1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 static struct page *follow_page_pte(struct vm_area_struct *vma, 64 unsigned long address, pmd_t *pmd, unsigned int flags) 65 { 66 struct mm_struct *mm = vma->vm_mm; 67 struct dev_pagemap *pgmap = NULL; 68 struct page *page; 69 spinlock_t *ptl; 70 pte_t *ptep, pte; 71 72 retry: 73 if (unlikely(pmd_bad(*pmd))) 74 return no_page_table(vma, flags); 75 76 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 77 pte = *ptep; 78 if (!pte_present(pte)) { 79 swp_entry_t entry; 80 /* 81 * KSM's break_ksm() relies upon recognizing a ksm page 82 * even while it is being migrated, so for that case we 83 * need migration_entry_wait(). 84 */ 85 if (likely(!(flags & FOLL_MIGRATION))) 86 goto no_page; 87 if (pte_none(pte)) 88 goto no_page; 89 entry = pte_to_swp_entry(pte); 90 if (!is_migration_entry(entry)) 91 goto no_page; 92 pte_unmap_unlock(ptep, ptl); 93 migration_entry_wait(mm, pmd, address); 94 goto retry; 95 } 96 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 97 goto no_page; 98 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 99 pte_unmap_unlock(ptep, ptl); 100 return NULL; 101 } 102 103 page = vm_normal_page(vma, address, pte); 104 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 105 /* 106 * Only return device mapping pages in the FOLL_GET case since 107 * they are only valid while holding the pgmap reference. 108 */ 109 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 110 if (pgmap) 111 page = pte_page(pte); 112 else 113 goto no_page; 114 } else if (unlikely(!page)) { 115 if (flags & FOLL_DUMP) { 116 /* Avoid special (like zero) pages in core dumps */ 117 page = ERR_PTR(-EFAULT); 118 goto out; 119 } 120 121 if (is_zero_pfn(pte_pfn(pte))) { 122 page = pte_page(pte); 123 } else { 124 int ret; 125 126 ret = follow_pfn_pte(vma, address, ptep, flags); 127 page = ERR_PTR(ret); 128 goto out; 129 } 130 } 131 132 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 133 int ret; 134 get_page(page); 135 pte_unmap_unlock(ptep, ptl); 136 lock_page(page); 137 ret = split_huge_page(page); 138 unlock_page(page); 139 put_page(page); 140 if (ret) 141 return ERR_PTR(ret); 142 goto retry; 143 } 144 145 if (flags & FOLL_GET) { 146 get_page(page); 147 148 /* drop the pgmap reference now that we hold the page */ 149 if (pgmap) { 150 put_dev_pagemap(pgmap); 151 pgmap = NULL; 152 } 153 } 154 if (flags & FOLL_TOUCH) { 155 if ((flags & FOLL_WRITE) && 156 !pte_dirty(pte) && !PageDirty(page)) 157 set_page_dirty(page); 158 /* 159 * pte_mkyoung() would be more correct here, but atomic care 160 * is needed to avoid losing the dirty bit: it is easier to use 161 * mark_page_accessed(). 162 */ 163 mark_page_accessed(page); 164 } 165 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 166 /* Do not mlock pte-mapped THP */ 167 if (PageTransCompound(page)) 168 goto out; 169 170 /* 171 * The preliminary mapping check is mainly to avoid the 172 * pointless overhead of lock_page on the ZERO_PAGE 173 * which might bounce very badly if there is contention. 174 * 175 * If the page is already locked, we don't need to 176 * handle it now - vmscan will handle it later if and 177 * when it attempts to reclaim the page. 178 */ 179 if (page->mapping && trylock_page(page)) { 180 lru_add_drain(); /* push cached pages to LRU */ 181 /* 182 * Because we lock page here, and migration is 183 * blocked by the pte's page reference, and we 184 * know the page is still mapped, we don't even 185 * need to check for file-cache page truncation. 186 */ 187 mlock_vma_page(page); 188 unlock_page(page); 189 } 190 } 191 out: 192 pte_unmap_unlock(ptep, ptl); 193 return page; 194 no_page: 195 pte_unmap_unlock(ptep, ptl); 196 if (!pte_none(pte)) 197 return NULL; 198 return no_page_table(vma, flags); 199 } 200 201 /** 202 * follow_page_mask - look up a page descriptor from a user-virtual address 203 * @vma: vm_area_struct mapping @address 204 * @address: virtual address to look up 205 * @flags: flags modifying lookup behaviour 206 * @page_mask: on output, *page_mask is set according to the size of the page 207 * 208 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 209 * 210 * Returns the mapped (struct page *), %NULL if no mapping exists, or 211 * an error pointer if there is a mapping to something not represented 212 * by a page descriptor (see also vm_normal_page()). 213 */ 214 struct page *follow_page_mask(struct vm_area_struct *vma, 215 unsigned long address, unsigned int flags, 216 unsigned int *page_mask) 217 { 218 pgd_t *pgd; 219 pud_t *pud; 220 pmd_t *pmd; 221 spinlock_t *ptl; 222 struct page *page; 223 struct mm_struct *mm = vma->vm_mm; 224 225 *page_mask = 0; 226 227 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 228 if (!IS_ERR(page)) { 229 BUG_ON(flags & FOLL_GET); 230 return page; 231 } 232 233 pgd = pgd_offset(mm, address); 234 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 235 return no_page_table(vma, flags); 236 237 pud = pud_offset(pgd, address); 238 if (pud_none(*pud)) 239 return no_page_table(vma, flags); 240 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 241 page = follow_huge_pud(mm, address, pud, flags); 242 if (page) 243 return page; 244 return no_page_table(vma, flags); 245 } 246 if (unlikely(pud_bad(*pud))) 247 return no_page_table(vma, flags); 248 249 pmd = pmd_offset(pud, address); 250 if (pmd_none(*pmd)) 251 return no_page_table(vma, flags); 252 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 253 page = follow_huge_pmd(mm, address, pmd, flags); 254 if (page) 255 return page; 256 return no_page_table(vma, flags); 257 } 258 