xref: /openbmc/linux/mm/gup.c (revision 40867d74c374b235e14d839f3a77f26684feefe5)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #include <linux/kernel.h>
3  #include <linux/errno.h>
4  #include <linux/err.h>
5  #include <linux/spinlock.h>
6  
7  #include <linux/mm.h>
8  #include <linux/memremap.h>
9  #include <linux/pagemap.h>
10  #include <linux/rmap.h>
11  #include <linux/swap.h>
12  #include <linux/swapops.h>
13  #include <linux/secretmem.h>
14  
15  #include <linux/sched/signal.h>
16  #include <linux/rwsem.h>
17  #include <linux/hugetlb.h>
18  #include <linux/migrate.h>
19  #include <linux/mm_inline.h>
20  #include <linux/sched/mm.h>
21  
22  #include <asm/mmu_context.h>
23  #include <asm/tlbflush.h>
24  
25  #include "internal.h"
26  
27  struct follow_page_context {
28  	struct dev_pagemap *pgmap;
29  	unsigned int page_mask;
30  };
31  
32  static void hpage_pincount_add(struct page *page, int refs)
33  {
34  	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35  	VM_BUG_ON_PAGE(page != compound_head(page), page);
36  
37  	atomic_add(refs, compound_pincount_ptr(page));
38  }
39  
40  static void hpage_pincount_sub(struct page *page, int refs)
41  {
42  	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43  	VM_BUG_ON_PAGE(page != compound_head(page), page);
44  
45  	atomic_sub(refs, compound_pincount_ptr(page));
46  }
47  
48  /* Equivalent to calling put_page() @refs times. */
49  static void put_page_refs(struct page *page, int refs)
50  {
51  #ifdef CONFIG_DEBUG_VM
52  	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53  		return;
54  #endif
55  
56  	/*
57  	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58  	 * ref needs a put_page().
59  	 */
60  	if (refs > 1)
61  		page_ref_sub(page, refs - 1);
62  	put_page(page);
63  }
64  
65  /*
66   * Return the compound head page with ref appropriately incremented,
67   * or NULL if that failed.
68   */
69  static inline struct page *try_get_compound_head(struct page *page, int refs)
70  {
71  	struct page *head = compound_head(page);
72  
73  	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74  		return NULL;
75  	if (unlikely(!page_cache_add_speculative(head, refs)))
76  		return NULL;
77  
78  	/*
79  	 * At this point we have a stable reference to the head page; but it
80  	 * could be that between the compound_head() lookup and the refcount
81  	 * increment, the compound page was split, in which case we'd end up
82  	 * holding a reference on a page that has nothing to do with the page
83  	 * we were given anymore.
84  	 * So now that the head page is stable, recheck that the pages still
85  	 * belong together.
86  	 */
87  	if (unlikely(compound_head(page) != head)) {
88  		put_page_refs(head, refs);
89  		return NULL;
90  	}
91  
92  	return head;
93  }
94  
95  /**
96   * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97   * flags-dependent amount.
98   *
99   * Even though the name includes "compound_head", this function is still
100   * appropriate for callers that have a non-compound @page to get.
101   *
102   * @page:  pointer to page to be grabbed
103   * @refs:  the value to (effectively) add to the page's refcount
104   * @flags: gup flags: these are the FOLL_* flag values.
105   *
106   * "grab" names in this file mean, "look at flags to decide whether to use
107   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108   *
109   * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110   * same time. (That's true throughout the get_user_pages*() and
111   * pin_user_pages*() APIs.) Cases:
112   *
113   *    FOLL_GET: page's refcount will be incremented by @refs.
114   *
115   *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
116   *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
117   *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
118   *
119   *    FOLL_PIN on normal pages, or compound pages that are two pages long:
120   *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121   *
122   * Return: head page (with refcount appropriately incremented) for success, or
123   * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124   * considered failure, and furthermore, a likely bug in the caller, so a warning
125   * is also emitted.
126   */
127  __maybe_unused struct page *try_grab_compound_head(struct page *page,
128  						   int refs, unsigned int flags)
129  {
130  	if (flags & FOLL_GET)
131  		return try_get_compound_head(page, refs);
132  	else if (flags & FOLL_PIN) {
133  		/*
134  		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135  		 * right zone, so fail and let the caller fall back to the slow
136  		 * path.
137  		 */
138  		if (unlikely((flags & FOLL_LONGTERM) &&
139  			     !is_pinnable_page(page)))
140  			return NULL;
141  
142  		/*
143  		 * CAUTION: Don't use compound_head() on the page before this
144  		 * point, the result won't be stable.
145  		 */
146  		page = try_get_compound_head(page, refs);
147  		if (!page)
148  			return NULL;
149  
150  		/*
151  		 * When pinning a compound page of order > 1 (which is what
152  		 * hpage_pincount_available() checks for), use an exact count to
153  		 * track it, via hpage_pincount_add/_sub().
154  		 *
155  		 * However, be sure to *also* increment the normal page refcount
156  		 * field at least once, so that the page really is pinned.
157  		 * That's why the refcount from the earlier
158  		 * try_get_compound_head() is left intact.
159  		 */
160  		if (hpage_pincount_available(page))
161  			hpage_pincount_add(page, refs);
162  		else
163  			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164  
165  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166  				    refs);
167  
168  		return page;
169  	}
170  
171  	WARN_ON_ONCE(1);
172  	return NULL;
173  }
174  
175  static void put_compound_head(struct page *page, int refs, unsigned int flags)
176  {
177  	if (flags & FOLL_PIN) {
178  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179  				    refs);
180  
181  		if (hpage_pincount_available(page))
182  			hpage_pincount_sub(page, refs);
183  		else
184  			refs *= GUP_PIN_COUNTING_BIAS;
185  	}
186  
187  	put_page_refs(page, refs);
188  }
189  
190  /**
191   * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192   *
193   * This might not do anything at all, depending on the flags argument.
194   *
195   * "grab" names in this file mean, "look at flags to decide whether to use
196   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197   *
198   * @page:    pointer to page to be grabbed
199   * @flags:   gup flags: these are the FOLL_* flag values.
200   *
201   * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202   * time. Cases: please see the try_grab_compound_head() documentation, with
203   * "refs=1".
204   *
205   * Return: true for success, or if no action was required (if neither FOLL_PIN
206   * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207   * FOLL_PIN was set, but the page could not be grabbed.
208   */
209  bool __must_check try_grab_page(struct page *page, unsigned int flags)
210  {
211  	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
212  
213  	if (flags & FOLL_GET)
214  		return try_get_page(page);
215  	else if (flags & FOLL_PIN) {
216  		int refs = 1;
217  
218  		page = compound_head(page);
219  
220  		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
221  			return false;
222  
223  		if (hpage_pincount_available(page))
224  			hpage_pincount_add(page, 1);
225  		else
226  			refs = GUP_PIN_COUNTING_BIAS;
227  
228  		/*
229  		 * Similar to try_grab_compound_head(): even if using the
230  		 * hpage_pincount_add/_sub() routines, be sure to
231  		 * *also* increment the normal page refcount field at least
232  		 * once, so that the page really is pinned.
233  		 */
234  		page_ref_add(page, refs);
235  
236  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
237  	}
238  
239  	return true;
240  }
241  
242  /**
243   * unpin_user_page() - release a dma-pinned page
244   * @page:            pointer to page to be released
245   *
246   * Pages that were pinned via pin_user_pages*() must be released via either
247   * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
248   * that such pages can be separately tracked and uniquely handled. In
249   * particular, interactions with RDMA and filesystems need special handling.
250   */
251  void unpin_user_page(struct page *page)
252  {
253  	put_compound_head(compound_head(page), 1, FOLL_PIN);
254  }
255  EXPORT_SYMBOL(unpin_user_page);
256  
257  static inline void compound_range_next(unsigned long i, unsigned long npages,
258  				       struct page **list, struct page **head,
259  				       unsigned int *ntails)
260  {
261  	struct page *next, *page;
262  	unsigned int nr = 1;
263  
264  	if (i >= npages)
265  		return;
266  
267  	next = *list + i;
268  	page = compound_head(next);
269  	if (PageCompound(page) && compound_order(page) >= 1)
270  		nr = min_t(unsigned int,
271  			   page + compound_nr(page) - next, npages - i);
272  
273  	*head = page;
274  	*ntails = nr;
275  }
276  
277  #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
278  	for (__i = 0, \
279  	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
280  	     __i < __npages; __i += __ntails, \
281  	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
282  
283  static inline void compound_next(unsigned long i, unsigned long npages,
284  				 struct page **list, struct page **head,
285  				 unsigned int *ntails)
286  {
287  	struct page *page;
288  	unsigned int nr;
289  
290  	if (i >= npages)
291  		return;
292  
293  	page = compound_head(list[i]);
294  	for (nr = i + 1; nr < npages; nr++) {
295  		if (compound_head(list[nr]) != page)
296  			break;
297  	}
298  
299  	*head = page;
300  	*ntails = nr - i;
301  }
302  
303  #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
304  	for (__i = 0, \
305  	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
306  	     __i < __npages; __i += __ntails, \
307  	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
308  
309  /**
310   * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
311   * @pages:  array of pages to be maybe marked dirty, and definitely released.
312   * @npages: number of pages in the @pages array.
313   * @make_dirty: whether to mark the pages dirty
314   *
315   * "gup-pinned page" refers to a page that has had one of the get_user_pages()
316   * variants called on that page.
317   *
318   * For each page in the @pages array, make that page (or its head page, if a
319   * compound page) dirty, if @make_dirty is true, and if the page was previously
320   * listed as clean. In any case, releases all pages using unpin_user_page(),
321   * possibly via unpin_user_pages(), for the non-dirty case.
322   *
323   * Please see the unpin_user_page() documentation for details.
324   *
325   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
326   * required, then the caller should a) verify that this is really correct,
327   * because _lock() is usually required, and b) hand code it:
328   * set_page_dirty_lock(), unpin_user_page().
329   *
330   */
331  void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
332  				 bool make_dirty)
333  {
334  	unsigned long index;
335  	struct page *head;
336  	unsigned int ntails;
337  
338  	if (!make_dirty) {
339  		unpin_user_pages(pages, npages);
340  		return;
341  	}
342  
343  	for_each_compound_head(index, pages, npages, head, ntails) {
344  		/*
345  		 * Checking PageDirty at this point may race with
346  		 * clear_page_dirty_for_io(), but that's OK. Two key
347  		 * cases:
348  		 *
349  		 * 1) This code sees the page as already dirty, so it
350  		 * skips the call to set_page_dirty(). That could happen
351  		 * because clear_page_dirty_for_io() called
352  		 * page_mkclean(), followed by set_page_dirty().
353  		 * However, now the page is going to get written back,
354  		 * which meets the original intention of setting it
355  		 * dirty, so all is well: clear_page_dirty_for_io() goes
356  		 * on to call TestClearPageDirty(), and write the page
357  		 * back.
358  		 *
359  		 * 2) This code sees the page as clean, so it calls
360  		 * set_page_dirty(). The page stays dirty, despite being
361  		 * written back, so it gets written back again in the
362  		 * next writeback cycle. This is harmless.
363  		 */
364  		if (!PageDirty(head))
365  			set_page_dirty_lock(head);
366  		put_compound_head(head, ntails, FOLL_PIN);
367  	}
368  }
369  EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
370  
371  /**
372   * unpin_user_page_range_dirty_lock() - release and optionally dirty
373   * gup-pinned page range
374   *
375   * @page:  the starting page of a range maybe marked dirty, and definitely released.
376   * @npages: number of consecutive pages to release.
377   * @make_dirty: whether to mark the pages dirty
378   *
379   * "gup-pinned page range" refers to a range of pages that has had one of the
380   * pin_user_pages() variants called on that page.
381   *
382   * For the page ranges defined by [page .. page+npages], make that range (or
383   * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
384   * page range was previously listed as clean.
385   *
386   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
387   * required, then the caller should a) verify that this is really correct,
388   * because _lock() is usually required, and b) hand code it:
389   * set_page_dirty_lock(), unpin_user_page().
390   *
391   */
392  void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
393  				      bool make_dirty)
394  {
395  	unsigned long index;
396  	struct page *head;
397  	unsigned int ntails;
398  
399  	for_each_compound_range(index, &page, npages, head, ntails) {
400  		if (make_dirty && !PageDirty(head))
401  			set_page_dirty_lock(head);
402  		put_compound_head(head, ntails, FOLL_PIN);
403  	}
404  }
405  EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
406  
407  /**
408   * unpin_user_pages() - release an array of gup-pinned pages.
409   * @pages:  array of pages to be marked dirty and released.
410   * @npages: number of pages in the @pages array.
411   *
412   * For each page in the @pages array, release the page using unpin_user_page().
413   *
414   * Please see the unpin_user_page() documentation for details.
