsigned long npages) 425 { 426 unsigned long i; 427 struct folio *folio; 428 unsigned int nr; 429 430 /* 431 * If this WARN_ON() fires, then the system *might* be leaking pages (by 432 * leaving them pinned), but probably not. More likely, gup/pup returned 433 * a hard -ERRNO error to the caller, who erroneously passed it here. 434 */ 435 if (WARN_ON(IS_ERR_VALUE(npages))) 436 return; 437 438 sanity_check_pinned_pages(pages, npages); 439 for (i = 0; i < npages; i += nr) { 440 folio = gup_folio_next(pages, npages, i, &nr); 441 gup_put_folio(folio, nr, FOLL_PIN); 442 } 443 } 444 EXPORT_SYMBOL(unpin_user_pages); 445 446 /* 447 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 448 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 449 * cache bouncing on large SMP machines for concurrent pinned gups. 450 */ 451 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 452 { 453 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 454 set_bit(MMF_HAS_PINNED, mm_flags); 455 } 456 457 #ifdef CONFIG_MMU 458 static struct page *no_page_table(struct vm_area_struct *vma, 459 unsigned int flags) 460 { 461 /* 462 * When core dumping an enormous anonymous area that nobody 463 * has touched so far, we don't want to allocate unnecessary pages or 464 * page tables. Return error instead of NULL to skip handle_mm_fault, 465 * then get_dump_page() will return NULL to leave a hole in the dump. 466 * But we can only make this optimization where a hole would surely 467 * be zero-filled if handle_mm_fault() actually did handle it. 468 */ 469 if ((flags & FOLL_DUMP) && 470 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 471 return ERR_PTR(-EFAULT); 472 return NULL; 473 } 474 475 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 476 pte_t *pte, unsigned int flags) 477 { 478 if (flags & FOLL_TOUCH) { 479 pte_t entry = *pte; 480 481 if (flags & FOLL_WRITE) 482 entry = pte_mkdirty(entry); 483 entry = pte_mkyoung(entry); 484 485 if (!pte_same(*pte, entry)) { 486 set_pte_at(vma->vm_mm, address, pte, entry); 487 update_mmu_cache(vma, address, pte); 488 } 489 } 490 491 /* Proper page table entry exists, but no corresponding struct page */ 492 return -EEXIST; 493 } 494 495 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 496 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 497 struct vm_area_struct *vma, 498 unsigned int flags) 499 { 500 /* If the pte is writable, we can write to the page. */ 501 if (pte_write(pte)) 502 return true; 503 504 /* Maybe FOLL_FORCE is set to override it? */ 505 if (!(flags & FOLL_FORCE)) 506 return false; 507 508 /* But FOLL_FORCE has no effect on shared mappings */ 509 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 510 return false; 511 512 /* ... or read-only private ones */ 513 if (!(vma->vm_flags & VM_MAYWRITE)) 514 return false; 515 516 /* ... or already writable ones that just need to take a write fault */ 517 if (vma->vm_flags & VM_WRITE) 518 return false; 519 520 /* 521 * See can_change_pte_writable(): we broke COW and could map the page 522 * writable if we have an exclusive anonymous page ... 523 */ 524 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 525 return false; 526 527 /* ... and a write-fault isn't required for other reasons. */ 528 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 529 return false; 530 return !userfaultfd_pte_wp(vma, pte); 531 } 532 533 static struct page *follow_page_pte(struct vm_area_struct *vma, 534 unsigned long address, pmd_t *pmd, unsigned int flags, 535 struct dev_pagemap **pgmap) 536 { 537 struct mm_struct *mm = vma->vm_mm; 538 struct page *page; 539 spinlock_t *ptl; 540 pte_t *ptep, pte; 541 int ret; 542 543 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 544 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 545 (FOLL_PIN | FOLL_GET))) 546 return ERR_PTR(-EINVAL); 547 if (unlikely(pmd_bad(*pmd))) 548 return no_page_table(vma, flags); 549 550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 551 pte = *ptep; 552 if (!pte_present(pte)) 553 goto no_page; 554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 555 goto no_page; 556 557 page = vm_normal_page(vma, address, pte); 558 559 /* 560 * We only care about anon pages in can_follow_write_pte() and don't 561 * have to worry about pte_devmap() because they are never anon. 562 */ 563 if ((flags & FOLL_WRITE) && 564 !can_follow_write_pte(pte, page, vma, flags)) { 565 page = NULL; 566 goto out; 567 } 568 569 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 570 /* 571 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 572 * case since they are only valid while holding the pgmap 573 * reference. 574 */ 575 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 576 if (*pgmap) 577 page = pte_page(pte); 578 else 579 goto no_page; 580 } else if (unlikely(!page)) { 581 if (flags & FOLL_DUMP) { 582 /* Avoid special (like zero) pages in core dumps */ 583 page = ERR_PTR(-EFAULT); 584 goto out; 585 } 586 587 if (is_zero_pfn(pte_pfn(pte))) { 588 page = pte_page(pte); 589 } else { 590 ret = follow_pfn_pte(vma, address, ptep, flags); 591 page = ERR_PTR(ret); 592 goto out; 593 } 594 } 595 596 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 597 page = ERR_PTR(-EMLINK); 598 goto out; 599 } 600 601 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 602 !PageAnonExclusive(page), page); 603 604 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 605 ret = try_grab_page(page, flags); 606 if (unlikely(ret)) { 607 page = ERR_PTR(ret); 608 goto out; 609 } 610 611 /* 612 * We need to make the page accessible if and only if we are going 613 * to access its content (the FOLL_PIN case). Please see 614 * Documentation/core-api/pin_user_pages.rst for details. 615 */ 616 if (flags & FOLL_PIN) { 617 ret = arch_make_page_accessible(page); 618 if (ret) { 619 unpin_user_page(page); 620 page = ERR_PTR(ret); 621 goto out; 622 } 623 } 624 if (flags & FOLL_TOUCH) { 625 if ((flags & FOLL_WRITE) && 626 !pte_dirty(pte) && !PageDirty(page)) 627 set_page_dirty(page); 628 /* 629 * pte_mkyoung() would be more correct here, but atomic care 630 * is needed to avoid losing the dirty bit: it is easier to use 631 * mark_page_accessed(). 632 */ 633 mark_page_accessed(page); 634 } 635 out: 636 pte_unmap_unlock(ptep, ptl); 637 return page; 638 no_page: 639 pte_unmap_unlock(ptep, ptl); 640 if (!pte_none(pte)) 641 return NULL; 642 return no_page_table(vma, flags); 643 } 644 645 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 646 unsigned long address, pud_t *pudp, 647 unsigned int flags, 648 struct follow_page_context *ctx) 649 { 650 pmd_t *pmd, pmdval; 651 spinlock_t *ptl; 652 struct page *page; 653 struct mm_struct *mm = vma->vm_mm; 654 655 pmd = pmd_offset(pudp, address); 656 /* 657 * The READ_ONCE() will stabilize the pmdval in a register or 658 * on the stack so that it will stop changing under the code. 659 */ 660 pmdval = READ_ONCE(*pmd); 661 if (pmd_none(pmdval)) 662 return no_page_table(vma, flags); 663 if (!pmd_present(pmdval)) 664 return no_page_table(vma, flags); 665 if (pmd_devmap(pmdval)) { 666 ptl = pmd_lock(mm, pmd); 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 668 spin_unlock(ptl); 669 if (page) 670 return page; 671 } 672 if (likely(!pmd_trans_huge(pmdval))) 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 674 675 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 676 return no_page_table(vma, flags); 677 678 ptl = pmd_lock(mm, pmd); 679 if (unlikely(!pmd_present(*pmd))) { 680 spin_unlock(ptl); 681 return no_page_table(vma, flags); 682 } 683 if (unlikely(!pmd_trans_huge(*pmd))) { 684 spin_unlock(ptl); 685 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 686 } 687 if (flags & FOLL_SPLIT_PMD) { 688 int ret; 689 page = pmd_page(*pmd); 690 if (is_huge_zero_page(page)) { 691 spin_unlock(ptl); 692 ret = 0; 693 split_huge_pmd(vma, pmd, address); 694 if (pmd_trans_unstable(pmd)) 695 ret = -EBUSY; 696 } else { 697 spin_unlock(ptl); 698 split_huge_pmd(vma, pmd, address); 699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 700 } 701 702 return ret ? ERR_PTR(ret) : 703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 704 } 705 page = follow_trans_huge_pmd(vma, address, pmd, flags); 706 spin_unlock(ptl); 707 ctx->page_mask = HPAGE_PMD_NR - 1; 708 return page; 709 } 710 711 static struct page *follow_pud_mask(struct vm_area_struct *vma, 712 unsigned long address, p4d_t *p4dp, 713 unsigned int flags, 714 struct follow_page_context *ctx) 715 { 716 pud_t *pud; 717 spinlock_t *ptl; 718 struct page *page; 719 struct mm_struct *mm = vma->vm_mm; 720 721 pud = pud_offset(p4dp, address); 722 if (pud_none(*pud)) 723 return no_page_table(vma, flags); 724 if (pud_devmap(*pud)) { 725 ptl = pud_lock(mm, pud); 726 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 727 spin_unlock(ptl); 728 if (page) 729 return page; 730 } 731 if (unlikely(pud_bad(*pud))) 732 return no_page_table(vma, flags); 733 734 return follow_pmd_mask(vma, address, pud, flags, ctx); 735 } 736 737 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 738 unsigned long address, pgd_t *pgdp, 739 unsigned int flags, 740 struct follow_page_context *ctx) 741 { 742 p4d_t *p4d; 743 744 p4d = p4d_offset(pgdp, address); 745 if (p4d_none(*p4d)) 746 return no_page_table(vma, flags); 747 BUILD_BUG_ON(p4d_huge(*p4d)); 748 if (unlikely(p4d_bad(*p4d))) 749 return no_page_table(vma, flags); 750 751 return follow_pud_mask(vma, address, p4d, flags, ctx); 752 } 753 754 /** 755 * follow_page_mask - look up a page descriptor from a user-virtual address 756 * @vma: vm_area_struct mapping @address 757 * @address: virtual address to look up 758 * @flags: flags modifying lookup behaviour 759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 760 * pointer to output page_mask 761 * 762 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 763 * 764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 765 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 766 * 767 * When getting an anonymous page and the caller has to trigger unsharing 768 * of a shared anonymous page first, -EMLINK is returned. The caller should 769 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 770 * relevant with FOLL_PIN and !FOLL_WRITE. 771 * 772 * On output, the @ctx->page_mask is set according to the size of the page. 773 * 774 * Return: the mapped (struct page *), %NULL if no mapping exists, or 775 * an error pointer if there is a mapping to something not represented 776 * by a page descriptor (see also vm_normal_page()). 