xref: /openbmc/linux/mm/gup.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		folio_put_refs(folio, refs);
91 		goto retry;
92 	}
93 
94 	return folio;
95 }
96 
97 /**
98  * try_grab_folio() - Attempt to get or pin a folio.
99  * @page:  pointer to page to be grabbed
100  * @refs:  the value to (effectively) add to the folio's refcount
101  * @flags: gup flags: these are the FOLL_* flag values.
102  *
103  * "grab" names in this file mean, "look at flags to decide whether to use
104  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
105  *
106  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
107  * same time. (That's true throughout the get_user_pages*() and
108  * pin_user_pages*() APIs.) Cases:
109  *
110  *    FOLL_GET: folio's refcount will be incremented by @refs.
111  *
112  *    FOLL_PIN on large folios: folio's refcount will be incremented by
113  *    @refs, and its compound_pincount will be incremented by @refs.
114  *
115  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
116  *    @refs * GUP_PIN_COUNTING_BIAS.
117  *
118  * Return: The folio containing @page (with refcount appropriately
119  * incremented) for success, or NULL upon failure. If neither FOLL_GET
120  * nor FOLL_PIN was set, that's considered failure, and furthermore,
121  * a likely bug in the caller, so a warning is also emitted.
122  */
123 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
124 {
125 	if (flags & FOLL_GET)
126 		return try_get_folio(page, refs);
127 	else if (flags & FOLL_PIN) {
128 		struct folio *folio;
129 
130 		/*
131 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
132 		 * right zone, so fail and let the caller fall back to the slow
133 		 * path.
134 		 */
135 		if (unlikely((flags & FOLL_LONGTERM) &&
136 			     !is_pinnable_page(page)))
137 			return NULL;
138 
139 		/*
140 		 * CAUTION: Don't use compound_head() on the page before this
141 		 * point, the result won't be stable.
142 		 */
143 		folio = try_get_folio(page, refs);
144 		if (!folio)
145 			return NULL;
146 
147 		/*
148 		 * When pinning a large folio, use an exact count to track it.
149 		 *
150 		 * However, be sure to *also* increment the normal folio
151 		 * refcount field at least once, so that the folio really
152 		 * is pinned.  That's why the refcount from the earlier
153 		 * try_get_folio() is left intact.
154 		 */
155 		if (folio_test_large(folio))
156 			atomic_add(refs, folio_pincount_ptr(folio));
157 		else
158 			folio_ref_add(folio,
159 					refs * (GUP_PIN_COUNTING_BIAS - 1));
160 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
161 
162 		return folio;
163 	}
164 
165 	WARN_ON_ONCE(1);
166 	return NULL;
167 }
168 
169 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
170 {
171 	if (flags & FOLL_PIN) {
172 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
173 		if (folio_test_large(folio))
174 			atomic_sub(refs, folio_pincount_ptr(folio));
175 		else
176 			refs *= GUP_PIN_COUNTING_BIAS;
177 	}
178 
179 	folio_put_refs(folio, refs);
180 }
181 
182 /**
183  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
184  * @page:    pointer to page to be grabbed
185  * @flags:   gup flags: these are the FOLL_* flag values.
186  *
187  * This might not do anything at all, depending on the flags argument.
188  *
189  * "grab" names in this file mean, "look at flags to decide whether to use
190  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
191  *
192  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
193  * time. Cases: please see the try_grab_folio() documentation, with
194  * "refs=1".
195  *
196  * Return: true for success, or if no action was required (if neither FOLL_PIN
197  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
198  * FOLL_PIN was set, but the page could not be grabbed.
199  */
200 bool __must_check try_grab_page(struct page *page, unsigned int flags)
201 {
202 	struct folio *folio = page_folio(page);
203 
204 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
205 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
206 		return false;
207 
208 	if (flags & FOLL_GET)
209 		folio_ref_inc(folio);
210 	else if (flags & FOLL_PIN) {
211 		/*
212 		 * Similar to try_grab_folio(): be sure to *also*
213 		 * increment the normal page refcount field at least once,
214 		 * so that the page really is pinned.
215 		 */
216 		if (folio_test_large(folio)) {
217 			folio_ref_add(folio, 1);
218 			atomic_add(1, folio_pincount_ptr(folio));
219 		} else {
220 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
221 		}
222 
223 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
224 	}
225 
226 	return true;
227 }
228 
229 /**
230  * unpin_user_page() - release a dma-pinned page
231  * @page:            pointer to page to be released
232  *
233  * Pages that were pinned via pin_user_pages*() must be released via either
234  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
235  * that such pages can be separately tracked and uniquely handled. In
236  * particular, interactions with RDMA and filesystems need special handling.
237  */
238 void unpin_user_page(struct page *page)
239 {
240 	sanity_check_pinned_pages(&page, 1);
241 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
242 }
243 EXPORT_SYMBOL(unpin_user_page);
244 
245 static inline struct folio *gup_folio_range_next(struct page *start,
246 		unsigned long npages, unsigned long i, unsigned int *ntails)
247 {
248 	struct page *next = nth_page(start, i);
249 	struct folio *folio = page_folio(next);
250 	unsigned int nr = 1;
251 
252 	if (folio_test_large(folio))
253 		nr = min_t(unsigned int, npages - i,
254 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
255 
256 	*ntails = nr;
257 	return folio;
258 }
259 
260 static inline struct folio *gup_folio_next(struct page **list,
261 		unsigned long npages, unsigned long i, unsigned int *ntails)
262 {
263 	struct folio *folio = page_folio(list[i]);
264 	unsigned int nr;
265 
266 	for (nr = i + 1; nr < npages; nr++) {
267 		if (page_folio(list[nr]) != folio)
268 			break;
269 	}
270 
271 	*ntails = nr - i;
272 	return folio;
273 }
274 
275 /**
276  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
277  * @pages:  array of pages to be maybe marked dirty, and definitely released.
278  * @npages: number of pages in the @pages array.
279  * @make_dirty: whether to mark the pages dirty
280  *
281  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
282  * variants called on that page.
283  *
284  * For each page in the @pages array, make that page (or its head page, if a
285  * compound page) dirty, if @make_dirty is true, and if the page was previously
286  * listed as clean. In any case, releases all pages using unpin_user_page(),
287  * possibly via unpin_user_pages(), for the non-dirty case.
288  *
289  * Please see the unpin_user_page() documentation for details.
290  *
291  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
292  * required, then the caller should a) verify that this is really correct,
293  * because _lock() is usually required, and b) hand code it:
294  * set_page_dirty_lock(), unpin_user_page().
295  *
296  */
297 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
298 				 bool make_dirty)
299 {
300 	unsigned long i;
301 	struct folio *folio;
302 	unsigned int nr;
303 
304 	if (!make_dirty) {
305 		unpin_user_pages(pages, npages);
306 		return;
307 	}
308 
309 	sanity_check_pinned_pages(pages, npages);
310 	for (i = 0; i < npages; i += nr) {
311 		folio = gup_folio_next(pages, npages, i, &nr);
312 		/*
313 		 * Checking PageDirty at this point may race with
314 		 * clear_page_dirty_for_io(), but that's OK. Two key
315 		 * cases:
316 		 *
317 		 * 1) This code sees the page as already dirty, so it
318 		 * skips the call to set_page_dirty(). That could happen
319 		 * because clear_page_dirty_for_io() called
320 		 * page_mkclean(), followed by set_page_dirty().
321 		 * However, now the page is going to get written back,
322 		 * which meets the original intention of setting it
323 		 * dirty, so all is well: clear_page_dirty_for_io() goes
324 		 * on to call TestClearPageDirty(), and write the page
325 		 * back.
326 		 *
327 		 * 2) This code sees the page as clean, so it calls
328 		 * set_page_dirty(). The page stays dirty, despite being
329 		 * written back, so it gets written back again in the
330 		 * next writeback cycle. This is harmless.
331 		 */
332 		if (!folio_test_dirty(folio)) {
333 			folio_lock(folio);
334 			folio_mark_dirty(folio);
335 			folio_unlock(folio);
336 		}
337 		gup_put_folio(folio, nr, FOLL_PIN);
338 	}
339 }
340 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
341 
342 /**
343  * unpin_user_page_range_dirty_lock() - release and optionally dirty
344  * gup-pinned page range
345  *
346  * @page:  the starting page of a range maybe marked dirty, and definitely released.
347  * @npages: number of consecutive pages to release.
348  * @make_dirty: whether to mark the pages dirty
349  *
350  * "gup-pinned page range" refers to a range of pages that has had one of the
351  * pin_user_pages() variants called on that page.
352  *
353  * For the page ranges defined by [page .. page+npages], make that range (or
354  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
355  * page range was previously listed as clean.
356  *
357  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
358  * required, then the caller should a) verify that this is really correct,
359  * because _lock() is usually required, and b) hand code it:
360  * set_page_dirty_lock(), unpin_user_page().
361  *
362  */
363 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
364 				      bool make_dirty)
365 {
366 	unsigned long i;
367 	struct folio *folio;
368 	unsigned int nr;
369 
370 	for (i = 0; i < npages; i += nr) {
371 		folio = gup_folio_range_next(page, npages, i, &nr);
372 		if (make_dirty && !folio_test_dirty(folio)) {
373 			folio_lock(folio);
374 			folio_mark_dirty(folio);
375 			folio_unlock(folio);
376 		}
377 		gup_put_folio(folio, nr, FOLL_PIN);
378 	}
379 }
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381 
382 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
383 {
384 	unsigned long i;
385 	struct folio *folio;
386 	unsigned int nr;
387 
388 	/*
389 	 * Don't perform any sanity checks because we might have raced with
390 	 * fork() and some anonymous pages might now actually be shared --
391 	 * which is why we're unpinning after all.
392 	 */
393 	for (i = 0; i < npages; i += nr) {
394 		folio = gup_folio_next(pages, npages, i, &nr);
395 		gup_put_folio(folio, nr, FOLL_PIN);
396 	}
397 }
398 
399 /**
400  * unpin_user_pages() - release an array of gup-pinned pages.
401  * @pages:  array of pages to be marked dirty and released.
402  * @npages: number of pages in the @pages array.
403  *
404  * For each page in the @pages array, release the page using unpin_user_page().
405  *
406  * Please see the unpin_user_page() documentation for details.
407  */
408 void unpin_user_pages(struct page **pages, unsigned long npages)
409 {
410 	unsigned long i;
411 	struct folio *folio;
412 	unsigned int nr;
413 
414 	/*
415 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
416 	 * leaving them pinned), but probably not. More likely, gup/pup returned
417 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
418 	 */
419 	if (WARN_ON(IS_ERR_VALUE(npages)))
420 		return;
421 
422 	sanity_check_pinned_pages(pages, npages);
423 	for (i = 0; i < npages; i += nr) {
424 		folio = gup_folio_next(pages, npages, i, &nr);
425 		gup_put_folio(folio, nr, FOLL_PIN);
426 	}
427 }
428 EXPORT_SYMBOL(unpin_user_pages);
429 
430 /*
431  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
432  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
433  * cache bouncing on large SMP machines for concurrent pinned gups.
434  */
435 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
436 {
437 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
438 		set_bit(MMF_HAS_PINNED, mm_flags);
439 }
440 
441 #ifdef CONFIG_MMU
442 static struct page *no_page_table(struct vm_area_struct *vma,
443 		unsigned int flags)
444 {
445 	/*
446 	 * When core dumping an enormous anonymous area that nobody
447 	 * has touched so far, we don't want to allocate unnecessary pages or
448 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
449 	 * then get_dump_page() will return NULL to leave a hole in the dump.
450 	 * But we can only make this optimization where a hole would surely
451 	 * be zero-filled if handle_mm_fault() actually did handle it.