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 259 return no_page_table(vma, flags); 260 if (pmd_devmap(*pmd)) { 261 ptl = pmd_lock(mm, pmd); 262 page = follow_devmap_pmd(vma, address, pmd, flags); 263 spin_unlock(ptl); 264 if (page) 265 return page; 266 } 267 if (likely(!pmd_trans_huge(*pmd))) 268 return follow_page_pte(vma, address, pmd, flags); 269 270 ptl = pmd_lock(mm, pmd); 271 if (unlikely(!pmd_trans_huge(*pmd))) { 272 spin_unlock(ptl); 273 return follow_page_pte(vma, address, pmd, flags); 274 } 275 if (flags & FOLL_SPLIT) { 276 int ret; 277 page = pmd_page(*pmd); 278 if (is_huge_zero_page(page)) { 279 spin_unlock(ptl); 280 ret = 0; 281 split_huge_pmd(vma, pmd, address); 282 } else { 283 get_page(page); 284 spin_unlock(ptl); 285 lock_page(page); 286 ret = split_huge_page(page); 287 unlock_page(page); 288 put_page(page); 289 } 290 291 return ret ? ERR_PTR(ret) : 292 follow_page_pte(vma, address, pmd, flags); 293 } 294 295 page = follow_trans_huge_pmd(vma, address, pmd, flags); 296 spin_unlock(ptl); 297 *page_mask = HPAGE_PMD_NR - 1; 298 return page; 299 } 300 301 static int get_gate_page(struct mm_struct *mm, unsigned long address, 302 unsigned int gup_flags, struct vm_area_struct **vma, 303 struct page **page) 304 { 305 pgd_t *pgd; 306 pud_t *pud; 307 pmd_t *pmd; 308 pte_t *pte; 309 int ret = -EFAULT; 310 311 /* user gate pages are read-only */ 312 if (gup_flags & FOLL_WRITE) 313 return -EFAULT; 314 if (address > TASK_SIZE) 315 pgd = pgd_offset_k(address); 316 else 317 pgd = pgd_offset_gate(mm, address); 318 BUG_ON(pgd_none(*pgd)); 319 pud = pud_offset(pgd, address); 320 BUG_ON(pud_none(*pud)); 321 pmd = pmd_offset(pud, address); 322 if (pmd_none(*pmd)) 323 return -EFAULT; 324 VM_BUG_ON(pmd_trans_huge(*pmd)); 325 pte = pte_offset_map(pmd, address); 326 if (pte_none(*pte)) 327 goto unmap; 328 *vma = get_gate_vma(mm); 329 if (!page) 330 goto out; 331 *page = vm_normal_page(*vma, address, *pte); 332 if (!*page) { 333 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 334 goto unmap; 335 *page = pte_page(*pte); 336 } 337 get_page(*page); 338 out: 339 ret = 0; 340 unmap: 341 pte_unmap(pte); 342 return ret; 343 } 344 345 /* 346 * mmap_sem must be held on entry. If @nonblocking != NULL and 347 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 348 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 349 */ 350 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 351 unsigned long address, unsigned int *flags, int *nonblocking) 352 { 353 struct mm_struct *mm = vma->vm_mm; 354 unsigned int fault_flags = 0; 355 int ret; 356 357 /* mlock all present pages, but do not fault in new pages */ 358 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 359 return -ENOENT; 360 /* For mm_populate(), just skip the stack guard page. */ 361 if ((*flags & FOLL_POPULATE) && 362 (stack_guard_page_start(vma, address) || 363 stack_guard_page_end(vma, address + PAGE_SIZE))) 364 return -ENOENT; 365 if (*flags & FOLL_WRITE) 366 fault_flags |= FAULT_FLAG_WRITE; 367 if (*flags & FOLL_REMOTE) 368 fault_flags |= FAULT_FLAG_REMOTE; 369 if (nonblocking) 370 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 371 if (*flags & FOLL_NOWAIT) 372 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 373 if (*flags & FOLL_TRIED) { 374 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 375 fault_flags |= FAULT_FLAG_TRIED; 376 } 377 378 ret = handle_mm_fault(mm, vma, address, fault_flags); 379 if (ret & VM_FAULT_ERROR) { 380 if (ret & VM_FAULT_OOM) 381 return -ENOMEM; 382 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 383 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 384 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 385 return -EFAULT; 386 BUG(); 387 } 388 389 if (tsk) { 390 if (ret & VM_FAULT_MAJOR) 391 tsk->maj_flt++; 392 else 393 tsk->min_flt++; 394 } 395 396 if (ret & VM_FAULT_RETRY) { 397 if (nonblocking) 398 *nonblocking = 0; 399 return -EBUSY; 400 } 401 402 /* 403 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 404 * necessary, even if maybe_mkwrite decided not to set pte_write. We 405 * can thus safely do subsequent page lookups as if they were reads. 406 * But only do so when looping for pte_write is futile: in some cases 407 * userspace may also be wanting to write to the gotten user page, 408 * which a read fault here might prevent (a readonly page might get 409 * reCOWed by userspace write). 410 */ 411 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 412 *flags &= ~FOLL_WRITE; 413 return 0; 414 } 415 416 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 417 { 418 vm_flags_t vm_flags = vma->vm_flags; 419 int write = (gup_flags & FOLL_WRITE); 420 int foreign = (gup_flags & FOLL_REMOTE); 421 422 if (vm_flags & (VM_IO | VM_PFNMAP)) 423 return -EFAULT; 424 425 if (write) { 426 if (!(vm_flags & VM_WRITE)) { 427 if (!(gup_flags & FOLL_FORCE)) 428 return -EFAULT; 429 /* 430 * We used to let the write,force case do COW in a 431 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 432 * set a breakpoint in a read-only mapping of an 433 * executable, without corrupting the file (yet only 434 * when that file had been opened for writing!). 435 * Anon pages in shared mappings are surprising: now 436 * just reject it. 437 */ 438 if (!is_cow_mapping(vm_flags)) 439 return -EFAULT; 440 } 441 } else if (!(vm_flags & VM_READ)) { 442 if (!(gup_flags & FOLL_FORCE)) 443 return -EFAULT; 444 /* 445 * Is there actually any vma we can reach here which does not 446 * have VM_MAYREAD set? 447 */ 448 if (!