777 */ 778 static struct page *follow_page_mask(struct vm_area_struct *vma, 779 unsigned long address, unsigned int flags, 780 struct follow_page_context *ctx) 781 { 782 pgd_t *pgd; 783 struct page *page; 784 struct mm_struct *mm = vma->vm_mm; 785 786 ctx->page_mask = 0; 787 788 /* 789 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 790 * special hugetlb page table walking code. This eliminates the 791 * need to check for hugetlb entries in the general walking code. 792 * 793 * hugetlb_follow_page_mask is only for follow_page() handling here. 794 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 795 */ 796 if (is_vm_hugetlb_page(vma)) { 797 page = hugetlb_follow_page_mask(vma, address, flags); 798 if (!page) 799 page = no_page_table(vma, flags); 800 return page; 801 } 802 803 pgd = pgd_offset(mm, address); 804 805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 806 return no_page_table(vma, flags); 807 808 return follow_p4d_mask(vma, address, pgd, flags, ctx); 809 } 810 811 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 812 unsigned int foll_flags) 813 { 814 struct follow_page_context ctx = { NULL }; 815 struct page *page; 816 817 if (vma_is_secretmem(vma)) 818 return NULL; 819 820 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 821 return NULL; 822 823 page = follow_page_mask(vma, address, foll_flags, &ctx); 824 if (ctx.pgmap) 825 put_dev_pagemap(ctx.pgmap); 826 return page; 827 } 828 829 static int get_gate_page(struct mm_struct *mm, unsigned long address, 830 unsigned int gup_flags, struct vm_area_struct **vma, 831 struct page **page) 832 { 833 pgd_t *pgd; 834 p4d_t *p4d; 835 pud_t *pud; 836 pmd_t *pmd; 837 pte_t *pte; 838 int ret = -EFAULT; 839 840 /* user gate pages are read-only */ 841 if (gup_flags & FOLL_WRITE) 842 return -EFAULT; 843 if (address > TASK_SIZE) 844 pgd = pgd_offset_k(address); 845 else 846 pgd = pgd_offset_gate(mm, address); 847 if (pgd_none(*pgd)) 848 return -EFAULT; 849 p4d = p4d_offset(pgd, address); 850 if (p4d_none(*p4d)) 851 return -EFAULT; 852 pud = pud_offset(p4d, address); 853 if (pud_none(*pud)) 854 return -EFAULT; 855 pmd = pmd_offset(pud, address); 856 if (!pmd_present(*pmd)) 857 return -EFAULT; 858 VM_BUG_ON(pmd_trans_huge(*pmd)); 859 pte = pte_offset_map(pmd, address); 860 if (pte_none(*pte)) 861 goto unmap; 862 *vma = get_gate_vma(mm); 863 if (!page) 864 goto out; 865 *page = vm_normal_page(*vma, address, *pte); 866 if (!*page) { 867 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 868 goto unmap; 869 *page = pte_page(*pte); 870 } 871 ret = try_grab_page(*page, gup_flags); 872 if (unlikely(ret)) 873 goto unmap; 874 out: 875 ret = 0; 876 unmap: 877 pte_unmap(pte); 878 return ret; 879 } 880 881 /* 882 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 883 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 884 * to 0 and -EBUSY returned. 885 */ 886 static int faultin_page(struct vm_area_struct *vma, 887 unsigned long address, unsigned int *flags, bool unshare, 888 int *locked) 889 { 890 unsigned int fault_flags = 0; 891 vm_fault_t ret; 892 893 if (*flags & FOLL_NOFAULT) 894 return -EFAULT; 895 if (*flags & FOLL_WRITE) 896 fault_flags |= FAULT_FLAG_WRITE; 897 if (*flags & FOLL_REMOTE) 898 fault_flags |= FAULT_FLAG_REMOTE; 899 if (*flags & FOLL_UNLOCKABLE) { 900 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 901 /* 902 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 903 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 904 * That's because some callers may not be prepared to 905 * handle early exits caused by non-fatal signals. 906 */ 907 if (*flags & FOLL_INTERRUPTIBLE) 908 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 909 } 910 if (*flags & FOLL_NOWAIT) 911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 912 if (*flags & FOLL_TRIED) { 913 /* 914 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 915 * can co-exist 916 */ 917 fault_flags |= FAULT_FLAG_TRIED; 918 } 919 if (unshare) { 920 fault_flags |= FAULT_FLAG_UNSHARE; 921 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 922 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 923 } 924 925 ret = handle_mm_fault(vma, address, fault_flags, NULL); 926 927 if (ret & VM_FAULT_COMPLETED) { 928 /* 929 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 930 * mmap lock in the page fault handler. Sanity check this. 931 */ 932 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 933 *locked = 0; 934 935 /* 936 * We should do the same as VM_FAULT_RETRY, but let's not 937 * return -EBUSY since that's not reflecting the reality of 938 * what has happened - we've just fully completed a page 939 * fault, with the mmap lock released. Use -EAGAIN to show 940 * that we want to take the mmap lock _again_. 941 */ 942 return -EAGAIN; 943 } 944 945 if (ret & VM_FAULT_ERROR) { 946 int err = vm_fault_to_errno(ret, *flags); 947 948 if (err) 949 return err; 950 BUG(); 951 } 952 953 if (ret & VM_FAULT_RETRY) { 954 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 955 *locked = 0; 956 return -EBUSY; 957 } 958 959 return 0; 960 } 961 962 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 963 { 964 vm_flags_t vm_flags = vma->vm_flags; 965 int write = (gup_flags & FOLL_WRITE); 966 int foreign = (gup_flags & FOLL_REMOTE); 967 968 if (vm_flags & (VM_IO | VM_PFNMAP)) 969 return -EFAULT; 970 971 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 972 return -EFAULT; 973 974 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 975 return -EOPNOTSUPP; 976 977 if (vma_is_secretmem(vma)) 978 return -EFAULT; 979 980 if (write) { 981 if (!(vm_flags & VM_WRITE)) { 982 if (!(gup_flags & FOLL_FORCE)) 983 return -EFAULT; 984 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 985 if (is_vm_hugetlb_page(vma)) 986 return -EFAULT; 987 /* 988 * We used to let the write,force case do COW in a 989 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 990 * set a breakpoint in a read-only mapping of an 991 * executable, without corrupting the file (yet only 992 * when that file had been opened for writing!). 993 * Anon pages in shared mappings are surprising: now 994 * just reject it. 995 */ 996 if (!is_cow_mapping(vm_flags)) 997 return -EFAULT; 998 } 999 } else if (!(vm_flags & VM_READ)) { 1000 if (!(gup_flags & FOLL_FORCE)) 1001 return -EFAULT; 1002 /* 1003 * Is there actually any vma we can reach here which does not 1004 * have VM_MAYREAD set? 1005 */ 1006 if (!(vm_flags & VM_MAYREAD)) 1007 return -EFAULT; 1008 } 1009 /* 1010 * gups are always data accesses, not instruction 1011 * fetches, so execute=false here 1012 */ 1013 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1014 return -EFAULT; 1015 return 0; 1016 } 1017 1018 /** 1019 * __get_user_pages() - pin user pages in memory 1020 * @mm: mm_struct of target mm 1021 * @start: starting user address 1022 * @nr_pages: number of pages from start to pin 1023 * @gup_flags: flags modifying pin behaviour 1024 * @pages: array that receives pointers to the pages pinned. 1025 * Should be at least nr_pages long. Or NULL, if caller 1026 * only intends to ensure the pages are faulted in. 1027 * @vmas: array of pointers to vmas corresponding to each page. 1028 * Or NULL if the caller does not require them. 1029 * @locked: whether we're still with the mmap_lock held 1030 * 1031 * Returns either number of pages pinned (which may be less than the 1032 * number requested), or an error. Details about the return value: 1033 * 1034 * -- If nr_pages is 0, returns 0. 1035 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1036 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1037 * pages pinned. Again, this may be less than nr_pages. 1038 * -- 0 return value is possible when the fault would need to be retried. 1039 * 1040 * The caller is responsible for releasing returned @pages, via put_page(). 1041 * 1042 * @vmas are valid only as long as mmap_lock is held. 1043 * 1044 * Must be called with mmap_lock held. It may be released. See below. 1045 * 1046 * __get_user_pages walks a process's page tables and takes a reference to 1047 * each struct page that each user address corresponds to at a given 1048 * instant. That is, it takes the page that would be accessed if a user 1049 * thread accesses the given user virtual address at that instant. 1050 * 1051 * This does not guarantee that the page exists in the user mappings when 1052 * __get_user_pages returns, and there may even be a completely different 1053 * page there in some cases (eg. if mmapped pagecache has been invalidated 1054 * and subsequently re-faulted). However it does guarantee that the page 1055 * won't be freed completely. And mostly callers simply care that the page 1056 * contains data that was valid *at some point in time*. Typically, an IO 1057 * or similar operation cannot guarantee anything stronger anyway because 1058 * locks can't be held over the syscall boundary. 1059 * 1060 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1061 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1062 * appropriate) must be called after the page is finished with, and 1063 * before put_page is called. 1064 * 1065 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1066 * be released. If this happens *@locked will be set to 0 on return. 1067 * 1068 * A caller using such a combination of @gup_flags must therefore hold the 1069 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1070 * it must be held for either reading or writing and will not be released. 1071 * 1072 * In most cases, get_user_pages or get_user_pages_fast should be used 1073 * instead of __get_user_pages. __get_user_pages should be used only if 1074 * you need some special @gup_flags. 1075 */ 1076 static long __get_user_pages(struct mm_struct *mm, 1077 unsigned long start, unsigned long nr_pages, 1078 unsigned int gup_flags, struct page **pages, 1079 struct vm_area_struct **vmas, int *locked) 1080 { 1081 long ret = 0, i = 0; 1082 struct vm_area_struct *vma = NULL; 1083 struct follow_page_context ctx = { NULL }; 1084 1085 if (!nr_pages) 1086 return 0; 1087 1088 start = untagged_addr_remote(mm, start); 1089 1090 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1091 1092 do { 1093 struct page *page; 1094 unsigned int foll_flags = gup_flags; 1095 unsigned int page_increm; 1096 1097 /* first iteration or cross vma bound */ 1098 if (!vma || start >= vma->vm_end) { 1099 vma = find_extend_vma(mm, start); 1100 if (!vma && in_gate_area(mm, start)) { 1101 ret = get_gate_page(mm, start & PAGE_MASK, 1102 gup_flags, &vma, 1103 pages ? &pages[i] : NULL); 1104 if (ret) 1105 goto out; 1106 ctx.page_mask = 0; 1107 goto next_page; 1108 } 1109 1110 if (!vma) { 1111 ret = -EFAULT; 1112 goto out; 1113 } 1114 ret = check_vma_flags(vma, gup_flags); 1115 if (ret) 1116 goto out; 1117 1118 if (is_vm_hugetlb_page(vma)) { 1119 i = follow_hugetlb_page(mm, vma, pages, vmas, 1120 &start, &nr_pages, i, 1121 gup_flags, locked); 1122 if (!