1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 typedef int (*set_dirty_func_t)(struct page *page); 33 34 static void __put_user_pages_dirty(struct page **pages, 35 unsigned long npages, 36 set_dirty_func_t sdf) 37 { 38 unsigned long index; 39 40 for (index = 0; index < npages; index++) { 41 struct page *page = compound_head(pages[index]); 42 43 /* 44 * Checking PageDirty at this point may race with 45 * clear_page_dirty_for_io(), but that's OK. Two key cases: 46 * 47 * 1) This code sees the page as already dirty, so it skips 48 * the call to sdf(). That could happen because 49 * clear_page_dirty_for_io() called page_mkclean(), 50 * followed by set_page_dirty(). However, now the page is 51 * going to get written back, which meets the original 52 * intention of setting it dirty, so all is well: 53 * clear_page_dirty_for_io() goes on to call 54 * TestClearPageDirty(), and write the page back. 55 * 56 * 2) This code sees the page as clean, so it calls sdf(). 57 * The page stays dirty, despite being written back, so it 58 * gets written back again in the next writeback cycle. 59 * This is harmless. 60 */ 61 if (!PageDirty(page)) 62 sdf(page); 63 64 put_user_page(page); 65 } 66 } 67 68 /** 69 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages 70 * @pages: array of pages to be marked dirty and released. 71 * @npages: number of pages in the @pages array. 72 * 73 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 74 * variants called on that page. 75 * 76 * For each page in the @pages array, make that page (or its head page, if a 77 * compound page) dirty, if it was previously listed as clean. Then, release 78 * the page using put_user_page(). 79 * 80 * Please see the put_user_page() documentation for details. 81 * 82 * set_page_dirty(), which does not lock the page, is used here. 83 * Therefore, it is the caller's responsibility to ensure that this is 84 * safe. If not, then put_user_pages_dirty_lock() should be called instead. 85 * 86 */ 87 void put_user_pages_dirty(struct page **pages, unsigned long npages) 88 { 89 __put_user_pages_dirty(pages, npages, set_page_dirty); 90 } 91 EXPORT_SYMBOL(put_user_pages_dirty); 92 93 /** 94 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages 95 * @pages: array of pages to be marked dirty and released. 96 * @npages: number of pages in the @pages array. 97 * 98 * For each page in the @pages array, make that page (or its head page, if a 99 * compound page) dirty, if it was previously listed as clean. Then, release 100 * the page using put_user_page(). 101 * 102 * Please see the put_user_page() documentation for details. 103 * 104 * This is just like put_user_pages_dirty(), except that it invokes 105 * set_page_dirty_lock(), instead of set_page_dirty(). 106 * 107 */ 108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages) 109 { 110 __put_user_pages_dirty(pages, npages, set_page_dirty_lock); 111 } 112 EXPORT_SYMBOL(put_user_pages_dirty_lock); 113 114 /** 115 * put_user_pages() - release an array of gup-pinned pages. 116 * @pages: array of pages to be marked dirty and released. 117 * @npages: number of pages in the @pages array. 118 * 119 * For each page in the @pages array, release the page using put_user_page(). 120 * 121 * Please see the put_user_page() documentation for details. 122 */ 123 void put_user_pages(struct page **pages, unsigned long npages) 124 { 125 unsigned long index; 126 127 /* 128 * TODO: this can be optimized for huge pages: if a series of pages is 129 * physically contiguous and part of the same compound page, then a 130 * single operation to the head page should suffice. 131 */ 132 for (index = 0; index < npages; index++) 133 put_user_page(pages[index]); 134 } 135 EXPORT_SYMBOL(put_user_pages); 136 137 static struct page *no_page_table(struct vm_area_struct *vma, 138 unsigned int flags) 139 { 140 /* 141 * When core dumping an enormous anonymous area that nobody 142 * has touched so far, we don't want to allocate unnecessary pages or 143 * page tables. Return error instead of NULL to skip handle_mm_fault, 144 * then get_dump_page() will return NULL to leave a hole in the dump. 145 * But we can only make this optimization where a hole would surely 146 * be zero-filled if handle_mm_fault() actually did handle it. 147 */ 148 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 149 return ERR_PTR(-EFAULT); 150 return NULL; 151 } 152 153 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 154 pte_t *pte, unsigned int flags) 155 { 156 /* No page to get reference */ 157 if (flags & FOLL_GET) 158 return -EFAULT; 159 160 if (flags & FOLL_TOUCH) { 161 pte_t entry = *pte; 162 163 if (flags & FOLL_WRITE) 164 entry = pte_mkdirty(entry); 165 entry = pte_mkyoung(entry); 166 167 if (!pte_same(*pte, entry)) { 168 set_pte_at(vma->vm_mm, address, pte, entry); 169 update_mmu_cache(vma, address, pte); 170 } 171 } 172 173 /* Proper page table entry exists, but no corresponding struct page */ 174 return -EEXIST; 175 } 176 177 /* 178 * FOLL_FORCE can write to even unwritable pte's, but only 179 * after we've gone through a COW cycle and they are dirty. 180 */ 181 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 182 { 183 return pte_write(pte) || 184 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 185 } 186 187 static struct page *follow_page_pte(struct vm_area_struct *vma, 188 unsigned long address, pmd_t *pmd, unsigned int flags, 189 struct dev_pagemap **pgmap) 190 { 191 struct mm_struct *mm = vma->vm_mm; 192 struct page *page; 193 spinlock_t *ptl; 194 pte_t *ptep, pte; 195 196 retry: 197 if (unlikely(pmd_bad(*pmd))) 198 return no_page_table(vma, flags); 199 200 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 201 pte = *ptep; 202 if (!pte_present(pte)) { 203 swp_entry_t entry; 204 /* 205 * KSM's break_ksm() relies upon recognizing a ksm page 206 * even while it is being migrated, so for that case we 207 * need migration_entry_wait(). 208 */ 209 if (likely(!(flags & FOLL_MIGRATION))) 210 goto no_page; 211 if (pte_none(pte)) 212 goto no_page; 213 entry = pte_to_swp_entry(pte); 214 if (!is_migration_entry(entry)) 215 goto no_page; 216 pte_unmap_unlock(ptep, ptl); 217 migration_entry_wait(mm, pmd, address); 218 goto retry; 219 } 220 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 221 goto no_page; 222 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 223 pte_unmap_unlock(ptep, ptl); 224 return NULL; 225 } 226 227 page = vm_normal_page(vma, address, pte); 228 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 229 /* 230 * Only return device mapping pages in the FOLL_GET case since 231 * they are only valid while holding the pgmap reference. 232 */ 233 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 234 if (*pgmap) 235 page = pte_page(pte); 236 else 237 goto no_page; 238 } else if (unlikely(!page)) { 239 if (flags & FOLL_DUMP) { 240 /* Avoid special (like zero) pages in core dumps */ 241 page = ERR_PTR(-EFAULT); 242 goto out; 243 } 244 245 if (is_zero_pfn(pte_pfn(pte))) { 246 page = pte_page(pte); 247 } else { 248 int ret; 249 250 ret = follow_pfn_pte(vma, address, ptep, flags); 251 page = ERR_PTR(ret); 252 goto out; 253 } 254 } 255 256 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 257 int ret; 258 get_page(page); 259 pte_unmap_unlock(ptep, ptl); 260 lock_page(page); 261 ret = split_huge_page(page); 262 unlock_page(page); 263 put_page(page); 264 if (ret) 265 return ERR_PTR(ret); 266 goto retry; 267 } 268 269 if (flags & FOLL_GET) { 270 if (unlikely(!try_get_page(page))) { 271 page = ERR_PTR(-ENOMEM); 272 goto out; 273 } 274 } 275 if (flags & FOLL_TOUCH) { 276 if ((flags & FOLL_WRITE) && 277 !pte_dirty(pte) && !PageDirty(page)) 278 set_page_dirty(page); 279 /* 280 * pte_mkyoung() would be more correct here, but atomic care 281 * is needed to avoid losing the dirty bit: it is easier to use 282 * mark_page_accessed(). 283 */ 284 mark_page_accessed(page); 285 } 286 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 287 /* Do not mlock pte-mapped THP */ 288 if (PageTransCompound(page)) 289 goto out; 290 291 /* 292 * The preliminary mapping check is mainly to avoid the 293 * pointless overhead of lock_page on the ZERO_PAGE 294 * which might bounce very badly if there is contention. 