1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (flags & FOLL_GET) 127 return try_get_folio(page, refs); 128 else if (flags & FOLL_PIN) { 129 struct folio *folio; 130 131 /* 132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 133 * right zone, so fail and let the caller fall back to the slow 134 * path. 135 */ 136 if (unlikely((flags & FOLL_LONGTERM) && 137 !is_longterm_pinnable_page(page))) 138 return NULL; 139 140 /* 141 * CAUTION: Don't use compound_head() on the page before this 142 * point, the result won't be stable. 143 */ 144 folio = try_get_folio(page, refs); 145 if (!folio) 146 return NULL; 147 148 /* 149 * When pinning a large folio, use an exact count to track it. 150 * 151 * However, be sure to *also* increment the normal folio 152 * refcount field at least once, so that the folio really 153 * is pinned. That's why the refcount from the earlier 154 * try_get_folio() is left intact. 155 */ 156 if (folio_test_large(folio)) 157 atomic_add(refs, folio_pincount_ptr(folio)); 158 else 159 folio_ref_add(folio, 160 refs * (GUP_PIN_COUNTING_BIAS - 1)); 161 /* 162 * Adjust the pincount before re-checking the PTE for changes. 163 * This is essentially a smp_mb() and is paired with a memory 164 * barrier in page_try_share_anon_rmap(). 165 */ 166 smp_mb__after_atomic(); 167 168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 169 170 return folio; 171 } 172 173 WARN_ON_ONCE(1); 174 return NULL; 175 } 176 177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 178 { 179 if (flags & FOLL_PIN) { 180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 181 if (folio_test_large(folio)) 182 atomic_sub(refs, folio_pincount_ptr(folio)); 183 else 184 refs *= GUP_PIN_COUNTING_BIAS; 185 } 186 187 if (!put_devmap_managed_page_refs(&folio->page, refs)) 188 folio_put_refs(folio, refs); 189 } 190 191 /** 192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 193 * @page: pointer to page to be grabbed 194 * @flags: gup flags: these are the FOLL_* flag values. 195 * 196 * This might not do anything at all, depending on the flags argument. 197 * 198 * "grab" names in this file mean, "look at flags to decide whether to use 199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 200 * 201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 202 * time. Cases: please see the try_grab_folio() documentation, with 203 * "refs=1". 204 * 205 * Return: true for success, or if no action was required (if neither FOLL_PIN 206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 207 * FOLL_PIN was set, but the page could not be grabbed. 208 */ 209 bool __must_check try_grab_page(struct page *page, unsigned int flags) 210 { 211 struct folio *folio = page_folio(page); 212 213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 215 return false; 216 217 if (flags & FOLL_GET) 218 folio_ref_inc(folio); 219 else if (flags & FOLL_PIN) { 220 /* 221 * Similar to try_grab_folio(): be sure to *also* 222 * increment the normal page refcount field at least once, 223 * so that the page really is pinned. 224 */ 225 if (folio_test_large(folio)) { 226 folio_ref_add(folio, 1); 227 atomic_add(1, folio_pincount_ptr(folio)); 228 } else { 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 233 } 234 235 return true; 236 } 237 238 /** 239 * unpin_user_page() - release a dma-pinned page 240 * @page: pointer to page to be released 241 * 242 * Pages that were pinned via pin_user_pages*() must be released via either 243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 244 * that such pages can be separately tracked and uniquely handled. In 245 * particular, interactions with RDMA and filesystems need special handling. 246 */ 247 void unpin_user_page(struct page *page) 248 { 249 sanity_check_pinned_pages(&page, 1); 250 gup_put_folio(page_folio(page), 1, FOLL_PIN); 251 } 252 EXPORT_SYMBOL(unpin_user_page); 253 254 static inline struct folio *gup_folio_range_next(struct page *start, 255 unsigned long npages, unsigned long i, unsigned int *ntails) 256 { 257 struct page *next = nth_page(start, i); 258 struct folio *folio = page_folio(next); 259 unsigned int nr = 1; 260 261 if (folio_test_large(folio)) 262 nr = min_t(unsigned int, npages - i, 263 folio_nr_pages(folio) - folio_page_idx(folio, next)); 264 265 *ntails = nr; 266 return folio; 267 } 268 269 static inline struct folio *gup_folio_next(struct page **list, 270 unsigned long npages, unsigned long i, unsigned int *ntails) 271 { 272 struct folio *folio = page_folio(list[i]); 273 unsigned int nr; 274 275 for (nr = i + 1; nr < npages; nr++) { 276 if (page_folio(list[nr]) != folio) 277 break; 278 } 279 280 *ntails = nr - i; 281 return folio; 282 } 283 284 /** 285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 286 * @pages: array of pages to be maybe marked dirty, and definitely released. 287 * @npages: number of pages in the @pages array. 288 * @make_dirty: whether to mark the pages dirty 289 * 290 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 291 * variants called on that page. 292 * 293 * For each page in the @pages array, make that page (or its head page, if a 294 * compound page) dirty, if @make_dirty is true, and if the page was previously 295 * listed as clean. In any case, releases all pages using unpin_user_page(), 296 * possibly via unpin_user_pages(), for the non-dirty case. 297 * 298 * Please see the unpin_user_page() documentation for details. 299 * 300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 301 * required, then the caller should a) verify that this is really correct, 302 * because _lock() is usually required, and b) hand code it: 303 * set_page_dirty_lock(), unpin_user_page(). 304 * 305 */ 306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 307 bool make_dirty) 308 { 309 unsigned long i; 310 struct folio *folio; 311 unsigned int nr; 312 313 if (!make_dirty) { 314 unpin_user_pages(pages, npages); 315 return; 316 } 317 318 sanity_check_pinned_pages(pages, npages); 319 for (i = 0; i < npages; i += nr) { 320 folio = gup_folio_next(pages, npages, i, &nr); 321 /* 322 * Checking PageDirty at this point may race with 323 * clear_page_dirty_for_io(), but that's OK. Two key 324 * cases: 325 * 326 * 1) This code sees the page as already dirty, so it 327 * skips the call to set_page_dirty(). That could happen 328 * because clear_page_dirty_for_io() called 329 * page_mkclean(), followed by set_page_dirty(). 330 * However, now the page is going to get written back, 331 * which meets the original intention of setting it 332 * dirty, so all is well: clear_page_dirty_for_io() goes 333 * on to call TestClearPageDirty(), and write the page 334 * back. 335 * 336 * 2) This code sees the page as clean, so it calls 337 * set_page_dirty(). The page stays dirty, despite being 338 * written back, so it gets written back again in the 339 * next writeback cycle. This is harmless. 340 */ 341 if (!folio_test_dirty(folio)) { 342 folio_lock(folio); 343 folio_mark_dirty(folio); 344 folio_unlock(folio); 345 } 346 gup_put_folio(folio, nr, FOLL_PIN); 347 } 348 } 349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 350 351 /** 352 * unpin_user_page_range_dirty_lock() - release and optionally dirty 353 * gup-pinned page range 354 * 355 * @page: the starting page of a range maybe marked dirty, and definitely released. 356 * @npages: number of consecutive pages to release. 357 * @make_dirty: whether to mark the pages dirty 358 * 359 * "gup-pinned page range" refers to a range of pages that has had one of the 360 * pin_user_pages() variants called on that page. 361 * 362 * For the page ranges defined by [page .. page+npages], make that range (or 363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 364 * page range was previously listed as clean. 365 * 366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 367 * required, then the caller should a) verify that this is really correct, 368 * because _lock() is usually required, and b) hand code it: 369 * set_page_dirty_lock(), unpin_user_page(). 370 * 371 */ 372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 373 bool make_dirty) 374 { 375 unsigned long i; 376 struct folio *folio; 377 unsigned int nr; 378 379 for (i = 0; i < npages; i += nr) { 380 folio = gup_folio_range_next(page, npages, i, &nr); 381 if (make_dirty && !folio_test_dirty(folio)) { 382 folio_lock(folio); 383 folio_mark_dirty(folio); 384 folio_unlock(folio); 385 } 386 gup_put_folio(folio, nr, FOLL_PIN); 387 } 388 } 389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 390 391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 392 { 393 unsigned long i; 394 struct folio *folio; 395 unsigned int nr; 396 397 /* 398 * Don't perform any sanity checks because we might have raced with 399 * fork() and some anonymous pages might now actually be shared -- 400 * which is why we're unpinning after all. 401 */ 402 for (i = 0; i < npages; i += nr) { 403 folio = gup_folio_next(pages, npages, i, &nr); 404 gup_put_folio(folio, nr, FOLL_PIN); 405 } 406 } 407 408 /** 409 * unpin_user_pages() - release an array of gup-pinned pages. 410 * @pages: array of pages to be marked dirty and released. 411 * @npages: number of pages in the @pages array. 412 * 413 * For each page in the @pages array, release the page using unpin_user_page(). 414 * 415 * Please see the unpin_user_page() documentation for details. 416 */ 417 void unpin_user_pages(struct page **pages, unsigned long npages) 418 { 419 unsigned long i; 420 struct folio *folio; 421 unsigned int nr; 422 423 /* 424 * If this WARN_ON() fires, then the system *might* be leaking pages (by 425 * leaving them pinned), but probably not. More likely, gup/pup returned 426 * a hard -ERRNO error to the caller, who erroneously passed it here. 427 */ 428 if (WARN_ON(IS_ERR_VALUE(npages))) 429 return; 430 431 sanity_check_pinned_pages(pages, npages); 432 for (i = 0; i < npages; i += nr) { 433 folio = gup_folio_next(pages, npages, i, &nr); 434 gup_put_folio(folio, nr, FOLL_PIN); 435 } 436 } 437 EXPORT_SYMBOL(unpin_user_pages); 438 439 /* 440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 442 * cache bouncing on large SMP machines for concurrent pinned gups. 443 */ 444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 445 { 446 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 447 set_bit(MMF_HAS_PINNED, mm_flags); 448 } 449 450 #ifdef CONFIG_MMU 451 static struct page *no_page_table(struct vm_area_struct *vma, 452 unsigned int flags) 453 { 454 /* 455 * When core dumping an enormous anonymous area that nobody 456 * has touched so far, we don't want to allocate unnecessary pages or 457 * page tables. Return error instead of NULL to skip handle_mm_fault, 458 * then get_dump_page() will return NULL to leave a hole in the dump. 459 * But we can only make this optimization where a hole would surely 460 * be zero-filled if handle_mm_fault() actually did handle it. 461 */ 462 if ((flags & FOLL_DUMP) && 463 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 464 return ERR_PTR(-EFAULT); 465 return NULL; 466 } 467 468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 469 pte_t *pte, unsigned int flags) 470 { 471 if (flags & FOLL_TOUCH) { 472 pte_t entry = *pte; 473 474 if (flags & FOLL_WRITE) 475 entry = pte_mkdirty(entry); 476 entry = pte_mkyoung(entry); 477 478 if (!pte_same(*pte, entry)) { 479 set_pte_at(vma->vm_mm, address, pte, entry); 480 update_mmu_cache(vma, address, pte); 481 } 482 } 483 484 /* Proper page table entry exists, but no corresponding struct page */ 485 return -EEXIST; 486 } 487 488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 489 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 490 struct vm_area_struct *vma, 491 unsigned int flags) 492 { 493 /* If the pte is writable, we can write to the page. */ 494 if (pte_write(pte)) 495 return true; 496 497 /* Maybe FOLL_FORCE is set to override it? */ 498 if (!(flags & FOLL_FORCE)) 499 return false; 500 501 /* But FOLL_FORCE has no effect on shared mappings */ 502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 503 return false; 504 505 /* ... or read-only private ones */ 506 if (!