*locked) { 1123 /* 1124 * We've got a VM_FAULT_RETRY 1125 * and we've lost mmap_lock. 1126 * We must stop here. 1127 */ 1128 BUG_ON(gup_flags & FOLL_NOWAIT); 1129 goto out; 1130 } 1131 continue; 1132 } 1133 } 1134 retry: 1135 /* 1136 * If we have a pending SIGKILL, don't keep faulting pages and 1137 * potentially allocating memory. 1138 */ 1139 if (fatal_signal_pending(current)) { 1140 ret = -EINTR; 1141 goto out; 1142 } 1143 cond_resched(); 1144 1145 page = follow_page_mask(vma, start, foll_flags, &ctx); 1146 if (!page || PTR_ERR(page) == -EMLINK) { 1147 ret = faultin_page(vma, start, &foll_flags, 1148 PTR_ERR(page) == -EMLINK, locked); 1149 switch (ret) { 1150 case 0: 1151 goto retry; 1152 case -EBUSY: 1153 case -EAGAIN: 1154 ret = 0; 1155 fallthrough; 1156 case -EFAULT: 1157 case -ENOMEM: 1158 case -EHWPOISON: 1159 goto out; 1160 } 1161 BUG(); 1162 } else if (PTR_ERR(page) == -EEXIST) { 1163 /* 1164 * Proper page table entry exists, but no corresponding 1165 * struct page. If the caller expects **pages to be 1166 * filled in, bail out now, because that can't be done 1167 * for this page. 1168 */ 1169 if (pages) { 1170 ret = PTR_ERR(page); 1171 goto out; 1172 } 1173 1174 goto next_page; 1175 } else if (IS_ERR(page)) { 1176 ret = PTR_ERR(page); 1177 goto out; 1178 } 1179 if (pages) { 1180 pages[i] = page; 1181 flush_anon_page(vma, page, start); 1182 flush_dcache_page(page); 1183 ctx.page_mask = 0; 1184 } 1185 next_page: 1186 if (vmas) { 1187 vmas[i] = vma; 1188 ctx.page_mask = 0; 1189 } 1190 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1191 if (page_increm > nr_pages) 1192 page_increm = nr_pages; 1193 i += page_increm; 1194 start += page_increm * PAGE_SIZE; 1195 nr_pages -= page_increm; 1196 } while (nr_pages); 1197 out: 1198 if (ctx.pgmap) 1199 put_dev_pagemap(ctx.pgmap); 1200 return i ? i : ret; 1201 } 1202 1203 static bool vma_permits_fault(struct vm_area_struct *vma, 1204 unsigned int fault_flags) 1205 { 1206 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1207 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1208 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1209 1210 if (!(vm_flags & vma->vm_flags)) 1211 return false; 1212 1213 /* 1214 * The architecture might have a hardware protection 1215 * mechanism other than read/write that can deny access. 1216 * 1217 * gup always represents data access, not instruction 1218 * fetches, so execute=false here: 1219 */ 1220 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1221 return false; 1222 1223 return true; 1224 } 1225 1226 /** 1227 * fixup_user_fault() - manually resolve a user page fault 1228 * @mm: mm_struct of target mm 1229 * @address: user address 1230 * @fault_flags:flags to pass down to handle_mm_fault() 1231 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1232 * does not allow retry. If NULL, the caller must guarantee 1233 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1234 * 1235 * This is meant to be called in the specific scenario where for locking reasons 1236 * we try to access user memory in atomic context (within a pagefault_disable() 1237 * section), this returns -EFAULT, and we want to resolve the user fault before 1238 * trying again. 1239 * 1240 * Typically this is meant to be used by the futex code. 1241 * 1242 * The main difference with get_user_pages() is that this function will 1243 * unconditionally call handle_mm_fault() which will in turn perform all the 1244 * necessary SW fixup of the dirty and young bits in the PTE, while 1245 * get_user_pages() only guarantees to update these in the struct page. 1246 * 1247 * This is important for some architectures where those bits also gate the 1248 * access permission to the page because they are maintained in software. On 1249 * such architectures, gup() will not be enough to make a subsequent access 1250 * succeed. 1251 * 1252 * This function will not return with an unlocked mmap_lock. So it has not the 1253 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1254 */ 1255 int fixup_user_fault(struct mm_struct *mm, 1256 unsigned long address, unsigned int fault_flags, 1257 bool *unlocked) 1258 { 1259 struct vm_area_struct *vma; 1260 vm_fault_t ret; 1261 1262 address = untagged_addr_remote(mm, address); 1263 1264 if (unlocked) 1265 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1266 1267 retry: 1268 vma = find_extend_vma(mm, address); 1269 if (!vma || address < vma->vm_start) 1270 return -EFAULT; 1271 1272 if (!vma_permits_fault(vma, fault_flags)) 1273 return -EFAULT; 1274 1275 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1276 fatal_signal_pending(current)) 1277 return -EINTR; 1278 1279 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1280 1281 if (ret & VM_FAULT_COMPLETED) { 1282 /* 1283 * NOTE: it's a pity that we need to retake the lock here 1284 * to pair with the unlock() in the callers. Ideally we 1285 * could tell the callers so they do not need to unlock. 1286 */ 1287 mmap_read_lock(mm); 1288 *unlocked = true; 1289 return 0; 1290 } 1291 1292 if (ret & VM_FAULT_ERROR) { 1293 int err = vm_fault_to_errno(ret, 0); 1294 1295 if (err) 1296 return err; 1297 BUG(); 1298 } 1299 1300 if (ret & VM_FAULT_RETRY) { 1301 mmap_read_lock(mm); 1302 *unlocked = true; 1303 fault_flags |= FAULT_FLAG_TRIED; 1304 goto retry; 1305 } 1306 1307 return 0; 1308 } 1309 EXPORT_SYMBOL_GPL(fixup_user_fault); 1310 1311 /* 1312 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1313 * specified, it'll also respond to generic signals. The caller of GUP 1314 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1315 */ 1316 static bool gup_signal_pending(unsigned int flags) 1317 { 1318 if (fatal_signal_pending(current)) 1319 return true; 1320 1321 if (!(flags & FOLL_INTERRUPTIBLE)) 1322 return false; 1323 1324 return signal_pending(current); 1325 } 1326 1327 /* 1328 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1329 * the caller. This function may drop the mmap_lock. If it does so, then it will 1330 * set (*locked = 0). 1331 * 1332 * (*locked == 0) means that the caller expects this function to acquire and 1333 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1334 * the function returns, even though it may have changed temporarily during 1335 * function execution. 1336 * 1337 * Please note that this function, unlike __get_user_pages(), will not return 0 1338 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1339 */ 1340 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1341 unsigned long start, 1342 unsigned long nr_pages, 1343 struct page **pages, 1344 struct vm_area_struct **vmas, 1345 int *locked, 1346 unsigned int flags) 1347 { 1348 long ret, pages_done; 1349 bool must_unlock = false; 1350 1351 /* 1352 * The internal caller expects GUP to manage the lock internally and the 1353 * lock must be released when this returns. 1354 */ 1355 if (!*locked) { 1356 if (mmap_read_lock_killable(mm)) 1357 return -EAGAIN; 1358 must_unlock = true; 1359 *locked = 1; 1360 } 1361 else 1362 mmap_assert_locked(mm); 1363 1364 if (flags & FOLL_PIN) 1365 mm_set_has_pinned_flag(&mm->flags); 1366 1367 /* 1368 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1369 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1370 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1371 * for FOLL_GET, not for the newer FOLL_PIN. 1372 * 1373 * FOLL_PIN always expects pages to be non-null, but no need to assert 1374 * that here, as any failures will be obvious enough. 1375 */ 1376 if (pages && !(flags & FOLL_PIN)) 1377 flags |= FOLL_GET; 1378 1379 pages_done = 0; 1380 for (;;) { 1381 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1382 vmas, locked); 1383 if (!(flags & FOLL_UNLOCKABLE)) { 1384 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1385 pages_done = ret; 1386 break; 1387 } 1388 1389 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1390 if (!*locked) { 1391 BUG_ON(ret < 0); 1392 BUG_ON(ret >= nr_pages); 1393 } 1394 1395 if (ret > 0) { 1396 nr_pages -= ret; 1397 pages_done += ret; 1398 if (!nr_pages) 1399 break; 1400 } 1401 if (*locked) { 1402 /* 1403 * VM_FAULT_RETRY didn't trigger or it was a 1404 * FOLL_NOWAIT. 1405 */ 1406 if (!pages_done) 1407 pages_done = ret; 1408 break; 1409 } 1410 /* 1411 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1412 * For the prefault case (!pages) we only update counts. 1413 */ 1414 if (likely(pages)) 1415 pages += ret; 1416 start += ret << PAGE_SHIFT; 1417 1418 /* The lock was temporarily dropped, so we must unlock later */ 1419 must_unlock = true; 1420 1421 retry: 1422 /* 1423 * Repeat on the address that fired VM_FAULT_RETRY 1424 * with both FAULT_FLAG_ALLOW_RETRY and 1425 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1426 * by fatal signals of even common signals, depending on 1427 * the caller's request. So we need to check it before we 1428 * start trying again otherwise it can loop forever. 1429 */ 1430 if (gup_signal_pending(flags)) { 1431 if (!pages_done) 1432 pages_done = -EINTR; 1433 break; 1434 } 1435 1436 ret = mmap_read_lock_killable(mm); 1437 if (ret) { 1438 BUG_ON(ret > 0); 1439 if (!pages_done) 1440 pages_done = ret; 1441 break; 1442 } 1443 1444 *locked = 1; 1445 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1446 pages, NULL, locked); 1447 if (!*locked) { 1448 /* Continue to retry until we succeeded */ 1449 BUG_ON(ret != 0); 1450 goto retry; 1451 } 1452 if (ret != 1) { 1453 BUG_ON(ret > 1); 1454 if (!pages_done) 1455 pages_done = ret; 1456 break; 1457 } 1458 nr_pages--; 1459 pages_done++; 1460 if (!nr_pages) 1461 break; 1462 if (likely(pages)) 1463 pages++; 1464 start += PAGE_SIZE; 1465 } 1466 if (must_unlock && *locked) { 1467 /* 1468 * We either temporarily dropped the lock, or the caller 1469 * requested that we both acquire and drop the lock. Either way, 1470 * we must now unlock, and notify the caller of that state. 1471 */ 1472 mmap_read_unlock(mm); 1473 *locked = 0; 1474 } 1475 return pages_done; 1476 } 1477 1478 /** 1479 * populate_vma_page_range() - populate a range of pages in the vma. 1480 * @vma: target vma 1481 * @start: start address 1482 * @end: end address 1483 * @locked: whether the mmap_lock is still held 1484 * 1485 * This takes care of mlocking the pages too if VM_LOCKED is set. 1486 * 1487 * Return either number of pages pinned in the vma, or a negative error 1488 * code on error. 