452 	 */
453 	if ((flags & FOLL_DUMP) &&
454 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
455 		return ERR_PTR(-EFAULT);
456 	return NULL;
457 }
458 
459 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
460 		pte_t *pte, unsigned int flags)
461 {
462 	if (flags & FOLL_TOUCH) {
463 		pte_t entry = *pte;
464 
465 		if (flags & FOLL_WRITE)
466 			entry = pte_mkdirty(entry);
467 		entry = pte_mkyoung(entry);
468 
469 		if (!pte_same(*pte, entry)) {
470 			set_pte_at(vma->vm_mm, address, pte, entry);
471 			update_mmu_cache(vma, address, pte);
472 		}
473 	}
474 
475 	/* Proper page table entry exists, but no corresponding struct page */
476 	return -EEXIST;
477 }
478 
479 /*
480  * FOLL_FORCE can write to even unwritable pte's, but only
481  * after we've gone through a COW cycle and they are dirty.
482  */
483 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
484 {
485 	return pte_write(pte) ||
486 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
487 }
488 
489 static struct page *follow_page_pte(struct vm_area_struct *vma,
490 		unsigned long address, pmd_t *pmd, unsigned int flags,
491 		struct dev_pagemap **pgmap)
492 {
493 	struct mm_struct *mm = vma->vm_mm;
494 	struct page *page;
495 	spinlock_t *ptl;
496 	pte_t *ptep, pte;
497 	int ret;
498 
499 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
500 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
501 			 (FOLL_PIN | FOLL_GET)))
502 		return ERR_PTR(-EINVAL);
503 retry:
504 	if (unlikely(pmd_bad(*pmd)))
505 		return no_page_table(vma, flags);
506 
507 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
508 	pte = *ptep;
509 	if (!pte_present(pte)) {
510 		swp_entry_t entry;
511 		/*
512 		 * KSM's break_ksm() relies upon recognizing a ksm page
513 		 * even while it is being migrated, so for that case we
514 		 * need migration_entry_wait().
515 		 */
516 		if (likely(!(flags & FOLL_MIGRATION)))
517 			goto no_page;
518 		if (pte_none(pte))
519 			goto no_page;
520 		entry = pte_to_swp_entry(pte);
521 		if (!is_migration_entry(entry))
522 			goto no_page;
523 		pte_unmap_unlock(ptep, ptl);
524 		migration_entry_wait(mm, pmd, address);
525 		goto retry;
526 	}
527 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
528 		goto no_page;
529 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
530 		pte_unmap_unlock(ptep, ptl);
531 		return NULL;
532 	}
533 
534 	page = vm_normal_page(vma, address, pte);
535 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
536 		/*
537 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
538 		 * case since they are only valid while holding the pgmap
539 		 * reference.
540 		 */
541 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
542 		if (*pgmap)
543 			page = pte_page(pte);
544 		else
545 			goto no_page;
546 	} else if (unlikely(!page)) {
547 		if (flags & FOLL_DUMP) {
548 			/* Avoid special (like zero) pages in core dumps */
549 			page = ERR_PTR(-EFAULT);
550 			goto out;
551 		}
552 
553 		if (is_zero_pfn(pte_pfn(pte))) {
554 			page = pte_page(pte);
555 		} else {
556 			ret = follow_pfn_pte(vma, address, ptep, flags);
557 			page = ERR_PTR(ret);
558 			goto out;
559 		}
560 	}
561 
562 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
563 		page = ERR_PTR(-EMLINK);
564 		goto out;
565 	}
566 
567 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
568 		       !PageAnonExclusive(page), page);
569 
570 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
571 	if (unlikely(!try_grab_page(page, flags))) {
572 		page = ERR_PTR(-ENOMEM);
573 		goto out;
574 	}
575 	/*
576 	 * We need to make the page accessible if and only if we are going
577 	 * to access its content (the FOLL_PIN case).  Please see
578 	 * Documentation/core-api/pin_user_pages.rst for details.
579 	 */
580 	if (flags & FOLL_PIN) {
581 		ret = arch_make_page_accessible(page);
582 		if (ret) {
583 			unpin_user_page(page);
584 			page = ERR_PTR(ret);
585 			goto out;
586 		}
587 	}
588 	if (flags & FOLL_TOUCH) {
589 		if ((flags & FOLL_WRITE) &&
590 		    !pte_dirty(pte) && !PageDirty(page))
591 			set_page_dirty(page);
592 		/*
593 		 * pte_mkyoung() would be more correct here, but atomic care
594 		 * is needed to avoid losing the dirty bit: it is easier to use
595 		 * mark_page_accessed().
596 		 */
597 		mark_page_accessed(page);
598 	}
599 out:
600 	pte_unmap_unlock(ptep, ptl);
601 	return page;
602 no_page:
603 	pte_unmap_unlock(ptep, ptl);
604 	if (!pte_none(pte))
605 		return NULL;
606 	return no_page_table(vma, flags);
607 }
608 
609 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
610 				    unsigned long address, pud_t *pudp,
611 				    unsigned int flags,
612 				    struct follow_page_context *ctx)
613 {
614 	pmd_t *pmd, pmdval;
615 	spinlock_t *ptl;
616 	struct page *page;
617 	struct mm_struct *mm = vma->vm_mm;
618 
619 	pmd = pmd_offset(pudp, address);
620 	/*
621 	 * The READ_ONCE() will stabilize the pmdval in a register or
622 	 * on the stack so that it will stop changing under the code.
623 	 */
624 	pmdval = READ_ONCE(*pmd);
625 	if (pmd_none(pmdval))
626 		return no_page_table(vma, flags);
627 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
628 		page = follow_huge_pmd(mm, address, pmd, flags);
629 		if (page)
630 			return page;
631 		return no_page_table(vma, flags);
632 	}
633 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
634 		page = follow_huge_pd(vma, address,
635 				      __hugepd(pmd_val(pmdval)), flags,
636 				      PMD_SHIFT);
637 		if (page)
638 			return page;
639 		return no_page_table(vma, flags);
640 	}
641 retry:
642 	if (!pmd_present(pmdval)) {
643 		/*
644 		 * Should never reach here, if thp migration is not supported;
645 		 * Otherwise, it must be a thp migration entry.
646 		 */
647 		VM_BUG_ON(!thp_migration_supported() ||
648 				  !is_pmd_migration_entry(pmdval));
649 
650 		if (likely(!(flags & FOLL_MIGRATION)))
651 			return no_page_table(vma, flags);
652 
653 		pmd_migration_entry_wait(mm, pmd);
654 		pmdval = READ_ONCE(*pmd);
655 		/*
656 		 * MADV_DONTNEED may convert the pmd to null because
657 		 * mmap_lock is held in read mode
658 		 */
659 		if (pmd_none(pmdval))
660 			return no_page_table(vma, flags);
661 		goto retry;
662 	}
663 	if (pmd_devmap(pmdval)) {
664 		ptl = pmd_lock(mm, pmd);
665 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
666 		spin_unlock(ptl);
667 		if (page)
668 			return page;
669 	}
670 	if (likely(!pmd_trans_huge(pmdval)))
671 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
672 
673 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
674 		return no_page_table(vma, flags);
675 
676 retry_locked:
677 	ptl = pmd_lock(mm, pmd);
678 	if (unlikely(pmd_none(*pmd))) {
679 		spin_unlock(ptl);
680 		return no_page_table(vma, flags);
681 	}
682 	if (unlikely(!pmd_present(*pmd))) {
683 		spin_unlock(ptl);
684 		if (likely(!(flags & FOLL_MIGRATION)))
685 			return no_page_table(vma, flags);
686 		pmd_migration_entry_wait(mm, pmd);
687 		goto retry_locked;
688 	}
689 	if (unlikely(!pmd_trans_huge(*pmd))) {
690 		spin_unlock(ptl);
691 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
692 	}
693 	if (flags & FOLL_SPLIT_PMD) {
694 		int ret;
695 		page = pmd_page(*pmd);
696 		if (is_huge_zero_page(page)) {
697 			spin_unlock(ptl);
698 			ret = 0;
699 			split_huge_pmd(vma, pmd, address);
700 			if (pmd_trans_unstable(pmd))
701 				ret = -EBUSY;
702 		} else {
703 			spin_unlock(ptl);
704 			split_huge_pmd(vma, pmd, address);
705 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
706 		}
707 
708 		return ret ? ERR_PTR(ret) :
709 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
710 	}
711 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
712 	spin_unlock(ptl);
713 	ctx->page_mask = HPAGE_PMD_NR - 1;
714 	return page;
715 }
716 
717 static struct page *follow_pud_mask(struct vm_area_struct *vma,
718 				    unsigned long address, p4d_t *p4dp,
719 				    unsigned int flags,
720 				    struct follow_page_context *ctx)
721 {
722 	pud_t *pud;
723 	spinlock_t *ptl;
724 	struct page *page;
725 	struct mm_struct *mm = vma->vm_mm;
726 
727 	pud = pud_offset(p4dp, address);
728 	if (pud_none(*pud))
729 		return no_page_table(vma, flags);
730 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
731 		page = follow_huge_pud(mm, address, pud, flags);
732 		if (page)
733 			return page;
734 		return no_page_table(vma, flags);
735 	}
736 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
737 		page = follow_huge_pd(vma, address,
738 				      __hugepd(pud_val(*pud)), flags,
739 				      PUD_SHIFT);
740 		if (page)
741 			return page;
742 		return no_page_table(vma, flags);
743 	}
744 	if (pud_devmap(*pud)) {
745 		ptl = pud_lock(mm, pud);
746 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
747 		spin_unlock(ptl);
748 		if (page)
749 			return page;
750 	}
751 	if (unlikely(pud_bad(*pud)))
752 		return no_page_table(vma, flags);
753 
754 	return follow_pmd_mask(vma, address, pud, flags, ctx);
755 }
756 
757 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
758 				    unsigned long address, pgd_t *pgdp,
759 				    unsigned int flags,
760 				    struct follow_page_context *ctx)
761 {
762 	p4d_t *p4d;
763 	struct page *page;
764 
765 	p4d = p4d_offset(pgdp, address);
766 	if (p4d_none(*p4d))
767 		return no_page_table(vma, flags);
768 	BUILD_BUG_ON(p4d_huge(*p4d));
769 	if (unlikely(p4d_bad(*p4d)))
770 		return no_page_table(vma, flags);
771 
772 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
773 		page = follow_huge_pd(vma, address,
774 				      __hugepd(p4d_val(*p4d)), flags,
775 				      P4D_SHIFT);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 	return follow_pud_mask(vma, address, p4d, flags, ctx);
781 }
782 
783 /**
784  * follow_page_mask - look up a page descriptor from a user-virtual address
785  * @vma: vm_area_struct mapping @address
786  * @address: virtual address to look up
787  * @flags: flags modifying lookup behaviour
788  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
789  *       pointer to output page_mask
790  *
791  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
792  *
793  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
794  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
795  *
796  * When getting an anonymous page and the caller has to trigger unsharing
797  * of a shared anonymous page first, -EMLINK is returned. The caller should
798  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
799  * relevant with FOLL_PIN and !FOLL_WRITE.
800  *
801  * On output, the @ctx->page_mask is set according to the size of the page.
802  *
803  * Return: the mapped (struct page *), %NULL if no mapping exists, or
804  * an error pointer if there is a mapping to something not represented
805  * by a page descriptor (see also vm_normal_page()).
