xref: /openbmc/linux/mm/gup.c (revision 32981ea5)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 static struct page *follow_page_pte(struct vm_area_struct *vma,
64 		unsigned long address, pmd_t *pmd, unsigned int flags)
65 {
66 	struct mm_struct *mm = vma->vm_mm;
67 	struct dev_pagemap *pgmap = NULL;
68 	struct page *page;
69 	spinlock_t *ptl;
70 	pte_t *ptep, pte;
71 
72 retry:
73 	if (unlikely(pmd_bad(*pmd)))
74 		return no_page_table(vma, flags);
75 
76 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
77 	pte = *ptep;
78 	if (!pte_present(pte)) {
79 		swp_entry_t entry;
80 		/*
81 		 * KSM's break_ksm() relies upon recognizing a ksm page
82 		 * even while it is being migrated, so for that case we
83 		 * need migration_entry_wait().
84 		 */
85 		if (likely(!(flags & FOLL_MIGRATION)))
86 			goto no_page;
87 		if (pte_none(pte))
88 			goto no_page;
89 		entry = pte_to_swp_entry(pte);
90 		if (!is_migration_entry(entry))
91 			goto no_page;
92 		pte_unmap_unlock(ptep, ptl);
93 		migration_entry_wait(mm, pmd, address);
94 		goto retry;
95 	}
96 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
97 		goto no_page;
98 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
99 		pte_unmap_unlock(ptep, ptl);
100 		return NULL;
101 	}
102 
103 	page = vm_normal_page(vma, address, pte);
104 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
105 		/*
106 		 * Only return device mapping pages in the FOLL_GET case since
107 		 * they are only valid while holding the pgmap reference.
108 		 */
109 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
110 		if (pgmap)
111 			page = pte_page(pte);
112 		else
113 			goto no_page;
114 	} else if (unlikely(!page)) {
115 		if (flags & FOLL_DUMP) {
116 			/* Avoid special (like zero) pages in core dumps */
117 			page = ERR_PTR(-EFAULT);
118 			goto out;
119 		}
120 
121 		if (is_zero_pfn(pte_pfn(pte))) {
122 			page = pte_page(pte);
123 		} else {
124 			int ret;
125 
126 			ret = follow_pfn_pte(vma, address, ptep, flags);
127 			page = ERR_PTR(ret);
128 			goto out;
129 		}
130 	}
131 
132 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
133 		int ret;
134 		get_page(page);
135 		pte_unmap_unlock(ptep, ptl);
136 		lock_page(page);
137 		ret = split_huge_page(page);
138 		unlock_page(page);
139 		put_page(page);
140 		if (ret)
141 			return ERR_PTR(ret);
142 		goto retry;
143 	}
144 
145 	if (flags & FOLL_GET) {
146 		get_page(page);
147 
148 		/* drop the pgmap reference now that we hold the page */
149 		if (pgmap) {
150 			put_dev_pagemap(pgmap);
151 			pgmap = NULL;
152 		}
153 	}
154 	if (flags & FOLL_TOUCH) {
155 		if ((flags & FOLL_WRITE) &&
156 		    !pte_dirty(pte) && !PageDirty(page))
157 			set_page_dirty(page);
158 		/*
159 		 * pte_mkyoung() would be more correct here, but atomic care
160 		 * is needed to avoid losing the dirty bit: it is easier to use
161 		 * mark_page_accessed().
162 		 */
163 		mark_page_accessed(page);
164 	}
165 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
166 		/* Do not mlock pte-mapped THP */
167 		if (PageTransCompound(page))
168 			goto out;
169 
170 		/*
171 		 * The preliminary mapping check is mainly to avoid the
172 		 * pointless overhead of lock_page on the ZERO_PAGE
173 		 * which might bounce very badly if there is contention.
174 		 *
175 		 * If the page is already locked, we don't need to
176 		 * handle it now - vmscan will handle it later if and
177 		 * when it attempts to reclaim the page.
178 		 */
179 		if (page->mapping && trylock_page(page)) {
180 			lru_add_drain();  /* push cached pages to LRU */
181 			/*
182 			 * Because we lock page here, and migration is
183 			 * blocked by the pte's page reference, and we
184 			 * know the page is still mapped, we don't even
185 			 * need to check for file-cache page truncation.
186 			 */
187 			mlock_vma_page(page);
188 			unlock_page(page);
189 		}
190 	}
191 out:
192 	pte_unmap_unlock(ptep, ptl);
193 	return page;
194 no_page:
195 	pte_unmap_unlock(ptep, ptl);
196 	if (!pte_none(pte))
197 		return NULL;
198 	return no_page_table(vma, flags);
199 }
200 
201 /**
202  * follow_page_mask - look up a page descriptor from a user-virtual address
203  * @vma: vm_area_struct mapping @address
204  * @address: virtual address to look up
205  * @flags: flags modifying lookup behaviour
206  * @page_mask: on output, *page_mask is set according to the size of the page
207  *
208  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
209  *
210  * Returns the mapped (struct page *), %NULL if no mapping exists, or
211  * an error pointer if there is a mapping to something not represented
212  * by a page descriptor (see also vm_normal_page()).