1489 * 1490 * vma->vm_mm->mmap_lock must be held. 1491 * 1492 * If @locked is NULL, it may be held for read or write and will 1493 * be unperturbed. 1494 * 1495 * If @locked is non-NULL, it must held for read only and may be 1496 * released. If it's released, *@locked will be set to 0. 1497 */ 1498 long populate_vma_page_range(struct vm_area_struct *vma, 1499 unsigned long start, unsigned long end, int *locked) 1500 { 1501 struct mm_struct *mm = vma->vm_mm; 1502 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1503 int local_locked = 1; 1504 int gup_flags; 1505 long ret; 1506 1507 VM_BUG_ON(!PAGE_ALIGNED(start)); 1508 VM_BUG_ON(!PAGE_ALIGNED(end)); 1509 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1510 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1511 mmap_assert_locked(mm); 1512 1513 /* 1514 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1515 * faultin_page() to break COW, so it has no work to do here. 1516 */ 1517 if (vma->vm_flags & VM_LOCKONFAULT) 1518 return nr_pages; 1519 1520 gup_flags = FOLL_TOUCH; 1521 /* 1522 * We want to touch writable mappings with a write fault in order 1523 * to break COW, except for shared mappings because these don't COW 1524 * and we would not want to dirty them for nothing. 1525 */ 1526 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1527 gup_flags |= FOLL_WRITE; 1528 1529 /* 1530 * We want mlock to succeed for regions that have any permissions 1531 * other than PROT_NONE. 1532 */ 1533 if (vma_is_accessible(vma)) 1534 gup_flags |= FOLL_FORCE; 1535 1536 if (locked) 1537 gup_flags |= FOLL_UNLOCKABLE; 1538 1539 /* 1540 * We made sure addr is within a VMA, so the following will 1541 * not result in a stack expansion that recurses back here. 1542 */ 1543 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1544 NULL, NULL, locked ? locked : &local_locked); 1545 lru_add_drain(); 1546 return ret; 1547 } 1548 1549 /* 1550 * faultin_vma_page_range() - populate (prefault) page tables inside the 1551 * given VMA range readable/writable 1552 * 1553 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1554 * 1555 * @vma: target vma 1556 * @start: start address 1557 * @end: end address 1558 * @write: whether to prefault readable or writable 1559 * @locked: whether the mmap_lock is still held 1560 * 1561 * Returns either number of processed pages in the vma, or a negative error 1562 * code on error (see __get_user_pages()). 1563 * 1564 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1565 * covered by the VMA. If it's released, *@locked will be set to 0. 1566 */ 1567 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1568 unsigned long end, bool write, int *locked) 1569 { 1570 struct mm_struct *mm = vma->vm_mm; 1571 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1572 int gup_flags; 1573 long ret; 1574 1575 VM_BUG_ON(!PAGE_ALIGNED(start)); 1576 VM_BUG_ON(!PAGE_ALIGNED(end)); 1577 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1578 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1579 mmap_assert_locked(mm); 1580 1581 /* 1582 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1583 * the page dirty with FOLL_WRITE -- which doesn't make a 1584 * difference with !FOLL_FORCE, because the page is writable 1585 * in the page table. 1586 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1587 * a poisoned page. 1588 * !FOLL_FORCE: Require proper access permissions. 1589 */ 1590 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1591 if (write) 1592 gup_flags |= FOLL_WRITE; 1593 1594 /* 1595 * We want to report -EINVAL instead of -EFAULT for any permission 1596 * problems or incompatible mappings. 1597 */ 1598 if (check_vma_flags(vma, gup_flags)) 1599 return -EINVAL; 1600 1601 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1602 NULL, NULL, locked); 1603 lru_add_drain(); 1604 return ret; 1605 } 1606 1607 /* 1608 * __mm_populate - populate and/or mlock pages within a range of address space. 1609 * 1610 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1611 * flags. VMAs must be already marked with the desired vm_flags, and 1612 * mmap_lock must not be held. 1613 */ 1614 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1615 { 1616 struct mm_struct *mm = current->mm; 1617 unsigned long end, nstart, nend; 1618 struct vm_area_struct *vma = NULL; 1619 int locked = 0; 1620 long ret = 0; 1621 1622 end = start + len; 1623 1624 for (nstart = start; nstart < end; nstart = nend) { 1625 /* 1626 * We want to fault in pages for [nstart; end) address range. 1627 * Find first corresponding VMA. 1628 */ 1629 if (!locked) { 1630 locked = 1; 1631 mmap_read_lock(mm); 1632 vma = find_vma_intersection(mm, nstart, end); 1633 } else if (nstart >= vma->vm_end) 1634 vma = find_vma_intersection(mm, vma->vm_end, end); 1635 1636 if (!vma) 1637 break; 1638 /* 1639 * Set [nstart; nend) to intersection of desired address 1640 * range with the first VMA. Also, skip undesirable VMA types. 1641 */ 1642 nend = min(end, vma->vm_end); 1643 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1644 continue; 1645 if (nstart < vma->vm_start) 1646 nstart = vma->vm_start; 1647 /* 1648 * Now fault in a range of pages. populate_vma_page_range() 1649 * double checks the vma flags, so that it won't mlock pages 1650 * if the vma was already munlocked. 1651 */ 1652 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1653 if (ret < 0) { 1654 if (ignore_errors) { 1655 ret = 0; 1656 continue; /* continue at next VMA */ 1657 } 1658 break; 1659 } 1660 nend = nstart + ret * PAGE_SIZE; 1661 ret = 0; 1662 } 1663 if (locked) 1664 mmap_read_unlock(mm); 1665 return ret; /* 0 or negative error code */ 1666 } 1667 #else /* CONFIG_MMU */ 1668 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1669 unsigned long nr_pages, struct page **pages, 1670 struct vm_area_struct **vmas, int *locked, 1671 unsigned int foll_flags) 1672 { 1673 struct vm_area_struct *vma; 1674 bool must_unlock = false; 1675 unsigned long vm_flags; 1676 long i; 1677 1678 if (!nr_pages) 1679 return 0; 1680 1681 /* 1682 * The internal caller expects GUP to manage the lock internally and the 1683 * lock must be released when this returns. 1684 */ 1685 if (!*locked) { 1686 if (mmap_read_lock_killable(mm)) 1687 return -EAGAIN; 1688 must_unlock = true; 1689 *locked = 1; 1690 } 1691 1692 /* calculate required read or write permissions. 1693 * If FOLL_FORCE is set, we only require the "MAY" flags. 1694 */ 1695 vm_flags = (foll_flags & FOLL_WRITE) ? 1696 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1697 vm_flags &= (foll_flags & FOLL_FORCE) ? 1698 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1699 1700 for (i = 0; i < nr_pages; i++) { 1701 vma = find_vma(mm, start); 1702 if (!vma) 1703 break; 1704 1705 /* protect what we can, including chardevs */ 1706 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1707 !(vm_flags & vma->vm_flags)) 1708 break; 1709 1710 if (pages) { 1711 pages[i] = virt_to_page((void *)start); 1712 if (pages[i]) 1713 get_page(pages[i]); 1714 } 1715 if (vmas) 1716 vmas[i] = vma; 1717 start = (start + PAGE_SIZE) & PAGE_MASK; 1718 } 1719 1720 if (must_unlock && *locked) { 1721 mmap_read_unlock(mm); 1722 *locked = 0; 1723 } 1724 1725 return i ? : -EFAULT; 1726 } 1727 #endif /* !CONFIG_MMU */ 1728 1729 /** 1730 * fault_in_writeable - fault in userspace address range for writing 1731 * @uaddr: start of address range 1732 * @size: size of address range 1733 * 1734 * Returns the number of bytes not faulted in (like copy_to_user() and 1735 * copy_from_user()). 1736 */ 1737 size_t fault_in_writeable(char __user *uaddr, size_t size) 1738 { 1739 char __user *start = uaddr, *end; 1740 1741 if (unlikely(size == 0)) 1742 return 0; 1743 if (!user_write_access_begin(uaddr, size)) 1744 return size; 1745 if (!PAGE_ALIGNED(uaddr)) { 1746 unsafe_put_user(0, uaddr, out); 1747 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1748 } 1749 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1750 if (unlikely(end < start)) 1751 end = NULL; 1752 while (uaddr != end) { 1753 unsafe_put_user(0, uaddr, out); 1754 uaddr += PAGE_SIZE; 1755 } 1756 1757 out: 1758 user_write_access_end(); 1759 if (size > uaddr - start) 1760 return size - (uaddr - start); 1761 return 0; 1762 } 1763 EXPORT_SYMBOL(fault_in_writeable); 1764 1765 /** 1766 * fault_in_subpage_writeable - fault in an address range for writing 1767 * @uaddr: start of address range 1768 * @size: size of address range 1769 * 1770 * Fault in a user address range for writing while checking for permissions at 1771 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1772 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1773 * 1774 * Returns the number of bytes not faulted in (like copy_to_user() and 1775 * copy_from_user()). 1776 */ 1777 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1778 { 1779 size_t faulted_in; 1780 1781 /* 1782 * Attempt faulting in at page granularity first for page table 1783 * permission checking. The arch-specific probe_subpage_writeable() 1784 * functions may not check for this. 1785 */ 1786 faulted_in = size - fault_in_writeable(uaddr, size); 1787 if (faulted_in) 1788 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1789 1790 return size - faulted_in; 1791 } 1792 EXPORT_SYMBOL(fault_in_subpage_writeable); 1793 1794 /* 1795 * fault_in_safe_writeable - fault in an address range for writing 1796 * @uaddr: start of address range 1797 * @size: length of address range 1798 * 1799 * Faults in an address range for writing. This is primarily useful when we 1800 * already know that some or all of the pages in the address range aren't in 1801 * memory. 1802 * 1803 * Unlike fault_in_writeable(), this function is non-destructive. 1804 * 1805 * Note that we don't pin or otherwise hold the pages referenced that we fault 1806 * in. There's no guarantee that they'll stay in memory for any duration of 1807 * time. 1808 * 1809 * Returns the number of bytes not faulted in, like copy_to_user() and 1810 * copy_from_user(). 