806  */
807 static struct page *follow_page_mask(struct vm_area_struct *vma,
808 			      unsigned long address, unsigned int flags,
809 			      struct follow_page_context *ctx)
810 {
811 	pgd_t *pgd;
812 	struct page *page;
813 	struct mm_struct *mm = vma->vm_mm;
814 
815 	ctx->page_mask = 0;
816 
817 	/* make this handle hugepd */
818 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
819 	if (!IS_ERR(page)) {
820 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
821 		return page;
822 	}
823 
824 	pgd = pgd_offset(mm, address);
825 
826 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827 		return no_page_table(vma, flags);
828 
829 	if (pgd_huge(*pgd)) {
830 		page = follow_huge_pgd(mm, address, pgd, flags);
831 		if (page)
832 			return page;
833 		return no_page_table(vma, flags);
834 	}
835 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
836 		page = follow_huge_pd(vma, address,
837 				      __hugepd(pgd_val(*pgd)), flags,
838 				      PGDIR_SHIFT);
839 		if (page)
840 			return page;
841 		return no_page_table(vma, flags);
842 	}
843 
844 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
845 }
846 
847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
848 			 unsigned int foll_flags)
849 {
850 	struct follow_page_context ctx = { NULL };
851 	struct page *page;
852 
853 	if (vma_is_secretmem(vma))
854 		return NULL;
855 
856 	if (foll_flags & FOLL_PIN)
857 		return NULL;
858 
859 	page = follow_page_mask(vma, address, foll_flags, &ctx);
860 	if (ctx.pgmap)
861 		put_dev_pagemap(ctx.pgmap);
862 	return page;
863 }
864 
865 static int get_gate_page(struct mm_struct *mm, unsigned long address,
866 		unsigned int gup_flags, struct vm_area_struct **vma,
867 		struct page **page)
868 {
869 	pgd_t *pgd;
870 	p4d_t *p4d;
871 	pud_t *pud;
872 	pmd_t *pmd;
873 	pte_t *pte;
874 	int ret = -EFAULT;
875 
876 	/* user gate pages are read-only */
877 	if (gup_flags & FOLL_WRITE)
878 		return -EFAULT;
879 	if (address > TASK_SIZE)
880 		pgd = pgd_offset_k(address);
881 	else
882 		pgd = pgd_offset_gate(mm, address);
883 	if (pgd_none(*pgd))
884 		return -EFAULT;
885 	p4d = p4d_offset(pgd, address);
886 	if (p4d_none(*p4d))
887 		return -EFAULT;
888 	pud = pud_offset(p4d, address);
889 	if (pud_none(*pud))
890 		return -EFAULT;
891 	pmd = pmd_offset(pud, address);
892 	if (!pmd_present(*pmd))
893 		return -EFAULT;
894 	VM_BUG_ON(pmd_trans_huge(*pmd));
895 	pte = pte_offset_map(pmd, address);
896 	if (pte_none(*pte))
897 		goto unmap;
898 	*vma = get_gate_vma(mm);
899 	if (!page)
900 		goto out;
901 	*page = vm_normal_page(*vma, address, *pte);
902 	if (!*page) {
903 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
904 			goto unmap;
905 		*page = pte_page(*pte);
906 	}
907 	if (unlikely(!try_grab_page(*page, gup_flags))) {
908 		ret = -ENOMEM;
909 		goto unmap;
910 	}
911 out:
912 	ret = 0;
913 unmap:
914 	pte_unmap(pte);
915 	return ret;
916 }
917 
918 /*
919  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
920  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
921  * is, *@locked will be set to 0 and -EBUSY returned.
922  */
923 static int faultin_page(struct vm_area_struct *vma,
924 		unsigned long address, unsigned int *flags, bool unshare,
925 		int *locked)
926 {
927 	unsigned int fault_flags = 0;
928 	vm_fault_t ret;
929 
930 	if (*flags & FOLL_NOFAULT)
931 		return -EFAULT;
932 	if (*flags & FOLL_WRITE)
933 		fault_flags |= FAULT_FLAG_WRITE;
934 	if (*flags & FOLL_REMOTE)
935 		fault_flags |= FAULT_FLAG_REMOTE;
936 	if (locked)
937 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
938 	if (*flags & FOLL_NOWAIT)
939 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
940 	if (*flags & FOLL_TRIED) {
941 		/*
942 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
943 		 * can co-exist
944 		 */
945 		fault_flags |= FAULT_FLAG_TRIED;
946 	}
947 	if (unshare) {
948 		fault_flags |= FAULT_FLAG_UNSHARE;
949 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
950 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
951 	}
952 
953 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
954 	if (ret & VM_FAULT_ERROR) {
955 		int err = vm_fault_to_errno(ret, *flags);
956 
957 		if (err)
958 			return err;
959 		BUG();
960 	}
961 
962 	if (ret & VM_FAULT_RETRY) {
963 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
964 			*locked = 0;
965 		return -EBUSY;
966 	}
967 
968 	/*
969 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
970 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
971 	 * can thus safely do subsequent page lookups as if they were reads.
972 	 * But only do so when looping for pte_write is futile: in some cases
973 	 * userspace may also be wanting to write to the gotten user page,
974 	 * which a read fault here might prevent (a readonly page might get
975 	 * reCOWed by userspace write).
976 	 */
977 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
978 		*flags |= FOLL_COW;
979 	return 0;
980 }
981 
982 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
983 {
984 	vm_flags_t vm_flags = vma->vm_flags;
985 	int write = (gup_flags & FOLL_WRITE);
986 	int foreign = (gup_flags & FOLL_REMOTE);
987 
988 	if (vm_flags & (VM_IO | VM_PFNMAP))
989 		return -EFAULT;
990 
991 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
992 		return -EFAULT;
993 
994 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
995 		return -EOPNOTSUPP;
996 
997 	if (vma_is_secretmem(vma))
998 		return -EFAULT;
999 
1000 	if (write) {
1001 		if (!(vm_flags & VM_WRITE)) {
1002 			if (!(gup_flags & FOLL_FORCE))
1003 				return -EFAULT;
1004 			/*
1005 			 * We used to let the write,force case do COW in a
1006 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1007 			 * set a breakpoint in a read-only mapping of an
1008 			 * executable, without corrupting the file (yet only
1009 			 * when that file had been opened for writing!).
1010 			 * Anon pages in shared mappings are surprising: now
1011 			 * just reject it.
1012 			 */
1013 			if (!is_cow_mapping(vm_flags))
1014 				return -EFAULT;
1015 		}
1016 	} else if (!(vm_flags & VM_READ)) {
1017 		if (!(gup_flags & FOLL_FORCE))
1018 			return -EFAULT;
1019 		/*
1020 		 * Is there actually any vma we can reach here which does not
1021 		 * have VM_MAYREAD set?
1022 		 */
1023 		if (!(vm_flags & VM_MAYREAD))
1024 			return -EFAULT;
1025 	}
1026 	/*
1027 	 * gups are always data accesses, not instruction
1028 	 * fetches, so execute=false here
1029 	 */
1030 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1031 		return -EFAULT;
1032 	return 0;
1033 }
1034 
1035 /**
1036  * __get_user_pages() - pin user pages in memory
1037  * @mm:		mm_struct of target mm
1038  * @start:	starting user address
1039  * @nr_pages:	number of pages from start to pin
1040  * @gup_flags:	flags modifying pin behaviour
1041  * @pages:	array that receives pointers to the pages pinned.
1042  *		Should be at least nr_pages long. Or NULL, if caller
1043  *		only intends to ensure the pages are faulted in.
1044  * @vmas:	array of pointers to vmas corresponding to each page.
1045  *		Or NULL if the caller does not require them.
1046  * @locked:     whether we're still with the mmap_lock held
1047  *
1048  * Returns either number of pages pinned (which may be less than the
1049  * number requested), or an error. Details about the return value:
1050  *
1051  * -- If nr_pages is 0, returns 0.
1052  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1053  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1054  *    pages pinned. Again, this may be less than nr_pages.
1055  * -- 0 return value is possible when the fault would need to be retried.
1056  *
1057  * The caller is responsible for releasing returned @pages, via put_page().
1058  *
1059  * @vmas are valid only as long as mmap_lock is held.
1060  *
1061  * Must be called with mmap_lock held.  It may be released.  See below.
1062  *
1063  * __get_user_pages walks a process's page tables and takes a reference to
1064  * each struct page that each user address corresponds to at a given
1065  * instant. That is, it takes the page that would be accessed if a user
1066  * thread accesses the given user virtual address at that instant.
1067  *
1068  * This does not guarantee that the page exists in the user mappings when
1069  * __get_user_pages returns, and there may even be a completely different
1070  * page there in some cases (eg. if mmapped pagecache has been invalidated
1071  * and subsequently re faulted). However it does guarantee that the page
1072  * won't be freed completely. And mostly callers simply care that the page
1073  * contains data that was valid *at some point in time*. Typically, an IO
1074  * or similar operation cannot guarantee anything stronger anyway because
1075  * locks can't be held over the syscall boundary.
1076  *
1077  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1078  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1079  * appropriate) must be called after the page is finished with, and
1080  * before put_page is called.
1081  *
1082  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1083  * released by an up_read().  That can happen if @gup_flags does not
1084  * have FOLL_NOWAIT.
1085  *
1086  * A caller using such a combination of @locked and @gup_flags
1087  * must therefore hold the mmap_lock for reading only, and recognize
1088  * when it's been released.  Otherwise, it must be held for either
1089  * reading or writing and will not be released.
1090  *
1091  * In most cases, get_user_pages or get_user_pages_fast should be used
1092  * instead of __get_user_pages. __get_user_pages should be used only if
1093  * you need some special @gup_flags.
1094  */
1095 static long __get_user_pages(struct mm_struct *mm,
1096 		unsigned long start, unsigned long nr_pages,
1097 		unsigned int gup_flags, struct page **pages,
1098 		struct vm_area_struct **vmas, int *locked)
1099 {
1100 	long ret = 0, i = 0;
1101 	struct vm_area_struct *vma = NULL;
1102 	struct follow_page_context ctx = { NULL };
1103 
1104 	if (!nr_pages)
1105 		return 0;
1106 
1107 	start = untagged_addr(start);
1108 
1109 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1110 
1111 	/*
1112 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1113 	 * fault information is unrelated to the reference behaviour of a task
1114 	 * using the address space
1115 	 */
1116 	if (!(gup_flags & FOLL_FORCE))
1117 		gup_flags |= FOLL_NUMA;
1118 
1119 	do {
1120 		struct page *page;
1121 		unsigned int foll_flags = gup_flags;
1122 		unsigned int page_increm;
1123 
1124 		/* first iteration or cross vma bound */
1125 		if (!vma || start >= vma->vm_end) {
1126 			vma = find_extend_vma(mm, start);
1127 			if (!vma && in_gate_area(mm, start)) {
1128 				ret = get_gate_page(mm, start & PAGE_MASK,
1129 						gup_flags, &vma,
1130 						pages ? &pages[i] : NULL);
1131 				if (ret)
1132 					goto out;
1133 				ctx.page_mask = 0;
1134 				goto next_page;
1135 			}
1136 
1137 			if (!vma) {
1138 				ret = -EFAULT;
1139 				goto out;
1140 			}
1141 			ret = check_vma_flags(vma, gup_flags);
1142 			if (ret)
1143 				goto out;
1144 
1145 			if (is_vm_hugetlb_page(vma)) {
1146 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1147 						&start, &nr_pages, i,
1148 						gup_flags, locked);
1149 				if (locked && *locked == 0) {
1150 					/*
1151 					 * We've got a VM_FAULT_RETRY
1152 					 * and we've lost mmap_lock.
1153 					 * We must stop here.
1154 					 */
1155 					BUG_ON(gup_flags & FOLL_NOWAIT);
1156 					goto out;
1157 				}
1158 				continue;
1159 			}
1160 		}
1161 retry:
1162 		/*
1163 		 * If we have a pending SIGKILL, don't keep faulting pages and
1164 		 * potentially allocating memory.
1165 		 */
1166 		if (fatal_signal_pending(current)) {
1167 			ret = -EINTR;
1168 			goto out;
1169 		}
1170 		cond_resched();
1171 
1172 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1173 		if (!page || PTR_ERR(page) == -EMLINK) {
1174 			ret = faultin_page(vma, start, &foll_flags,
1175 					   PTR_ERR(page) == -EMLINK, locked);
1176 			switch (ret) {
1177 			case 0:
1178 				goto retry;
1179 			case -EBUSY:
1180 				ret = 0;
1181 				fallthrough;
1182 			case -EFAULT:
1183 			case -ENOMEM:
1184 			case -EHWPOISON:
1185 				goto out;
1186 			}
1187 			BUG();
1188 		} else if (PTR_ERR(page) == -EEXIST) {
1189 			/*
1190 			 * Proper page table entry exists, but no corresponding
1191 			 * struct page. If the caller expects **pages to be
1192 			 * filled in, bail out now, because that can't be done
1193 			 * for this page.