(vm_flags & VM_MAYREAD)) 449 return -EFAULT; 450 } 451 /* 452 * gups are always data accesses, not instruction 453 * fetches, so execute=false here 454 */ 455 if (!arch_vma_access_permitted(vma, write, false, foreign)) 456 return -EFAULT; 457 return 0; 458 } 459 460 /** 461 * __get_user_pages() - pin user pages in memory 462 * @tsk: task_struct of target task 463 * @mm: mm_struct of target mm 464 * @start: starting user address 465 * @nr_pages: number of pages from start to pin 466 * @gup_flags: flags modifying pin behaviour 467 * @pages: array that receives pointers to the pages pinned. 468 * Should be at least nr_pages long. Or NULL, if caller 469 * only intends to ensure the pages are faulted in. 470 * @vmas: array of pointers to vmas corresponding to each page. 471 * Or NULL if the caller does not require them. 472 * @nonblocking: whether waiting for disk IO or mmap_sem contention 473 * 474 * Returns number of pages pinned. This may be fewer than the number 475 * requested. If nr_pages is 0 or negative, returns 0. If no pages 476 * were pinned, returns -errno. Each page returned must be released 477 * with a put_page() call when it is finished with. vmas will only 478 * remain valid while mmap_sem is held. 479 * 480 * Must be called with mmap_sem held. It may be released. See below. 481 * 482 * __get_user_pages walks a process's page tables and takes a reference to 483 * each struct page that each user address corresponds to at a given 484 * instant. That is, it takes the page that would be accessed if a user 485 * thread accesses the given user virtual address at that instant. 486 * 487 * This does not guarantee that the page exists in the user mappings when 488 * __get_user_pages returns, and there may even be a completely different 489 * page there in some cases (eg. if mmapped pagecache has been invalidated 490 * and subsequently re faulted). However it does guarantee that the page 491 * won't be freed completely. And mostly callers simply care that the page 492 * contains data that was valid *at some point in time*. Typically, an IO 493 * or similar operation cannot guarantee anything stronger anyway because 494 * locks can't be held over the syscall boundary. 495 * 496 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 497 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 498 * appropriate) must be called after the page is finished with, and 499 * before put_page is called. 500 * 501 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 502 * or mmap_sem contention, and if waiting is needed to pin all pages, 503 * *@nonblocking will be set to 0. Further, if @gup_flags does not 504 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 505 * this case. 506 * 507 * A caller using such a combination of @nonblocking and @gup_flags 508 * must therefore hold the mmap_sem for reading only, and recognize 509 * when it's been released. Otherwise, it must be held for either 510 * reading or writing and will not be released. 511 * 512 * In most cases, get_user_pages or get_user_pages_fast should be used 513 * instead of __get_user_pages. __get_user_pages should be used only if 514 * you need some special @gup_flags. 515 */ 516 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 517 unsigned long start, unsigned long nr_pages, 518 unsigned int gup_flags, struct page **pages, 519 struct vm_area_struct **vmas, int *nonblocking) 520 { 521 long i = 0; 522 unsigned int page_mask; 523 struct vm_area_struct *vma = NULL; 524 525 if (!nr_pages) 526 return 0; 527 528 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 529 530 /* 531 * If FOLL_FORCE is set then do not force a full fault as the hinting 532 * fault information is unrelated to the reference behaviour of a task 533 * using the address space 534 */ 535 if (!(gup_flags & FOLL_FORCE)) 536 gup_flags |= FOLL_NUMA; 537 538 do { 539 struct page *page; 540 unsigned int foll_flags = gup_flags; 541 unsigned int page_increm; 542 543 /* first iteration or cross vma bound */ 544 if (!vma || start >= vma->vm_end) { 545 vma = find_extend_vma(mm, start); 546 if (!vma && in_gate_area(mm, start)) { 547 int ret; 548 ret = get_gate_page(mm, start & PAGE_MASK, 549 gup_flags, &vma, 550 pages ? &pages[i] : NULL); 551 if (ret) 552 return i ? : ret; 553 page_mask = 0; 554 goto next_page; 555 } 556 557 if (!vma || check_vma_flags(vma, gup_flags)) 558 return i ? : -EFAULT; 559 if (is_vm_hugetlb_page(vma)) { 560 i = follow_hugetlb_page(mm, vma, pages, vmas, 561 &start, &nr_pages, i, 562 gup_flags); 563 continue; 564 } 565 } 566 retry: 567 /* 568 * If we have a pending SIGKILL, don't keep faulting pages and 569 * potentially allocating memory. 570 */ 571 if (unlikely(fatal_signal_pending(current))) 572 return i ? i : -ERESTARTSYS; 573 cond_resched(); 574 page = follow_page_mask(vma, start, foll_flags, &page_mask); 575 if (!page) { 576 int ret; 577 ret = faultin_page(tsk, vma, start, &foll_flags, 578 nonblocking); 579 switch (ret) { 580 case 0: 581 goto retry; 582 case -EFAULT: 583 case -ENOMEM: 584 case -EHWPOISON: 585 return i ? i : ret; 586 case -EBUSY: 587 return i; 588 case -ENOENT: 589 goto next_page; 590 } 591 BUG(); 592 } else if (PTR_ERR(page) == -EEXIST) { 593 /* 594 * Proper page table entry exists, but no corresponding 595 * struct page. 596 */ 597 goto next_page; 598 } else if (IS_ERR(page)) { 599 return i ? i : PTR_ERR(page); 600 } 601 if (pages) { 602 pages[i] = page; 603 flush_anon_page(vma, page, start); 604 flush_dcache_page(page); 605 page_mask = 0; 606 } 607 next_page: 608 if (vmas) { 609 vmas[i] = vma; 610 page_mask = 0; 611 } 612 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 613 if (page_increm > nr_pages) 614 page_increm = nr_pages; 615 i += page_increm; 616 start += page_increm * PAGE_SIZE; 617 nr_pages -= page_increm; 618 } while (nr_pages); 619 return i; 620 } 621 EXPORT_SYMBOL(__get_user_pages); 622 623 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags) 624 { 625 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 626 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 627 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 628 629 if (!