xref: /openbmc/linux/mm/gup.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 typedef int (*set_dirty_func_t)(struct page *page);
33 
34 static void __put_user_pages_dirty(struct page **pages,
35 				   unsigned long npages,
36 				   set_dirty_func_t sdf)
37 {
38 	unsigned long index;
39 
40 	for (index = 0; index < npages; index++) {
41 		struct page *page = compound_head(pages[index]);
42 
43 		/*
44 		 * Checking PageDirty at this point may race with
45 		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 		 *
47 		 * 1) This code sees the page as already dirty, so it skips
48 		 * the call to sdf(). That could happen because
49 		 * clear_page_dirty_for_io() called page_mkclean(),
50 		 * followed by set_page_dirty(). However, now the page is
51 		 * going to get written back, which meets the original
52 		 * intention of setting it dirty, so all is well:
53 		 * clear_page_dirty_for_io() goes on to call
54 		 * TestClearPageDirty(), and write the page back.
55 		 *
56 		 * 2) This code sees the page as clean, so it calls sdf().
57 		 * The page stays dirty, despite being written back, so it
58 		 * gets written back again in the next writeback cycle.
59 		 * This is harmless.
60 		 */
61 		if (!PageDirty(page))
62 			sdf(page);
63 
64 		put_user_page(page);
65 	}
66 }
67 
68 /**
69  * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70  * @pages:  array of pages to be marked dirty and released.
71  * @npages: number of pages in the @pages array.
72  *
73  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74  * variants called on that page.
75  *
76  * For each page in the @pages array, make that page (or its head page, if a
77  * compound page) dirty, if it was previously listed as clean. Then, release
78  * the page using put_user_page().
79  *
80  * Please see the put_user_page() documentation for details.
81  *
82  * set_page_dirty(), which does not lock the page, is used here.
83  * Therefore, it is the caller's responsibility to ensure that this is
84  * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85  *
86  */
87 void put_user_pages_dirty(struct page **pages, unsigned long npages)
88 {
89 	__put_user_pages_dirty(pages, npages, set_page_dirty);
90 }
91 EXPORT_SYMBOL(put_user_pages_dirty);
92 
93 /**
94  * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95  * @pages:  array of pages to be marked dirty and released.
96  * @npages: number of pages in the @pages array.
97  *
98  * For each page in the @pages array, make that page (or its head page, if a
99  * compound page) dirty, if it was previously listed as clean. Then, release
100  * the page using put_user_page().
101  *
102  * Please see the put_user_page() documentation for details.
103  *
104  * This is just like put_user_pages_dirty(), except that it invokes
105  * set_page_dirty_lock(), instead of set_page_dirty().
106  *
107  */
108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109 {
110 	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111 }
112 EXPORT_SYMBOL(put_user_pages_dirty_lock);
113 
114 /**
115  * put_user_pages() - release an array of gup-pinned pages.
116  * @pages:  array of pages to be marked dirty and released.
117  * @npages: number of pages in the @pages array.
118  *
119  * For each page in the @pages array, release the page using put_user_page().
120  *
121  * Please see the put_user_page() documentation for details.
122  */
123 void put_user_pages(struct page **pages, unsigned long npages)
124 {
125 	unsigned long index;
126 
127 	/*
128 	 * TODO: this can be optimized for huge pages: if a series of pages is
129 	 * physically contiguous and part of the same compound page, then a
130 	 * single operation to the head page should suffice.
131 	 */
132 	for (index = 0; index < npages; index++)
133 		put_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(put_user_pages);
136 
137 static struct page *no_page_table(struct vm_area_struct *vma,
138 		unsigned int flags)
139 {
140 	/*
141 	 * When core dumping an enormous anonymous area that nobody
142 	 * has touched so far, we don't want to allocate unnecessary pages or
143 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
144 	 * then get_dump_page() will return NULL to leave a hole in the dump.
145 	 * But we can only make this optimization where a hole would surely
146 	 * be zero-filled if handle_mm_fault() actually did handle it.
147 	 */
148 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
149 		return ERR_PTR(-EFAULT);
150 	return NULL;
151 }
152 
153 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
154 		pte_t *pte, unsigned int flags)
155 {
156 	/* No page to get reference */
157 	if (flags & FOLL_GET)
158 		return -EFAULT;
159 
160 	if (flags & FOLL_TOUCH) {
161 		pte_t entry = *pte;
162 
163 		if (flags & FOLL_WRITE)
164 			entry = pte_mkdirty(entry);
165 		entry = pte_mkyoung(entry);
166 
167 		if (!pte_same(*pte, entry)) {
168 			set_pte_at(vma->vm_mm, address, pte, entry);
169 			update_mmu_cache(vma, address, pte);
170 		}
171 	}
172 
173 	/* Proper page table entry exists, but no corresponding struct page */
174 	return -EEXIST;
175 }
176 
177 /*
178  * FOLL_FORCE can write to even unwritable pte's, but only
179  * after we've gone through a COW cycle and they are dirty.
180  */
181 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
182 {
183 	return pte_write(pte) ||
184 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
185 }
186 
187 static struct page *follow_page_pte(struct vm_area_struct *vma,
188 		unsigned long address, pmd_t *pmd, unsigned int flags,
189 		struct dev_pagemap **pgmap)
190 {
191 	struct mm_struct *mm = vma->vm_mm;
192 	struct page *page;
193 	spinlock_t *ptl;
194 	pte_t *ptep, pte;
195 
196 retry:
197 	if (unlikely(pmd_bad(*pmd)))
198 		return no_page_table(vma, flags);
199 
200 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
201 	pte = *ptep;
202 	if (!pte_present(pte)) {
203 		swp_entry_t entry;
204 		/*
205 		 * KSM's break_ksm() relies upon recognizing a ksm page
206 		 * even while it is being migrated, so for that case we
207 		 * need migration_entry_wait().
208 		 */
209 		if (likely(!(flags & FOLL_MIGRATION)))
210 			goto no_page;
211 		if (pte_none(pte))
212 			goto no_page;
213 		entry = pte_to_swp_entry(pte);
214 		if (!is_migration_entry(entry))
215 			goto no_page;
216 		pte_unmap_unlock(ptep, ptl);
217 		migration_entry_wait(mm, pmd, address);
218 		goto retry;
219 	}
220 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
221 		goto no_page;
222 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
223 		pte_unmap_unlock(ptep, ptl);
224 		return NULL;
225 	}
226 
227 	page = vm_normal_page(vma, address, pte);
228 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
229 		/*
230 		 * Only return device mapping pages in the FOLL_GET case since
231 		 * they are only valid while holding the pgmap reference.
232 		 */
233 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
234 		if (*pgmap)
235 			page = pte_page(pte);
236 		else
237 			goto no_page;
238 	} else if (unlikely(!page)) {
239 		if (flags & FOLL_DUMP) {
240 			/* Avoid special (like zero) pages in core dumps */
241 			page = ERR_PTR(-EFAULT);
242 			goto out;
243 		}
244 
245 		if (is_zero_pfn(pte_pfn(pte))) {
246 			page = pte_page(pte);
247 		} else {
248 			int ret;
249 
250 			ret = follow_pfn_pte(vma, address, ptep, flags);
251 			page = ERR_PTR(ret);
252 			goto out;
253 		}
254 	}
255 
256 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
257 		int ret;
258 		get_page(page);
259 		pte_unmap_unlock(ptep, ptl);
260 		lock_page(page);
261 		ret = split_huge_page(page);
262 		unlock_page(page);
263 		put_page(page);
264 		if (ret)
265 			return ERR_PTR(ret);
266 		goto retry;
267 	}
268 
269 	if (flags & FOLL_GET) {
270 		if (unlikely(!try_get_page(page))) {
271 			page = ERR_PTR(-ENOMEM);
272 			goto out;
273 		}
274 	}
275 	if (flags & FOLL_TOUCH) {
276 		if ((flags & FOLL_WRITE) &&
277 		    !pte_dirty(pte) && !PageDirty(page))
278 			set_page_dirty(page);
279 		/*
280 		 * pte_mkyoung() would be more correct here, but atomic care
281 		 * is needed to avoid losing the dirty bit: it is easier to use
282 		 * mark_page_accessed().
283 		 */
284 		mark_page_accessed(page);
285 	}
286 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
287 		/* Do not mlock pte-mapped THP */
288 		if (PageTransCompound(page))
289 			goto out;
290 
291 		/*
292 		 * The preliminary mapping check is mainly to avoid the
293 		 * pointless overhead of lock_page on the ZERO_PAGE
294 		 * which might bounce very badly if there is contention.
295 		 *
296 		 * If the page is already locked, we don't need to
297 		 * handle it now - vmscan will handle it later if and
298 		 * when it attempts to reclaim the page.