(vma->vm_flags & VM_MAYWRITE)) 507 return false; 508 509 /* ... or already writable ones that just need to take a write fault */ 510 if (vma->vm_flags & VM_WRITE) 511 return false; 512 513 /* 514 * See can_change_pte_writable(): we broke COW and could map the page 515 * writable if we have an exclusive anonymous page ... 516 */ 517 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 518 return false; 519 520 /* ... and a write-fault isn't required for other reasons. */ 521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 522 return false; 523 return !userfaultfd_pte_wp(vma, pte); 524 } 525 526 static struct page *follow_page_pte(struct vm_area_struct *vma, 527 unsigned long address, pmd_t *pmd, unsigned int flags, 528 struct dev_pagemap **pgmap) 529 { 530 struct mm_struct *mm = vma->vm_mm; 531 struct page *page; 532 spinlock_t *ptl; 533 pte_t *ptep, pte; 534 int ret; 535 536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 538 (FOLL_PIN | FOLL_GET))) 539 return ERR_PTR(-EINVAL); 540 541 /* 542 * Considering PTE level hugetlb, like continuous-PTE hugetlb on 543 * ARM64 architecture. 544 */ 545 if (is_vm_hugetlb_page(vma)) { 546 page = follow_huge_pmd_pte(vma, address, flags); 547 if (page) 548 return page; 549 return no_page_table(vma, flags); 550 } 551 552 retry: 553 if (unlikely(pmd_bad(*pmd))) 554 return no_page_table(vma, flags); 555 556 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 557 pte = *ptep; 558 if (!pte_present(pte)) { 559 swp_entry_t entry; 560 /* 561 * KSM's break_ksm() relies upon recognizing a ksm page 562 * even while it is being migrated, so for that case we 563 * need migration_entry_wait(). 564 */ 565 if (likely(!(flags & FOLL_MIGRATION))) 566 goto no_page; 567 if (pte_none(pte)) 568 goto no_page; 569 entry = pte_to_swp_entry(pte); 570 if (!is_migration_entry(entry)) 571 goto no_page; 572 pte_unmap_unlock(ptep, ptl); 573 migration_entry_wait(mm, pmd, address); 574 goto retry; 575 } 576 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 577 goto no_page; 578 579 page = vm_normal_page(vma, address, pte); 580 581 /* 582 * We only care about anon pages in can_follow_write_pte() and don't 583 * have to worry about pte_devmap() because they are never anon. 584 */ 585 if ((flags & FOLL_WRITE) && 586 !can_follow_write_pte(pte, page, vma, flags)) { 587 page = NULL; 588 goto out; 589 } 590 591 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 592 /* 593 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 594 * case since they are only valid while holding the pgmap 595 * reference. 596 */ 597 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 598 if (*pgmap) 599 page = pte_page(pte); 600 else 601 goto no_page; 602 } else if (unlikely(!page)) { 603 if (flags & FOLL_DUMP) { 604 /* Avoid special (like zero) pages in core dumps */ 605 page = ERR_PTR(-EFAULT); 606 goto out; 607 } 608 609 if (is_zero_pfn(pte_pfn(pte))) { 610 page = pte_page(pte); 611 } else { 612 ret = follow_pfn_pte(vma, address, ptep, flags); 613 page = ERR_PTR(ret); 614 goto out; 615 } 616 } 617 618 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 619 page = ERR_PTR(-EMLINK); 620 goto out; 621 } 622 623 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 624 !PageAnonExclusive(page), page); 625 626 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 627 if (unlikely(!try_grab_page(page, flags))) { 628 page = ERR_PTR(-ENOMEM); 629 goto out; 630 } 631 /* 632 * We need to make the page accessible if and only if we are going 633 * to access its content (the FOLL_PIN case). Please see 634 * Documentation/core-api/pin_user_pages.rst for details. 635 */ 636 if (flags & FOLL_PIN) { 637 ret = arch_make_page_accessible(page); 638 if (ret) { 639 unpin_user_page(page); 640 page = ERR_PTR(ret); 641 goto out; 642 } 643 } 644 if (flags & FOLL_TOUCH) { 645 if ((flags & FOLL_WRITE) && 646 !pte_dirty(pte) && !PageDirty(page)) 647 set_page_dirty(page); 648 /* 649 * pte_mkyoung() would be more correct here, but atomic care 650 * is needed to avoid losing the dirty bit: it is easier to use 651 * mark_page_accessed(). 652 */ 653 mark_page_accessed(page); 654 } 655 out: 656 pte_unmap_unlock(ptep, ptl); 657 return page; 658 no_page: 659 pte_unmap_unlock(ptep, ptl); 660 if (!pte_none(pte)) 661 return NULL; 662 return no_page_table(vma, flags); 663 } 664 665 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 666 unsigned long address, pud_t *pudp, 667 unsigned int flags, 668 struct follow_page_context *ctx) 669 { 670 pmd_t *pmd, pmdval; 671 spinlock_t *ptl; 672 struct page *page; 673 struct mm_struct *mm = vma->vm_mm; 674 675 pmd = pmd_offset(pudp, address); 676 /* 677 * The READ_ONCE() will stabilize the pmdval in a register or 678 * on the stack so that it will stop changing under the code. 679 */ 680 pmdval = READ_ONCE(*pmd); 681 if (pmd_none(pmdval)) 682 return no_page_table(vma, flags); 683 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 684 page = follow_huge_pmd_pte(vma, address, flags); 685 if (page) 686 return page; 687 return no_page_table(vma, flags); 688 } 689 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 690 page = follow_huge_pd(vma, address, 691 __hugepd(pmd_val(pmdval)), flags, 692 PMD_SHIFT); 693 if (page) 694 return page; 695 return no_page_table(vma, flags); 696 } 697 retry: 698 if (!pmd_present(pmdval)) { 699 /* 700 * Should never reach here, if thp migration is not supported; 701 * Otherwise, it must be a thp migration entry. 702 */ 703 VM_BUG_ON(!thp_migration_supported() || 704 !is_pmd_migration_entry(pmdval)); 705 706 if (likely(!(flags & FOLL_MIGRATION))) 707 return no_page_table(vma, flags); 708 709 pmd_migration_entry_wait(mm, pmd); 710 pmdval = READ_ONCE(*pmd); 711 /* 712 * MADV_DONTNEED may convert the pmd to null because 713 * mmap_lock is held in read mode 714 */ 715 if (pmd_none(pmdval)) 716 return no_page_table(vma, flags); 717 goto retry; 718 } 719 if (pmd_devmap(pmdval)) { 720 ptl = pmd_lock(mm, pmd); 721 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 722 spin_unlock(ptl); 723 if (page) 724 return page; 725 } 726 if (likely(!pmd_trans_huge(pmdval))) 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 729 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 730 return no_page_table(vma, flags); 731 732 retry_locked: 733 ptl = pmd_lock(mm, pmd); 734 if (unlikely(pmd_none(*pmd))) { 735 spin_unlock(ptl); 736 return no_page_table(vma, flags); 737 } 738 if (unlikely(!pmd_present(*pmd))) { 739 spin_unlock(ptl); 740 if (likely(!(flags & FOLL_MIGRATION))) 741 return no_page_table(vma, flags); 742 pmd_migration_entry_wait(mm, pmd); 743 goto retry_locked; 744 } 745 if (unlikely(!pmd_trans_huge(*pmd))) { 746 spin_unlock(ptl); 747 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 748 } 749 if (flags & FOLL_SPLIT_PMD) { 750 int ret; 751 page = pmd_page(*pmd); 752 if (is_huge_zero_page(page)) { 753 spin_unlock(ptl); 754 ret = 0; 755 split_huge_pmd(vma, pmd, address); 756 if (pmd_trans_unstable(pmd)) 757 ret = -EBUSY; 758 } else { 759 spin_unlock(ptl); 760 split_huge_pmd(vma, pmd, address); 761 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 762 } 763 764 return ret ? ERR_PTR(ret) : 765 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 766 } 767 page = follow_trans_huge_pmd(vma, address, pmd, flags); 768 spin_unlock(ptl); 769 ctx->page_mask = HPAGE_PMD_NR - 1; 770 return page; 771 } 772 773 static struct page *follow_pud_mask(struct vm_area_struct *vma, 774 unsigned long address, p4d_t *p4dp, 775 unsigned int flags, 776 struct follow_page_context *ctx) 777 { 778 pud_t *pud; 779 spinlock_t *ptl; 780 struct page *page; 781 struct mm_struct *mm = vma->vm_mm; 782 783 pud = pud_offset(p4dp, address); 784 if (pud_none(*pud)) 785 return no_page_table(vma, flags); 786 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 787 page = follow_huge_pud(mm, address, pud, flags); 788 if (page) 789 return page; 790 return no_page_table(vma, flags); 791 } 792 if (is_hugepd(__hugepd(pud_val(*pud)))) { 793 page = follow_huge_pd(vma, address, 794 __hugepd(pud_val(*pud)), flags, 795 PUD_SHIFT); 796 if (page) 797 return page; 798 return no_page_table(vma, flags); 799 } 800 if (pud_devmap(*pud)) { 801 ptl = pud_lock(mm, pud); 802 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 803 spin_unlock(ptl); 804 if (page) 805 return page; 806 } 807 if (unlikely(pud_bad(*pud))) 808 return no_page_table(vma, flags); 809 810 return follow_pmd_mask(vma, address, pud, flags, ctx); 811 } 812 813 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 814 unsigned long address, pgd_t *pgdp, 815 unsigned int flags, 816 struct follow_page_context *ctx) 817 { 818 p4d_t *p4d; 819 struct page *page; 820 821 p4d = p4d_offset(pgdp, address); 822 if (p4d_none(*p4d)) 823 return no_page_table(vma, flags); 824 BUILD_BUG_ON(p4d_huge(*p4d)); 825 if (unlikely(p4d_bad(*p4d))) 826 return no_page_table(vma, flags); 827 828 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 829 page = follow_huge_pd(vma, address, 830 __hugepd(p4d_val(*p4d)), flags, 831 P4D_SHIFT); 832 if (page) 833 return page; 834 return no_page_table(vma, flags); 835 } 836 return follow_pud_mask(vma, address, p4d, flags, ctx); 837 } 838 839 /** 840 * follow_page_mask - look up a page descriptor from a user-virtual address 841 * @vma: vm_area_struct mapping @address 842 * @address: virtual address to look up 843 * @flags: flags modifying lookup behaviour 844 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 845 * pointer to output page_mask 846 * 847 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 848 * 849 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 850 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 851 * 852 * When getting an anonymous page and the caller has to trigger unsharing 853 * of a shared anonymous page first, -EMLINK is returned. The caller should 854 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 855 * relevant with FOLL_PIN and !FOLL_WRITE. 856 * 857 * On output, the @ctx->page_mask is set according to the size of the page. 858 * 859 * Return: the mapped (struct page *), %NULL if no mapping exists, or 860 * an error pointer if there is a mapping to something not represented 861 * by a page descriptor (see also vm_normal_page()). 862 */ 863 static struct page *follow_page_mask(struct vm_area_struct *vma, 864 unsigned long address, unsigned int flags, 865 struct follow_page_context *ctx) 866 { 867 pgd_t *pgd; 868 struct page *page; 869 struct mm_struct *mm = vma->vm_mm; 870 871 ctx->page_mask = 0; 872 873 /* make this handle hugepd */ 874 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 875 if (!IS_ERR(page)) { 876 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 877 return page; 878 } 879 880 pgd = pgd_offset(mm, address); 881 882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 883 return no_page_table(vma, flags); 884 885 if (pgd_huge(*pgd)) { 886 page = follow_huge_pgd(mm, address, pgd, flags); 887 if (page) 888 return page; 889 return no_page_table(vma, flags); 890 } 891 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 892 page = follow_huge_pd(vma, address, 893 __hugepd(pgd_val(*pgd)), flags, 894 PGDIR_SHIFT); 895 if (page) 896 return page; 897 return no_page_table(vma, flags); 898 } 899 900 return follow_p4d_mask(vma, address, pgd, flags, ctx); 901 } 902 903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 904 unsigned int foll_flags) 905 { 906 struct follow_page_context ctx = { NULL }; 907 struct page *page; 908 909 if (vma_is_secretmem(vma)) 910 return NULL; 911 912 if (foll_flags & FOLL_PIN) 913 return NULL; 914 915 page = follow_page_mask(vma, address, foll_flags, &ctx); 916 if (ctx.pgmap) 917 put_dev_pagemap(ctx.pgmap); 918 return page; 919 } 920 921 static int get_gate_page(struct mm_struct *mm, unsigned long address, 922 unsigned int gup_flags, struct vm_area_struct **vma, 923 struct page **page) 924 { 925 pgd_t *pgd; 926 p4d_t *p4d; 927 pud_t *pud; 928 pmd_t *pmd; 929 pte_t *pte; 930 int ret = -EFAULT; 931 932 /* user gate pages are read-only */ 933 if (gup_flags & FOLL_WRITE) 934 return -EFAULT; 935 if (address > TASK_SIZE) 936 pgd = pgd_offset_k(address); 937 else 938 pgd = pgd_offset_gate(mm, address); 939 if (pgd_none(*pgd)) 940 return -EFAULT; 941 p4d = p4d_offset(pgd, address); 942 if (p4d_none(*p4d)) 943 return -EFAULT; 944 pud = pud_offset(p4d, address); 945 if (pud_none(*pud)) 946 return -EFAULT; 947 pmd = pmd_offset(pud, address); 948 if (!pmd_present(*pmd)) 949 return -EFAULT; 950 VM_BUG_ON(pmd_trans_huge(*pmd)); 951 pte = pte_offset_map(pmd, address); 952 if (pte_none(*pte)) 953 goto unmap; 954 *vma = get_gate_vma(mm); 955 if (!page) 956 goto out; 957 *page = vm_normal_page(*vma, address, *pte); 958 if (!