(vm_flags & vma->vm_flags)) 630 return false; 631 632 /* 633 * The architecture might have a hardware protection 634 * mechanism other than read/write that can deny access. 635 * 636 * gup always represents data access, not instruction 637 * fetches, so execute=false here: 638 */ 639 if (!arch_vma_access_permitted(vma, write, false, foreign)) 640 return false; 641 642 return true; 643 } 644 645 /* 646 * fixup_user_fault() - manually resolve a user page fault 647 * @tsk: the task_struct to use for page fault accounting, or 648 * NULL if faults are not to be recorded. 649 * @mm: mm_struct of target mm 650 * @address: user address 651 * @fault_flags:flags to pass down to handle_mm_fault() 652 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 653 * does not allow retry 654 * 655 * This is meant to be called in the specific scenario where for locking reasons 656 * we try to access user memory in atomic context (within a pagefault_disable() 657 * section), this returns -EFAULT, and we want to resolve the user fault before 658 * trying again. 659 * 660 * Typically this is meant to be used by the futex code. 661 * 662 * The main difference with get_user_pages() is that this function will 663 * unconditionally call handle_mm_fault() which will in turn perform all the 664 * necessary SW fixup of the dirty and young bits in the PTE, while 665 * get_user_pages() only guarantees to update these in the struct page. 666 * 667 * This is important for some architectures where those bits also gate the 668 * access permission to the page because they are maintained in software. On 669 * such architectures, gup() will not be enough to make a subsequent access 670 * succeed. 671 * 672 * This function will not return with an unlocked mmap_sem. So it has not the 673 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 674 */ 675 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 676 unsigned long address, unsigned int fault_flags, 677 bool *unlocked) 678 { 679 struct vm_area_struct *vma; 680 int ret, major = 0; 681 682 if (unlocked) 683 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 684 685 retry: 686 vma = find_extend_vma(mm, address); 687 if (!vma || address < vma->vm_start) 688 return -EFAULT; 689 690 if (!vma_permits_fault(vma, fault_flags)) 691 return -EFAULT; 692 693 ret = handle_mm_fault(mm, vma, address, fault_flags); 694 major |= ret & VM_FAULT_MAJOR; 695 if (ret & VM_FAULT_ERROR) { 696 if (ret & VM_FAULT_OOM) 697 return -ENOMEM; 698 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 699 return -EHWPOISON; 700 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 701 return -EFAULT; 702 BUG(); 703 } 704 705 if (ret & VM_FAULT_RETRY) { 706 down_read(&mm->mmap_sem); 707 if (!(fault_flags & FAULT_FLAG_TRIED)) { 708 *unlocked = true; 709 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 710 fault_flags |= FAULT_FLAG_TRIED; 711 goto retry; 712 } 713 } 714 715 if (tsk) { 716 if (major) 717 tsk->maj_flt++; 718 else 719 tsk->min_flt++; 720 } 721 return 0; 722 } 723 724 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 725 struct mm_struct *mm, 726 unsigned long start, 727 unsigned long nr_pages, 728 int write, int force, 729 struct page **pages, 730 struct vm_area_struct **vmas, 731 int *locked, bool notify_drop, 732 unsigned int flags) 733 { 734 long ret, pages_done; 735 bool lock_dropped; 736 737 if (locked) { 738 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 739 BUG_ON(vmas); 740 /* check caller initialized locked */ 741 BUG_ON(*locked != 1); 742 } 743 744 if (pages) 745 flags |= FOLL_GET; 746 if (write) 747 flags |= FOLL_WRITE; 748 if (force) 749 flags |= FOLL_FORCE; 750 751 pages_done = 0; 752 lock_dropped = false; 753 for (;;) { 754 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 755 vmas, locked); 756 if (!locked) 757 /* VM_FAULT_RETRY couldn't trigger, bypass */ 758 return ret; 759 760 /* VM_FAULT_RETRY cannot return errors */ 761 if (!*locked) { 762 BUG_ON(ret < 0); 763 BUG_ON(ret >= nr_pages); 764 } 765 766 if (!pages) 767 /* If it's a prefault don't insist harder */ 768 return ret; 769 770 if (ret > 0) { 771 nr_pages -= ret; 772 pages_done += ret; 773 if (!nr_pages) 774 break; 775 } 776 if (*locked) { 777 /* VM_FAULT_RETRY didn't trigger */ 778 if (!pages_done) 779 pages_done = ret; 780 break; 781 } 782 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 783 pages += ret; 784 start += ret << PAGE_SHIFT; 785 786 /* 787 * Repeat on the address that fired VM_FAULT_RETRY 788 * without FAULT_FLAG_ALLOW_RETRY but with 789 * FAULT_FLAG_TRIED. 790 */ 791 *locked = 1; 792 lock_dropped = true; 793 down_read(&mm->mmap_sem); 794 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 795 pages, NULL, NULL); 796 if (ret != 1) { 797 BUG_ON(ret > 1); 798 if (!pages_done) 799 pages_done = ret; 800 break; 801 } 802 nr_pages--; 803 pages_done++; 804 if (!nr_pages) 805 break; 806 pages++; 807 start += PAGE_SIZE; 808 } 809 if (notify_drop && lock_dropped && *locked) { 810 /* 811 * We must let the caller know we temporarily dropped the lock 812 * and so the critical section protected by it was lost. 813 */ 814 up_read(&mm->mmap_sem); 815 *locked = 0; 816 } 817 return pages_done; 818 } 819 820 /* 821 * We can leverage the VM_FAULT_RETRY functionality in the page fault 822 * paths better by using either get_user_pages_locked() or 823 * get_user_pages_unlocked(). 