1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 static void put_compound_head(struct page *page, int refs, unsigned int flags) 127 { 128 if (flags & FOLL_PIN) { 129 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 130 refs); 131 132 if (hpage_pincount_available(page)) 133 hpage_pincount_sub(page, refs); 134 else 135 refs *= GUP_PIN_COUNTING_BIAS; 136 } 137 138 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 139 /* 140 * Calling put_page() for each ref is unnecessarily slow. Only the last 141 * ref needs a put_page(). 142 */ 143 if (refs > 1) 144 page_ref_sub(page, refs - 1); 145 put_page(page); 146 } 147 148 /** 149 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 150 * 151 * This might not do anything at all, depending on the flags argument. 152 * 153 * "grab" names in this file mean, "look at flags to decide whether to use 154 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 155 * 156 * @page: pointer to page to be grabbed 157 * @flags: gup flags: these are the FOLL_* flag values. 158 * 159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 160 * time. Cases: 161 * 162 * FOLL_GET: page's refcount will be incremented by 1. 163 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 164 * 165 * Return: true for success, or if no action was required (if neither FOLL_PIN 166 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 167 * FOLL_PIN was set, but the page could not be grabbed. 168 */ 169 bool __must_check try_grab_page(struct page *page, unsigned int flags) 170 { 171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 172 173 if (flags & FOLL_GET) 174 return try_get_page(page); 175 else if (flags & FOLL_PIN) { 176 int refs = 1; 177 178 page = compound_head(page); 179 180 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 181 return false; 182 183 if (hpage_pincount_available(page)) 184 hpage_pincount_add(page, 1); 185 else 186 refs = GUP_PIN_COUNTING_BIAS; 187 188 /* 189 * Similar to try_grab_compound_head(): even if using the 190 * hpage_pincount_add/_sub() routines, be sure to 191 * *also* increment the normal page refcount field at least 192 * once, so that the page really is pinned. 193 */ 194 page_ref_add(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 197 } 198 199 return true; 200 } 201 202 /** 203 * unpin_user_page() - release a dma-pinned page 204 * @page: pointer to page to be released 205 * 206 * Pages that were pinned via pin_user_pages*() must be released via either 207 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 208 * that such pages can be separately tracked and uniquely handled. In 209 * particular, interactions with RDMA and filesystems need special handling. 210 */ 211 void unpin_user_page(struct page *page) 212 { 213 put_compound_head(compound_head(page), 1, FOLL_PIN); 214 } 215 EXPORT_SYMBOL(unpin_user_page); 216 217 /** 218 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 219 * @pages: array of pages to be maybe marked dirty, and definitely released. 220 * @npages: number of pages in the @pages array. 221 * @make_dirty: whether to mark the pages dirty 222 * 223 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 224 * variants called on that page. 225 * 226 * For each page in the @pages array, make that page (or its head page, if a 227 * compound page) dirty, if @make_dirty is true, and if the page was previously 228 * listed as clean. In any case, releases all pages using unpin_user_page(), 229 * possibly via unpin_user_pages(), for the non-dirty case. 230 * 231 * Please see the unpin_user_page() documentation for details. 232 * 233 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 234 * required, then the caller should a) verify that this is really correct, 235 * because _lock() is usually required, and b) hand code it: 236 * set_page_dirty_lock(), unpin_user_page(). 237 * 238 */ 239 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 240 bool make_dirty) 241 { 242 unsigned long index; 243 244 /* 245 * TODO: this can be optimized for huge pages: if a series of pages is 246 * physically contiguous and part of the same compound page, then a 247 * single operation to the head page should suffice. 248 */ 249 250 if (!make_dirty) { 251 unpin_user_pages(pages, npages); 252 return; 253 } 254 255 for (index = 0; index < npages; index++) { 256 struct page *page = compound_head(pages[index]); 257 /* 258 * Checking PageDirty at this point may race with 259 * clear_page_dirty_for_io(), but that's OK. Two key 260 * cases: 261 * 262 * 1) This code sees the page as already dirty, so it 263 * skips the call to set_page_dirty(). That could happen 264 * because clear_page_dirty_for_io() called 265 * page_mkclean(), followed by set_page_dirty(). 266 * However, now the page is going to get written back, 267 * which meets the original intention of setting it 268 * dirty, so all is well: clear_page_dirty_for_io() goes 269 * on to call TestClearPageDirty(), and write the page 270 * back. 271 * 272 * 2) This code sees the page as clean, so it calls 273 * set_page_dirty(). The page stays dirty, despite being 274 * written back, so it gets written back again in the 275 * next writeback cycle. This is harmless. 276 */ 277 if (!PageDirty(page)) 278 set_page_dirty_lock(page); 279 unpin_user_page(page); 280 } 281 } 282 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 283 284 /** 285 * unpin_user_pages() - release an array of gup-pinned pages. 286 * @pages: array of pages to be marked dirty and released. 287 * @npages: number of pages in the @pages array. 288 * 289 * For each page in the @pages array, release the page using unpin_user_page(). 290 * 291 * Please see the unpin_user_page() documentation for details. 292 */ 293 void unpin_user_pages(struct page **pages, unsigned long npages) 294 { 295 unsigned long index; 296 297 /* 298 * If this WARN_ON() fires, then the system *might* be leaking pages (by 299 * leaving them pinned), but probably not. More likely, gup/pup returned 300 * a hard -ERRNO error to the caller, who erroneously passed it here. 301 */ 302 if (WARN_ON(IS_ERR_VALUE(npages))) 303 return; 304 /* 305 * TODO: this can be optimized for huge pages: if a series of pages is 306 * physically contiguous and part of the same compound page, then a 307 * single operation to the head page should suffice. 308 */ 309 for (index = 0; index < npages; index++) 310 unpin_user_page(pages[index]); 311 } 312 EXPORT_SYMBOL(unpin_user_pages); 313 314 #ifdef CONFIG_MMU 315 static struct page *no_page_table(struct vm_area_struct *vma, 316 unsigned int flags) 317 { 318 /* 319 * When core dumping an enormous anonymous area that nobody 320 * has touched so far, we don't want to allocate unnecessary pages or 321 * page tables. Return error instead of NULL to skip handle_mm_fault, 322 * then get_dump_page() will return NULL to leave a hole in the dump. 323 * But we can only make this optimization where a hole would surely 324 * be zero-filled if handle_mm_fault() actually did handle it. 325 */ 326 if ((flags & FOLL_DUMP) && 327 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 328 return ERR_PTR(-EFAULT); 329 return NULL; 330 } 331 332 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 333 pte_t *pte, unsigned int flags) 334 { 335 /* No page to get reference */ 336 if (flags & FOLL_GET) 337 return -EFAULT; 338 339 if (flags & FOLL_TOUCH) { 340 pte_t entry = *pte; 341 342 if (flags & FOLL_WRITE) 343 entry = pte_mkdirty(entry); 344 entry = pte_mkyoung(entry); 345 346 if (!pte_same(*pte, entry)) { 347 set_pte_at(vma->vm_mm, address, pte, entry); 348 update_mmu_cache(vma, address, pte); 349 } 350 } 351 352 /* Proper page table entry exists, but no corresponding struct page */ 353 return -EEXIST; 354 } 355 356 /* 357 * FOLL_FORCE can write to even unwritable pte's, but only 358 * after we've gone through a COW cycle and they are dirty. 359 */ 360 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 361 { 362 return pte_write(pte) || 363 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 364 } 365 366 static struct page *follow_page_pte(struct vm_area_struct *vma, 367 unsigned long address, pmd_t *pmd, unsigned int flags, 368 struct dev_pagemap **pgmap) 369 { 370 struct mm_struct *mm = vma->vm_mm; 371 struct page *page; 372 spinlock_t *ptl; 373 pte_t *ptep, pte; 374 int ret; 375 376 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 377 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 378 (FOLL_PIN | FOLL_GET))) 379 return ERR_PTR(-EINVAL); 380 retry: 381 if (unlikely(pmd_bad(*pmd))) 382 return no_page_table(vma, flags); 383 384 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 385 pte = *ptep; 386 if (!pte_present(pte)) { 387 swp_entry_t entry; 388 /* 389 * KSM's break_ksm() relies upon recognizing a ksm page 390 * even while it is being migrated, so for that case we 391 * need migration_entry_wait(). 392 */ 393 if (likely(!(flags & FOLL_MIGRATION))) 394 goto no_page; 395 if (pte_none(pte)) 396 goto no_page; 397 entry = pte_to_swp_entry(pte); 398 if (!is_migration_entry(entry)) 399 goto no_page; 400 pte_unmap_unlock(ptep, ptl); 401 migration_entry_wait(mm, pmd, address); 402 goto retry; 403 } 404 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 405 goto no_page; 406 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 407 pte_unmap_unlock(ptep, ptl); 408 return NULL; 409 } 410 411 page = vm_normal_page(vma, address, pte); 412 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 413 /* 414 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 415 * case since they are only valid while holding the pgmap 416 * reference. 417 */ 418 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 419 if (*pgmap) 420 page = pte_page(pte); 421 else 422 goto no_page; 423 } else if (unlikely(!page)) { 424 if (flags & FOLL_DUMP) { 425 /* Avoid special (like zero) pages in core dumps */ 426 page = ERR_PTR(-EFAULT); 427 goto out; 428 } 429 430 if (is_zero_pfn(pte_pfn(pte))) { 431 page = pte_page(pte); 432 } else { 433 ret = follow_pfn_pte(vma, address, ptep, flags); 434 page = ERR_PTR(ret); 435 goto out; 436 } 437 } 438 439 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 440 get_page(page); 441 pte_unmap_unlock(ptep, ptl); 442 lock_page(page); 443 ret = split_huge_page(page); 444 unlock_page(page); 445 put_page(page); 446 if (ret) 447 return ERR_PTR(ret); 448 goto retry; 449 } 450 451 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 452 if (unlikely(!try_grab_page(page, flags))) { 453 page = ERR_PTR(-ENOMEM); 454 goto out; 455 } 456 /* 457 * We need to make the page accessible if and only if we are going 458 * to access its content (the FOLL_PIN case). Please see 459 * Documentation/core-api/pin_user_pages.rst for details. 