295 * 296 * If the page is already locked, we don't need to 297 * handle it now - vmscan will handle it later if and 298 * when it attempts to reclaim the page. 299 */ 300 if (page->mapping && trylock_page(page)) { 301 lru_add_drain(); /* push cached pages to LRU */ 302 /* 303 * Because we lock page here, and migration is 304 * blocked by the pte's page reference, and we 305 * know the page is still mapped, we don't even 306 * need to check for file-cache page truncation. 307 */ 308 mlock_vma_page(page); 309 unlock_page(page); 310 } 311 } 312 out: 313 pte_unmap_unlock(ptep, ptl); 314 return page; 315 no_page: 316 pte_unmap_unlock(ptep, ptl); 317 if (!pte_none(pte)) 318 return NULL; 319 return no_page_table(vma, flags); 320 } 321 322 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 323 unsigned long address, pud_t *pudp, 324 unsigned int flags, 325 struct follow_page_context *ctx) 326 { 327 pmd_t *pmd, pmdval; 328 spinlock_t *ptl; 329 struct page *page; 330 struct mm_struct *mm = vma->vm_mm; 331 332 pmd = pmd_offset(pudp, address); 333 /* 334 * The READ_ONCE() will stabilize the pmdval in a register or 335 * on the stack so that it will stop changing under the code. 336 */ 337 pmdval = READ_ONCE(*pmd); 338 if (pmd_none(pmdval)) 339 return no_page_table(vma, flags); 340 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 341 page = follow_huge_pmd(mm, address, pmd, flags); 342 if (page) 343 return page; 344 return no_page_table(vma, flags); 345 } 346 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 347 page = follow_huge_pd(vma, address, 348 __hugepd(pmd_val(pmdval)), flags, 349 PMD_SHIFT); 350 if (page) 351 return page; 352 return no_page_table(vma, flags); 353 } 354 retry: 355 if (!pmd_present(pmdval)) { 356 if (likely(!(flags & FOLL_MIGRATION))) 357 return no_page_table(vma, flags); 358 VM_BUG_ON(thp_migration_supported() && 359 !is_pmd_migration_entry(pmdval)); 360 if (is_pmd_migration_entry(pmdval)) 361 pmd_migration_entry_wait(mm, pmd); 362 pmdval = READ_ONCE(*pmd); 363 /* 364 * MADV_DONTNEED may convert the pmd to null because 365 * mmap_sem is held in read mode 366 */ 367 if (pmd_none(pmdval)) 368 return no_page_table(vma, flags); 369 goto retry; 370 } 371 if (pmd_devmap(pmdval)) { 372 ptl = pmd_lock(mm, pmd); 373 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 374 spin_unlock(ptl); 375 if (page) 376 return page; 377 } 378 if (likely(!pmd_trans_huge(pmdval))) 379 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 380 381 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 382 return no_page_table(vma, flags); 383 384 retry_locked: 385 ptl = pmd_lock(mm, pmd); 386 if (unlikely(pmd_none(*pmd))) { 387 spin_unlock(ptl); 388 return no_page_table(vma, flags); 389 } 390 if (unlikely(!pmd_present(*pmd))) { 391 spin_unlock(ptl); 392 if (likely(!(flags & FOLL_MIGRATION))) 393 return no_page_table(vma, flags); 394 pmd_migration_entry_wait(mm, pmd); 395 goto retry_locked; 396 } 397 if (unlikely(!pmd_trans_huge(*pmd))) { 398 spin_unlock(ptl); 399 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 400 } 401 if (flags & FOLL_SPLIT) { 402 int ret; 403 page = pmd_page(*pmd); 404 if (is_huge_zero_page(page)) { 405 spin_unlock(ptl); 406 ret = 0; 407 split_huge_pmd(vma, pmd, address); 408 if (pmd_trans_unstable(pmd)) 409 ret = -EBUSY; 410 } else { 411 if (unlikely(!try_get_page(page))) { 412 spin_unlock(ptl); 413 return ERR_PTR(-ENOMEM); 414 } 415 spin_unlock(ptl); 416 lock_page(page); 417 ret = split_huge_page(page); 418 unlock_page(page); 419 put_page(page); 420 if (pmd_none(*pmd)) 421 return no_page_table(vma, flags); 422 } 423 424 return ret ? ERR_PTR(ret) : 425 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 426 } 427 page = follow_trans_huge_pmd(vma, address, pmd, flags); 428 spin_unlock(ptl); 429 ctx->page_mask = HPAGE_PMD_NR - 1; 430 return page; 431 } 432 433 static struct page *follow_pud_mask(struct vm_area_struct *vma, 434 unsigned long address, p4d_t *p4dp, 435 unsigned int flags, 436 struct follow_page_context *ctx) 437 { 438 pud_t *pud; 439 spinlock_t *ptl; 440 struct page *page; 441 struct mm_struct *mm = vma->vm_mm; 442 443 pud = pud_offset(p4dp, address); 444 if (pud_none(*pud)) 445 return no_page_table(vma, flags); 446 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 447 page = follow_huge_pud(mm, address, pud, flags); 448 if (page) 449 return page; 450 return no_page_table(vma, flags); 451 } 452 if (is_hugepd(__hugepd(pud_val(*pud)))) { 453 page = follow_huge_pd(vma, address, 454 __hugepd(pud_val(*pud)), flags, 455 PUD_SHIFT); 456 if (page) 457 return page; 458 return no_page_table(vma, flags); 459 } 460 if (pud_devmap(*pud)) { 461 ptl = pud_lock(mm, pud); 462 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 463 spin_unlock(ptl); 464 if (page) 465 return page; 466 } 467 if (unlikely(pud_bad(*pud))) 468 return no_page_table(vma, flags); 469 470 return follow_pmd_mask(vma, address, pud, flags, ctx); 471 } 472 473 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 474 unsigned long address, pgd_t *pgdp, 475 unsigned int flags, 476 struct follow_page_context *ctx) 477 { 478 p4d_t *p4d; 479 struct page *page; 480 481 p4d = p4d_offset(pgdp, address); 482 if (p4d_none(*p4d)) 483 return no_page_table(vma, flags); 484 BUILD_BUG_ON(p4d_huge(*p4d)); 485 if (unlikely(p4d_bad(*p4d))) 486 return no_page_table(vma, flags); 487 488 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 489 page = follow_huge_pd(vma, address, 490 __hugepd(p4d_val(*p4d)), flags, 491 P4D_SHIFT); 492 if (page) 493 return page; 494 return no_page_table(vma, flags); 495 } 496 return follow_pud_mask(vma, address, p4d, flags, ctx); 497 } 498 499 /** 500 * follow_page_mask - look up a page descriptor from a user-virtual address 501 * @vma: vm_area_struct mapping @address 502 * @address: virtual address to look up 503 * @flags: flags modifying lookup behaviour 504 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 505 * pointer to output page_mask 506 * 507 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 508 * 509 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 510 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 511 * 512 * On output, the @ctx->page_mask is set according to the size of the page. 513 * 514 * Return: the mapped (struct page *), %NULL if no mapping exists, or 515 * an error pointer if there is a mapping to something not represented 516 * by a page descriptor (see also vm_normal_page()). 517 */ 518 struct page *follow_page_mask(struct vm_area_struct *vma, 519 unsigned long address, unsigned int flags, 520 struct follow_page_context *ctx) 521 { 522 pgd_t *pgd; 523 struct page *page; 524 struct mm_struct *mm = vma->vm_mm; 525 526 ctx->page_mask = 0; 527 528 /* make this handle hugepd */ 529 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 530 if (!IS_ERR(page)) { 531 BUG_ON(flags & FOLL_GET); 532 return page; 533 } 534 535 pgd = pgd_offset(mm, address); 536 537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 538 return no_page_table(vma, flags); 539 540 if (pgd_huge(*pgd)) { 541 page = follow_huge_pgd(mm, address, pgd, flags); 542 if (page) 543 return page; 544 return no_page_table(vma, flags); 545 } 546 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 547 page = follow_huge_pd(vma, address, 548 __hugepd(pgd_val(*pgd)), flags, 549 PGDIR_SHIFT); 550 if (page) 551 return page; 552 return no_page_table(vma, flags); 553 } 554 555 return follow_p4d_mask(vma, address, pgd, flags, ctx); 556 } 557 558 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 559 unsigned int foll_flags) 560 { 561 struct follow_page_context ctx = { NULL }; 562 struct page *page; 563 564 page = follow_page_mask(vma, address, foll_flags, &ctx); 565 if (ctx.pgmap) 566 put_dev_pagemap(ctx.pgmap); 567 return page; 568 } 569 570 static int get_gate_page(struct mm_struct *mm, unsigned long address, 571 unsigned int gup_flags, struct vm_area_struct **vma, 572 struct page **page) 573 { 574 pgd_t *pgd; 575 p4d_t *p4d; 576 pud_t *pud; 577 pmd_t *pmd; 578 pte_t *pte; 579 int ret = -EFAULT; 580 581 /* user gate pages are read-only */ 582 if (gup_flags & FOLL_WRITE) 583 return -EFAULT; 584 if (address > TASK_SIZE) 585 pgd = pgd_offset_k(address); 586 else 587 pgd = pgd_offset_gate(mm, address); 588 BUG_ON(pgd_none(*pgd)); 589 p4d = p4d_offset(pgd, address); 590 BUG_ON(p4d_none(*p4d)); 591 pud = pud_offset(p4d, address); 592 BUG_ON(pud_none(*pud)); 593 pmd = pmd_offset(pud, address); 594 if (!pmd_present(*pmd)) 595 return -EFAULT; 596 VM_BUG_ON(pmd_trans_huge(*pmd)); 597 pte = pte_offset_map(pmd, address); 598 if (pte_none(*pte)) 599 goto unmap; 600 *vma = get_gate_vma(mm); 601 if (!page) 602 goto out; 603 *page = vm_normal_page(*vma, address, *pte); 604 if (!