824 * 825 * get_user_pages_locked() is suitable to replace the form: 826 * 827 * down_read(&mm->mmap_sem); 828 * do_something() 829 * get_user_pages(tsk, mm, ..., pages, NULL); 830 * up_read(&mm->mmap_sem); 831 * 832 * to: 833 * 834 * int locked = 1; 835 * down_read(&mm->mmap_sem); 836 * do_something() 837 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 838 * if (locked) 839 * up_read(&mm->mmap_sem); 840 */ 841 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 842 int write, int force, struct page **pages, 843 int *locked) 844 { 845 return __get_user_pages_locked(current, current->mm, start, nr_pages, 846 write, force, pages, NULL, locked, true, 847 FOLL_TOUCH); 848 } 849 EXPORT_SYMBOL(get_user_pages_locked); 850 851 /* 852 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to 853 * pass additional gup_flags as last parameter (like FOLL_HWPOISON). 854 * 855 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 856 * caller if required (just like with __get_user_pages). "FOLL_GET", 857 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed 858 * according to the parameters "pages", "write", "force" 859 * respectively. 860 */ 861 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 862 unsigned long start, unsigned long nr_pages, 863 int write, int force, struct page **pages, 864 unsigned int gup_flags) 865 { 866 long ret; 867 int locked = 1; 868 down_read(&mm->mmap_sem); 869 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 870 pages, NULL, &locked, false, gup_flags); 871 if (locked) 872 up_read(&mm->mmap_sem); 873 return ret; 874 } 875 EXPORT_SYMBOL(__get_user_pages_unlocked); 876 877 /* 878 * get_user_pages_unlocked() is suitable to replace the form: 879 * 880 * down_read(&mm->mmap_sem); 881 * get_user_pages(tsk, mm, ..., pages, NULL); 882 * up_read(&mm->mmap_sem); 883 * 884 * with: 885 * 886 * get_user_pages_unlocked(tsk, mm, ..., pages); 887 * 888 * It is functionally equivalent to get_user_pages_fast so 889 * get_user_pages_fast should be used instead, if the two parameters 890 * "tsk" and "mm" are respectively equal to current and current->mm, 891 * or if "force" shall be set to 1 (get_user_pages_fast misses the 892 * "force" parameter). 893 */ 894 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 895 int write, int force, struct page **pages) 896 { 897 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 898 write, force, pages, FOLL_TOUCH); 899 } 900 EXPORT_SYMBOL(get_user_pages_unlocked); 901 902 /* 903 * get_user_pages_remote() - pin user pages in memory 904 * @tsk: the task_struct to use for page fault accounting, or 905 * NULL if faults are not to be recorded. 906 * @mm: mm_struct of target mm 907 * @start: starting user address 908 * @nr_pages: number of pages from start to pin 909 * @write: whether pages will be written to by the caller 910 * @force: whether to force access even when user mapping is currently 911 * protected (but never forces write access to shared mapping). 912 * @pages: array that receives pointers to the pages pinned. 913 * Should be at least nr_pages long. Or NULL, if caller 914 * only intends to ensure the pages are faulted in. 915 * @vmas: array of pointers to vmas corresponding to each page. 916 * Or NULL if the caller does not require them. 917 * 918 * Returns number of pages pinned. This may be fewer than the number 919 * requested. If nr_pages is 0 or negative, returns 0. If no pages 920 * were pinned, returns -errno. Each page returned must be released 921 * with a put_page() call when it is finished with. vmas will only 922 * remain valid while mmap_sem is held. 923 * 924 * Must be called with mmap_sem held for read or write. 925 * 926 * get_user_pages walks a process's page tables and takes a reference to 927 * each struct page that each user address corresponds to at a given 928 * instant. That is, it takes the page that would be accessed if a user 929 * thread accesses the given user virtual address at that instant. 930 * 931 * This does not guarantee that the page exists in the user mappings when 932 * get_user_pages returns, and there may even be a completely different 933 * page there in some cases (eg. if mmapped pagecache has been invalidated 934 * and subsequently re faulted). However it does guarantee that the page 935 * won't be freed completely. And mostly callers simply care that the page 936 * contains data that was valid *at some point in time*. Typically, an IO 937 * or similar operation cannot guarantee anything stronger anyway because 938 * locks can't be held over the syscall boundary. 939 * 940 * If write=0, the page must not be written to. If the page is written to, 941 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 942 * after the page is finished with, and before put_page is called. 943 * 944 * get_user_pages is typically used for fewer-copy IO operations, to get a 945 * handle on the memory by some means other than accesses via the user virtual 946 * addresses. The pages may be submitted for DMA to devices or accessed via 947 * their kernel linear mapping (via the kmap APIs). Care should be taken to 948 * use the correct cache flushing APIs. 949 * 950 * See also get_user_pages_fast, for performance critical applications. 