xref: /openbmc/linux/mm/gup.c (revision 2bdd5238)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /*
66  * Return the compound head page with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 	struct page *head = compound_head(page);
72 
73 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 		return NULL;
75 	if (unlikely(!page_cache_add_speculative(head, refs)))
76 		return NULL;
77 
78 	/*
79 	 * At this point we have a stable reference to the head page; but it
80 	 * could be that between the compound_head() lookup and the refcount
81 	 * increment, the compound page was split, in which case we'd end up
82 	 * holding a reference on a page that has nothing to do with the page
83 	 * we were given anymore.
84 	 * So now that the head page is stable, recheck that the pages still
85 	 * belong together.
86 	 */
87 	if (unlikely(compound_head(page) != head)) {
88 		put_page_refs(head, refs);
89 		return NULL;
90 	}
91 
92 	return head;
93 }
94 
95 /**
96  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97  * flags-dependent amount.
98  *
99  * Even though the name includes "compound_head", this function is still
100  * appropriate for callers that have a non-compound @page to get.
101  *
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the page's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: page's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
116  *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
117  *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  *    FOLL_PIN on normal pages, or compound pages that are two pages long:
120  *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121  *
122  * Return: head page (with refcount appropriately incremented) for success, or
123  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124  * considered failure, and furthermore, a likely bug in the caller, so a warning
125  * is also emitted.
126  */
127 struct page *try_grab_compound_head(struct page *page,
128 				    int refs, unsigned int flags)
129 {
130 	if (flags & FOLL_GET)
131 		return try_get_compound_head(page, refs);
132 	else if (flags & FOLL_PIN) {
133 		/*
134 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 		 * right zone, so fail and let the caller fall back to the slow
136 		 * path.
137 		 */
138 		if (unlikely((flags & FOLL_LONGTERM) &&
139 			     !is_pinnable_page(page)))
140 			return NULL;
141 
142 		/*
143 		 * CAUTION: Don't use compound_head() on the page before this
144 		 * point, the result won't be stable.
145 		 */
146 		page = try_get_compound_head(page, refs);
147 		if (!page)
148 			return NULL;
149 
150 		/*
151 		 * When pinning a compound page of order > 1 (which is what
152 		 * hpage_pincount_available() checks for), use an exact count to
153 		 * track it, via hpage_pincount_add/_sub().
154 		 *
155 		 * However, be sure to *also* increment the normal page refcount
156 		 * field at least once, so that the page really is pinned.
157 		 * That's why the refcount from the earlier
158 		 * try_get_compound_head() is left intact.
159 		 */
160 		if (hpage_pincount_available(page))
161 			hpage_pincount_add(page, refs);
162 		else
163 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164 
165 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 				    refs);
167 
168 		return page;
169 	}
170 
171 	WARN_ON_ONCE(1);
172 	return NULL;
173 }
174 
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 	if (flags & FOLL_PIN) {
178 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 				    refs);
180 
181 		if (hpage_pincount_available(page))
182 			hpage_pincount_sub(page, refs);
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	put_page_refs(page, refs);
188 }
189 
190 /**
191  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192  *
193  * This might not do anything at all, depending on the flags argument.
194  *
195  * "grab" names in this file mean, "look at flags to decide whether to use
196  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197  *
198  * @page:    pointer to page to be grabbed
199  * @flags:   gup flags: these are the FOLL_* flag values.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_compound_head() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	if (!(flags & (FOLL_GET | FOLL_PIN)))
212 		return true;
213 
214 	return try_grab_compound_head(page, 1, flags);
215 }
216 
217 /**
218  * unpin_user_page() - release a dma-pinned page
219  * @page:            pointer to page to be released
220  *
221  * Pages that were pinned via pin_user_pages*() must be released via either
222  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
223  * that such pages can be separately tracked and uniquely handled. In
224  * particular, interactions with RDMA and filesystems need special handling.