460 */ 461 if (flags & FOLL_PIN) { 462 ret = arch_make_page_accessible(page); 463 if (ret) { 464 unpin_user_page(page); 465 page = ERR_PTR(ret); 466 goto out; 467 } 468 } 469 if (flags & FOLL_TOUCH) { 470 if ((flags & FOLL_WRITE) && 471 !pte_dirty(pte) && !PageDirty(page)) 472 set_page_dirty(page); 473 /* 474 * pte_mkyoung() would be more correct here, but atomic care 475 * is needed to avoid losing the dirty bit: it is easier to use 476 * mark_page_accessed(). 477 */ 478 mark_page_accessed(page); 479 } 480 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 481 /* Do not mlock pte-mapped THP */ 482 if (PageTransCompound(page)) 483 goto out; 484 485 /* 486 * The preliminary mapping check is mainly to avoid the 487 * pointless overhead of lock_page on the ZERO_PAGE 488 * which might bounce very badly if there is contention. 489 * 490 * If the page is already locked, we don't need to 491 * handle it now - vmscan will handle it later if and 492 * when it attempts to reclaim the page. 493 */ 494 if (page->mapping && trylock_page(page)) { 495 lru_add_drain(); /* push cached pages to LRU */ 496 /* 497 * Because we lock page here, and migration is 498 * blocked by the pte's page reference, and we 499 * know the page is still mapped, we don't even 500 * need to check for file-cache page truncation. 501 */ 502 mlock_vma_page(page); 503 unlock_page(page); 504 } 505 } 506 out: 507 pte_unmap_unlock(ptep, ptl); 508 return page; 509 no_page: 510 pte_unmap_unlock(ptep, ptl); 511 if (!pte_none(pte)) 512 return NULL; 513 return no_page_table(vma, flags); 514 } 515 516 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 517 unsigned long address, pud_t *pudp, 518 unsigned int flags, 519 struct follow_page_context *ctx) 520 { 521 pmd_t *pmd, pmdval; 522 spinlock_t *ptl; 523 struct page *page; 524 struct mm_struct *mm = vma->vm_mm; 525 526 pmd = pmd_offset(pudp, address); 527 /* 528 * The READ_ONCE() will stabilize the pmdval in a register or 529 * on the stack so that it will stop changing under the code. 530 */ 531 pmdval = READ_ONCE(*pmd); 532 if (pmd_none(pmdval)) 533 return no_page_table(vma, flags); 534 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 535 page = follow_huge_pmd(mm, address, pmd, flags); 536 if (page) 537 return page; 538 return no_page_table(vma, flags); 539 } 540 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 541 page = follow_huge_pd(vma, address, 542 __hugepd(pmd_val(pmdval)), flags, 543 PMD_SHIFT); 544 if (page) 545 return page; 546 return no_page_table(vma, flags); 547 } 548 retry: 549 if (!pmd_present(pmdval)) { 550 if (likely(!(flags & FOLL_MIGRATION))) 551 return no_page_table(vma, flags); 552 VM_BUG_ON(thp_migration_supported() && 553 !is_pmd_migration_entry(pmdval)); 554 if (is_pmd_migration_entry(pmdval)) 555 pmd_migration_entry_wait(mm, pmd); 556 pmdval = READ_ONCE(*pmd); 557 /* 558 * MADV_DONTNEED may convert the pmd to null because 559 * mmap_lock is held in read mode 560 */ 561 if (pmd_none(pmdval)) 562 return no_page_table(vma, flags); 563 goto retry; 564 } 565 if (pmd_devmap(pmdval)) { 566 ptl = pmd_lock(mm, pmd); 567 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 568 spin_unlock(ptl); 569 if (page) 570 return page; 571 } 572 if (likely(!pmd_trans_huge(pmdval))) 573 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 574 575 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 576 return no_page_table(vma, flags); 577 578 retry_locked: 579 ptl = pmd_lock(mm, pmd); 580 if (unlikely(pmd_none(*pmd))) { 581 spin_unlock(ptl); 582 return no_page_table(vma, flags); 583 } 584 if (unlikely(!pmd_present(*pmd))) { 585 spin_unlock(ptl); 586 if (likely(!(flags & FOLL_MIGRATION))) 587 return no_page_table(vma, flags); 588 pmd_migration_entry_wait(mm, pmd); 589 goto retry_locked; 590 } 591 if (unlikely(!pmd_trans_huge(*pmd))) { 592 spin_unlock(ptl); 593 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 594 } 595 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 596 int ret; 597 page = pmd_page(*pmd); 598 if (is_huge_zero_page(page)) { 599 spin_unlock(ptl); 600 ret = 0; 601 split_huge_pmd(vma, pmd, address); 602 if (pmd_trans_unstable(pmd)) 603 ret = -EBUSY; 604 } else if (flags & FOLL_SPLIT) { 605 if (unlikely(!try_get_page(page))) { 606 spin_unlock(ptl); 607 return ERR_PTR(-ENOMEM); 608 } 609 spin_unlock(ptl); 610 lock_page(page); 611 ret = split_huge_page(page); 612 unlock_page(page); 613 put_page(page); 614 if (pmd_none(*pmd)) 615 return no_page_table(vma, flags); 616 } else { /* flags & FOLL_SPLIT_PMD */ 617 spin_unlock(ptl); 618 split_huge_pmd(vma, pmd, address); 619 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 620 } 621 622 return ret ? ERR_PTR(ret) : 623 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 624 } 625 page = follow_trans_huge_pmd(vma, address, pmd, flags); 626 spin_unlock(ptl); 627 ctx->page_mask = HPAGE_PMD_NR - 1; 628 return page; 629 } 630 631 static struct page *follow_pud_mask(struct vm_area_struct *vma, 632 unsigned long address, p4d_t *p4dp, 633 unsigned int flags, 634 struct follow_page_context *ctx) 635 { 636 pud_t *pud; 637 spinlock_t *ptl; 638 struct page *page; 639 struct mm_struct *mm = vma->vm_mm; 640 641 pud = pud_offset(p4dp, address); 642 if (pud_none(*pud)) 643 return no_page_table(vma, flags); 644 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 645 page = follow_huge_pud(mm, address, pud, flags); 646 if (page) 647 return page; 648 return no_page_table(vma, flags); 649 } 650 if (is_hugepd(__hugepd(pud_val(*pud)))) { 651 page = follow_huge_pd(vma, address, 652 __hugepd(pud_val(*pud)), flags, 653 PUD_SHIFT); 654 if (page) 655 return page; 656 return no_page_table(vma, flags); 657 } 658 if (pud_devmap(*pud)) { 659 ptl = pud_lock(mm, pud); 660 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 661 spin_unlock(ptl); 662 if (page) 663 return page; 664 } 665 if (unlikely(pud_bad(*pud))) 666 return no_page_table(vma, flags); 667 668 return follow_pmd_mask(vma, address, pud, flags, ctx); 669 } 670 671 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 672 unsigned long address, pgd_t *pgdp, 673 unsigned int flags, 674 struct follow_page_context *ctx) 675 { 676 p4d_t *p4d; 677 struct page *page; 678 679 p4d = p4d_offset(pgdp, address); 680 if (p4d_none(*p4d)) 681 return no_page_table(vma, flags); 682 BUILD_BUG_ON(p4d_huge(*p4d)); 683 if (unlikely(p4d_bad(*p4d))) 684 return no_page_table(vma, flags); 685 686 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 687 page = follow_huge_pd(vma, address, 688 __hugepd(p4d_val(*p4d)), flags, 689 P4D_SHIFT); 690 if (page) 691 return page; 692 return no_page_table(vma, flags); 693 } 694 return follow_pud_mask(vma, address, p4d, flags, ctx); 695 } 696 697 /** 698 * follow_page_mask - look up a page descriptor from a user-virtual address 699 * @vma: vm_area_struct mapping @address 700 * @address: virtual address to look up 701 * @flags: flags modifying lookup behaviour 702 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 703 * pointer to output page_mask 704 * 705 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 706 * 707 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 708 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 709 * 710 * On output, the @ctx->page_mask is set according to the size of the page. 711 * 712 * Return: the mapped (struct page *), %NULL if no mapping exists, or 713 * an error pointer if there is a mapping to something not represented 714 * by a page descriptor (see also vm_normal_page()). 715 */ 716 static struct page *follow_page_mask(struct vm_area_struct *vma, 717 unsigned long address, unsigned int flags, 718 struct follow_page_context *ctx) 719 { 720 pgd_t *pgd; 721 struct page *page; 722 struct mm_struct *mm = vma->vm_mm; 723 724 ctx->page_mask = 0; 725 726 /* make this handle hugepd */ 727 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 728 if (!IS_ERR(page)) { 729 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 730 return page; 731 } 732 733 pgd = pgd_offset(mm, address); 734 735 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 736 return no_page_table(vma, flags); 737 738 if (pgd_huge(*pgd)) { 739 page = follow_huge_pgd(mm, address, pgd, flags); 740 if (page) 741 return page; 742 return no_page_table(vma, flags); 743 } 744 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 745 page = follow_huge_pd(vma, address, 746 __hugepd(pgd_val(*pgd)), flags, 747 PGDIR_SHIFT); 748 if (page) 749 return page; 750 return no_page_table(vma, flags); 751 } 752 753 return follow_p4d_mask(vma, address, pgd, flags, ctx); 754 } 755 756 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 757 unsigned int foll_flags) 758 { 759 struct follow_page_context ctx = { NULL }; 760 struct page *page; 761 762 page = follow_page_mask(vma, address, foll_flags, &ctx); 763 if (ctx.pgmap) 764 put_dev_pagemap(ctx.pgmap); 765 return page; 766 } 767 768 static int get_gate_page(struct mm_struct *mm, unsigned long address, 769 unsigned int gup_flags, struct vm_area_struct **vma, 770 struct page **page) 771 { 772 pgd_t *pgd; 773 p4d_t *p4d; 774 pud_t *pud; 775 pmd_t *pmd; 776 pte_t *pte; 777 int ret = -EFAULT; 778 779 /* user gate pages are read-only */ 780 if (gup_flags & FOLL_WRITE) 781 return -EFAULT; 782 if (address > TASK_SIZE) 783 pgd = pgd_offset_k(address); 784 else 785 pgd = pgd_offset_gate(mm, address); 786 if (pgd_none(*pgd)) 787 return -EFAULT; 788 p4d = p4d_offset(pgd, address); 789 if (p4d_none(*p4d)) 790 return -EFAULT; 791 pud = pud_offset(p4d, address); 792 if (pud_none(*pud)) 793 return -EFAULT; 794 pmd = pmd_offset(pud, address); 795 if (!pmd_present(*pmd)) 796 return -EFAULT; 797 VM_BUG_ON(pmd_trans_huge(*pmd)); 798 pte = pte_offset_map(pmd, address); 799 if (pte_none(*pte)) 800 goto unmap; 801 *vma = get_gate_vma(mm); 802 if (!page) 803 goto out; 804 *page = vm_normal_page(*vma, address, *pte); 805 if (!*page) { 806 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 807 goto unmap; 808 *page = pte_page(*pte); 809 } 810 if (unlikely(!try_grab_page(*page, gup_flags))) { 811 ret = -ENOMEM; 812 goto unmap; 813 } 814 out: 815 ret = 0; 816 unmap: 817 pte_unmap(pte); 818 return ret; 819 } 820 821 /* 822 * mmap_lock must be held on entry. If @locked != NULL and *@flags 823 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 824 * is, *@locked will be set to 0 and -EBUSY returned. 