951 * 952 * get_user_pages should be phased out in favor of 953 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 954 * should use get_user_pages because it cannot pass 955 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 956 */ 957 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 958 unsigned long start, unsigned long nr_pages, 959 int write, int force, struct page **pages, 960 struct vm_area_struct **vmas) 961 { 962 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 963 pages, vmas, NULL, false, 964 FOLL_TOUCH | FOLL_REMOTE); 965 } 966 EXPORT_SYMBOL(get_user_pages_remote); 967 968 /* 969 * This is the same as get_user_pages_remote(), just with a 970 * less-flexible calling convention where we assume that the task 971 * and mm being operated on are the current task's. We also 972 * obviously don't pass FOLL_REMOTE in here. 973 */ 974 long get_user_pages(unsigned long start, unsigned long nr_pages, 975 int write, int force, struct page **pages, 976 struct vm_area_struct **vmas) 977 { 978 return __get_user_pages_locked(current, current->mm, start, nr_pages, 979 write, force, pages, vmas, NULL, false, 980 FOLL_TOUCH); 981 } 982 EXPORT_SYMBOL(get_user_pages); 983 984 /** 985 * populate_vma_page_range() - populate a range of pages in the vma. 986 * @vma: target vma 987 * @start: start address 988 * @end: end address 989 * @nonblocking: 990 * 991 * This takes care of mlocking the pages too if VM_LOCKED is set. 992 * 993 * return 0 on success, negative error code on error. 994 * 995 * vma->vm_mm->mmap_sem must be held. 996 * 997 * If @nonblocking is NULL, it may be held for read or write and will 998 * be unperturbed. 999 * 1000 * If @nonblocking is non-NULL, it must held for read only and may be 1001 * released. If it's released, *@nonblocking will be set to 0. 1002 */ 1003 long populate_vma_page_range(struct vm_area_struct *vma, 1004 unsigned long start, unsigned long end, int *nonblocking) 1005 { 1006 struct mm_struct *mm = vma->vm_mm; 1007 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1008 int gup_flags; 1009 1010 VM_BUG_ON(start & ~PAGE_MASK); 1011 VM_BUG_ON(end & ~PAGE_MASK); 1012 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1013 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1014 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1015 1016 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1017 if (vma->vm_flags & VM_LOCKONFAULT) 1018 gup_flags &= ~FOLL_POPULATE; 1019 /* 1020 * We want to touch writable mappings with a write fault in order 1021 * to break COW, except for shared mappings because these don't COW 1022 * and we would not want to dirty them for nothing. 1023 */ 1024 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1025 gup_flags |= FOLL_WRITE; 1026 1027 /* 1028 * We want mlock to succeed for regions that have any permissions 1029 * other than PROT_NONE. 1030 */ 1031 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1032 gup_flags |= FOLL_FORCE; 1033 1034 /* 1035 * We made sure addr is within a VMA, so the following will 1036 * not result in a stack expansion that recurses back here. 1037 */ 1038 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1039 NULL, NULL, nonblocking); 1040 } 1041 1042 /* 1043 * __mm_populate - populate and/or mlock pages within a range of address space. 1044 * 1045 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1046 * flags. VMAs must be already marked with the desired vm_flags, and 1047 * mmap_sem must not be held. 1048 */ 1049 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1050 { 1051 struct mm_struct *mm = current->mm; 1052 unsigned long end, nstart, nend; 1053 struct vm_area_struct *vma = NULL; 1054 int locked = 0; 1055 long ret = 0; 1056 1057 VM_BUG_ON(start & ~PAGE_MASK); 1058 VM_BUG_ON(len != PAGE_ALIGN(len)); 1059 end = start + len; 1060 1061 for (nstart = start; nstart < end; nstart = nend) { 1062 /* 1063 * We want to fault in pages for [nstart; end) address range. 1064 * Find first corresponding VMA. 1065 */ 1066 if (!locked) { 1067 locked = 1; 1068 down_read(&mm->mmap_sem); 1069 vma = find_vma(mm, nstart); 1070 } else if (nstart >= vma->vm_end) 1071 vma = vma->vm_next; 1072 if (!vma || vma->vm_start >= end) 1073 break; 1074 /* 1075 * Set [nstart; nend) to intersection of desired address 1076 * range with the first VMA. Also, skip undesirable VMA types. 1077 */ 1078 nend = min(end, vma->vm_end); 1079 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1080 continue; 1081 if (nstart < vma->vm_start) 1082 nstart = vma->vm_start; 1083 /* 1084 * Now fault in a range of pages. populate_vma_page_range() 1085 * double checks the vma flags, so that it won't mlock pages 1086 * if the vma was already munlocked. 1087 */ 1088 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1089 if (ret < 0) { 1090 if (ignore_errors) { 1091 ret = 0; 1092 continue; /* continue at next VMA */ 1093 } 1094 break; 1095 } 1096 nend = nstart + ret * PAGE_SIZE; 1097 ret = 0; 1098 } 1099 if (locked) 1100 up_read(&mm->mmap_sem); 1101 return ret; /* 0 or negative error code */ 1102 } 1103 1104 /** 1105 * get_dump_page() - pin user page in memory while writing it to core dump 1106 * @addr: user address 1107 * 1108 * Returns struct page pointer of user page pinned for dump, 1109 * to be freed afterwards by put_page(). 1110 * 1111 * Returns NULL on any kind of failure - a hole must then be inserted into 1112 * the corefile, to preserve alignment with its headers; and also returns 1113 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1114 * allowing a hole to be left in the corefile to save diskspace. 1115 * 1116 * Called without mmap_sem, but after all other threads have been killed. 