415   */
416  void unpin_user_pages(struct page **pages, unsigned long npages)
417  {
418  	unsigned long index;
419  	struct page *head;
420  	unsigned int ntails;
421  
422  	/*
423  	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
424  	 * leaving them pinned), but probably not. More likely, gup/pup returned
425  	 * a hard -ERRNO error to the caller, who erroneously passed it here.
426  	 */
427  	if (WARN_ON(IS_ERR_VALUE(npages)))
428  		return;
429  
430  	for_each_compound_head(index, pages, npages, head, ntails)
431  		put_compound_head(head, ntails, FOLL_PIN);
432  }
433  EXPORT_SYMBOL(unpin_user_pages);
434  
435  /*
436   * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
437   * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
438   * cache bouncing on large SMP machines for concurrent pinned gups.
439   */
440  static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
441  {
442  	if (!test_bit(MMF_HAS_PINNED, mm_flags))
443  		set_bit(MMF_HAS_PINNED, mm_flags);
444  }
445  
446  #ifdef CONFIG_MMU
447  static struct page *no_page_table(struct vm_area_struct *vma,
448  		unsigned int flags)
449  {
450  	/*
451  	 * When core dumping an enormous anonymous area that nobody
452  	 * has touched so far, we don't want to allocate unnecessary pages or
453  	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
454  	 * then get_dump_page() will return NULL to leave a hole in the dump.
455  	 * But we can only make this optimization where a hole would surely
456  	 * be zero-filled if handle_mm_fault() actually did handle it.
457  	 */
458  	if ((flags & FOLL_DUMP) &&
459  			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
460  		return ERR_PTR(-EFAULT);
461  	return NULL;
462  }
463  
464  static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
465  		pte_t *pte, unsigned int flags)
466  {
467  	/* No page to get reference */
468  	if (flags & FOLL_GET)
469  		return -EFAULT;
470  
471  	if (flags & FOLL_TOUCH) {
472  		pte_t entry = *pte;
473  
474  		if (flags & FOLL_WRITE)
475  			entry = pte_mkdirty(entry);
476  		entry = pte_mkyoung(entry);
477  
478  		if (!pte_same(*pte, entry)) {
479  			set_pte_at(vma->vm_mm, address, pte, entry);
480  			update_mmu_cache(vma, address, pte);
481  		}
482  	}
483  
484  	/* Proper page table entry exists, but no corresponding struct page */
485  	return -EEXIST;
486  }
487  
488  /*
489   * FOLL_FORCE can write to even unwritable pte's, but only
490   * after we've gone through a COW cycle and they are dirty.
491   */
492  static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
493  {
494  	return pte_write(pte) ||
495  		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
496  }
497  
498  static struct page *follow_page_pte(struct vm_area_struct *vma,
499  		unsigned long address, pmd_t *pmd, unsigned int flags,
500  		struct dev_pagemap **pgmap)
501  {
502  	struct mm_struct *mm = vma->vm_mm;
503  	struct page *page;
504  	spinlock_t *ptl;
505  	pte_t *ptep, pte;
506  	int ret;
507  
508  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
509  	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
510  			 (FOLL_PIN | FOLL_GET)))
511  		return ERR_PTR(-EINVAL);
512  retry:
513  	if (unlikely(pmd_bad(*pmd)))
514  		return no_page_table(vma, flags);
515  
516  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
517  	pte = *ptep;
518  	if (!pte_present(pte)) {
519  		swp_entry_t entry;
520  		/*
521  		 * KSM's break_ksm() relies upon recognizing a ksm page
522  		 * even while it is being migrated, so for that case we
523  		 * need migration_entry_wait().
524  		 */
525  		if (likely(!(flags & FOLL_MIGRATION)))
526  			goto no_page;
527  		if (pte_none(pte))
528  			goto no_page;
529  		entry = pte_to_swp_entry(pte);
530  		if (!is_migration_entry(entry))
531  			goto no_page;
532  		pte_unmap_unlock(ptep, ptl);
533  		migration_entry_wait(mm, pmd, address);
534  		goto retry;
535  	}
536  	if ((flags & FOLL_NUMA) && pte_protnone(pte))
537  		goto no_page;
538  	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
539  		pte_unmap_unlock(ptep, ptl);
540  		return NULL;
541  	}
542  
543  	page = vm_normal_page(vma, address, pte);
544  	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
545  		/*
546  		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
547  		 * case since they are only valid while holding the pgmap
548  		 * reference.
549  		 */
550  		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
551  		if (*pgmap)
552  			page = pte_page(pte);
553  		else
554  			goto no_page;
555  	} else if (unlikely(!page)) {
556  		if (flags & FOLL_DUMP) {
557  			/* Avoid special (like zero) pages in core dumps */
558  			page = ERR_PTR(-EFAULT);
559  			goto out;
560  		}
561  
562  		if (is_zero_pfn(pte_pfn(pte))) {
563  			page = pte_page(pte);
564  		} else {
565  			ret = follow_pfn_pte(vma, address, ptep, flags);
566  			page = ERR_PTR(ret);
567  			goto out;
568  		}
569  	}
570  
571  	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
572  	if (unlikely(!try_grab_page(page, flags))) {
573  		page = ERR_PTR(-ENOMEM);
574  		goto out;
575  	}
576  	/*
577  	 * We need to make the page accessible if and only if we are going
578  	 * to access its content (the FOLL_PIN case).  Please see
579  	 * Documentation/core-api/pin_user_pages.rst for details.
580  	 */
581  	if (flags & FOLL_PIN) {
582  		ret = arch_make_page_accessible(page);
583  		if (ret) {
584  			unpin_user_page(page);
585  			page = ERR_PTR(ret);
586  			goto out;
587  		}
588  	}
589  	if (flags & FOLL_TOUCH) {
590  		if ((flags & FOLL_WRITE) &&
591  		    !pte_dirty(pte) && !PageDirty(page))
592  			set_page_dirty(page);
593  		/*
594  		 * pte_mkyoung() would be more correct here, but atomic care
595  		 * is needed to avoid losing the dirty bit: it is easier to use
596  		 * mark_page_accessed().
597  		 */
598  		mark_page_accessed(page);
599  	}
600  	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
601  		/* Do not mlock pte-mapped THP */
602  		if (PageTransCompound(page))
603  			goto out;
604  
605  		/*
606  		 * The preliminary mapping check is mainly to avoid the
607  		 * pointless overhead of lock_page on the ZERO_PAGE
608  		 * which might bounce very badly if there is contention.
609  		 *
610  		 * If the page is already locked, we don't need to
611  		 * handle it now - vmscan will handle it later if and
612  		 * when it attempts to reclaim the page.
613  		 */
614  		if (page->mapping && trylock_page(page)) {
615  			lru_add_drain();  /* push cached pages to LRU */
616  			/*
617  			 * Because we lock page here, and migration is
618  			 * blocked by the pte's page reference, and we
619  			 * know the page is still mapped, we don't even
620  			 * need to check for file-cache page truncation.
621  			 */
622  			mlock_vma_page(page);
623  			unlock_page(page);
624  		}
625  	}
626  out:
627  	pte_unmap_unlock(ptep, ptl);
628  	return page;
629  no_page:
630  	pte_unmap_unlock(ptep, ptl);
631  	if (!pte_none(pte))
632  		return NULL;
633  	return no_page_table(vma, flags);
634  }
635  
636  static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637  				    unsigned long address, pud_t *pudp,
638  				    unsigned int flags,
639  				    struct follow_page_context *ctx)
640  {
641  	pmd_t *pmd, pmdval;
642  	spinlock_t *ptl;
643  	struct page *page;
644  	struct mm_struct *mm = vma->vm_mm;
645  
646  	pmd = pmd_offset(pudp, address);
647  	/*
648  	 * The READ_ONCE() will stabilize the pmdval in a register or
649  	 * on the stack so that it will stop changing under the code.
650  	 */
651  	pmdval = READ_ONCE(*pmd);
652  	if (pmd_none(pmdval))
653  		return no_page_table(vma, flags);
654  	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
655  		page = follow_huge_pmd(mm, address, pmd, flags);
656  		if (page)
657  			return page;
658  		return no_page_table(vma, flags);
659  	}
660  	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
661  		page = follow_huge_pd(vma, address,
662  				      __hugepd(pmd_val(pmdval)), flags,
663  				      PMD_SHIFT);
664  		if (page)
665  			return page;
666  		return no_page_table(vma, flags);
667  	}
668  retry:
669  	if (!pmd_present(pmdval)) {
670  		/*
671  		 * Should never reach here, if thp migration is not supported;
672  		 * Otherwise, it must be a thp migration entry.
673  		 */
674  		VM_BUG_ON(!thp_migration_supported() ||
675  				  !is_pmd_migration_entry(pmdval));
676  
677  		if (likely(!(flags & FOLL_MIGRATION)))
678  			return no_page_table(vma, flags);
679  
680  		pmd_migration_entry_wait(mm, pmd);
681  		pmdval = READ_ONCE(*pmd);
682  		/*
683  		 * MADV_DONTNEED may convert the pmd to null because
684  		 * mmap_lock is held in read mode
685  		 */
686  		if (pmd_none(pmdval))
687  			return no_page_table(vma, flags);
688  		goto retry;
689  	}
690  	if (pmd_devmap(pmdval)) {
691  		ptl = pmd_lock(mm, pmd);
692  		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
693  		spin_unlock(ptl);
694  		if (page)
695  			return page;
696  	}
697  	if (likely(!pmd_trans_huge(pmdval)))
698  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
699  
700  	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
701  		return no_page_table(vma, flags);
702  
703  retry_locked:
704  	ptl = pmd_lock(mm, pmd);
705  	if (unlikely(pmd_none(*pmd))) {
706  		spin_unlock(ptl);
707  		return no_page_table(vma, flags);
708  	}
709  	if (unlikely(!pmd_present(*pmd))) {
710  		spin_unlock(ptl);
711  		if (likely(!(flags & FOLL_MIGRATION)))
712  			return no_page_table(vma, flags);
713  		pmd_migration_entry_wait(mm, pmd);
714  		goto retry_locked;
715  	}
716  	if (unlikely(!pmd_trans_huge(*pmd))) {
717  		spin_unlock(ptl);
718  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
719  	}
720  	if (flags & FOLL_SPLIT_PMD) {
721  		int ret;
722  		page = pmd_page(*pmd);
723  		if (is_huge_zero_page(page)) {
724  			spin_unlock(ptl);
725  			ret = 0;
726  			split_huge_pmd(vma, pmd, address);
727  			if (pmd_trans_unstable(pmd))
728  				ret = -EBUSY;
729  		} else {
730  			spin_unlock(ptl);
731  			split_huge_pmd(vma, pmd, address);
732  			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
733  		}
734  
735  		return ret ? ERR_PTR(ret) :
736  			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
737  	}
738  	page = follow_trans_huge_pmd(vma, address, pmd, flags);
739  	spin_unlock(ptl);
740  	ctx->page_mask = HPAGE_PMD_NR - 1;
741  	return page;
742  }
743  
744  static struct page *follow_pud_mask(struct vm_area_struct *vma,
745  				    unsigned long address, p4d_t *p4dp,
746  				    unsigned int flags,
747  				    struct follow_page_context *ctx)
748  {
749  	pud_t *pud;
750  	spinlock_t *ptl;
751  	struct page *page;
752  	struct mm_struct *mm = vma->vm_mm;
753  
754  	pud = pud_offset(p4dp, address);
755  	if (pud_none(*pud))
756  		return no_page_table(vma, flags);
757  	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
758  		page = follow_huge_pud(mm, address, pud, flags);
759  		if (page)
760  			return page;
761  		return no_page_table(vma, flags);
762  	}
763  	if (is_hugepd(__hugepd(pud_val(*pud)))) {
764  		page = follow_huge_pd(vma, address,
765  				      __hugepd(pud_val(*pud)), flags,
766  				      PUD_SHIFT);
767  		if (page)
768  			return page;
769  		return no_page_table(vma, flags);
770  	}
771  	if (pud_devmap(*pud)) {
772  		ptl = pud_lock(mm, pud);
773  		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
774  		spin_unlock(ptl);
775  		if (page)
776  			return page;
777  	}
778  	if (unlikely(pud_bad(*pud)))
779  		return no_page_table(vma, flags);
780  
781  	return follow_pmd_mask(vma, address, pud, flags, ctx);
782  }
783  
784  static struct page *follow_p4d_mask(struct vm_area_struct *vma,
785  				    unsigned long address, pgd_t *pgdp,
786  				    unsigned int flags,
787  				    struct follow_page_context *ctx)
788  {
789  	p4d_t *p4d;
790  	struct page *page;
791  
792  	p4d = p4d_offset(pgdp, address);
793  	if (p4d_none(*p4d))
794  		return no_page_table(vma, flags);
795  	BUILD_BUG_ON(p4d_huge(*p4d));
796  	if (unlikely(p4d_bad(*p4d)))
797  		return no_page_table(vma, flags);
798  
799  	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
800  		page = follow_huge_pd(vma, address,
801  				      __hugepd(p4d_val(*p4d)), flags,
802  				      P4D_SHIFT);
803  		if (page)
804  			return page;
805  		return no_page_table(vma, flags);
806  	}
807  	return follow_pud_mask(vma, address, p4d, flags, ctx);
808  }
809  
810  /**
811   * follow_page_mask - look up a page descriptor from a user-virtual address
812   * @vma: vm_area_struct mapping @address
813   * @address: virtual address to look up
814   * @flags: flags modifying lookup behaviour
815   * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
816   *       pointer to output page_mask
817   *
818   * @flags can have FOLL_ flags set, defined in <linux/mm.h>
819   *
820   * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
821   * the device's dev_pagemap metadata to avoid repeating expensive lookups.