825 */ 826 static int faultin_page(struct vm_area_struct *vma, 827 unsigned long address, unsigned int *flags, int *locked) 828 { 829 unsigned int fault_flags = 0; 830 vm_fault_t ret; 831 832 /* mlock all present pages, but do not fault in new pages */ 833 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 834 return -ENOENT; 835 if (*flags & FOLL_WRITE) 836 fault_flags |= FAULT_FLAG_WRITE; 837 if (*flags & FOLL_REMOTE) 838 fault_flags |= FAULT_FLAG_REMOTE; 839 if (locked) 840 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 841 if (*flags & FOLL_NOWAIT) 842 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 843 if (*flags & FOLL_TRIED) { 844 /* 845 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 846 * can co-exist 847 */ 848 fault_flags |= FAULT_FLAG_TRIED; 849 } 850 851 ret = handle_mm_fault(vma, address, fault_flags, NULL); 852 if (ret & VM_FAULT_ERROR) { 853 int err = vm_fault_to_errno(ret, *flags); 854 855 if (err) 856 return err; 857 BUG(); 858 } 859 860 if (ret & VM_FAULT_RETRY) { 861 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 862 *locked = 0; 863 return -EBUSY; 864 } 865 866 /* 867 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 868 * necessary, even if maybe_mkwrite decided not to set pte_write. We 869 * can thus safely do subsequent page lookups as if they were reads. 870 * But only do so when looping for pte_write is futile: in some cases 871 * userspace may also be wanting to write to the gotten user page, 872 * which a read fault here might prevent (a readonly page might get 873 * reCOWed by userspace write). 874 */ 875 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 876 *flags |= FOLL_COW; 877 return 0; 878 } 879 880 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 881 { 882 vm_flags_t vm_flags = vma->vm_flags; 883 int write = (gup_flags & FOLL_WRITE); 884 int foreign = (gup_flags & FOLL_REMOTE); 885 886 if (vm_flags & (VM_IO | VM_PFNMAP)) 887 return -EFAULT; 888 889 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 890 return -EFAULT; 891 892 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 893 return -EOPNOTSUPP; 894 895 if (write) { 896 if (!(vm_flags & VM_WRITE)) { 897 if (!(gup_flags & FOLL_FORCE)) 898 return -EFAULT; 899 /* 900 * We used to let the write,force case do COW in a 901 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 902 * set a breakpoint in a read-only mapping of an 903 * executable, without corrupting the file (yet only 904 * when that file had been opened for writing!). 905 * Anon pages in shared mappings are surprising: now 906 * just reject it. 907 */ 908 if (!is_cow_mapping(vm_flags)) 909 return -EFAULT; 910 } 911 } else if (!(vm_flags & VM_READ)) { 912 if (!(gup_flags & FOLL_FORCE)) 913 return -EFAULT; 914 /* 915 * Is there actually any vma we can reach here which does not 916 * have VM_MAYREAD set? 917 */ 918 if (!(vm_flags & VM_MAYREAD)) 919 return -EFAULT; 920 } 921 /* 922 * gups are always data accesses, not instruction 923 * fetches, so execute=false here 924 */ 925 if (!arch_vma_access_permitted(vma, write, false, foreign)) 926 return -EFAULT; 927 return 0; 928 } 929 930 /** 931 * __get_user_pages() - pin user pages in memory 932 * @mm: mm_struct of target mm 933 * @start: starting user address 934 * @nr_pages: number of pages from start to pin 935 * @gup_flags: flags modifying pin behaviour 936 * @pages: array that receives pointers to the pages pinned. 937 * Should be at least nr_pages long. Or NULL, if caller 938 * only intends to ensure the pages are faulted in. 939 * @vmas: array of pointers to vmas corresponding to each page. 940 * Or NULL if the caller does not require them. 941 * @locked: whether we're still with the mmap_lock held 942 * 943 * Returns either number of pages pinned (which may be less than the 944 * number requested), or an error. Details about the return value: 945 * 946 * -- If nr_pages is 0, returns 0. 947 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 948 * -- If nr_pages is >0, and some pages were pinned, returns the number of 949 * pages pinned. Again, this may be less than nr_pages. 950 * -- 0 return value is possible when the fault would need to be retried. 951 * 952 * The caller is responsible for releasing returned @pages, via put_page(). 953 * 954 * @vmas are valid only as long as mmap_lock is held. 955 * 956 * Must be called with mmap_lock held. It may be released. See below. 957 * 958 * __get_user_pages walks a process's page tables and takes a reference to 959 * each struct page that each user address corresponds to at a given 960 * instant. That is, it takes the page that would be accessed if a user 961 * thread accesses the given user virtual address at that instant. 962 * 963 * This does not guarantee that the page exists in the user mappings when 964 * __get_user_pages returns, and there may even be a completely different 965 * page there in some cases (eg. if mmapped pagecache has been invalidated 966 * and subsequently re faulted). However it does guarantee that the page 967 * won't be freed completely. And mostly callers simply care that the page 968 * contains data that was valid *at some point in time*. Typically, an IO 969 * or similar operation cannot guarantee anything stronger anyway because 970 * locks can't be held over the syscall boundary. 971 * 972 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 973 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 974 * appropriate) must be called after the page is finished with, and 975 * before put_page is called. 976 * 977 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 978 * released by an up_read(). That can happen if @gup_flags does not 979 * have FOLL_NOWAIT. 980 * 981 * A caller using such a combination of @locked and @gup_flags 982 * must therefore hold the mmap_lock for reading only, and recognize 983 * when it's been released. Otherwise, it must be held for either 984 * reading or writing and will not be released. 985 * 986 * In most cases, get_user_pages or get_user_pages_fast should be used 987 * instead of __get_user_pages. __get_user_pages should be used only if 988 * you need some special @gup_flags. 989 */ 990 static long __get_user_pages(struct mm_struct *mm, 991 unsigned long start, unsigned long nr_pages, 992 unsigned int gup_flags, struct page **pages, 993 struct vm_area_struct **vmas, int *locked) 994 { 995 long ret = 0, i = 0; 996 struct vm_area_struct *vma = NULL; 997 struct follow_page_context ctx = { NULL }; 998 999 if (!nr_pages) 1000 return 0; 1001 1002 start = untagged_addr(start); 1003 1004 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1005 1006 /* 1007 * If FOLL_FORCE is set then do not force a full fault as the hinting 1008 * fault information is unrelated to the reference behaviour of a task 1009 * using the address space 1010 */ 1011 if (!(gup_flags & FOLL_FORCE)) 1012 gup_flags |= FOLL_NUMA; 1013 1014 do { 1015 struct page *page; 1016 unsigned int foll_flags = gup_flags; 1017 unsigned int page_increm; 1018 1019 /* first iteration or cross vma bound */ 1020 if (!vma || start >= vma->vm_end) { 1021 vma = find_extend_vma(mm, start); 1022 if (!vma && in_gate_area(mm, start)) { 1023 ret = get_gate_page(mm, start & PAGE_MASK, 1024 gup_flags, &vma, 1025 pages ? &pages[i] : NULL); 1026 if (ret) 1027 goto out; 1028 ctx.page_mask = 0; 1029 goto next_page; 1030 } 1031 1032 if (!vma) { 1033 ret = -EFAULT; 1034 goto out; 1035 } 1036 ret = check_vma_flags(vma, gup_flags); 1037 if (ret) 1038 goto out; 1039 1040 if (is_vm_hugetlb_page(vma)) { 1041 i = follow_hugetlb_page(mm, vma, pages, vmas, 1042 &start, &nr_pages, i, 1043 gup_flags, locked); 1044 if (locked && *locked == 0) { 1045 /* 1046 * We've got a VM_FAULT_RETRY 1047 * and we've lost mmap_lock. 1048 * We must stop here. 1049 */ 1050 BUG_ON(gup_flags & FOLL_NOWAIT); 1051 BUG_ON(ret != 0); 1052 goto out; 1053 } 1054 continue; 1055 } 1056 } 1057 retry: 1058 /* 1059 * If we have a pending SIGKILL, don't keep faulting pages and 1060 * potentially allocating memory. 1061 */ 1062 if (fatal_signal_pending(current)) { 1063 ret = -EINTR; 1064 goto out; 1065 } 1066 cond_resched(); 1067 1068 page = follow_page_mask(vma, start, foll_flags, &ctx); 1069 if (!page) { 1070 ret = faultin_page(vma, start, &foll_flags, locked); 1071 switch (ret) { 1072 case 0: 1073 goto retry; 1074 case -EBUSY: 1075 ret = 0; 1076 fallthrough; 1077 case -EFAULT: 1078 case -ENOMEM: 1079 case -EHWPOISON: 1080 goto out; 1081 case -ENOENT: 1082 goto next_page; 1083 } 1084 BUG(); 1085 } else if (PTR_ERR(page) == -EEXIST) { 1086 /* 1087 * Proper page table entry exists, but no corresponding 1088 * struct page. 1089 */ 1090 goto next_page; 1091 } else if (IS_ERR(page)) { 1092 ret = PTR_ERR(page); 1093 goto out; 1094 } 1095 if (pages) { 1096 pages[i] = page; 1097 flush_anon_page(vma, page, start); 1098 flush_dcache_page(page); 1099 ctx.page_mask = 0; 1100 } 1101 next_page: 1102 if (vmas) { 1103 vmas[i] = vma; 1104 ctx.page_mask = 0; 1105 } 1106 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1107 if (page_increm > nr_pages) 1108 page_increm = nr_pages; 1109 i += page_increm; 1110 start += page_increm * PAGE_SIZE; 1111 nr_pages -= page_increm; 1112 } while (nr_pages); 1113 out: 1114 if (ctx.pgmap) 1115 put_dev_pagemap(ctx.pgmap); 1116 return i ? i : ret; 1117 } 1118 1119 static bool vma_permits_fault(struct vm_area_struct *vma, 1120 unsigned int fault_flags) 1121 { 1122 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1123 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1124 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1125 1126 if (!(vm_flags & vma->vm_flags)) 1127 return false; 1128 1129 /* 1130 * The architecture might have a hardware protection 1131 * mechanism other than read/write that can deny access. 1132 * 1133 * gup always represents data access, not instruction 1134 * fetches, so execute=false here: 1135 */ 1136 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1137 return false; 1138 1139 return true; 1140 } 1141 1142 /** 1143 * fixup_user_fault() - manually resolve a user page fault 1144 * @mm: mm_struct of target mm 1145 * @address: user address 1146 * @fault_flags:flags to pass down to handle_mm_fault() 1147 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1148 * does not allow retry. If NULL, the caller must guarantee 1149 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1150 * 1151 * This is meant to be called in the specific scenario where for locking reasons 1152 * we try to access user memory in atomic context (within a pagefault_disable() 1153 * section), this returns -EFAULT, and we want to resolve the user fault before 1154 * trying again. 