299 		 */
300 		if (page->mapping && trylock_page(page)) {
301 			lru_add_drain();  /* push cached pages to LRU */
302 			/*
303 			 * Because we lock page here, and migration is
304 			 * blocked by the pte's page reference, and we
305 			 * know the page is still mapped, we don't even
306 			 * need to check for file-cache page truncation.
307 			 */
308 			mlock_vma_page(page);
309 			unlock_page(page);
310 		}
311 	}
312 out:
313 	pte_unmap_unlock(ptep, ptl);
314 	return page;
315 no_page:
316 	pte_unmap_unlock(ptep, ptl);
317 	if (!pte_none(pte))
318 		return NULL;
319 	return no_page_table(vma, flags);
320 }
321 
322 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
323 				    unsigned long address, pud_t *pudp,
324 				    unsigned int flags,
325 				    struct follow_page_context *ctx)
326 {
327 	pmd_t *pmd, pmdval;
328 	spinlock_t *ptl;
329 	struct page *page;
330 	struct mm_struct *mm = vma->vm_mm;
331 
332 	pmd = pmd_offset(pudp, address);
333 	/*
334 	 * The READ_ONCE() will stabilize the pmdval in a register or
335 	 * on the stack so that it will stop changing under the code.
336 	 */
337 	pmdval = READ_ONCE(*pmd);
338 	if (pmd_none(pmdval))
339 		return no_page_table(vma, flags);
340 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
341 		page = follow_huge_pmd(mm, address, pmd, flags);
342 		if (page)
343 			return page;
344 		return no_page_table(vma, flags);
345 	}
346 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
347 		page = follow_huge_pd(vma, address,
348 				      __hugepd(pmd_val(pmdval)), flags,
349 				      PMD_SHIFT);
350 		if (page)
351 			return page;
352 		return no_page_table(vma, flags);
353 	}
354 retry:
355 	if (!pmd_present(pmdval)) {
356 		if (likely(!(flags & FOLL_MIGRATION)))
357 			return no_page_table(vma, flags);
358 		VM_BUG_ON(thp_migration_supported() &&
359 				  !is_pmd_migration_entry(pmdval));
360 		if (is_pmd_migration_entry(pmdval))
361 			pmd_migration_entry_wait(mm, pmd);
362 		pmdval = READ_ONCE(*pmd);
363 		/*
364 		 * MADV_DONTNEED may convert the pmd to null because
365 		 * mmap_sem is held in read mode
366 		 */
367 		if (pmd_none(pmdval))
368 			return no_page_table(vma, flags);
369 		goto retry;
370 	}
371 	if (pmd_devmap(pmdval)) {
372 		ptl = pmd_lock(mm, pmd);
373 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
374 		spin_unlock(ptl);
375 		if (page)
376 			return page;
377 	}
378 	if (likely(!pmd_trans_huge(pmdval)))
379 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
380 
381 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
382 		return no_page_table(vma, flags);
383 
384 retry_locked:
385 	ptl = pmd_lock(mm, pmd);
386 	if (unlikely(pmd_none(*pmd))) {
387 		spin_unlock(ptl);
388 		return no_page_table(vma, flags);
389 	}
390 	if (unlikely(!pmd_present(*pmd))) {
391 		spin_unlock(ptl);
392 		if (likely(!(flags & FOLL_MIGRATION)))
393 			return no_page_table(vma, flags);
394 		pmd_migration_entry_wait(mm, pmd);
395 		goto retry_locked;
396 	}
397 	if (unlikely(!pmd_trans_huge(*pmd))) {
398 		spin_unlock(ptl);
399 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
400 	}
401 	if (flags & FOLL_SPLIT) {
402 		int ret;
403 		page = pmd_page(*pmd);
404 		if (is_huge_zero_page(page)) {
405 			spin_unlock(ptl);
406 			ret = 0;
407 			split_huge_pmd(vma, pmd, address);
408 			if (pmd_trans_unstable(pmd))
409 				ret = -EBUSY;
410 		} else {
411 			if (unlikely(!try_get_page(page))) {
412 				spin_unlock(ptl);
413 				return ERR_PTR(-ENOMEM);
414 			}
415 			spin_unlock(ptl);
416 			lock_page(page);
417 			ret = split_huge_page(page);
418 			unlock_page(page);
419 			put_page(page);
420 			if (pmd_none(*pmd))
421 				return no_page_table(vma, flags);
422 		}
423 
424 		return ret ? ERR_PTR(ret) :
425 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
426 	}
427 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
428 	spin_unlock(ptl);
429 	ctx->page_mask = HPAGE_PMD_NR - 1;
430 	return page;
431 }
432 
433 static struct page *follow_pud_mask(struct vm_area_struct *vma,
434 				    unsigned long address, p4d_t *p4dp,
435 				    unsigned int flags,
436 				    struct follow_page_context *ctx)
437 {
438 	pud_t *pud;
439 	spinlock_t *ptl;
440 	struct page *page;
441 	struct mm_struct *mm = vma->vm_mm;
442 
443 	pud = pud_offset(p4dp, address);
444 	if (pud_none(*pud))
445 		return no_page_table(vma, flags);
446 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
447 		page = follow_huge_pud(mm, address, pud, flags);
448 		if (page)
449 			return page;
450 		return no_page_table(vma, flags);
451 	}
452 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
453 		page = follow_huge_pd(vma, address,
454 				      __hugepd(pud_val(*pud)), flags,
455 				      PUD_SHIFT);
456 		if (page)
457 			return page;
458 		return no_page_table(vma, flags);
459 	}
460 	if (pud_devmap(*pud)) {
461 		ptl = pud_lock(mm, pud);
462 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
463 		spin_unlock(ptl);
464 		if (page)
465 			return page;
466 	}
467 	if (unlikely(pud_bad(*pud)))
468 		return no_page_table(vma, flags);
469 
470 	return follow_pmd_mask(vma, address, pud, flags, ctx);
471 }
472 
473 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
474 				    unsigned long address, pgd_t *pgdp,
475 				    unsigned int flags,
476 				    struct follow_page_context *ctx)
477 {
478 	p4d_t *p4d;
479 	struct page *page;
480 
481 	p4d = p4d_offset(pgdp, address);
482 	if (p4d_none(*p4d))
483 		return no_page_table(vma, flags);
484 	BUILD_BUG_ON(p4d_huge(*p4d));
485 	if (unlikely(p4d_bad(*p4d)))
486 		return no_page_table(vma, flags);
487 
488 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
489 		page = follow_huge_pd(vma, address,
490 				      __hugepd(p4d_val(*p4d)), flags,
491 				      P4D_SHIFT);
492 		if (page)
493 			return page;
494 		return no_page_table(vma, flags);
495 	}
496 	return follow_pud_mask(vma, address, p4d, flags, ctx);
497 }
498 
499 /**
500  * follow_page_mask - look up a page descriptor from a user-virtual address
501  * @vma: vm_area_struct mapping @address
502  * @address: virtual address to look up
503  * @flags: flags modifying lookup behaviour
504  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
505  *       pointer to output page_mask
506  *
507  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
508  *
509  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
510  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
511  *
512  * On output, the @ctx->page_mask is set according to the size of the page.
513  *
514  * Return: the mapped (struct page *), %NULL if no mapping exists, or
515  * an error pointer if there is a mapping to something not represented
516  * by a page descriptor (see also vm_normal_page()).
517  */
518 struct page *follow_page_mask(struct vm_area_struct *vma,
519 			      unsigned long address, unsigned int flags,
520 			      struct follow_page_context *ctx)
521 {
522 	pgd_t *pgd;
523 	struct page *page;
524 	struct mm_struct *mm = vma->vm_mm;
525 
526 	ctx->page_mask = 0;
527 
528 	/* make this handle hugepd */
529 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
530 	if (!IS_ERR(page)) {
531 		BUG_ON(flags & FOLL_GET);
532 		return page;
533 	}
534 
535 	pgd = pgd_offset(mm, address);
536 
537 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
538 		return no_page_table(vma, flags);
539 
540 	if (pgd_huge(*pgd)) {
541 		page = follow_huge_pgd(mm, address, pgd, flags);
542 		if (page)
543 			return page;
544 		return no_page_table(vma, flags);
545 	}
546 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
547 		page = follow_huge_pd(vma, address,
548 				      __hugepd(pgd_val(*pgd)), flags,
549 				      PGDIR_SHIFT);
550 		if (page)
551 			return page;
552 		return no_page_table(vma, flags);
553 	}
554 
555 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
556 }
557 
558 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
559 			 unsigned int foll_flags)
560 {
561 	struct follow_page_context ctx = { NULL };
562 	struct page *page;
563 
564 	page = follow_page_mask(vma, address, foll_flags, &ctx);
565 	if (ctx.pgmap)
566 		put_dev_pagemap(ctx.pgmap);
567 	return page;
568 }
569 
570 static int get_gate_page(struct mm_struct *mm, unsigned long address,
571 		unsigned int gup_flags, struct vm_area_struct **vma,
572 		struct page **page)
573 {
574 	pgd_t *pgd;
575 	p4d_t *p4d;
576 	pud_t *pud;
577 	pmd_t *pmd;
578 	pte_t *pte;
579 	int ret = -EFAULT;
580 
581 	/* user gate pages are read-only */
582 	if (gup_flags & FOLL_WRITE)
583 		return -EFAULT;
584 	if (address > TASK_SIZE)
585 		pgd = pgd_offset_k(address);
586 	else
587 		pgd = pgd_offset_gate(mm, address);
588 	BUG_ON(pgd_none(*pgd));
589 	p4d = p4d_offset(pgd, address);
590 	BUG_ON(p4d_none(*p4d));
591 	pud = pud_offset(p4d, address);
592 	BUG_ON(pud_none(*pud));
593 	pmd = pmd_offset(pud, address);
594 	if (!pmd_present(*pmd))
595 		return -EFAULT;
596 	VM_BUG_ON(pmd_trans_huge(*pmd));
597 	pte = pte_offset_map(pmd, address);
598 	if (pte_none(*pte))
599 		goto unmap;
600 	*vma = get_gate_vma(mm);
601 	if (!page)
602 		goto out;
603 	*page = vm_normal_page(*vma, address, *pte);
604 	if (!*page) {
605 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
606 			goto unmap;
607 		*page = pte_page(*pte);
608 
609 		/*
610 		 * This should never happen (a device public page in the gate
611 		 * area).