822   *
823   * On output, the @ctx->page_mask is set according to the size of the page.
824   *
825   * Return: the mapped (struct page *), %NULL if no mapping exists, or
826   * an error pointer if there is a mapping to something not represented
827   * by a page descriptor (see also vm_normal_page()).
828   */
829  static struct page *follow_page_mask(struct vm_area_struct *vma,
830  			      unsigned long address, unsigned int flags,
831  			      struct follow_page_context *ctx)
832  {
833  	pgd_t *pgd;
834  	struct page *page;
835  	struct mm_struct *mm = vma->vm_mm;
836  
837  	ctx->page_mask = 0;
838  
839  	/* make this handle hugepd */
840  	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
841  	if (!IS_ERR(page)) {
842  		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
843  		return page;
844  	}
845  
846  	pgd = pgd_offset(mm, address);
847  
848  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
849  		return no_page_table(vma, flags);
850  
851  	if (pgd_huge(*pgd)) {
852  		page = follow_huge_pgd(mm, address, pgd, flags);
853  		if (page)
854  			return page;
855  		return no_page_table(vma, flags);
856  	}
857  	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
858  		page = follow_huge_pd(vma, address,
859  				      __hugepd(pgd_val(*pgd)), flags,
860  				      PGDIR_SHIFT);
861  		if (page)
862  			return page;
863  		return no_page_table(vma, flags);
864  	}
865  
866  	return follow_p4d_mask(vma, address, pgd, flags, ctx);
867  }
868  
869  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
870  			 unsigned int foll_flags)
871  {
872  	struct follow_page_context ctx = { NULL };
873  	struct page *page;
874  
875  	if (vma_is_secretmem(vma))
876  		return NULL;
877  
878  	page = follow_page_mask(vma, address, foll_flags, &ctx);
879  	if (ctx.pgmap)
880  		put_dev_pagemap(ctx.pgmap);
881  	return page;
882  }
883  
884  static int get_gate_page(struct mm_struct *mm, unsigned long address,
885  		unsigned int gup_flags, struct vm_area_struct **vma,
886  		struct page **page)
887  {
888  	pgd_t *pgd;
889  	p4d_t *p4d;
890  	pud_t *pud;
891  	pmd_t *pmd;
892  	pte_t *pte;
893  	int ret = -EFAULT;
894  
895  	/* user gate pages are read-only */
896  	if (gup_flags & FOLL_WRITE)
897  		return -EFAULT;
898  	if (address > TASK_SIZE)
899  		pgd = pgd_offset_k(address);
900  	else
901  		pgd = pgd_offset_gate(mm, address);
902  	if (pgd_none(*pgd))
903  		return -EFAULT;
904  	p4d = p4d_offset(pgd, address);
905  	if (p4d_none(*p4d))
906  		return -EFAULT;
907  	pud = pud_offset(p4d, address);
908  	if (pud_none(*pud))
909  		return -EFAULT;
910  	pmd = pmd_offset(pud, address);
911  	if (!pmd_present(*pmd))
912  		return -EFAULT;
913  	VM_BUG_ON(pmd_trans_huge(*pmd));
914  	pte = pte_offset_map(pmd, address);
915  	if (pte_none(*pte))
916  		goto unmap;
917  	*vma = get_gate_vma(mm);
918  	if (!page)
919  		goto out;
920  	*page = vm_normal_page(*vma, address, *pte);
921  	if (!*page) {
922  		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
923  			goto unmap;
924  		*page = pte_page(*pte);
925  	}
926  	if (unlikely(!try_grab_page(*page, gup_flags))) {
927  		ret = -ENOMEM;
928  		goto unmap;
929  	}
930  out:
931  	ret = 0;
932  unmap:
933  	pte_unmap(pte);
934  	return ret;
935  }
936  
937  /*
938   * mmap_lock must be held on entry.  If @locked != NULL and *@flags
939   * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
940   * is, *@locked will be set to 0 and -EBUSY returned.
941   */
942  static int faultin_page(struct vm_area_struct *vma,
943  		unsigned long address, unsigned int *flags, int *locked)
944  {
945  	unsigned int fault_flags = 0;
946  	vm_fault_t ret;
947  
948  	/* mlock all present pages, but do not fault in new pages */
949  	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
950  		return -ENOENT;
951  	if (*flags & FOLL_NOFAULT)
952  		return -EFAULT;
953  	if (*flags & FOLL_WRITE)
954  		fault_flags |= FAULT_FLAG_WRITE;
955  	if (*flags & FOLL_REMOTE)
956  		fault_flags |= FAULT_FLAG_REMOTE;
957  	if (locked)
958  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
959  	if (*flags & FOLL_NOWAIT)
960  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
961  	if (*flags & FOLL_TRIED) {
962  		/*
963  		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
964  		 * can co-exist
965  		 */
966  		fault_flags |= FAULT_FLAG_TRIED;
967  	}
968  
969  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
970  	if (ret & VM_FAULT_ERROR) {
971  		int err = vm_fault_to_errno(ret, *flags);
972  
973  		if (err)
974  			return err;
975  		BUG();
976  	}
977  
978  	if (ret & VM_FAULT_RETRY) {
979  		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
980  			*locked = 0;
981  		return -EBUSY;
982  	}
983  
984  	/*
985  	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
986  	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
987  	 * can thus safely do subsequent page lookups as if they were reads.
988  	 * But only do so when looping for pte_write is futile: in some cases
989  	 * userspace may also be wanting to write to the gotten user page,
990  	 * which a read fault here might prevent (a readonly page might get
991  	 * reCOWed by userspace write).
992  	 */
993  	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
994  		*flags |= FOLL_COW;
995  	return 0;
996  }
997  
998  static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
999  {
1000  	vm_flags_t vm_flags = vma->vm_flags;
1001  	int write = (gup_flags & FOLL_WRITE);
1002  	int foreign = (gup_flags & FOLL_REMOTE);
1003  
1004  	if (vm_flags & (VM_IO | VM_PFNMAP))
1005  		return -EFAULT;
1006  
1007  	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1008  		return -EFAULT;
1009  
1010  	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1011  		return -EOPNOTSUPP;
1012  
1013  	if (vma_is_secretmem(vma))
1014  		return -EFAULT;
1015  
1016  	if (write) {
1017  		if (!(vm_flags & VM_WRITE)) {
1018  			if (!(gup_flags & FOLL_FORCE))
1019  				return -EFAULT;
1020  			/*
1021  			 * We used to let the write,force case do COW in a
1022  			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1023  			 * set a breakpoint in a read-only mapping of an
1024  			 * executable, without corrupting the file (yet only
1025  			 * when that file had been opened for writing!).
1026  			 * Anon pages in shared mappings are surprising: now
1027  			 * just reject it.
1028  			 */
1029  			if (!is_cow_mapping(vm_flags))
1030  				return -EFAULT;
1031  		}
1032  	} else if (!(vm_flags & VM_READ)) {
1033  		if (!(gup_flags & FOLL_FORCE))
1034  			return -EFAULT;
1035  		/*
1036  		 * Is there actually any vma we can reach here which does not
1037  		 * have VM_MAYREAD set?
1038  		 */
1039  		if (!(vm_flags & VM_MAYREAD))
1040  			return -EFAULT;
1041  	}
1042  	/*
1043  	 * gups are always data accesses, not instruction
1044  	 * fetches, so execute=false here
1045  	 */
1046  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1047  		return -EFAULT;
1048  	return 0;
1049  }
1050  
1051  /**
1052   * __get_user_pages() - pin user pages in memory
1053   * @mm:		mm_struct of target mm
1054   * @start:	starting user address
1055   * @nr_pages:	number of pages from start to pin
1056   * @gup_flags:	flags modifying pin behaviour
1057   * @pages:	array that receives pointers to the pages pinned.
1058   *		Should be at least nr_pages long. Or NULL, if caller
1059   *		only intends to ensure the pages are faulted in.
1060   * @vmas:	array of pointers to vmas corresponding to each page.
1061   *		Or NULL if the caller does not require them.
1062   * @locked:     whether we're still with the mmap_lock held
1063   *
1064   * Returns either number of pages pinned (which may be less than the
1065   * number requested), or an error. Details about the return value:
1066   *
1067   * -- If nr_pages is 0, returns 0.
1068   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1069   * -- If nr_pages is >0, and some pages were pinned, returns the number of
1070   *    pages pinned. Again, this may be less than nr_pages.
1071   * -- 0 return value is possible when the fault would need to be retried.
1072   *
1073   * The caller is responsible for releasing returned @pages, via put_page().
1074   *
1075   * @vmas are valid only as long as mmap_lock is held.
1076   *
1077   * Must be called with mmap_lock held.  It may be released.  See below.
1078   *
1079   * __get_user_pages walks a process's page tables and takes a reference to
1080   * each struct page that each user address corresponds to at a given
1081   * instant. That is, it takes the page that would be accessed if a user
1082   * thread accesses the given user virtual address at that instant.
1083   *
1084   * This does not guarantee that the page exists in the user mappings when
1085   * __get_user_pages returns, and there may even be a completely different
1086   * page there in some cases (eg. if mmapped pagecache has been invalidated
1087   * and subsequently re faulted). However it does guarantee that the page
1088   * won't be freed completely. And mostly callers simply care that the page
1089   * contains data that was valid *at some point in time*. Typically, an IO
1090   * or similar operation cannot guarantee anything stronger anyway because
1091   * locks can't be held over the syscall boundary.
1092   *
1093   * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1094   * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1095   * appropriate) must be called after the page is finished with, and
1096   * before put_page is called.
1097   *
1098   * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1099   * released by an up_read().  That can happen if @gup_flags does not
1100   * have FOLL_NOWAIT.
1101   *
1102   * A caller using such a combination of @locked and @gup_flags
1103   * must therefore hold the mmap_lock for reading only, and recognize
1104   * when it's been released.  Otherwise, it must be held for either
1105   * reading or writing and will not be released.
1106   *
1107   * In most cases, get_user_pages or get_user_pages_fast should be used
1108   * instead of __get_user_pages. __get_user_pages should be used only if
1109   * you need some special @gup_flags.
1110   */
1111  static long __get_user_pages(struct mm_struct *mm,
1112  		unsigned long start, unsigned long nr_pages,
1113  		unsigned int gup_flags, struct page **pages,
1114  		struct vm_area_struct **vmas, int *locked)
1115  {
1116  	long ret = 0, i = 0;
1117  	struct vm_area_struct *vma = NULL;
1118  	struct follow_page_context ctx = { NULL };
1119  
1120  	if (!nr_pages)
1121  		return 0;
1122  
1123  	start = untagged_addr(start);
1124  
1125  	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1126  
1127  	/*
1128  	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1129  	 * fault information is unrelated to the reference behaviour of a task
1130  	 * using the address space
1131  	 */
1132  	if (!(gup_flags & FOLL_FORCE))
1133  		gup_flags |= FOLL_NUMA;
1134  
1135  	do {
1136  		struct page *page;
1137  		unsigned int foll_flags = gup_flags;
1138  		unsigned int page_increm;
1139  
1140  		/* first iteration or cross vma bound */
1141  		if (!vma || start >= vma->vm_end) {
1142  			vma = find_extend_vma(mm, start);
1143  			if (!vma && in_gate_area(mm, start)) {
1144  				ret = get_gate_page(mm, start & PAGE_MASK,
1145  						gup_flags, &vma,
1146  						pages ? &pages[i] : NULL);
1147  				if (ret)
1148  					goto out;
1149  				ctx.page_mask = 0;
1150  				goto next_page;
1151  			}
1152  
1153  			if (!vma) {
1154  				ret = -EFAULT;
1155  				goto out;
1156  			}
1157  			ret = check_vma_flags(vma, gup_flags);
1158  			if (ret)
1159  				goto out;
1160  
1161  			if (is_vm_hugetlb_page(vma)) {
1162  				i = follow_hugetlb_page(mm, vma, pages, vmas,
1163  						&start, &nr_pages, i,
1164  						gup_flags, locked);
1165  				if (locked && *locked == 0) {
1166  					/*
1167  					 * We've got a VM_FAULT_RETRY
1168  					 * and we've lost mmap_lock.
1169  					 * We must stop here.