213  */
214 struct page *follow_page_mask(struct vm_area_struct *vma,
215 			      unsigned long address, unsigned int flags,
216 			      unsigned int *page_mask)
217 {
218 	pgd_t *pgd;
219 	pud_t *pud;
220 	pmd_t *pmd;
221 	spinlock_t *ptl;
222 	struct page *page;
223 	struct mm_struct *mm = vma->vm_mm;
224 
225 	*page_mask = 0;
226 
227 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
228 	if (!IS_ERR(page)) {
229 		BUG_ON(flags & FOLL_GET);
230 		return page;
231 	}
232 
233 	pgd = pgd_offset(mm, address);
234 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
235 		return no_page_table(vma, flags);
236 
237 	pud = pud_offset(pgd, address);
238 	if (pud_none(*pud))
239 		return no_page_table(vma, flags);
240 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
241 		page = follow_huge_pud(mm, address, pud, flags);
242 		if (page)
243 			return page;
244 		return no_page_table(vma, flags);
245 	}
246 	if (unlikely(pud_bad(*pud)))
247 		return no_page_table(vma, flags);
248 
249 	pmd = pmd_offset(pud, address);
250 	if (pmd_none(*pmd))
251 		return no_page_table(vma, flags);
252 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
253 		page = follow_huge_pmd(mm, address, pmd, flags);
254 		if (page)
255 			return page;
256 		return no_page_table(vma, flags);
257 	}
258 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
259 		return no_page_table(vma, flags);
260 	if (pmd_devmap(*pmd)) {
261 		ptl = pmd_lock(mm, pmd);
262 		page = follow_devmap_pmd(vma, address, pmd, flags);
263 		spin_unlock(ptl);
264 		if (page)
265 			return page;
266 	}
267 	if (likely(!pmd_trans_huge(*pmd)))
268 		return follow_page_pte(vma, address, pmd, flags);
269 
270 	ptl = pmd_lock(mm, pmd);
271 	if (unlikely(!pmd_trans_huge(*pmd))) {
272 		spin_unlock(ptl);
273 		return follow_page_pte(vma, address, pmd, flags);
274 	}
275 	if (flags & FOLL_SPLIT) {
276 		int ret;
277 		page = pmd_page(*pmd);
278 		if (is_huge_zero_page(page)) {
279 			spin_unlock(ptl);
280 			ret = 0;
281 			split_huge_pmd(vma, pmd, address);
282 		} else {
283 			get_page(page);
284 			spin_unlock(ptl);
285 			lock_page(page);
286 			ret = split_huge_page(page);
287 			unlock_page(page);
288 			put_page(page);
289 		}
290 
291 		return ret ? ERR_PTR(ret) :
292 			follow_page_pte(vma, address, pmd, flags);
293 	}
294 
295 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
296 	spin_unlock(ptl);
297 	*page_mask = HPAGE_PMD_NR - 1;
298 	return page;
299 }
300 
301 static int get_gate_page(struct mm_struct *mm, unsigned long address,
302 		unsigned int gup_flags, struct vm_area_struct **vma,
303 		struct page **page)
304 {
305 	pgd_t *pgd;
306 	pud_t *pud;
307 	pmd_t *pmd;
308 	pte_t *pte;
309 	int ret = -EFAULT;
310 
311 	/* user gate pages are read-only */
312 	if (gup_flags & FOLL_WRITE)
313 		return -EFAULT;
314 	if (address > TASK_SIZE)
315 		pgd = pgd_offset_k(address);
316 	else
317 		pgd = pgd_offset_gate(mm, address);
318 	BUG_ON(pgd_none(*pgd));
319 	pud = pud_offset(pgd, address);
320 	BUG_ON(pud_none(*pud));
321 	pmd = pmd_offset(pud, address);
322 	if (pmd_none(*pmd))
323 		return -EFAULT;
324 	VM_BUG_ON(pmd_trans_huge(*pmd));
325 	pte = pte_offset_map(pmd, address);
326 	if (pte_none(*pte))
327 		goto unmap;
328 	*vma = get_gate_vma(mm);
329 	if (!page)
330 		goto out;
331 	*page = vm_normal_page(*vma, address, *pte);
332 	if (!*page) {
333 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
334 			goto unmap;
335 		*page = pte_page(*pte);
336 	}
337 	get_page(*page);
338 out:
339 	ret = 0;
340 unmap:
341 	pte_unmap(pte);
342 	return ret;
343 }
344 
345 /*
346  * mmap_sem must be held on entry.  If @nonblocking != NULL and
347  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
348  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
349  */
350 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
351 		unsigned long address, unsigned int *flags, int *nonblocking)
352 {
353 	struct mm_struct *mm = vma->vm_mm;
354 	unsigned int fault_flags = 0;
355 	int ret;
356 
357 	/* mlock all present pages, but do not fault in new pages */
358 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
359 		return -ENOENT;
360 	/* For mm_populate(), just skip the stack guard page. */
361 	if ((*flags & FOLL_POPULATE) &&
362 			(stack_guard_page_start(vma, address) ||
363 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
364 		return -ENOENT;
365 	if (*flags & FOLL_WRITE)
366 		fault_flags |= FAULT_FLAG_WRITE;
367 	if (*flags & FOLL_REMOTE)
368 		fault_flags |= FAULT_FLAG_REMOTE;
369 	if (nonblocking)
370 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
371 	if (*flags & FOLL_NOWAIT)
372 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
373 	if (*flags & FOLL_TRIED) {
374 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
375 		fault_flags |= FAULT_FLAG_TRIED;
376 	}
377 
378 	ret = handle_mm_fault(mm, vma, address, fault_flags);
379 	if (ret & VM_FAULT_ERROR) {
380 		if (ret & VM_FAULT_OOM)
381 			return -ENOMEM;
382 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
383 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
384 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
385 			return -EFAULT;
386 		BUG();
387 	}
388 
389 	if (tsk) {
390 		if (ret & VM_FAULT_MAJOR)
391 			tsk->maj_flt++;
392 		else
393 			tsk->min_flt++;
394 	}
395 
396 	if (ret & VM_FAULT_RETRY) {
397 		if (nonblocking)
398 			*nonblocking = 0;
399 		return -EBUSY;
400 	}
401 
402 	/*
403 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
404 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
405 	 * can thus safely do subsequent page lookups as if they were reads.
406 	 * But only do so when looping for pte_write is futile: in some cases
407 	 * userspace may also be wanting to write to the gotten user page,
408 	 * which a read fault here might prevent (a readonly page might get
409 	 * reCOWed by userspace write).