612 		 */
613 		if (is_device_public_page(*page))
614 			goto unmap;
615 	}
616 	if (unlikely(!try_get_page(*page))) {
617 		ret = -ENOMEM;
618 		goto unmap;
619 	}
620 out:
621 	ret = 0;
622 unmap:
623 	pte_unmap(pte);
624 	return ret;
625 }
626 
627 /*
628  * mmap_sem must be held on entry.  If @nonblocking != NULL and
629  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
630  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
631  */
632 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
633 		unsigned long address, unsigned int *flags, int *nonblocking)
634 {
635 	unsigned int fault_flags = 0;
636 	vm_fault_t ret;
637 
638 	/* mlock all present pages, but do not fault in new pages */
639 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
640 		return -ENOENT;
641 	if (*flags & FOLL_WRITE)
642 		fault_flags |= FAULT_FLAG_WRITE;
643 	if (*flags & FOLL_REMOTE)
644 		fault_flags |= FAULT_FLAG_REMOTE;
645 	if (nonblocking)
646 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
647 	if (*flags & FOLL_NOWAIT)
648 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
649 	if (*flags & FOLL_TRIED) {
650 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
651 		fault_flags |= FAULT_FLAG_TRIED;
652 	}
653 
654 	ret = handle_mm_fault(vma, address, fault_flags);
655 	if (ret & VM_FAULT_ERROR) {
656 		int err = vm_fault_to_errno(ret, *flags);
657 
658 		if (err)
659 			return err;
660 		BUG();
661 	}
662 
663 	if (tsk) {
664 		if (ret & VM_FAULT_MAJOR)
665 			tsk->maj_flt++;
666 		else
667 			tsk->min_flt++;
668 	}
669 
670 	if (ret & VM_FAULT_RETRY) {
671 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
672 			*nonblocking = 0;
673 		return -EBUSY;
674 	}
675 
676 	/*
677 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
678 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
679 	 * can thus safely do subsequent page lookups as if they were reads.
680 	 * But only do so when looping for pte_write is futile: in some cases
681 	 * userspace may also be wanting to write to the gotten user page,
682 	 * which a read fault here might prevent (a readonly page might get
683 	 * reCOWed by userspace write).
684 	 */
685 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
686 		*flags |= FOLL_COW;
687 	return 0;
688 }
689 
690 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
691 {
692 	vm_flags_t vm_flags = vma->vm_flags;
693 	int write = (gup_flags & FOLL_WRITE);
694 	int foreign = (gup_flags & FOLL_REMOTE);
695 
696 	if (vm_flags & (VM_IO | VM_PFNMAP))
697 		return -EFAULT;
698 
699 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
700 		return -EFAULT;
701 
702 	if (write) {
703 		if (!(vm_flags & VM_WRITE)) {
704 			if (!(gup_flags & FOLL_FORCE))
705 				return -EFAULT;
706 			/*
707 			 * We used to let the write,force case do COW in a
708 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
709 			 * set a breakpoint in a read-only mapping of an
710 			 * executable, without corrupting the file (yet only
711 			 * when that file had been opened for writing!).
712 			 * Anon pages in shared mappings are surprising: now
713 			 * just reject it.
714 			 */
715 			if (!is_cow_mapping(vm_flags))
716 				return -EFAULT;
717 		}
718 	} else if (!(vm_flags & VM_READ)) {
719 		if (!(gup_flags & FOLL_FORCE))
720 			return -EFAULT;
721 		/*
722 		 * Is there actually any vma we can reach here which does not
723 		 * have VM_MAYREAD set?
724 		 */
725 		if (!(vm_flags & VM_MAYREAD))
726 			return -EFAULT;
727 	}
728 	/*
729 	 * gups are always data accesses, not instruction
730 	 * fetches, so execute=false here
731 	 */
732 	if (!arch_vma_access_permitted(vma, write, false, foreign))
733 		return -EFAULT;
734 	return 0;
735 }
736 
737 /**
738  * __get_user_pages() - pin user pages in memory
739  * @tsk:	task_struct of target task
740  * @mm:		mm_struct of target mm
741  * @start:	starting user address
742  * @nr_pages:	number of pages from start to pin
743  * @gup_flags:	flags modifying pin behaviour
744  * @pages:	array that receives pointers to the pages pinned.
745  *		Should be at least nr_pages long. Or NULL, if caller
746  *		only intends to ensure the pages are faulted in.
747  * @vmas:	array of pointers to vmas corresponding to each page.
748  *		Or NULL if the caller does not require them.
749  * @nonblocking: whether waiting for disk IO or mmap_sem contention
750  *
751  * Returns number of pages pinned. This may be fewer than the number
752  * requested. If nr_pages is 0 or negative, returns 0. If no pages
753  * were pinned, returns -errno. Each page returned must be released
754  * with a put_page() call when it is finished with. vmas will only
755  * remain valid while mmap_sem is held.
756  *
757  * Must be called with mmap_sem held.  It may be released.  See below.
758  *
759  * __get_user_pages walks a process's page tables and takes a reference to
760  * each struct page that each user address corresponds to at a given
761  * instant. That is, it takes the page that would be accessed if a user
762  * thread accesses the given user virtual address at that instant.
763  *
764  * This does not guarantee that the page exists in the user mappings when
765  * __get_user_pages returns, and there may even be a completely different
766  * page there in some cases (eg. if mmapped pagecache has been invalidated
767  * and subsequently re faulted). However it does guarantee that the page
768  * won't be freed completely. And mostly callers simply care that the page
769  * contains data that was valid *at some point in time*. Typically, an IO
770  * or similar operation cannot guarantee anything stronger anyway because
771  * locks can't be held over the syscall boundary.
772  *
773  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
774  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
775  * appropriate) must be called after the page is finished with, and
776  * before put_page is called.
777  *
778  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
779  * or mmap_sem contention, and if waiting is needed to pin all pages,
780  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
781  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
782  * this case.
783  *
784  * A caller using such a combination of @nonblocking and @gup_flags
785  * must therefore hold the mmap_sem for reading only, and recognize
786  * when it's been released.  Otherwise, it must be held for either
787  * reading or writing and will not be released.
788  *
789  * In most cases, get_user_pages or get_user_pages_fast should be used
790  * instead of __get_user_pages. __get_user_pages should be used only if
791  * you need some special @gup_flags.
792  */
793 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
794 		unsigned long start, unsigned long nr_pages,
795 		unsigned int gup_flags, struct page **pages,
796 		struct vm_area_struct **vmas, int *nonblocking)
797 {
798 	long ret = 0, i = 0;
799 	struct vm_area_struct *vma = NULL;
800 	struct follow_page_context ctx = { NULL };
801 
802 	if (!nr_pages)
803 		return 0;
804 
805 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
806 
807 	/*
808 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
809 	 * fault information is unrelated to the reference behaviour of a task
810 	 * using the address space
811 	 */
812 	if (!(gup_flags & FOLL_FORCE))
813 		gup_flags |= FOLL_NUMA;
814 
815 	do {
816 		struct page *page;
817 		unsigned int foll_flags = gup_flags;
818 		unsigned int page_increm;
819 
820 		/* first iteration or cross vma bound */
821 		if (!vma || start >= vma->vm_end) {
822 			vma = find_extend_vma(mm, start);
823 			if (!vma && in_gate_area(mm, start)) {
824 				ret = get_gate_page(mm, start & PAGE_MASK,
825 						gup_flags, &vma,
826 						pages ? &pages[i] : NULL);
827 				if (ret)
828 					goto out;
829 				ctx.page_mask = 0;
830 				goto next_page;
831 			}
832 
833 			if (!vma || check_vma_flags(vma, gup_flags)) {
834 				ret = -EFAULT;
835 				goto out;
836 			}
837 			if (is_vm_hugetlb_page(vma)) {
838 				i = follow_hugetlb_page(mm, vma, pages, vmas,
839 						&start, &nr_pages, i,
840 						gup_flags, nonblocking);
841 				continue;
842 			}
843 		}
844 retry:
845 		/*
846 		 * If we have a pending SIGKILL, don't keep faulting pages and
847 		 * potentially allocating memory.