*page) { 959 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 960 goto unmap; 961 *page = pte_page(*pte); 962 } 963 if (unlikely(!try_grab_page(*page, gup_flags))) { 964 ret = -ENOMEM; 965 goto unmap; 966 } 967 out: 968 ret = 0; 969 unmap: 970 pte_unmap(pte); 971 return ret; 972 } 973 974 /* 975 * mmap_lock must be held on entry. If @locked != NULL and *@flags 976 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 977 * is, *@locked will be set to 0 and -EBUSY returned. 978 */ 979 static int faultin_page(struct vm_area_struct *vma, 980 unsigned long address, unsigned int *flags, bool unshare, 981 int *locked) 982 { 983 unsigned int fault_flags = 0; 984 vm_fault_t ret; 985 986 if (*flags & FOLL_NOFAULT) 987 return -EFAULT; 988 if (*flags & FOLL_WRITE) 989 fault_flags |= FAULT_FLAG_WRITE; 990 if (*flags & FOLL_REMOTE) 991 fault_flags |= FAULT_FLAG_REMOTE; 992 if (locked) 993 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 994 if (*flags & FOLL_NOWAIT) 995 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 996 if (*flags & FOLL_TRIED) { 997 /* 998 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 999 * can co-exist 1000 */ 1001 fault_flags |= FAULT_FLAG_TRIED; 1002 } 1003 if (unshare) { 1004 fault_flags |= FAULT_FLAG_UNSHARE; 1005 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1006 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1007 } 1008 1009 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1010 1011 if (ret & VM_FAULT_COMPLETED) { 1012 /* 1013 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1014 * mmap lock in the page fault handler. Sanity check this. 1015 */ 1016 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1017 if (locked) 1018 *locked = 0; 1019 /* 1020 * We should do the same as VM_FAULT_RETRY, but let's not 1021 * return -EBUSY since that's not reflecting the reality of 1022 * what has happened - we've just fully completed a page 1023 * fault, with the mmap lock released. Use -EAGAIN to show 1024 * that we want to take the mmap lock _again_. 1025 */ 1026 return -EAGAIN; 1027 } 1028 1029 if (ret & VM_FAULT_ERROR) { 1030 int err = vm_fault_to_errno(ret, *flags); 1031 1032 if (err) 1033 return err; 1034 BUG(); 1035 } 1036 1037 if (ret & VM_FAULT_RETRY) { 1038 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1039 *locked = 0; 1040 return -EBUSY; 1041 } 1042 1043 return 0; 1044 } 1045 1046 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1047 { 1048 vm_flags_t vm_flags = vma->vm_flags; 1049 int write = (gup_flags & FOLL_WRITE); 1050 int foreign = (gup_flags & FOLL_REMOTE); 1051 1052 if (vm_flags & (VM_IO | VM_PFNMAP)) 1053 return -EFAULT; 1054 1055 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 1056 return -EFAULT; 1057 1058 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1059 return -EOPNOTSUPP; 1060 1061 if (vma_is_secretmem(vma)) 1062 return -EFAULT; 1063 1064 if (write) { 1065 if (!(vm_flags & VM_WRITE)) { 1066 if (!(gup_flags & FOLL_FORCE)) 1067 return -EFAULT; 1068 /* 1069 * We used to let the write,force case do COW in a 1070 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1071 * set a breakpoint in a read-only mapping of an 1072 * executable, without corrupting the file (yet only 1073 * when that file had been opened for writing!). 1074 * Anon pages in shared mappings are surprising: now 1075 * just reject it. 1076 */ 1077 if (!is_cow_mapping(vm_flags)) 1078 return -EFAULT; 1079 } 1080 } else if (!(vm_flags & VM_READ)) { 1081 if (!(gup_flags & FOLL_FORCE)) 1082 return -EFAULT; 1083 /* 1084 * Is there actually any vma we can reach here which does not 1085 * have VM_MAYREAD set? 1086 */ 1087 if (!(vm_flags & VM_MAYREAD)) 1088 return -EFAULT; 1089 } 1090 /* 1091 * gups are always data accesses, not instruction 1092 * fetches, so execute=false here 1093 */ 1094 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1095 return -EFAULT; 1096 return 0; 1097 } 1098 1099 /** 1100 * __get_user_pages() - pin user pages in memory 1101 * @mm: mm_struct of target mm 1102 * @start: starting user address 1103 * @nr_pages: number of pages from start to pin 1104 * @gup_flags: flags modifying pin behaviour 1105 * @pages: array that receives pointers to the pages pinned. 1106 * Should be at least nr_pages long. Or NULL, if caller 1107 * only intends to ensure the pages are faulted in. 1108 * @vmas: array of pointers to vmas corresponding to each page. 1109 * Or NULL if the caller does not require them. 1110 * @locked: whether we're still with the mmap_lock held 1111 * 1112 * Returns either number of pages pinned (which may be less than the 1113 * number requested), or an error. Details about the return value: 1114 * 1115 * -- If nr_pages is 0, returns 0. 1116 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1117 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1118 * pages pinned. Again, this may be less than nr_pages. 1119 * -- 0 return value is possible when the fault would need to be retried. 1120 * 1121 * The caller is responsible for releasing returned @pages, via put_page(). 1122 * 1123 * @vmas are valid only as long as mmap_lock is held. 1124 * 1125 * Must be called with mmap_lock held. It may be released. See below. 1126 * 1127 * __get_user_pages walks a process's page tables and takes a reference to 1128 * each struct page that each user address corresponds to at a given 1129 * instant. That is, it takes the page that would be accessed if a user 1130 * thread accesses the given user virtual address at that instant. 1131 * 1132 * This does not guarantee that the page exists in the user mappings when 1133 * __get_user_pages returns, and there may even be a completely different 1134 * page there in some cases (eg. if mmapped pagecache has been invalidated 1135 * and subsequently re faulted). However it does guarantee that the page 1136 * won't be freed completely. And mostly callers simply care that the page 1137 * contains data that was valid *at some point in time*. Typically, an IO 1138 * or similar operation cannot guarantee anything stronger anyway because 1139 * locks can't be held over the syscall boundary. 1140 * 1141 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1142 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1143 * appropriate) must be called after the page is finished with, and 1144 * before put_page is called. 1145 * 1146 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1147 * released by an up_read(). That can happen if @gup_flags does not 1148 * have FOLL_NOWAIT. 1149 * 1150 * A caller using such a combination of @locked and @gup_flags 1151 * must therefore hold the mmap_lock for reading only, and recognize 1152 * when it's been released. Otherwise, it must be held for either 1153 * reading or writing and will not be released. 1154 * 1155 * In most cases, get_user_pages or get_user_pages_fast should be used 1156 * instead of __get_user_pages. __get_user_pages should be used only if 1157 * you need some special @gup_flags. 1158 */ 1159 static long __get_user_pages(struct mm_struct *mm, 1160 unsigned long start, unsigned long nr_pages, 1161 unsigned int gup_flags, struct page **pages, 1162 struct vm_area_struct **vmas, int *locked) 1163 { 1164 long ret = 0, i = 0; 1165 struct vm_area_struct *vma = NULL; 1166 struct follow_page_context ctx = { NULL }; 1167 1168 if (!nr_pages) 1169 return 0; 1170 1171 start = untagged_addr(start); 1172 1173 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1174 1175 do { 1176 struct page *page; 1177 unsigned int foll_flags = gup_flags; 1178 unsigned int page_increm; 1179 1180 /* first iteration or cross vma bound */ 1181 if (!vma || start >= vma->vm_end) { 1182 vma = find_extend_vma(mm, start); 1183 if (!vma && in_gate_area(mm, start)) { 1184 ret = get_gate_page(mm, start & PAGE_MASK, 1185 gup_flags, &vma, 1186 pages ? &pages[i] : NULL); 1187 if (ret) 1188 goto out; 1189 ctx.page_mask = 0; 1190 goto next_page; 1191 } 1192 1193 if (!vma) { 1194 ret = -EFAULT; 1195 goto out; 1196 } 1197 ret = check_vma_flags(vma, gup_flags); 1198 if (ret) 1199 goto out; 1200 1201 if (is_vm_hugetlb_page(vma)) { 1202 i = follow_hugetlb_page(mm, vma, pages, vmas, 1203 &start, &nr_pages, i, 1204 gup_flags, locked); 1205 if (locked && *locked == 0) { 1206 /* 1207 * We've got a VM_FAULT_RETRY 1208 * and we've lost mmap_lock. 1209 * We must stop here. 1210 */ 1211 BUG_ON(gup_flags & FOLL_NOWAIT); 1212 goto out; 1213 } 1214 continue; 1215 } 1216 } 1217 retry: 1218 /* 1219 * If we have a pending SIGKILL, don't keep faulting pages and 1220 * potentially allocating memory. 1221 */ 1222 if (fatal_signal_pending(current)) { 1223 ret = -EINTR; 1224 goto out; 1225 } 1226 cond_resched(); 1227 1228 page = follow_page_mask(vma, start, foll_flags, &ctx); 1229 if (!page || PTR_ERR(page) == -EMLINK) { 1230 ret = faultin_page(vma, start, &foll_flags, 1231 PTR_ERR(page) == -EMLINK, locked); 1232 switch (ret) { 1233 case 0: 1234 goto retry; 1235 case -EBUSY: 1236 case -EAGAIN: 1237 ret = 0; 1238 fallthrough; 1239 case -EFAULT: 1240 case -ENOMEM: 1241 case -EHWPOISON: 1242 goto out; 1243 } 1244 BUG(); 1245 } else if (PTR_ERR(page) == -EEXIST) { 1246 /* 1247 * Proper page table entry exists, but no corresponding 1248 * struct page. If the caller expects **pages to be 1249 * filled in, bail out now, because that can't be done 1250 * for this page. 1251 */ 1252 if (pages) { 1253 ret = PTR_ERR(page); 1254 goto out; 1255 } 1256 1257 goto next_page; 1258 } else if (IS_ERR(page)) { 1259 ret = PTR_ERR(page); 1260 goto out; 1261 } 1262 if (pages) { 1263 pages[i] = page; 1264 flush_anon_page(vma, page, start); 1265 flush_dcache_page(page); 1266 ctx.page_mask = 0; 1267 } 1268 next_page: 1269 if (vmas) { 1270 vmas[i] = vma; 1271 ctx.page_mask = 0; 1272 } 1273 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1274 if (page_increm > nr_pages) 1275 page_increm = nr_pages; 1276 i += page_increm; 1277 start += page_increm * PAGE_SIZE; 1278 nr_pages -= page_increm; 1279 } while (nr_pages); 1280 out: 1281 if (ctx.pgmap) 1282 put_dev_pagemap(ctx.pgmap); 1283 return i ? i : ret; 1284 } 1285 1286 static bool vma_permits_fault(struct vm_area_struct *vma, 1287 unsigned int fault_flags) 1288 { 1289 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1290 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1291 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1292 1293 if (!(vm_flags & vma->vm_flags)) 1294 return false; 1295 1296 /* 1297 * The architecture might have a hardware protection 1298 * mechanism other than read/write that can deny access. 1299 * 1300 * gup always represents data access, not instruction 1301 * fetches, so execute=false here: 1302 */ 1303 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1304 return false; 1305 1306 return true; 1307 } 1308 1309 /** 1310 * fixup_user_fault() - manually resolve a user page fault 1311 * @mm: mm_struct of target mm 1312 * @address: user address 1313 * @fault_flags:flags to pass down to handle_mm_fault() 1314 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1315 * does not allow retry. If NULL, the caller must guarantee 1316 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1317 * 1318 * This is meant to be called in the specific scenario where for locking reasons 1319 * we try to access user memory in atomic context (within a pagefault_disable() 1320 * section), this returns -EFAULT, and we want to resolve the user fault before 1321 * trying again. 1322 * 1323 * Typically this is meant to be used by the futex code. 1324 * 1325 * The main difference with get_user_pages() is that this function will 1326 * unconditionally call handle_mm_fault() which will in turn perform all the 1327 * necessary SW fixup of the dirty and young bits in the PTE, while 1328 * get_user_pages() only guarantees to update these in the struct page. 1329 * 1330 * This is important for some architectures where those bits also gate the 1331 * access permission to the page because they are maintained in software. On 1332 * such architectures, gup() will not be enough to make a subsequent access 1333 * succeed. 