*page) { 605 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 606 goto unmap; 607 *page = pte_page(*pte); 608 609 /* 610 * This should never happen (a device public page in the gate 611 * area). 612 */ 613 if (is_device_public_page(*page)) 614 goto unmap; 615 } 616 if (unlikely(!try_get_page(*page))) { 617 ret = -ENOMEM; 618 goto unmap; 619 } 620 out: 621 ret = 0; 622 unmap: 623 pte_unmap(pte); 624 return ret; 625 } 626 627 /* 628 * mmap_sem must be held on entry. If @nonblocking != NULL and 629 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 630 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 631 */ 632 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 633 unsigned long address, unsigned int *flags, int *nonblocking) 634 { 635 unsigned int fault_flags = 0; 636 vm_fault_t ret; 637 638 /* mlock all present pages, but do not fault in new pages */ 639 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 640 return -ENOENT; 641 if (*flags & FOLL_WRITE) 642 fault_flags |= FAULT_FLAG_WRITE; 643 if (*flags & FOLL_REMOTE) 644 fault_flags |= FAULT_FLAG_REMOTE; 645 if (nonblocking) 646 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 647 if (*flags & FOLL_NOWAIT) 648 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 649 if (*flags & FOLL_TRIED) { 650 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 651 fault_flags |= FAULT_FLAG_TRIED; 652 } 653 654 ret = handle_mm_fault(vma, address, fault_flags); 655 if (ret & VM_FAULT_ERROR) { 656 int err = vm_fault_to_errno(ret, *flags); 657 658 if (err) 659 return err; 660 BUG(); 661 } 662 663 if (tsk) { 664 if (ret & VM_FAULT_MAJOR) 665 tsk->maj_flt++; 666 else 667 tsk->min_flt++; 668 } 669 670 if (ret & VM_FAULT_RETRY) { 671 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 672 *nonblocking = 0; 673 return -EBUSY; 674 } 675 676 /* 677 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 678 * necessary, even if maybe_mkwrite decided not to set pte_write. We 679 * can thus safely do subsequent page lookups as if they were reads. 680 * But only do so when looping for pte_write is futile: in some cases 681 * userspace may also be wanting to write to the gotten user page, 682 * which a read fault here might prevent (a readonly page might get 683 * reCOWed by userspace write). 684 */ 685 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 686 *flags |= FOLL_COW; 687 return 0; 688 } 689 690 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 691 { 692 vm_flags_t vm_flags = vma->vm_flags; 693 int write = (gup_flags & FOLL_WRITE); 694 int foreign = (gup_flags & FOLL_REMOTE); 695 696 if (vm_flags & (VM_IO | VM_PFNMAP)) 697 return -EFAULT; 698 699 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 700 return -EFAULT; 701 702 if (write) { 703 if (!(vm_flags & VM_WRITE)) { 704 if (!(gup_flags & FOLL_FORCE)) 705 return -EFAULT; 706 /* 707 * We used to let the write,force case do COW in a 708 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 709 * set a breakpoint in a read-only mapping of an 710 * executable, without corrupting the file (yet only 711 * when that file had been opened for writing!). 712 * Anon pages in shared mappings are surprising: now 713 * just reject it. 714 */ 715 if (!is_cow_mapping(vm_flags)) 716 return -EFAULT; 717 } 718 } else if (!(vm_flags & VM_READ)) { 719 if (!(gup_flags & FOLL_FORCE)) 720 return -EFAULT; 721 /* 722 * Is there actually any vma we can reach here which does not 723 * have VM_MAYREAD set? 724 */ 725 if (!(vm_flags & VM_MAYREAD)) 726 return -EFAULT; 727 } 728 /* 729 * gups are always data accesses, not instruction 730 * fetches, so execute=false here 731 */ 732 if (!arch_vma_access_permitted(vma, write, false, foreign)) 733 return -EFAULT; 734 return 0; 735 } 736 737 /** 738 * __get_user_pages() - pin user pages in memory 739 * @tsk: task_struct of target task 740 * @mm: mm_struct of target mm 741 * @start: starting user address 742 * @nr_pages: number of pages from start to pin 743 * @gup_flags: flags modifying pin behaviour 744 * @pages: array that receives pointers to the pages pinned. 745 * Should be at least nr_pages long. Or NULL, if caller 746 * only intends to ensure the pages are faulted in. 747 * @vmas: array of pointers to vmas corresponding to each page. 748 * Or NULL if the caller does not require them. 749 * @nonblocking: whether waiting for disk IO or mmap_sem contention 750 * 751 * Returns number of pages pinned. This may be fewer than the number 752 * requested. If nr_pages is 0 or negative, returns 0. If no pages 753 * were pinned, returns -errno. Each page returned must be released 754 * with a put_page() call when it is finished with. vmas will only 755 * remain valid while mmap_sem is held. 756 * 757 * Must be called with mmap_sem held. It may be released. See below. 758 * 759 * __get_user_pages walks a process's page tables and takes a reference to 760 * each struct page that each user address corresponds to at a given 761 * instant. That is, it takes the page that would be accessed if a user 762 * thread accesses the given user virtual address at that instant. 763 * 764 * This does not guarantee that the page exists in the user mappings when 765 * __get_user_pages returns, and there may even be a completely different 766 * page there in some cases (eg. if mmapped pagecache has been invalidated 767 * and subsequently re faulted). However it does guarantee that the page 768 * won't be freed completely. And mostly callers simply care that the page 769 * contains data that was valid *at some point in time*. Typically, an IO 770 * or similar operation cannot guarantee anything stronger anyway because 771 * locks can't be held over the syscall boundary. 772 * 773 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 774 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 775 * appropriate) must be called after the page is finished with, and 776 * before put_page is called. 777 * 778 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 779 * or mmap_sem contention, and if waiting is needed to pin all pages, 780 * *@nonblocking will be set to 0. Further, if @gup_flags does not 781 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 782 * this case. 783 * 784 * A caller using such a combination of @nonblocking and @gup_flags 785 * must therefore hold the mmap_sem for reading only, and recognize 786 * when it's been released. Otherwise, it must be held for either 787 * reading or writing and will not be released. 788 * 789 * In most cases, get_user_pages or get_user_pages_fast should be used 790 * instead of __get_user_pages. __get_user_pages should be used only if 791 * you need some special @gup_flags. 792 */ 793 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 794 unsigned long start, unsigned long nr_pages, 795 unsigned int gup_flags, struct page **pages, 796 struct vm_area_struct **vmas, int *nonblocking) 797 { 798 long ret = 0, i = 0; 799 struct vm_area_struct *vma = NULL; 800 struct follow_page_context ctx = { NULL }; 801 802 if (!nr_pages) 803 return 0; 804 805 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 806 807 /* 808 * If FOLL_FORCE is set then do not force a full fault as the hinting 809 * fault information is unrelated to the reference behaviour of a task 810 * using the address space 811 */ 812 if (!(gup_flags & FOLL_FORCE)) 813 gup_flags |= FOLL_NUMA; 814 815 do { 816 struct page *page; 817 unsigned int foll_flags = gup_flags; 818 unsigned int page_increm; 819 820 /* first iteration or cross vma bound */ 821 if (!vma || start >= vma->vm_end) { 822 vma = find_extend_vma(mm, start); 823 if (!vma && in_gate_area(mm, start)) { 824 ret = get_gate_page(mm, start & PAGE_MASK, 825 gup_flags, &vma, 826 pages ? &pages[i] : NULL); 827 if (ret) 828 goto out; 829 ctx.page_mask = 0; 830 goto next_page; 831 } 832 833 if (!vma || check_vma_flags(vma, gup_flags)) { 834 ret = -EFAULT; 835 goto out; 836 } 837 if (is_vm_hugetlb_page(vma)) { 838 i = follow_hugetlb_page(mm, vma, pages, vmas, 839 &start, &nr_pages, i, 840 gup_flags, nonblocking); 841 continue; 842 } 843 } 844 retry: 845 /* 846 * If we have a pending SIGKILL, don't keep faulting pages and 847 * potentially allocating memory. 