848 		 */
849 		if (fatal_signal_pending(current)) {
850 			ret = -ERESTARTSYS;
851 			goto out;
852 		}
853 		cond_resched();
854 
855 		page = follow_page_mask(vma, start, foll_flags, &ctx);
856 		if (!page) {
857 			ret = faultin_page(tsk, vma, start, &foll_flags,
858 					nonblocking);
859 			switch (ret) {
860 			case 0:
861 				goto retry;
862 			case -EBUSY:
863 				ret = 0;
864 				/* FALLTHRU */
865 			case -EFAULT:
866 			case -ENOMEM:
867 			case -EHWPOISON:
868 				goto out;
869 			case -ENOENT:
870 				goto next_page;
871 			}
872 			BUG();
873 		} else if (PTR_ERR(page) == -EEXIST) {
874 			/*
875 			 * Proper page table entry exists, but no corresponding
876 			 * struct page.
877 			 */
878 			goto next_page;
879 		} else if (IS_ERR(page)) {
880 			ret = PTR_ERR(page);
881 			goto out;
882 		}
883 		if (pages) {
884 			pages[i] = page;
885 			flush_anon_page(vma, page, start);
886 			flush_dcache_page(page);
887 			ctx.page_mask = 0;
888 		}
889 next_page:
890 		if (vmas) {
891 			vmas[i] = vma;
892 			ctx.page_mask = 0;
893 		}
894 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
895 		if (page_increm > nr_pages)
896 			page_increm = nr_pages;
897 		i += page_increm;
898 		start += page_increm * PAGE_SIZE;
899 		nr_pages -= page_increm;
900 	} while (nr_pages);
901 out:
902 	if (ctx.pgmap)
903 		put_dev_pagemap(ctx.pgmap);
904 	return i ? i : ret;
905 }
906 
907 static bool vma_permits_fault(struct vm_area_struct *vma,
908 			      unsigned int fault_flags)
909 {
910 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
911 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
912 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
913 
914 	if (!(vm_flags & vma->vm_flags))
915 		return false;
916 
917 	/*
918 	 * The architecture might have a hardware protection
919 	 * mechanism other than read/write that can deny access.
920 	 *
921 	 * gup always represents data access, not instruction
922 	 * fetches, so execute=false here:
923 	 */
924 	if (!arch_vma_access_permitted(vma, write, false, foreign))
925 		return false;
926 
927 	return true;
928 }
929 
930 /*
931  * fixup_user_fault() - manually resolve a user page fault
932  * @tsk:	the task_struct to use for page fault accounting, or
933  *		NULL if faults are not to be recorded.
934  * @mm:		mm_struct of target mm
935  * @address:	user address
936  * @fault_flags:flags to pass down to handle_mm_fault()
937  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
938  *		does not allow retry
939  *
940  * This is meant to be called in the specific scenario where for locking reasons
941  * we try to access user memory in atomic context (within a pagefault_disable()
942  * section), this returns -EFAULT, and we want to resolve the user fault before
943  * trying again.
944  *
945  * Typically this is meant to be used by the futex code.
946  *
947  * The main difference with get_user_pages() is that this function will
948  * unconditionally call handle_mm_fault() which will in turn perform all the
949  * necessary SW fixup of the dirty and young bits in the PTE, while
950  * get_user_pages() only guarantees to update these in the struct page.
951  *
952  * This is important for some architectures where those bits also gate the
953  * access permission to the page because they are maintained in software.  On
954  * such architectures, gup() will not be enough to make a subsequent access
955  * succeed.
956  *
957  * This function will not return with an unlocked mmap_sem. So it has not the
958  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
959  */
960 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
961 		     unsigned long address, unsigned int fault_flags,
962 		     bool *unlocked)
963 {
964 	struct vm_area_struct *vma;
965 	vm_fault_t ret, major = 0;
966 
967 	if (unlocked)
968 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
969 
970 retry:
971 	vma = find_extend_vma(mm, address);
972 	if (!vma || address < vma->vm_start)
973 		return -EFAULT;
974 
975 	if (!vma_permits_fault(vma, fault_flags))
976 		return -EFAULT;
977 
978 	ret = handle_mm_fault(vma, address, fault_flags);
979 	major |= ret & VM_FAULT_MAJOR;
980 	if (ret & VM_FAULT_ERROR) {
981 		int err = vm_fault_to_errno(ret, 0);
982 
983 		if (err)
984 			return err;
985 		BUG();
986 	}
987 
988 	if (ret & VM_FAULT_RETRY) {
989 		down_read(&mm->mmap_sem);
990 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
991 			*unlocked = true;
992 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
993 			fault_flags |= FAULT_FLAG_TRIED;
994 			goto retry;
995 		}
996 	}
997 
998 	if (tsk) {
999 		if (major)
1000 			tsk->maj_flt++;
1001 		else
1002 			tsk->min_flt++;
1003 	}
1004 	return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(fixup_user_fault);
1007 
1008 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1009 						struct mm_struct *mm,
1010 						unsigned long start,
1011 						unsigned long nr_pages,
1012 						struct page **pages,
1013 						struct vm_area_struct **vmas,
1014 						int *locked,
1015 						unsigned int flags)
1016 {
1017 	long ret, pages_done;
1018 	bool lock_dropped;
1019 
1020 	if (locked) {
1021 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1022 		BUG_ON(vmas);
1023 		/* check caller initialized locked */
1024 		BUG_ON(*locked != 1);
1025 	}
1026 
1027 	if (pages)
1028 		flags |= FOLL_GET;
1029 
1030 	pages_done = 0;
1031 	lock_dropped = false;
1032 	for (;;) {
1033 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1034 				       vmas, locked);
1035 		if (!locked)
1036 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1037 			return ret;
1038 
1039 		/* VM_FAULT_RETRY cannot return errors */
1040 		if (!*locked) {
1041 			BUG_ON(ret < 0);
1042 			BUG_ON(ret >= nr_pages);
1043 		}
1044 
1045 		if (ret > 0) {
1046 			nr_pages -= ret;
1047 			pages_done += ret;
1048 			if (!nr_pages)
1049 				break;
1050 		}
1051 		if (*locked) {
1052 			/*
1053 			 * VM_FAULT_RETRY didn't trigger or it was a
1054 			 * FOLL_NOWAIT.
1055 			 */
1056 			if (!pages_done)
1057 				pages_done = ret;
1058 			break;
1059 		}
1060 		/*
1061 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1062 		 * For the prefault case (!pages) we only update counts.
1063 		 */
1064 		if (likely(pages))
1065 			pages += ret;
1066 		start += ret << PAGE_SHIFT;
1067 
1068 		/*
1069 		 * Repeat on the address that fired VM_FAULT_RETRY
1070 		 * without FAULT_FLAG_ALLOW_RETRY but with
1071 		 * FAULT_FLAG_TRIED.
1072 		 */
1073 		*locked = 1;
1074 		lock_dropped = true;
1075 		down_read(&mm->mmap_sem);
1076 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1077 				       pages, NULL, NULL);
1078 		if (ret != 1) {
1079 			BUG_ON(ret > 1);
1080 			if (!pages_done)
1081 				pages_done = ret;
1082 			break;
1083 		}
1084 		nr_pages--;
1085 		pages_done++;
1086 		if (!nr_pages)
1087 			break;
1088 		if (likely(pages))
1089 			pages++;
1090 		start += PAGE_SIZE;
1091 	}
1092 	if (lock_dropped && *locked) {
1093 		/*
1094 		 * We must let the caller know we temporarily dropped the lock
1095 		 * and so the critical section protected by it was lost.
1096 		 */
1097 		up_read(&mm->mmap_sem);
1098 		*locked = 0;
1099 	}
1100 	return pages_done;
1101 }
1102 
1103 /*
1104  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1105  * paths better by using either get_user_pages_locked() or
1106  * get_user_pages_unlocked().