225  */
226 void unpin_user_page(struct page *page)
227 {
228 	put_compound_head(compound_head(page), 1, FOLL_PIN);
229 }
230 EXPORT_SYMBOL(unpin_user_page);
231 
232 static inline void compound_range_next(unsigned long i, unsigned long npages,
233 				       struct page **list, struct page **head,
234 				       unsigned int *ntails)
235 {
236 	struct page *next, *page;
237 	unsigned int nr = 1;
238 
239 	if (i >= npages)
240 		return;
241 
242 	next = *list + i;
243 	page = compound_head(next);
244 	if (PageCompound(page) && compound_order(page) >= 1)
245 		nr = min_t(unsigned int,
246 			   page + compound_nr(page) - next, npages - i);
247 
248 	*head = page;
249 	*ntails = nr;
250 }
251 
252 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
253 	for (__i = 0, \
254 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
255 	     __i < __npages; __i += __ntails, \
256 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
257 
258 static inline void compound_next(unsigned long i, unsigned long npages,
259 				 struct page **list, struct page **head,
260 				 unsigned int *ntails)
261 {
262 	struct page *page;
263 	unsigned int nr;
264 
265 	if (i >= npages)
266 		return;
267 
268 	page = compound_head(list[i]);
269 	for (nr = i + 1; nr < npages; nr++) {
270 		if (compound_head(list[nr]) != page)
271 			break;
272 	}
273 
274 	*head = page;
275 	*ntails = nr - i;
276 }
277 
278 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
279 	for (__i = 0, \
280 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
281 	     __i < __npages; __i += __ntails, \
282 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long index;
310 	struct page *head;
311 	unsigned int ntails;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	for_each_compound_head(index, pages, npages, head, ntails) {
319 		/*
320 		 * Checking PageDirty at this point may race with
321 		 * clear_page_dirty_for_io(), but that's OK. Two key
322 		 * cases:
323 		 *
324 		 * 1) This code sees the page as already dirty, so it
325 		 * skips the call to set_page_dirty(). That could happen
326 		 * because clear_page_dirty_for_io() called
327 		 * page_mkclean(), followed by set_page_dirty().
328 		 * However, now the page is going to get written back,
329 		 * which meets the original intention of setting it
330 		 * dirty, so all is well: clear_page_dirty_for_io() goes
331 		 * on to call TestClearPageDirty(), and write the page
332 		 * back.
333 		 *
334 		 * 2) This code sees the page as clean, so it calls
335 		 * set_page_dirty(). The page stays dirty, despite being
336 		 * written back, so it gets written back again in the
337 		 * next writeback cycle. This is harmless.
338 		 */
339 		if (!PageDirty(head))
340 			set_page_dirty_lock(head);
341 		put_compound_head(head, ntails, FOLL_PIN);
342 	}
343 }
344 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345 
346 /**
347  * unpin_user_page_range_dirty_lock() - release and optionally dirty
348  * gup-pinned page range
349  *
350  * @page:  the starting page of a range maybe marked dirty, and definitely released.
351  * @npages: number of consecutive pages to release.
352  * @make_dirty: whether to mark the pages dirty
353  *
354  * "gup-pinned page range" refers to a range of pages that has had one of the
355  * pin_user_pages() variants called on that page.
356  *
357  * For the page ranges defined by [page .. page+npages], make that range (or
358  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
359  * page range was previously listed as clean.
360  *
361  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
362  * required, then the caller should a) verify that this is really correct,
363  * because _lock() is usually required, and b) hand code it:
364  * set_page_dirty_lock(), unpin_user_page().
365  *
366  */
367 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
368 				      bool make_dirty)
369 {
370 	unsigned long index;
371 	struct page *head;
372 	unsigned int ntails;
373 
374 	for_each_compound_range(index, &page, npages, head, ntails) {
375 		if (make_dirty && !PageDirty(head))
376 			set_page_dirty_lock(head);
377 		put_compound_head(head, ntails, FOLL_PIN);
378 	}
379 }
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381 
382 /**
383  * unpin_user_pages() - release an array of gup-pinned pages.
384  * @pages:  array of pages to be marked dirty and released.
385  * @npages: number of pages in the @pages array.
386  *
387  * For each page in the @pages array, release the page using unpin_user_page().
388  *
389  * Please see the unpin_user_page() documentation for details.