410 	 */
411 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
412 		*flags &= ~FOLL_WRITE;
413 	return 0;
414 }
415 
416 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
417 {
418 	vm_flags_t vm_flags = vma->vm_flags;
419 	int write = (gup_flags & FOLL_WRITE);
420 	int foreign = (gup_flags & FOLL_REMOTE);
421 
422 	if (vm_flags & (VM_IO | VM_PFNMAP))
423 		return -EFAULT;
424 
425 	if (write) {
426 		if (!(vm_flags & VM_WRITE)) {
427 			if (!(gup_flags & FOLL_FORCE))
428 				return -EFAULT;
429 			/*
430 			 * We used to let the write,force case do COW in a
431 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
432 			 * set a breakpoint in a read-only mapping of an
433 			 * executable, without corrupting the file (yet only
434 			 * when that file had been opened for writing!).
435 			 * Anon pages in shared mappings are surprising: now
436 			 * just reject it.
437 			 */
438 			if (!is_cow_mapping(vm_flags))
439 				return -EFAULT;
440 		}
441 	} else if (!(vm_flags & VM_READ)) {
442 		if (!(gup_flags & FOLL_FORCE))
443 			return -EFAULT;
444 		/*
445 		 * Is there actually any vma we can reach here which does not
446 		 * have VM_MAYREAD set?
447 		 */
448 		if (!(vm_flags & VM_MAYREAD))
449 			return -EFAULT;
450 	}
451 	/*
452 	 * gups are always data accesses, not instruction
453 	 * fetches, so execute=false here
454 	 */
455 	if (!arch_vma_access_permitted(vma, write, false, foreign))
456 		return -EFAULT;
457 	return 0;
458 }
459 
460 /**
461  * __get_user_pages() - pin user pages in memory
462  * @tsk:	task_struct of target task
463  * @mm:		mm_struct of target mm
464  * @start:	starting user address
465  * @nr_pages:	number of pages from start to pin
466  * @gup_flags:	flags modifying pin behaviour
467  * @pages:	array that receives pointers to the pages pinned.
468  *		Should be at least nr_pages long. Or NULL, if caller
469  *		only intends to ensure the pages are faulted in.
470  * @vmas:	array of pointers to vmas corresponding to each page.
471  *		Or NULL if the caller does not require them.
472  * @nonblocking: whether waiting for disk IO or mmap_sem contention
473  *
474  * Returns number of pages pinned. This may be fewer than the number
475  * requested. If nr_pages is 0 or negative, returns 0. If no pages
476  * were pinned, returns -errno. Each page returned must be released
477  * with a put_page() call when it is finished with. vmas will only
478  * remain valid while mmap_sem is held.
479  *
480  * Must be called with mmap_sem held.  It may be released.  See below.
481  *
482  * __get_user_pages walks a process's page tables and takes a reference to
483  * each struct page that each user address corresponds to at a given
484  * instant. That is, it takes the page that would be accessed if a user
485  * thread accesses the given user virtual address at that instant.
486  *
487  * This does not guarantee that the page exists in the user mappings when
488  * __get_user_pages returns, and there may even be a completely different
489  * page there in some cases (eg. if mmapped pagecache has been invalidated
490  * and subsequently re faulted). However it does guarantee that the page
491  * won't be freed completely. And mostly callers simply care that the page
492  * contains data that was valid *at some point in time*. Typically, an IO
493  * or similar operation cannot guarantee anything stronger anyway because
494  * locks can't be held over the syscall boundary.
495  *
496  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
497  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
498  * appropriate) must be called after the page is finished with, and
499  * before put_page is called.
500  *
501  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
502  * or mmap_sem contention, and if waiting is needed to pin all pages,
503  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
504  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
505  * this case.
506  *
507  * A caller using such a combination of @nonblocking and @gup_flags
508  * must therefore hold the mmap_sem for reading only, and recognize
509  * when it's been released.  Otherwise, it must be held for either
510  * reading or writing and will not be released.
511  *
512  * In most cases, get_user_pages or get_user_pages_fast should be used
513  * instead of __get_user_pages. __get_user_pages should be used only if
514  * you need some special @gup_flags.
515  */
516 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
517 		unsigned long start, unsigned long nr_pages,
518 		unsigned int gup_flags, struct page **pages,
519 		struct vm_area_struct **vmas, int *nonblocking)
520 {
521 	long i = 0;
522 	unsigned int page_mask;
523 	struct vm_area_struct *vma = NULL;
524 
525 	if (!nr_pages)
526 		return 0;
527 
528 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
529 
530 	/*
531 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
532 	 * fault information is unrelated to the reference behaviour of a task
533 	 * using the address space
534 	 */
535 	if (!(gup_flags & FOLL_FORCE))
536 		gup_flags |= FOLL_NUMA;
537 
538 	do {
539 		struct page *page;
540 		unsigned int foll_flags = gup_flags;
541 		unsigned int page_increm;
542 
543 		/* first iteration or cross vma bound */
544 		if (!vma || start >= vma->vm_end) {
545 			vma = find_extend_vma(mm, start);
546 			if (!vma && in_gate_area(mm, start)) {
547 				int ret;
548 				ret = get_gate_page(mm, start & PAGE_MASK,
549 						gup_flags, &vma,
550 						pages ? &pages[i] : NULL);
551 				if (ret)
552 					return i ? : ret;
553 				page_mask = 0;
554 				goto next_page;
555 			}
556 
557 			if (!vma || check_vma_flags(vma, gup_flags))
558 				return i ? : -EFAULT;
559 			if (is_vm_hugetlb_page(vma)) {
560 				i = follow_hugetlb_page(mm, vma, pages, vmas,
561 						&start, &nr_pages, i,
562 						gup_flags);
563 				continue;
564 			}
565 		}
566 retry:
567 		/*
568 		 * If we have a pending SIGKILL, don't keep faulting pages and
569 		 * potentially allocating memory.