1334 * 1335 * This function will not return with an unlocked mmap_lock. So it has not the 1336 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1337 */ 1338 int fixup_user_fault(struct mm_struct *mm, 1339 unsigned long address, unsigned int fault_flags, 1340 bool *unlocked) 1341 { 1342 struct vm_area_struct *vma; 1343 vm_fault_t ret; 1344 1345 address = untagged_addr(address); 1346 1347 if (unlocked) 1348 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1349 1350 retry: 1351 vma = find_extend_vma(mm, address); 1352 if (!vma || address < vma->vm_start) 1353 return -EFAULT; 1354 1355 if (!vma_permits_fault(vma, fault_flags)) 1356 return -EFAULT; 1357 1358 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1359 fatal_signal_pending(current)) 1360 return -EINTR; 1361 1362 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1363 1364 if (ret & VM_FAULT_COMPLETED) { 1365 /* 1366 * NOTE: it's a pity that we need to retake the lock here 1367 * to pair with the unlock() in the callers. Ideally we 1368 * could tell the callers so they do not need to unlock. 1369 */ 1370 mmap_read_lock(mm); 1371 *unlocked = true; 1372 return 0; 1373 } 1374 1375 if (ret & VM_FAULT_ERROR) { 1376 int err = vm_fault_to_errno(ret, 0); 1377 1378 if (err) 1379 return err; 1380 BUG(); 1381 } 1382 1383 if (ret & VM_FAULT_RETRY) { 1384 mmap_read_lock(mm); 1385 *unlocked = true; 1386 fault_flags |= FAULT_FLAG_TRIED; 1387 goto retry; 1388 } 1389 1390 return 0; 1391 } 1392 EXPORT_SYMBOL_GPL(fixup_user_fault); 1393 1394 /* 1395 * Please note that this function, unlike __get_user_pages will not 1396 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1397 */ 1398 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1399 unsigned long start, 1400 unsigned long nr_pages, 1401 struct page **pages, 1402 struct vm_area_struct **vmas, 1403 int *locked, 1404 unsigned int flags) 1405 { 1406 long ret, pages_done; 1407 bool lock_dropped; 1408 1409 if (locked) { 1410 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1411 BUG_ON(vmas); 1412 /* check caller initialized locked */ 1413 BUG_ON(*locked != 1); 1414 } 1415 1416 if (flags & FOLL_PIN) 1417 mm_set_has_pinned_flag(&mm->flags); 1418 1419 /* 1420 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1421 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1422 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1423 * for FOLL_GET, not for the newer FOLL_PIN. 1424 * 1425 * FOLL_PIN always expects pages to be non-null, but no need to assert 1426 * that here, as any failures will be obvious enough. 1427 */ 1428 if (pages && !(flags & FOLL_PIN)) 1429 flags |= FOLL_GET; 1430 1431 pages_done = 0; 1432 lock_dropped = false; 1433 for (;;) { 1434 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1435 vmas, locked); 1436 if (!locked) 1437 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1438 return ret; 1439 1440 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1441 if (!*locked) { 1442 BUG_ON(ret < 0); 1443 BUG_ON(ret >= nr_pages); 1444 } 1445 1446 if (ret > 0) { 1447 nr_pages -= ret; 1448 pages_done += ret; 1449 if (!nr_pages) 1450 break; 1451 } 1452 if (*locked) { 1453 /* 1454 * VM_FAULT_RETRY didn't trigger or it was a 1455 * FOLL_NOWAIT. 1456 */ 1457 if (!pages_done) 1458 pages_done = ret; 1459 break; 1460 } 1461 /* 1462 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1463 * For the prefault case (!pages) we only update counts. 1464 */ 1465 if (likely(pages)) 1466 pages += ret; 1467 start += ret << PAGE_SHIFT; 1468 lock_dropped = true; 1469 1470 retry: 1471 /* 1472 * Repeat on the address that fired VM_FAULT_RETRY 1473 * with both FAULT_FLAG_ALLOW_RETRY and 1474 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1475 * by fatal signals, so we need to check it before we 1476 * start trying again otherwise it can loop forever. 1477 */ 1478 1479 if (fatal_signal_pending(current)) { 1480 if (!pages_done) 1481 pages_done = -EINTR; 1482 break; 1483 } 1484 1485 ret = mmap_read_lock_killable(mm); 1486 if (ret) { 1487 BUG_ON(ret > 0); 1488 if (!pages_done) 1489 pages_done = ret; 1490 break; 1491 } 1492 1493 *locked = 1; 1494 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1495 pages, NULL, locked); 1496 if (!*locked) { 1497 /* Continue to retry until we succeeded */ 1498 BUG_ON(ret != 0); 1499 goto retry; 1500 } 1501 if (ret != 1) { 1502 BUG_ON(ret > 1); 1503 if (!pages_done) 1504 pages_done = ret; 1505 break; 1506 } 1507 nr_pages--; 1508 pages_done++; 1509 if (!nr_pages) 1510 break; 1511 if (likely(pages)) 1512 pages++; 1513 start += PAGE_SIZE; 1514 } 1515 if (lock_dropped && *locked) { 1516 /* 1517 * We must let the caller know we temporarily dropped the lock 1518 * and so the critical section protected by it was lost. 1519 */ 1520 mmap_read_unlock(mm); 1521 *locked = 0; 1522 } 1523 return pages_done; 1524 } 1525 1526 /** 1527 * populate_vma_page_range() - populate a range of pages in the vma. 1528 * @vma: target vma 1529 * @start: start address 1530 * @end: end address 1531 * @locked: whether the mmap_lock is still held 1532 * 1533 * This takes care of mlocking the pages too if VM_LOCKED is set. 1534 * 1535 * Return either number of pages pinned in the vma, or a negative error 1536 * code on error. 1537 * 1538 * vma->vm_mm->mmap_lock must be held. 1539 * 1540 * If @locked is NULL, it may be held for read or write and will 1541 * be unperturbed. 1542 * 1543 * If @locked is non-NULL, it must held for read only and may be 1544 * released. If it's released, *@locked will be set to 0. 1545 */ 1546 long populate_vma_page_range(struct vm_area_struct *vma, 1547 unsigned long start, unsigned long end, int *locked) 1548 { 1549 struct mm_struct *mm = vma->vm_mm; 1550 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1551 int gup_flags; 1552 long ret; 1553 1554 VM_BUG_ON(!PAGE_ALIGNED(start)); 1555 VM_BUG_ON(!PAGE_ALIGNED(end)); 1556 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1557 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1558 mmap_assert_locked(mm); 1559 1560 /* 1561 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1562 * faultin_page() to break COW, so it has no work to do here. 1563 */ 1564 if (vma->vm_flags & VM_LOCKONFAULT) 1565 return nr_pages; 1566 1567 gup_flags = FOLL_TOUCH; 1568 /* 1569 * We want to touch writable mappings with a write fault in order 1570 * to break COW, except for shared mappings because these don't COW 1571 * and we would not want to dirty them for nothing. 1572 */ 1573 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1574 gup_flags |= FOLL_WRITE; 1575 1576 /* 1577 * We want mlock to succeed for regions that have any permissions 1578 * other than PROT_NONE. 1579 */ 1580 if (vma_is_accessible(vma)) 1581 gup_flags |= FOLL_FORCE; 1582 1583 /* 1584 * We made sure addr is within a VMA, so the following will 1585 * not result in a stack expansion that recurses back here. 1586 */ 1587 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1588 NULL, NULL, locked); 1589 lru_add_drain(); 1590 return ret; 1591 } 1592 1593 /* 1594 * faultin_vma_page_range() - populate (prefault) page tables inside the 1595 * given VMA range readable/writable 1596 * 1597 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1598 * 1599 * @vma: target vma 1600 * @start: start address 1601 * @end: end address 1602 * @write: whether to prefault readable or writable 1603 * @locked: whether the mmap_lock is still held 1604 * 1605 * Returns either number of processed pages in the vma, or a negative error 1606 * code on error (see __get_user_pages()). 1607 * 1608 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1609 * covered by the VMA. 1610 * 1611 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1612 * 1613 * If @locked is non-NULL, it must held for read only and may be released. If 1614 * it's released, *@locked will be set to 0. 1615 */ 1616 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1617 unsigned long end, bool write, int *locked) 1618 { 1619 struct mm_struct *mm = vma->vm_mm; 1620 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1621 int gup_flags; 1622 long ret; 1623 1624 VM_BUG_ON(!PAGE_ALIGNED(start)); 1625 VM_BUG_ON(!PAGE_ALIGNED(end)); 1626 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1627 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1628 mmap_assert_locked(mm); 1629 1630 /* 1631 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1632 * the page dirty with FOLL_WRITE -- which doesn't make a 1633 * difference with !FOLL_FORCE, because the page is writable 1634 * in the page table. 1635 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1636 * a poisoned page. 1637 * !FOLL_FORCE: Require proper access permissions. 1638 */ 1639 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1640 if (write) 1641 gup_flags |= FOLL_WRITE; 1642 1643 /* 1644 * We want to report -EINVAL instead of -EFAULT for any permission 1645 * problems or incompatible mappings. 1646 */ 1647 if (check_vma_flags(vma, gup_flags)) 1648 return -EINVAL; 1649 1650 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1651 NULL, NULL, locked); 1652 lru_add_drain(); 1653 return ret; 1654 } 1655 1656 /* 1657 * __mm_populate - populate and/or mlock pages within a range of address space. 1658 * 1659 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1660 * flags. VMAs must be already marked with the desired vm_flags, and 1661 * mmap_lock must not be held. 1662 */ 1663 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1664 { 1665 struct mm_struct *mm = current->mm; 1666 unsigned long end, nstart, nend; 1667 struct vm_area_struct *vma = NULL; 1668 int locked = 0; 1669 long ret = 0; 1670 1671 end = start + len; 1672 1673 for (nstart = start; nstart < end; nstart = nend) { 1674 /* 1675 * We want to fault in pages for [nstart; end) address range. 1676 * Find first corresponding VMA. 1677 */ 1678 if (!locked) { 1679 locked = 1; 1680 mmap_read_lock(mm); 1681 vma = find_vma_intersection(mm, nstart, end); 1682 } else if (nstart >= vma->vm_end) 1683 vma = find_vma_intersection(mm, vma->vm_end, end); 1684 1685 if (!vma) 1686 break; 1687 /* 1688 * Set [nstart; nend) to intersection of desired address 1689 * range with the first VMA. Also, skip undesirable VMA types. 1690 */ 1691 nend = min(end, vma->vm_end); 1692 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1693 continue; 1694 if (nstart < vma->vm_start) 1695 nstart = vma->vm_start; 1696 /* 1697 * Now fault in a range of pages. populate_vma_page_range() 1698 * double checks the vma flags, so that it won't mlock pages 1699 * if the vma was already munlocked. 1700 */ 1701 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1702 if (ret < 0) { 1703 if (ignore_errors) { 1704 ret = 0; 1705 continue; /* continue at next VMA */ 1706 } 1707 break; 1708 } 1709 nend = nstart + ret * PAGE_SIZE; 1710 ret = 0; 1711 } 1712 if (locked) 1713 mmap_read_unlock(mm); 1714 return ret; /* 0 or negative error code */ 1715 } 1716 #else /* CONFIG_MMU */ 1717 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1718 unsigned long nr_pages, struct page **pages, 1719 struct vm_area_struct **vmas, int *locked, 1720 unsigned int foll_flags) 1721 { 1722 struct vm_area_struct *vma; 1723 unsigned long vm_flags; 1724 long i; 1725 1726 /* calculate required read or write permissions. 1727 * If FOLL_FORCE is set, we only require the "MAY" flags. 1728 */ 1729 vm_flags = (foll_flags & FOLL_WRITE) ? 1730 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1731 vm_flags &= (foll_flags & FOLL_FORCE) ? 1732 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1733 1734 for (i = 0; i < nr_pages; i++) { 1735 vma = find_vma(mm, start); 1736 if (!vma) 1737 goto finish_or_fault; 1738 1739 /* protect what we can, including chardevs */ 1740 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1741 !