1194 			 */
1195 			if (pages) {
1196 				ret = PTR_ERR(page);
1197 				goto out;
1198 			}
1199 
1200 			goto next_page;
1201 		} else if (IS_ERR(page)) {
1202 			ret = PTR_ERR(page);
1203 			goto out;
1204 		}
1205 		if (pages) {
1206 			pages[i] = page;
1207 			flush_anon_page(vma, page, start);
1208 			flush_dcache_page(page);
1209 			ctx.page_mask = 0;
1210 		}
1211 next_page:
1212 		if (vmas) {
1213 			vmas[i] = vma;
1214 			ctx.page_mask = 0;
1215 		}
1216 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1217 		if (page_increm > nr_pages)
1218 			page_increm = nr_pages;
1219 		i += page_increm;
1220 		start += page_increm * PAGE_SIZE;
1221 		nr_pages -= page_increm;
1222 	} while (nr_pages);
1223 out:
1224 	if (ctx.pgmap)
1225 		put_dev_pagemap(ctx.pgmap);
1226 	return i ? i : ret;
1227 }
1228 
1229 static bool vma_permits_fault(struct vm_area_struct *vma,
1230 			      unsigned int fault_flags)
1231 {
1232 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1233 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1234 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1235 
1236 	if (!(vm_flags & vma->vm_flags))
1237 		return false;
1238 
1239 	/*
1240 	 * The architecture might have a hardware protection
1241 	 * mechanism other than read/write that can deny access.
1242 	 *
1243 	 * gup always represents data access, not instruction
1244 	 * fetches, so execute=false here:
1245 	 */
1246 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 /**
1253  * fixup_user_fault() - manually resolve a user page fault
1254  * @mm:		mm_struct of target mm
1255  * @address:	user address
1256  * @fault_flags:flags to pass down to handle_mm_fault()
1257  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1258  *		does not allow retry. If NULL, the caller must guarantee
1259  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1260  *
1261  * This is meant to be called in the specific scenario where for locking reasons
1262  * we try to access user memory in atomic context (within a pagefault_disable()
1263  * section), this returns -EFAULT, and we want to resolve the user fault before
1264  * trying again.
1265  *
1266  * Typically this is meant to be used by the futex code.
1267  *
1268  * The main difference with get_user_pages() is that this function will
1269  * unconditionally call handle_mm_fault() which will in turn perform all the
1270  * necessary SW fixup of the dirty and young bits in the PTE, while
1271  * get_user_pages() only guarantees to update these in the struct page.
1272  *
1273  * This is important for some architectures where those bits also gate the
1274  * access permission to the page because they are maintained in software.  On
1275  * such architectures, gup() will not be enough to make a subsequent access
1276  * succeed.
1277  *
1278  * This function will not return with an unlocked mmap_lock. So it has not the
1279  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1280  */
1281 int fixup_user_fault(struct mm_struct *mm,
1282 		     unsigned long address, unsigned int fault_flags,
1283 		     bool *unlocked)
1284 {
1285 	struct vm_area_struct *vma;
1286 	vm_fault_t ret;
1287 
1288 	address = untagged_addr(address);
1289 
1290 	if (unlocked)
1291 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1292 
1293 retry:
1294 	vma = find_extend_vma(mm, address);
1295 	if (!vma || address < vma->vm_start)
1296 		return -EFAULT;
1297 
1298 	if (!vma_permits_fault(vma, fault_flags))
1299 		return -EFAULT;
1300 
1301 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1302 	    fatal_signal_pending(current))
1303 		return -EINTR;
1304 
1305 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1306 	if (ret & VM_FAULT_ERROR) {
1307 		int err = vm_fault_to_errno(ret, 0);
1308 
1309 		if (err)
1310 			return err;
1311 		BUG();
1312 	}
1313 
1314 	if (ret & VM_FAULT_RETRY) {
1315 		mmap_read_lock(mm);
1316 		*unlocked = true;
1317 		fault_flags |= FAULT_FLAG_TRIED;
1318 		goto retry;
1319 	}
1320 
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(fixup_user_fault);
1324 
1325 /*
1326  * Please note that this function, unlike __get_user_pages will not
1327  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1328  */
1329 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1330 						unsigned long start,
1331 						unsigned long nr_pages,
1332 						struct page **pages,
1333 						struct vm_area_struct **vmas,
1334 						int *locked,
1335 						unsigned int flags)
1336 {
1337 	long ret, pages_done;
1338 	bool lock_dropped;
1339 
1340 	if (locked) {
1341 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1342 		BUG_ON(vmas);
1343 		/* check caller initialized locked */
1344 		BUG_ON(*locked != 1);
1345 	}
1346 
1347 	if (flags & FOLL_PIN)
1348 		mm_set_has_pinned_flag(&mm->flags);
1349 
1350 	/*
1351 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1352 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1353 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1354 	 * for FOLL_GET, not for the newer FOLL_PIN.
1355 	 *
1356 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1357 	 * that here, as any failures will be obvious enough.
1358 	 */
1359 	if (pages && !(flags & FOLL_PIN))
1360 		flags |= FOLL_GET;
1361 
1362 	pages_done = 0;
1363 	lock_dropped = false;
1364 	for (;;) {
1365 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1366 				       vmas, locked);
1367 		if (!locked)
1368 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1369 			return ret;
1370 
1371 		/* VM_FAULT_RETRY cannot return errors */
1372 		if (!*locked) {
1373 			BUG_ON(ret < 0);
1374 			BUG_ON(ret >= nr_pages);
1375 		}
1376 
1377 		if (ret > 0) {
1378 			nr_pages -= ret;
1379 			pages_done += ret;
1380 			if (!nr_pages)
1381 				break;
1382 		}
1383 		if (*locked) {
1384 			/*
1385 			 * VM_FAULT_RETRY didn't trigger or it was a
1386 			 * FOLL_NOWAIT.
1387 			 */
1388 			if (!pages_done)
1389 				pages_done = ret;
1390 			break;
1391 		}
1392 		/*
1393 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1394 		 * For the prefault case (!pages) we only update counts.
1395 		 */
1396 		if (likely(pages))
1397 			pages += ret;
1398 		start += ret << PAGE_SHIFT;
1399 		lock_dropped = true;
1400 
1401 retry:
1402 		/*
1403 		 * Repeat on the address that fired VM_FAULT_RETRY
1404 		 * with both FAULT_FLAG_ALLOW_RETRY and
1405 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1406 		 * by fatal signals, so we need to check it before we
1407 		 * start trying again otherwise it can loop forever.
1408 		 */
1409 
1410 		if (fatal_signal_pending(current)) {
1411 			if (!pages_done)
1412 				pages_done = -EINTR;
1413 			break;
1414 		}
1415 
1416 		ret = mmap_read_lock_killable(mm);
1417 		if (ret) {
1418 			BUG_ON(ret > 0);
1419 			if (!pages_done)
1420 				pages_done = ret;
1421 			break;
1422 		}
1423 
1424 		*locked = 1;
1425 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1426 				       pages, NULL, locked);
1427 		if (!*locked) {
1428 			/* Continue to retry until we succeeded */
1429 			BUG_ON(ret != 0);
1430 			goto retry;
1431 		}
1432 		if (ret != 1) {
1433 			BUG_ON(ret > 1);
1434 			if (!pages_done)
1435 				pages_done = ret;
1436 			break;
1437 		}
1438 		nr_pages--;
1439 		pages_done++;
1440 		if (!nr_pages)
1441 			break;
1442 		if (likely(pages))
1443 			pages++;
1444 		start += PAGE_SIZE;
1445 	}
1446 	if (lock_dropped && *locked) {
1447 		/*
1448 		 * We must let the caller know we temporarily dropped the lock
1449 		 * and so the critical section protected by it was lost.
1450 		 */
1451 		mmap_read_unlock(mm);
1452 		*locked = 0;
1453 	}
1454 	return pages_done;
1455 }
1456 
1457 /**
1458  * populate_vma_page_range() -  populate a range of pages in the vma.
1459  * @vma:   target vma
1460  * @start: start address
1461  * @end:   end address
1462  * @locked: whether the mmap_lock is still held
1463  *
1464  * This takes care of mlocking the pages too if VM_LOCKED is set.
1465  *
1466  * Return either number of pages pinned in the vma, or a negative error
1467  * code on error.
1468  *
1469  * vma->vm_mm->mmap_lock must be held.
1470  *
1471  * If @locked is NULL, it may be held for read or write and will
1472  * be unperturbed.
1473  *
1474  * If @locked is non-NULL, it must held for read only and may be
1475  * released.  If it's released, *@locked will be set to 0.
1476  */
1477 long populate_vma_page_range(struct vm_area_struct *vma,
1478 		unsigned long start, unsigned long end, int *locked)
1479 {
1480 	struct mm_struct *mm = vma->vm_mm;
1481 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1482 	int gup_flags;
1483 	long ret;
1484 
1485 	VM_BUG_ON(!PAGE_ALIGNED(start));
1486 	VM_BUG_ON(!PAGE_ALIGNED(end));
1487 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1488 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1489 	mmap_assert_locked(mm);
1490 
1491 	/*
1492 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1493 	 * faultin_page() to break COW, so it has no work to do here.
1494 	 */
1495 	if (vma->vm_flags & VM_LOCKONFAULT)
1496 		return nr_pages;
1497 
1498 	gup_flags = FOLL_TOUCH;
1499 	/*
1500 	 * We want to touch writable mappings with a write fault in order
1501 	 * to break COW, except for shared mappings because these don't COW
1502 	 * and we would not want to dirty them for nothing.
1503 	 */
1504 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1505 		gup_flags |= FOLL_WRITE;
1506 
1507 	/*
1508 	 * We want mlock to succeed for regions that have any permissions
1509 	 * other than PROT_NONE.
1510 	 */
1511 	if (vma_is_accessible(vma))
1512 		gup_flags |= FOLL_FORCE;
1513 
1514 	/*
1515 	 * We made sure addr is within a VMA, so the following will
1516 	 * not result in a stack expansion that recurses back here.
1517 	 */
1518 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1519 				NULL, NULL, locked);
1520 	lru_add_drain();
1521 	return ret;
1522 }
1523 
1524 /*
1525  * faultin_vma_page_range() - populate (prefault) page tables inside the
1526  *			      given VMA range readable/writable
1527  *
1528  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1529  *
1530  * @vma: target vma
1531  * @start: start address
1532  * @end: end address
1533  * @write: whether to prefault readable or writable
1534  * @locked: whether the mmap_lock is still held
1535  *
1536  * Returns either number of processed pages in the vma, or a negative error
1537  * code on error (see __get_user_pages()).
1538  *
1539  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1540  * covered by the VMA.
1541  *
1542  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1543  *
1544  * If @locked is non-NULL, it must held for read only and may be released.  If
1545  * it's released, *@locked will be set to 0.
1546  */
1547 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1548 			    unsigned long end, bool write, int *locked)
1549 {
1550 	struct mm_struct *mm = vma->vm_mm;
1551 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1552 	int gup_flags;
1553 	long ret;
1554 
1555 	VM_BUG_ON(!PAGE_ALIGNED(start));
1556 	VM_BUG_ON(!PAGE_ALIGNED(end));
1557 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1558 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1559 	mmap_assert_locked(mm);
1560 
1561 	/*
1562 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1563 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1564 	 *	       difference with !FOLL_FORCE, because the page is writable
1565 	 *	       in the page table.
1566 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1567 	 *		  a poisoned page.
1568 	 * !FOLL_FORCE: Require proper access permissions.