1811 */ 1812 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1813 { 1814 unsigned long start = (unsigned long)uaddr, end; 1815 struct mm_struct *mm = current->mm; 1816 bool unlocked = false; 1817 1818 if (unlikely(size == 0)) 1819 return 0; 1820 end = PAGE_ALIGN(start + size); 1821 if (end < start) 1822 end = 0; 1823 1824 mmap_read_lock(mm); 1825 do { 1826 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1827 break; 1828 start = (start + PAGE_SIZE) & PAGE_MASK; 1829 } while (start != end); 1830 mmap_read_unlock(mm); 1831 1832 if (size > (unsigned long)uaddr - start) 1833 return size - ((unsigned long)uaddr - start); 1834 return 0; 1835 } 1836 EXPORT_SYMBOL(fault_in_safe_writeable); 1837 1838 /** 1839 * fault_in_readable - fault in userspace address range for reading 1840 * @uaddr: start of user address range 1841 * @size: size of user address range 1842 * 1843 * Returns the number of bytes not faulted in (like copy_to_user() and 1844 * copy_from_user()). 1845 */ 1846 size_t fault_in_readable(const char __user *uaddr, size_t size) 1847 { 1848 const char __user *start = uaddr, *end; 1849 volatile char c; 1850 1851 if (unlikely(size == 0)) 1852 return 0; 1853 if (!user_read_access_begin(uaddr, size)) 1854 return size; 1855 if (!PAGE_ALIGNED(uaddr)) { 1856 unsafe_get_user(c, uaddr, out); 1857 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1858 } 1859 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1860 if (unlikely(end < start)) 1861 end = NULL; 1862 while (uaddr != end) { 1863 unsafe_get_user(c, uaddr, out); 1864 uaddr += PAGE_SIZE; 1865 } 1866 1867 out: 1868 user_read_access_end(); 1869 (void)c; 1870 if (size > uaddr - start) 1871 return size - (uaddr - start); 1872 return 0; 1873 } 1874 EXPORT_SYMBOL(fault_in_readable); 1875 1876 /** 1877 * get_dump_page() - pin user page in memory while writing it to core dump 1878 * @addr: user address 1879 * 1880 * Returns struct page pointer of user page pinned for dump, 1881 * to be freed afterwards by put_page(). 1882 * 1883 * Returns NULL on any kind of failure - a hole must then be inserted into 1884 * the corefile, to preserve alignment with its headers; and also returns 1885 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1886 * allowing a hole to be left in the corefile to save disk space. 1887 * 1888 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1889 */ 1890 #ifdef CONFIG_ELF_CORE 1891 struct page *get_dump_page(unsigned long addr) 1892 { 1893 struct page *page; 1894 int locked = 0; 1895 int ret; 1896 1897 ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL, 1898 &locked, 1899 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1900 return (ret == 1) ? page : NULL; 1901 } 1902 #endif /* CONFIG_ELF_CORE */ 1903 1904 #ifdef CONFIG_MIGRATION 1905 /* 1906 * Returns the number of collected pages. Return value is always >= 0. 1907 */ 1908 static unsigned long collect_longterm_unpinnable_pages( 1909 struct list_head *movable_page_list, 1910 unsigned long nr_pages, 1911 struct page **pages) 1912 { 1913 unsigned long i, collected = 0; 1914 struct folio *prev_folio = NULL; 1915 bool drain_allow = true; 1916 1917 for (i = 0; i < nr_pages; i++) { 1918 struct folio *folio = page_folio(pages[i]); 1919 1920 if (folio == prev_folio) 1921 continue; 1922 prev_folio = folio; 1923 1924 if (folio_is_longterm_pinnable(folio)) 1925 continue; 1926 1927 collected++; 1928 1929 if (folio_is_device_coherent(folio)) 1930 continue; 1931 1932 if (folio_test_hugetlb(folio)) { 1933 isolate_hugetlb(folio, movable_page_list); 1934 continue; 1935 } 1936 1937 if (!folio_test_lru(folio) && drain_allow) { 1938 lru_add_drain_all(); 1939 drain_allow = false; 1940 } 1941 1942 if (!folio_isolate_lru(folio)) 1943 continue; 1944 1945 list_add_tail(&folio->lru, movable_page_list); 1946 node_stat_mod_folio(folio, 1947 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1948 folio_nr_pages(folio)); 1949 } 1950 1951 return collected; 1952 } 1953 1954 /* 1955 * Unpins all pages and migrates device coherent pages and movable_page_list. 1956 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 1957 * (or partial success). 1958 */ 1959 static int migrate_longterm_unpinnable_pages( 1960 struct list_head *movable_page_list, 1961 unsigned long nr_pages, 1962 struct page **pages) 1963 { 1964 int ret; 1965 unsigned long i; 1966 1967 for (i = 0; i < nr_pages; i++) { 1968 struct folio *folio = page_folio(pages[i]); 1969 1970 if (folio_is_device_coherent(folio)) { 1971 /* 1972 * Migration will fail if the page is pinned, so convert 1973 * the pin on the source page to a normal reference. 1974 */ 1975 pages[i] = NULL; 1976 folio_get(folio); 1977 gup_put_folio(folio, 1, FOLL_PIN); 1978 1979 if (migrate_device_coherent_page(&folio->page)) { 1980 ret = -EBUSY; 1981 goto err; 1982 } 1983 1984 continue; 1985 } 1986 1987 /* 1988 * We can't migrate pages with unexpected references, so drop 1989 * the reference obtained by __get_user_pages_locked(). 1990 * Migrating pages have been added to movable_page_list after 1991 * calling folio_isolate_lru() which takes a reference so the 1992 * page won't be freed if it's migrating. 1993 */ 1994 unpin_user_page(pages[i]); 1995 pages[i] = NULL; 1996 } 1997 1998 if (!list_empty(movable_page_list)) { 1999 struct migration_target_control mtc = { 2000 .nid = NUMA_NO_NODE, 2001 .gfp_mask = GFP_USER | __GFP_NOWARN, 2002 }; 2003 2004 if (migrate_pages(movable_page_list, alloc_migration_target, 2005 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2006 MR_LONGTERM_PIN, NULL)) { 2007 ret = -ENOMEM; 2008 goto err; 2009 } 2010 } 2011 2012 putback_movable_pages(movable_page_list); 2013 2014 return -EAGAIN; 2015 2016 err: 2017 for (i = 0; i < nr_pages; i++) 2018 if (pages[i]) 2019 unpin_user_page(pages[i]); 2020 putback_movable_pages(movable_page_list); 2021 2022 return ret; 2023 } 2024 2025 /* 2026 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2027 * pages in the range are required to be pinned via FOLL_PIN, before calling 2028 * this routine. 2029 * 2030 * If any pages in the range are not allowed to be pinned, then this routine 2031 * will migrate those pages away, unpin all the pages in the range and return 2032 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2033 * call this routine again. 2034 * 2035 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2036 * The caller should give up, and propagate the error back up the call stack. 2037 * 2038 * If everything is OK and all pages in the range are allowed to be pinned, then 2039 * this routine leaves all pages pinned and returns zero for success. 2040 */ 2041 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2042 struct page **pages) 2043 { 2044 unsigned long collected; 2045 LIST_HEAD(movable_page_list); 2046 2047 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2048 nr_pages, pages); 2049 if (!collected) 2050 return 0; 2051 2052 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2053 pages); 2054 } 2055 #else 2056 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2057 struct page **pages) 2058 { 2059 return 0; 2060 } 2061 #endif /* CONFIG_MIGRATION */ 2062 2063 /* 2064 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2065 * allows us to process the FOLL_LONGTERM flag. 2066 */ 2067 static long __gup_longterm_locked(struct mm_struct *mm, 2068 unsigned long start, 2069 unsigned long nr_pages, 2070 struct page **pages, 2071 struct vm_area_struct **vmas, 2072 int *locked, 2073 unsigned int gup_flags) 2074 { 2075 unsigned int flags; 2076 long rc, nr_pinned_pages; 2077 2078 if (!(gup_flags & FOLL_LONGTERM)) 2079 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2080 locked, gup_flags); 2081 2082 flags = memalloc_pin_save(); 2083 do { 2084 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2085 pages, vmas, locked, 2086 gup_flags); 2087 if (nr_pinned_pages <= 0) { 2088 rc = nr_pinned_pages; 2089 break; 2090 } 2091 2092 /* FOLL_LONGTERM implies FOLL_PIN */ 2093 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2094 } while (rc == -EAGAIN); 2095 memalloc_pin_restore(flags); 2096 return rc ? rc : nr_pinned_pages; 2097 } 2098 2099 /* 2100 * Check that the given flags are valid for the exported gup/pup interface, and 2101 * update them with the required flags that the caller must have set. 2102 */ 2103 static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas, 2104 int *locked, unsigned int *gup_flags_p, 2105 unsigned int to_set) 2106 { 2107 unsigned int gup_flags = *gup_flags_p; 2108 2109 /* 2110 * These flags not allowed to be specified externally to the gup 2111 * interfaces: 2112 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2113 * - FOLL_REMOTE is internal only and used on follow_page() 2114 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2115 */ 2116 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2117 FOLL_REMOTE | FOLL_FAST_ONLY))) 2118 return false; 2119 2120 gup_flags |= to_set; 2121 if (locked) { 2122 /* At the external interface locked must be set */ 2123 if (WARN_ON_ONCE(*locked != 1)) 2124 return false; 2125 2126 gup_flags |= FOLL_UNLOCKABLE; 2127 } 2128 2129 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2130 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2131 (FOLL_PIN | FOLL_GET))) 2132 return false; 2133 2134 /* LONGTERM can only be specified when pinning */ 2135 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2136 return false; 2137 2138 /* Pages input must be given if using GET/PIN */ 2139 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2140 return false; 2141 2142 /* We want to allow the pgmap to be hot-unplugged at all times */ 2143 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2144 (gup_flags & FOLL_PCI_P2PDMA))) 2145 return false; 2146 2147 /* 2148 * Can't use VMAs with locked, as locked allows GUP to unlock 2149 * which invalidates the vmas array 2150 */ 2151 if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE))) 2152 return false; 2153 2154 *gup_flags_p = gup_flags; 2155 return true; 2156 } 2157 2158 #ifdef CONFIG_MMU 2159 /** 2160 * get_user_pages_remote() - pin user pages in memory 2161 * @mm: mm_struct of target mm 2162 * @start: starting user address 2163 * @nr_pages: number of pages from start to pin 2164 * @gup_flags: flags modifying lookup behaviour 2165 * @pages: array that receives pointers to the pages pinned. 2166 * Should be at least nr_pages long. Or NULL, if caller 2167 * only intends to ensure the pages are faulted in. 2168 * @locked: pointer to lock flag indicating whether lock is held and 2169 * subsequently whether VM_FAULT_RETRY functionality can be 2170 * utilised. Lock must initially be held. 2171 * 2172 * Returns either number of pages pinned (which may be less than the 2173 * number requested), or an error. Details about the return value: 2174 * 2175 * -- If nr_pages is 0, returns 0. 