1170  					 */
1171  					BUG_ON(gup_flags & FOLL_NOWAIT);
1172  					goto out;
1173  				}
1174  				continue;
1175  			}
1176  		}
1177  retry:
1178  		/*
1179  		 * If we have a pending SIGKILL, don't keep faulting pages and
1180  		 * potentially allocating memory.
1181  		 */
1182  		if (fatal_signal_pending(current)) {
1183  			ret = -EINTR;
1184  			goto out;
1185  		}
1186  		cond_resched();
1187  
1188  		page = follow_page_mask(vma, start, foll_flags, &ctx);
1189  		if (!page) {
1190  			ret = faultin_page(vma, start, &foll_flags, locked);
1191  			switch (ret) {
1192  			case 0:
1193  				goto retry;
1194  			case -EBUSY:
1195  				ret = 0;
1196  				fallthrough;
1197  			case -EFAULT:
1198  			case -ENOMEM:
1199  			case -EHWPOISON:
1200  				goto out;
1201  			case -ENOENT:
1202  				goto next_page;
1203  			}
1204  			BUG();
1205  		} else if (PTR_ERR(page) == -EEXIST) {
1206  			/*
1207  			 * Proper page table entry exists, but no corresponding
1208  			 * struct page.
1209  			 */
1210  			goto next_page;
1211  		} else if (IS_ERR(page)) {
1212  			ret = PTR_ERR(page);
1213  			goto out;
1214  		}
1215  		if (pages) {
1216  			pages[i] = page;
1217  			flush_anon_page(vma, page, start);
1218  			flush_dcache_page(page);
1219  			ctx.page_mask = 0;
1220  		}
1221  next_page:
1222  		if (vmas) {
1223  			vmas[i] = vma;
1224  			ctx.page_mask = 0;
1225  		}
1226  		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1227  		if (page_increm > nr_pages)
1228  			page_increm = nr_pages;
1229  		i += page_increm;
1230  		start += page_increm * PAGE_SIZE;
1231  		nr_pages -= page_increm;
1232  	} while (nr_pages);
1233  out:
1234  	if (ctx.pgmap)
1235  		put_dev_pagemap(ctx.pgmap);
1236  	return i ? i : ret;
1237  }
1238  
1239  static bool vma_permits_fault(struct vm_area_struct *vma,
1240  			      unsigned int fault_flags)
1241  {
1242  	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1243  	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1244  	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1245  
1246  	if (!(vm_flags & vma->vm_flags))
1247  		return false;
1248  
1249  	/*
1250  	 * The architecture might have a hardware protection
1251  	 * mechanism other than read/write that can deny access.
1252  	 *
1253  	 * gup always represents data access, not instruction
1254  	 * fetches, so execute=false here:
1255  	 */
1256  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1257  		return false;
1258  
1259  	return true;
1260  }
1261  
1262  /**
1263   * fixup_user_fault() - manually resolve a user page fault
1264   * @mm:		mm_struct of target mm
1265   * @address:	user address
1266   * @fault_flags:flags to pass down to handle_mm_fault()
1267   * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1268   *		does not allow retry. If NULL, the caller must guarantee
1269   *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1270   *
1271   * This is meant to be called in the specific scenario where for locking reasons
1272   * we try to access user memory in atomic context (within a pagefault_disable()
1273   * section), this returns -EFAULT, and we want to resolve the user fault before
1274   * trying again.
1275   *
1276   * Typically this is meant to be used by the futex code.
1277   *
1278   * The main difference with get_user_pages() is that this function will
1279   * unconditionally call handle_mm_fault() which will in turn perform all the
1280   * necessary SW fixup of the dirty and young bits in the PTE, while
1281   * get_user_pages() only guarantees to update these in the struct page.
1282   *
1283   * This is important for some architectures where those bits also gate the
1284   * access permission to the page because they are maintained in software.  On
1285   * such architectures, gup() will not be enough to make a subsequent access
1286   * succeed.
1287   *
1288   * This function will not return with an unlocked mmap_lock. So it has not the
1289   * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1290   */
1291  int fixup_user_fault(struct mm_struct *mm,
1292  		     unsigned long address, unsigned int fault_flags,
1293  		     bool *unlocked)
1294  {
1295  	struct vm_area_struct *vma;
1296  	vm_fault_t ret;
1297  
1298  	address = untagged_addr(address);
1299  
1300  	if (unlocked)
1301  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1302  
1303  retry:
1304  	vma = find_extend_vma(mm, address);
1305  	if (!vma || address < vma->vm_start)
1306  		return -EFAULT;
1307  
1308  	if (!vma_permits_fault(vma, fault_flags))
1309  		return -EFAULT;
1310  
1311  	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1312  	    fatal_signal_pending(current))
1313  		return -EINTR;
1314  
1315  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1316  	if (ret & VM_FAULT_ERROR) {
1317  		int err = vm_fault_to_errno(ret, 0);
1318  
1319  		if (err)
1320  			return err;
1321  		BUG();
1322  	}
1323  
1324  	if (ret & VM_FAULT_RETRY) {
1325  		mmap_read_lock(mm);
1326  		*unlocked = true;
1327  		fault_flags |= FAULT_FLAG_TRIED;
1328  		goto retry;
1329  	}
1330  
1331  	return 0;
1332  }
1333  EXPORT_SYMBOL_GPL(fixup_user_fault);
1334  
1335  /*
1336   * Please note that this function, unlike __get_user_pages will not
1337   * return 0 for nr_pages > 0 without FOLL_NOWAIT
1338   */
1339  static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1340  						unsigned long start,
1341  						unsigned long nr_pages,
1342  						struct page **pages,
1343  						struct vm_area_struct **vmas,
1344  						int *locked,
1345  						unsigned int flags)
1346  {
1347  	long ret, pages_done;
1348  	bool lock_dropped;
1349  
1350  	if (locked) {
1351  		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1352  		BUG_ON(vmas);
1353  		/* check caller initialized locked */
1354  		BUG_ON(*locked != 1);
1355  	}
1356  
1357  	if (flags & FOLL_PIN)
1358  		mm_set_has_pinned_flag(&mm->flags);
1359  
1360  	/*
1361  	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1362  	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1363  	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1364  	 * for FOLL_GET, not for the newer FOLL_PIN.
1365  	 *
1366  	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1367  	 * that here, as any failures will be obvious enough.
1368  	 */
1369  	if (pages && !(flags & FOLL_PIN))
1370  		flags |= FOLL_GET;
1371  
1372  	pages_done = 0;
1373  	lock_dropped = false;
1374  	for (;;) {
1375  		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1376  				       vmas, locked);
1377  		if (!locked)
1378  			/* VM_FAULT_RETRY couldn't trigger, bypass */
1379  			return ret;
1380  
1381  		/* VM_FAULT_RETRY cannot return errors */
1382  		if (!*locked) {
1383  			BUG_ON(ret < 0);
1384  			BUG_ON(ret >= nr_pages);
1385  		}
1386  
1387  		if (ret > 0) {
1388  			nr_pages -= ret;
1389  			pages_done += ret;
1390  			if (!nr_pages)
1391  				break;
1392  		}
1393  		if (*locked) {
1394  			/*
1395  			 * VM_FAULT_RETRY didn't trigger or it was a
1396  			 * FOLL_NOWAIT.
1397  			 */
1398  			if (!pages_done)
1399  				pages_done = ret;
1400  			break;
1401  		}
1402  		/*
1403  		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1404  		 * For the prefault case (!pages) we only update counts.
1405  		 */
1406  		if (likely(pages))
1407  			pages += ret;
1408  		start += ret << PAGE_SHIFT;
1409  		lock_dropped = true;
1410  
1411  retry:
1412  		/*
1413  		 * Repeat on the address that fired VM_FAULT_RETRY
1414  		 * with both FAULT_FLAG_ALLOW_RETRY and
1415  		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1416  		 * by fatal signals, so we need to check it before we
1417  		 * start trying again otherwise it can loop forever.
1418  		 */
1419  
1420  		if (fatal_signal_pending(current)) {
1421  			if (!pages_done)
1422  				pages_done = -EINTR;
1423  			break;
1424  		}
1425  
1426  		ret = mmap_read_lock_killable(mm);
1427  		if (ret) {
1428  			BUG_ON(ret > 0);
1429  			if (!pages_done)
1430  				pages_done = ret;
1431  			break;
1432  		}
1433  
1434  		*locked = 1;
1435  		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1436  				       pages, NULL, locked);
1437  		if (!*locked) {
1438  			/* Continue to retry until we succeeded */
1439  			BUG_ON(ret != 0);
1440  			goto retry;
1441  		}
1442  		if (ret != 1) {
1443  			BUG_ON(ret > 1);
1444  			if (!pages_done)
1445  				pages_done = ret;
1446  			break;
1447  		}
1448  		nr_pages--;
1449  		pages_done++;
1450  		if (!nr_pages)
1451  			break;
1452  		if (likely(pages))
1453  			pages++;
1454  		start += PAGE_SIZE;
1455  	}
1456  	if (lock_dropped && *locked) {
1457  		/*
1458  		 * We must let the caller know we temporarily dropped the lock
1459  		 * and so the critical section protected by it was lost.
1460  		 */
1461  		mmap_read_unlock(mm);
1462  		*locked = 0;
1463  	}
1464  	return pages_done;
1465  }
1466  
1467  /**
1468   * populate_vma_page_range() -  populate a range of pages in the vma.
1469   * @vma:   target vma
1470   * @start: start address
1471   * @end:   end address
1472   * @locked: whether the mmap_lock is still held
1473   *
1474   * This takes care of mlocking the pages too if VM_LOCKED is set.
1475   *
1476   * Return either number of pages pinned in the vma, or a negative error
1477   * code on error.
1478   *
1479   * vma->vm_mm->mmap_lock must be held.
1480   *
1481   * If @locked is NULL, it may be held for read or write and will
1482   * be unperturbed.
1483   *
1484   * If @locked is non-NULL, it must held for read only and may be
1485   * released.  If it's released, *@locked will be set to 0.
1486   */
1487  long populate_vma_page_range(struct vm_area_struct *vma,
1488  		unsigned long start, unsigned long end, int *locked)
1489  {
1490  	struct mm_struct *mm = vma->vm_mm;
1491  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1492  	int gup_flags;
1493  
1494  	VM_BUG_ON(!PAGE_ALIGNED(start));
1495  	VM_BUG_ON(!PAGE_ALIGNED(end));
1496  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1497  	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1498  	mmap_assert_locked(mm);
1499  
1500  	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1501  	if (vma->vm_flags & VM_LOCKONFAULT)
1502  		gup_flags &= ~FOLL_POPULATE;
1503  	/*
1504  	 * We want to touch writable mappings with a write fault in order
1505  	 * to break COW, except for shared mappings because these don't COW
1506  	 * and we would not want to dirty them for nothing.
1507  	 */
1508  	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1509  		gup_flags |= FOLL_WRITE;
1510  
1511  	/*
1512  	 * We want mlock to succeed for regions that have any permissions
1513  	 * other than PROT_NONE.
1514  	 */
1515  	if (vma_is_accessible(vma))
1516  		gup_flags |= FOLL_FORCE;
1517  
1518  	/*
1519  	 * We made sure addr is within a VMA, so the following will
1520  	 * not result in a stack expansion that recurses back here.
1521  	 */
1522  	return __get_user_pages(mm, start, nr_pages, gup_flags,
1523  				NULL, NULL, locked);
1524  }
1525  
1526  /*
1527   * faultin_vma_page_range() - populate (prefault) page tables inside the
1528   *			      given VMA range readable/writable
1529   *
1530   * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1531   *
1532   * @vma: target vma
1533   * @start: start address
1534   * @end: end address
1535   * @write: whether to prefault readable or writable
1536   * @locked: whether the mmap_lock is still held
1537   *
1538   * Returns either number of processed pages in the vma, or a negative error
1539   * code on error (see __get_user_pages()).
1540   *
1541   * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1542   * covered by the VMA.
1543   *
1544   * If @locked is NULL, it may be held for read or write and will be unperturbed.
1545   *
1546   * If @locked is non-NULL, it must held for read only and may be released.  If
1547   * it's released, *@locked will be set to 0.
1548   */
1549  long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1550  			    unsigned long end, bool write, int *locked)
1551  {
1552  	struct mm_struct *mm = vma->vm_mm;
1553  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1554  	int gup_flags;
1555  
1556  	VM_BUG_ON(!PAGE_ALIGNED(start));
1557  	VM_BUG_ON(!PAGE_ALIGNED(end));
1558  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1559  	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1560  	mmap_assert_locked(mm);
1561  
1562  	/*
1563  	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1564  	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1565  	 *	       difference with !FOLL_FORCE, because the page is writable
1566  	 *	       in the page table.
1567  	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1568  	 *		  a poisoned page.
1569  	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1570  	 * !FOLL_FORCE: Require proper access permissions.