848 */ 849 if (fatal_signal_pending(current)) { 850 ret = -ERESTARTSYS; 851 goto out; 852 } 853 cond_resched(); 854 855 page = follow_page_mask(vma, start, foll_flags, &ctx); 856 if (!page) { 857 ret = faultin_page(tsk, vma, start, &foll_flags, 858 nonblocking); 859 switch (ret) { 860 case 0: 861 goto retry; 862 case -EBUSY: 863 ret = 0; 864 /* FALLTHRU */ 865 case -EFAULT: 866 case -ENOMEM: 867 case -EHWPOISON: 868 goto out; 869 case -ENOENT: 870 goto next_page; 871 } 872 BUG(); 873 } else if (PTR_ERR(page) == -EEXIST) { 874 /* 875 * Proper page table entry exists, but no corresponding 876 * struct page. 877 */ 878 goto next_page; 879 } else if (IS_ERR(page)) { 880 ret = PTR_ERR(page); 881 goto out; 882 } 883 if (pages) { 884 pages[i] = page; 885 flush_anon_page(vma, page, start); 886 flush_dcache_page(page); 887 ctx.page_mask = 0; 888 } 889 next_page: 890 if (vmas) { 891 vmas[i] = vma; 892 ctx.page_mask = 0; 893 } 894 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 895 if (page_increm > nr_pages) 896 page_increm = nr_pages; 897 i += page_increm; 898 start += page_increm * PAGE_SIZE; 899 nr_pages -= page_increm; 900 } while (nr_pages); 901 out: 902 if (ctx.pgmap) 903 put_dev_pagemap(ctx.pgmap); 904 return i ? i : ret; 905 } 906 907 static bool vma_permits_fault(struct vm_area_struct *vma, 908 unsigned int fault_flags) 909 { 910 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 911 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 912 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 913 914 if (!(vm_flags & vma->vm_flags)) 915 return false; 916 917 /* 918 * The architecture might have a hardware protection 919 * mechanism other than read/write that can deny access. 920 * 921 * gup always represents data access, not instruction 922 * fetches, so execute=false here: 923 */ 924 if (!arch_vma_access_permitted(vma, write, false, foreign)) 925 return false; 926 927 return true; 928 } 929 930 /* 931 * fixup_user_fault() - manually resolve a user page fault 932 * @tsk: the task_struct to use for page fault accounting, or 933 * NULL if faults are not to be recorded. 934 * @mm: mm_struct of target mm 935 * @address: user address 936 * @fault_flags:flags to pass down to handle_mm_fault() 937 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 938 * does not allow retry 939 * 940 * This is meant to be called in the specific scenario where for locking reasons 941 * we try to access user memory in atomic context (within a pagefault_disable() 942 * section), this returns -EFAULT, and we want to resolve the user fault before 943 * trying again. 944 * 945 * Typically this is meant to be used by the futex code. 946 * 947 * The main difference with get_user_pages() is that this function will 948 * unconditionally call handle_mm_fault() which will in turn perform all the 949 * necessary SW fixup of the dirty and young bits in the PTE, while 950 * get_user_pages() only guarantees to update these in the struct page. 951 * 952 * This is important for some architectures where those bits also gate the 953 * access permission to the page because they are maintained in software. On 954 * such architectures, gup() will not be enough to make a subsequent access 955 * succeed. 956 * 957 * This function will not return with an unlocked mmap_sem. So it has not the 958 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 959 */ 960 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 961 unsigned long address, unsigned int fault_flags, 962 bool *unlocked) 963 { 964 struct vm_area_struct *vma; 965 vm_fault_t ret, major = 0; 966 967 if (unlocked) 968 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 969 970 retry: 971 vma = find_extend_vma(mm, address); 972 if (!vma || address < vma->vm_start) 973 return -EFAULT; 974 975 if (!vma_permits_fault(vma, fault_flags)) 976 return -EFAULT; 977 978 ret = handle_mm_fault(vma, address, fault_flags); 979 major |= ret & VM_FAULT_MAJOR; 980 if (ret & VM_FAULT_ERROR) { 981 int err = vm_fault_to_errno(ret, 0); 982 983 if (err) 984 return err; 985 BUG(); 986 } 987 988 if (ret & VM_FAULT_RETRY) { 989 down_read(&mm->mmap_sem); 990 if (!(fault_flags & FAULT_FLAG_TRIED)) { 991 *unlocked = true; 992 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 993 fault_flags |= FAULT_FLAG_TRIED; 994 goto retry; 995 } 996 } 997 998 if (tsk) { 999 if (major) 1000 tsk->maj_flt++; 1001 else 1002 tsk->min_flt++; 1003 } 1004 return 0; 1005 } 1006 EXPORT_SYMBOL_GPL(fixup_user_fault); 1007 1008 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1009 struct mm_struct *mm, 1010 unsigned long start, 1011 unsigned long nr_pages, 1012 struct page **pages, 1013 struct vm_area_struct **vmas, 1014 int *locked, 1015 unsigned int flags) 1016 { 1017 long ret, pages_done; 1018 bool lock_dropped; 1019 1020 if (locked) { 1021 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1022 BUG_ON(vmas); 1023 /* check caller initialized locked */ 1024 BUG_ON(*locked != 1); 1025 } 1026 1027 if (pages) 1028 flags |= FOLL_GET; 1029 1030 pages_done = 0; 1031 lock_dropped = false; 1032 for (;;) { 1033 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1034 vmas, locked); 1035 if (!locked) 1036 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1037 return ret; 1038 1039 /* VM_FAULT_RETRY cannot return errors */ 1040 if (!*locked) { 1041 BUG_ON(ret < 0); 1042 BUG_ON(ret >= nr_pages); 1043 } 1044 1045 if (ret > 0) { 1046 nr_pages -= ret; 1047 pages_done += ret; 1048 if (!nr_pages) 1049 break; 1050 } 1051 if (*locked) { 1052 /* 1053 * VM_FAULT_RETRY didn't trigger or it was a 1054 * FOLL_NOWAIT. 1055 */ 1056 if (!pages_done) 1057 pages_done = ret; 1058 break; 1059 } 1060 /* 1061 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1062 * For the prefault case (!pages) we only update counts. 1063 */ 1064 if (likely(pages)) 1065 pages += ret; 1066 start += ret << PAGE_SHIFT; 1067 1068 /* 1069 * Repeat on the address that fired VM_FAULT_RETRY 1070 * without FAULT_FLAG_ALLOW_RETRY but with 1071 * FAULT_FLAG_TRIED. 1072 */ 1073 *locked = 1; 1074 lock_dropped = true; 1075 down_read(&mm->mmap_sem); 1076 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1077 pages, NULL, NULL); 1078 if (ret != 1) { 1079 BUG_ON(ret > 1); 1080 if (!pages_done) 1081 pages_done = ret; 1082 break; 1083 } 1084 nr_pages--; 1085 pages_done++; 1086 if (!nr_pages) 1087 break; 1088 if (likely(pages)) 1089 pages++; 1090 start += PAGE_SIZE; 1091 } 1092 if (lock_dropped && *locked) { 1093 /* 1094 * We must let the caller know we temporarily dropped the lock 1095 * and so the critical section protected by it was lost. 1096 */ 1097 up_read(&mm->mmap_sem); 1098 *locked = 0; 1099 } 1100 return pages_done; 1101 } 1102 1103 /* 1104 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1105 * paths better by using either get_user_pages_locked() or 1106 * get_user_pages_unlocked(). 1107 * 1108 * get_user_pages_locked() is suitable to replace the form: 1109 * 1110 * down_read(&mm->mmap_sem); 1111 * do_something() 1112 * get_user_pages(tsk, mm, ..., pages, NULL); 1113 * up_read(&mm->mmap_sem); 1114 * 1115 * to: 1116 * 1117 * int locked = 1; 1118 * down_read(&mm->mmap_sem); 1119 * do_something() 1120 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1121 * if (locked) 1122 * up_read(&mm->mmap_sem); 1123 */ 1124 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1125 unsigned int gup_flags, struct page **pages, 1126 int *locked) 1127 { 1128 /* 1129 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1130 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1131 * vmas. As there are no users of this flag in this call we simply 1132 * disallow this option for now. 1133 */ 1134 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1135 return -EINVAL; 1136 1137 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1138 pages, NULL, locked, 1139 gup_flags | FOLL_TOUCH); 1140 } 1141 EXPORT_SYMBOL(get_user_pages_locked); 1142 1143 /* 1144 * get_user_pages_unlocked() is suitable to replace the form: 1145 * 1146 * down_read(&mm->mmap_sem); 1147 * get_user_pages(tsk, mm, ..., pages, NULL); 1148 * up_read(&mm->mmap_sem); 1149 * 1150 * with: 1151 * 1152 * get_user_pages_unlocked(tsk, mm, ..., pages); 1153 * 1154 * It is functionally equivalent to get_user_pages_fast so 1155 * get_user_pages_fast should be used instead if specific gup_flags 1156 * (e.g. FOLL_FORCE) are not required. 