1569 	 */
1570 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1571 	if (write)
1572 		gup_flags |= FOLL_WRITE;
1573 
1574 	/*
1575 	 * We want to report -EINVAL instead of -EFAULT for any permission
1576 	 * problems or incompatible mappings.
1577 	 */
1578 	if (check_vma_flags(vma, gup_flags))
1579 		return -EINVAL;
1580 
1581 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1582 				NULL, NULL, locked);
1583 	lru_add_drain();
1584 	return ret;
1585 }
1586 
1587 /*
1588  * __mm_populate - populate and/or mlock pages within a range of address space.
1589  *
1590  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591  * flags. VMAs must be already marked with the desired vm_flags, and
1592  * mmap_lock must not be held.
1593  */
1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1595 {
1596 	struct mm_struct *mm = current->mm;
1597 	unsigned long end, nstart, nend;
1598 	struct vm_area_struct *vma = NULL;
1599 	int locked = 0;
1600 	long ret = 0;
1601 
1602 	end = start + len;
1603 
1604 	for (nstart = start; nstart < end; nstart = nend) {
1605 		/*
1606 		 * We want to fault in pages for [nstart; end) address range.
1607 		 * Find first corresponding VMA.
1608 		 */
1609 		if (!locked) {
1610 			locked = 1;
1611 			mmap_read_lock(mm);
1612 			vma = find_vma(mm, nstart);
1613 		} else if (nstart >= vma->vm_end)
1614 			vma = vma->vm_next;
1615 		if (!vma || vma->vm_start >= end)
1616 			break;
1617 		/*
1618 		 * Set [nstart; nend) to intersection of desired address
1619 		 * range with the first VMA. Also, skip undesirable VMA types.
1620 		 */
1621 		nend = min(end, vma->vm_end);
1622 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1623 			continue;
1624 		if (nstart < vma->vm_start)
1625 			nstart = vma->vm_start;
1626 		/*
1627 		 * Now fault in a range of pages. populate_vma_page_range()
1628 		 * double checks the vma flags, so that it won't mlock pages
1629 		 * if the vma was already munlocked.
1630 		 */
1631 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1632 		if (ret < 0) {
1633 			if (ignore_errors) {
1634 				ret = 0;
1635 				continue;	/* continue at next VMA */
1636 			}
1637 			break;
1638 		}
1639 		nend = nstart + ret * PAGE_SIZE;
1640 		ret = 0;
1641 	}
1642 	if (locked)
1643 		mmap_read_unlock(mm);
1644 	return ret;	/* 0 or negative error code */
1645 }
1646 #else /* CONFIG_MMU */
1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648 		unsigned long nr_pages, struct page **pages,
1649 		struct vm_area_struct **vmas, int *locked,
1650 		unsigned int foll_flags)
1651 {
1652 	struct vm_area_struct *vma;
1653 	unsigned long vm_flags;
1654 	long i;
1655 
1656 	/* calculate required read or write permissions.
1657 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1658 	 */
1659 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1660 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1662 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1663 
1664 	for (i = 0; i < nr_pages; i++) {
1665 		vma = find_vma(mm, start);
1666 		if (!vma)
1667 			goto finish_or_fault;
1668 
1669 		/* protect what we can, including chardevs */
1670 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671 		    !(vm_flags & vma->vm_flags))
1672 			goto finish_or_fault;
1673 
1674 		if (pages) {
1675 			pages[i] = virt_to_page(start);
1676 			if (pages[i])
1677 				get_page(pages[i]);
1678 		}
1679 		if (vmas)
1680 			vmas[i] = vma;
1681 		start = (start + PAGE_SIZE) & PAGE_MASK;
1682 	}
1683 
1684 	return i;
1685 
1686 finish_or_fault:
1687 	return i ? : -EFAULT;
1688 }
1689 #endif /* !CONFIG_MMU */
1690 
1691 /**
1692  * fault_in_writeable - fault in userspace address range for writing
1693  * @uaddr: start of address range
1694  * @size: size of address range
1695  *
1696  * Returns the number of bytes not faulted in (like copy_to_user() and
1697  * copy_from_user()).
1698  */
1699 size_t fault_in_writeable(char __user *uaddr, size_t size)
1700 {
1701 	char __user *start = uaddr, *end;
1702 
1703 	if (unlikely(size == 0))
1704 		return 0;
1705 	if (!user_write_access_begin(uaddr, size))
1706 		return size;
1707 	if (!PAGE_ALIGNED(uaddr)) {
1708 		unsafe_put_user(0, uaddr, out);
1709 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1710 	}
1711 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712 	if (unlikely(end < start))
1713 		end = NULL;
1714 	while (uaddr != end) {
1715 		unsafe_put_user(0, uaddr, out);
1716 		uaddr += PAGE_SIZE;
1717 	}
1718 
1719 out:
1720 	user_write_access_end();
1721 	if (size > uaddr - start)
1722 		return size - (uaddr - start);
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(fault_in_writeable);
1726 
1727 /*
1728  * fault_in_safe_writeable - fault in an address range for writing
1729  * @uaddr: start of address range
1730  * @size: length of address range
1731  *
1732  * Faults in an address range for writing.  This is primarily useful when we
1733  * already know that some or all of the pages in the address range aren't in
1734  * memory.
1735  *
1736  * Unlike fault_in_writeable(), this function is non-destructive.
1737  *
1738  * Note that we don't pin or otherwise hold the pages referenced that we fault
1739  * in.  There's no guarantee that they'll stay in memory for any duration of
1740  * time.
1741  *
1742  * Returns the number of bytes not faulted in, like copy_to_user() and
1743  * copy_from_user().
1744  */
1745 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1746 {
1747 	unsigned long start = (unsigned long)uaddr, end;
1748 	struct mm_struct *mm = current->mm;
1749 	bool unlocked = false;
1750 
1751 	if (unlikely(size == 0))
1752 		return 0;
1753 	end = PAGE_ALIGN(start + size);
1754 	if (end < start)
1755 		end = 0;
1756 
1757 	mmap_read_lock(mm);
1758 	do {
1759 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1760 			break;
1761 		start = (start + PAGE_SIZE) & PAGE_MASK;
1762 	} while (start != end);
1763 	mmap_read_unlock(mm);
1764 
1765 	if (size > (unsigned long)uaddr - start)
1766 		return size - ((unsigned long)uaddr - start);
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(fault_in_safe_writeable);
1770 
1771 /**
1772  * fault_in_readable - fault in userspace address range for reading
1773  * @uaddr: start of user address range
1774  * @size: size of user address range
1775  *
1776  * Returns the number of bytes not faulted in (like copy_to_user() and
1777  * copy_from_user()).
1778  */
1779 size_t fault_in_readable(const char __user *uaddr, size_t size)
1780 {
1781 	const char __user *start = uaddr, *end;
1782 	volatile char c;
1783 
1784 	if (unlikely(size == 0))
1785 		return 0;
1786 	if (!user_read_access_begin(uaddr, size))
1787 		return size;
1788 	if (!PAGE_ALIGNED(uaddr)) {
1789 		unsafe_get_user(c, uaddr, out);
1790 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1791 	}
1792 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1793 	if (unlikely(end < start))
1794 		end = NULL;
1795 	while (uaddr != end) {
1796 		unsafe_get_user(c, uaddr, out);
1797 		uaddr += PAGE_SIZE;
1798 	}
1799 
1800 out:
1801 	user_read_access_end();
1802 	(void)c;
1803 	if (size > uaddr - start)
1804 		return size - (uaddr - start);
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(fault_in_readable);
1808 
1809 /**
1810  * get_dump_page() - pin user page in memory while writing it to core dump
1811  * @addr: user address
1812  *
1813  * Returns struct page pointer of user page pinned for dump,
1814  * to be freed afterwards by put_page().
1815  *
1816  * Returns NULL on any kind of failure - a hole must then be inserted into
1817  * the corefile, to preserve alignment with its headers; and also returns
1818  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1819  * allowing a hole to be left in the corefile to save disk space.
1820  *
1821  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1822  */
1823 #ifdef CONFIG_ELF_CORE
1824 struct page *get_dump_page(unsigned long addr)
1825 {
1826 	struct mm_struct *mm = current->mm;
1827 	struct page *page;
1828 	int locked = 1;
1829 	int ret;
1830 
1831 	if (mmap_read_lock_killable(mm))
1832 		return NULL;
1833 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1834 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1835 	if (locked)
1836 		mmap_read_unlock(mm);
1837 	return (ret == 1) ? page : NULL;
1838 }
1839 #endif /* CONFIG_ELF_CORE */
1840 
1841 #ifdef CONFIG_MIGRATION
1842 /*
1843  * Check whether all pages are pinnable, if so return number of pages.  If some
1844  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1845  * pages were migrated, or if some pages were not successfully isolated.
1846  * Return negative error if migration fails.
1847  */
1848 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1849 					    struct page **pages,
1850 					    unsigned int gup_flags)
1851 {
1852 	unsigned long isolation_error_count = 0, i;
1853 	struct folio *prev_folio = NULL;
1854 	LIST_HEAD(movable_page_list);
1855 	bool drain_allow = true;
1856 	int ret = 0;
1857 
1858 	for (i = 0; i < nr_pages; i++) {
1859 		struct folio *folio = page_folio(pages[i]);
1860 
1861 		if (folio == prev_folio)
1862 			continue;
1863 		prev_folio = folio;
1864 
1865 		if (folio_is_pinnable(folio))
1866 			continue;
1867 
1868 		/*
1869 		 * Try to move out any movable page before pinning the range.
1870 		 */
1871 		if (folio_test_hugetlb(folio)) {
1872 			if (!isolate_huge_page(&folio->page,
1873 						&movable_page_list))
1874 				isolation_error_count++;
1875 			continue;
1876 		}
1877 
1878 		if (!folio_test_lru(folio) && drain_allow) {
1879 			lru_add_drain_all();
1880 			drain_allow = false;
1881 		}
1882 
1883 		if (folio_isolate_lru(folio)) {
1884 			isolation_error_count++;
1885 			continue;
1886 		}
1887 		list_add_tail(&folio->lru, &movable_page_list);
1888 		node_stat_mod_folio(folio,
1889 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1890 				    folio_nr_pages(folio));
1891 	}
1892 
1893 	if (!list_empty(&movable_page_list) || isolation_error_count)
1894 		goto unpin_pages;
1895 
1896 	/*
1897 	 * If list is empty, and no isolation errors, means that all pages are
1898 	 * in the correct zone.
1899 	 */
1900 	return nr_pages;
1901 
1902 unpin_pages:
1903 	if (gup_flags & FOLL_PIN) {
1904 		unpin_user_pages(pages, nr_pages);
1905 	} else {
1906 		for (i = 0; i < nr_pages; i++)
1907 			put_page(pages[i]);
1908 	}
1909 
1910 	if (!list_empty(&movable_page_list)) {
1911 		struct migration_target_control mtc = {
1912 			.nid = NUMA_NO_NODE,
1913 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1914 		};
1915 
1916 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1917 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1918 				    MR_LONGTERM_PIN, NULL);
1919 		if (ret > 0) /* number of pages not migrated */
1920 			ret = -ENOMEM;
1921 	}
1922 
1923 	if (ret && !list_empty(&movable_page_list))
1924 		putback_movable_pages(&movable_page_list);
1925 	return ret;
1926 }
1927 #else
1928 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1929 					    struct page **pages,
1930 					    unsigned int gup_flags)
1931 {
1932 	return nr_pages;
1933 }
1934 #endif /* CONFIG_MIGRATION */
1935 
1936 /*
1937  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1938  * allows us to process the FOLL_LONGTERM flag.