390  */
391 void unpin_user_pages(struct page **pages, unsigned long npages)
392 {
393 	unsigned long index;
394 	struct page *head;
395 	unsigned int ntails;
396 
397 	/*
398 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
399 	 * leaving them pinned), but probably not. More likely, gup/pup returned
400 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
401 	 */
402 	if (WARN_ON(IS_ERR_VALUE(npages)))
403 		return;
404 
405 	for_each_compound_head(index, pages, npages, head, ntails)
406 		put_compound_head(head, ntails, FOLL_PIN);
407 }
408 EXPORT_SYMBOL(unpin_user_pages);
409 
410 /*
411  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
412  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
413  * cache bouncing on large SMP machines for concurrent pinned gups.
414  */
415 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
416 {
417 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
418 		set_bit(MMF_HAS_PINNED, mm_flags);
419 }
420 
421 #ifdef CONFIG_MMU
422 static struct page *no_page_table(struct vm_area_struct *vma,
423 		unsigned int flags)
424 {
425 	/*
426 	 * When core dumping an enormous anonymous area that nobody
427 	 * has touched so far, we don't want to allocate unnecessary pages or
428 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
429 	 * then get_dump_page() will return NULL to leave a hole in the dump.
430 	 * But we can only make this optimization where a hole would surely
431 	 * be zero-filled if handle_mm_fault() actually did handle it.
432 	 */
433 	if ((flags & FOLL_DUMP) &&
434 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
435 		return ERR_PTR(-EFAULT);
436 	return NULL;
437 }
438 
439 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
440 		pte_t *pte, unsigned int flags)
441 {
442 	/* No page to get reference */
443 	if (flags & FOLL_GET)
444 		return -EFAULT;
445 
446 	if (flags & FOLL_TOUCH) {
447 		pte_t entry = *pte;
448 
449 		if (flags & FOLL_WRITE)
450 			entry = pte_mkdirty(entry);
451 		entry = pte_mkyoung(entry);
452 
453 		if (!pte_same(*pte, entry)) {
454 			set_pte_at(vma->vm_mm, address, pte, entry);
455 			update_mmu_cache(vma, address, pte);
456 		}
457 	}
458 
459 	/* Proper page table entry exists, but no corresponding struct page */
460 	return -EEXIST;
461 }
462 
463 /*
464  * FOLL_FORCE can write to even unwritable pte's, but only
465  * after we've gone through a COW cycle and they are dirty.
466  */
467 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
468 {
469 	return pte_write(pte) ||
470 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
471 }
472 
473 static struct page *follow_page_pte(struct vm_area_struct *vma,
474 		unsigned long address, pmd_t *pmd, unsigned int flags,
475 		struct dev_pagemap **pgmap)
476 {
477 	struct mm_struct *mm = vma->vm_mm;
478 	struct page *page;
479 	spinlock_t *ptl;
480 	pte_t *ptep, pte;
481 	int ret;
482 
483 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
484 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
485 			 (FOLL_PIN | FOLL_GET)))
486 		return ERR_PTR(-EINVAL);
487 retry:
488 	if (unlikely(pmd_bad(*pmd)))
489 		return no_page_table(vma, flags);
490 
491 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
492 	pte = *ptep;
493 	if (!pte_present(pte)) {
494 		swp_entry_t entry;
495 		/*
496 		 * KSM's break_ksm() relies upon recognizing a ksm page
497 		 * even while it is being migrated, so for that case we
498 		 * need migration_entry_wait().
499 		 */
500 		if (likely(!(flags & FOLL_MIGRATION)))
501 			goto no_page;
502 		if (pte_none(pte))
503 			goto no_page;
504 		entry = pte_to_swp_entry(pte);
505 		if (!is_migration_entry(entry))
506 			goto no_page;
507 		pte_unmap_unlock(ptep, ptl);
508 		migration_entry_wait(mm, pmd, address);
509 		goto retry;
510 	}
511 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
512 		goto no_page;
513 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
514 		pte_unmap_unlock(ptep, ptl);
515 		return NULL;
516 	}
517 
518 	page = vm_normal_page(vma, address, pte);
519 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
520 		/*
521 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
522 		 * case since they are only valid while holding the pgmap
523 		 * reference.