1157 */ 1158 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1159 struct page **pages, unsigned int gup_flags) 1160 { 1161 struct mm_struct *mm = current->mm; 1162 int locked = 1; 1163 long ret; 1164 1165 /* 1166 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1167 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1168 * vmas. As there are no users of this flag in this call we simply 1169 * disallow this option for now. 1170 */ 1171 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1172 return -EINVAL; 1173 1174 down_read(&mm->mmap_sem); 1175 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1176 &locked, gup_flags | FOLL_TOUCH); 1177 if (locked) 1178 up_read(&mm->mmap_sem); 1179 return ret; 1180 } 1181 EXPORT_SYMBOL(get_user_pages_unlocked); 1182 1183 /* 1184 * get_user_pages_remote() - pin user pages in memory 1185 * @tsk: the task_struct to use for page fault accounting, or 1186 * NULL if faults are not to be recorded. 1187 * @mm: mm_struct of target mm 1188 * @start: starting user address 1189 * @nr_pages: number of pages from start to pin 1190 * @gup_flags: flags modifying lookup behaviour 1191 * @pages: array that receives pointers to the pages pinned. 1192 * Should be at least nr_pages long. Or NULL, if caller 1193 * only intends to ensure the pages are faulted in. 1194 * @vmas: array of pointers to vmas corresponding to each page. 1195 * Or NULL if the caller does not require them. 1196 * @locked: pointer to lock flag indicating whether lock is held and 1197 * subsequently whether VM_FAULT_RETRY functionality can be 1198 * utilised. Lock must initially be held. 1199 * 1200 * Returns number of pages pinned. This may be fewer than the number 1201 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1202 * were pinned, returns -errno. Each page returned must be released 1203 * with a put_page() call when it is finished with. vmas will only 1204 * remain valid while mmap_sem is held. 1205 * 1206 * Must be called with mmap_sem held for read or write. 1207 * 1208 * get_user_pages walks a process's page tables and takes a reference to 1209 * each struct page that each user address corresponds to at a given 1210 * instant. That is, it takes the page that would be accessed if a user 1211 * thread accesses the given user virtual address at that instant. 1212 * 1213 * This does not guarantee that the page exists in the user mappings when 1214 * get_user_pages returns, and there may even be a completely different 1215 * page there in some cases (eg. if mmapped pagecache has been invalidated 1216 * and subsequently re faulted). However it does guarantee that the page 1217 * won't be freed completely. And mostly callers simply care that the page 1218 * contains data that was valid *at some point in time*. Typically, an IO 1219 * or similar operation cannot guarantee anything stronger anyway because 1220 * locks can't be held over the syscall boundary. 1221 * 1222 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1223 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1224 * be called after the page is finished with, and before put_page is called. 1225 * 1226 * get_user_pages is typically used for fewer-copy IO operations, to get a 1227 * handle on the memory by some means other than accesses via the user virtual 1228 * addresses. The pages may be submitted for DMA to devices or accessed via 1229 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1230 * use the correct cache flushing APIs. 1231 * 1232 * See also get_user_pages_fast, for performance critical applications. 1233 * 1234 * get_user_pages should be phased out in favor of 1235 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1236 * should use get_user_pages because it cannot pass 1237 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1238 */ 1239 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1240 unsigned long start, unsigned long nr_pages, 1241 unsigned int gup_flags, struct page **pages, 1242 struct vm_area_struct **vmas, int *locked) 1243 { 1244 /* 1245 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1246 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1247 * vmas. As there are no users of this flag in this call we simply 1248 * disallow this option for now. 1249 */ 1250 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1251 return -EINVAL; 1252 1253 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1254 locked, 1255 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1256 } 1257 EXPORT_SYMBOL(get_user_pages_remote); 1258 1259 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1260 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1261 { 1262 long i; 1263 struct vm_area_struct *vma_prev = NULL; 1264 1265 for (i = 0; i < nr_pages; i++) { 1266 struct vm_area_struct *vma = vmas[i]; 1267 1268 if (vma == vma_prev) 1269 continue; 1270 1271 vma_prev = vma; 1272 1273 if (vma_is_fsdax(vma)) 1274 return true; 1275 } 1276 return false; 1277 } 1278 1279 #ifdef CONFIG_CMA 1280 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1281 { 1282 /* 1283 * We want to make sure we allocate the new page from the same node 1284 * as the source page. 1285 */ 1286 int nid = page_to_nid(page); 1287 /* 1288 * Trying to allocate a page for migration. Ignore allocation 1289 * failure warnings. We don't force __GFP_THISNODE here because 1290 * this node here is the node where we have CMA reservation and 1291 * in some case these nodes will have really less non movable 1292 * allocation memory. 1293 */ 1294 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1295 1296 if (PageHighMem(page)) 1297 gfp_mask |= __GFP_HIGHMEM; 1298 1299 #ifdef CONFIG_HUGETLB_PAGE 1300 if (PageHuge(page)) { 1301 struct hstate *h = page_hstate(page); 1302 /* 1303 * We don't want to dequeue from the pool because pool pages will 1304 * mostly be from the CMA region. 1305 */ 1306 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1307 } 1308 #endif 1309 if (PageTransHuge(page)) { 1310 struct page *thp; 1311 /* 1312 * ignore allocation failure warnings 1313 */ 1314 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1315 1316 /* 1317 * Remove the movable mask so that we don't allocate from 1318 * CMA area again. 1319 */ 1320 thp_gfpmask &= ~__GFP_MOVABLE; 1321 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1322 if (!thp) 1323 return NULL; 1324 prep_transhuge_page(thp); 1325 return thp; 1326 } 1327 1328 return __alloc_pages_node(nid, gfp_mask, 0); 1329 } 1330 1331 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1332 struct mm_struct *mm, 1333 unsigned long start, 1334 unsigned long nr_pages, 1335 struct page **pages, 1336 struct vm_area_struct **vmas, 1337 unsigned int gup_flags) 1338 { 1339 long i; 1340 bool drain_allow = true; 1341 bool migrate_allow = true; 1342 LIST_HEAD(cma_page_list); 1343 1344 check_again: 1345 for (i = 0; i < nr_pages; i++) { 1346 /* 1347 * If we get a page from the CMA zone, since we are going to 1348 * be pinning these entries, we might as well move them out 1349 * of the CMA zone if possible. 1350 */ 1351 if (is_migrate_cma_page(pages[i])) { 1352 1353 struct page *head = compound_head(pages[i]); 1354 1355 if (PageHuge(head)) { 1356 isolate_huge_page(head, &cma_page_list); 1357 } else { 1358 if (!PageLRU(head) && drain_allow) { 1359 lru_add_drain_all(); 1360 drain_allow = false; 1361 } 1362 1363 if (!isolate_lru_page(head)) { 1364 list_add_tail(&head->lru, &cma_page_list); 1365 mod_node_page_state(page_pgdat(head), 1366 NR_ISOLATED_ANON + 1367 page_is_file_cache(head), 1368 hpage_nr_pages(head)); 1369 } 1370 } 1371 } 1372 } 1373 1374 if (!list_empty(&cma_page_list)) { 1375 /* 1376 * drop the above get_user_pages reference. 1377 */ 1378 for (i = 0; i < nr_pages; i++) 1379 put_page(pages[i]); 1380 1381 if (migrate_pages(&cma_page_list, new_non_cma_page, 1382 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1383 /* 1384 * some of the pages failed migration. Do get_user_pages 1385 * without migration. 