2176 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2177 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2178 * pages pinned. Again, this may be less than nr_pages. 2179 * 2180 * The caller is responsible for releasing returned @pages, via put_page(). 2181 * 2182 * Must be called with mmap_lock held for read or write. 2183 * 2184 * get_user_pages_remote walks a process's page tables and takes a reference 2185 * to each struct page that each user address corresponds to at a given 2186 * instant. That is, it takes the page that would be accessed if a user 2187 * thread accesses the given user virtual address at that instant. 2188 * 2189 * This does not guarantee that the page exists in the user mappings when 2190 * get_user_pages_remote returns, and there may even be a completely different 2191 * page there in some cases (eg. if mmapped pagecache has been invalidated 2192 * and subsequently re-faulted). However it does guarantee that the page 2193 * won't be freed completely. And mostly callers simply care that the page 2194 * contains data that was valid *at some point in time*. Typically, an IO 2195 * or similar operation cannot guarantee anything stronger anyway because 2196 * locks can't be held over the syscall boundary. 2197 * 2198 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2199 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2200 * be called after the page is finished with, and before put_page is called. 2201 * 2202 * get_user_pages_remote is typically used for fewer-copy IO operations, 2203 * to get a handle on the memory by some means other than accesses 2204 * via the user virtual addresses. The pages may be submitted for 2205 * DMA to devices or accessed via their kernel linear mapping (via the 2206 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2207 * 2208 * See also get_user_pages_fast, for performance critical applications. 2209 * 2210 * get_user_pages_remote should be phased out in favor of 2211 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2212 * should use get_user_pages_remote because it cannot pass 2213 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2214 */ 2215 long get_user_pages_remote(struct mm_struct *mm, 2216 unsigned long start, unsigned long nr_pages, 2217 unsigned int gup_flags, struct page **pages, 2218 int *locked) 2219 { 2220 int local_locked = 1; 2221 2222 if (!is_valid_gup_args(pages, NULL, locked, &gup_flags, 2223 FOLL_TOUCH | FOLL_REMOTE)) 2224 return -EINVAL; 2225 2226 return __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2227 locked ? locked : &local_locked, 2228 gup_flags); 2229 } 2230 EXPORT_SYMBOL(get_user_pages_remote); 2231 2232 #else /* CONFIG_MMU */ 2233 long get_user_pages_remote(struct mm_struct *mm, 2234 unsigned long start, unsigned long nr_pages, 2235 unsigned int gup_flags, struct page **pages, 2236 int *locked) 2237 { 2238 return 0; 2239 } 2240 #endif /* !CONFIG_MMU */ 2241 2242 /** 2243 * get_user_pages() - pin user pages in memory 2244 * @start: starting user address 2245 * @nr_pages: number of pages from start to pin 2246 * @gup_flags: flags modifying lookup behaviour 2247 * @pages: array that receives pointers to the pages pinned. 2248 * Should be at least nr_pages long. Or NULL, if caller 2249 * only intends to ensure the pages are faulted in. 2250 * 2251 * This is the same as get_user_pages_remote(), just with a less-flexible 2252 * calling convention where we assume that the mm being operated on belongs to 2253 * the current task, and doesn't allow passing of a locked parameter. We also 2254 * obviously don't pass FOLL_REMOTE in here. 2255 */ 2256 long get_user_pages(unsigned long start, unsigned long nr_pages, 2257 unsigned int gup_flags, struct page **pages) 2258 { 2259 int locked = 1; 2260 2261 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_TOUCH)) 2262 return -EINVAL; 2263 2264 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2265 NULL, &locked, gup_flags); 2266 } 2267 EXPORT_SYMBOL(get_user_pages); 2268 2269 /* 2270 * get_user_pages_unlocked() is suitable to replace the form: 2271 * 2272 * mmap_read_lock(mm); 2273 * get_user_pages(mm, ..., pages, NULL); 2274 * mmap_read_unlock(mm); 2275 * 2276 * with: 2277 * 2278 * get_user_pages_unlocked(mm, ..., pages); 2279 * 2280 * It is functionally equivalent to get_user_pages_fast so 2281 * get_user_pages_fast should be used instead if specific gup_flags 2282 * (e.g. FOLL_FORCE) are not required. 2283 */ 2284 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2285 struct page **pages, unsigned int gup_flags) 2286 { 2287 int locked = 0; 2288 2289 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, 2290 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2291 return -EINVAL; 2292 2293 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2294 NULL, &locked, gup_flags); 2295 } 2296 EXPORT_SYMBOL(get_user_pages_unlocked); 2297 2298 /* 2299 * Fast GUP 2300 * 2301 * get_user_pages_fast attempts to pin user pages by walking the page 2302 * tables directly and avoids taking locks. Thus the walker needs to be 2303 * protected from page table pages being freed from under it, and should 2304 * block any THP splits. 2305 * 2306 * One way to achieve this is to have the walker disable interrupts, and 2307 * rely on IPIs from the TLB flushing code blocking before the page table 2308 * pages are freed. This is unsuitable for architectures that do not need 2309 * to broadcast an IPI when invalidating TLBs. 2310 * 2311 * Another way to achieve this is to batch up page table containing pages 2312 * belonging to more than one mm_user, then rcu_sched a callback to free those 2313 * pages. Disabling interrupts will allow the fast_gup walker to both block 2314 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2315 * (which is a relatively rare event). The code below adopts this strategy. 2316 * 2317 * Before activating this code, please be aware that the following assumptions 2318 * are currently made: 2319 * 2320 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2321 * free pages containing page tables or TLB flushing requires IPI broadcast. 2322 * 2323 * *) ptes can be read atomically by the architecture. 2324 * 2325 * *) access_ok is sufficient to validate userspace address ranges. 2326 * 2327 * The last two assumptions can be relaxed by the addition of helper functions. 2328 * 2329 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2330 */ 2331 #ifdef CONFIG_HAVE_FAST_GUP 2332 2333 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2334 unsigned int flags, 2335 struct page **pages) 2336 { 2337 while ((*nr) - nr_start) { 2338 struct page *page = pages[--(*nr)]; 2339 2340 ClearPageReferenced(page); 2341 if (flags & FOLL_PIN) 2342 unpin_user_page(page); 2343 else 2344 put_page(page); 2345 } 2346 } 2347 2348 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2349 /* 2350 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2351 * operations. 2352 * 2353 * To pin the page, fast-gup needs to do below in order: 2354 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2355 * 2356 * For the rest of pgtable operations where pgtable updates can be racy 2357 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2358 * is pinned. 2359 * 2360 * Above will work for all pte-level operations, including THP split. 2361 * 2362 * For THP collapse, it's a bit more complicated because fast-gup may be 2363 * walking a pgtable page that is being freed (pte is still valid but pmd 2364 * can be cleared already). To avoid race in such condition, we need to 2365 * also check pmd here to make sure pmd doesn't change (corresponds to 2366 * pmdp_collapse_flush() in the THP collapse code path). 2367 */ 2368 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2369 unsigned long end, unsigned int flags, 2370 struct page **pages, int *nr) 2371 { 2372 struct dev_pagemap *pgmap = NULL; 2373 int nr_start = *nr, ret = 0; 2374 pte_t *ptep, *ptem; 2375 2376 ptem = ptep = pte_offset_map(&pmd, addr); 2377 do { 2378 pte_t pte = ptep_get_lockless(ptep); 2379 struct page *page; 2380 struct folio *folio; 2381 2382 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2383 goto pte_unmap; 2384 2385 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2386 goto pte_unmap; 2387 2388 if (pte_devmap(pte)) { 2389 if (unlikely(flags & FOLL_LONGTERM)) 2390 goto pte_unmap; 2391 2392 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2393 if (unlikely(!pgmap)) { 2394 undo_dev_pagemap(nr, nr_start, flags, pages); 2395 goto pte_unmap; 2396 } 2397 } else if (pte_special(pte)) 2398 goto pte_unmap; 2399 2400 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2401 page = pte_page(pte); 2402 2403 folio = try_grab_folio(page, 1, flags); 2404 if (!folio) 2405 goto pte_unmap; 2406 2407 if (unlikely(page_is_secretmem(page))) { 2408 gup_put_folio(folio, 1, flags); 2409 goto pte_unmap; 2410 } 2411 2412 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2413 unlikely(pte_val(pte) != pte_val(*ptep))) { 2414 gup_put_folio(folio, 1, flags); 2415 goto pte_unmap; 2416 } 2417 2418 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2419 gup_put_folio(folio, 1, flags); 2420 goto pte_unmap; 2421 } 2422 2423 /* 2424 * We need to make the page accessible if and only if we are 2425 * going to access its content (the FOLL_PIN case). Please 2426 * see Documentation/core-api/pin_user_pages.rst for 2427 * details. 2428 */ 2429 if (flags & FOLL_PIN) { 2430 ret = arch_make_page_accessible(page); 2431 if (ret) { 2432 gup_put_folio(folio, 1, flags); 2433 goto pte_unmap; 2434 } 2435 } 2436 folio_set_referenced(folio); 2437 pages[*nr] = page; 2438 (*nr)++; 2439 } while (ptep++, addr += PAGE_SIZE, addr != end); 2440 2441 ret = 1; 2442 2443 pte_unmap: 2444 if (pgmap) 2445 put_dev_pagemap(pgmap); 2446 pte_unmap(ptem); 2447 return ret; 2448 } 2449 #else 2450 2451 /* 2452 * If we can't determine whether or not a pte is special, then fail immediately 2453 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2454 * to be special. 