1571  	 */
1572  	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1573  	if (write)
1574  		gup_flags |= FOLL_WRITE;
1575  
1576  	/*
1577  	 * We want to report -EINVAL instead of -EFAULT for any permission
1578  	 * problems or incompatible mappings.
1579  	 */
1580  	if (check_vma_flags(vma, gup_flags))
1581  		return -EINVAL;
1582  
1583  	return __get_user_pages(mm, start, nr_pages, gup_flags,
1584  				NULL, NULL, locked);
1585  }
1586  
1587  /*
1588   * __mm_populate - populate and/or mlock pages within a range of address space.
1589   *
1590   * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591   * flags. VMAs must be already marked with the desired vm_flags, and
1592   * mmap_lock must not be held.
1593   */
1594  int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1595  {
1596  	struct mm_struct *mm = current->mm;
1597  	unsigned long end, nstart, nend;
1598  	struct vm_area_struct *vma = NULL;
1599  	int locked = 0;
1600  	long ret = 0;
1601  
1602  	end = start + len;
1603  
1604  	for (nstart = start; nstart < end; nstart = nend) {
1605  		/*
1606  		 * We want to fault in pages for [nstart; end) address range.
1607  		 * Find first corresponding VMA.
1608  		 */
1609  		if (!locked) {
1610  			locked = 1;
1611  			mmap_read_lock(mm);
1612  			vma = find_vma(mm, nstart);
1613  		} else if (nstart >= vma->vm_end)
1614  			vma = vma->vm_next;
1615  		if (!vma || vma->vm_start >= end)
1616  			break;
1617  		/*
1618  		 * Set [nstart; nend) to intersection of desired address
1619  		 * range with the first VMA. Also, skip undesirable VMA types.
1620  		 */
1621  		nend = min(end, vma->vm_end);
1622  		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1623  			continue;
1624  		if (nstart < vma->vm_start)
1625  			nstart = vma->vm_start;
1626  		/*
1627  		 * Now fault in a range of pages. populate_vma_page_range()
1628  		 * double checks the vma flags, so that it won't mlock pages
1629  		 * if the vma was already munlocked.
1630  		 */
1631  		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1632  		if (ret < 0) {
1633  			if (ignore_errors) {
1634  				ret = 0;
1635  				continue;	/* continue at next VMA */
1636  			}
1637  			break;
1638  		}
1639  		nend = nstart + ret * PAGE_SIZE;
1640  		ret = 0;
1641  	}
1642  	if (locked)
1643  		mmap_read_unlock(mm);
1644  	return ret;	/* 0 or negative error code */
1645  }
1646  #else /* CONFIG_MMU */
1647  static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648  		unsigned long nr_pages, struct page **pages,
1649  		struct vm_area_struct **vmas, int *locked,
1650  		unsigned int foll_flags)
1651  {
1652  	struct vm_area_struct *vma;
1653  	unsigned long vm_flags;
1654  	long i;
1655  
1656  	/* calculate required read or write permissions.
1657  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1658  	 */
1659  	vm_flags  = (foll_flags & FOLL_WRITE) ?
1660  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661  	vm_flags &= (foll_flags & FOLL_FORCE) ?
1662  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1663  
1664  	for (i = 0; i < nr_pages; i++) {
1665  		vma = find_vma(mm, start);
1666  		if (!vma)
1667  			goto finish_or_fault;
1668  
1669  		/* protect what we can, including chardevs */
1670  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671  		    !(vm_flags & vma->vm_flags))
1672  			goto finish_or_fault;
1673  
1674  		if (pages) {
1675  			pages[i] = virt_to_page(start);
1676  			if (pages[i])
1677  				get_page(pages[i]);
1678  		}
1679  		if (vmas)
1680  			vmas[i] = vma;
1681  		start = (start + PAGE_SIZE) & PAGE_MASK;
1682  	}
1683  
1684  	return i;
1685  
1686  finish_or_fault:
1687  	return i ? : -EFAULT;
1688  }
1689  #endif /* !CONFIG_MMU */
1690  
1691  /**
1692   * fault_in_writeable - fault in userspace address range for writing
1693   * @uaddr: start of address range
1694   * @size: size of address range
1695   *
1696   * Returns the number of bytes not faulted in (like copy_to_user() and
1697   * copy_from_user()).
1698   */
1699  size_t fault_in_writeable(char __user *uaddr, size_t size)
1700  {
1701  	char __user *start = uaddr, *end;
1702  
1703  	if (unlikely(size == 0))
1704  		return 0;
1705  	if (!user_write_access_begin(uaddr, size))
1706  		return size;
1707  	if (!PAGE_ALIGNED(uaddr)) {
1708  		unsafe_put_user(0, uaddr, out);
1709  		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1710  	}
1711  	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712  	if (unlikely(end < start))
1713  		end = NULL;
1714  	while (uaddr != end) {
1715  		unsafe_put_user(0, uaddr, out);
1716  		uaddr += PAGE_SIZE;
1717  	}
1718  
1719  out:
1720  	user_write_access_end();
1721  	if (size > uaddr - start)
1722  		return size - (uaddr - start);
1723  	return 0;
1724  }
1725  EXPORT_SYMBOL(fault_in_writeable);
1726  
1727  /*
1728   * fault_in_safe_writeable - fault in an address range for writing
1729   * @uaddr: start of address range
1730   * @size: length of address range
1731   *
1732   * Faults in an address range for writing.  This is primarily useful when we
1733   * already know that some or all of the pages in the address range aren't in
1734   * memory.
1735   *
1736   * Unlike fault_in_writeable(), this function is non-destructive.
1737   *
1738   * Note that we don't pin or otherwise hold the pages referenced that we fault
1739   * in.  There's no guarantee that they'll stay in memory for any duration of
1740   * time.
1741   *
1742   * Returns the number of bytes not faulted in, like copy_to_user() and
1743   * copy_from_user().
1744   */
1745  size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1746  {
1747  	unsigned long start = (unsigned long)uaddr, end;
1748  	struct mm_struct *mm = current->mm;
1749  	bool unlocked = false;
1750  
1751  	if (unlikely(size == 0))
1752  		return 0;
1753  	end = PAGE_ALIGN(start + size);
1754  	if (end < start)
1755  		end = 0;
1756  
1757  	mmap_read_lock(mm);
1758  	do {
1759  		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1760  			break;
1761  		start = (start + PAGE_SIZE) & PAGE_MASK;
1762  	} while (start != end);
1763  	mmap_read_unlock(mm);
1764  
1765  	if (size > (unsigned long)uaddr - start)
1766  		return size - ((unsigned long)uaddr - start);
1767  	return 0;
1768  }
1769  EXPORT_SYMBOL(fault_in_safe_writeable);
1770  
1771  /**
1772   * fault_in_readable - fault in userspace address range for reading
1773   * @uaddr: start of user address range
1774   * @size: size of user address range
1775   *
1776   * Returns the number of bytes not faulted in (like copy_to_user() and
1777   * copy_from_user()).
1778   */
1779  size_t fault_in_readable(const char __user *uaddr, size_t size)
1780  {
1781  	const char __user *start = uaddr, *end;
1782  	volatile char c;
1783  
1784  	if (unlikely(size == 0))
1785  		return 0;
1786  	if (!user_read_access_begin(uaddr, size))
1787  		return size;
1788  	if (!PAGE_ALIGNED(uaddr)) {
1789  		unsafe_get_user(c, uaddr, out);
1790  		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1791  	}
1792  	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1793  	if (unlikely(end < start))
1794  		end = NULL;
1795  	while (uaddr != end) {
1796  		unsafe_get_user(c, uaddr, out);
1797  		uaddr += PAGE_SIZE;
1798  	}
1799  
1800  out:
1801  	user_read_access_end();
1802  	(void)c;
1803  	if (size > uaddr - start)
1804  		return size - (uaddr - start);
1805  	return 0;
1806  }
1807  EXPORT_SYMBOL(fault_in_readable);
1808  
1809  /**
1810   * get_dump_page() - pin user page in memory while writing it to core dump
1811   * @addr: user address
1812   *
1813   * Returns struct page pointer of user page pinned for dump,
1814   * to be freed afterwards by put_page().
1815   *
1816   * Returns NULL on any kind of failure - a hole must then be inserted into
1817   * the corefile, to preserve alignment with its headers; and also returns
1818   * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1819   * allowing a hole to be left in the corefile to save disk space.
1820   *
1821   * Called without mmap_lock (takes and releases the mmap_lock by itself).
1822   */
1823  #ifdef CONFIG_ELF_CORE
1824  struct page *get_dump_page(unsigned long addr)
1825  {
1826  	struct mm_struct *mm = current->mm;
1827  	struct page *page;
1828  	int locked = 1;
1829  	int ret;
1830  
1831  	if (mmap_read_lock_killable(mm))
1832  		return NULL;
1833  	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1834  				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1835  	if (locked)
1836  		mmap_read_unlock(mm);
1837  	return (ret == 1) ? page : NULL;
1838  }
1839  #endif /* CONFIG_ELF_CORE */
1840  
1841  #ifdef CONFIG_MIGRATION
1842  /*
1843   * Check whether all pages are pinnable, if so return number of pages.  If some
1844   * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1845   * pages were migrated, or if some pages were not successfully isolated.
1846   * Return negative error if migration fails.
1847   */
1848  static long check_and_migrate_movable_pages(unsigned long nr_pages,
1849  					    struct page **pages,
1850  					    unsigned int gup_flags)
1851  {
1852  	unsigned long i;
1853  	unsigned long isolation_error_count = 0;
1854  	bool drain_allow = true;
1855  	LIST_HEAD(movable_page_list);
1856  	long ret = 0;
1857  	struct page *prev_head = NULL;
1858  	struct page *head;
1859  	struct migration_target_control mtc = {
1860  		.nid = NUMA_NO_NODE,
1861  		.gfp_mask = GFP_USER | __GFP_NOWARN,
1862  	};
1863  
1864  	for (i = 0; i < nr_pages; i++) {
1865  		head = compound_head(pages[i]);
1866  		if (head == prev_head)
1867  			continue;
1868  		prev_head = head;
1869  		/*
1870  		 * If we get a movable page, since we are going to be pinning
1871  		 * these entries, try to move them out if possible.
1872  		 */
1873  		if (!is_pinnable_page(head)) {
1874  			if (PageHuge(head)) {
1875  				if (!isolate_huge_page(head, &movable_page_list))
1876  					isolation_error_count++;
1877  			} else {
1878  				if (!PageLRU(head) && drain_allow) {
1879  					lru_add_drain_all();
1880  					drain_allow = false;
1881  				}
1882  
1883  				if (isolate_lru_page(head)) {
1884  					isolation_error_count++;
1885  					continue;
1886  				}
1887  				list_add_tail(&head->lru, &movable_page_list);
1888  				mod_node_page_state(page_pgdat(head),
1889  						    NR_ISOLATED_ANON +
1890  						    page_is_file_lru(head),
1891  						    thp_nr_pages(head));
1892  			}
1893  		}
1894  	}
1895  
1896  	/*
1897  	 * If list is empty, and no isolation errors, means that all pages are
1898  	 * in the correct zone.
1899  	 */
1900  	if (list_empty(&movable_page_list) && !isolation_error_count)
1901  		return nr_pages;
1902  
1903  	if (gup_flags & FOLL_PIN) {
1904  		unpin_user_pages(pages, nr_pages);
1905  	} else {
1906  		for (i = 0; i < nr_pages; i++)
1907  			put_page(pages[i]);
1908  	}
1909  	if (!list_empty(&movable_page_list)) {
1910  		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1911  				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1912  				    MR_LONGTERM_PIN, NULL);
1913  		if (ret && !list_empty(&movable_page_list))
1914  			putback_movable_pages(&movable_page_list);
1915  	}
1916  
1917  	return ret > 0 ? -ENOMEM : ret;
1918  }
1919  #else
1920  static long check_and_migrate_movable_pages(unsigned long nr_pages,
1921  					    struct page **pages,
1922  					    unsigned int gup_flags)
1923  {
1924  	return nr_pages;
1925  }
1926  #endif /* CONFIG_MIGRATION */
1927  
1928  /*
1929   * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1930   * allows us to process the FOLL_LONGTERM flag.
1931   */
1932  static long __gup_longterm_locked(struct mm_struct *mm,
1933  				  unsigned long start,
1934  				  unsigned long nr_pages,
1935  				  struct page **pages,
1936  				  struct vm_area_struct **vmas,
1937  				  unsigned int gup_flags)
1938  {
1939  	unsigned int flags;
1940  	long rc;
1941  
1942  	if (!(gup_flags & FOLL_LONGTERM))
1943  		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1944  					       NULL, gup_flags);
1945  	flags = memalloc_pin_save();
1946  	do {
1947  		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1948  					     NULL, gup_flags);
1949  		if (rc <= 0)
1950  			break;
1951  		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1952  	} while (!rc);
1953  	memalloc_pin_restore(flags);
1954  
1955  	return rc;
1956  }
1957  
1958  static bool is_valid_gup_flags(unsigned int gup_flags)
1959  {
1960  	/*
1961  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1962  	 * never directly by the caller, so enforce that with an assertion:
1963  	 */
1964  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1965  		return false;
1966  	/*
1967  	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1968  	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1969  	 * FOLL_PIN.