1939  */
1940 static long __gup_longterm_locked(struct mm_struct *mm,
1941 				  unsigned long start,
1942 				  unsigned long nr_pages,
1943 				  struct page **pages,
1944 				  struct vm_area_struct **vmas,
1945 				  unsigned int gup_flags)
1946 {
1947 	unsigned int flags;
1948 	long rc;
1949 
1950 	if (!(gup_flags & FOLL_LONGTERM))
1951 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1952 					       NULL, gup_flags);
1953 	flags = memalloc_pin_save();
1954 	do {
1955 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1956 					     NULL, gup_flags);
1957 		if (rc <= 0)
1958 			break;
1959 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1960 	} while (!rc);
1961 	memalloc_pin_restore(flags);
1962 
1963 	return rc;
1964 }
1965 
1966 static bool is_valid_gup_flags(unsigned int gup_flags)
1967 {
1968 	/*
1969 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1970 	 * never directly by the caller, so enforce that with an assertion:
1971 	 */
1972 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1973 		return false;
1974 	/*
1975 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1976 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1977 	 * FOLL_PIN.
1978 	 */
1979 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1980 		return false;
1981 
1982 	return true;
1983 }
1984 
1985 #ifdef CONFIG_MMU
1986 static long __get_user_pages_remote(struct mm_struct *mm,
1987 				    unsigned long start, unsigned long nr_pages,
1988 				    unsigned int gup_flags, struct page **pages,
1989 				    struct vm_area_struct **vmas, int *locked)
1990 {
1991 	/*
1992 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1993 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1994 	 * vmas. However, this only comes up if locked is set, and there are
1995 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1996 	 * allow what we can.
1997 	 */
1998 	if (gup_flags & FOLL_LONGTERM) {
1999 		if (WARN_ON_ONCE(locked))
2000 			return -EINVAL;
2001 		/*
2002 		 * This will check the vmas (even if our vmas arg is NULL)
2003 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2004 		 */
2005 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2006 					     vmas, gup_flags | FOLL_TOUCH |
2007 					     FOLL_REMOTE);
2008 	}
2009 
2010 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2011 				       locked,
2012 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2013 }
2014 
2015 /**
2016  * get_user_pages_remote() - pin user pages in memory
2017  * @mm:		mm_struct of target mm
2018  * @start:	starting user address
2019  * @nr_pages:	number of pages from start to pin
2020  * @gup_flags:	flags modifying lookup behaviour
2021  * @pages:	array that receives pointers to the pages pinned.
2022  *		Should be at least nr_pages long. Or NULL, if caller
2023  *		only intends to ensure the pages are faulted in.
2024  * @vmas:	array of pointers to vmas corresponding to each page.
2025  *		Or NULL if the caller does not require them.
2026  * @locked:	pointer to lock flag indicating whether lock is held and
2027  *		subsequently whether VM_FAULT_RETRY functionality can be
2028  *		utilised. Lock must initially be held.
2029  *
2030  * Returns either number of pages pinned (which may be less than the
2031  * number requested), or an error. Details about the return value:
2032  *
2033  * -- If nr_pages is 0, returns 0.
2034  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2035  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2036  *    pages pinned. Again, this may be less than nr_pages.
2037  *
2038  * The caller is responsible for releasing returned @pages, via put_page().
2039  *
2040  * @vmas are valid only as long as mmap_lock is held.
2041  *
2042  * Must be called with mmap_lock held for read or write.
2043  *
2044  * get_user_pages_remote walks a process's page tables and takes a reference
2045  * to each struct page that each user address corresponds to at a given
2046  * instant. That is, it takes the page that would be accessed if a user
2047  * thread accesses the given user virtual address at that instant.
2048  *
2049  * This does not guarantee that the page exists in the user mappings when
2050  * get_user_pages_remote returns, and there may even be a completely different
2051  * page there in some cases (eg. if mmapped pagecache has been invalidated
2052  * and subsequently re faulted). However it does guarantee that the page
2053  * won't be freed completely. And mostly callers simply care that the page
2054  * contains data that was valid *at some point in time*. Typically, an IO
2055  * or similar operation cannot guarantee anything stronger anyway because
2056  * locks can't be held over the syscall boundary.
2057  *
2058  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2059  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2060  * be called after the page is finished with, and before put_page is called.
2061  *
2062  * get_user_pages_remote is typically used for fewer-copy IO operations,
2063  * to get a handle on the memory by some means other than accesses
2064  * via the user virtual addresses. The pages may be submitted for
2065  * DMA to devices or accessed via their kernel linear mapping (via the
2066  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2067  *
2068  * See also get_user_pages_fast, for performance critical applications.
2069  *
2070  * get_user_pages_remote should be phased out in favor of
2071  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2072  * should use get_user_pages_remote because it cannot pass
2073  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2074  */
2075 long get_user_pages_remote(struct mm_struct *mm,
2076 		unsigned long start, unsigned long nr_pages,
2077 		unsigned int gup_flags, struct page **pages,
2078 		struct vm_area_struct **vmas, int *locked)
2079 {
2080 	if (!is_valid_gup_flags(gup_flags))
2081 		return -EINVAL;
2082 
2083 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2084 				       pages, vmas, locked);
2085 }
2086 EXPORT_SYMBOL(get_user_pages_remote);
2087 
2088 #else /* CONFIG_MMU */
2089 long get_user_pages_remote(struct mm_struct *mm,
2090 			   unsigned long start, unsigned long nr_pages,
2091 			   unsigned int gup_flags, struct page **pages,
2092 			   struct vm_area_struct **vmas, int *locked)
2093 {
2094 	return 0;
2095 }
2096 
2097 static long __get_user_pages_remote(struct mm_struct *mm,
2098 				    unsigned long start, unsigned long nr_pages,
2099 				    unsigned int gup_flags, struct page **pages,
2100 				    struct vm_area_struct **vmas, int *locked)
2101 {
2102 	return 0;
2103 }
2104 #endif /* !CONFIG_MMU */
2105 
2106 /**
2107  * get_user_pages() - pin user pages in memory
2108  * @start:      starting user address
2109  * @nr_pages:   number of pages from start to pin
2110  * @gup_flags:  flags modifying lookup behaviour
2111  * @pages:      array that receives pointers to the pages pinned.
2112  *              Should be at least nr_pages long. Or NULL, if caller
2113  *              only intends to ensure the pages are faulted in.
2114  * @vmas:       array of pointers to vmas corresponding to each page.
2115  *              Or NULL if the caller does not require them.
2116  *
2117  * This is the same as get_user_pages_remote(), just with a less-flexible
2118  * calling convention where we assume that the mm being operated on belongs to
2119  * the current task, and doesn't allow passing of a locked parameter.  We also
2120  * obviously don't pass FOLL_REMOTE in here.
2121  */
2122 long get_user_pages(unsigned long start, unsigned long nr_pages,
2123 		unsigned int gup_flags, struct page **pages,
2124 		struct vm_area_struct **vmas)
2125 {
2126 	if (!is_valid_gup_flags(gup_flags))
2127 		return -EINVAL;
2128 
2129 	return __gup_longterm_locked(current->mm, start, nr_pages,
2130 				     pages, vmas, gup_flags | FOLL_TOUCH);
2131 }
2132 EXPORT_SYMBOL(get_user_pages);
2133 
2134 /*
2135  * get_user_pages_unlocked() is suitable to replace the form:
2136  *
2137  *      mmap_read_lock(mm);
2138  *      get_user_pages(mm, ..., pages, NULL);
2139  *      mmap_read_unlock(mm);
2140  *
2141  *  with:
2142  *
2143  *      get_user_pages_unlocked(mm, ..., pages);
2144  *
2145  * It is functionally equivalent to get_user_pages_fast so
2146  * get_user_pages_fast should be used instead if specific gup_flags
2147  * (e.g. FOLL_FORCE) are not required.
2148  */
2149 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2150 			     struct page **pages, unsigned int gup_flags)
2151 {
2152 	struct mm_struct *mm = current->mm;
2153 	int locked = 1;
2154 	long ret;
2155 
2156 	/*
2157 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2158 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2159 	 * vmas.  As there are no users of this flag in this call we simply
2160 	 * disallow this option for now.
2161 	 */
2162 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2163 		return -EINVAL;
2164 
2165 	mmap_read_lock(mm);
2166 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2167 				      &locked, gup_flags | FOLL_TOUCH);
2168 	if (locked)
2169 		mmap_read_unlock(mm);
2170 	return ret;
2171 }
2172 EXPORT_SYMBOL(get_user_pages_unlocked);
2173 
2174 /*
2175  * Fast GUP
2176  *
2177  * get_user_pages_fast attempts to pin user pages by walking the page
2178  * tables directly and avoids taking locks. Thus the walker needs to be
2179  * protected from page table pages being freed from under it, and should
2180  * block any THP splits.
2181  *
2182  * One way to achieve this is to have the walker disable interrupts, and
2183  * rely on IPIs from the TLB flushing code blocking before the page table
2184  * pages are freed. This is unsuitable for architectures that do not need
2185  * to broadcast an IPI when invalidating TLBs.
2186  *
2187  * Another way to achieve this is to batch up page table containing pages
2188  * belonging to more than one mm_user, then rcu_sched a callback to free those
2189  * pages. Disabling interrupts will allow the fast_gup walker to both block
2190  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2191  * (which is a relatively rare event). The code below adopts this strategy.
2192  *
2193  * Before activating this code, please be aware that the following assumptions
2194  * are currently made:
2195  *
2196  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2197  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2198  *
2199  *  *) ptes can be read atomically by the architecture.
2200  *
2201  *  *) access_ok is sufficient to validate userspace address ranges.
2202  *
2203  * The last two assumptions can be relaxed by the addition of helper functions.
2204  *
2205  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2206  */
2207 #ifdef CONFIG_HAVE_FAST_GUP
2208 
2209 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2210 					    unsigned int flags,
2211 					    struct page **pages)
2212 {
2213 	while ((*nr) - nr_start) {
2214 		struct page *page = pages[--(*nr)];
2215 
2216 		ClearPageReferenced(page);
2217 		if (flags & FOLL_PIN)
2218 			unpin_user_page(page);
2219 		else
2220 			put_page(page);
2221 	}
2222 }
2223 
2224 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2225 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2226 			 unsigned int flags, struct page **pages, int *nr)
2227 {
2228 	struct dev_pagemap *pgmap = NULL;
2229 	int nr_start = *nr, ret = 0;
2230 	pte_t *ptep, *ptem;
2231 
2232 	ptem = ptep = pte_offset_map(&pmd, addr);
2233 	do {
2234 		pte_t pte = ptep_get_lockless(ptep);
2235 		struct page *page;
2236 		struct folio *folio;
2237 
2238 		/*
2239 		 * Similar to the PMD case below, NUMA hinting must take slow
2240 		 * path using the pte_protnone check.
2241 		 */
2242 		if (pte_protnone(pte))
2243 			goto pte_unmap;
2244 
2245 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2246 			goto pte_unmap;
2247 
2248 		if (pte_devmap(pte)) {
2249 			if (unlikely(flags & FOLL_LONGTERM))
2250 				goto pte_unmap;
2251 
2252 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2253 			if (unlikely(!pgmap)) {
2254 				undo_dev_pagemap(nr, nr_start, flags, pages);
2255 				goto pte_unmap;
2256 			}
2257 		} else if (pte_special(pte))
2258 			goto pte_unmap;
2259 
2260 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2261 		page = pte_page(pte);
2262 
2263 		folio = try_grab_folio(page, 1, flags);
2264 		if (!folio)
2265 			goto pte_unmap;
2266 
2267 		if (unlikely(page_is_secretmem(page))) {
2268 			gup_put_folio(folio, 1, flags);
2269 			goto pte_unmap;
2270 		}
2271 
2272 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2273 			gup_put_folio(folio, 1, flags);
2274 			goto pte_unmap;
2275 		}
2276 
2277 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2278 			gup_put_folio(folio, 1, flags);
2279 			goto pte_unmap;
2280 		}
2281 
2282 		/*
2283 		 * We need to make the page accessible if and only if we are
2284 		 * going to access its content (the FOLL_PIN case).  Please
2285 		 * see Documentation/core-api/pin_user_pages.rst for
2286 		 * details.