(vm_flags & vma->vm_flags)) 1742 goto finish_or_fault; 1743 1744 if (pages) { 1745 pages[i] = virt_to_page((void *)start); 1746 if (pages[i]) 1747 get_page(pages[i]); 1748 } 1749 if (vmas) 1750 vmas[i] = vma; 1751 start = (start + PAGE_SIZE) & PAGE_MASK; 1752 } 1753 1754 return i; 1755 1756 finish_or_fault: 1757 return i ? : -EFAULT; 1758 } 1759 #endif /* !CONFIG_MMU */ 1760 1761 /** 1762 * fault_in_writeable - fault in userspace address range for writing 1763 * @uaddr: start of address range 1764 * @size: size of address range 1765 * 1766 * Returns the number of bytes not faulted in (like copy_to_user() and 1767 * copy_from_user()). 1768 */ 1769 size_t fault_in_writeable(char __user *uaddr, size_t size) 1770 { 1771 char __user *start = uaddr, *end; 1772 1773 if (unlikely(size == 0)) 1774 return 0; 1775 if (!user_write_access_begin(uaddr, size)) 1776 return size; 1777 if (!PAGE_ALIGNED(uaddr)) { 1778 unsafe_put_user(0, uaddr, out); 1779 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1780 } 1781 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1782 if (unlikely(end < start)) 1783 end = NULL; 1784 while (uaddr != end) { 1785 unsafe_put_user(0, uaddr, out); 1786 uaddr += PAGE_SIZE; 1787 } 1788 1789 out: 1790 user_write_access_end(); 1791 if (size > uaddr - start) 1792 return size - (uaddr - start); 1793 return 0; 1794 } 1795 EXPORT_SYMBOL(fault_in_writeable); 1796 1797 /** 1798 * fault_in_subpage_writeable - fault in an address range for writing 1799 * @uaddr: start of address range 1800 * @size: size of address range 1801 * 1802 * Fault in a user address range for writing while checking for permissions at 1803 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1804 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1805 * 1806 * Returns the number of bytes not faulted in (like copy_to_user() and 1807 * copy_from_user()). 1808 */ 1809 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1810 { 1811 size_t faulted_in; 1812 1813 /* 1814 * Attempt faulting in at page granularity first for page table 1815 * permission checking. The arch-specific probe_subpage_writeable() 1816 * functions may not check for this. 1817 */ 1818 faulted_in = size - fault_in_writeable(uaddr, size); 1819 if (faulted_in) 1820 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1821 1822 return size - faulted_in; 1823 } 1824 EXPORT_SYMBOL(fault_in_subpage_writeable); 1825 1826 /* 1827 * fault_in_safe_writeable - fault in an address range for writing 1828 * @uaddr: start of address range 1829 * @size: length of address range 1830 * 1831 * Faults in an address range for writing. This is primarily useful when we 1832 * already know that some or all of the pages in the address range aren't in 1833 * memory. 1834 * 1835 * Unlike fault_in_writeable(), this function is non-destructive. 1836 * 1837 * Note that we don't pin or otherwise hold the pages referenced that we fault 1838 * in. There's no guarantee that they'll stay in memory for any duration of 1839 * time. 1840 * 1841 * Returns the number of bytes not faulted in, like copy_to_user() and 1842 * copy_from_user(). 1843 */ 1844 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1845 { 1846 unsigned long start = (unsigned long)uaddr, end; 1847 struct mm_struct *mm = current->mm; 1848 bool unlocked = false; 1849 1850 if (unlikely(size == 0)) 1851 return 0; 1852 end = PAGE_ALIGN(start + size); 1853 if (end < start) 1854 end = 0; 1855 1856 mmap_read_lock(mm); 1857 do { 1858 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1859 break; 1860 start = (start + PAGE_SIZE) & PAGE_MASK; 1861 } while (start != end); 1862 mmap_read_unlock(mm); 1863 1864 if (size > (unsigned long)uaddr - start) 1865 return size - ((unsigned long)uaddr - start); 1866 return 0; 1867 } 1868 EXPORT_SYMBOL(fault_in_safe_writeable); 1869 1870 /** 1871 * fault_in_readable - fault in userspace address range for reading 1872 * @uaddr: start of user address range 1873 * @size: size of user address range 1874 * 1875 * Returns the number of bytes not faulted in (like copy_to_user() and 1876 * copy_from_user()). 1877 */ 1878 size_t fault_in_readable(const char __user *uaddr, size_t size) 1879 { 1880 const char __user *start = uaddr, *end; 1881 volatile char c; 1882 1883 if (unlikely(size == 0)) 1884 return 0; 1885 if (!user_read_access_begin(uaddr, size)) 1886 return size; 1887 if (!PAGE_ALIGNED(uaddr)) { 1888 unsafe_get_user(c, uaddr, out); 1889 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1890 } 1891 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1892 if (unlikely(end < start)) 1893 end = NULL; 1894 while (uaddr != end) { 1895 unsafe_get_user(c, uaddr, out); 1896 uaddr += PAGE_SIZE; 1897 } 1898 1899 out: 1900 user_read_access_end(); 1901 (void)c; 1902 if (size > uaddr - start) 1903 return size - (uaddr - start); 1904 return 0; 1905 } 1906 EXPORT_SYMBOL(fault_in_readable); 1907 1908 /** 1909 * get_dump_page() - pin user page in memory while writing it to core dump 1910 * @addr: user address 1911 * 1912 * Returns struct page pointer of user page pinned for dump, 1913 * to be freed afterwards by put_page(). 1914 * 1915 * Returns NULL on any kind of failure - a hole must then be inserted into 1916 * the corefile, to preserve alignment with its headers; and also returns 1917 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1918 * allowing a hole to be left in the corefile to save disk space. 1919 * 1920 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1921 */ 1922 #ifdef CONFIG_ELF_CORE 1923 struct page *get_dump_page(unsigned long addr) 1924 { 1925 struct mm_struct *mm = current->mm; 1926 struct page *page; 1927 int locked = 1; 1928 int ret; 1929 1930 if (mmap_read_lock_killable(mm)) 1931 return NULL; 1932 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1933 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1934 if (locked) 1935 mmap_read_unlock(mm); 1936 return (ret == 1) ? page : NULL; 1937 } 1938 #endif /* CONFIG_ELF_CORE */ 1939 1940 #ifdef CONFIG_MIGRATION 1941 /* 1942 * Returns the number of collected pages. Return value is always >= 0. 1943 */ 1944 static unsigned long collect_longterm_unpinnable_pages( 1945 struct list_head *movable_page_list, 1946 unsigned long nr_pages, 1947 struct page **pages) 1948 { 1949 unsigned long i, collected = 0; 1950 struct folio *prev_folio = NULL; 1951 bool drain_allow = true; 1952 1953 for (i = 0; i < nr_pages; i++) { 1954 struct folio *folio = page_folio(pages[i]); 1955 1956 if (folio == prev_folio) 1957 continue; 1958 prev_folio = folio; 1959 1960 if (folio_is_longterm_pinnable(folio)) 1961 continue; 1962 1963 collected++; 1964 1965 if (folio_is_device_coherent(folio)) 1966 continue; 1967 1968 if (folio_test_hugetlb(folio)) { 1969 isolate_hugetlb(&folio->page, movable_page_list); 1970 continue; 1971 } 1972 1973 if (!folio_test_lru(folio) && drain_allow) { 1974 lru_add_drain_all(); 1975 drain_allow = false; 1976 } 1977 1978 if (!folio_isolate_lru(folio)) 1979 continue; 1980 1981 list_add_tail(&folio->lru, movable_page_list); 1982 node_stat_mod_folio(folio, 1983 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1984 folio_nr_pages(folio)); 1985 } 1986 1987 return collected; 1988 } 1989 1990 /* 1991 * Unpins all pages and migrates device coherent pages and movable_page_list. 1992 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 1993 * (or partial success). 1994 */ 1995 static int migrate_longterm_unpinnable_pages( 1996 struct list_head *movable_page_list, 1997 unsigned long nr_pages, 1998 struct page **pages) 1999 { 2000 int ret; 2001 unsigned long i; 2002 2003 for (i = 0; i < nr_pages; i++) { 2004 struct folio *folio = page_folio(pages[i]); 2005 2006 if (folio_is_device_coherent(folio)) { 2007 /* 2008 * Migration will fail if the page is pinned, so convert 2009 * the pin on the source page to a normal reference. 2010 */ 2011 pages[i] = NULL; 2012 folio_get(folio); 2013 gup_put_folio(folio, 1, FOLL_PIN); 2014 2015 if (migrate_device_coherent_page(&folio->page)) { 2016 ret = -EBUSY; 2017 goto err; 2018 } 2019 2020 continue; 2021 } 2022 2023 /* 2024 * We can't migrate pages with unexpected references, so drop 2025 * the reference obtained by __get_user_pages_locked(). 2026 * Migrating pages have been added to movable_page_list after 2027 * calling folio_isolate_lru() which takes a reference so the 2028 * page won't be freed if it's migrating. 2029 */ 2030 unpin_user_page(pages[i]); 2031 pages[i] = NULL; 2032 } 2033 2034 if (!list_empty(movable_page_list)) { 2035 struct migration_target_control mtc = { 2036 .nid = NUMA_NO_NODE, 2037 .gfp_mask = GFP_USER | __GFP_NOWARN, 2038 }; 2039 2040 if (migrate_pages(movable_page_list, alloc_migration_target, 2041 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2042 MR_LONGTERM_PIN, NULL)) { 2043 ret = -ENOMEM; 2044 goto err; 2045 } 2046 } 2047 2048 putback_movable_pages(movable_page_list); 2049 2050 return -EAGAIN; 2051 2052 err: 2053 for (i = 0; i < nr_pages; i++) 2054 if (pages[i]) 2055 unpin_user_page(pages[i]); 2056 putback_movable_pages(movable_page_list); 2057 2058 return ret; 2059 } 2060 2061 /* 2062 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2063 * pages in the range are required to be pinned via FOLL_PIN, before calling 2064 * this routine. 2065 * 2066 * If any pages in the range are not allowed to be pinned, then this routine 2067 * will migrate those pages away, unpin all the pages in the range and return 2068 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2069 * call this routine again. 2070 * 2071 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2072 * The caller should give up, and propagate the error back up the call stack. 2073 * 2074 * If everything is OK and all pages in the range are allowed to be pinned, then 2075 * this routine leaves all pages pinned and returns zero for success. 2076 */ 2077 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2078 struct page **pages) 2079 { 2080 unsigned long collected; 2081 LIST_HEAD(movable_page_list); 2082 2083 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2084 nr_pages, pages); 2085 if (!collected) 2086 return 0; 2087 2088 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2089 pages); 2090 } 2091 #else 2092 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2093 struct page **pages) 2094 { 2095 return 0; 2096 } 2097 #endif /* CONFIG_MIGRATION */ 2098 2099 /* 2100 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2101 * allows us to process the FOLL_LONGTERM flag. 2102 */ 2103 static long __gup_longterm_locked(struct mm_struct *mm, 2104 unsigned long start, 2105 unsigned long nr_pages, 2106 struct page **pages, 2107 struct vm_area_struct **vmas, 2108 unsigned int gup_flags) 2109 { 2110 unsigned int flags; 2111 long rc, nr_pinned_pages; 2112 2113 if (!(gup_flags & FOLL_LONGTERM)) 2114 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2115 NULL, gup_flags); 2116 2117 /* 2118 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM 2119 * implies FOLL_PIN (although the reverse is not true). Therefore it is 2120 * correct to unconditionally call check_and_migrate_movable_pages() 2121 * which assumes pages have been pinned via FOLL_PIN. 2122 * 2123 * Enforce the above reasoning by asserting that FOLL_PIN is set. 2124 */ 2125 if (WARN_ON(!