1970  	 */
1971  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1972  		return false;
1973  
1974  	return true;
1975  }
1976  
1977  #ifdef CONFIG_MMU
1978  static long __get_user_pages_remote(struct mm_struct *mm,
1979  				    unsigned long start, unsigned long nr_pages,
1980  				    unsigned int gup_flags, struct page **pages,
1981  				    struct vm_area_struct **vmas, int *locked)
1982  {
1983  	/*
1984  	 * Parts of FOLL_LONGTERM behavior are incompatible with
1985  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1986  	 * vmas. However, this only comes up if locked is set, and there are
1987  	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1988  	 * allow what we can.
1989  	 */
1990  	if (gup_flags & FOLL_LONGTERM) {
1991  		if (WARN_ON_ONCE(locked))
1992  			return -EINVAL;
1993  		/*
1994  		 * This will check the vmas (even if our vmas arg is NULL)
1995  		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1996  		 */
1997  		return __gup_longterm_locked(mm, start, nr_pages, pages,
1998  					     vmas, gup_flags | FOLL_TOUCH |
1999  					     FOLL_REMOTE);
2000  	}
2001  
2002  	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2003  				       locked,
2004  				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2005  }
2006  
2007  /**
2008   * get_user_pages_remote() - pin user pages in memory
2009   * @mm:		mm_struct of target mm
2010   * @start:	starting user address
2011   * @nr_pages:	number of pages from start to pin
2012   * @gup_flags:	flags modifying lookup behaviour
2013   * @pages:	array that receives pointers to the pages pinned.
2014   *		Should be at least nr_pages long. Or NULL, if caller
2015   *		only intends to ensure the pages are faulted in.
2016   * @vmas:	array of pointers to vmas corresponding to each page.
2017   *		Or NULL if the caller does not require them.
2018   * @locked:	pointer to lock flag indicating whether lock is held and
2019   *		subsequently whether VM_FAULT_RETRY functionality can be
2020   *		utilised. Lock must initially be held.
2021   *
2022   * Returns either number of pages pinned (which may be less than the
2023   * number requested), or an error. Details about the return value:
2024   *
2025   * -- If nr_pages is 0, returns 0.
2026   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2027   * -- If nr_pages is >0, and some pages were pinned, returns the number of
2028   *    pages pinned. Again, this may be less than nr_pages.
2029   *
2030   * The caller is responsible for releasing returned @pages, via put_page().
2031   *
2032   * @vmas are valid only as long as mmap_lock is held.
2033   *
2034   * Must be called with mmap_lock held for read or write.
2035   *
2036   * get_user_pages_remote walks a process's page tables and takes a reference
2037   * to each struct page that each user address corresponds to at a given
2038   * instant. That is, it takes the page that would be accessed if a user
2039   * thread accesses the given user virtual address at that instant.
2040   *
2041   * This does not guarantee that the page exists in the user mappings when
2042   * get_user_pages_remote returns, and there may even be a completely different
2043   * page there in some cases (eg. if mmapped pagecache has been invalidated
2044   * and subsequently re faulted). However it does guarantee that the page
2045   * won't be freed completely. And mostly callers simply care that the page
2046   * contains data that was valid *at some point in time*. Typically, an IO
2047   * or similar operation cannot guarantee anything stronger anyway because
2048   * locks can't be held over the syscall boundary.
2049   *
2050   * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2051   * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2052   * be called after the page is finished with, and before put_page is called.
2053   *
2054   * get_user_pages_remote is typically used for fewer-copy IO operations,
2055   * to get a handle on the memory by some means other than accesses
2056   * via the user virtual addresses. The pages may be submitted for
2057   * DMA to devices or accessed via their kernel linear mapping (via the
2058   * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2059   *
2060   * See also get_user_pages_fast, for performance critical applications.
2061   *
2062   * get_user_pages_remote should be phased out in favor of
2063   * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2064   * should use get_user_pages_remote because it cannot pass
2065   * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2066   */
2067  long get_user_pages_remote(struct mm_struct *mm,
2068  		unsigned long start, unsigned long nr_pages,
2069  		unsigned int gup_flags, struct page **pages,
2070  		struct vm_area_struct **vmas, int *locked)
2071  {
2072  	if (!is_valid_gup_flags(gup_flags))
2073  		return -EINVAL;
2074  
2075  	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2076  				       pages, vmas, locked);
2077  }
2078  EXPORT_SYMBOL(get_user_pages_remote);
2079  
2080  #else /* CONFIG_MMU */
2081  long get_user_pages_remote(struct mm_struct *mm,
2082  			   unsigned long start, unsigned long nr_pages,
2083  			   unsigned int gup_flags, struct page **pages,
2084  			   struct vm_area_struct **vmas, int *locked)
2085  {
2086  	return 0;
2087  }
2088  
2089  static long __get_user_pages_remote(struct mm_struct *mm,
2090  				    unsigned long start, unsigned long nr_pages,
2091  				    unsigned int gup_flags, struct page **pages,
2092  				    struct vm_area_struct **vmas, int *locked)
2093  {
2094  	return 0;
2095  }
2096  #endif /* !CONFIG_MMU */
2097  
2098  /**
2099   * get_user_pages() - pin user pages in memory
2100   * @start:      starting user address
2101   * @nr_pages:   number of pages from start to pin
2102   * @gup_flags:  flags modifying lookup behaviour
2103   * @pages:      array that receives pointers to the pages pinned.
2104   *              Should be at least nr_pages long. Or NULL, if caller
2105   *              only intends to ensure the pages are faulted in.
2106   * @vmas:       array of pointers to vmas corresponding to each page.
2107   *              Or NULL if the caller does not require them.
2108   *
2109   * This is the same as get_user_pages_remote(), just with a less-flexible
2110   * calling convention where we assume that the mm being operated on belongs to
2111   * the current task, and doesn't allow passing of a locked parameter.  We also
2112   * obviously don't pass FOLL_REMOTE in here.
2113   */
2114  long get_user_pages(unsigned long start, unsigned long nr_pages,
2115  		unsigned int gup_flags, struct page **pages,
2116  		struct vm_area_struct **vmas)
2117  {
2118  	if (!is_valid_gup_flags(gup_flags))
2119  		return -EINVAL;
2120  
2121  	return __gup_longterm_locked(current->mm, start, nr_pages,
2122  				     pages, vmas, gup_flags | FOLL_TOUCH);
2123  }
2124  EXPORT_SYMBOL(get_user_pages);
2125  
2126  /**
2127   * get_user_pages_locked() - variant of get_user_pages()
2128   *
2129   * @start:      starting user address
2130   * @nr_pages:   number of pages from start to pin
2131   * @gup_flags:  flags modifying lookup behaviour
2132   * @pages:      array that receives pointers to the pages pinned.
2133   *              Should be at least nr_pages long. Or NULL, if caller
2134   *              only intends to ensure the pages are faulted in.
2135   * @locked:     pointer to lock flag indicating whether lock is held and
2136   *              subsequently whether VM_FAULT_RETRY functionality can be
2137   *              utilised. Lock must initially be held.
2138   *
2139   * It is suitable to replace the form:
2140   *
2141   *      mmap_read_lock(mm);
2142   *      do_something()
2143   *      get_user_pages(mm, ..., pages, NULL);
2144   *      mmap_read_unlock(mm);
2145   *
2146   *  to:
2147   *
2148   *      int locked = 1;
2149   *      mmap_read_lock(mm);
2150   *      do_something()
2151   *      get_user_pages_locked(mm, ..., pages, &locked);
2152   *      if (locked)
2153   *          mmap_read_unlock(mm);
2154   *
2155   * We can leverage the VM_FAULT_RETRY functionality in the page fault
2156   * paths better by using either get_user_pages_locked() or
2157   * get_user_pages_unlocked().
2158   *
2159   */
2160  long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2161  			   unsigned int gup_flags, struct page **pages,
2162  			   int *locked)
2163  {
2164  	/*
2165  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2166  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2167  	 * vmas.  As there are no users of this flag in this call we simply
2168  	 * disallow this option for now.
2169  	 */
2170  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2171  		return -EINVAL;
2172  	/*
2173  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2174  	 * never directly by the caller, so enforce that:
2175  	 */
2176  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2177  		return -EINVAL;
2178  
2179  	return __get_user_pages_locked(current->mm, start, nr_pages,
2180  				       pages, NULL, locked,
2181  				       gup_flags | FOLL_TOUCH);
2182  }
2183  EXPORT_SYMBOL(get_user_pages_locked);
2184  
2185  /*
2186   * get_user_pages_unlocked() is suitable to replace the form:
2187   *
2188   *      mmap_read_lock(mm);
2189   *      get_user_pages(mm, ..., pages, NULL);
2190   *      mmap_read_unlock(mm);
2191   *
2192   *  with:
2193   *
2194   *      get_user_pages_unlocked(mm, ..., pages);
2195   *
2196   * It is functionally equivalent to get_user_pages_fast so
2197   * get_user_pages_fast should be used instead if specific gup_flags
2198   * (e.g. FOLL_FORCE) are not required.
2199   */
2200  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2201  			     struct page **pages, unsigned int gup_flags)
2202  {
2203  	struct mm_struct *mm = current->mm;
2204  	int locked = 1;
2205  	long ret;
2206  
2207  	/*
2208  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2209  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2210  	 * vmas.  As there are no users of this flag in this call we simply
2211  	 * disallow this option for now.
2212  	 */
2213  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2214  		return -EINVAL;
2215  
2216  	mmap_read_lock(mm);
2217  	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2218  				      &locked, gup_flags | FOLL_TOUCH);
2219  	if (locked)
2220  		mmap_read_unlock(mm);
2221  	return ret;
2222  }
2223  EXPORT_SYMBOL(get_user_pages_unlocked);
2224  
2225  /*
2226   * Fast GUP
2227   *
2228   * get_user_pages_fast attempts to pin user pages by walking the page
2229   * tables directly and avoids taking locks. Thus the walker needs to be
2230   * protected from page table pages being freed from under it, and should
2231   * block any THP splits.
2232   *
2233   * One way to achieve this is to have the walker disable interrupts, and
2234   * rely on IPIs from the TLB flushing code blocking before the page table
2235   * pages are freed. This is unsuitable for architectures that do not need
2236   * to broadcast an IPI when invalidating TLBs.
2237   *
2238   * Another way to achieve this is to batch up page table containing pages
2239   * belonging to more than one mm_user, then rcu_sched a callback to free those
2240   * pages. Disabling interrupts will allow the fast_gup walker to both block
2241   * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2242   * (which is a relatively rare event). The code below adopts this strategy.
2243   *
2244   * Before activating this code, please be aware that the following assumptions
2245   * are currently made:
2246   *
2247   *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2248   *  free pages containing page tables or TLB flushing requires IPI broadcast.
2249   *
2250   *  *) ptes can be read atomically by the architecture.
2251   *
2252   *  *) access_ok is sufficient to validate userspace address ranges.
2253   *
2254   * The last two assumptions can be relaxed by the addition of helper functions.
2255   *
2256   * This code is based heavily on the PowerPC implementation by Nick Piggin.
2257   */
2258  #ifdef CONFIG_HAVE_FAST_GUP
2259  
2260  static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2261  					    unsigned int flags,
2262  					    struct page **pages)
2263  {
2264  	while ((*nr) - nr_start) {
2265  		struct page *page = pages[--(*nr)];
2266  
2267  		ClearPageReferenced(page);
2268  		if (flags & FOLL_PIN)
2269  			unpin_user_page(page);
2270  		else
2271  			put_page(page);
2272  	}
2273  }
2274  
2275  #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2276  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2277  			 unsigned int flags, struct page **pages, int *nr)
2278  {
2279  	struct dev_pagemap *pgmap = NULL;
2280  	int nr_start = *nr, ret = 0;
2281  	pte_t *ptep, *ptem;
2282  
2283  	ptem = ptep = pte_offset_map(&pmd, addr);
2284  	do {
2285  		pte_t pte = ptep_get_lockless(ptep);
2286  		struct page *head, *page;
2287  
2288  		/*
2289  		 * Similar to the PMD case below, NUMA hinting must take slow
2290  		 * path using the pte_protnone check.