1155 * 1156 * Typically this is meant to be used by the futex code. 1157 * 1158 * The main difference with get_user_pages() is that this function will 1159 * unconditionally call handle_mm_fault() which will in turn perform all the 1160 * necessary SW fixup of the dirty and young bits in the PTE, while 1161 * get_user_pages() only guarantees to update these in the struct page. 1162 * 1163 * This is important for some architectures where those bits also gate the 1164 * access permission to the page because they are maintained in software. On 1165 * such architectures, gup() will not be enough to make a subsequent access 1166 * succeed. 1167 * 1168 * This function will not return with an unlocked mmap_lock. So it has not the 1169 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1170 */ 1171 int fixup_user_fault(struct mm_struct *mm, 1172 unsigned long address, unsigned int fault_flags, 1173 bool *unlocked) 1174 { 1175 struct vm_area_struct *vma; 1176 vm_fault_t ret, major = 0; 1177 1178 address = untagged_addr(address); 1179 1180 if (unlocked) 1181 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1182 1183 retry: 1184 vma = find_extend_vma(mm, address); 1185 if (!vma || address < vma->vm_start) 1186 return -EFAULT; 1187 1188 if (!vma_permits_fault(vma, fault_flags)) 1189 return -EFAULT; 1190 1191 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1192 fatal_signal_pending(current)) 1193 return -EINTR; 1194 1195 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1196 major |= ret & VM_FAULT_MAJOR; 1197 if (ret & VM_FAULT_ERROR) { 1198 int err = vm_fault_to_errno(ret, 0); 1199 1200 if (err) 1201 return err; 1202 BUG(); 1203 } 1204 1205 if (ret & VM_FAULT_RETRY) { 1206 mmap_read_lock(mm); 1207 *unlocked = true; 1208 fault_flags |= FAULT_FLAG_TRIED; 1209 goto retry; 1210 } 1211 1212 return 0; 1213 } 1214 EXPORT_SYMBOL_GPL(fixup_user_fault); 1215 1216 /* 1217 * Please note that this function, unlike __get_user_pages will not 1218 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1219 */ 1220 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1221 unsigned long start, 1222 unsigned long nr_pages, 1223 struct page **pages, 1224 struct vm_area_struct **vmas, 1225 int *locked, 1226 unsigned int flags) 1227 { 1228 long ret, pages_done; 1229 bool lock_dropped; 1230 1231 if (locked) { 1232 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1233 BUG_ON(vmas); 1234 /* check caller initialized locked */ 1235 BUG_ON(*locked != 1); 1236 } 1237 1238 if (flags & FOLL_PIN) 1239 atomic_set(&mm->has_pinned, 1); 1240 1241 /* 1242 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1243 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1244 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1245 * for FOLL_GET, not for the newer FOLL_PIN. 1246 * 1247 * FOLL_PIN always expects pages to be non-null, but no need to assert 1248 * that here, as any failures will be obvious enough. 1249 */ 1250 if (pages && !(flags & FOLL_PIN)) 1251 flags |= FOLL_GET; 1252 1253 pages_done = 0; 1254 lock_dropped = false; 1255 for (;;) { 1256 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1257 vmas, locked); 1258 if (!locked) 1259 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1260 return ret; 1261 1262 /* VM_FAULT_RETRY cannot return errors */ 1263 if (!*locked) { 1264 BUG_ON(ret < 0); 1265 BUG_ON(ret >= nr_pages); 1266 } 1267 1268 if (ret > 0) { 1269 nr_pages -= ret; 1270 pages_done += ret; 1271 if (!nr_pages) 1272 break; 1273 } 1274 if (*locked) { 1275 /* 1276 * VM_FAULT_RETRY didn't trigger or it was a 1277 * FOLL_NOWAIT. 1278 */ 1279 if (!pages_done) 1280 pages_done = ret; 1281 break; 1282 } 1283 /* 1284 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1285 * For the prefault case (!pages) we only update counts. 1286 */ 1287 if (likely(pages)) 1288 pages += ret; 1289 start += ret << PAGE_SHIFT; 1290 lock_dropped = true; 1291 1292 retry: 1293 /* 1294 * Repeat on the address that fired VM_FAULT_RETRY 1295 * with both FAULT_FLAG_ALLOW_RETRY and 1296 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1297 * by fatal signals, so we need to check it before we 1298 * start trying again otherwise it can loop forever. 1299 */ 1300 1301 if (fatal_signal_pending(current)) { 1302 if (!pages_done) 1303 pages_done = -EINTR; 1304 break; 1305 } 1306 1307 ret = mmap_read_lock_killable(mm); 1308 if (ret) { 1309 BUG_ON(ret > 0); 1310 if (!pages_done) 1311 pages_done = ret; 1312 break; 1313 } 1314 1315 *locked = 1; 1316 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1317 pages, NULL, locked); 1318 if (!*locked) { 1319 /* Continue to retry until we succeeded */ 1320 BUG_ON(ret != 0); 1321 goto retry; 1322 } 1323 if (ret != 1) { 1324 BUG_ON(ret > 1); 1325 if (!pages_done) 1326 pages_done = ret; 1327 break; 1328 } 1329 nr_pages--; 1330 pages_done++; 1331 if (!nr_pages) 1332 break; 1333 if (likely(pages)) 1334 pages++; 1335 start += PAGE_SIZE; 1336 } 1337 if (lock_dropped && *locked) { 1338 /* 1339 * We must let the caller know we temporarily dropped the lock 1340 * and so the critical section protected by it was lost. 1341 */ 1342 mmap_read_unlock(mm); 1343 *locked = 0; 1344 } 1345 return pages_done; 1346 } 1347 1348 /** 1349 * populate_vma_page_range() - populate a range of pages in the vma. 1350 * @vma: target vma 1351 * @start: start address 1352 * @end: end address 1353 * @locked: whether the mmap_lock is still held 1354 * 1355 * This takes care of mlocking the pages too if VM_LOCKED is set. 1356 * 1357 * Return either number of pages pinned in the vma, or a negative error 1358 * code on error. 1359 * 1360 * vma->vm_mm->mmap_lock must be held. 1361 * 1362 * If @locked is NULL, it may be held for read or write and will 1363 * be unperturbed. 1364 * 1365 * If @locked is non-NULL, it must held for read only and may be 1366 * released. If it's released, *@locked will be set to 0. 1367 */ 1368 long populate_vma_page_range(struct vm_area_struct *vma, 1369 unsigned long start, unsigned long end, int *locked) 1370 { 1371 struct mm_struct *mm = vma->vm_mm; 1372 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1373 int gup_flags; 1374 1375 VM_BUG_ON(start & ~PAGE_MASK); 1376 VM_BUG_ON(end & ~PAGE_MASK); 1377 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1378 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1379 mmap_assert_locked(mm); 1380 1381 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1382 if (vma->vm_flags & VM_LOCKONFAULT) 1383 gup_flags &= ~FOLL_POPULATE; 1384 /* 1385 * We want to touch writable mappings with a write fault in order 1386 * to break COW, except for shared mappings because these don't COW 1387 * and we would not want to dirty them for nothing. 1388 */ 1389 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1390 gup_flags |= FOLL_WRITE; 1391 1392 /* 1393 * We want mlock to succeed for regions that have any permissions 1394 * other than PROT_NONE. 1395 */ 1396 if (vma_is_accessible(vma)) 1397 gup_flags |= FOLL_FORCE; 1398 1399 /* 1400 * We made sure addr is within a VMA, so the following will 1401 * not result in a stack expansion that recurses back here. 1402 */ 1403 return __get_user_pages(mm, start, nr_pages, gup_flags, 1404 NULL, NULL, locked); 1405 } 1406 1407 /* 1408 * __mm_populate - populate and/or mlock pages within a range of address space. 1409 * 1410 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1411 * flags. VMAs must be already marked with the desired vm_flags, and 1412 * mmap_lock must not be held. 1413 */ 1414 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1415 { 1416 struct mm_struct *mm = current->mm; 1417 unsigned long end, nstart, nend; 1418 struct vm_area_struct *vma = NULL; 1419 int locked = 0; 1420 long ret = 0; 1421 1422 end = start + len; 1423 1424 for (nstart = start; nstart < end; nstart = nend) { 1425 /* 1426 * We want to fault in pages for [nstart; end) address range. 1427 * Find first corresponding VMA. 1428 */ 1429 if (!locked) { 1430 locked = 1; 1431 mmap_read_lock(mm); 1432 vma = find_vma(mm, nstart); 1433 } else if (nstart >= vma->vm_end) 1434 vma = vma->vm_next; 1435 if (!vma || vma->vm_start >= end) 1436 break; 1437 /* 1438 * Set [nstart; nend) to intersection of desired address 1439 * range with the first VMA. Also, skip undesirable VMA types. 1440 */ 1441 nend = min(end, vma->vm_end); 1442 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1443 continue; 1444 if (nstart < vma->vm_start) 1445 nstart = vma->vm_start; 1446 /* 1447 * Now fault in a range of pages. populate_vma_page_range() 1448 * double checks the vma flags, so that it won't mlock pages 1449 * if the vma was already munlocked. 1450 */ 1451 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1452 if (ret < 0) { 1453 if (ignore_errors) { 1454 ret = 0; 1455 continue; /* continue at next VMA */ 1456 } 1457 break; 1458 } 1459 nend = nstart + ret * PAGE_SIZE; 1460 ret = 0; 1461 } 1462 if (locked) 1463 mmap_read_unlock(mm); 1464 return ret; /* 0 or negative error code */ 1465 } 1466 #else /* CONFIG_MMU */ 1467 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1468 unsigned long nr_pages, struct page **pages, 1469 struct vm_area_struct **vmas, int *locked, 1470 unsigned int foll_flags) 1471 { 1472 struct vm_area_struct *vma; 1473 unsigned long vm_flags; 1474 int i; 1475 1476 /* calculate required read or write permissions. 1477 * If FOLL_FORCE is set, we only require the "MAY" flags. 1478 */ 1479 vm_flags = (foll_flags & FOLL_WRITE) ? 1480 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1481 vm_flags &= (foll_flags & FOLL_FORCE) ? 1482 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1483 1484 for (i = 0; i < nr_pages; i++) { 1485 vma = find_vma(mm, start); 1486 if (!vma) 1487 goto finish_or_fault; 1488 1489 /* protect what we can, including chardevs */ 1490 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1491 !(vm_flags & vma->vm_flags)) 1492 goto finish_or_fault; 1493 1494 if (pages) { 1495 pages[i] = virt_to_page(start); 1496 if (pages[i]) 1497 get_page(pages[i]); 1498 } 1499 if (vmas) 1500 vmas[i] = vma; 1501 start = (start + PAGE_SIZE) & PAGE_MASK; 1502 } 1503 1504 return i; 1505 1506 finish_or_fault: 1507 return i ? : -EFAULT; 1508 } 1509 #endif /* !CONFIG_MMU */ 1510 1511 /** 1512 * get_dump_page() - pin user page in memory while writing it to core dump 1513 * @addr: user address 1514 * 1515 * Returns struct page pointer of user page pinned for dump, 1516 * to be freed afterwards by put_page(). 1517 * 1518 * Returns NULL on any kind of failure - a hole must then be inserted into 1519 * the corefile, to preserve alignment with its headers; and also returns 1520 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1521 * allowing a hole to be left in the corefile to save diskspace. 