(gup_flags & FOLL_PIN))) 2126 return -EINVAL; 2127 flags = memalloc_pin_save(); 2128 do { 2129 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2130 pages, vmas, NULL, 2131 gup_flags); 2132 if (nr_pinned_pages <= 0) { 2133 rc = nr_pinned_pages; 2134 break; 2135 } 2136 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2137 } while (rc == -EAGAIN); 2138 memalloc_pin_restore(flags); 2139 2140 return rc ? rc : nr_pinned_pages; 2141 } 2142 2143 static bool is_valid_gup_flags(unsigned int gup_flags) 2144 { 2145 /* 2146 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2147 * never directly by the caller, so enforce that with an assertion: 2148 */ 2149 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2150 return false; 2151 /* 2152 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2153 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2154 * FOLL_PIN. 2155 */ 2156 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2157 return false; 2158 2159 return true; 2160 } 2161 2162 #ifdef CONFIG_MMU 2163 static long __get_user_pages_remote(struct mm_struct *mm, 2164 unsigned long start, unsigned long nr_pages, 2165 unsigned int gup_flags, struct page **pages, 2166 struct vm_area_struct **vmas, int *locked) 2167 { 2168 /* 2169 * Parts of FOLL_LONGTERM behavior are incompatible with 2170 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2171 * vmas. However, this only comes up if locked is set, and there are 2172 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2173 * allow what we can. 2174 */ 2175 if (gup_flags & FOLL_LONGTERM) { 2176 if (WARN_ON_ONCE(locked)) 2177 return -EINVAL; 2178 /* 2179 * This will check the vmas (even if our vmas arg is NULL) 2180 * and return -ENOTSUPP if DAX isn't allowed in this case: 2181 */ 2182 return __gup_longterm_locked(mm, start, nr_pages, pages, 2183 vmas, gup_flags | FOLL_TOUCH | 2184 FOLL_REMOTE); 2185 } 2186 2187 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2188 locked, 2189 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2190 } 2191 2192 /** 2193 * get_user_pages_remote() - pin user pages in memory 2194 * @mm: mm_struct of target mm 2195 * @start: starting user address 2196 * @nr_pages: number of pages from start to pin 2197 * @gup_flags: flags modifying lookup behaviour 2198 * @pages: array that receives pointers to the pages pinned. 2199 * Should be at least nr_pages long. Or NULL, if caller 2200 * only intends to ensure the pages are faulted in. 2201 * @vmas: array of pointers to vmas corresponding to each page. 2202 * Or NULL if the caller does not require them. 2203 * @locked: pointer to lock flag indicating whether lock is held and 2204 * subsequently whether VM_FAULT_RETRY functionality can be 2205 * utilised. Lock must initially be held. 2206 * 2207 * Returns either number of pages pinned (which may be less than the 2208 * number requested), or an error. Details about the return value: 2209 * 2210 * -- If nr_pages is 0, returns 0. 2211 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2212 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2213 * pages pinned. Again, this may be less than nr_pages. 2214 * 2215 * The caller is responsible for releasing returned @pages, via put_page(). 2216 * 2217 * @vmas are valid only as long as mmap_lock is held. 2218 * 2219 * Must be called with mmap_lock held for read or write. 2220 * 2221 * get_user_pages_remote walks a process's page tables and takes a reference 2222 * to each struct page that each user address corresponds to at a given 2223 * instant. That is, it takes the page that would be accessed if a user 2224 * thread accesses the given user virtual address at that instant. 2225 * 2226 * This does not guarantee that the page exists in the user mappings when 2227 * get_user_pages_remote returns, and there may even be a completely different 2228 * page there in some cases (eg. if mmapped pagecache has been invalidated 2229 * and subsequently re faulted). However it does guarantee that the page 2230 * won't be freed completely. And mostly callers simply care that the page 2231 * contains data that was valid *at some point in time*. Typically, an IO 2232 * or similar operation cannot guarantee anything stronger anyway because 2233 * locks can't be held over the syscall boundary. 2234 * 2235 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2236 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2237 * be called after the page is finished with, and before put_page is called. 2238 * 2239 * get_user_pages_remote is typically used for fewer-copy IO operations, 2240 * to get a handle on the memory by some means other than accesses 2241 * via the user virtual addresses. The pages may be submitted for 2242 * DMA to devices or accessed via their kernel linear mapping (via the 2243 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2244 * 2245 * See also get_user_pages_fast, for performance critical applications. 2246 * 2247 * get_user_pages_remote should be phased out in favor of 2248 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2249 * should use get_user_pages_remote because it cannot pass 2250 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2251 */ 2252 long get_user_pages_remote(struct mm_struct *mm, 2253 unsigned long start, unsigned long nr_pages, 2254 unsigned int gup_flags, struct page **pages, 2255 struct vm_area_struct **vmas, int *locked) 2256 { 2257 if (!is_valid_gup_flags(gup_flags)) 2258 return -EINVAL; 2259 2260 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2261 pages, vmas, locked); 2262 } 2263 EXPORT_SYMBOL(get_user_pages_remote); 2264 2265 #else /* CONFIG_MMU */ 2266 long get_user_pages_remote(struct mm_struct *mm, 2267 unsigned long start, unsigned long nr_pages, 2268 unsigned int gup_flags, struct page **pages, 2269 struct vm_area_struct **vmas, int *locked) 2270 { 2271 return 0; 2272 } 2273 2274 static long __get_user_pages_remote(struct mm_struct *mm, 2275 unsigned long start, unsigned long nr_pages, 2276 unsigned int gup_flags, struct page **pages, 2277 struct vm_area_struct **vmas, int *locked) 2278 { 2279 return 0; 2280 } 2281 #endif /* !CONFIG_MMU */ 2282 2283 /** 2284 * get_user_pages() - pin user pages in memory 2285 * @start: starting user address 2286 * @nr_pages: number of pages from start to pin 2287 * @gup_flags: flags modifying lookup behaviour 2288 * @pages: array that receives pointers to the pages pinned. 2289 * Should be at least nr_pages long. Or NULL, if caller 2290 * only intends to ensure the pages are faulted in. 2291 * @vmas: array of pointers to vmas corresponding to each page. 2292 * Or NULL if the caller does not require them. 2293 * 2294 * This is the same as get_user_pages_remote(), just with a less-flexible 2295 * calling convention where we assume that the mm being operated on belongs to 2296 * the current task, and doesn't allow passing of a locked parameter. We also 2297 * obviously don't pass FOLL_REMOTE in here. 2298 */ 2299 long get_user_pages(unsigned long start, unsigned long nr_pages, 2300 unsigned int gup_flags, struct page **pages, 2301 struct vm_area_struct **vmas) 2302 { 2303 if (!is_valid_gup_flags(gup_flags)) 2304 return -EINVAL; 2305 2306 return __gup_longterm_locked(current->mm, start, nr_pages, 2307 pages, vmas, gup_flags | FOLL_TOUCH); 2308 } 2309 EXPORT_SYMBOL(get_user_pages); 2310 2311 /* 2312 * get_user_pages_unlocked() is suitable to replace the form: 2313 * 2314 * mmap_read_lock(mm); 2315 * get_user_pages(mm, ..., pages, NULL); 2316 * mmap_read_unlock(mm); 2317 * 2318 * with: 2319 * 2320 * get_user_pages_unlocked(mm, ..., pages); 2321 * 2322 * It is functionally equivalent to get_user_pages_fast so 2323 * get_user_pages_fast should be used instead if specific gup_flags 2324 * (e.g. FOLL_FORCE) are not required. 2325 */ 2326 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2327 struct page **pages, unsigned int gup_flags) 2328 { 2329 struct mm_struct *mm = current->mm; 2330 int locked = 1; 2331 long ret; 2332 2333 /* 2334 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2335 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2336 * vmas. As there are no users of this flag in this call we simply 2337 * disallow this option for now. 2338 */ 2339 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2340 return -EINVAL; 2341 2342 mmap_read_lock(mm); 2343 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2344 &locked, gup_flags | FOLL_TOUCH); 2345 if (locked) 2346 mmap_read_unlock(mm); 2347 return ret; 2348 } 2349 EXPORT_SYMBOL(get_user_pages_unlocked); 2350 2351 /* 2352 * Fast GUP 2353 * 2354 * get_user_pages_fast attempts to pin user pages by walking the page 2355 * tables directly and avoids taking locks. Thus the walker needs to be 2356 * protected from page table pages being freed from under it, and should 2357 * block any THP splits. 2358 * 2359 * One way to achieve this is to have the walker disable interrupts, and 2360 * rely on IPIs from the TLB flushing code blocking before the page table 2361 * pages are freed. This is unsuitable for architectures that do not need 2362 * to broadcast an IPI when invalidating TLBs. 2363 * 2364 * Another way to achieve this is to batch up page table containing pages 2365 * belonging to more than one mm_user, then rcu_sched a callback to free those 2366 * pages. Disabling interrupts will allow the fast_gup walker to both block 2367 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2368 * (which is a relatively rare event). The code below adopts this strategy. 2369 * 2370 * Before activating this code, please be aware that the following assumptions 2371 * are currently made: 2372 * 2373 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2374 * free pages containing page tables or TLB flushing requires IPI broadcast. 2375 * 2376 * *) ptes can be read atomically by the architecture. 2377 * 2378 * *) access_ok is sufficient to validate userspace address ranges. 2379 * 2380 * The last two assumptions can be relaxed by the addition of helper functions. 2381 * 2382 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2383 */ 2384 #ifdef CONFIG_HAVE_FAST_GUP 2385 2386 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2387 unsigned int flags, 2388 struct page **pages) 2389 { 2390 while ((*nr) - nr_start) { 2391 struct page *page = pages[--(*nr)]; 2392 2393 ClearPageReferenced(page); 2394 if (flags & FOLL_PIN) 2395 unpin_user_page(page); 2396 else 2397 put_page(page); 2398 } 2399 } 2400 2401 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2402 /* 2403 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2404 * operations. 2405 * 2406 * To pin the page, fast-gup needs to do below in order: 2407 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2408 * 2409 * For the rest of pgtable operations where pgtable updates can be racy 2410 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2411 * is pinned. 2412 * 2413 * Above will work for all pte-level operations, including THP split. 2414 * 2415 * For THP collapse, it's a bit more complicated because fast-gup may be 2416 * walking a pgtable page that is being freed (pte is still valid but pmd 2417 * can be cleared already). To avoid race in such condition, we need to 2418 * also check pmd here to make sure pmd doesn't change (corresponds to 2419 * pmdp_collapse_flush() in the THP collapse code path). 2420 */ 2421 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2422 unsigned long end, unsigned int flags, 2423 struct page **pages, int *nr) 2424 { 2425 struct dev_pagemap *pgmap = NULL; 2426 int nr_start = *nr, ret = 0; 2427 pte_t *ptep, *ptem; 2428 2429 ptem = ptep = pte_offset_map(&pmd, addr); 2430 do { 2431 pte_t pte = ptep_get_lockless(ptep); 2432 struct page *page; 2433 struct folio *folio; 2434 2435 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2436 goto pte_unmap; 2437 2438 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2439 goto pte_unmap; 2440 2441 if (pte_devmap(pte)) { 2442 if (unlikely(flags & FOLL_LONGTERM)) 2443 goto pte_unmap; 2444 2445 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2446 if (unlikely(!pgmap)) { 2447 undo_dev_pagemap(nr, nr_start, flags, pages); 2448 goto pte_unmap; 2449 } 2450 } else if (pte_special(pte)) 2451 goto pte_unmap; 2452 2453 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2454 page = pte_page(pte); 2455 2456 folio = try_grab_folio(page, 1, flags); 2457 if (!folio) 2458 goto pte_unmap; 2459 2460 if (unlikely(page_is_secretmem(page))) { 2461 gup_put_folio(folio, 1, flags); 2462 goto pte_unmap; 2463 } 2464 2465 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2466 unlikely(pte_val(pte) != pte_val(*ptep))) { 2467 gup_put_folio(folio, 1, flags); 2468 goto pte_unmap; 2469 } 2470 2471 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2472 gup_put_folio(folio, 1, flags); 2473 goto pte_unmap; 2474 } 2475 2476 /* 2477 * We need to make the page accessible if and only if we are 2478 * going to access its content (the FOLL_PIN case). Please 2479 * see Documentation/core-api/pin_user_pages.rst for 2480 * details. 