1386 */ 1387 migrate_allow = false; 1388 1389 if (!list_empty(&cma_page_list)) 1390 putback_movable_pages(&cma_page_list); 1391 } 1392 /* 1393 * We did migrate all the pages, Try to get the page references 1394 * again migrating any new CMA pages which we failed to isolate 1395 * earlier. 1396 */ 1397 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages, 1398 pages, vmas, NULL, 1399 gup_flags); 1400 1401 if ((nr_pages > 0) && migrate_allow) { 1402 drain_allow = true; 1403 goto check_again; 1404 } 1405 } 1406 1407 return nr_pages; 1408 } 1409 #else 1410 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1411 struct mm_struct *mm, 1412 unsigned long start, 1413 unsigned long nr_pages, 1414 struct page **pages, 1415 struct vm_area_struct **vmas, 1416 unsigned int gup_flags) 1417 { 1418 return nr_pages; 1419 } 1420 #endif 1421 1422 /* 1423 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1424 * allows us to process the FOLL_LONGTERM flag. 1425 */ 1426 static long __gup_longterm_locked(struct task_struct *tsk, 1427 struct mm_struct *mm, 1428 unsigned long start, 1429 unsigned long nr_pages, 1430 struct page **pages, 1431 struct vm_area_struct **vmas, 1432 unsigned int gup_flags) 1433 { 1434 struct vm_area_struct **vmas_tmp = vmas; 1435 unsigned long flags = 0; 1436 long rc, i; 1437 1438 if (gup_flags & FOLL_LONGTERM) { 1439 if (!pages) 1440 return -EINVAL; 1441 1442 if (!vmas_tmp) { 1443 vmas_tmp = kcalloc(nr_pages, 1444 sizeof(struct vm_area_struct *), 1445 GFP_KERNEL); 1446 if (!vmas_tmp) 1447 return -ENOMEM; 1448 } 1449 flags = memalloc_nocma_save(); 1450 } 1451 1452 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1453 vmas_tmp, NULL, gup_flags); 1454 1455 if (gup_flags & FOLL_LONGTERM) { 1456 memalloc_nocma_restore(flags); 1457 if (rc < 0) 1458 goto out; 1459 1460 if (check_dax_vmas(vmas_tmp, rc)) { 1461 for (i = 0; i < rc; i++) 1462 put_page(pages[i]); 1463 rc = -EOPNOTSUPP; 1464 goto out; 1465 } 1466 1467 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1468 vmas_tmp, gup_flags); 1469 } 1470 1471 out: 1472 if (vmas_tmp != vmas) 1473 kfree(vmas_tmp); 1474 return rc; 1475 } 1476 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1477 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1478 struct mm_struct *mm, 1479 unsigned long start, 1480 unsigned long nr_pages, 1481 struct page **pages, 1482 struct vm_area_struct **vmas, 1483 unsigned int flags) 1484 { 1485 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1486 NULL, flags); 1487 } 1488 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1489 1490 /* 1491 * This is the same as get_user_pages_remote(), just with a 1492 * less-flexible calling convention where we assume that the task 1493 * and mm being operated on are the current task's and don't allow 1494 * passing of a locked parameter. We also obviously don't pass 1495 * FOLL_REMOTE in here. 1496 */ 1497 long get_user_pages(unsigned long start, unsigned long nr_pages, 1498 unsigned int gup_flags, struct page **pages, 1499 struct vm_area_struct **vmas) 1500 { 1501 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1502 pages, vmas, gup_flags | FOLL_TOUCH); 1503 } 1504 EXPORT_SYMBOL(get_user_pages); 1505 1506 /** 1507 * populate_vma_page_range() - populate a range of pages in the vma. 1508 * @vma: target vma 1509 * @start: start address 1510 * @end: end address 1511 * @nonblocking: 1512 * 1513 * This takes care of mlocking the pages too if VM_LOCKED is set. 1514 * 1515 * return 0 on success, negative error code on error. 1516 * 1517 * vma->vm_mm->mmap_sem must be held. 1518 * 1519 * If @nonblocking is NULL, it may be held for read or write and will 1520 * be unperturbed. 1521 * 1522 * If @nonblocking is non-NULL, it must held for read only and may be 1523 * released. If it's released, *@nonblocking will be set to 0. 1524 */ 1525 long populate_vma_page_range(struct vm_area_struct *vma, 1526 unsigned long start, unsigned long end, int *nonblocking) 1527 { 1528 struct mm_struct *mm = vma->vm_mm; 1529 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1530 int gup_flags; 1531 1532 VM_BUG_ON(start & ~PAGE_MASK); 1533 VM_BUG_ON(end & ~PAGE_MASK); 1534 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1535 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1536 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1537 1538 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1539 if (vma->vm_flags & VM_LOCKONFAULT) 1540 gup_flags &= ~FOLL_POPULATE; 1541 /* 1542 * We want to touch writable mappings with a write fault in order 1543 * to break COW, except for shared mappings because these don't COW 1544 * and we would not want to dirty them for nothing. 1545 */ 1546 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1547 gup_flags |= FOLL_WRITE; 1548 1549 /* 1550 * We want mlock to succeed for regions that have any permissions 1551 * other than PROT_NONE. 1552 */ 1553 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1554 gup_flags |= FOLL_FORCE; 1555 1556 /* 1557 * We made sure addr is within a VMA, so the following will 1558 * not result in a stack expansion that recurses back here. 1559 */ 1560 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1561 NULL, NULL, nonblocking); 1562 } 1563 1564 /* 1565 * __mm_populate - populate and/or mlock pages within a range of address space. 1566 * 1567 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1568 * flags. VMAs must be already marked with the desired vm_flags, and 1569 * mmap_sem must not be held. 1570 */ 1571 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1572 { 1573 struct mm_struct *mm = current->mm; 1574 unsigned long end, nstart, nend; 1575 struct vm_area_struct *vma = NULL; 1576 int locked = 0; 1577 long ret = 0; 1578 1579 end = start + len; 1580 1581 for (nstart = start; nstart < end; nstart = nend) { 1582 /* 1583 * We want to fault in pages for [nstart; end) address range. 1584 * Find first corresponding VMA. 1585 */ 1586 if (!locked) { 1587 locked = 1; 1588 down_read(&mm->mmap_sem); 1589 vma = find_vma(mm, nstart); 1590 } else if (nstart >= vma->vm_end) 1591 vma = vma->vm_next; 1592 if (!vma || vma->vm_start >= end) 1593 break; 1594 /* 1595 * Set [nstart; nend) to intersection of desired address 1596 * range with the first VMA. Also, skip undesirable VMA types. 1597 */ 1598 nend = min(end, vma->vm_end); 1599 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1600 continue; 1601 if (nstart < vma->vm_start) 1602 nstart = vma->vm_start; 1603 /* 1604 * Now fault in a range of pages. populate_vma_page_range() 1605 * double checks the vma flags, so that it won't mlock pages 1606 * if the vma was already munlocked. 1607 */ 1608 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1609 if (ret < 0) { 1610 if (ignore_errors) { 1611 ret = 0; 1612 continue; /* continue at next VMA */ 1613 } 1614 break; 1615 } 1616 nend = nstart + ret * PAGE_SIZE; 1617 ret = 0; 1618 } 1619 if (locked) 1620 up_read(&mm->mmap_sem); 1621 return ret; /* 0 or negative error code */ 1622 } 1623 1624 /** 1625 * get_dump_page() - pin user page in memory while writing it to core dump 1626 * @addr: user address 1627 * 1628 * Returns struct page pointer of user page pinned for dump, 1629 * to be freed afterwards by put_page(). 1630 * 1631 * Returns NULL on any kind of failure - a hole must then be inserted into 1632 * the corefile, to preserve alignment with its headers; and also returns 1633 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1634 * allowing a hole to be left in the corefile to save diskspace. 1635 * 1636 * Called without mmap_sem, but after all other threads have been killed. 1637 */ 1638 #ifdef CONFIG_ELF_CORE 1639 struct page *get_dump_page(unsigned long addr) 1640 { 1641 struct vm_area_struct *vma; 1642 struct page *page; 1643 1644 if (__get_user_pages(current, current->mm, addr, 1, 1645 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1646 NULL) < 1) 1647 return NULL; 1648 flush_cache_page(vma, addr, page_to_pfn(page)); 1649 return page; 1650 } 1651 #endif /* CONFIG_ELF_CORE */ 1652 1653 /* 1654 * Generic Fast GUP 1655 * 1656 * get_user_pages_fast attempts to pin user pages by walking the page 1657 * tables directly and avoids taking locks. Thus the walker needs to be 1658 * protected from page table pages being freed from under it, and should 1659 * block any THP splits. 