570 		 */
571 		if (unlikely(fatal_signal_pending(current)))
572 			return i ? i : -ERESTARTSYS;
573 		cond_resched();
574 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
575 		if (!page) {
576 			int ret;
577 			ret = faultin_page(tsk, vma, start, &foll_flags,
578 					nonblocking);
579 			switch (ret) {
580 			case 0:
581 				goto retry;
582 			case -EFAULT:
583 			case -ENOMEM:
584 			case -EHWPOISON:
585 				return i ? i : ret;
586 			case -EBUSY:
587 				return i;
588 			case -ENOENT:
589 				goto next_page;
590 			}
591 			BUG();
592 		} else if (PTR_ERR(page) == -EEXIST) {
593 			/*
594 			 * Proper page table entry exists, but no corresponding
595 			 * struct page.
596 			 */
597 			goto next_page;
598 		} else if (IS_ERR(page)) {
599 			return i ? i : PTR_ERR(page);
600 		}
601 		if (pages) {
602 			pages[i] = page;
603 			flush_anon_page(vma, page, start);
604 			flush_dcache_page(page);
605 			page_mask = 0;
606 		}
607 next_page:
608 		if (vmas) {
609 			vmas[i] = vma;
610 			page_mask = 0;
611 		}
612 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
613 		if (page_increm > nr_pages)
614 			page_increm = nr_pages;
615 		i += page_increm;
616 		start += page_increm * PAGE_SIZE;
617 		nr_pages -= page_increm;
618 	} while (nr_pages);
619 	return i;
620 }
621 EXPORT_SYMBOL(__get_user_pages);
622 
623 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
624 {
625 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
626 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
627 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
628 
629 	if (!(vm_flags & vma->vm_flags))
630 		return false;
631 
632 	/*
633 	 * The architecture might have a hardware protection
634 	 * mechanism other than read/write that can deny access.
635 	 *
636 	 * gup always represents data access, not instruction
637 	 * fetches, so execute=false here:
638 	 */
639 	if (!arch_vma_access_permitted(vma, write, false, foreign))
640 		return false;
641 
642 	return true;
643 }
644 
645 /*
646  * fixup_user_fault() - manually resolve a user page fault
647  * @tsk:	the task_struct to use for page fault accounting, or
648  *		NULL if faults are not to be recorded.
649  * @mm:		mm_struct of target mm
650  * @address:	user address
651  * @fault_flags:flags to pass down to handle_mm_fault()
652  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
653  *		does not allow retry
654  *
655  * This is meant to be called in the specific scenario where for locking reasons
656  * we try to access user memory in atomic context (within a pagefault_disable()
657  * section), this returns -EFAULT, and we want to resolve the user fault before
658  * trying again.
659  *
660  * Typically this is meant to be used by the futex code.
661  *
662  * The main difference with get_user_pages() is that this function will
663  * unconditionally call handle_mm_fault() which will in turn perform all the
664  * necessary SW fixup of the dirty and young bits in the PTE, while
665  * get_user_pages() only guarantees to update these in the struct page.
666  *
667  * This is important for some architectures where those bits also gate the
668  * access permission to the page because they are maintained in software.  On
669  * such architectures, gup() will not be enough to make a subsequent access
670  * succeed.
671  *
672  * This function will not return with an unlocked mmap_sem. So it has not the
673  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
674  */
675 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
676 		     unsigned long address, unsigned int fault_flags,
677 		     bool *unlocked)
678 {
679 	struct vm_area_struct *vma;
680 	int ret, major = 0;
681 
682 	if (unlocked)
683 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
684 
685 retry:
686 	vma = find_extend_vma(mm, address);
687 	if (!vma || address < vma->vm_start)
688 		return -EFAULT;
689 
690 	if (!vma_permits_fault(vma, fault_flags))
691 		return -EFAULT;
692 
693 	ret = handle_mm_fault(mm, vma, address, fault_flags);
694 	major |= ret & VM_FAULT_MAJOR;
695 	if (ret & VM_FAULT_ERROR) {
696 		if (ret & VM_FAULT_OOM)
697 			return -ENOMEM;
698 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
699 			return -EHWPOISON;
700 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
701 			return -EFAULT;
702 		BUG();
703 	}
704 
705 	if (ret & VM_FAULT_RETRY) {
706 		down_read(&mm->mmap_sem);
707 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
708 			*unlocked = true;
709 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
710 			fault_flags |= FAULT_FLAG_TRIED;
711 			goto retry;
712 		}
713 	}
714 
715 	if (tsk) {
716 		if (major)
717 			tsk->maj_flt++;
718 		else
719 			tsk->min_flt++;
720 	}
721 	return 0;
722 }
723 
724 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
725 						struct mm_struct *mm,
726 						unsigned long start,
727 						unsigned long nr_pages,
728 						int write, int force,
729 						struct page **pages,
730 						struct vm_area_struct **vmas,
731 						int *locked, bool notify_drop,
732 						unsigned int flags)
733 {
734 	long ret, pages_done;
735 	bool lock_dropped;
736 
737 	if (locked) {
738 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
739 		BUG_ON(vmas);
740 		/* check caller initialized locked */
741 		BUG_ON(*locked != 1);
742 	}
743 
744 	if (pages)
745 		flags |= FOLL_GET;
746 	if (write)
747 		flags |= FOLL_WRITE;
748 	if (force)
749 		flags |= FOLL_FORCE;
750 
751 	pages_done = 0;
752 	lock_dropped = false;
753 	for (;;) {
754 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
755 				       vmas, locked);
756 		if (!locked)
757 			/* VM_FAULT_RETRY couldn't trigger, bypass */
758 			return ret;
759 
760 		/* VM_FAULT_RETRY cannot return errors */
761 		if (!*locked) {
762 			BUG_ON(ret < 0);
763 			BUG_ON(ret >= nr_pages);
764 		}
765 
766 		if (!pages)
767 			/* If it's a prefault don't insist harder */
768 			return ret;
769 
770 		if (ret > 0) {
771 			nr_pages -= ret;
772 			pages_done += ret;
773 			if (!nr_pages)
774 				break;
775 		}
776 		if (*locked) {
777 			/* VM_FAULT_RETRY didn't trigger */
778 			if (!pages_done)
779 				pages_done = ret;
780 			break;
781 		}
782 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
783 		pages += ret;
784 		start += ret << PAGE_SHIFT;
785 
786 		/*
787 		 * Repeat on the address that fired VM_FAULT_RETRY
788 		 * without FAULT_FLAG_ALLOW_RETRY but with
789 		 * FAULT_FLAG_TRIED.