1522 * 1523 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1524 */ 1525 #ifdef CONFIG_ELF_CORE 1526 struct page *get_dump_page(unsigned long addr) 1527 { 1528 struct mm_struct *mm = current->mm; 1529 struct page *page; 1530 int locked = 1; 1531 int ret; 1532 1533 if (mmap_read_lock_killable(mm)) 1534 return NULL; 1535 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1536 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1537 if (locked) 1538 mmap_read_unlock(mm); 1539 return (ret == 1) ? page : NULL; 1540 } 1541 #endif /* CONFIG_ELF_CORE */ 1542 1543 #ifdef CONFIG_CMA 1544 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1545 unsigned long start, 1546 unsigned long nr_pages, 1547 struct page **pages, 1548 struct vm_area_struct **vmas, 1549 unsigned int gup_flags) 1550 { 1551 unsigned long i; 1552 unsigned long step; 1553 bool drain_allow = true; 1554 bool migrate_allow = true; 1555 LIST_HEAD(cma_page_list); 1556 long ret = nr_pages; 1557 struct migration_target_control mtc = { 1558 .nid = NUMA_NO_NODE, 1559 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1560 }; 1561 1562 check_again: 1563 for (i = 0; i < nr_pages;) { 1564 1565 struct page *head = compound_head(pages[i]); 1566 1567 /* 1568 * gup may start from a tail page. Advance step by the left 1569 * part. 1570 */ 1571 step = compound_nr(head) - (pages[i] - head); 1572 /* 1573 * If we get a page from the CMA zone, since we are going to 1574 * be pinning these entries, we might as well move them out 1575 * of the CMA zone if possible. 1576 */ 1577 if (is_migrate_cma_page(head)) { 1578 if (PageHuge(head)) 1579 isolate_huge_page(head, &cma_page_list); 1580 else { 1581 if (!PageLRU(head) && drain_allow) { 1582 lru_add_drain_all(); 1583 drain_allow = false; 1584 } 1585 1586 if (!isolate_lru_page(head)) { 1587 list_add_tail(&head->lru, &cma_page_list); 1588 mod_node_page_state(page_pgdat(head), 1589 NR_ISOLATED_ANON + 1590 page_is_file_lru(head), 1591 thp_nr_pages(head)); 1592 } 1593 } 1594 } 1595 1596 i += step; 1597 } 1598 1599 if (!list_empty(&cma_page_list)) { 1600 /* 1601 * drop the above get_user_pages reference. 1602 */ 1603 if (gup_flags & FOLL_PIN) 1604 unpin_user_pages(pages, nr_pages); 1605 else 1606 for (i = 0; i < nr_pages; i++) 1607 put_page(pages[i]); 1608 1609 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1610 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1611 /* 1612 * some of the pages failed migration. Do get_user_pages 1613 * without migration. 1614 */ 1615 migrate_allow = false; 1616 1617 if (!list_empty(&cma_page_list)) 1618 putback_movable_pages(&cma_page_list); 1619 } 1620 /* 1621 * We did migrate all the pages, Try to get the page references 1622 * again migrating any new CMA pages which we failed to isolate 1623 * earlier. 1624 */ 1625 ret = __get_user_pages_locked(mm, start, nr_pages, 1626 pages, vmas, NULL, 1627 gup_flags); 1628 1629 if ((ret > 0) && migrate_allow) { 1630 nr_pages = ret; 1631 drain_allow = true; 1632 goto check_again; 1633 } 1634 } 1635 1636 return ret; 1637 } 1638 #else 1639 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1640 unsigned long start, 1641 unsigned long nr_pages, 1642 struct page **pages, 1643 struct vm_area_struct **vmas, 1644 unsigned int gup_flags) 1645 { 1646 return nr_pages; 1647 } 1648 #endif /* CONFIG_CMA */ 1649 1650 /* 1651 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1652 * allows us to process the FOLL_LONGTERM flag. 1653 */ 1654 static long __gup_longterm_locked(struct mm_struct *mm, 1655 unsigned long start, 1656 unsigned long nr_pages, 1657 struct page **pages, 1658 struct vm_area_struct **vmas, 1659 unsigned int gup_flags) 1660 { 1661 unsigned long flags = 0; 1662 long rc; 1663 1664 if (gup_flags & FOLL_LONGTERM) 1665 flags = memalloc_nocma_save(); 1666 1667 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL, 1668 gup_flags); 1669 1670 if (gup_flags & FOLL_LONGTERM) { 1671 if (rc > 0) 1672 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1673 vmas, gup_flags); 1674 memalloc_nocma_restore(flags); 1675 } 1676 return rc; 1677 } 1678 1679 static bool is_valid_gup_flags(unsigned int gup_flags) 1680 { 1681 /* 1682 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1683 * never directly by the caller, so enforce that with an assertion: 1684 */ 1685 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1686 return false; 1687 /* 1688 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1689 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1690 * FOLL_PIN. 1691 */ 1692 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1693 return false; 1694 1695 return true; 1696 } 1697 1698 #ifdef CONFIG_MMU 1699 static long __get_user_pages_remote(struct mm_struct *mm, 1700 unsigned long start, unsigned long nr_pages, 1701 unsigned int gup_flags, struct page **pages, 1702 struct vm_area_struct **vmas, int *locked) 1703 { 1704 /* 1705 * Parts of FOLL_LONGTERM behavior are incompatible with 1706 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1707 * vmas. However, this only comes up if locked is set, and there are 1708 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1709 * allow what we can. 1710 */ 1711 if (gup_flags & FOLL_LONGTERM) { 1712 if (WARN_ON_ONCE(locked)) 1713 return -EINVAL; 1714 /* 1715 * This will check the vmas (even if our vmas arg is NULL) 1716 * and return -ENOTSUPP if DAX isn't allowed in this case: 1717 */ 1718 return __gup_longterm_locked(mm, start, nr_pages, pages, 1719 vmas, gup_flags | FOLL_TOUCH | 1720 FOLL_REMOTE); 1721 } 1722 1723 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1724 locked, 1725 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1726 } 1727 1728 /** 1729 * get_user_pages_remote() - pin user pages in memory 1730 * @mm: mm_struct of target mm 1731 * @start: starting user address 1732 * @nr_pages: number of pages from start to pin 1733 * @gup_flags: flags modifying lookup behaviour 1734 * @pages: array that receives pointers to the pages pinned. 1735 * Should be at least nr_pages long. Or NULL, if caller 1736 * only intends to ensure the pages are faulted in. 1737 * @vmas: array of pointers to vmas corresponding to each page. 1738 * Or NULL if the caller does not require them. 1739 * @locked: pointer to lock flag indicating whether lock is held and 1740 * subsequently whether VM_FAULT_RETRY functionality can be 1741 * utilised. Lock must initially be held. 1742 * 1743 * Returns either number of pages pinned (which may be less than the 1744 * number requested), or an error. Details about the return value: 1745 * 1746 * -- If nr_pages is 0, returns 0. 1747 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1748 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1749 * pages pinned. Again, this may be less than nr_pages. 1750 * 1751 * The caller is responsible for releasing returned @pages, via put_page(). 1752 * 1753 * @vmas are valid only as long as mmap_lock is held. 1754 * 1755 * Must be called with mmap_lock held for read or write. 1756 * 1757 * get_user_pages_remote walks a process's page tables and takes a reference 1758 * to each struct page that each user address corresponds to at a given 1759 * instant. That is, it takes the page that would be accessed if a user 1760 * thread accesses the given user virtual address at that instant. 1761 * 1762 * This does not guarantee that the page exists in the user mappings when 1763 * get_user_pages_remote returns, and there may even be a completely different 1764 * page there in some cases (eg. if mmapped pagecache has been invalidated 1765 * and subsequently re faulted). However it does guarantee that the page 1766 * won't be freed completely. And mostly callers simply care that the page 1767 * contains data that was valid *at some point in time*. Typically, an IO 1768 * or similar operation cannot guarantee anything stronger anyway because 1769 * locks can't be held over the syscall boundary. 1770 * 1771 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1772 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1773 * be called after the page is finished with, and before put_page is called. 1774 * 1775 * get_user_pages_remote is typically used for fewer-copy IO operations, 1776 * to get a handle on the memory by some means other than accesses 1777 * via the user virtual addresses. The pages may be submitted for 1778 * DMA to devices or accessed via their kernel linear mapping (via the 1779 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1780 * 1781 * See also get_user_pages_fast, for performance critical applications. 1782 * 1783 * get_user_pages_remote should be phased out in favor of 1784 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1785 * should use get_user_pages_remote because it cannot pass 1786 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1787 */ 1788 long get_user_pages_remote(struct mm_struct *mm, 1789 unsigned long start, unsigned long nr_pages, 1790 unsigned int gup_flags, struct page **pages, 1791 struct vm_area_struct **vmas, int *locked) 1792 { 1793 if (!is_valid_gup_flags(gup_flags)) 1794 return -EINVAL; 1795 1796 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1797 pages, vmas, locked); 1798 } 1799 EXPORT_SYMBOL(get_user_pages_remote); 1800 1801 #else /* CONFIG_MMU */ 1802 long get_user_pages_remote(struct mm_struct *mm, 1803 unsigned long start, unsigned long nr_pages, 1804 unsigned int gup_flags, struct page **pages, 1805 struct vm_area_struct **vmas, int *locked) 1806 { 1807 return 0; 1808 } 1809 1810 static long __get_user_pages_remote(struct mm_struct *mm, 1811 unsigned long start, unsigned long nr_pages, 1812 unsigned int gup_flags, struct page **pages, 1813 struct vm_area_struct **vmas, int *locked) 1814 { 1815 return 0; 1816 } 1817 #endif /* !CONFIG_MMU */ 1818 1819 /** 1820 * get_user_pages() - pin user pages in memory 1821 * @start: starting user address 1822 * @nr_pages: number of pages from start to pin 1823 * @gup_flags: flags modifying lookup behaviour 1824 * @pages: array that receives pointers to the pages pinned. 1825 * Should be at least nr_pages long. Or NULL, if caller 1826 * only intends to ensure the pages are faulted in. 1827 * @vmas: array of pointers to vmas corresponding to each page. 1828 * Or NULL if the caller does not require them. 1829 * 1830 * This is the same as get_user_pages_remote(), just with a less-flexible 1831 * calling convention where we assume that the mm being operated on belongs to 1832 * the current task, and doesn't allow passing of a locked parameter. We also 1833 * obviously don't pass FOLL_REMOTE in here. 1834 */ 1835 long get_user_pages(unsigned long start, unsigned long nr_pages, 1836 unsigned int gup_flags, struct page **pages, 1837 struct vm_area_struct **vmas) 1838 { 1839 if (!is_valid_gup_flags(gup_flags)) 1840 return -EINVAL; 1841 1842 return __gup_longterm_locked(current->mm, start, nr_pages, 1843 pages, vmas, gup_flags | FOLL_TOUCH); 1844 } 1845 EXPORT_SYMBOL(get_user_pages); 1846 1847 /** 1848 * get_user_pages_locked() - variant of get_user_pages() 1849 * 1850 * @start: starting user address 1851 * @nr_pages: number of pages from start to pin 1852 * @gup_flags: flags modifying lookup behaviour 1853 * @pages: array that receives pointers to the pages pinned. 