2291  		 */
2292  		if (pte_protnone(pte))
2293  			goto pte_unmap;
2294  
2295  		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2296  			goto pte_unmap;
2297  
2298  		if (pte_devmap(pte)) {
2299  			if (unlikely(flags & FOLL_LONGTERM))
2300  				goto pte_unmap;
2301  
2302  			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2303  			if (unlikely(!pgmap)) {
2304  				undo_dev_pagemap(nr, nr_start, flags, pages);
2305  				goto pte_unmap;
2306  			}
2307  		} else if (pte_special(pte))
2308  			goto pte_unmap;
2309  
2310  		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2311  		page = pte_page(pte);
2312  
2313  		head = try_grab_compound_head(page, 1, flags);
2314  		if (!head)
2315  			goto pte_unmap;
2316  
2317  		if (unlikely(page_is_secretmem(page))) {
2318  			put_compound_head(head, 1, flags);
2319  			goto pte_unmap;
2320  		}
2321  
2322  		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2323  			put_compound_head(head, 1, flags);
2324  			goto pte_unmap;
2325  		}
2326  
2327  		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2328  
2329  		/*
2330  		 * We need to make the page accessible if and only if we are
2331  		 * going to access its content (the FOLL_PIN case).  Please
2332  		 * see Documentation/core-api/pin_user_pages.rst for
2333  		 * details.
2334  		 */
2335  		if (flags & FOLL_PIN) {
2336  			ret = arch_make_page_accessible(page);
2337  			if (ret) {
2338  				unpin_user_page(page);
2339  				goto pte_unmap;
2340  			}
2341  		}
2342  		SetPageReferenced(page);
2343  		pages[*nr] = page;
2344  		(*nr)++;
2345  
2346  	} while (ptep++, addr += PAGE_SIZE, addr != end);
2347  
2348  	ret = 1;
2349  
2350  pte_unmap:
2351  	if (pgmap)
2352  		put_dev_pagemap(pgmap);
2353  	pte_unmap(ptem);
2354  	return ret;
2355  }
2356  #else
2357  
2358  /*
2359   * If we can't determine whether or not a pte is special, then fail immediately
2360   * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2361   * to be special.
2362   *
2363   * For a futex to be placed on a THP tail page, get_futex_key requires a
2364   * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2365   * useful to have gup_huge_pmd even if we can't operate on ptes.
2366   */
2367  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2368  			 unsigned int flags, struct page **pages, int *nr)
2369  {
2370  	return 0;
2371  }
2372  #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2373  
2374  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2375  static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2376  			     unsigned long end, unsigned int flags,
2377  			     struct page **pages, int *nr)
2378  {
2379  	int nr_start = *nr;
2380  	struct dev_pagemap *pgmap = NULL;
2381  
2382  	do {
2383  		struct page *page = pfn_to_page(pfn);
2384  
2385  		pgmap = get_dev_pagemap(pfn, pgmap);
2386  		if (unlikely(!pgmap)) {
2387  			undo_dev_pagemap(nr, nr_start, flags, pages);
2388  			break;
2389  		}
2390  		SetPageReferenced(page);
2391  		pages[*nr] = page;
2392  		if (unlikely(!try_grab_page(page, flags))) {
2393  			undo_dev_pagemap(nr, nr_start, flags, pages);
2394  			break;
2395  		}
2396  		(*nr)++;
2397  		pfn++;
2398  	} while (addr += PAGE_SIZE, addr != end);
2399  
2400  	put_dev_pagemap(pgmap);
2401  	return addr == end;
2402  }
2403  
2404  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2405  				 unsigned long end, unsigned int flags,
2406  				 struct page **pages, int *nr)
2407  {
2408  	unsigned long fault_pfn;
2409  	int nr_start = *nr;
2410  
2411  	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2413  		return 0;
2414  
2415  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2416  		undo_dev_pagemap(nr, nr_start, flags, pages);
2417  		return 0;
2418  	}
2419  	return 1;
2420  }
2421  
2422  static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2423  				 unsigned long end, unsigned int flags,
2424  				 struct page **pages, int *nr)
2425  {
2426  	unsigned long fault_pfn;
2427  	int nr_start = *nr;
2428  
2429  	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2430  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2431  		return 0;
2432  
2433  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2434  		undo_dev_pagemap(nr, nr_start, flags, pages);
2435  		return 0;
2436  	}
2437  	return 1;
2438  }
2439  #else
2440  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2441  				 unsigned long end, unsigned int flags,
2442  				 struct page **pages, int *nr)
2443  {
2444  	BUILD_BUG();
2445  	return 0;
2446  }
2447  
2448  static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2449  				 unsigned long end, unsigned int flags,
2450  				 struct page **pages, int *nr)
2451  {
2452  	BUILD_BUG();
2453  	return 0;
2454  }
2455  #endif
2456  
2457  static int record_subpages(struct page *page, unsigned long addr,
2458  			   unsigned long end, struct page **pages)
2459  {
2460  	int nr;
2461  
2462  	for (nr = 0; addr != end; addr += PAGE_SIZE)
2463  		pages[nr++] = page++;
2464  
2465  	return nr;
2466  }
2467  
2468  #ifdef CONFIG_ARCH_HAS_HUGEPD
2469  static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2470  				      unsigned long sz)
2471  {
2472  	unsigned long __boundary = (addr + sz) & ~(sz-1);
2473  	return (__boundary - 1 < end - 1) ? __boundary : end;
2474  }
2475  
2476  static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2477  		       unsigned long end, unsigned int flags,
2478  		       struct page **pages, int *nr)
2479  {
2480  	unsigned long pte_end;
2481  	struct page *head, *page;
2482  	pte_t pte;
2483  	int refs;
2484  
2485  	pte_end = (addr + sz) & ~(sz-1);
2486  	if (pte_end < end)
2487  		end = pte_end;
2488  
2489  	pte = huge_ptep_get(ptep);
2490  
2491  	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2492  		return 0;
2493  
2494  	/* hugepages are never "special" */
2495  	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2496  
2497  	head = pte_page(pte);
2498  	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2499  	refs = record_subpages(page, addr, end, pages + *nr);
2500  
2501  	head = try_grab_compound_head(head, refs, flags);
2502  	if (!head)
2503  		return 0;
2504  
2505  	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2506  		put_compound_head(head, refs, flags);
2507  		return 0;
2508  	}
2509  
2510  	*nr += refs;
2511  	SetPageReferenced(head);
2512  	return 1;
2513  }
2514  
2515  static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2516  		unsigned int pdshift, unsigned long end, unsigned int flags,
2517  		struct page **pages, int *nr)
2518  {
2519  	pte_t *ptep;
2520  	unsigned long sz = 1UL << hugepd_shift(hugepd);
2521  	unsigned long next;
2522  
2523  	ptep = hugepte_offset(hugepd, addr, pdshift);
2524  	do {
2525  		next = hugepte_addr_end(addr, end, sz);
2526  		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2527  			return 0;
2528  	} while (ptep++, addr = next, addr != end);
2529  
2530  	return 1;
2531  }
2532  #else
2533  static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2534  		unsigned int pdshift, unsigned long end, unsigned int flags,
2535  		struct page **pages, int *nr)
2536  {
2537  	return 0;
2538  }
2539  #endif /* CONFIG_ARCH_HAS_HUGEPD */
2540  
2541  static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2542  			unsigned long end, unsigned int flags,
2543  			struct page **pages, int *nr)
2544  {
2545  	struct page *head, *page;
2546  	int refs;
2547  
2548  	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2549  		return 0;
2550  
2551  	if (pmd_devmap(orig)) {
2552  		if (unlikely(flags & FOLL_LONGTERM))
2553  			return 0;
2554  		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2555  					     pages, nr);
2556  	}
2557  
2558  	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2559  	refs = record_subpages(page, addr, end, pages + *nr);
2560  
2561  	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2562  	if (!head)
2563  		return 0;
2564  
2565  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2566  		put_compound_head(head, refs, flags);
2567  		return 0;
2568  	}
2569  
2570  	*nr += refs;
2571  	SetPageReferenced(head);
2572  	return 1;
2573  }
2574  
2575  static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2576  			unsigned long end, unsigned int flags,
2577  			struct page **pages, int *nr)
2578  {
2579  	struct page *head, *page;
2580  	int refs;
2581  
2582  	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2583  		return 0;
2584  
2585  	if (pud_devmap(orig)) {
2586  		if (unlikely(flags & FOLL_LONGTERM))
2587  			return 0;
2588  		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2589  					     pages, nr);
2590  	}
2591  
2592  	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2593  	refs = record_subpages(page, addr, end, pages + *nr);
2594  
2595  	head = try_grab_compound_head(pud_page(orig), refs, flags);
2596  	if (!head)
2597  		return 0;
2598  
2599  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2600  		put_compound_head(head, refs, flags);
2601  		return 0;
2602  	}
2603  
2604  	*nr += refs;
2605  	SetPageReferenced(head);
2606  	return 1;
2607  }
2608  
2609  static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2610  			unsigned long end, unsigned int flags,
2611  			struct page **pages, int *nr)
2612  {
2613  	int refs;
2614  	struct page *head, *page;
2615  
2616  	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2617  		return 0;
2618  
2619  	BUILD_BUG_ON(pgd_devmap(orig));
2620  
2621  	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2622  	refs = record_subpages(page, addr, end, pages + *nr);
2623  
2624  	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2625  	if (!head)
2626  		return 0;
2627  
2628  	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2629  		put_compound_head(head, refs, flags);
2630  		return 0;
2631  	}
2632  
2633  	*nr += refs;
2634  	SetPageReferenced(head);
2635  	return 1;
2636  }
2637  
2638  static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2639  		unsigned int flags, struct page **pages, int *nr)
2640  {
2641  	unsigned long next;
2642  	pmd_t *pmdp;
2643  
2644  	pmdp = pmd_offset_lockless(pudp, pud, addr);
2645  	do {
2646  		pmd_t pmd = READ_ONCE(*pmdp);
2647  
2648  		next = pmd_addr_end(addr, end);
2649  		if (!pmd_present(pmd))
2650  			return 0;
2651  
2652  		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2653  			     pmd_devmap(pmd))) {
2654  			/*
2655  			 * NUMA hinting faults need to be handled in the GUP
2656  			 * slowpath for accounting purposes and so that they
2657  			 * can be serialised against THP migration.
2658  			 */
2659  			if (pmd_protnone(pmd))
2660  				return 0;
2661  
2662  			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2663  				pages, nr))
2664  				return 0;
2665  
2666  		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2667  			/*
2668  			 * architecture have different format for hugetlbfs
2669  			 * pmd format and THP pmd format
2670  			 */
2671  			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2672  					 PMD_SHIFT, next, flags, pages, nr))
2673  				return 0;
2674  		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2675  			return 0;
2676  	} while (pmdp++, addr = next, addr != end);
2677  
2678  	return 1;
2679  }
2680  
2681  static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2682  			 unsigned int flags, struct page **pages, int *nr)
2683  {
2684  	unsigned long next;
2685  	pud_t *pudp;
2686  
2687  	pudp = pud_offset_lockless(p4dp, p4d, addr);
2688  	do {
2689  		pud_t pud = READ_ONCE(*pudp);
2690  
2691  		next = pud_addr_end(addr, end);
2692  		if (unlikely(!pud_present(pud)))
2693  			return 0;
2694  		if (unlikely(pud_huge(pud))) {
2695  			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2696  					  pages, nr))
2697  				return 0;
2698  		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2699  			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2700  					 PUD_SHIFT, next, flags, pages, nr))
2701  				return 0;
2702  		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2703  			return 0;
2704  	} while (pudp++, addr = next, addr != end);
2705  
2706  	return 1;
2707  }
2708  
2709  static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2710  			 unsigned int flags, struct page **pages, int *nr)
2711  {
2712  	unsigned long next;
2713  	p4d_t *p4dp;
2714  
2715  	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2716  	do {
2717  		p4d_t p4d = READ_ONCE(*p4dp);
2718  
2719  		next = p4d_addr_end(addr, end);
2720  		if (p4d_none(p4d))
2721  			return 0;
2722  		BUILD_BUG_ON(p4d_huge(p4d));
2723  		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2724  			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2725  					 P4D_SHIFT, next, flags, pages, nr))
2726  				return 0;
2727  		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2728  			return 0;
2729  	} while (p4dp++, addr = next, addr != end);
2730  
2731  	return 1;
2732  }
2733  
2734  static void gup_pgd_range(unsigned long addr, unsigned long end,
2735  		unsigned int flags, struct page **pages, int *nr)
2736  {
2737  	unsigned long next;
2738  	pgd_t *pgdp;
2739  
2740  	pgdp = pgd_offset(current->mm, addr);
2741  	do {
2742  		pgd_t pgd = READ_ONCE(*pgdp);
2743  
2744  		next = pgd_addr_end(addr, end);
2745  		if (pgd_none(pgd))
2746  			return;
2747  		if (unlikely(pgd_huge(pgd))) {
2748  			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2749  					  pages, nr))
2750  				return;
2751  		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2752  			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2753  					 PGDIR_SHIFT, next, flags, pages, nr))
2754  				return;
2755  		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2756  			return;
2757  	} while (pgdp++, addr = next, addr != end);
2758  }
2759  #else
2760  static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2761  		unsigned int flags, struct page **pages, int *nr)
2762  {
2763  }
2764  #endif /* CONFIG_HAVE_FAST_GUP */
2765  
2766  #ifndef gup_fast_permitted
2767  /*
2768   * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2769   * we need to fall back to the slow version:
2770   */
2771  static bool gup_fast_permitted(unsigned long start, unsigned long end)
2772  {
2773  	return true;
2774  }
2775  #endif
2776  
2777  static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2778  				   unsigned int gup_flags, struct page **pages)
2779  {
2780  	int ret;
2781  
2782  	/*
2783  	 * FIXME: FOLL_LONGTERM does not work with
2784  	 * get_user_pages_unlocked() (see comments in that function)
2785  	 */
2786  	if (gup_flags & FOLL_LONGTERM) {
2787  		mmap_read_lock(current->mm);
2788  		ret = __gup_longterm_locked(current->mm,
2789  					    start, nr_pages,
2790  					    pages, NULL, gup_flags);
2791  		mmap_read_unlock(current->mm);
2792  	} else {
2793  		ret = get_user_pages_unlocked(start, nr_pages,
2794  					      pages, gup_flags);
2795  	}
2796  
2797  	return ret;
2798  }
2799  
2800  static unsigned long lockless_pages_from_mm(unsigned long start,
2801  					    unsigned long end,
2802  					    unsigned int gup_flags,
2803  					    struct page **pages)
2804  {
2805  	unsigned long flags;
2806  	int nr_pinned = 0;
2807  	unsigned seq;
2808  
2809  	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2810  	    !gup_fast_permitted(start, end))
2811  		return 0;
2812  
2813  	if (gup_flags & FOLL_PIN) {
2814  		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2815  		if (seq & 1)
2816  			return 0;
2817  	}
2818  
2819  	/*
2820  	 * Disable interrupts. The nested form is used, in order to allow full,
2821  	 * general purpose use of this routine.