1107  *
1108  * get_user_pages_locked() is suitable to replace the form:
1109  *
1110  *      down_read(&mm->mmap_sem);
1111  *      do_something()
1112  *      get_user_pages(tsk, mm, ..., pages, NULL);
1113  *      up_read(&mm->mmap_sem);
1114  *
1115  *  to:
1116  *
1117  *      int locked = 1;
1118  *      down_read(&mm->mmap_sem);
1119  *      do_something()
1120  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1121  *      if (locked)
1122  *          up_read(&mm->mmap_sem);
1123  */
1124 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1125 			   unsigned int gup_flags, struct page **pages,
1126 			   int *locked)
1127 {
1128 	/*
1129 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1130 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1131 	 * vmas.  As there are no users of this flag in this call we simply
1132 	 * disallow this option for now.
1133 	 */
1134 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1135 		return -EINVAL;
1136 
1137 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1138 				       pages, NULL, locked,
1139 				       gup_flags | FOLL_TOUCH);
1140 }
1141 EXPORT_SYMBOL(get_user_pages_locked);
1142 
1143 /*
1144  * get_user_pages_unlocked() is suitable to replace the form:
1145  *
1146  *      down_read(&mm->mmap_sem);
1147  *      get_user_pages(tsk, mm, ..., pages, NULL);
1148  *      up_read(&mm->mmap_sem);
1149  *
1150  *  with:
1151  *
1152  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1153  *
1154  * It is functionally equivalent to get_user_pages_fast so
1155  * get_user_pages_fast should be used instead if specific gup_flags
1156  * (e.g. FOLL_FORCE) are not required.
1157  */
1158 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1159 			     struct page **pages, unsigned int gup_flags)
1160 {
1161 	struct mm_struct *mm = current->mm;
1162 	int locked = 1;
1163 	long ret;
1164 
1165 	/*
1166 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1167 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1168 	 * vmas.  As there are no users of this flag in this call we simply
1169 	 * disallow this option for now.
1170 	 */
1171 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1172 		return -EINVAL;
1173 
1174 	down_read(&mm->mmap_sem);
1175 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1176 				      &locked, gup_flags | FOLL_TOUCH);
1177 	if (locked)
1178 		up_read(&mm->mmap_sem);
1179 	return ret;
1180 }
1181 EXPORT_SYMBOL(get_user_pages_unlocked);
1182 
1183 /*
1184  * get_user_pages_remote() - pin user pages in memory
1185  * @tsk:	the task_struct to use for page fault accounting, or
1186  *		NULL if faults are not to be recorded.
1187  * @mm:		mm_struct of target mm
1188  * @start:	starting user address
1189  * @nr_pages:	number of pages from start to pin
1190  * @gup_flags:	flags modifying lookup behaviour
1191  * @pages:	array that receives pointers to the pages pinned.
1192  *		Should be at least nr_pages long. Or NULL, if caller
1193  *		only intends to ensure the pages are faulted in.
1194  * @vmas:	array of pointers to vmas corresponding to each page.
1195  *		Or NULL if the caller does not require them.
1196  * @locked:	pointer to lock flag indicating whether lock is held and
1197  *		subsequently whether VM_FAULT_RETRY functionality can be
1198  *		utilised. Lock must initially be held.
1199  *
1200  * Returns number of pages pinned. This may be fewer than the number
1201  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1202  * were pinned, returns -errno. Each page returned must be released
1203  * with a put_page() call when it is finished with. vmas will only
1204  * remain valid while mmap_sem is held.
1205  *
1206  * Must be called with mmap_sem held for read or write.
1207  *
1208  * get_user_pages walks a process's page tables and takes a reference to
1209  * each struct page that each user address corresponds to at a given
1210  * instant. That is, it takes the page that would be accessed if a user
1211  * thread accesses the given user virtual address at that instant.
1212  *
1213  * This does not guarantee that the page exists in the user mappings when
1214  * get_user_pages returns, and there may even be a completely different
1215  * page there in some cases (eg. if mmapped pagecache has been invalidated
1216  * and subsequently re faulted). However it does guarantee that the page
1217  * won't be freed completely. And mostly callers simply care that the page
1218  * contains data that was valid *at some point in time*. Typically, an IO
1219  * or similar operation cannot guarantee anything stronger anyway because
1220  * locks can't be held over the syscall boundary.
1221  *
1222  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1223  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1224  * be called after the page is finished with, and before put_page is called.
1225  *
1226  * get_user_pages is typically used for fewer-copy IO operations, to get a
1227  * handle on the memory by some means other than accesses via the user virtual
1228  * addresses. The pages may be submitted for DMA to devices or accessed via
1229  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1230  * use the correct cache flushing APIs.
1231  *
1232  * See also get_user_pages_fast, for performance critical applications.
1233  *
1234  * get_user_pages should be phased out in favor of
1235  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1236  * should use get_user_pages because it cannot pass
1237  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1238  */
1239 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1240 		unsigned long start, unsigned long nr_pages,
1241 		unsigned int gup_flags, struct page **pages,
1242 		struct vm_area_struct **vmas, int *locked)
1243 {
1244 	/*
1245 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1246 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1247 	 * vmas.  As there are no users of this flag in this call we simply
1248 	 * disallow this option for now.
1249 	 */
1250 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1251 		return -EINVAL;
1252 
1253 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1254 				       locked,
1255 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1256 }
1257 EXPORT_SYMBOL(get_user_pages_remote);
1258 
1259 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1260 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1261 {
1262 	long i;
1263 	struct vm_area_struct *vma_prev = NULL;
1264 
1265 	for (i = 0; i < nr_pages; i++) {
1266 		struct vm_area_struct *vma = vmas[i];
1267 
1268 		if (vma == vma_prev)
1269 			continue;
1270 
1271 		vma_prev = vma;
1272 
1273 		if (vma_is_fsdax(vma))
1274 			return true;
1275 	}
1276 	return false;
1277 }
1278 
1279 #ifdef CONFIG_CMA
1280 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1281 {
1282 	/*
1283 	 * We want to make sure we allocate the new page from the same node
1284 	 * as the source page.
1285 	 */
1286 	int nid = page_to_nid(page);
1287 	/*
1288 	 * Trying to allocate a page for migration. Ignore allocation
1289 	 * failure warnings. We don't force __GFP_THISNODE here because
1290 	 * this node here is the node where we have CMA reservation and
1291 	 * in some case these nodes will have really less non movable
1292 	 * allocation memory.
1293 	 */
1294 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1295 
1296 	if (PageHighMem(page))
1297 		gfp_mask |= __GFP_HIGHMEM;
1298 
1299 #ifdef CONFIG_HUGETLB_PAGE
1300 	if (PageHuge(page)) {
1301 		struct hstate *h = page_hstate(page);
1302 		/*
1303 		 * We don't want to dequeue from the pool because pool pages will
1304 		 * mostly be from the CMA region.
1305 		 */
1306 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1307 	}
1308 #endif
1309 	if (PageTransHuge(page)) {
1310 		struct page *thp;
1311 		/*
1312 		 * ignore allocation failure warnings
1313 		 */
1314 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1315 
1316 		/*
1317 		 * Remove the movable mask so that we don't allocate from
1318 		 * CMA area again.
1319 		 */
1320 		thp_gfpmask &= ~__GFP_MOVABLE;
1321 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1322 		if (!thp)
1323 			return NULL;
1324 		prep_transhuge_page(thp);
1325 		return thp;
1326 	}
1327 
1328 	return __alloc_pages_node(nid, gfp_mask, 0);
1329 }
1330 
1331 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1332 					struct mm_struct *mm,
1333 					unsigned long start,
1334 					unsigned long nr_pages,
1335 					struct page **pages,
1336 					struct vm_area_struct **vmas,
1337 					unsigned int gup_flags)
1338 {
1339 	long i;
1340 	bool drain_allow = true;
1341 	bool migrate_allow = true;
1342 	LIST_HEAD(cma_page_list);
1343 
1344 check_again:
1345 	for (i = 0; i < nr_pages; i++) {
1346 		/*
1347 		 * If we get a page from the CMA zone, since we are going to
1348 		 * be pinning these entries, we might as well move them out
1349 		 * of the CMA zone if possible.
1350 		 */
1351 		if (is_migrate_cma_page(pages[i])) {
1352 
1353 			struct page *head = compound_head(pages[i]);
1354 
1355 			if (PageHuge(head)) {
1356 				isolate_huge_page(head, &cma_page_list);
1357 			} else {
1358 				if (!PageLRU(head) && drain_allow) {
1359 					lru_add_drain_all();
1360 					drain_allow = false;
1361 				}
1362 
1363 				if (!isolate_lru_page(head)) {
1364 					list_add_tail(&head->lru, &cma_page_list);
1365 					mod_node_page_state(page_pgdat(head),
1366 							    NR_ISOLATED_ANON +
1367 							    page_is_file_cache(head),
1368 							    hpage_nr_pages(head));
1369 				}
1370 			}
1371 		}
1372 	}
1373 
1374 	if (!list_empty(&cma_page_list)) {
1375 		/*
1376 		 * drop the above get_user_pages reference.