1660 * 1661 * One way to achieve this is to have the walker disable interrupts, and 1662 * rely on IPIs from the TLB flushing code blocking before the page table 1663 * pages are freed. This is unsuitable for architectures that do not need 1664 * to broadcast an IPI when invalidating TLBs. 1665 * 1666 * Another way to achieve this is to batch up page table containing pages 1667 * belonging to more than one mm_user, then rcu_sched a callback to free those 1668 * pages. Disabling interrupts will allow the fast_gup walker to both block 1669 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1670 * (which is a relatively rare event). The code below adopts this strategy. 1671 * 1672 * Before activating this code, please be aware that the following assumptions 1673 * are currently made: 1674 * 1675 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1676 * free pages containing page tables or TLB flushing requires IPI broadcast. 1677 * 1678 * *) ptes can be read atomically by the architecture. 1679 * 1680 * *) access_ok is sufficient to validate userspace address ranges. 1681 * 1682 * The last two assumptions can be relaxed by the addition of helper functions. 1683 * 1684 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1685 */ 1686 #ifdef CONFIG_HAVE_GENERIC_GUP 1687 1688 #ifndef gup_get_pte 1689 /* 1690 * We assume that the PTE can be read atomically. If this is not the case for 1691 * your architecture, please provide the helper. 1692 */ 1693 static inline pte_t gup_get_pte(pte_t *ptep) 1694 { 1695 return READ_ONCE(*ptep); 1696 } 1697 #endif 1698 1699 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1700 { 1701 while ((*nr) - nr_start) { 1702 struct page *page = pages[--(*nr)]; 1703 1704 ClearPageReferenced(page); 1705 put_page(page); 1706 } 1707 } 1708 1709 /* 1710 * Return the compund head page with ref appropriately incremented, 1711 * or NULL if that failed. 1712 */ 1713 static inline struct page *try_get_compound_head(struct page *page, int refs) 1714 { 1715 struct page *head = compound_head(page); 1716 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 1717 return NULL; 1718 if (unlikely(!page_cache_add_speculative(head, refs))) 1719 return NULL; 1720 return head; 1721 } 1722 1723 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1724 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1725 unsigned int flags, struct page **pages, int *nr) 1726 { 1727 struct dev_pagemap *pgmap = NULL; 1728 int nr_start = *nr, ret = 0; 1729 pte_t *ptep, *ptem; 1730 1731 ptem = ptep = pte_offset_map(&pmd, addr); 1732 do { 1733 pte_t pte = gup_get_pte(ptep); 1734 struct page *head, *page; 1735 1736 /* 1737 * Similar to the PMD case below, NUMA hinting must take slow 1738 * path using the pte_protnone check. 1739 */ 1740 if (pte_protnone(pte)) 1741 goto pte_unmap; 1742 1743 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 1744 goto pte_unmap; 1745 1746 if (pte_devmap(pte)) { 1747 if (unlikely(flags & FOLL_LONGTERM)) 1748 goto pte_unmap; 1749 1750 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1751 if (unlikely(!pgmap)) { 1752 undo_dev_pagemap(nr, nr_start, pages); 1753 goto pte_unmap; 1754 } 1755 } else if (pte_special(pte)) 1756 goto pte_unmap; 1757 1758 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1759 page = pte_page(pte); 1760 1761 head = try_get_compound_head(page, 1); 1762 if (!head) 1763 goto pte_unmap; 1764 1765 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1766 put_page(head); 1767 goto pte_unmap; 1768 } 1769 1770 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1771 1772 SetPageReferenced(page); 1773 pages[*nr] = page; 1774 (*nr)++; 1775 1776 } while (ptep++, addr += PAGE_SIZE, addr != end); 1777 1778 ret = 1; 1779 1780 pte_unmap: 1781 if (pgmap) 1782 put_dev_pagemap(pgmap); 1783 pte_unmap(ptem); 1784 return ret; 1785 } 1786 #else 1787 1788 /* 1789 * If we can't determine whether or not a pte is special, then fail immediately 1790 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1791 * to be special. 1792 * 1793 * For a futex to be placed on a THP tail page, get_futex_key requires a 1794 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1795 * useful to have gup_huge_pmd even if we can't operate on ptes. 1796 */ 1797 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1798 unsigned int flags, struct page **pages, int *nr) 1799 { 1800 return 0; 1801 } 1802 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1803 1804 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1805 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1806 unsigned long end, struct page **pages, int *nr) 1807 { 1808 int nr_start = *nr; 1809 struct dev_pagemap *pgmap = NULL; 1810 1811 do { 1812 struct page *page = pfn_to_page(pfn); 1813 1814 pgmap = get_dev_pagemap(pfn, pgmap); 1815 if (unlikely(!pgmap)) { 1816 undo_dev_pagemap(nr, nr_start, pages); 1817 return 0; 1818 } 1819 SetPageReferenced(page); 1820 pages[*nr] = page; 1821 get_page(page); 1822 (*nr)++; 1823 pfn++; 1824 } while (addr += PAGE_SIZE, addr != end); 1825 1826 if (pgmap) 1827 put_dev_pagemap(pgmap); 1828 return 1; 1829 } 1830 1831 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1832 unsigned long end, struct page **pages, int *nr) 1833 { 1834 unsigned long fault_pfn; 1835 int nr_start = *nr; 1836 1837 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1838 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1839 return 0; 1840 1841 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1842 undo_dev_pagemap(nr, nr_start, pages); 1843 return 0; 1844 } 1845 return 1; 1846 } 1847 1848 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1849 unsigned long end, struct page **pages, int *nr) 1850 { 1851 unsigned long fault_pfn; 1852 int nr_start = *nr; 1853 1854 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1855 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1856 return 0; 1857 1858 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1859 undo_dev_pagemap(nr, nr_start, pages); 1860 return 0; 1861 } 1862 return 1; 1863 } 1864 #else 1865 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1866 unsigned long end, struct page **pages, int *nr) 1867 { 1868 BUILD_BUG(); 1869 return 0; 1870 } 1871 1872 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1873 unsigned long end, struct page **pages, int *nr) 1874 { 1875 BUILD_BUG(); 1876 return 0; 1877 } 1878 #endif 1879 1880 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1881 unsigned long end, unsigned int flags, struct page **pages, int *nr) 1882 { 1883 struct page *head, *page; 1884 int refs; 1885 1886 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 1887 return 0; 1888 1889 if (pmd_devmap(orig)) { 1890 if (unlikely(flags & FOLL_LONGTERM)) 1891 return 0; 1892 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 1893 } 1894 1895 refs = 0; 1896 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1897 do { 1898 pages[*nr] = page; 1899 (*nr)++; 1900 page++; 1901 refs++; 1902 } while (addr += PAGE_SIZE, addr != end); 1903 1904 head = try_get_compound_head(pmd_page(orig), refs); 1905 if (!head) { 1906 *nr -= refs; 1907 return 0; 1908 } 1909 1910 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1911 *nr -= refs; 1912 while (refs--) 1913 put_page(head); 1914 return 0; 1915 } 1916 1917 SetPageReferenced(head); 1918 return 1; 1919 } 1920 1921 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1922 unsigned long end, unsigned int flags, struct page **pages, int *nr) 1923 { 1924 struct page *head, *page; 1925 int refs; 1926 1927 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 1928 return 0; 1929 1930 if (pud_devmap(orig)) { 1931 if (unlikely(flags & FOLL_LONGTERM)) 1932 return 0; 1933 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 1934 } 1935 1936 refs = 0; 1937 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1938 do { 1939 pages[*nr] = page; 1940 (*nr)++; 1941 page++; 1942 refs++; 1943 } while (addr += PAGE_SIZE, addr != end); 1944 1945 head = try_get_compound_head(pud_page(orig), refs); 1946 if (!head) { 1947 *nr -= refs; 1948 return 0; 1949 } 1950 1951 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1952 *nr -= refs; 1953 while (refs--) 1954 put_page(head); 1955 return 0; 1956 } 1957 1958 