2822  	 *
2823  	 * With interrupts disabled, we block page table pages from being freed
2824  	 * from under us. See struct mmu_table_batch comments in
2825  	 * include/asm-generic/tlb.h for more details.
2826  	 *
2827  	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2828  	 * that come from THPs splitting.
2829  	 */
2830  	local_irq_save(flags);
2831  	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2832  	local_irq_restore(flags);
2833  
2834  	/*
2835  	 * When pinning pages for DMA there could be a concurrent write protect
2836  	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2837  	 */
2838  	if (gup_flags & FOLL_PIN) {
2839  		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2840  			unpin_user_pages(pages, nr_pinned);
2841  			return 0;
2842  		}
2843  	}
2844  	return nr_pinned;
2845  }
2846  
2847  static int internal_get_user_pages_fast(unsigned long start,
2848  					unsigned long nr_pages,
2849  					unsigned int gup_flags,
2850  					struct page **pages)
2851  {
2852  	unsigned long len, end;
2853  	unsigned long nr_pinned;
2854  	int ret;
2855  
2856  	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2857  				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2858  				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2859  		return -EINVAL;
2860  
2861  	if (gup_flags & FOLL_PIN)
2862  		mm_set_has_pinned_flag(&current->mm->flags);
2863  
2864  	if (!(gup_flags & FOLL_FAST_ONLY))
2865  		might_lock_read(&current->mm->mmap_lock);
2866  
2867  	start = untagged_addr(start) & PAGE_MASK;
2868  	len = nr_pages << PAGE_SHIFT;
2869  	if (check_add_overflow(start, len, &end))
2870  		return 0;
2871  	if (unlikely(!access_ok((void __user *)start, len)))
2872  		return -EFAULT;
2873  
2874  	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2875  	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2876  		return nr_pinned;
2877  
2878  	/* Slow path: try to get the remaining pages with get_user_pages */
2879  	start += nr_pinned << PAGE_SHIFT;
2880  	pages += nr_pinned;
2881  	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2882  				      pages);
2883  	if (ret < 0) {
2884  		/*
2885  		 * The caller has to unpin the pages we already pinned so
2886  		 * returning -errno is not an option
2887  		 */
2888  		if (nr_pinned)
2889  			return nr_pinned;
2890  		return ret;
2891  	}
2892  	return ret + nr_pinned;
2893  }
2894  
2895  /**
2896   * get_user_pages_fast_only() - pin user pages in memory
2897   * @start:      starting user address
2898   * @nr_pages:   number of pages from start to pin
2899   * @gup_flags:  flags modifying pin behaviour
2900   * @pages:      array that receives pointers to the pages pinned.
2901   *              Should be at least nr_pages long.
2902   *
2903   * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2904   * the regular GUP.
2905   * Note a difference with get_user_pages_fast: this always returns the
2906   * number of pages pinned, 0 if no pages were pinned.
2907   *
2908   * If the architecture does not support this function, simply return with no
2909   * pages pinned.
2910   *
2911   * Careful, careful! COW breaking can go either way, so a non-write
2912   * access can get ambiguous page results. If you call this function without
2913   * 'write' set, you'd better be sure that you're ok with that ambiguity.
2914   */
2915  int get_user_pages_fast_only(unsigned long start, int nr_pages,
2916  			     unsigned int gup_flags, struct page **pages)
2917  {
2918  	int nr_pinned;
2919  	/*
2920  	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2921  	 * because gup fast is always a "pin with a +1 page refcount" request.
2922  	 *
2923  	 * FOLL_FAST_ONLY is required in order to match the API description of
2924  	 * this routine: no fall back to regular ("slow") GUP.
2925  	 */
2926  	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2927  
2928  	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2929  						 pages);
2930  
2931  	/*
2932  	 * As specified in the API description above, this routine is not
2933  	 * allowed to return negative values. However, the common core
2934  	 * routine internal_get_user_pages_fast() *can* return -errno.
2935  	 * Therefore, correct for that here:
2936  	 */
2937  	if (nr_pinned < 0)
2938  		nr_pinned = 0;
2939  
2940  	return nr_pinned;
2941  }
2942  EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2943  
2944  /**
2945   * get_user_pages_fast() - pin user pages in memory
2946   * @start:      starting user address
2947   * @nr_pages:   number of pages from start to pin
2948   * @gup_flags:  flags modifying pin behaviour
2949   * @pages:      array that receives pointers to the pages pinned.
2950   *              Should be at least nr_pages long.
2951   *
2952   * Attempt to pin user pages in memory without taking mm->mmap_lock.
2953   * If not successful, it will fall back to taking the lock and
2954   * calling get_user_pages().
2955   *
2956   * Returns number of pages pinned. This may be fewer than the number requested.
2957   * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2958   * -errno.
2959   */
2960  int get_user_pages_fast(unsigned long start, int nr_pages,
2961  			unsigned int gup_flags, struct page **pages)
2962  {
2963  	if (!is_valid_gup_flags(gup_flags))
2964  		return -EINVAL;
2965  
2966  	/*
2967  	 * The caller may or may not have explicitly set FOLL_GET; either way is
2968  	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2969  	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2970  	 * request.
2971  	 */
2972  	gup_flags |= FOLL_GET;
2973  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2974  }
2975  EXPORT_SYMBOL_GPL(get_user_pages_fast);
2976  
2977  /**
2978   * pin_user_pages_fast() - pin user pages in memory without taking locks
2979   *
2980   * @start:      starting user address
2981   * @nr_pages:   number of pages from start to pin
2982   * @gup_flags:  flags modifying pin behaviour
2983   * @pages:      array that receives pointers to the pages pinned.
2984   *              Should be at least nr_pages long.
2985   *
2986   * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2987   * get_user_pages_fast() for documentation on the function arguments, because
2988   * the arguments here are identical.
2989   *
2990   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2991   * see Documentation/core-api/pin_user_pages.rst for further details.
2992   */
2993  int pin_user_pages_fast(unsigned long start, int nr_pages,
2994  			unsigned int gup_flags, struct page **pages)
2995  {
2996  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2997  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2998  		return -EINVAL;
2999  
3000  	gup_flags |= FOLL_PIN;
3001  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3002  }
3003  EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3004  
3005  /*
3006   * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3007   * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3008   *
3009   * The API rules are the same, too: no negative values may be returned.
3010   */
3011  int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3012  			     unsigned int gup_flags, struct page **pages)
3013  {
3014  	int nr_pinned;
3015  
3016  	/*
3017  	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3018  	 * rules require returning 0, rather than -errno:
3019  	 */
3020  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3021  		return 0;
3022  	/*
3023  	 * FOLL_FAST_ONLY is required in order to match the API description of
3024  	 * this routine: no fall back to regular ("slow") GUP.
3025  	 */
3026  	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3027  	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3028  						 pages);
3029  	/*
3030  	 * This routine is not allowed to return negative values. However,
3031  	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3032  	 * correct for that here:
3033  	 */
3034  	if (nr_pinned < 0)
3035  		nr_pinned = 0;
3036  
3037  	return nr_pinned;
3038  }
3039  EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3040  
3041  /**
3042   * pin_user_pages_remote() - pin pages of a remote process
3043   *
3044   * @mm:		mm_struct of target mm
3045   * @start:	starting user address
3046   * @nr_pages:	number of pages from start to pin
3047   * @gup_flags:	flags modifying lookup behaviour
3048   * @pages:	array that receives pointers to the pages pinned.
3049   *		Should be at least nr_pages long. Or NULL, if caller
3050   *		only intends to ensure the pages are faulted in.
3051   * @vmas:	array of pointers to vmas corresponding to each page.
3052   *		Or NULL if the caller does not require them.
3053   * @locked:	pointer to lock flag indicating whether lock is held and
3054   *		subsequently whether VM_FAULT_RETRY functionality can be
3055   *		utilised. Lock must initially be held.
3056   *
3057   * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3058   * get_user_pages_remote() for documentation on the function arguments, because
3059   * the arguments here are identical.
3060   *
3061   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3062   * see Documentation/core-api/pin_user_pages.rst for details.
3063   */
3064  long pin_user_pages_remote(struct mm_struct *mm,
3065  			   unsigned long start, unsigned long nr_pages,
3066  			   unsigned int gup_flags, struct page **pages,
3067  			   struct vm_area_struct **vmas, int *locked)
3068  {
3069  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3070  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3071  		return -EINVAL;
3072  
3073  	gup_flags |= FOLL_PIN;
3074  	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3075  				       pages, vmas, locked);
3076  }
3077  EXPORT_SYMBOL(pin_user_pages_remote);
3078  
3079  /**
3080   * pin_user_pages() - pin user pages in memory for use by other devices
3081   *
3082   * @start:	starting user address
3083   * @nr_pages:	number of pages from start to pin
3084   * @gup_flags:	flags modifying lookup behaviour
3085   * @pages:	array that receives pointers to the pages pinned.
3086   *		Should be at least nr_pages long. Or NULL, if caller
3087   *		only intends to ensure the pages are faulted in.
3088   * @vmas:	array of pointers to vmas corresponding to each page.
3089   *		Or NULL if the caller does not require them.
3090   *
3091   * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3092   * FOLL_PIN is set.
3093   *
3094   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3095   * see Documentation/core-api/pin_user_pages.rst for details.
3096   */
3097  long pin_user_pages(unsigned long start, unsigned long nr_pages,
3098  		    unsigned int gup_flags, struct page **pages,
3099  		    struct vm_area_struct **vmas)
3100  {
3101  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3102  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3103  		return -EINVAL;
3104  
3105  	gup_flags |= FOLL_PIN;
3106  	return __gup_longterm_locked(current->mm, start, nr_pages,
3107  				     pages, vmas, gup_flags);
3108  }
3109  EXPORT_SYMBOL(pin_user_pages);
3110  
3111  /*
3112   * pin_user_pages_unlocked() is the FOLL_PIN variant of
3113   * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3114   * FOLL_PIN and rejects FOLL_GET.
3115   */
3116  long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3117  			     struct page **pages, unsigned int gup_flags)
3118  {
3119  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3120  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3121  		return -EINVAL;
3122  
3123  	gup_flags |= FOLL_PIN;
3124  	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3125  }
3126  EXPORT_SYMBOL(pin_user_pages_unlocked);
3127  
3128  /*
3129   * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3130   * Behavior is the same, except that this one sets FOLL_PIN and rejects
3131   * FOLL_GET.
3132   */
3133  long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3134  			   unsigned int gup_flags, struct page **pages,
3135  			   int *locked)
3136  {
3137  	/*
3138  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3139  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3140  	 * vmas.  As there are no users of this flag in this call we simply
3141  	 * disallow this option for now.
3142  	 */
3143  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3144  		return -EINVAL;
3145  
3146  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3147  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3148  		return -EINVAL;
3149  
3150  	gup_flags |= FOLL_PIN;
3151  	return __get_user_pages_locked(current->mm, start, nr_pages,
3152  				       pages, NULL, locked,
3153  				       gup_flags | FOLL_TOUCH);
3154  }
3155  EXPORT_SYMBOL(pin_user_pages_locked);
3156