2481 */ 2482 if (flags & FOLL_PIN) { 2483 ret = arch_make_page_accessible(page); 2484 if (ret) { 2485 gup_put_folio(folio, 1, flags); 2486 goto pte_unmap; 2487 } 2488 } 2489 folio_set_referenced(folio); 2490 pages[*nr] = page; 2491 (*nr)++; 2492 } while (ptep++, addr += PAGE_SIZE, addr != end); 2493 2494 ret = 1; 2495 2496 pte_unmap: 2497 if (pgmap) 2498 put_dev_pagemap(pgmap); 2499 pte_unmap(ptem); 2500 return ret; 2501 } 2502 #else 2503 2504 /* 2505 * If we can't determine whether or not a pte is special, then fail immediately 2506 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2507 * to be special. 2508 * 2509 * For a futex to be placed on a THP tail page, get_futex_key requires a 2510 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2511 * useful to have gup_huge_pmd even if we can't operate on ptes. 2512 */ 2513 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2514 unsigned long end, unsigned int flags, 2515 struct page **pages, int *nr) 2516 { 2517 return 0; 2518 } 2519 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2520 2521 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2522 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2523 unsigned long end, unsigned int flags, 2524 struct page **pages, int *nr) 2525 { 2526 int nr_start = *nr; 2527 struct dev_pagemap *pgmap = NULL; 2528 2529 do { 2530 struct page *page = pfn_to_page(pfn); 2531 2532 pgmap = get_dev_pagemap(pfn, pgmap); 2533 if (unlikely(!pgmap)) { 2534 undo_dev_pagemap(nr, nr_start, flags, pages); 2535 break; 2536 } 2537 SetPageReferenced(page); 2538 pages[*nr] = page; 2539 if (unlikely(!try_grab_page(page, flags))) { 2540 undo_dev_pagemap(nr, nr_start, flags, pages); 2541 break; 2542 } 2543 (*nr)++; 2544 pfn++; 2545 } while (addr += PAGE_SIZE, addr != end); 2546 2547 put_dev_pagemap(pgmap); 2548 return addr == end; 2549 } 2550 2551 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2552 unsigned long end, unsigned int flags, 2553 struct page **pages, int *nr) 2554 { 2555 unsigned long fault_pfn; 2556 int nr_start = *nr; 2557 2558 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2559 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2560 return 0; 2561 2562 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2563 undo_dev_pagemap(nr, nr_start, flags, pages); 2564 return 0; 2565 } 2566 return 1; 2567 } 2568 2569 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2570 unsigned long end, unsigned int flags, 2571 struct page **pages, int *nr) 2572 { 2573 unsigned long fault_pfn; 2574 int nr_start = *nr; 2575 2576 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2577 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2578 return 0; 2579 2580 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2581 undo_dev_pagemap(nr, nr_start, flags, pages); 2582 return 0; 2583 } 2584 return 1; 2585 } 2586 #else 2587 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2588 unsigned long end, unsigned int flags, 2589 struct page **pages, int *nr) 2590 { 2591 BUILD_BUG(); 2592 return 0; 2593 } 2594 2595 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2596 unsigned long end, unsigned int flags, 2597 struct page **pages, int *nr) 2598 { 2599 BUILD_BUG(); 2600 return 0; 2601 } 2602 #endif 2603 2604 static int record_subpages(struct page *page, unsigned long addr, 2605 unsigned long end, struct page **pages) 2606 { 2607 int nr; 2608 2609 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2610 pages[nr] = nth_page(page, nr); 2611 2612 return nr; 2613 } 2614 2615 #ifdef CONFIG_ARCH_HAS_HUGEPD 2616 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2617 unsigned long sz) 2618 { 2619 unsigned long __boundary = (addr + sz) & ~(sz-1); 2620 return (__boundary - 1 < end - 1) ? __boundary : end; 2621 } 2622 2623 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2624 unsigned long end, unsigned int flags, 2625 struct page **pages, int *nr) 2626 { 2627 unsigned long pte_end; 2628 struct page *page; 2629 struct folio *folio; 2630 pte_t pte; 2631 int refs; 2632 2633 pte_end = (addr + sz) & ~(sz-1); 2634 if (pte_end < end) 2635 end = pte_end; 2636 2637 pte = huge_ptep_get(ptep); 2638 2639 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2640 return 0; 2641 2642 /* hugepages are never "special" */ 2643 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2644 2645 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2646 refs = record_subpages(page, addr, end, pages + *nr); 2647 2648 folio = try_grab_folio(page, refs, flags); 2649 if (!folio) 2650 return 0; 2651 2652 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2653 gup_put_folio(folio, refs, flags); 2654 return 0; 2655 } 2656 2657 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2658 gup_put_folio(folio, refs, flags); 2659 return 0; 2660 } 2661 2662 *nr += refs; 2663 folio_set_referenced(folio); 2664 return 1; 2665 } 2666 2667 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2668 unsigned int pdshift, unsigned long end, unsigned int flags, 2669 struct page **pages, int *nr) 2670 { 2671 pte_t *ptep; 2672 unsigned long sz = 1UL << hugepd_shift(hugepd); 2673 unsigned long next; 2674 2675 ptep = hugepte_offset(hugepd, addr, pdshift); 2676 do { 2677 next = hugepte_addr_end(addr, end, sz); 2678 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2679 return 0; 2680 } while (ptep++, addr = next, addr != end); 2681 2682 return 1; 2683 } 2684 #else 2685 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2686 unsigned int pdshift, unsigned long end, unsigned int flags, 2687 struct page **pages, int *nr) 2688 { 2689 return 0; 2690 } 2691 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2692 2693 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2694 unsigned long end, unsigned int flags, 2695 struct page **pages, int *nr) 2696 { 2697 struct page *page; 2698 struct folio *folio; 2699 int refs; 2700 2701 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2702 return 0; 2703 2704 if (pmd_devmap(orig)) { 2705 if (unlikely(flags & FOLL_LONGTERM)) 2706 return 0; 2707 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2708 pages, nr); 2709 } 2710 2711 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2712 refs = record_subpages(page, addr, end, pages + *nr); 2713 2714 folio = try_grab_folio(page, refs, flags); 2715 if (!folio) 2716 return 0; 2717 2718 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2719 gup_put_folio(folio, refs, flags); 2720 return 0; 2721 } 2722 2723 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2724 gup_put_folio(folio, refs, flags); 2725 return 0; 2726 } 2727 2728 *nr += refs; 2729 folio_set_referenced(folio); 2730 return 1; 2731 } 2732 2733 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2734 unsigned long end, unsigned int flags, 2735 struct page **pages, int *nr) 2736 { 2737 struct page *page; 2738 struct folio *folio; 2739 int refs; 2740 2741 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2742 return 0; 2743 2744 if (pud_devmap(orig)) { 2745 if (unlikely(flags & FOLL_LONGTERM)) 2746 return 0; 2747 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2748 pages, nr); 2749 } 2750 2751 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2752 refs = record_subpages(page, addr, end, pages + *nr); 2753 2754 folio = try_grab_folio(page, refs, flags); 2755 if (!folio) 2756 return 0; 2757 2758 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2759 gup_put_folio(folio, refs, flags); 2760 return 0; 2761 } 2762 2763 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2764 gup_put_folio(folio, refs, flags); 2765 return 0; 2766 } 2767 2768 *nr += refs; 2769 folio_set_referenced(folio); 2770 return 1; 2771 } 2772 2773 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2774 unsigned long end, unsigned int flags, 2775 struct page **pages, int *nr) 2776 { 2777 int refs; 2778 struct page *page; 2779 struct folio *folio; 2780 2781 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2782 return 0; 2783 2784 BUILD_BUG_ON(pgd_devmap(orig)); 2785 2786 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2787 refs = record_subpages(page, addr, end, pages + *nr); 2788 2789 folio = try_grab_folio(page, refs, flags); 2790 if (!folio) 2791 return 0; 2792 2793 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2794 gup_put_folio(folio, refs, flags); 2795 return 0; 2796 } 2797 2798 *nr += refs; 2799 folio_set_referenced(folio); 2800 return 1; 2801 } 2802 2803 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2804 unsigned int flags, struct page **pages, int *nr) 2805 { 2806 unsigned long next; 2807 pmd_t *pmdp; 2808 2809 pmdp = pmd_offset_lockless(pudp, pud, addr); 2810 do { 2811 pmd_t pmd = READ_ONCE(*pmdp); 2812 2813 next = pmd_addr_end(addr, end); 2814 if (!pmd_present(pmd)) 2815 return 0; 2816 2817 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2818 pmd_devmap(pmd))) { 2819 if (pmd_protnone(pmd) && 2820 !gup_can_follow_protnone(flags)) 2821 return 0; 2822 2823 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2824 pages, nr)) 2825 return 0; 2826 2827 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2828 /* 2829 * architecture have different format for hugetlbfs 2830 * pmd format and THP pmd format 2831 */ 2832 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2833 PMD_SHIFT, next, flags, pages, nr)) 2834 return 0; 2835 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2836 return 0; 2837 } while (pmdp++, addr = next, addr != end); 2838 2839 return 1; 2840 } 2841 2842 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2843 unsigned int flags, struct page **pages, int *nr) 2844 { 2845 unsigned long next; 2846 pud_t *pudp; 2847 2848 pudp = pud_offset_lockless(p4dp, p4d, addr); 2849 do { 2850 pud_t pud = READ_ONCE(*pudp); 2851 2852 next = pud_addr_end(addr, end); 2853 if (unlikely(!pud_present(pud))) 2854 return 0; 2855 if (unlikely(pud_huge(pud))) { 2856 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2857 pages, nr)) 2858 return 0; 2859 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2860 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2861 PUD_SHIFT, next, flags, pages, nr)) 2862 return 0; 2863 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2864 return 0; 2865 } while (pudp++, addr = next, addr != end); 2866 2867 return 1; 2868 } 2869 2870 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2871 unsigned int flags, struct page **pages, int *nr) 2872 { 2873 unsigned long next; 2874 p4d_t *p4dp; 2875 2876 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2877 do { 2878 p4d_t p4d = READ_ONCE(*p4dp); 2879 2880 next = p4d_addr_end(addr, end); 2881 if (p4d_none(p4d)) 2882 return 0; 2883 BUILD_BUG_ON(p4d_huge(p4d)); 2884 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2885 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2886 P4D_SHIFT, next, flags, pages, nr)) 2887 return 0; 2888 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2889 return 0; 2890 } while (p4dp++, addr = next, addr != end); 2891 2892 return 1; 2893 } 2894 2895 static void gup_pgd_range(unsigned long addr, unsigned long end, 2896 unsigned int flags, struct page **pages, int *nr) 2897 { 2898 unsigned long next; 2899 pgd_t *pgdp; 2900 2901 pgdp = pgd_offset(current->mm, addr); 2902 do { 2903 pgd_t pgd = READ_ONCE(*pgdp); 2904 2905 next = pgd_addr_end(addr, end); 2906 if (pgd_none(pgd)) 2907 return; 2908 if (unlikely(pgd_huge(pgd))) { 2909 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2910 pages, nr)) 2911 return; 2912 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2913 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2914 PGDIR_SHIFT, next, flags, pages, nr)) 2915 return; 2916 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2917 return; 2918 } while (pgdp++, addr = next, addr != end); 2919 } 2920 #else 2921 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2922 unsigned int flags, struct page **pages, int *nr) 2923 { 2924 } 2925 #endif /* CONFIG_HAVE_FAST_GUP */ 2926 2927 #ifndef gup_fast_permitted 2928 /* 2929 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2930 * we need to fall back to the slow version: 2931 */ 2932 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2933 { 2934 return true; 2935 } 2936 #endif 2937 2938 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2939 unsigned int gup_flags, struct page **pages) 2940 { 2941 int ret; 2942 2943 /* 2944 * FIXME: FOLL_LONGTERM does not work with 2945 * get_user_pages_unlocked() (see comments in that function) 2946 */ 2947 if (gup_flags & FOLL_LONGTERM) { 2948 mmap_read_lock(current->mm); 2949 ret = __gup_longterm_locked(current->mm, 2950 start, nr_pages, 2951 pages, NULL, gup_flags); 2952 mmap_read_unlock(current->mm); 2953 } else { 2954 ret = get_user_pages_unlocked(start, nr_pages, 2955 pages, gup_flags); 2956 } 2957 2958 return ret; 2959 } 2960 2961 static unsigned long lockless_pages_from_mm(unsigned long start, 2962 unsigned long end, 2963 unsigned int gup_flags, 2964 struct page **pages) 2965 { 2966 unsigned long flags; 2967 int nr_pinned = 0; 2968 unsigned seq; 2969 2970 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2971 !gup_fast_permitted(start, end)) 2972 return 0; 2973 2974 if (gup_flags & FOLL_PIN) { 2975 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2976 if (seq & 1) 2977 return 0; 2978 } 2979 2980 /* 2981 * Disable interrupts. The nested form is used, in order to allow full, 2982 * general purpose use of this routine. 