790 		 */
791 		*locked = 1;
792 		lock_dropped = true;
793 		down_read(&mm->mmap_sem);
794 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
795 				       pages, NULL, NULL);
796 		if (ret != 1) {
797 			BUG_ON(ret > 1);
798 			if (!pages_done)
799 				pages_done = ret;
800 			break;
801 		}
802 		nr_pages--;
803 		pages_done++;
804 		if (!nr_pages)
805 			break;
806 		pages++;
807 		start += PAGE_SIZE;
808 	}
809 	if (notify_drop && lock_dropped && *locked) {
810 		/*
811 		 * We must let the caller know we temporarily dropped the lock
812 		 * and so the critical section protected by it was lost.
813 		 */
814 		up_read(&mm->mmap_sem);
815 		*locked = 0;
816 	}
817 	return pages_done;
818 }
819 
820 /*
821  * We can leverage the VM_FAULT_RETRY functionality in the page fault
822  * paths better by using either get_user_pages_locked() or
823  * get_user_pages_unlocked().
824  *
825  * get_user_pages_locked() is suitable to replace the form:
826  *
827  *      down_read(&mm->mmap_sem);
828  *      do_something()
829  *      get_user_pages(tsk, mm, ..., pages, NULL);
830  *      up_read(&mm->mmap_sem);
831  *
832  *  to:
833  *
834  *      int locked = 1;
835  *      down_read(&mm->mmap_sem);
836  *      do_something()
837  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
838  *      if (locked)
839  *          up_read(&mm->mmap_sem);
840  */
841 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
842 			   int write, int force, struct page **pages,
843 			   int *locked)
844 {
845 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
846 				       write, force, pages, NULL, locked, true,
847 				       FOLL_TOUCH);
848 }
849 EXPORT_SYMBOL(get_user_pages_locked);
850 
851 /*
852  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
853  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
854  *
855  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
856  * caller if required (just like with __get_user_pages). "FOLL_GET",
857  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
858  * according to the parameters "pages", "write", "force"
859  * respectively.
860  */
861 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
862 					       unsigned long start, unsigned long nr_pages,
863 					       int write, int force, struct page **pages,
864 					       unsigned int gup_flags)
865 {
866 	long ret;
867 	int locked = 1;
868 	down_read(&mm->mmap_sem);
869 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
870 				      pages, NULL, &locked, false, gup_flags);
871 	if (locked)
872 		up_read(&mm->mmap_sem);
873 	return ret;
874 }
875 EXPORT_SYMBOL(__get_user_pages_unlocked);
876 
877 /*
878  * get_user_pages_unlocked() is suitable to replace the form:
879  *
880  *      down_read(&mm->mmap_sem);
881  *      get_user_pages(tsk, mm, ..., pages, NULL);
882  *      up_read(&mm->mmap_sem);
883  *
884  *  with:
885  *
886  *      get_user_pages_unlocked(tsk, mm, ..., pages);
887  *
888  * It is functionally equivalent to get_user_pages_fast so
889  * get_user_pages_fast should be used instead, if the two parameters
890  * "tsk" and "mm" are respectively equal to current and current->mm,
891  * or if "force" shall be set to 1 (get_user_pages_fast misses the
892  * "force" parameter).
893  */
894 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
895 			     int write, int force, struct page **pages)
896 {
897 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
898 					 write, force, pages, FOLL_TOUCH);
899 }
900 EXPORT_SYMBOL(get_user_pages_unlocked);
901 
902 /*
903  * get_user_pages_remote() - pin user pages in memory
904  * @tsk:	the task_struct to use for page fault accounting, or
905  *		NULL if faults are not to be recorded.
906  * @mm:		mm_struct of target mm
907  * @start:	starting user address
908  * @nr_pages:	number of pages from start to pin
909  * @write:	whether pages will be written to by the caller
910  * @force:	whether to force access even when user mapping is currently
911  *		protected (but never forces write access to shared mapping).
912  * @pages:	array that receives pointers to the pages pinned.
913  *		Should be at least nr_pages long. Or NULL, if caller
914  *		only intends to ensure the pages are faulted in.
915  * @vmas:	array of pointers to vmas corresponding to each page.
916  *		Or NULL if the caller does not require them.
917  *
918  * Returns number of pages pinned. This may be fewer than the number
919  * requested. If nr_pages is 0 or negative, returns 0. If no pages
920  * were pinned, returns -errno. Each page returned must be released
921  * with a put_page() call when it is finished with. vmas will only
922  * remain valid while mmap_sem is held.
923  *
924  * Must be called with mmap_sem held for read or write.
925  *
926  * get_user_pages walks a process's page tables and takes a reference to
927  * each struct page that each user address corresponds to at a given
928  * instant. That is, it takes the page that would be accessed if a user
929  * thread accesses the given user virtual address at that instant.
930  *
931  * This does not guarantee that the page exists in the user mappings when
932  * get_user_pages returns, and there may even be a completely different
933  * page there in some cases (eg. if mmapped pagecache has been invalidated
934  * and subsequently re faulted). However it does guarantee that the page
935  * won't be freed completely. And mostly callers simply care that the page
936  * contains data that was valid *at some point in time*. Typically, an IO
937  * or similar operation cannot guarantee anything stronger anyway because
938  * locks can't be held over the syscall boundary.
939  *
940  * If write=0, the page must not be written to. If the page is written to,
941  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
942  * after the page is finished with, and before put_page is called.