1377 		 */
1378 		for (i = 0; i < nr_pages; i++)
1379 			put_page(pages[i]);
1380 
1381 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1382 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1383 			/*
1384 			 * some of the pages failed migration. Do get_user_pages
1385 			 * without migration.
1386 			 */
1387 			migrate_allow = false;
1388 
1389 			if (!list_empty(&cma_page_list))
1390 				putback_movable_pages(&cma_page_list);
1391 		}
1392 		/*
1393 		 * We did migrate all the pages, Try to get the page references
1394 		 * again migrating any new CMA pages which we failed to isolate
1395 		 * earlier.
1396 		 */
1397 		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1398 						   pages, vmas, NULL,
1399 						   gup_flags);
1400 
1401 		if ((nr_pages > 0) && migrate_allow) {
1402 			drain_allow = true;
1403 			goto check_again;
1404 		}
1405 	}
1406 
1407 	return nr_pages;
1408 }
1409 #else
1410 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1411 					struct mm_struct *mm,
1412 					unsigned long start,
1413 					unsigned long nr_pages,
1414 					struct page **pages,
1415 					struct vm_area_struct **vmas,
1416 					unsigned int gup_flags)
1417 {
1418 	return nr_pages;
1419 }
1420 #endif
1421 
1422 /*
1423  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1424  * allows us to process the FOLL_LONGTERM flag.
1425  */
1426 static long __gup_longterm_locked(struct task_struct *tsk,
1427 				  struct mm_struct *mm,
1428 				  unsigned long start,
1429 				  unsigned long nr_pages,
1430 				  struct page **pages,
1431 				  struct vm_area_struct **vmas,
1432 				  unsigned int gup_flags)
1433 {
1434 	struct vm_area_struct **vmas_tmp = vmas;
1435 	unsigned long flags = 0;
1436 	long rc, i;
1437 
1438 	if (gup_flags & FOLL_LONGTERM) {
1439 		if (!pages)
1440 			return -EINVAL;
1441 
1442 		if (!vmas_tmp) {
1443 			vmas_tmp = kcalloc(nr_pages,
1444 					   sizeof(struct vm_area_struct *),
1445 					   GFP_KERNEL);
1446 			if (!vmas_tmp)
1447 				return -ENOMEM;
1448 		}
1449 		flags = memalloc_nocma_save();
1450 	}
1451 
1452 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1453 				     vmas_tmp, NULL, gup_flags);
1454 
1455 	if (gup_flags & FOLL_LONGTERM) {
1456 		memalloc_nocma_restore(flags);
1457 		if (rc < 0)
1458 			goto out;
1459 
1460 		if (check_dax_vmas(vmas_tmp, rc)) {
1461 			for (i = 0; i < rc; i++)
1462 				put_page(pages[i]);
1463 			rc = -EOPNOTSUPP;
1464 			goto out;
1465 		}
1466 
1467 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1468 						 vmas_tmp, gup_flags);
1469 	}
1470 
1471 out:
1472 	if (vmas_tmp != vmas)
1473 		kfree(vmas_tmp);
1474 	return rc;
1475 }
1476 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1477 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1478 						  struct mm_struct *mm,
1479 						  unsigned long start,
1480 						  unsigned long nr_pages,
1481 						  struct page **pages,
1482 						  struct vm_area_struct **vmas,
1483 						  unsigned int flags)
1484 {
1485 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1486 				       NULL, flags);
1487 }
1488 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1489 
1490 /*
1491  * This is the same as get_user_pages_remote(), just with a
1492  * less-flexible calling convention where we assume that the task
1493  * and mm being operated on are the current task's and don't allow
1494  * passing of a locked parameter.  We also obviously don't pass
1495  * FOLL_REMOTE in here.
1496  */
1497 long get_user_pages(unsigned long start, unsigned long nr_pages,
1498 		unsigned int gup_flags, struct page **pages,
1499 		struct vm_area_struct **vmas)
1500 {
1501 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1502 				     pages, vmas, gup_flags | FOLL_TOUCH);
1503 }
1504 EXPORT_SYMBOL(get_user_pages);
1505 
1506 /**
1507  * populate_vma_page_range() -  populate a range of pages in the vma.
1508  * @vma:   target vma
1509  * @start: start address
1510  * @end:   end address
1511  * @nonblocking:
1512  *
1513  * This takes care of mlocking the pages too if VM_LOCKED is set.
1514  *
1515  * return 0 on success, negative error code on error.
1516  *
1517  * vma->vm_mm->mmap_sem must be held.
1518  *
1519  * If @nonblocking is NULL, it may be held for read or write and will
1520  * be unperturbed.
1521  *
1522  * If @nonblocking is non-NULL, it must held for read only and may be
1523  * released.  If it's released, *@nonblocking will be set to 0.
1524  */
1525 long populate_vma_page_range(struct vm_area_struct *vma,
1526 		unsigned long start, unsigned long end, int *nonblocking)
1527 {
1528 	struct mm_struct *mm = vma->vm_mm;
1529 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1530 	int gup_flags;
1531 
1532 	VM_BUG_ON(start & ~PAGE_MASK);
1533 	VM_BUG_ON(end   & ~PAGE_MASK);
1534 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1535 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1536 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1537 
1538 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1539 	if (vma->vm_flags & VM_LOCKONFAULT)
1540 		gup_flags &= ~FOLL_POPULATE;
1541 	/*
1542 	 * We want to touch writable mappings with a write fault in order
1543 	 * to break COW, except for shared mappings because these don't COW
1544 	 * and we would not want to dirty them for nothing.
1545 	 */
1546 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1547 		gup_flags |= FOLL_WRITE;
1548 
1549 	/*
1550 	 * We want mlock to succeed for regions that have any permissions
1551 	 * other than PROT_NONE.
1552 	 */
1553 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1554 		gup_flags |= FOLL_FORCE;
1555 
1556 	/*
1557 	 * We made sure addr is within a VMA, so the following will
1558 	 * not result in a stack expansion that recurses back here.
1559 	 */
1560 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1561 				NULL, NULL, nonblocking);
1562 }
1563 
1564 /*
1565  * __mm_populate - populate and/or mlock pages within a range of address space.
1566  *
1567  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1568  * flags. VMAs must be already marked with the desired vm_flags, and
1569  * mmap_sem must not be held.
1570  */
1571 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1572 {
1573 	struct mm_struct *mm = current->mm;
1574 	unsigned long end, nstart, nend;
1575 	struct vm_area_struct *vma = NULL;
1576 	int locked = 0;
1577 	long ret = 0;
1578 
1579 	end = start + len;
1580 
1581 	for (nstart = start; nstart < end; nstart = nend) {
1582 		/*
1583 		 * We want to fault in pages for [nstart; end) address range.
1584 		 * Find first corresponding VMA.
1585 		 */
1586 		if (!locked) {
1587 			locked = 1;
1588 			down_read(&mm->mmap_sem);
1589 			vma = find_vma(mm, nstart);
1590 		} else if (nstart >= vma->vm_end)
1591 			vma = vma->vm_next;
1592 		if (!vma || vma->vm_start >= end)
1593 			break;
1594 		/*
1595 		 * Set [nstart; nend) to intersection of desired address
1596 		 * range with the first VMA. Also, skip undesirable VMA types.
1597 		 */
1598 		nend = min(end, vma->vm_end);
1599 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1600 			continue;
1601 		if (nstart < vma->vm_start)
1602 			nstart = vma->vm_start;
1603 		/*
1604 		 * Now fault in a range of pages. populate_vma_page_range()
1605 		 * double checks the vma flags, so that it won't mlock pages
1606 		 * if the vma was already munlocked.
1607 		 */
1608 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1609 		if (ret < 0) {
1610 			if (ignore_errors) {
1611 				ret = 0;
1612 				continue;	/* continue at next VMA */
1613 			}
1614 			break;
1615 		}
1616 		nend = nstart + ret * PAGE_SIZE;
1617 		ret = 0;
1618 	}
1619 	if (locked)
1620 		up_read(&mm->mmap_sem);
1621 	return ret;	/* 0 or negative error code */
1622 }
1623 
1624 /**
1625  * get_dump_page() - pin user page in memory while writing it to core dump
1626  * @addr: user address
1627  *
1628  * Returns struct page pointer of user page pinned for dump,
1629  * to be freed afterwards by put_page().
1630  *
1631  * Returns NULL on any kind of failure - a hole must then be inserted into
1632  * the corefile, to preserve alignment with its headers; and also returns
1633  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1634  * allowing a hole to be left in the corefile to save diskspace.
1635  *
1636  * Called without mmap_sem, but after all other threads have been killed.