1854 * Should be at least nr_pages long. Or NULL, if caller 1855 * only intends to ensure the pages are faulted in. 1856 * @locked: pointer to lock flag indicating whether lock is held and 1857 * subsequently whether VM_FAULT_RETRY functionality can be 1858 * utilised. Lock must initially be held. 1859 * 1860 * It is suitable to replace the form: 1861 * 1862 * mmap_read_lock(mm); 1863 * do_something() 1864 * get_user_pages(mm, ..., pages, NULL); 1865 * mmap_read_unlock(mm); 1866 * 1867 * to: 1868 * 1869 * int locked = 1; 1870 * mmap_read_lock(mm); 1871 * do_something() 1872 * get_user_pages_locked(mm, ..., pages, &locked); 1873 * if (locked) 1874 * mmap_read_unlock(mm); 1875 * 1876 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1877 * paths better by using either get_user_pages_locked() or 1878 * get_user_pages_unlocked(). 1879 * 1880 */ 1881 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1882 unsigned int gup_flags, struct page **pages, 1883 int *locked) 1884 { 1885 /* 1886 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1887 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1888 * vmas. As there are no users of this flag in this call we simply 1889 * disallow this option for now. 1890 */ 1891 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1892 return -EINVAL; 1893 /* 1894 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1895 * never directly by the caller, so enforce that: 1896 */ 1897 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1898 return -EINVAL; 1899 1900 return __get_user_pages_locked(current->mm, start, nr_pages, 1901 pages, NULL, locked, 1902 gup_flags | FOLL_TOUCH); 1903 } 1904 EXPORT_SYMBOL(get_user_pages_locked); 1905 1906 /* 1907 * get_user_pages_unlocked() is suitable to replace the form: 1908 * 1909 * mmap_read_lock(mm); 1910 * get_user_pages(mm, ..., pages, NULL); 1911 * mmap_read_unlock(mm); 1912 * 1913 * with: 1914 * 1915 * get_user_pages_unlocked(mm, ..., pages); 1916 * 1917 * It is functionally equivalent to get_user_pages_fast so 1918 * get_user_pages_fast should be used instead if specific gup_flags 1919 * (e.g. FOLL_FORCE) are not required. 1920 */ 1921 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1922 struct page **pages, unsigned int gup_flags) 1923 { 1924 struct mm_struct *mm = current->mm; 1925 int locked = 1; 1926 long ret; 1927 1928 /* 1929 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1930 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1931 * vmas. As there are no users of this flag in this call we simply 1932 * disallow this option for now. 1933 */ 1934 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1935 return -EINVAL; 1936 1937 mmap_read_lock(mm); 1938 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 1939 &locked, gup_flags | FOLL_TOUCH); 1940 if (locked) 1941 mmap_read_unlock(mm); 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(get_user_pages_unlocked); 1945 1946 /* 1947 * Fast GUP 1948 * 1949 * get_user_pages_fast attempts to pin user pages by walking the page 1950 * tables directly and avoids taking locks. Thus the walker needs to be 1951 * protected from page table pages being freed from under it, and should 1952 * block any THP splits. 1953 * 1954 * One way to achieve this is to have the walker disable interrupts, and 1955 * rely on IPIs from the TLB flushing code blocking before the page table 1956 * pages are freed. This is unsuitable for architectures that do not need 1957 * to broadcast an IPI when invalidating TLBs. 1958 * 1959 * Another way to achieve this is to batch up page table containing pages 1960 * belonging to more than one mm_user, then rcu_sched a callback to free those 1961 * pages. Disabling interrupts will allow the fast_gup walker to both block 1962 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1963 * (which is a relatively rare event). The code below adopts this strategy. 1964 * 1965 * Before activating this code, please be aware that the following assumptions 1966 * are currently made: 1967 * 1968 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1969 * free pages containing page tables or TLB flushing requires IPI broadcast. 1970 * 1971 * *) ptes can be read atomically by the architecture. 1972 * 1973 * *) access_ok is sufficient to validate userspace address ranges. 1974 * 1975 * The last two assumptions can be relaxed by the addition of helper functions. 1976 * 1977 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1978 */ 1979 #ifdef CONFIG_HAVE_FAST_GUP 1980 1981 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 1982 unsigned int flags, 1983 struct page **pages) 1984 { 1985 while ((*nr) - nr_start) { 1986 struct page *page = pages[--(*nr)]; 1987 1988 ClearPageReferenced(page); 1989 if (flags & FOLL_PIN) 1990 unpin_user_page(page); 1991 else 1992 put_page(page); 1993 } 1994 } 1995 1996 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1997 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1998 unsigned int flags, struct page **pages, int *nr) 1999 { 2000 struct dev_pagemap *pgmap = NULL; 2001 int nr_start = *nr, ret = 0; 2002 pte_t *ptep, *ptem; 2003 2004 ptem = ptep = pte_offset_map(&pmd, addr); 2005 do { 2006 pte_t pte = ptep_get_lockless(ptep); 2007 struct page *head, *page; 2008 2009 /* 2010 * Similar to the PMD case below, NUMA hinting must take slow 2011 * path using the pte_protnone check. 2012 */ 2013 if (pte_protnone(pte)) 2014 goto pte_unmap; 2015 2016 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2017 goto pte_unmap; 2018 2019 if (pte_devmap(pte)) { 2020 if (unlikely(flags & FOLL_LONGTERM)) 2021 goto pte_unmap; 2022 2023 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2024 if (unlikely(!pgmap)) { 2025 undo_dev_pagemap(nr, nr_start, flags, pages); 2026 goto pte_unmap; 2027 } 2028 } else if (pte_special(pte)) 2029 goto pte_unmap; 2030 2031 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2032 page = pte_page(pte); 2033 2034 head = try_grab_compound_head(page, 1, flags); 2035 if (!head) 2036 goto pte_unmap; 2037 2038 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2039 put_compound_head(head, 1, flags); 2040 goto pte_unmap; 2041 } 2042 2043 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2044 2045 /* 2046 * We need to make the page accessible if and only if we are 2047 * going to access its content (the FOLL_PIN case). Please 2048 * see Documentation/core-api/pin_user_pages.rst for 2049 * details. 2050 */ 2051 if (flags & FOLL_PIN) { 2052 ret = arch_make_page_accessible(page); 2053 if (ret) { 2054 unpin_user_page(page); 2055 goto pte_unmap; 2056 } 2057 } 2058 SetPageReferenced(page); 2059 pages[*nr] = page; 2060 (*nr)++; 2061 2062 } while (ptep++, addr += PAGE_SIZE, addr != end); 2063 2064 ret = 1; 2065 2066 pte_unmap: 2067 if (pgmap) 2068 put_dev_pagemap(pgmap); 2069 pte_unmap(ptem); 2070 return ret; 2071 } 2072 #else 2073 2074 /* 2075 * If we can't determine whether or not a pte is special, then fail immediately 2076 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2077 * to be special. 2078 * 2079 * For a futex to be placed on a THP tail page, get_futex_key requires a 2080 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2081 * useful to have gup_huge_pmd even if we can't operate on ptes. 2082 */ 2083 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2084 unsigned int flags, struct page **pages, int *nr) 2085 { 2086 return 0; 2087 } 2088 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2089 2090 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2091 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2092 unsigned long end, unsigned int flags, 2093 struct page **pages, int *nr) 2094 { 2095 int nr_start = *nr; 2096 struct dev_pagemap *pgmap = NULL; 2097 2098 do { 2099 struct page *page = pfn_to_page(pfn); 2100 2101 pgmap = get_dev_pagemap(pfn, pgmap); 2102 if (unlikely(!pgmap)) { 2103 undo_dev_pagemap(nr, nr_start, flags, pages); 2104 return 0; 2105 } 2106 SetPageReferenced(page); 2107 pages[*nr] = page; 2108 if (unlikely(!try_grab_page(page, flags))) { 2109 undo_dev_pagemap(nr, nr_start, flags, pages); 2110 return 0; 2111 } 2112 (*nr)++; 2113 pfn++; 2114 } while (addr += PAGE_SIZE, addr != end); 2115 2116 if (pgmap) 2117 put_dev_pagemap(pgmap); 2118 return 1; 2119 } 2120 2121 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2122 unsigned long end, unsigned int flags, 2123 struct page **pages, int *nr) 2124 { 2125 unsigned long fault_pfn; 2126 int nr_start = *nr; 2127 2128 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2129 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2130 return 0; 2131 2132 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2133 undo_dev_pagemap(nr, nr_start, flags, pages); 2134 return 0; 2135 } 2136 return 1; 2137 } 2138 2139 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2140 unsigned long end, unsigned int flags, 2141 struct page **pages, int *nr) 2142 { 2143 unsigned long fault_pfn; 2144 int nr_start = *nr; 2145 2146 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2147 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2148 return 0; 2149 2150 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2151 undo_dev_pagemap(nr, nr_start, flags, pages); 2152 return 0; 2153 } 2154 return 1; 2155 } 2156 #else 2157 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2158 unsigned long end, unsigned int flags, 2159 struct page **pages, int *nr) 2160 { 2161 BUILD_BUG(); 2162 return 0; 2163 } 2164 2165 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2166 unsigned long end, unsigned int flags, 2167 struct page **pages, int *nr) 2168 { 2169 BUILD_BUG(); 2170 return 0; 2171 } 2172 #endif 2173 2174 static int record_subpages(struct page *page, unsigned long addr, 2175 unsigned long end, struct page **pages) 2176 { 2177 int nr; 2178 2179 for (nr = 0; addr != end; addr += PAGE_SIZE) 2180 pages[nr++] = page++; 2181 2182 return nr; 2183 } 2184 2185 #ifdef CONFIG_ARCH_HAS_HUGEPD 2186 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2187 unsigned long sz) 2188 { 2189 unsigned long __boundary = (addr + sz) & ~(sz-1); 2190 return (__boundary - 1 < end - 1) ? __boundary : end; 2191 } 2192 2193 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2194 unsigned long end, unsigned int flags, 2195 struct page **pages, int *nr) 2196 { 2197 unsigned long pte_end; 2198 struct page *head, *page; 2199 pte_t pte; 2200 int refs; 2201 2202 pte_end = (addr + sz) & ~(sz-1); 2203 if (pte_end < end) 2204 end = pte_end; 2205 2206 pte = huge_ptep_get(ptep); 2207 2208 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2209 return 0; 2210 2211 /* hugepages are never "special" */ 2212 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2213 2214 head = pte_page(pte); 2215 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2216 refs = record_subpages(page, addr, end, pages + *nr); 2217 2218 head = try_grab_compound_head(head, refs, flags); 2219 if (!head) 2220 return 0; 2221 2222 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2223 put_compound_head(head, refs, flags); 2224 return 0; 2225 } 2226 2227 *nr += refs; 2228 SetPageReferenced(head); 2229 return 1; 2230 } 2231 2232 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2233 unsigned int pdshift, unsigned long end, unsigned int flags, 2234 struct page **pages, int *nr) 2235 { 2236 pte_t *ptep; 2237 unsigned long sz = 1UL << hugepd_shift(hugepd); 2238 unsigned long next; 2239 2240 ptep = hugepte_offset(hugepd, addr, pdshift); 2241 do { 2242 next = hugepte_addr_end(addr, end, sz); 2243 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2244 return 0; 2245 } while (ptep++, addr = next, addr != end); 2246 2247 return 1; 2248 } 2249 #else 2250 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2251 unsigned int pdshift, unsigned long end, unsigned int flags, 2252 struct page **pages, int *nr) 2253 { 2254 return 0; 2255 } 2256 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2257 2258 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2259 unsigned long end, unsigned int flags, 2260 struct page **pages, int *nr) 2261 { 2262 struct page *head, *page; 2263 int refs; 2264 2265 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2266 return 0; 2267 2268 if (pmd_devmap(orig)) { 2269 if (unlikely(flags & FOLL_LONGTERM)) 2270 return 0; 2271 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2272 pages, nr); 2273 } 2274 2275 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2276 refs = record_subpages(page, addr, end, pages + *nr); 2277 2278 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2279 if (!head) 2280 return 0; 2281 2282 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2283 put_compound_head(head, refs, flags); 2284 return 0; 2285 } 2286 2287 *nr += refs; 2288 SetPageReferenced(head); 2289 return 1; 2290 } 2291 2292 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2293 unsigned long end, unsigned int flags, 2294 struct page **pages, int *nr) 2295 { 2296 struct page *head, *page; 2297 int refs; 2298 2299 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2300 return 0; 2301 2302 if (pud_devmap(orig)) { 2303 if (unlikely(flags & FOLL_LONGTERM)) 2304 return 0; 2305 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2306 pages, nr); 2307 } 2308 2309 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2310 refs = record_subpages(page, addr, end, pages + *nr); 2311 2312 head = try_grab_compound_head(pud_page(orig), refs, flags); 2313 if (!head) 2314 return 0; 2315 2316 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2317 put_compound_head(head, refs, flags); 2318 return 0; 2319 } 2320 2321 *nr += refs; 2322 SetPageReferenced(head); 2323 return 1; 2324 } 2325 2326 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2327 unsigned long end, unsigned int flags, 2328 struct page **pages, int *nr) 2329 { 2330 int refs; 2331 struct page *head, *page; 2332 2333 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2334 return 0; 2335 2336 BUILD_BUG_ON(pgd_devmap(orig)); 2337 2338 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2339 refs = record_subpages(page, addr, end, pages + *nr); 2340 2341 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2342 if (!head) 2343 return 0; 2344 2345 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2346 put_compound_head(head, refs, flags); 2347 return 0; 2348 } 2349 2350 *nr += refs; 2351 SetPageReferenced(head); 2352 return 1; 2353 } 2354 2355 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2356 unsigned int flags, struct page **pages, int *nr) 2357 { 2358 unsigned long next; 2359 pmd_t *pmdp; 2360 2361 pmdp = pmd_offset_lockless(pudp, pud, addr); 2362 do { 2363 pmd_t pmd = READ_ONCE(*pmdp); 2364 2365 next = pmd_addr_end(addr, end); 2366 if (!pmd_present(pmd)) 2367 return 0; 2368 2369 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2370 pmd_devmap(pmd))) { 2371 /* 2372 * NUMA hinting faults need to be handled in the GUP 2373 * slowpath for accounting purposes and so that they 2374 * can be serialised against THP migration. 2375 */ 2376 if (pmd_protnone(pmd)) 2377 return 0; 2378 2379 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2380 pages, nr)) 2381 return 0; 2382 2383 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2384 /* 2385 * architecture have different format for hugetlbfs 2386 * pmd format and THP pmd format 2387 */ 2388 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2389 PMD_SHIFT, next, flags, pages, nr)) 2390 return 0; 2391 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2392 return 0; 2393 } while (pmdp++, addr = next, addr != end); 2394 2395 return 1; 2396 } 2397 2398 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2399 unsigned int flags, struct page **pages, int *nr) 2400 { 2401 unsigned long next; 2402 pud_t *pudp; 2403 2404 pudp = pud_offset_lockless(p4dp, p4d, addr); 2405 do { 2406 pud_t pud = READ_ONCE(*pudp); 2407 2408 next = pud_addr_end(addr, end); 2409 if (unlikely(!pud_present(pud))) 2410 return 0; 2411 if (unlikely(pud_huge(pud))) { 2412 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2413 pages, nr)) 2414 return 0; 2415 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2416 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2417 PUD_SHIFT, next, flags, pages, nr)) 2418 return 0; 2419 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2420 return 0; 2421 } while (pudp++, addr = next, addr != end); 2422 2423 return 1; 2424 } 2425 2426 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2427 unsigned int flags, struct page **pages, int *nr) 2428 { 2429 unsigned long next; 2430 p4d_t *p4dp; 2431 2432 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2433 do { 2434 p4d_t p4d = READ_ONCE(*p4dp); 2435 2436 next = p4d_addr_end(addr, end); 2437 if (p4d_none(p4d)) 2438 return 0; 2439 BUILD_BUG_ON(p4d_huge(p4d)); 2440 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2441 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2442 P4D_SHIFT, next, flags, pages, nr)) 2443 return 0; 2444 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2445 return 0; 2446 } while (p4dp++, addr = next, addr != end); 2447 2448 return 1; 2449 } 2450 2451 static void gup_pgd_range(unsigned long addr, unsigned long end, 2452 unsigned int flags, struct page **pages, int *nr) 2453 { 2454 unsigned long next; 2455 pgd_t *pgdp; 2456 2457 pgdp = pgd_offset(current->mm, addr); 2458 do { 2459 pgd_t pgd = READ_ONCE(*pgdp); 2460 2461 next = pgd_addr_end(addr, end); 2462 if (pgd_none(pgd)) 2463 return; 2464 if (unlikely(pgd_huge(pgd))) { 2465 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2466 pages, nr)) 2467 return; 2468 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2469 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2470 PGDIR_SHIFT, next, flags, pages, nr)) 2471 return; 2472 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2473 return; 2474 } while (pgdp++, addr = next, addr != end); 2475 } 2476 #else 2477 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2478 unsigned int flags, struct page **pages, int *nr) 2479 { 2480 } 2481 #endif /* CONFIG_HAVE_FAST_GUP */ 2482 2483 #ifndef gup_fast_permitted 2484 /* 2485 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2486 * we need to fall back to the slow version: 2487 */ 2488 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2489 { 2490 return true; 2491 } 2492 #endif 2493 2494 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2495 unsigned int gup_flags, struct page **pages) 2496 { 2497 int ret; 2498 2499 /* 2500 * FIXME: FOLL_LONGTERM does not work with 2501 * get_user_pages_unlocked() (see comments in that function) 2502 */ 2503 if (gup_flags & FOLL_LONGTERM) { 2504 mmap_read_lock(current->mm); 2505 ret = __gup_longterm_locked(current->mm, 2506 start, nr_pages, 2507 pages, NULL, gup_flags); 2508 mmap_read_unlock(current->mm); 2509 } else { 2510 ret = get_user_pages_unlocked(start, nr_pages, 2511 pages, gup_flags); 2512 } 2513 2514 return ret; 2515 } 2516 2517 static unsigned long lockless_pages_from_mm(unsigned long start, 2518 unsigned long end, 2519 unsigned int gup_flags, 2520 struct page **pages) 2521 { 2522 unsigned long flags; 2523 int nr_pinned = 0; 2524 unsigned seq; 2525 2526 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2527 !gup_fast_permitted(start, end)) 2528 return 0; 2529 2530 if (gup_flags & FOLL_PIN) { 2531 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2532 if (seq & 1) 2533 return 0; 2534 } 2535 2536 /* 2537 * Disable interrupts. The nested form is used, in order to allow full, 2538 * general purpose use of this routine. 2539 * 2540 * With interrupts disabled, we block page table pages from being freed 2541 * from under us. See struct mmu_table_batch comments in 2542 * include/asm-generic/tlb.h for more details. 2543 * 2544 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2545 * that come from THPs splitting. 2546 */ 2547 local_irq_save(flags); 2548 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2549 local_irq_restore(flags); 2550 2551 /* 2552 * When pinning pages for DMA there could be a concurrent write protect 2553 * from fork() via copy_page_range(), in this case always fail fast GUP. 2554 */ 2555 if (gup_flags & FOLL_PIN) { 2556 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2557 unpin_user_pages(pages, nr_pinned); 2558 return 0; 2559 } 2560 } 2561 return nr_pinned; 2562 } 2563 2564 static int internal_get_user_pages_fast(unsigned long start, 2565 unsigned long nr_pages, 2566 unsigned int gup_flags, 2567 struct page **pages) 2568 { 2569 unsigned long len, end; 2570 unsigned long nr_pinned; 2571 int ret; 2572 2573 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2574 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2575 FOLL_FAST_ONLY))) 2576 return -EINVAL; 2577 2578 if (gup_flags & FOLL_PIN) 2579 atomic_set(¤t->mm->has_pinned, 1); 2580 2581 if (!