1117 */ 1118 #ifdef CONFIG_ELF_CORE 1119 struct page *get_dump_page(unsigned long addr) 1120 { 1121 struct vm_area_struct *vma; 1122 struct page *page; 1123 1124 if (__get_user_pages(current, current->mm, addr, 1, 1125 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1126 NULL) < 1) 1127 return NULL; 1128 flush_cache_page(vma, addr, page_to_pfn(page)); 1129 return page; 1130 } 1131 #endif /* CONFIG_ELF_CORE */ 1132 1133 /* 1134 * Generic RCU Fast GUP 1135 * 1136 * get_user_pages_fast attempts to pin user pages by walking the page 1137 * tables directly and avoids taking locks. Thus the walker needs to be 1138 * protected from page table pages being freed from under it, and should 1139 * block any THP splits. 1140 * 1141 * One way to achieve this is to have the walker disable interrupts, and 1142 * rely on IPIs from the TLB flushing code blocking before the page table 1143 * pages are freed. This is unsuitable for architectures that do not need 1144 * to broadcast an IPI when invalidating TLBs. 1145 * 1146 * Another way to achieve this is to batch up page table containing pages 1147 * belonging to more than one mm_user, then rcu_sched a callback to free those 1148 * pages. Disabling interrupts will allow the fast_gup walker to both block 1149 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1150 * (which is a relatively rare event). The code below adopts this strategy. 1151 * 1152 * Before activating this code, please be aware that the following assumptions 1153 * are currently made: 1154 * 1155 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 1156 * pages containing page tables. 1157 * 1158 * *) ptes can be read atomically by the architecture. 1159 * 1160 * *) access_ok is sufficient to validate userspace address ranges. 1161 * 1162 * The last two assumptions can be relaxed by the addition of helper functions. 1163 * 1164 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1165 */ 1166 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1167 1168 #ifdef __HAVE_ARCH_PTE_SPECIAL 1169 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1170 int write, struct page **pages, int *nr) 1171 { 1172 pte_t *ptep, *ptem; 1173 int ret = 0; 1174 1175 ptem = ptep = pte_offset_map(&pmd, addr); 1176 do { 1177 /* 1178 * In the line below we are assuming that the pte can be read 1179 * atomically. If this is not the case for your architecture, 1180 * please wrap this in a helper function! 1181 * 1182 * for an example see gup_get_pte in arch/x86/mm/gup.c 1183 */ 1184 pte_t pte = READ_ONCE(*ptep); 1185 struct page *head, *page; 1186 1187 /* 1188 * Similar to the PMD case below, NUMA hinting must take slow 1189 * path using the pte_protnone check. 1190 */ 1191 if (!pte_present(pte) || pte_special(pte) || 1192 pte_protnone(pte) || (write && !pte_write(pte))) 1193 goto pte_unmap; 1194 1195 if (!arch_pte_access_permitted(pte, write)) 1196 goto pte_unmap; 1197 1198 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1199 page = pte_page(pte); 1200 head = compound_head(page); 1201 1202 if (!page_cache_get_speculative(head)) 1203 goto pte_unmap; 1204 1205 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1206 put_page(head); 1207 goto pte_unmap; 1208 } 1209 1210 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1211 pages[*nr] = page; 1212 (*nr)++; 1213 1214 } while (ptep++, addr += PAGE_SIZE, addr != end); 1215 1216 ret = 1; 1217 1218 pte_unmap: 1219 pte_unmap(ptem); 1220 return ret; 1221 } 1222 #else 1223 1224 /* 1225 * If we can't determine whether or not a pte is special, then fail immediately 1226 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1227 * to be special. 1228 * 1229 * For a futex to be placed on a THP tail page, get_futex_key requires a 1230 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1231 * useful to have gup_huge_pmd even if we can't operate on ptes. 1232 */ 1233 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1234 int write, struct page **pages, int *nr) 1235 { 1236 return 0; 1237 } 1238 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1239 1240 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1241 unsigned long end, int write, struct page **pages, int *nr) 1242 { 1243 struct page *head, *page; 1244 int refs; 1245 1246 if (write && !pmd_write(orig)) 1247 return 0; 1248 1249 refs = 0; 1250 head = pmd_page(orig); 1251 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1252 do { 1253 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1254 pages[*nr] = page; 1255 (*nr)++; 1256 page++; 1257 refs++; 1258 } while (addr += PAGE_SIZE, addr != end); 1259 1260 if (!page_cache_add_speculative(head, refs)) { 1261 *nr -= refs; 1262 return 0; 1263 } 1264 1265 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1266 *nr -= refs; 1267 while (refs--) 1268 put_page(head); 1269 return 0; 1270 } 1271 1272 return 1; 1273 } 1274 1275 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1276 unsigned long end, int write, struct page **pages, int *nr) 1277 { 1278 struct page *head, *page; 1279 int refs; 1280 1281 if (write && !pud_write(orig)) 1282 return 0; 1283 1284 refs = 0; 1285 head = pud_page(orig); 1286 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1287 do { 1288 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1289 pages[*nr] = page; 1290 (*nr)++; 1291 page++; 1292 refs++; 1293 } while (addr += PAGE_SIZE, addr != end); 1294 1295 if (!page_cache_add_speculative(head, refs)) { 1296 *nr -= refs; 1297 return 0; 1298 } 1299 1300 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1301 *nr -= refs; 1302 while (refs--) 1303 put_page(head); 1304 return 0; 1305 } 1306 1307 return 1; 1308 } 1309 1310 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1311 unsigned long end, int write, 1312 struct page **pages, int *nr) 1313 { 1314 int refs; 1315 struct page *head, *page; 1316 1317 if (write && !pgd_write(orig)) 1318 return 0; 1319 1320 refs = 0; 1321 head = pgd_page(orig); 1322 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1323 do { 1324 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1325 pages[*nr] = page; 1326 (*nr)++; 1327 page++; 1328 refs++; 1329 } while (addr += PAGE_SIZE, addr != end); 1330 1331 if (!page_cache_add_speculative(head, refs)) { 1332 *nr -= refs; 1333 return 0; 1334 } 1335 1336 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1337 *nr -= refs; 1338 while (refs--) 1339 put_page(head); 1340 return 0; 1341 } 1342 1343 return 1; 1344 } 1345 1346 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1347 int write, struct page **pages, int *nr) 1348 { 1349 unsigned long next; 1350 pmd_t *pmdp; 1351 1352 pmdp = pmd_offset(&pud, addr); 1353 do { 1354 pmd_t pmd = READ_ONCE(*pmdp); 1355 1356 next = pmd_addr_end(addr, end); 1357 if (pmd_none(pmd)) 1358 return 0; 1359 1360 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1361 /* 1362 * NUMA hinting faults need to be handled in the GUP 1363 * slowpath for accounting purposes and so that they 1364 * can be serialised against THP migration. 1365 */ 1366 if (pmd_protnone(pmd)) 1367 return 0; 1368 1369 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1370 pages, nr)) 1371 return 0; 1372 1373 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1374 /* 1375 * architecture have different format for hugetlbfs 1376 * pmd format and THP pmd format 1377 */ 1378 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1379 PMD_SHIFT, next, write, pages, nr)) 1380 return 0; 1381 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1382 return 0; 1383 } while (pmdp++, addr = next, addr != end); 1384 1385 return 1; 1386 } 1387 1388 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, 1389 int write, struct page **pages, int *nr) 1390 { 1391 unsigned long next; 1392 pud_t *pudp; 1393 1394 pudp = pud_offset(&pgd, addr); 1395 do { 1396 pud_t pud = READ_ONCE(*pudp); 1397 1398 next = pud_addr_end(addr, end); 1399 if (pud_none(pud)) 1400 return 0; 1401 if (unlikely(pud_huge(pud))) { 1402 if (!gup_huge_pud(pud, pudp, addr, next, write, 1403 pages, nr)) 1404 return 0; 1405 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1406 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1407 PUD_SHIFT, next, write, pages, nr)) 1408 return 0; 1409 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1410 return 0; 1411 } while (pudp++, addr = next, addr != end); 1412 1413 return 1; 1414 } 1415 1416 /* 1417 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1418 * the regular GUP. It will only return non-negative values. 1419 */ 1420 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1421 struct page **pages) 1422 { 1423 struct mm_struct *mm = current->mm; 1424 unsigned long addr, len, end; 1425 unsigned long next, flags; 1426 pgd_t *pgdp; 1427 int nr = 0; 1428 1429 start &= PAGE_MASK; 1430 addr = start; 1431 len = (unsigned long) nr_pages << PAGE_SHIFT; 1432 end = start + len; 1433 1434 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1435 start, len))) 1436 return 0; 1437 1438 /* 1439 * Disable interrupts. We use the nested form as we can already have 1440 * interrupts disabled by get_futex_key. 1441 * 1442 * With interrupts disabled, we block page table pages from being 1443 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1444 * for more details. 1445 * 1446 * We do not adopt an rcu_read_lock(.) here as we also want to 1447 * block IPIs that come from THPs splitting. 1448 */ 1449 1450 local_irq_save(flags); 1451 pgdp = pgd_offset(mm, addr); 1452 do { 1453 pgd_t pgd = READ_ONCE(*pgdp); 1454 1455 next = pgd_addr_end(addr, end); 1456 if (pgd_none(pgd)) 1457 break; 1458 if (unlikely(pgd_huge(pgd))) { 1459 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1460 pages, &nr)) 1461 break; 1462 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1463 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1464 PGDIR_SHIFT, next, write, pages, &nr)) 1465 break; 1466 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) 1467 break; 1468 } while (pgdp++, addr = next, addr != end); 1469 local_irq_restore(flags); 1470 1471 return nr; 1472 } 1473 1474 /** 1475 * get_user_pages_fast() - pin user pages in memory 1476 * @start: starting user address 1477 * @nr_pages: number of pages from start to pin 1478 * @write: whether pages will be written to 1479 * @pages: array that receives pointers to the pages pinned. 1480 * Should be at least nr_pages long. 1481 * 1482 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1483 * If not successful, it will fall back to taking the lock and 1484 * calling get_user_pages(). 1485 * 1486 * Returns number of pages pinned. This may be fewer than the number 1487 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1488 * were pinned, returns -errno. 1489 */ 1490 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1491 struct page **pages) 1492 { 1493 int nr, ret; 1494 1495 start &= PAGE_MASK; 1496 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1497 ret = nr; 1498 1499 if (nr < nr_pages) { 1500 /* Try to get the remaining pages with get_user_pages */ 1501 start += nr << PAGE_SHIFT; 1502 pages += nr; 1503 1504 ret = get_user_pages_unlocked(start, nr_pages - nr, write, 0, pages); 1505 1506 /* Have to be a bit careful with return values */ 1507 if (nr > 0) { 1508 if (ret < 0) 1509 ret = nr; 1510 else 1511 ret += nr; 1512 } 1513 } 1514 1515 return ret; 1516 } 1517 1518 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1519