2287 		 */
2288 		if (flags & FOLL_PIN) {
2289 			ret = arch_make_page_accessible(page);
2290 			if (ret) {
2291 				gup_put_folio(folio, 1, flags);
2292 				goto pte_unmap;
2293 			}
2294 		}
2295 		folio_set_referenced(folio);
2296 		pages[*nr] = page;
2297 		(*nr)++;
2298 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2299 
2300 	ret = 1;
2301 
2302 pte_unmap:
2303 	if (pgmap)
2304 		put_dev_pagemap(pgmap);
2305 	pte_unmap(ptem);
2306 	return ret;
2307 }
2308 #else
2309 
2310 /*
2311  * If we can't determine whether or not a pte is special, then fail immediately
2312  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2313  * to be special.
2314  *
2315  * For a futex to be placed on a THP tail page, get_futex_key requires a
2316  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2317  * useful to have gup_huge_pmd even if we can't operate on ptes.
2318  */
2319 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2320 			 unsigned int flags, struct page **pages, int *nr)
2321 {
2322 	return 0;
2323 }
2324 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2325 
2326 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2327 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2328 			     unsigned long end, unsigned int flags,
2329 			     struct page **pages, int *nr)
2330 {
2331 	int nr_start = *nr;
2332 	struct dev_pagemap *pgmap = NULL;
2333 
2334 	do {
2335 		struct page *page = pfn_to_page(pfn);
2336 
2337 		pgmap = get_dev_pagemap(pfn, pgmap);
2338 		if (unlikely(!pgmap)) {
2339 			undo_dev_pagemap(nr, nr_start, flags, pages);
2340 			break;
2341 		}
2342 		SetPageReferenced(page);
2343 		pages[*nr] = page;
2344 		if (unlikely(!try_grab_page(page, flags))) {
2345 			undo_dev_pagemap(nr, nr_start, flags, pages);
2346 			break;
2347 		}
2348 		(*nr)++;
2349 		pfn++;
2350 	} while (addr += PAGE_SIZE, addr != end);
2351 
2352 	put_dev_pagemap(pgmap);
2353 	return addr == end;
2354 }
2355 
2356 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2357 				 unsigned long end, unsigned int flags,
2358 				 struct page **pages, int *nr)
2359 {
2360 	unsigned long fault_pfn;
2361 	int nr_start = *nr;
2362 
2363 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2364 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2365 		return 0;
2366 
2367 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2368 		undo_dev_pagemap(nr, nr_start, flags, pages);
2369 		return 0;
2370 	}
2371 	return 1;
2372 }
2373 
2374 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2375 				 unsigned long end, unsigned int flags,
2376 				 struct page **pages, int *nr)
2377 {
2378 	unsigned long fault_pfn;
2379 	int nr_start = *nr;
2380 
2381 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2382 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2383 		return 0;
2384 
2385 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2386 		undo_dev_pagemap(nr, nr_start, flags, pages);
2387 		return 0;
2388 	}
2389 	return 1;
2390 }
2391 #else
2392 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2393 				 unsigned long end, unsigned int flags,
2394 				 struct page **pages, int *nr)
2395 {
2396 	BUILD_BUG();
2397 	return 0;
2398 }
2399 
2400 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2401 				 unsigned long end, unsigned int flags,
2402 				 struct page **pages, int *nr)
2403 {
2404 	BUILD_BUG();
2405 	return 0;
2406 }
2407 #endif
2408 
2409 static int record_subpages(struct page *page, unsigned long addr,
2410 			   unsigned long end, struct page **pages)
2411 {
2412 	int nr;
2413 
2414 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2415 		pages[nr] = nth_page(page, nr);
2416 
2417 	return nr;
2418 }
2419 
2420 #ifdef CONFIG_ARCH_HAS_HUGEPD
2421 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2422 				      unsigned long sz)
2423 {
2424 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2425 	return (__boundary - 1 < end - 1) ? __boundary : end;
2426 }
2427 
2428 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2429 		       unsigned long end, unsigned int flags,
2430 		       struct page **pages, int *nr)
2431 {
2432 	unsigned long pte_end;
2433 	struct page *page;
2434 	struct folio *folio;
2435 	pte_t pte;
2436 	int refs;
2437 
2438 	pte_end = (addr + sz) & ~(sz-1);
2439 	if (pte_end < end)
2440 		end = pte_end;
2441 
2442 	pte = huge_ptep_get(ptep);
2443 
2444 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2445 		return 0;
2446 
2447 	/* hugepages are never "special" */
2448 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2449 
2450 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2451 	refs = record_subpages(page, addr, end, pages + *nr);
2452 
2453 	folio = try_grab_folio(page, refs, flags);
2454 	if (!folio)
2455 		return 0;
2456 
2457 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2458 		gup_put_folio(folio, refs, flags);
2459 		return 0;
2460 	}
2461 
2462 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2463 		gup_put_folio(folio, refs, flags);
2464 		return 0;
2465 	}
2466 
2467 	*nr += refs;
2468 	folio_set_referenced(folio);
2469 	return 1;
2470 }
2471 
2472 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2473 		unsigned int pdshift, unsigned long end, unsigned int flags,
2474 		struct page **pages, int *nr)
2475 {
2476 	pte_t *ptep;
2477 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2478 	unsigned long next;
2479 
2480 	ptep = hugepte_offset(hugepd, addr, pdshift);
2481 	do {
2482 		next = hugepte_addr_end(addr, end, sz);
2483 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2484 			return 0;
2485 	} while (ptep++, addr = next, addr != end);
2486 
2487 	return 1;
2488 }
2489 #else
2490 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2491 		unsigned int pdshift, unsigned long end, unsigned int flags,
2492 		struct page **pages, int *nr)
2493 {
2494 	return 0;
2495 }
2496 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2497 
2498 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2499 			unsigned long end, unsigned int flags,
2500 			struct page **pages, int *nr)
2501 {
2502 	struct page *page;
2503 	struct folio *folio;
2504 	int refs;
2505 
2506 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2507 		return 0;
2508 
2509 	if (pmd_devmap(orig)) {
2510 		if (unlikely(flags & FOLL_LONGTERM))
2511 			return 0;
2512 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2513 					     pages, nr);
2514 	}
2515 
2516 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2517 	refs = record_subpages(page, addr, end, pages + *nr);
2518 
2519 	folio = try_grab_folio(page, refs, flags);
2520 	if (!folio)
2521 		return 0;
2522 
2523 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2524 		gup_put_folio(folio, refs, flags);
2525 		return 0;
2526 	}
2527 
2528 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2529 		gup_put_folio(folio, refs, flags);
2530 		return 0;
2531 	}
2532 
2533 	*nr += refs;
2534 	folio_set_referenced(folio);
2535 	return 1;
2536 }
2537 
2538 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2539 			unsigned long end, unsigned int flags,
2540 			struct page **pages, int *nr)
2541 {
2542 	struct page *page;
2543 	struct folio *folio;
2544 	int refs;
2545 
2546 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2547 		return 0;
2548 
2549 	if (pud_devmap(orig)) {
2550 		if (unlikely(flags & FOLL_LONGTERM))
2551 			return 0;
2552 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2553 					     pages, nr);
2554 	}
2555 
2556 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2557 	refs = record_subpages(page, addr, end, pages + *nr);
2558 
2559 	folio = try_grab_folio(page, refs, flags);
2560 	if (!folio)
2561 		return 0;
2562 
2563 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2564 		gup_put_folio(folio, refs, flags);
2565 		return 0;
2566 	}
2567 
2568 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2569 		gup_put_folio(folio, refs, flags);
2570 		return 0;
2571 	}
2572 
2573 	*nr += refs;
2574 	folio_set_referenced(folio);
2575 	return 1;
2576 }
2577 
2578 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2579 			unsigned long end, unsigned int flags,
2580 			struct page **pages, int *nr)
2581 {
2582 	int refs;
2583 	struct page *page;
2584 	struct folio *folio;
2585 
2586 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2587 		return 0;
2588 
2589 	BUILD_BUG_ON(pgd_devmap(orig));
2590 
2591 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2592 	refs = record_subpages(page, addr, end, pages + *nr);
2593 
2594 	folio = try_grab_folio(page, refs, flags);
2595 	if (!folio)
2596 		return 0;
2597 
2598 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2599 		gup_put_folio(folio, refs, flags);
2600 		return 0;
2601 	}
2602 
2603 	*nr += refs;
2604 	folio_set_referenced(folio);
2605 	return 1;
2606 }
2607 
2608 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2609 		unsigned int flags, struct page **pages, int *nr)
2610 {
2611 	unsigned long next;
2612 	pmd_t *pmdp;
2613 
2614 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2615 	do {
2616 		pmd_t pmd = READ_ONCE(*pmdp);
2617 
2618 		next = pmd_addr_end(addr, end);
2619 		if (!pmd_present(pmd))
2620 			return 0;
2621 
2622 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2623 			     pmd_devmap(pmd))) {
2624 			/*
2625 			 * NUMA hinting faults need to be handled in the GUP
2626 			 * slowpath for accounting purposes and so that they
2627 			 * can be serialised against THP migration.
2628 			 */
2629 			if (pmd_protnone(pmd))
2630 				return 0;
2631 
2632 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2633 				pages, nr))
2634 				return 0;
2635 
2636 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2637 			/*
2638 			 * architecture have different format for hugetlbfs
2639 			 * pmd format and THP pmd format
2640 			 */
2641 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2642 					 PMD_SHIFT, next, flags, pages, nr))
2643 				return 0;
2644 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2645 			return 0;
2646 	} while (pmdp++, addr = next, addr != end);
2647 
2648 	return 1;
2649 }
2650 
2651 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2652 			 unsigned int flags, struct page **pages, int *nr)
2653 {
2654 	unsigned long next;
2655 	pud_t *pudp;
2656 
2657 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2658 	do {
2659 		pud_t pud = READ_ONCE(*pudp);
2660 
2661 		next = pud_addr_end(addr, end);
2662 		if (unlikely(!pud_present(pud)))
2663 			return 0;
2664 		if (unlikely(pud_huge(pud))) {
2665 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2666 					  pages, nr))
2667 				return 0;
2668 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2669 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2670 					 PUD_SHIFT, next, flags, pages, nr))
2671 				return 0;
2672 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2673 			return 0;
2674 	} while (pudp++, addr = next, addr != end);
2675 
2676 	return 1;
2677 }
2678 
2679 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2680 			 unsigned int flags, struct page **pages, int *nr)
2681 {
2682 	unsigned long next;
2683 	p4d_t *p4dp;
2684 
2685 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2686 	do {
2687 		p4d_t p4d = READ_ONCE(*p4dp);
2688 
2689 		next = p4d_addr_end(addr, end);
2690 		if (p4d_none(p4d))
2691 			return 0;
2692 		BUILD_BUG_ON(p4d_huge(p4d));
2693 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2694 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2695 					 P4D_SHIFT, next, flags, pages, nr))
2696 				return 0;
2697 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2698 			return 0;
2699 	} while (p4dp++, addr = next, addr != end);
2700 
2701 	return 1;
2702 }
2703 
2704 static void gup_pgd_range(unsigned long addr, unsigned long end,
2705 		unsigned int flags, struct page **pages, int *nr)
2706 {
2707 	unsigned long next;
2708 	pgd_t *pgdp;
2709 
2710 	pgdp = pgd_offset(current->mm, addr);
2711 	do {
2712 		pgd_t pgd = READ_ONCE(*pgdp);
2713 
2714 		next = pgd_addr_end(addr, end);
2715 		if (pgd_none(pgd))
2716 			return;
2717 		if (unlikely(pgd_huge(pgd))) {
2718 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2719 					  pages, nr))
2720 				return;
2721 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2722 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2723 					 PGDIR_SHIFT, next, flags, pages, nr))
2724 				return;
2725 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2726 			return;
2727 	} while (pgdp++, addr = next, addr != end);
2728 }
2729 #else
2730 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2731 		unsigned int flags, struct page **pages, int *nr)
2732 {
2733 }
2734 #endif /* CONFIG_HAVE_FAST_GUP */
2735 
2736 #ifndef gup_fast_permitted
2737 /*
2738  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2739  * we need to fall back to the slow version:
2740  */
2741 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2742 {
2743 	return true;
2744 }
2745 #endif
2746 
2747 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2748 				   unsigned int gup_flags, struct page **pages)
2749 {
2750 	int ret;
2751 
2752 	/*
2753 	 * FIXME: FOLL_LONGTERM does not work with
2754 	 * get_user_pages_unlocked() (see comments in that function)
2755 	 */
2756 	if (gup_flags & FOLL_LONGTERM) {
2757 		mmap_read_lock(current->mm);
2758 		ret = __gup_longterm_locked(current->mm,
2759 					    start, nr_pages,
2760 					    pages, NULL, gup_flags);
2761 		mmap_read_unlock(current->mm);
2762 	} else {
2763 		ret = get_user_pages_unlocked(start, nr_pages,
2764 					      pages, gup_flags);
2765 	}
2766 
2767 	return ret;
2768 }
2769 
2770 static unsigned long lockless_pages_from_mm(unsigned long start,
2771 					    unsigned long end,
2772 					    unsigned int gup_flags,
2773 					    struct page **pages)
2774 {
2775 	unsigned long flags;
2776 	int nr_pinned = 0;
2777 	unsigned seq;
2778 
2779 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2780 	    !gup_fast_permitted(start, end))
2781 		return 0;
2782 
2783 	if (gup_flags & FOLL_PIN) {
2784 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2785 		if (seq & 1)
2786 			return 0;
2787 	}
2788 
2789 	/*
2790 	 * Disable interrupts. The nested form is used, in order to allow full,
2791 	 * general purpose use of this routine.