2455 * 2456 * For a futex to be placed on a THP tail page, get_futex_key requires a 2457 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2458 * useful to have gup_huge_pmd even if we can't operate on ptes. 2459 */ 2460 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2461 unsigned long end, unsigned int flags, 2462 struct page **pages, int *nr) 2463 { 2464 return 0; 2465 } 2466 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2467 2468 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2469 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2470 unsigned long end, unsigned int flags, 2471 struct page **pages, int *nr) 2472 { 2473 int nr_start = *nr; 2474 struct dev_pagemap *pgmap = NULL; 2475 2476 do { 2477 struct page *page = pfn_to_page(pfn); 2478 2479 pgmap = get_dev_pagemap(pfn, pgmap); 2480 if (unlikely(!pgmap)) { 2481 undo_dev_pagemap(nr, nr_start, flags, pages); 2482 break; 2483 } 2484 2485 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2486 undo_dev_pagemap(nr, nr_start, flags, pages); 2487 break; 2488 } 2489 2490 SetPageReferenced(page); 2491 pages[*nr] = page; 2492 if (unlikely(try_grab_page(page, flags))) { 2493 undo_dev_pagemap(nr, nr_start, flags, pages); 2494 break; 2495 } 2496 (*nr)++; 2497 pfn++; 2498 } while (addr += PAGE_SIZE, addr != end); 2499 2500 put_dev_pagemap(pgmap); 2501 return addr == end; 2502 } 2503 2504 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2505 unsigned long end, unsigned int flags, 2506 struct page **pages, int *nr) 2507 { 2508 unsigned long fault_pfn; 2509 int nr_start = *nr; 2510 2511 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2512 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2513 return 0; 2514 2515 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2516 undo_dev_pagemap(nr, nr_start, flags, pages); 2517 return 0; 2518 } 2519 return 1; 2520 } 2521 2522 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2523 unsigned long end, unsigned int flags, 2524 struct page **pages, int *nr) 2525 { 2526 unsigned long fault_pfn; 2527 int nr_start = *nr; 2528 2529 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2530 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2531 return 0; 2532 2533 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2534 undo_dev_pagemap(nr, nr_start, flags, pages); 2535 return 0; 2536 } 2537 return 1; 2538 } 2539 #else 2540 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2541 unsigned long end, unsigned int flags, 2542 struct page **pages, int *nr) 2543 { 2544 BUILD_BUG(); 2545 return 0; 2546 } 2547 2548 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2549 unsigned long end, unsigned int flags, 2550 struct page **pages, int *nr) 2551 { 2552 BUILD_BUG(); 2553 return 0; 2554 } 2555 #endif 2556 2557 static int record_subpages(struct page *page, unsigned long addr, 2558 unsigned long end, struct page **pages) 2559 { 2560 int nr; 2561 2562 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2563 pages[nr] = nth_page(page, nr); 2564 2565 return nr; 2566 } 2567 2568 #ifdef CONFIG_ARCH_HAS_HUGEPD 2569 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2570 unsigned long sz) 2571 { 2572 unsigned long __boundary = (addr + sz) & ~(sz-1); 2573 return (__boundary - 1 < end - 1) ? __boundary : end; 2574 } 2575 2576 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2577 unsigned long end, unsigned int flags, 2578 struct page **pages, int *nr) 2579 { 2580 unsigned long pte_end; 2581 struct page *page; 2582 struct folio *folio; 2583 pte_t pte; 2584 int refs; 2585 2586 pte_end = (addr + sz) & ~(sz-1); 2587 if (pte_end < end) 2588 end = pte_end; 2589 2590 pte = huge_ptep_get(ptep); 2591 2592 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2593 return 0; 2594 2595 /* hugepages are never "special" */ 2596 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2597 2598 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2599 refs = record_subpages(page, addr, end, pages + *nr); 2600 2601 folio = try_grab_folio(page, refs, flags); 2602 if (!folio) 2603 return 0; 2604 2605 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2606 gup_put_folio(folio, refs, flags); 2607 return 0; 2608 } 2609 2610 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2611 gup_put_folio(folio, refs, flags); 2612 return 0; 2613 } 2614 2615 *nr += refs; 2616 folio_set_referenced(folio); 2617 return 1; 2618 } 2619 2620 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2621 unsigned int pdshift, unsigned long end, unsigned int flags, 2622 struct page **pages, int *nr) 2623 { 2624 pte_t *ptep; 2625 unsigned long sz = 1UL << hugepd_shift(hugepd); 2626 unsigned long next; 2627 2628 ptep = hugepte_offset(hugepd, addr, pdshift); 2629 do { 2630 next = hugepte_addr_end(addr, end, sz); 2631 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2632 return 0; 2633 } while (ptep++, addr = next, addr != end); 2634 2635 return 1; 2636 } 2637 #else 2638 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2639 unsigned int pdshift, unsigned long end, unsigned int flags, 2640 struct page **pages, int *nr) 2641 { 2642 return 0; 2643 } 2644 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2645 2646 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2647 unsigned long end, unsigned int flags, 2648 struct page **pages, int *nr) 2649 { 2650 struct page *page; 2651 struct folio *folio; 2652 int refs; 2653 2654 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2655 return 0; 2656 2657 if (pmd_devmap(orig)) { 2658 if (unlikely(flags & FOLL_LONGTERM)) 2659 return 0; 2660 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2661 pages, nr); 2662 } 2663 2664 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2665 refs = record_subpages(page, addr, end, pages + *nr); 2666 2667 folio = try_grab_folio(page, refs, flags); 2668 if (!folio) 2669 return 0; 2670 2671 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2672 gup_put_folio(folio, refs, flags); 2673 return 0; 2674 } 2675 2676 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2677 gup_put_folio(folio, refs, flags); 2678 return 0; 2679 } 2680 2681 *nr += refs; 2682 folio_set_referenced(folio); 2683 return 1; 2684 } 2685 2686 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2687 unsigned long end, unsigned int flags, 2688 struct page **pages, int *nr) 2689 { 2690 struct page *page; 2691 struct folio *folio; 2692 int refs; 2693 2694 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2695 return 0; 2696 2697 if (pud_devmap(orig)) { 2698 if (unlikely(flags & FOLL_LONGTERM)) 2699 return 0; 2700 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2701 pages, nr); 2702 } 2703 2704 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2705 refs = record_subpages(page, addr, end, pages + *nr); 2706 2707 folio = try_grab_folio(page, refs, flags); 2708 if (!folio) 2709 return 0; 2710 2711 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2712 gup_put_folio(folio, refs, flags); 2713 return 0; 2714 } 2715 2716 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2717 gup_put_folio(folio, refs, flags); 2718 return 0; 2719 } 2720 2721 *nr += refs; 2722 folio_set_referenced(folio); 2723 return 1; 2724 } 2725 2726 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2727 unsigned long end, unsigned int flags, 2728 struct page **pages, int *nr) 2729 { 2730 int refs; 2731 struct page *page; 2732 struct folio *folio; 2733 2734 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2735 return 0; 2736 2737 BUILD_BUG_ON(pgd_devmap(orig)); 2738 2739 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2740 refs = record_subpages(page, addr, end, pages + *nr); 2741 2742 folio = try_grab_folio(page, refs, flags); 2743 if (!folio) 2744 return 0; 2745 2746 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2747 gup_put_folio(folio, refs, flags); 2748 return 0; 2749 } 2750 2751 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2752 gup_put_folio(folio, refs, flags); 2753 return 0; 2754 } 2755 2756 *nr += refs; 2757 folio_set_referenced(folio); 2758 return 1; 2759 } 2760 2761 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2762 unsigned int flags, struct page **pages, int *nr) 2763 { 2764 unsigned long next; 2765 pmd_t *pmdp; 2766 2767 pmdp = pmd_offset_lockless(pudp, pud, addr); 2768 do { 2769 pmd_t pmd = pmdp_get_lockless(pmdp); 2770 2771 next = pmd_addr_end(addr, end); 2772 if (!pmd_present(pmd)) 2773 return 0; 2774 2775 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2776 pmd_devmap(pmd))) { 2777 if (pmd_protnone(pmd) && 2778 !gup_can_follow_protnone(flags)) 2779 return 0; 2780 2781 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2782 pages, nr)) 2783 return 0; 2784 2785 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2786 /* 2787 * architecture have different format for hugetlbfs 2788 * pmd format and THP pmd format 2789 */ 2790 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2791 PMD_SHIFT, next, flags, pages, nr)) 2792 return 0; 2793 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2794 return 0; 2795 } while (pmdp++, addr = next, addr != end); 2796 2797 return 1; 2798 } 2799 2800 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2801 unsigned int flags, struct page **pages, int *nr) 2802 { 2803 unsigned long next; 2804 pud_t *pudp; 2805 2806 pudp = pud_offset_lockless(p4dp, p4d, addr); 2807 do { 2808 pud_t pud = READ_ONCE(*pudp); 2809 2810 next = pud_addr_end(addr, end); 2811 if (unlikely(!pud_present(pud))) 2812 return 0; 2813 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2814 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2815 pages, nr)) 2816 return 0; 2817 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2818 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2819 PUD_SHIFT, next, flags, pages, nr)) 2820 return 0; 2821 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2822 return 0; 2823 } while (pudp++, addr = next, addr != end); 2824 2825 return 1; 2826 } 2827 2828 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2829 unsigned int flags, struct page **pages, int *nr) 2830 { 2831 unsigned long next; 2832 p4d_t *p4dp; 2833 2834 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2835 do { 2836 p4d_t p4d = READ_ONCE(*p4dp); 2837 2838 next = p4d_addr_end(addr, end); 2839 if (p4d_none(p4d)) 2840 return 0; 2841 BUILD_BUG_ON(p4d_huge(p4d)); 2842 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2843 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2844 P4D_SHIFT, next, flags, pages, nr)) 2845 return 0; 2846 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2847 return 0; 2848 } while (p4dp++, addr = next, addr != end); 2849 2850 return 1; 2851 } 2852 2853 static void gup_pgd_range(unsigned long addr, unsigned long end, 2854 unsigned int flags, struct page **pages, int *nr) 2855 { 2856 unsigned long next; 2857 pgd_t *pgdp; 2858 2859 pgdp = pgd_offset(current->mm, addr); 2860 do { 2861 pgd_t pgd = READ_ONCE(*pgdp); 2862 2863 next = pgd_addr_end(addr, end); 2864 if (pgd_none(pgd)) 2865 return; 2866 if (unlikely(pgd_huge(pgd))) { 2867 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2868 pages, nr)) 2869 return; 2870 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2871 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2872 PGDIR_SHIFT, next, flags, pages, nr)) 2873 return; 2874 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2875 return; 2876 } while (pgdp++, addr = next, addr != end); 2877 } 2878 #else 2879 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2880 unsigned int flags, struct page **pages, int *nr) 2881 { 2882 } 2883 #endif /* CONFIG_HAVE_FAST_GUP */ 2884 2885 #ifndef gup_fast_permitted 2886 /* 2887 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2888 * we need to fall back to the slow version: 2889 */ 2890 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2891 { 2892 return true; 2893 } 2894 #endif 2895 2896 static unsigned long lockless_pages_from_mm(unsigned long start, 2897 unsigned long end, 2898 unsigned int gup_flags, 2899 struct page **pages) 2900 { 2901 unsigned long flags; 2902 int nr_pinned = 0; 2903 unsigned seq; 2904 2905 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2906 !gup_fast_permitted(start, end)) 2907 return 0; 2908 2909 if (gup_flags & FOLL_PIN) { 2910 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2911 if (seq & 1) 2912 return 0; 2913 } 2914 2915 /* 2916 * Disable interrupts. The nested form is used, in order to allow full, 2917 * general purpose use of this routine. 