(gup_flags & FOLL_FAST_ONLY)) 2582 might_lock_read(¤t->mm->mmap_lock); 2583 2584 start = untagged_addr(start) & PAGE_MASK; 2585 len = nr_pages << PAGE_SHIFT; 2586 if (check_add_overflow(start, len, &end)) 2587 return 0; 2588 if (unlikely(!access_ok((void __user *)start, len))) 2589 return -EFAULT; 2590 2591 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2592 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2593 return nr_pinned; 2594 2595 /* Slow path: try to get the remaining pages with get_user_pages */ 2596 start += nr_pinned << PAGE_SHIFT; 2597 pages += nr_pinned; 2598 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2599 pages); 2600 if (ret < 0) { 2601 /* 2602 * The caller has to unpin the pages we already pinned so 2603 * returning -errno is not an option 2604 */ 2605 if (nr_pinned) 2606 return nr_pinned; 2607 return ret; 2608 } 2609 return ret + nr_pinned; 2610 } 2611 2612 /** 2613 * get_user_pages_fast_only() - pin user pages in memory 2614 * @start: starting user address 2615 * @nr_pages: number of pages from start to pin 2616 * @gup_flags: flags modifying pin behaviour 2617 * @pages: array that receives pointers to the pages pinned. 2618 * Should be at least nr_pages long. 2619 * 2620 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2621 * the regular GUP. 2622 * Note a difference with get_user_pages_fast: this always returns the 2623 * number of pages pinned, 0 if no pages were pinned. 2624 * 2625 * If the architecture does not support this function, simply return with no 2626 * pages pinned. 2627 * 2628 * Careful, careful! COW breaking can go either way, so a non-write 2629 * access can get ambiguous page results. If you call this function without 2630 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2631 */ 2632 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2633 unsigned int gup_flags, struct page **pages) 2634 { 2635 int nr_pinned; 2636 /* 2637 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2638 * because gup fast is always a "pin with a +1 page refcount" request. 2639 * 2640 * FOLL_FAST_ONLY is required in order to match the API description of 2641 * this routine: no fall back to regular ("slow") GUP. 2642 */ 2643 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2644 2645 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2646 pages); 2647 2648 /* 2649 * As specified in the API description above, this routine is not 2650 * allowed to return negative values. However, the common core 2651 * routine internal_get_user_pages_fast() *can* return -errno. 2652 * Therefore, correct for that here: 2653 */ 2654 if (nr_pinned < 0) 2655 nr_pinned = 0; 2656 2657 return nr_pinned; 2658 } 2659 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2660 2661 /** 2662 * get_user_pages_fast() - pin user pages in memory 2663 * @start: starting user address 2664 * @nr_pages: number of pages from start to pin 2665 * @gup_flags: flags modifying pin behaviour 2666 * @pages: array that receives pointers to the pages pinned. 2667 * Should be at least nr_pages long. 2668 * 2669 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2670 * If not successful, it will fall back to taking the lock and 2671 * calling get_user_pages(). 2672 * 2673 * Returns number of pages pinned. This may be fewer than the number requested. 2674 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2675 * -errno. 2676 */ 2677 int get_user_pages_fast(unsigned long start, int nr_pages, 2678 unsigned int gup_flags, struct page **pages) 2679 { 2680 if (!is_valid_gup_flags(gup_flags)) 2681 return -EINVAL; 2682 2683 /* 2684 * The caller may or may not have explicitly set FOLL_GET; either way is 2685 * OK. However, internally (within mm/gup.c), gup fast variants must set 2686 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2687 * request. 2688 */ 2689 gup_flags |= FOLL_GET; 2690 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2691 } 2692 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2693 2694 /** 2695 * pin_user_pages_fast() - pin user pages in memory without taking locks 2696 * 2697 * @start: starting user address 2698 * @nr_pages: number of pages from start to pin 2699 * @gup_flags: flags modifying pin behaviour 2700 * @pages: array that receives pointers to the pages pinned. 2701 * Should be at least nr_pages long. 2702 * 2703 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2704 * get_user_pages_fast() for documentation on the function arguments, because 2705 * the arguments here are identical. 2706 * 2707 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2708 * see Documentation/core-api/pin_user_pages.rst for further details. 2709 */ 2710 int pin_user_pages_fast(unsigned long start, int nr_pages, 2711 unsigned int gup_flags, struct page **pages) 2712 { 2713 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2714 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2715 return -EINVAL; 2716 2717 gup_flags |= FOLL_PIN; 2718 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2719 } 2720 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2721 2722 /* 2723 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2724 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2725 * 2726 * The API rules are the same, too: no negative values may be returned. 2727 */ 2728 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2729 unsigned int gup_flags, struct page **pages) 2730 { 2731 int nr_pinned; 2732 2733 /* 2734 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2735 * rules require returning 0, rather than -errno: 2736 */ 2737 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2738 return 0; 2739 /* 2740 * FOLL_FAST_ONLY is required in order to match the API description of 2741 * this routine: no fall back to regular ("slow") GUP. 2742 */ 2743 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2744 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2745 pages); 2746 /* 2747 * This routine is not allowed to return negative values. However, 2748 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2749 * correct for that here: 2750 */ 2751 if (nr_pinned < 0) 2752 nr_pinned = 0; 2753 2754 return nr_pinned; 2755 } 2756 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2757 2758 /** 2759 * pin_user_pages_remote() - pin pages of a remote process 2760 * 2761 * @mm: mm_struct of target mm 2762 * @start: starting user address 2763 * @nr_pages: number of pages from start to pin 2764 * @gup_flags: flags modifying lookup behaviour 2765 * @pages: array that receives pointers to the pages pinned. 2766 * Should be at least nr_pages long. Or NULL, if caller 2767 * only intends to ensure the pages are faulted in. 2768 * @vmas: array of pointers to vmas corresponding to each page. 2769 * Or NULL if the caller does not require them. 2770 * @locked: pointer to lock flag indicating whether lock is held and 2771 * subsequently whether VM_FAULT_RETRY functionality can be 2772 * utilised. Lock must initially be held. 2773 * 2774 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2775 * get_user_pages_remote() for documentation on the function arguments, because 2776 * the arguments here are identical. 2777 * 2778 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2779 * see Documentation/core-api/pin_user_pages.rst for details. 2780 */ 2781 long pin_user_pages_remote(struct mm_struct *mm, 2782 unsigned long start, unsigned long nr_pages, 2783 unsigned int gup_flags, struct page **pages, 2784 struct vm_area_struct **vmas, int *locked) 2785 { 2786 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2787 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2788 return -EINVAL; 2789 2790 gup_flags |= FOLL_PIN; 2791 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2792 pages, vmas, locked); 2793 } 2794 EXPORT_SYMBOL(pin_user_pages_remote); 2795 2796 /** 2797 * pin_user_pages() - pin user pages in memory for use by other devices 2798 * 2799 * @start: starting user address 2800 * @nr_pages: number of pages from start to pin 2801 * @gup_flags: flags modifying lookup behaviour 2802 * @pages: array that receives pointers to the pages pinned. 2803 * Should be at least nr_pages long. Or NULL, if caller 2804 * only intends to ensure the pages are faulted in. 2805 * @vmas: array of pointers to vmas corresponding to each page. 2806 * Or NULL if the caller does not require them. 2807 * 2808 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2809 * FOLL_PIN is set. 2810 * 2811 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2812 * see Documentation/core-api/pin_user_pages.rst for details. 2813 */ 2814 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2815 unsigned int gup_flags, struct page **pages, 2816 struct vm_area_struct **vmas) 2817 { 2818 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2819 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2820 return -EINVAL; 2821 2822 gup_flags |= FOLL_PIN; 2823 return __gup_longterm_locked(current->mm, start, nr_pages, 2824 pages, vmas, gup_flags); 2825 } 2826 EXPORT_SYMBOL(pin_user_pages); 2827 2828 /* 2829 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2830 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2831 * FOLL_PIN and rejects FOLL_GET. 2832 */ 2833 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2834 struct page **pages, unsigned int gup_flags) 2835 { 2836 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2837 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2838 return -EINVAL; 2839 2840 gup_flags |= FOLL_PIN; 2841 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2842 } 2843 EXPORT_SYMBOL(pin_user_pages_unlocked); 2844 2845 /* 2846 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2847 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2848 * FOLL_GET. 2849 */ 2850 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2851 unsigned int gup_flags, struct page **pages, 2852 int *locked) 2853 { 2854 /* 2855 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2856 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2857 * vmas. As there are no users of this flag in this call we simply 2858 * disallow this option for now. 2859 */ 2860 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2861 return -EINVAL; 2862 2863 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2864 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2865 return -EINVAL; 2866 2867 gup_flags |= FOLL_PIN; 2868 return __get_user_pages_locked(current->mm, start, nr_pages, 2869 pages, NULL, locked, 2870 gup_flags | FOLL_TOUCH); 2871 } 2872 EXPORT_SYMBOL(pin_user_pages_locked); 2873