2983 * 2984 * With interrupts disabled, we block page table pages from being freed 2985 * from under us. See struct mmu_table_batch comments in 2986 * include/asm-generic/tlb.h for more details. 2987 * 2988 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2989 * that come from THPs splitting. 2990 */ 2991 local_irq_save(flags); 2992 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2993 local_irq_restore(flags); 2994 2995 /* 2996 * When pinning pages for DMA there could be a concurrent write protect 2997 * from fork() via copy_page_range(), in this case always fail fast GUP. 2998 */ 2999 if (gup_flags & FOLL_PIN) { 3000 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3001 unpin_user_pages_lockless(pages, nr_pinned); 3002 return 0; 3003 } else { 3004 sanity_check_pinned_pages(pages, nr_pinned); 3005 } 3006 } 3007 return nr_pinned; 3008 } 3009 3010 static int internal_get_user_pages_fast(unsigned long start, 3011 unsigned long nr_pages, 3012 unsigned int gup_flags, 3013 struct page **pages) 3014 { 3015 unsigned long len, end; 3016 unsigned long nr_pinned; 3017 int ret; 3018 3019 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3020 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3021 FOLL_FAST_ONLY | FOLL_NOFAULT))) 3022 return -EINVAL; 3023 3024 if (gup_flags & FOLL_PIN) 3025 mm_set_has_pinned_flag(¤t->mm->flags); 3026 3027 if (!(gup_flags & FOLL_FAST_ONLY)) 3028 might_lock_read(¤t->mm->mmap_lock); 3029 3030 start = untagged_addr(start) & PAGE_MASK; 3031 len = nr_pages << PAGE_SHIFT; 3032 if (check_add_overflow(start, len, &end)) 3033 return 0; 3034 if (unlikely(!access_ok((void __user *)start, len))) 3035 return -EFAULT; 3036 3037 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3038 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3039 return nr_pinned; 3040 3041 /* Slow path: try to get the remaining pages with get_user_pages */ 3042 start += nr_pinned << PAGE_SHIFT; 3043 pages += nr_pinned; 3044 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 3045 pages); 3046 if (ret < 0) { 3047 /* 3048 * The caller has to unpin the pages we already pinned so 3049 * returning -errno is not an option 3050 */ 3051 if (nr_pinned) 3052 return nr_pinned; 3053 return ret; 3054 } 3055 return ret + nr_pinned; 3056 } 3057 3058 /** 3059 * get_user_pages_fast_only() - pin user pages in memory 3060 * @start: starting user address 3061 * @nr_pages: number of pages from start to pin 3062 * @gup_flags: flags modifying pin behaviour 3063 * @pages: array that receives pointers to the pages pinned. 3064 * Should be at least nr_pages long. 3065 * 3066 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3067 * the regular GUP. 3068 * Note a difference with get_user_pages_fast: this always returns the 3069 * number of pages pinned, 0 if no pages were pinned. 3070 * 3071 * If the architecture does not support this function, simply return with no 3072 * pages pinned. 3073 * 3074 * Careful, careful! COW breaking can go either way, so a non-write 3075 * access can get ambiguous page results. If you call this function without 3076 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3077 */ 3078 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3079 unsigned int gup_flags, struct page **pages) 3080 { 3081 int nr_pinned; 3082 /* 3083 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3084 * because gup fast is always a "pin with a +1 page refcount" request. 3085 * 3086 * FOLL_FAST_ONLY is required in order to match the API description of 3087 * this routine: no fall back to regular ("slow") GUP. 3088 */ 3089 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 3090 3091 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3092 pages); 3093 3094 /* 3095 * As specified in the API description above, this routine is not 3096 * allowed to return negative values. However, the common core 3097 * routine internal_get_user_pages_fast() *can* return -errno. 3098 * Therefore, correct for that here: 3099 */ 3100 if (nr_pinned < 0) 3101 nr_pinned = 0; 3102 3103 return nr_pinned; 3104 } 3105 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3106 3107 /** 3108 * get_user_pages_fast() - pin user pages in memory 3109 * @start: starting user address 3110 * @nr_pages: number of pages from start to pin 3111 * @gup_flags: flags modifying pin behaviour 3112 * @pages: array that receives pointers to the pages pinned. 3113 * Should be at least nr_pages long. 3114 * 3115 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3116 * If not successful, it will fall back to taking the lock and 3117 * calling get_user_pages(). 3118 * 3119 * Returns number of pages pinned. This may be fewer than the number requested. 3120 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3121 * -errno. 3122 */ 3123 int get_user_pages_fast(unsigned long start, int nr_pages, 3124 unsigned int gup_flags, struct page **pages) 3125 { 3126 if (!is_valid_gup_flags(gup_flags)) 3127 return -EINVAL; 3128 3129 /* 3130 * The caller may or may not have explicitly set FOLL_GET; either way is 3131 * OK. However, internally (within mm/gup.c), gup fast variants must set 3132 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3133 * request. 3134 */ 3135 gup_flags |= FOLL_GET; 3136 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3137 } 3138 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3139 3140 /** 3141 * pin_user_pages_fast() - pin user pages in memory without taking locks 3142 * 3143 * @start: starting user address 3144 * @nr_pages: number of pages from start to pin 3145 * @gup_flags: flags modifying pin behaviour 3146 * @pages: array that receives pointers to the pages pinned. 3147 * Should be at least nr_pages long. 3148 * 3149 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3150 * get_user_pages_fast() for documentation on the function arguments, because 3151 * the arguments here are identical. 3152 * 3153 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3154 * see Documentation/core-api/pin_user_pages.rst for further details. 3155 */ 3156 int pin_user_pages_fast(unsigned long start, int nr_pages, 3157 unsigned int gup_flags, struct page **pages) 3158 { 3159 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3160 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3161 return -EINVAL; 3162 3163 if (WARN_ON_ONCE(!pages)) 3164 return -EINVAL; 3165 3166 gup_flags |= FOLL_PIN; 3167 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3168 } 3169 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3170 3171 /* 3172 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3173 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3174 * 3175 * The API rules are the same, too: no negative values may be returned. 3176 */ 3177 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3178 unsigned int gup_flags, struct page **pages) 3179 { 3180 int nr_pinned; 3181 3182 /* 3183 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3184 * rules require returning 0, rather than -errno: 3185 */ 3186 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3187 return 0; 3188 3189 if (WARN_ON_ONCE(!pages)) 3190 return 0; 3191 /* 3192 * FOLL_FAST_ONLY is required in order to match the API description of 3193 * this routine: no fall back to regular ("slow") GUP. 3194 */ 3195 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3196 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3197 pages); 3198 /* 3199 * This routine is not allowed to return negative values. However, 3200 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3201 * correct for that here: 3202 */ 3203 if (nr_pinned < 0) 3204 nr_pinned = 0; 3205 3206 return nr_pinned; 3207 } 3208 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3209 3210 /** 3211 * pin_user_pages_remote() - pin pages of a remote process 3212 * 3213 * @mm: mm_struct of target mm 3214 * @start: starting user address 3215 * @nr_pages: number of pages from start to pin 3216 * @gup_flags: flags modifying lookup behaviour 3217 * @pages: array that receives pointers to the pages pinned. 3218 * Should be at least nr_pages long. 3219 * @vmas: array of pointers to vmas corresponding to each page. 3220 * Or NULL if the caller does not require them. 3221 * @locked: pointer to lock flag indicating whether lock is held and 3222 * subsequently whether VM_FAULT_RETRY functionality can be 3223 * utilised. Lock must initially be held. 3224 * 3225 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3226 * get_user_pages_remote() for documentation on the function arguments, because 3227 * the arguments here are identical. 3228 * 3229 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3230 * see Documentation/core-api/pin_user_pages.rst for details. 3231 */ 3232 long pin_user_pages_remote(struct mm_struct *mm, 3233 unsigned long start, unsigned long nr_pages, 3234 unsigned int gup_flags, struct page **pages, 3235 struct vm_area_struct **vmas, int *locked) 3236 { 3237 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3238 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3239 return -EINVAL; 3240 3241 if (WARN_ON_ONCE(!pages)) 3242 return -EINVAL; 3243 3244 gup_flags |= FOLL_PIN; 3245 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3246 pages, vmas, locked); 3247 } 3248 EXPORT_SYMBOL(pin_user_pages_remote); 3249 3250 /** 3251 * pin_user_pages() - pin user pages in memory for use by other devices 3252 * 3253 * @start: starting user address 3254 * @nr_pages: number of pages from start to pin 3255 * @gup_flags: flags modifying lookup behaviour 3256 * @pages: array that receives pointers to the pages pinned. 3257 * Should be at least nr_pages long. 3258 * @vmas: array of pointers to vmas corresponding to each page. 3259 * Or NULL if the caller does not require them. 3260 * 3261 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3262 * FOLL_PIN is set. 3263 * 3264 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3265 * see Documentation/core-api/pin_user_pages.rst for details. 3266 */ 3267 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3268 unsigned int gup_flags, struct page **pages, 3269 struct vm_area_struct **vmas) 3270 { 3271 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3272 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3273 return -EINVAL; 3274 3275 if (WARN_ON_ONCE(!pages)) 3276 return -EINVAL; 3277 3278 gup_flags |= FOLL_PIN; 3279 return __gup_longterm_locked(current->mm, start, nr_pages, 3280 pages, vmas, gup_flags); 3281 } 3282 EXPORT_SYMBOL(pin_user_pages); 3283 3284 /* 3285 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3286 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3287 * FOLL_PIN and rejects FOLL_GET. 3288 */ 3289 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3290 struct page **pages, unsigned int gup_flags) 3291 { 3292 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3293 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3294 return -EINVAL; 3295 3296 if (WARN_ON_ONCE(!pages)) 3297 return -EINVAL; 3298 3299 gup_flags |= FOLL_PIN; 3300 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3301 } 3302 EXPORT_SYMBOL(pin_user_pages_unlocked); 3303