SetPageReferenced(head); 1959 return 1; 1960 } 1961 1962 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1963 unsigned long end, unsigned int flags, 1964 struct page **pages, int *nr) 1965 { 1966 int refs; 1967 struct page *head, *page; 1968 1969 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 1970 return 0; 1971 1972 BUILD_BUG_ON(pgd_devmap(orig)); 1973 refs = 0; 1974 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1975 do { 1976 pages[*nr] = page; 1977 (*nr)++; 1978 page++; 1979 refs++; 1980 } while (addr += PAGE_SIZE, addr != end); 1981 1982 head = try_get_compound_head(pgd_page(orig), refs); 1983 if (!head) { 1984 *nr -= refs; 1985 return 0; 1986 } 1987 1988 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1989 *nr -= refs; 1990 while (refs--) 1991 put_page(head); 1992 return 0; 1993 } 1994 1995 SetPageReferenced(head); 1996 return 1; 1997 } 1998 1999 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2000 unsigned int flags, struct page **pages, int *nr) 2001 { 2002 unsigned long next; 2003 pmd_t *pmdp; 2004 2005 pmdp = pmd_offset(&pud, addr); 2006 do { 2007 pmd_t pmd = READ_ONCE(*pmdp); 2008 2009 next = pmd_addr_end(addr, end); 2010 if (!pmd_present(pmd)) 2011 return 0; 2012 2013 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2014 pmd_devmap(pmd))) { 2015 /* 2016 * NUMA hinting faults need to be handled in the GUP 2017 * slowpath for accounting purposes and so that they 2018 * can be serialised against THP migration. 2019 */ 2020 if (pmd_protnone(pmd)) 2021 return 0; 2022 2023 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2024 pages, nr)) 2025 return 0; 2026 2027 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2028 /* 2029 * architecture have different format for hugetlbfs 2030 * pmd format and THP pmd format 2031 */ 2032 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2033 PMD_SHIFT, next, flags, pages, nr)) 2034 return 0; 2035 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2036 return 0; 2037 } while (pmdp++, addr = next, addr != end); 2038 2039 return 1; 2040 } 2041 2042 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2043 unsigned int flags, struct page **pages, int *nr) 2044 { 2045 unsigned long next; 2046 pud_t *pudp; 2047 2048 pudp = pud_offset(&p4d, addr); 2049 do { 2050 pud_t pud = READ_ONCE(*pudp); 2051 2052 next = pud_addr_end(addr, end); 2053 if (pud_none(pud)) 2054 return 0; 2055 if (unlikely(pud_huge(pud))) { 2056 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2057 pages, nr)) 2058 return 0; 2059 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2060 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2061 PUD_SHIFT, next, flags, pages, nr)) 2062 return 0; 2063 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2064 return 0; 2065 } while (pudp++, addr = next, addr != end); 2066 2067 return 1; 2068 } 2069 2070 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2071 unsigned int flags, struct page **pages, int *nr) 2072 { 2073 unsigned long next; 2074 p4d_t *p4dp; 2075 2076 p4dp = p4d_offset(&pgd, addr); 2077 do { 2078 p4d_t p4d = READ_ONCE(*p4dp); 2079 2080 next = p4d_addr_end(addr, end); 2081 if (p4d_none(p4d)) 2082 return 0; 2083 BUILD_BUG_ON(p4d_huge(p4d)); 2084 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2085 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2086 P4D_SHIFT, next, flags, pages, nr)) 2087 return 0; 2088 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2089 return 0; 2090 } while (p4dp++, addr = next, addr != end); 2091 2092 return 1; 2093 } 2094 2095 static void gup_pgd_range(unsigned long addr, unsigned long end, 2096 unsigned int flags, struct page **pages, int *nr) 2097 { 2098 unsigned long next; 2099 pgd_t *pgdp; 2100 2101 pgdp = pgd_offset(current->mm, addr); 2102 do { 2103 pgd_t pgd = READ_ONCE(*pgdp); 2104 2105 next = pgd_addr_end(addr, end); 2106 if (pgd_none(pgd)) 2107 return; 2108 if (unlikely(pgd_huge(pgd))) { 2109 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2110 pages, nr)) 2111 return; 2112 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2113 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2114 PGDIR_SHIFT, next, flags, pages, nr)) 2115 return; 2116 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2117 return; 2118 } while (pgdp++, addr = next, addr != end); 2119 } 2120 2121 #ifndef gup_fast_permitted 2122 /* 2123 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2124 * we need to fall back to the slow version: 2125 */ 2126 bool gup_fast_permitted(unsigned long start, int nr_pages) 2127 { 2128 unsigned long len, end; 2129 2130 len = (unsigned long) nr_pages << PAGE_SHIFT; 2131 end = start + len; 2132 return end >= start; 2133 } 2134 #endif 2135 2136 /* 2137 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2138 * the regular GUP. 2139 * Note a difference with get_user_pages_fast: this always returns the 2140 * number of pages pinned, 0 if no pages were pinned. 2141 */ 2142 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2143 struct page **pages) 2144 { 2145 unsigned long len, end; 2146 unsigned long flags; 2147 int nr = 0; 2148 2149 start &= PAGE_MASK; 2150 len = (unsigned long) nr_pages << PAGE_SHIFT; 2151 end = start + len; 2152 2153 if (unlikely(!access_ok((void __user *)start, len))) 2154 return 0; 2155 2156 /* 2157 * Disable interrupts. We use the nested form as we can already have 2158 * interrupts disabled by get_futex_key. 2159 * 2160 * With interrupts disabled, we block page table pages from being 2161 * freed from under us. See struct mmu_table_batch comments in 2162 * include/asm-generic/tlb.h for more details. 2163 * 2164 * We do not adopt an rcu_read_lock(.) here as we also want to 2165 * block IPIs that come from THPs splitting. 2166 */ 2167 2168 if (gup_fast_permitted(start, nr_pages)) { 2169 local_irq_save(flags); 2170 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); 2171 local_irq_restore(flags); 2172 } 2173 2174 return nr; 2175 } 2176 2177 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2178 unsigned int gup_flags, struct page **pages) 2179 { 2180 int ret; 2181 2182 /* 2183 * FIXME: FOLL_LONGTERM does not work with 2184 * get_user_pages_unlocked() (see comments in that function) 2185 */ 2186 if (gup_flags & FOLL_LONGTERM) { 2187 down_read(¤t->mm->mmap_sem); 2188 ret = __gup_longterm_locked(current, current->mm, 2189 start, nr_pages, 2190 pages, NULL, gup_flags); 2191 up_read(¤t->mm->mmap_sem); 2192 } else { 2193 ret = get_user_pages_unlocked(start, nr_pages, 2194 pages, gup_flags); 2195 } 2196 2197 return ret; 2198 } 2199 2200 /** 2201 * get_user_pages_fast() - pin user pages in memory 2202 * @start: starting user address 2203 * @nr_pages: number of pages from start to pin 2204 * @gup_flags: flags modifying pin behaviour 2205 * @pages: array that receives pointers to the pages pinned. 2206 * Should be at least nr_pages long. 2207 * 2208 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2209 * If not successful, it will fall back to taking the lock and 2210 * calling get_user_pages(). 2211 * 2212 * Returns number of pages pinned. This may be fewer than the number 2213 * requested. If nr_pages is 0 or negative, returns 0. If no pages 2214 * were pinned, returns -errno. 2215 */ 2216 int get_user_pages_fast(unsigned long start, int nr_pages, 2217 unsigned int gup_flags, struct page **pages) 2218 { 2219 unsigned long addr, len, end; 2220 int nr = 0, ret = 0; 2221 2222 start &= PAGE_MASK; 2223 addr = start; 2224 len = (unsigned long) nr_pages << PAGE_SHIFT; 2225 end = start + len; 2226 2227 if (nr_pages <= 0) 2228 return 0; 2229 2230 if (unlikely(!access_ok((void __user *)start, len))) 2231 return -EFAULT; 2232 2233 if (gup_fast_permitted(start, nr_pages)) { 2234 local_irq_disable(); 2235 gup_pgd_range(addr, end, gup_flags, pages, &nr); 2236 local_irq_enable(); 2237 ret = nr; 2238 } 2239 2240 if (nr < nr_pages) { 2241 /* Try to get the remaining pages with get_user_pages */ 2242 start += nr << PAGE_SHIFT; 2243 pages += nr; 2244 2245 ret = __gup_longterm_unlocked(start, nr_pages - nr, 2246 gup_flags, pages); 2247 2248 /* Have to be a bit careful with return values */ 2249 if (nr > 0) { 2250 if (ret < 0) 2251 ret = nr; 2252 else 2253 ret += nr; 2254 } 2255 } 2256 2257 return ret; 2258 } 2259 2260 #endif /* CONFIG_HAVE_GENERIC_GUP */ 2261