943  *
944  * get_user_pages is typically used for fewer-copy IO operations, to get a
945  * handle on the memory by some means other than accesses via the user virtual
946  * addresses. The pages may be submitted for DMA to devices or accessed via
947  * their kernel linear mapping (via the kmap APIs). Care should be taken to
948  * use the correct cache flushing APIs.
949  *
950  * See also get_user_pages_fast, for performance critical applications.
951  *
952  * get_user_pages should be phased out in favor of
953  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
954  * should use get_user_pages because it cannot pass
955  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
956  */
957 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
958 		unsigned long start, unsigned long nr_pages,
959 		int write, int force, struct page **pages,
960 		struct vm_area_struct **vmas)
961 {
962 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
963 				       pages, vmas, NULL, false,
964 				       FOLL_TOUCH | FOLL_REMOTE);
965 }
966 EXPORT_SYMBOL(get_user_pages_remote);
967 
968 /*
969  * This is the same as get_user_pages_remote(), just with a
970  * less-flexible calling convention where we assume that the task
971  * and mm being operated on are the current task's.  We also
972  * obviously don't pass FOLL_REMOTE in here.
973  */
974 long get_user_pages(unsigned long start, unsigned long nr_pages,
975 		int write, int force, struct page **pages,
976 		struct vm_area_struct **vmas)
977 {
978 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
979 				       write, force, pages, vmas, NULL, false,
980 				       FOLL_TOUCH);
981 }
982 EXPORT_SYMBOL(get_user_pages);
983 
984 /**
985  * populate_vma_page_range() -  populate a range of pages in the vma.
986  * @vma:   target vma
987  * @start: start address
988  * @end:   end address
989  * @nonblocking:
990  *
991  * This takes care of mlocking the pages too if VM_LOCKED is set.
992  *
993  * return 0 on success, negative error code on error.
994  *
995  * vma->vm_mm->mmap_sem must be held.
996  *
997  * If @nonblocking is NULL, it may be held for read or write and will
998  * be unperturbed.
999  *
1000  * If @nonblocking is non-NULL, it must held for read only and may be
1001  * released.  If it's released, *@nonblocking will be set to 0.
1002  */
1003 long populate_vma_page_range(struct vm_area_struct *vma,
1004 		unsigned long start, unsigned long end, int *nonblocking)
1005 {
1006 	struct mm_struct *mm = vma->vm_mm;
1007 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1008 	int gup_flags;
1009 
1010 	VM_BUG_ON(start & ~PAGE_MASK);
1011 	VM_BUG_ON(end   & ~PAGE_MASK);
1012 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1013 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1014 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1015 
1016 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1017 	if (vma->vm_flags & VM_LOCKONFAULT)
1018 		gup_flags &= ~FOLL_POPULATE;
1019 	/*
1020 	 * We want to touch writable mappings with a write fault in order
1021 	 * to break COW, except for shared mappings because these don't COW
1022 	 * and we would not want to dirty them for nothing.
1023 	 */
1024 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1025 		gup_flags |= FOLL_WRITE;
1026 
1027 	/*
1028 	 * We want mlock to succeed for regions that have any permissions
1029 	 * other than PROT_NONE.
1030 	 */
1031 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1032 		gup_flags |= FOLL_FORCE;
1033 
1034 	/*
1035 	 * We made sure addr is within a VMA, so the following will
1036 	 * not result in a stack expansion that recurses back here.
1037 	 */
1038 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1039 				NULL, NULL, nonblocking);
1040 }
1041 
1042 /*
1043  * __mm_populate - populate and/or mlock pages within a range of address space.
1044  *
1045  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1046  * flags. VMAs must be already marked with the desired vm_flags, and
1047  * mmap_sem must not be held.
1048  */
1049 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1050 {
1051 	struct mm_struct *mm = current->mm;
1052 	unsigned long end, nstart, nend;
1053 	struct vm_area_struct *vma = NULL;
1054 	int locked = 0;
1055 	long ret = 0;
1056 
1057 	VM_BUG_ON(start & ~PAGE_MASK);
1058 	VM_BUG_ON(len != PAGE_ALIGN(len));
1059 	end = start + len;
1060 
1061 	for (nstart = start; nstart < end; nstart = nend) {
1062 		/*
1063 		 * We want to fault in pages for [nstart; end) address range.
1064 		 * Find first corresponding VMA.
1065 		 */
1066 		if (!locked) {
1067 			locked = 1;
1068 			down_read(&mm->mmap_sem);
1069 			vma = find_vma(mm, nstart);
1070 		} else if (nstart >= vma->vm_end)
1071 			vma = vma->vm_next;
1072 		if (!vma || vma->vm_start >= end)
1073 			break;
1074 		/*
1075 		 * Set [nstart; nend) to intersection of desired address
1076 		 * range with the first VMA. Also, skip undesirable VMA types.
1077 		 */
1078 		nend = min(end, vma->vm_end);
1079 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1080 			continue;
1081 		if (nstart < vma->vm_start)
1082 			nstart = vma->vm_start;
1083 		/*
1084 		 * Now fault in a range of pages. populate_vma_page_range()
1085 		 * double checks the vma flags, so that it won't mlock pages
1086 		 * if the vma was already munlocked.
1087 		 */
1088 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1089 		if (ret < 0) {
1090 			if (ignore_errors) {
1091 				ret = 0;
1092 				continue;	/* continue at next VMA */
1093 			}
1094 			break;
1095 		}
1096 		nend = nstart + ret * PAGE_SIZE;
1097 		ret = 0;
1098 	}
1099 	if (locked)
1100 		up_read(&mm->mmap_sem);
1101 	return ret;	/* 0 or negative error code */
1102 }
1103 
1104 /**
1105  * get_dump_page() - pin user page in memory while writing it to core dump
1106  * @addr: user address
1107  *
1108  * Returns struct page pointer of user page pinned for dump,
1109  * to be freed afterwards by put_page().