2918 * 2919 * With interrupts disabled, we block page table pages from being freed 2920 * from under us. See struct mmu_table_batch comments in 2921 * include/asm-generic/tlb.h for more details. 2922 * 2923 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2924 * that come from THPs splitting. 2925 */ 2926 local_irq_save(flags); 2927 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2928 local_irq_restore(flags); 2929 2930 /* 2931 * When pinning pages for DMA there could be a concurrent write protect 2932 * from fork() via copy_page_range(), in this case always fail fast GUP. 2933 */ 2934 if (gup_flags & FOLL_PIN) { 2935 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2936 unpin_user_pages_lockless(pages, nr_pinned); 2937 return 0; 2938 } else { 2939 sanity_check_pinned_pages(pages, nr_pinned); 2940 } 2941 } 2942 return nr_pinned; 2943 } 2944 2945 static int internal_get_user_pages_fast(unsigned long start, 2946 unsigned long nr_pages, 2947 unsigned int gup_flags, 2948 struct page **pages) 2949 { 2950 unsigned long len, end; 2951 unsigned long nr_pinned; 2952 int locked = 0; 2953 int ret; 2954 2955 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2956 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2957 FOLL_FAST_ONLY | FOLL_NOFAULT | 2958 FOLL_PCI_P2PDMA))) 2959 return -EINVAL; 2960 2961 if (gup_flags & FOLL_PIN) 2962 mm_set_has_pinned_flag(¤t->mm->flags); 2963 2964 if (!(gup_flags & FOLL_FAST_ONLY)) 2965 might_lock_read(¤t->mm->mmap_lock); 2966 2967 start = untagged_addr(start) & PAGE_MASK; 2968 len = nr_pages << PAGE_SHIFT; 2969 if (check_add_overflow(start, len, &end)) 2970 return 0; 2971 if (end > TASK_SIZE_MAX) 2972 return -EFAULT; 2973 if (unlikely(!access_ok((void __user *)start, len))) 2974 return -EFAULT; 2975 2976 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2977 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2978 return nr_pinned; 2979 2980 /* Slow path: try to get the remaining pages with get_user_pages */ 2981 start += nr_pinned << PAGE_SHIFT; 2982 pages += nr_pinned; 2983 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 2984 pages, NULL, &locked, 2985 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 2986 if (ret < 0) { 2987 /* 2988 * The caller has to unpin the pages we already pinned so 2989 * returning -errno is not an option 2990 */ 2991 if (nr_pinned) 2992 return nr_pinned; 2993 return ret; 2994 } 2995 return ret + nr_pinned; 2996 } 2997 2998 /** 2999 * get_user_pages_fast_only() - pin user pages in memory 3000 * @start: starting user address 3001 * @nr_pages: number of pages from start to pin 3002 * @gup_flags: flags modifying pin behaviour 3003 * @pages: array that receives pointers to the pages pinned. 3004 * Should be at least nr_pages long. 3005 * 3006 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3007 * the regular GUP. 3008 * 3009 * If the architecture does not support this function, simply return with no 3010 * pages pinned. 3011 * 3012 * Careful, careful! COW breaking can go either way, so a non-write 3013 * access can get ambiguous page results. If you call this function without 3014 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3015 */ 3016 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3017 unsigned int gup_flags, struct page **pages) 3018 { 3019 /* 3020 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3021 * because gup fast is always a "pin with a +1 page refcount" request. 3022 * 3023 * FOLL_FAST_ONLY is required in order to match the API description of 3024 * this routine: no fall back to regular ("slow") GUP. 3025 */ 3026 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, 3027 FOLL_GET | FOLL_FAST_ONLY)) 3028 return -EINVAL; 3029 3030 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3031 } 3032 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3033 3034 /** 3035 * get_user_pages_fast() - pin user pages in memory 3036 * @start: starting user address 3037 * @nr_pages: number of pages from start to pin 3038 * @gup_flags: flags modifying pin behaviour 3039 * @pages: array that receives pointers to the pages pinned. 3040 * Should be at least nr_pages long. 3041 * 3042 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3043 * If not successful, it will fall back to taking the lock and 3044 * calling get_user_pages(). 3045 * 3046 * Returns number of pages pinned. This may be fewer than the number requested. 3047 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3048 * -errno. 3049 */ 3050 int get_user_pages_fast(unsigned long start, int nr_pages, 3051 unsigned int gup_flags, struct page **pages) 3052 { 3053 /* 3054 * The caller may or may not have explicitly set FOLL_GET; either way is 3055 * OK. However, internally (within mm/gup.c), gup fast variants must set 3056 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3057 * request. 3058 */ 3059 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET)) 3060 return -EINVAL; 3061 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3062 } 3063 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3064 3065 /** 3066 * pin_user_pages_fast() - pin user pages in memory without taking locks 3067 * 3068 * @start: starting user address 3069 * @nr_pages: number of pages from start to pin 3070 * @gup_flags: flags modifying pin behaviour 3071 * @pages: array that receives pointers to the pages pinned. 3072 * Should be at least nr_pages long. 3073 * 3074 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3075 * get_user_pages_fast() for documentation on the function arguments, because 3076 * the arguments here are identical. 3077 * 3078 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3079 * see Documentation/core-api/pin_user_pages.rst for further details. 3080 */ 3081 int pin_user_pages_fast(unsigned long start, int nr_pages, 3082 unsigned int gup_flags, struct page **pages) 3083 { 3084 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN)) 3085 return -EINVAL; 3086 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3087 } 3088 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3089 3090 /** 3091 * pin_user_pages_remote() - pin pages of a remote process 3092 * 3093 * @mm: mm_struct of target mm 3094 * @start: starting user address 3095 * @nr_pages: number of pages from start to pin 3096 * @gup_flags: flags modifying lookup behaviour 3097 * @pages: array that receives pointers to the pages pinned. 3098 * Should be at least nr_pages long. 3099 * @locked: pointer to lock flag indicating whether lock is held and 3100 * subsequently whether VM_FAULT_RETRY functionality can be 3101 * utilised. Lock must initially be held. 3102 * 3103 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3104 * get_user_pages_remote() for documentation on the function arguments, because 3105 * the arguments here are identical. 3106 * 3107 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3108 * see Documentation/core-api/pin_user_pages.rst for details. 3109 */ 3110 long pin_user_pages_remote(struct mm_struct *mm, 3111 unsigned long start, unsigned long nr_pages, 3112 unsigned int gup_flags, struct page **pages, 3113 int *locked) 3114 { 3115 int local_locked = 1; 3116 3117 if (!is_valid_gup_args(pages, NULL, locked, &gup_flags, 3118 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3119 return 0; 3120 return __gup_longterm_locked(mm, start, nr_pages, pages, NULL, 3121 locked ? locked : &local_locked, 3122 gup_flags); 3123 } 3124 EXPORT_SYMBOL(pin_user_pages_remote); 3125 3126 /** 3127 * pin_user_pages() - pin user pages in memory for use by other devices 3128 * 3129 * @start: starting user address 3130 * @nr_pages: number of pages from start to pin 3131 * @gup_flags: flags modifying lookup behaviour 3132 * @pages: array that receives pointers to the pages pinned. 3133 * Should be at least nr_pages long. 3134 * 3135 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3136 * FOLL_PIN is set. 3137 * 3138 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3139 * see Documentation/core-api/pin_user_pages.rst for details. 3140 */ 3141 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3142 unsigned int gup_flags, struct page **pages) 3143 { 3144 int locked = 1; 3145 3146 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN)) 3147 return 0; 3148 return __gup_longterm_locked(current->mm, start, nr_pages, 3149 pages, NULL, &locked, gup_flags); 3150 } 3151 EXPORT_SYMBOL(pin_user_pages); 3152 3153 /* 3154 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3155 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3156 * FOLL_PIN and rejects FOLL_GET. 3157 */ 3158 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3159 struct page **pages, unsigned int gup_flags) 3160 { 3161 int locked = 0; 3162 3163 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, 3164 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3165 return 0; 3166 3167 return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL, 3168 &locked, gup_flags); 3169 } 3170 EXPORT_SYMBOL(pin_user_pages_unlocked); 3171