1637  */
1638 #ifdef CONFIG_ELF_CORE
1639 struct page *get_dump_page(unsigned long addr)
1640 {
1641 	struct vm_area_struct *vma;
1642 	struct page *page;
1643 
1644 	if (__get_user_pages(current, current->mm, addr, 1,
1645 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1646 			     NULL) < 1)
1647 		return NULL;
1648 	flush_cache_page(vma, addr, page_to_pfn(page));
1649 	return page;
1650 }
1651 #endif /* CONFIG_ELF_CORE */
1652 
1653 /*
1654  * Generic Fast GUP
1655  *
1656  * get_user_pages_fast attempts to pin user pages by walking the page
1657  * tables directly and avoids taking locks. Thus the walker needs to be
1658  * protected from page table pages being freed from under it, and should
1659  * block any THP splits.
1660  *
1661  * One way to achieve this is to have the walker disable interrupts, and
1662  * rely on IPIs from the TLB flushing code blocking before the page table
1663  * pages are freed. This is unsuitable for architectures that do not need
1664  * to broadcast an IPI when invalidating TLBs.
1665  *
1666  * Another way to achieve this is to batch up page table containing pages
1667  * belonging to more than one mm_user, then rcu_sched a callback to free those
1668  * pages. Disabling interrupts will allow the fast_gup walker to both block
1669  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1670  * (which is a relatively rare event). The code below adopts this strategy.
1671  *
1672  * Before activating this code, please be aware that the following assumptions
1673  * are currently made:
1674  *
1675  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1676  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1677  *
1678  *  *) ptes can be read atomically by the architecture.
1679  *
1680  *  *) access_ok is sufficient to validate userspace address ranges.
1681  *
1682  * The last two assumptions can be relaxed by the addition of helper functions.
1683  *
1684  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1685  */
1686 #ifdef CONFIG_HAVE_GENERIC_GUP
1687 
1688 #ifndef gup_get_pte
1689 /*
1690  * We assume that the PTE can be read atomically. If this is not the case for
1691  * your architecture, please provide the helper.
1692  */
1693 static inline pte_t gup_get_pte(pte_t *ptep)
1694 {
1695 	return READ_ONCE(*ptep);
1696 }
1697 #endif
1698 
1699 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1700 {
1701 	while ((*nr) - nr_start) {
1702 		struct page *page = pages[--(*nr)];
1703 
1704 		ClearPageReferenced(page);
1705 		put_page(page);
1706 	}
1707 }
1708 
1709 /*
1710  * Return the compund head page with ref appropriately incremented,
1711  * or NULL if that failed.
1712  */
1713 static inline struct page *try_get_compound_head(struct page *page, int refs)
1714 {
1715 	struct page *head = compound_head(page);
1716 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1717 		return NULL;
1718 	if (unlikely(!page_cache_add_speculative(head, refs)))
1719 		return NULL;
1720 	return head;
1721 }
1722 
1723 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1724 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1725 			 unsigned int flags, struct page **pages, int *nr)
1726 {
1727 	struct dev_pagemap *pgmap = NULL;
1728 	int nr_start = *nr, ret = 0;
1729 	pte_t *ptep, *ptem;
1730 
1731 	ptem = ptep = pte_offset_map(&pmd, addr);
1732 	do {
1733 		pte_t pte = gup_get_pte(ptep);
1734 		struct page *head, *page;
1735 
1736 		/*
1737 		 * Similar to the PMD case below, NUMA hinting must take slow
1738 		 * path using the pte_protnone check.
1739 		 */
1740 		if (pte_protnone(pte))
1741 			goto pte_unmap;
1742 
1743 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1744 			goto pte_unmap;
1745 
1746 		if (pte_devmap(pte)) {
1747 			if (unlikely(flags & FOLL_LONGTERM))
1748 				goto pte_unmap;
1749 
1750 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1751 			if (unlikely(!pgmap)) {
1752 				undo_dev_pagemap(nr, nr_start, pages);
1753 				goto pte_unmap;
1754 			}
1755 		} else if (pte_special(pte))
1756 			goto pte_unmap;
1757 
1758 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1759 		page = pte_page(pte);
1760 
1761 		head = try_get_compound_head(page, 1);
1762 		if (!head)
1763 			goto pte_unmap;
1764 
1765 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1766 			put_page(head);
1767 			goto pte_unmap;
1768 		}
1769 
1770 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1771 
1772 		SetPageReferenced(page);
1773 		pages[*nr] = page;
1774 		(*nr)++;
1775 
1776 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1777 
1778 	ret = 1;
1779 
1780 pte_unmap:
1781 	if (pgmap)
1782 		put_dev_pagemap(pgmap);
1783 	pte_unmap(ptem);
1784 	return ret;
1785 }
1786 #else
1787 
1788 /*
1789  * If we can't determine whether or not a pte is special, then fail immediately
1790  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1791  * to be special.
1792  *
1793  * For a futex to be placed on a THP tail page, get_futex_key requires a
1794  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1795  * useful to have gup_huge_pmd even if we can't operate on ptes.
1796  */
1797 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1798 			 unsigned int flags, struct page **pages, int *nr)
1799 {
1800 	return 0;
1801 }
1802 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1803 
1804 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1805 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1806 		unsigned long end, struct page **pages, int *nr)
1807 {
1808 	int nr_start = *nr;
1809 	struct dev_pagemap *pgmap = NULL;
1810 
1811 	do {
1812 		struct page *page = pfn_to_page(pfn);
1813 
1814 		pgmap = get_dev_pagemap(pfn, pgmap);
1815 		if (unlikely(!pgmap)) {
1816 			undo_dev_pagemap(nr, nr_start, pages);
1817 			return 0;
1818 		}
1819 		SetPageReferenced(page);
1820 		pages[*nr] = page;
1821 		get_page(page);
1822 		(*nr)++;
1823 		pfn++;
1824 	} while (addr += PAGE_SIZE, addr != end);
1825 
1826 	if (pgmap)
1827 		put_dev_pagemap(pgmap);
1828 	return 1;
1829 }
1830 
1831 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1832 		unsigned long end, struct page **pages, int *nr)
1833 {
1834 	unsigned long fault_pfn;
1835 	int nr_start = *nr;
1836 
1837 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1838 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1839 		return 0;
1840 
1841 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1842 		undo_dev_pagemap(nr, nr_start, pages);
1843 		return 0;
1844 	}
1845 	return 1;
1846 }
1847 
1848 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1849 		unsigned long end, struct page **pages, int *nr)
1850 {
1851 	unsigned long fault_pfn;
1852 	int nr_start = *nr;
1853 
1854 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1855 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1856 		return 0;
1857 
1858 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1859 		undo_dev_pagemap(nr, nr_start, pages);
1860 		return 0;
1861 	}
1862 	return 1;
1863 }
1864 #else
1865 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1866 		unsigned long end, struct page **pages, int *nr)
1867 {
1868 	BUILD_BUG();
1869 	return 0;
1870 }
1871 
1872 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1873 		unsigned long end, struct page **pages, int *nr)
1874 {
1875 	BUILD_BUG();
1876 	return 0;
1877 }
1878 #endif
1879 
1880 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1881 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1882 {
1883 	struct page *head, *page;
1884 	int refs;
1885 
1886 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
1887 		return 0;
1888 
1889 	if (pmd_devmap(orig)) {
1890 		if (unlikely(flags & FOLL_LONGTERM))
1891 			return 0;
1892 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1893 	}
1894 
1895 	refs = 0;
1896 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1897 	do {
1898 		pages[*nr] = page;
1899 		(*nr)++;
1900 		page++;
1901 		refs++;
1902 	} while (addr += PAGE_SIZE, addr != end);
1903 
1904 	head = try_get_compound_head(pmd_page(orig), refs);
1905 	if (!head) {
1906 		*nr -= refs;
1907 		return 0;
1908 	}
1909 
1910 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1911 		*nr -= refs;
1912 		while (refs--)
1913 			put_page(head);
1914 		return 0;
1915 	}
1916 
1917 	SetPageReferenced(head);
1918 	return 1;
1919 }
1920 
1921 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1922 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1923 {
1924 	struct page *head, *page;
1925 	int refs;
1926 
1927 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
1928 		return 0;
1929 
1930 	if (pud_devmap(orig)) {
1931 		if (unlikely(flags & FOLL_LONGTERM))
1932 			return 0;
1933 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1934 	}
1935 
1936 	refs = 0;
1937 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1938 	do {
1939 		pages[*nr] = page;
1940 		(*nr)++;
1941 		page++;
1942 		refs++;
1943 	} while (addr += PAGE_SIZE, addr != end);
1944 
1945 	head = try_get_compound_head(pud_page(orig), refs);
1946 	if (!head) {
1947 		*nr -= refs;
1948 		return 0;
1949 	}
1950 
1951 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1952 		*nr -= refs;
1953 		while (refs--)
1954 			put_page(head);
1955 		return 0;
1956 	}
1957 
1958 	SetPageReferenced(head);
1959 	return 1;
1960 }
1961 
1962 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1963 			unsigned long end, unsigned int flags,
1964 			struct page **pages, int *nr)
1965 {
1966 	int refs;
1967 	struct page *head, *page;
1968 
1969 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
1970 		return 0;
1971 
1972 	BUILD_BUG_ON(pgd_devmap(orig));
1973 	refs = 0;
1974 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1975 	do {
1976 		pages[*nr] = page;
1977 		(*nr)++;
1978 		page++;
1979 		refs++;
1980 	} while (addr += PAGE_SIZE, addr != end);
1981 
1982 	head = try_get_compound_head(pgd_page(orig), refs);
1983 	if (!head) {
1984 		*nr -= refs;
1985 		return 0;
1986 	}
1987 
1988 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1989 		*nr -= refs;
1990 		while (refs--)
1991 			put_page(head);
1992 		return 0;
1993 	}
1994 
1995 	SetPageReferenced(head);
1996 	return 1;
1997 }
1998 
1999 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2000 		unsigned int flags, struct page **pages, int *nr)
2001 {
2002 	unsigned long next;
2003 	pmd_t *pmdp;
2004 
2005 	pmdp = pmd_offset(&pud, addr);
2006 	do {
2007 		pmd_t pmd = READ_ONCE(*pmdp);
2008 
2009 		next = pmd_addr_end(addr, end);
2010 		if (!pmd_present(pmd))
2011 			return 0;
2012 
2013 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2014 			     pmd_devmap(pmd))) {
2015 			/*
2016 			 * NUMA hinting faults need to be handled in the GUP
2017 			 * slowpath for accounting purposes and so that they
2018 			 * can be serialised against THP migration.