1110  *
1111  * Returns NULL on any kind of failure - a hole must then be inserted into
1112  * the corefile, to preserve alignment with its headers; and also returns
1113  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1114  * allowing a hole to be left in the corefile to save diskspace.
1115  *
1116  * Called without mmap_sem, but after all other threads have been killed.
1117  */
1118 #ifdef CONFIG_ELF_CORE
1119 struct page *get_dump_page(unsigned long addr)
1120 {
1121 	struct vm_area_struct *vma;
1122 	struct page *page;
1123 
1124 	if (__get_user_pages(current, current->mm, addr, 1,
1125 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1126 			     NULL) < 1)
1127 		return NULL;
1128 	flush_cache_page(vma, addr, page_to_pfn(page));
1129 	return page;
1130 }
1131 #endif /* CONFIG_ELF_CORE */
1132 
1133 /*
1134  * Generic RCU Fast GUP
1135  *
1136  * get_user_pages_fast attempts to pin user pages by walking the page
1137  * tables directly and avoids taking locks. Thus the walker needs to be
1138  * protected from page table pages being freed from under it, and should
1139  * block any THP splits.
1140  *
1141  * One way to achieve this is to have the walker disable interrupts, and
1142  * rely on IPIs from the TLB flushing code blocking before the page table
1143  * pages are freed. This is unsuitable for architectures that do not need
1144  * to broadcast an IPI when invalidating TLBs.
1145  *
1146  * Another way to achieve this is to batch up page table containing pages
1147  * belonging to more than one mm_user, then rcu_sched a callback to free those
1148  * pages. Disabling interrupts will allow the fast_gup walker to both block
1149  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1150  * (which is a relatively rare event). The code below adopts this strategy.
1151  *
1152  * Before activating this code, please be aware that the following assumptions
1153  * are currently made:
1154  *
1155  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1156  *      pages containing page tables.
1157  *
1158  *  *) ptes can be read atomically by the architecture.
1159  *
1160  *  *) access_ok is sufficient to validate userspace address ranges.
1161  *
1162  * The last two assumptions can be relaxed by the addition of helper functions.
1163  *
1164  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1165  */
1166 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1167 
1168 #ifdef __HAVE_ARCH_PTE_SPECIAL
1169 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1170 			 int write, struct page **pages, int *nr)
1171 {
1172 	pte_t *ptep, *ptem;
1173 	int ret = 0;
1174 
1175 	ptem = ptep = pte_offset_map(&pmd, addr);
1176 	do {
1177 		/*
1178 		 * In the line below we are assuming that the pte can be read
1179 		 * atomically. If this is not the case for your architecture,
1180 		 * please wrap this in a helper function!
1181 		 *
1182 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1183 		 */
1184 		pte_t pte = READ_ONCE(*ptep);
1185 		struct page *head, *page;
1186 
1187 		/*
1188 		 * Similar to the PMD case below, NUMA hinting must take slow
1189 		 * path using the pte_protnone check.
1190 		 */
1191 		if (!pte_present(pte) || pte_special(pte) ||
1192 			pte_protnone(pte) || (write && !pte_write(pte)))
1193 			goto pte_unmap;
1194 
1195 		if (!arch_pte_access_permitted(pte, write))
1196 			goto pte_unmap;
1197 
1198 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1199 		page = pte_page(pte);
1200 		head = compound_head(page);
1201 
1202 		if (!page_cache_get_speculative(head))
1203 			goto pte_unmap;
1204 
1205 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1206 			put_page(head);
1207 			goto pte_unmap;
1208 		}
1209 
1210 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1211 		pages[*nr] = page;
1212 		(*nr)++;
1213 
1214 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1215 
1216 	ret = 1;
1217 
1218 pte_unmap:
1219 	pte_unmap(ptem);
1220 	return ret;
1221 }
1222 #else
1223 
1224 /*
1225  * If we can't determine whether or not a pte is special, then fail immediately
1226  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1227  * to be special.
1228  *
1229  * For a futex to be placed on a THP tail page, get_futex_key requires a
1230  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1231  * useful to have gup_huge_pmd even if we can't operate on ptes.
1232  */
1233 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1234 			 int write, struct page **pages, int *nr)
1235 {
1236 	return 0;
1237 }
1238 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1239 
1240 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1241 		unsigned long end, int write, struct page **pages, int *nr)
1242 {
1243 	struct page *head, *page;
1244 	int refs;
1245 
1246 	if (write && !pmd_write(orig))
1247 		return 0;
1248 
1249 	refs = 0;
1250 	head = pmd_page(orig);
1251 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1252 	do {
1253 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1254 		pages[*nr] = page;
1255 		(*nr)++;
1256 		page++;
1257 		refs++;
1258 	} while (addr += PAGE_SIZE, addr != end);
1259 
1260 	if (!page_cache_add_speculative(head, refs)) {
1261 		*nr -= refs;
1262 		return 0;
1263 	}
1264 
1265 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1266 		*nr -= refs;
1267 		while (refs--)
1268 			put_page(head);
1269 		return 0;
1270 	}
1271 
1272 	return 1;
1273 }
1274 
1275 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1276 		unsigned long end, int write, struct page **pages, int *nr)
1277 {
1278 	struct page *head, *page;
1279 	int refs;
1280 
1281 	if (write && !pud_write(orig))
1282 		return 0;
1283 
1284 	refs = 0;
1285 	head = pud_page(orig);
1286 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1287 	do {
1288 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1289 		pages[*nr] = page;
1290 		(*nr)++;
1291 		page++;
1292 		refs++;
1293 	} while (addr += PAGE_SIZE, addr != end);
1294 
1295 	if (!page_cache_add_speculative(head, refs)) {
1296 		*nr -= refs;
1297 		return 0;
1298 	}
1299 
1300 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1301 		*nr -= refs;
1302 		while (refs--)
1303 			put_page(head);
1304 		return 0;
1305 	}
1306 
1307 	return 1;
1308 }
1309 
1310 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1311 			unsigned long end, int write,
1312 			struct page **pages, int *nr)
1313 {
1314 	int refs;
1315 	struct page *head, *page;
1316 
1317 	if (write && !pgd_write(orig))
1318 		return 0;
1319 
1320 	refs = 0;
1321 	head = pgd_page(orig);
1322 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1323 	do {
1324 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1325 		pages[*nr] = page;
1326 		(*nr)++;
1327 		page++;
1328 		refs++;
1329 	} while (addr += PAGE_SIZE, addr != end);
1330 
1331 	if (!page_cache_add_speculative(head, refs)) {
1332 		*nr -= refs;
1333 		return 0;
1334 	}
1335 
1336 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1337 		*nr -= refs;
1338 		while (refs--)
1339 			put_page(head);
1340 		return 0;
1341 	}
1342 
1343 	return 1;
1344 }
1345 
1346 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1347 		int write, struct page **pages, int *nr)
1348 {
1349 	unsigned long next;
1350 	pmd_t *pmdp;
1351 
1352 	pmdp = pmd_offset(&pud, addr);
1353 	do {
1354 		pmd_t pmd = READ_ONCE(*pmdp);
1355 
1356 		next = pmd_addr_end(addr, end);
1357 		if (pmd_none(pmd))
1358 			return 0;
1359 
1360 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1361 			/*
1362 			 * NUMA hinting faults need to be handled in the GUP
1363 			 * slowpath for accounting purposes and so that they
1364 			 * can be serialised against THP migration.