2792 	 *
2793 	 * With interrupts disabled, we block page table pages from being freed
2794 	 * from under us. See struct mmu_table_batch comments in
2795 	 * include/asm-generic/tlb.h for more details.
2796 	 *
2797 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2798 	 * that come from THPs splitting.
2799 	 */
2800 	local_irq_save(flags);
2801 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2802 	local_irq_restore(flags);
2803 
2804 	/*
2805 	 * When pinning pages for DMA there could be a concurrent write protect
2806 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2807 	 */
2808 	if (gup_flags & FOLL_PIN) {
2809 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2810 			unpin_user_pages_lockless(pages, nr_pinned);
2811 			return 0;
2812 		} else {
2813 			sanity_check_pinned_pages(pages, nr_pinned);
2814 		}
2815 	}
2816 	return nr_pinned;
2817 }
2818 
2819 static int internal_get_user_pages_fast(unsigned long start,
2820 					unsigned long nr_pages,
2821 					unsigned int gup_flags,
2822 					struct page **pages)
2823 {
2824 	unsigned long len, end;
2825 	unsigned long nr_pinned;
2826 	int ret;
2827 
2828 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2829 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2830 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2831 		return -EINVAL;
2832 
2833 	if (gup_flags & FOLL_PIN)
2834 		mm_set_has_pinned_flag(&current->mm->flags);
2835 
2836 	if (!(gup_flags & FOLL_FAST_ONLY))
2837 		might_lock_read(&current->mm->mmap_lock);
2838 
2839 	start = untagged_addr(start) & PAGE_MASK;
2840 	len = nr_pages << PAGE_SHIFT;
2841 	if (check_add_overflow(start, len, &end))
2842 		return 0;
2843 	if (unlikely(!access_ok((void __user *)start, len)))
2844 		return -EFAULT;
2845 
2846 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2847 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2848 		return nr_pinned;
2849 
2850 	/* Slow path: try to get the remaining pages with get_user_pages */
2851 	start += nr_pinned << PAGE_SHIFT;
2852 	pages += nr_pinned;
2853 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2854 				      pages);
2855 	if (ret < 0) {
2856 		/*
2857 		 * The caller has to unpin the pages we already pinned so
2858 		 * returning -errno is not an option
2859 		 */
2860 		if (nr_pinned)
2861 			return nr_pinned;
2862 		return ret;
2863 	}
2864 	return ret + nr_pinned;
2865 }
2866 
2867 /**
2868  * get_user_pages_fast_only() - pin user pages in memory
2869  * @start:      starting user address
2870  * @nr_pages:   number of pages from start to pin
2871  * @gup_flags:  flags modifying pin behaviour
2872  * @pages:      array that receives pointers to the pages pinned.
2873  *              Should be at least nr_pages long.
2874  *
2875  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2876  * the regular GUP.
2877  * Note a difference with get_user_pages_fast: this always returns the
2878  * number of pages pinned, 0 if no pages were pinned.
2879  *
2880  * If the architecture does not support this function, simply return with no
2881  * pages pinned.
2882  *
2883  * Careful, careful! COW breaking can go either way, so a non-write
2884  * access can get ambiguous page results. If you call this function without
2885  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2886  */
2887 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2888 			     unsigned int gup_flags, struct page **pages)
2889 {
2890 	int nr_pinned;
2891 	/*
2892 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2893 	 * because gup fast is always a "pin with a +1 page refcount" request.
2894 	 *
2895 	 * FOLL_FAST_ONLY is required in order to match the API description of
2896 	 * this routine: no fall back to regular ("slow") GUP.
2897 	 */
2898 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2899 
2900 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2901 						 pages);
2902 
2903 	/*
2904 	 * As specified in the API description above, this routine is not
2905 	 * allowed to return negative values. However, the common core
2906 	 * routine internal_get_user_pages_fast() *can* return -errno.
2907 	 * Therefore, correct for that here:
2908 	 */
2909 	if (nr_pinned < 0)
2910 		nr_pinned = 0;
2911 
2912 	return nr_pinned;
2913 }
2914 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2915 
2916 /**
2917  * get_user_pages_fast() - pin user pages in memory
2918  * @start:      starting user address
2919  * @nr_pages:   number of pages from start to pin
2920  * @gup_flags:  flags modifying pin behaviour
2921  * @pages:      array that receives pointers to the pages pinned.
2922  *              Should be at least nr_pages long.
2923  *
2924  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2925  * If not successful, it will fall back to taking the lock and
2926  * calling get_user_pages().
2927  *
2928  * Returns number of pages pinned. This may be fewer than the number requested.
2929  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2930  * -errno.
2931  */
2932 int get_user_pages_fast(unsigned long start, int nr_pages,
2933 			unsigned int gup_flags, struct page **pages)
2934 {
2935 	if (!is_valid_gup_flags(gup_flags))
2936 		return -EINVAL;
2937 
2938 	/*
2939 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2940 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2941 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2942 	 * request.
2943 	 */
2944 	gup_flags |= FOLL_GET;
2945 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2946 }
2947 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2948 
2949 /**
2950  * pin_user_pages_fast() - pin user pages in memory without taking locks
2951  *
2952  * @start:      starting user address
2953  * @nr_pages:   number of pages from start to pin
2954  * @gup_flags:  flags modifying pin behaviour
2955  * @pages:      array that receives pointers to the pages pinned.
2956  *              Should be at least nr_pages long.
2957  *
2958  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2959  * get_user_pages_fast() for documentation on the function arguments, because
2960  * the arguments here are identical.
2961  *
2962  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2963  * see Documentation/core-api/pin_user_pages.rst for further details.
2964  */
2965 int pin_user_pages_fast(unsigned long start, int nr_pages,
2966 			unsigned int gup_flags, struct page **pages)
2967 {
2968 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2969 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2970 		return -EINVAL;
2971 
2972 	if (WARN_ON_ONCE(!pages))
2973 		return -EINVAL;
2974 
2975 	gup_flags |= FOLL_PIN;
2976 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2977 }
2978 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2979 
2980 /*
2981  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2982  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2983  *
2984  * The API rules are the same, too: no negative values may be returned.
2985  */
2986 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2987 			     unsigned int gup_flags, struct page **pages)
2988 {
2989 	int nr_pinned;
2990 
2991 	/*
2992 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2993 	 * rules require returning 0, rather than -errno:
2994 	 */
2995 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2996 		return 0;
2997 
2998 	if (WARN_ON_ONCE(!pages))
2999 		return 0;
3000 	/*
3001 	 * FOLL_FAST_ONLY is required in order to match the API description of
3002 	 * this routine: no fall back to regular ("slow") GUP.
3003 	 */
3004 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3005 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3006 						 pages);
3007 	/*
3008 	 * This routine is not allowed to return negative values. However,
3009 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3010 	 * correct for that here:
3011 	 */
3012 	if (nr_pinned < 0)
3013 		nr_pinned = 0;
3014 
3015 	return nr_pinned;
3016 }
3017 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3018 
3019 /**
3020  * pin_user_pages_remote() - pin pages of a remote process
3021  *
3022  * @mm:		mm_struct of target mm
3023  * @start:	starting user address
3024  * @nr_pages:	number of pages from start to pin
3025  * @gup_flags:	flags modifying lookup behaviour
3026  * @pages:	array that receives pointers to the pages pinned.
3027  *		Should be at least nr_pages long.
3028  * @vmas:	array of pointers to vmas corresponding to each page.
3029  *		Or NULL if the caller does not require them.
3030  * @locked:	pointer to lock flag indicating whether lock is held and
3031  *		subsequently whether VM_FAULT_RETRY functionality can be
3032  *		utilised. Lock must initially be held.
3033  *
3034  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3035  * get_user_pages_remote() for documentation on the function arguments, because
3036  * the arguments here are identical.
3037  *
3038  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3039  * see Documentation/core-api/pin_user_pages.rst for details.
3040  */
3041 long pin_user_pages_remote(struct mm_struct *mm,
3042 			   unsigned long start, unsigned long nr_pages,
3043 			   unsigned int gup_flags, struct page **pages,
3044 			   struct vm_area_struct **vmas, int *locked)
3045 {
3046 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3047 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3048 		return -EINVAL;
3049 
3050 	if (WARN_ON_ONCE(!pages))
3051 		return -EINVAL;
3052 
3053 	gup_flags |= FOLL_PIN;
3054 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3055 				       pages, vmas, locked);
3056 }
3057 EXPORT_SYMBOL(pin_user_pages_remote);
3058 
3059 /**
3060  * pin_user_pages() - pin user pages in memory for use by other devices
3061  *
3062  * @start:	starting user address
3063  * @nr_pages:	number of pages from start to pin
3064  * @gup_flags:	flags modifying lookup behaviour
3065  * @pages:	array that receives pointers to the pages pinned.
3066  *		Should be at least nr_pages long.
3067  * @vmas:	array of pointers to vmas corresponding to each page.
3068  *		Or NULL if the caller does not require them.
3069  *
3070  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3071  * FOLL_PIN is set.
3072  *
3073  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3074  * see Documentation/core-api/pin_user_pages.rst for details.
3075  */
3076 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3077 		    unsigned int gup_flags, struct page **pages,
3078 		    struct vm_area_struct **vmas)
3079 {
3080 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3081 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3082 		return -EINVAL;
3083 
3084 	if (WARN_ON_ONCE(!pages))
3085 		return -EINVAL;
3086 
3087 	gup_flags |= FOLL_PIN;
3088 	return __gup_longterm_locked(current->mm, start, nr_pages,
3089 				     pages, vmas, gup_flags);
3090 }
3091 EXPORT_SYMBOL(pin_user_pages);
3092 
3093 /*
3094  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3095  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3096  * FOLL_PIN and rejects FOLL_GET.
3097  */
3098 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3099 			     struct page **pages, unsigned int gup_flags)
3100 {
3101 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3102 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3103 		return -EINVAL;
3104 
3105 	if (WARN_ON_ONCE(!pages))
3106 		return -EINVAL;
3107 
3108 	gup_flags |= FOLL_PIN;
3109 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3110 }
3111 EXPORT_SYMBOL(pin_user_pages_unlocked);
3112