2019 			 */
2020 			if (pmd_protnone(pmd))
2021 				return 0;
2022 
2023 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2024 				pages, nr))
2025 				return 0;
2026 
2027 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2028 			/*
2029 			 * architecture have different format for hugetlbfs
2030 			 * pmd format and THP pmd format
2031 			 */
2032 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2033 					 PMD_SHIFT, next, flags, pages, nr))
2034 				return 0;
2035 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2036 			return 0;
2037 	} while (pmdp++, addr = next, addr != end);
2038 
2039 	return 1;
2040 }
2041 
2042 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2043 			 unsigned int flags, struct page **pages, int *nr)
2044 {
2045 	unsigned long next;
2046 	pud_t *pudp;
2047 
2048 	pudp = pud_offset(&p4d, addr);
2049 	do {
2050 		pud_t pud = READ_ONCE(*pudp);
2051 
2052 		next = pud_addr_end(addr, end);
2053 		if (pud_none(pud))
2054 			return 0;
2055 		if (unlikely(pud_huge(pud))) {
2056 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2057 					  pages, nr))
2058 				return 0;
2059 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2060 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2061 					 PUD_SHIFT, next, flags, pages, nr))
2062 				return 0;
2063 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2064 			return 0;
2065 	} while (pudp++, addr = next, addr != end);
2066 
2067 	return 1;
2068 }
2069 
2070 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2071 			 unsigned int flags, struct page **pages, int *nr)
2072 {
2073 	unsigned long next;
2074 	p4d_t *p4dp;
2075 
2076 	p4dp = p4d_offset(&pgd, addr);
2077 	do {
2078 		p4d_t p4d = READ_ONCE(*p4dp);
2079 
2080 		next = p4d_addr_end(addr, end);
2081 		if (p4d_none(p4d))
2082 			return 0;
2083 		BUILD_BUG_ON(p4d_huge(p4d));
2084 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2085 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2086 					 P4D_SHIFT, next, flags, pages, nr))
2087 				return 0;
2088 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2089 			return 0;
2090 	} while (p4dp++, addr = next, addr != end);
2091 
2092 	return 1;
2093 }
2094 
2095 static void gup_pgd_range(unsigned long addr, unsigned long end,
2096 		unsigned int flags, struct page **pages, int *nr)
2097 {
2098 	unsigned long next;
2099 	pgd_t *pgdp;
2100 
2101 	pgdp = pgd_offset(current->mm, addr);
2102 	do {
2103 		pgd_t pgd = READ_ONCE(*pgdp);
2104 
2105 		next = pgd_addr_end(addr, end);
2106 		if (pgd_none(pgd))
2107 			return;
2108 		if (unlikely(pgd_huge(pgd))) {
2109 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2110 					  pages, nr))
2111 				return;
2112 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2113 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2114 					 PGDIR_SHIFT, next, flags, pages, nr))
2115 				return;
2116 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2117 			return;
2118 	} while (pgdp++, addr = next, addr != end);
2119 }
2120 
2121 #ifndef gup_fast_permitted
2122 /*
2123  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2124  * we need to fall back to the slow version:
2125  */
2126 bool gup_fast_permitted(unsigned long start, int nr_pages)
2127 {
2128 	unsigned long len, end;
2129 
2130 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2131 	end = start + len;
2132 	return end >= start;
2133 }
2134 #endif
2135 
2136 /*
2137  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2138  * the regular GUP.
2139  * Note a difference with get_user_pages_fast: this always returns the
2140  * number of pages pinned, 0 if no pages were pinned.
2141  */
2142 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2143 			  struct page **pages)
2144 {
2145 	unsigned long len, end;
2146 	unsigned long flags;
2147 	int nr = 0;
2148 
2149 	start &= PAGE_MASK;
2150 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2151 	end = start + len;
2152 
2153 	if (unlikely(!access_ok((void __user *)start, len)))
2154 		return 0;
2155 
2156 	/*
2157 	 * Disable interrupts.  We use the nested form as we can already have
2158 	 * interrupts disabled by get_futex_key.
2159 	 *
2160 	 * With interrupts disabled, we block page table pages from being
2161 	 * freed from under us. See struct mmu_table_batch comments in
2162 	 * include/asm-generic/tlb.h for more details.
2163 	 *
2164 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2165 	 * block IPIs that come from THPs splitting.
2166 	 */
2167 
2168 	if (gup_fast_permitted(start, nr_pages)) {
2169 		local_irq_save(flags);
2170 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2171 		local_irq_restore(flags);
2172 	}
2173 
2174 	return nr;
2175 }
2176 
2177 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2178 				   unsigned int gup_flags, struct page **pages)
2179 {
2180 	int ret;
2181 
2182 	/*
2183 	 * FIXME: FOLL_LONGTERM does not work with
2184 	 * get_user_pages_unlocked() (see comments in that function)
2185 	 */
2186 	if (gup_flags & FOLL_LONGTERM) {
2187 		down_read(&current->mm->mmap_sem);
2188 		ret = __gup_longterm_locked(current, current->mm,
2189 					    start, nr_pages,
2190 					    pages, NULL, gup_flags);
2191 		up_read(&current->mm->mmap_sem);
2192 	} else {
2193 		ret = get_user_pages_unlocked(start, nr_pages,
2194 					      pages, gup_flags);
2195 	}
2196 
2197 	return ret;
2198 }
2199 
2200 /**
2201  * get_user_pages_fast() - pin user pages in memory
2202  * @start:	starting user address
2203  * @nr_pages:	number of pages from start to pin
2204  * @gup_flags:	flags modifying pin behaviour
2205  * @pages:	array that receives pointers to the pages pinned.
2206  *		Should be at least nr_pages long.
2207  *
2208  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2209  * If not successful, it will fall back to taking the lock and
2210  * calling get_user_pages().
2211  *
2212  * Returns number of pages pinned. This may be fewer than the number
2213  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2214  * were pinned, returns -errno.
2215  */
2216 int get_user_pages_fast(unsigned long start, int nr_pages,
2217 			unsigned int gup_flags, struct page **pages)
2218 {
2219 	unsigned long addr, len, end;
2220 	int nr = 0, ret = 0;
2221 
2222 	start &= PAGE_MASK;
2223 	addr = start;
2224 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2225 	end = start + len;
2226 
2227 	if (nr_pages <= 0)
2228 		return 0;
2229 
2230 	if (unlikely(!access_ok((void __user *)start, len)))
2231 		return -EFAULT;
2232 
2233 	if (gup_fast_permitted(start, nr_pages)) {
2234 		local_irq_disable();
2235 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2236 		local_irq_enable();
2237 		ret = nr;
2238 	}
2239 
2240 	if (nr < nr_pages) {
2241 		/* Try to get the remaining pages with get_user_pages */
2242 		start += nr << PAGE_SHIFT;
2243 		pages += nr;
2244 
2245 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2246 					      gup_flags, pages);
2247 
2248 		/* Have to be a bit careful with return values */
2249 		if (nr > 0) {
2250 			if (ret < 0)
2251 				ret = nr;
2252 			else
2253 				ret += nr;
2254 		}
2255 	}
2256 
2257 	return ret;
2258 }
2259 
2260 #endif /* CONFIG_HAVE_GENERIC_GUP */
2261