1365 			 */
1366 			if (pmd_protnone(pmd))
1367 				return 0;
1368 
1369 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1370 				pages, nr))
1371 				return 0;
1372 
1373 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1374 			/*
1375 			 * architecture have different format for hugetlbfs
1376 			 * pmd format and THP pmd format
1377 			 */
1378 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1379 					 PMD_SHIFT, next, write, pages, nr))
1380 				return 0;
1381 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1382 				return 0;
1383 	} while (pmdp++, addr = next, addr != end);
1384 
1385 	return 1;
1386 }
1387 
1388 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1389 			 int write, struct page **pages, int *nr)
1390 {
1391 	unsigned long next;
1392 	pud_t *pudp;
1393 
1394 	pudp = pud_offset(&pgd, addr);
1395 	do {
1396 		pud_t pud = READ_ONCE(*pudp);
1397 
1398 		next = pud_addr_end(addr, end);
1399 		if (pud_none(pud))
1400 			return 0;
1401 		if (unlikely(pud_huge(pud))) {
1402 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1403 					  pages, nr))
1404 				return 0;
1405 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1406 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1407 					 PUD_SHIFT, next, write, pages, nr))
1408 				return 0;
1409 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1410 			return 0;
1411 	} while (pudp++, addr = next, addr != end);
1412 
1413 	return 1;
1414 }
1415 
1416 /*
1417  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1418  * the regular GUP. It will only return non-negative values.
1419  */
1420 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1421 			  struct page **pages)
1422 {
1423 	struct mm_struct *mm = current->mm;
1424 	unsigned long addr, len, end;
1425 	unsigned long next, flags;
1426 	pgd_t *pgdp;
1427 	int nr = 0;
1428 
1429 	start &= PAGE_MASK;
1430 	addr = start;
1431 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1432 	end = start + len;
1433 
1434 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1435 					start, len)))
1436 		return 0;
1437 
1438 	/*
1439 	 * Disable interrupts.  We use the nested form as we can already have
1440 	 * interrupts disabled by get_futex_key.
1441 	 *
1442 	 * With interrupts disabled, we block page table pages from being
1443 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1444 	 * for more details.
1445 	 *
1446 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1447 	 * block IPIs that come from THPs splitting.
1448 	 */
1449 
1450 	local_irq_save(flags);
1451 	pgdp = pgd_offset(mm, addr);
1452 	do {
1453 		pgd_t pgd = READ_ONCE(*pgdp);
1454 
1455 		next = pgd_addr_end(addr, end);
1456 		if (pgd_none(pgd))
1457 			break;
1458 		if (unlikely(pgd_huge(pgd))) {
1459 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1460 					  pages, &nr))
1461 				break;
1462 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1463 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1464 					 PGDIR_SHIFT, next, write, pages, &nr))
1465 				break;
1466 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1467 			break;
1468 	} while (pgdp++, addr = next, addr != end);
1469 	local_irq_restore(flags);
1470 
1471 	return nr;
1472 }
1473 
1474 /**
1475  * get_user_pages_fast() - pin user pages in memory
1476  * @start:	starting user address
1477  * @nr_pages:	number of pages from start to pin
1478  * @write:	whether pages will be written to
1479  * @pages:	array that receives pointers to the pages pinned.
1480  *		Should be at least nr_pages long.
1481  *
1482  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1483  * If not successful, it will fall back to taking the lock and
1484  * calling get_user_pages().
1485  *
1486  * Returns number of pages pinned. This may be fewer than the number
1487  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1488  * were pinned, returns -errno.
1489  */
1490 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1491 			struct page **pages)
1492 {
1493 	int nr, ret;
1494 
1495 	start &= PAGE_MASK;
1496 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1497 	ret = nr;
1498 
1499 	if (nr < nr_pages) {
1500 		/* Try to get the remaining pages with get_user_pages */
1501 		start += nr << PAGE_SHIFT;
1502 		pages += nr;
1503 
1504 		ret = get_user_pages_unlocked(start, nr_pages - nr, write, 0, pages);
1505 
1506 		/* Have to be a bit careful with return values */
1507 		if (nr > 0) {
1508 			if (ret < 0)
1509 				ret = nr;
1510 			else
1511 				ret += nr;
1512 		}
1513 	}
1514 
1515 	return ret;
1516 }
1517 
1518 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1519