524 		 */
525 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
526 		if (*pgmap)
527 			page = pte_page(pte);
528 		else
529 			goto no_page;
530 	} else if (unlikely(!page)) {
531 		if (flags & FOLL_DUMP) {
532 			/* Avoid special (like zero) pages in core dumps */
533 			page = ERR_PTR(-EFAULT);
534 			goto out;
535 		}
536 
537 		if (is_zero_pfn(pte_pfn(pte))) {
538 			page = pte_page(pte);
539 		} else {
540 			ret = follow_pfn_pte(vma, address, ptep, flags);
541 			page = ERR_PTR(ret);
542 			goto out;
543 		}
544 	}
545 
546 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
547 	if (unlikely(!try_grab_page(page, flags))) {
548 		page = ERR_PTR(-ENOMEM);
549 		goto out;
550 	}
551 	/*
552 	 * We need to make the page accessible if and only if we are going
553 	 * to access its content (the FOLL_PIN case).  Please see
554 	 * Documentation/core-api/pin_user_pages.rst for details.
555 	 */
556 	if (flags & FOLL_PIN) {
557 		ret = arch_make_page_accessible(page);
558 		if (ret) {
559 			unpin_user_page(page);
560 			page = ERR_PTR(ret);
561 			goto out;
562 		}
563 	}
564 	if (flags & FOLL_TOUCH) {
565 		if ((flags & FOLL_WRITE) &&
566 		    !pte_dirty(pte) && !PageDirty(page))
567 			set_page_dirty(page);
568 		/*
569 		 * pte_mkyoung() would be more correct here, but atomic care
570 		 * is needed to avoid losing the dirty bit: it is easier to use
571 		 * mark_page_accessed().
572 		 */
573 		mark_page_accessed(page);
574 	}
575 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
576 		/* Do not mlock pte-mapped THP */
577 		if (PageTransCompound(page))
578 			goto out;
579 
580 		/*
581 		 * The preliminary mapping check is mainly to avoid the
582 		 * pointless overhead of lock_page on the ZERO_PAGE
583 		 * which might bounce very badly if there is contention.
584 		 *
585 		 * If the page is already locked, we don't need to
586 		 * handle it now - vmscan will handle it later if and
587 		 * when it attempts to reclaim the page.
588 		 */
589 		if (page->mapping && trylock_page(page)) {
590 			lru_add_drain();  /* push cached pages to LRU */
591 			/*
592 			 * Because we lock page here, and migration is
593 			 * blocked by the pte's page reference, and we
594 			 * know the page is still mapped, we don't even
595 			 * need to check for file-cache page truncation.
596 			 */
597 			mlock_vma_page(page);
598 			unlock_page(page);
599 		}
600 	}
601 out:
602 	pte_unmap_unlock(ptep, ptl);
603 	return page;
604 no_page:
605 	pte_unmap_unlock(ptep, ptl);
606 	if (!pte_none(pte))
607 		return NULL;
608 	return no_page_table(vma, flags);
609 }
610 
611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 				    unsigned long address, pud_t *pudp,
613 				    unsigned int flags,
614 				    struct follow_page_context *ctx)
615 {
616 	pmd_t *pmd, pmdval;
617 	spinlock_t *ptl;
618 	struct page *page;
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	pmd = pmd_offset(pudp, address);
622 	/*
623 	 * The READ_ONCE() will stabilize the pmdval in a register or
624 	 * on the stack so that it will stop changing under the code.
625 	 */
626 	pmdval = READ_ONCE(*pmd);
627 	if (pmd_none(pmdval))
628 		return no_page_table(vma, flags);
629 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 		page = follow_huge_pmd(mm, address, pmd, flags);
631 		if (page)
632 			return page;
633 		return no_page_table(vma, flags);
634 	}
635 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 		page = follow_huge_pd(vma, address,
637 				      __hugepd(pmd_val(pmdval)), flags,
638 				      PMD_SHIFT);
639 		if (page)
640 			return page;
641 		return no_page_table(vma, flags);
642 	}
643 retry:
644 	if (!pmd_present(pmdval)) {
645 		if (likely(!(flags & FOLL_MIGRATION)))
646 			return no_page_table(vma, flags);
647 		VM_BUG_ON(thp_migration_supported() &&
648 				  !is_pmd_migration_entry(pmdval));
649 		if (is_pmd_migration_entry(pmdval))
650 			pmd_migration_entry_wait(mm, pmd);
651 		pmdval = READ_ONCE(*pmd);
652 		/*
653 		 * MADV_DONTNEED may convert the pmd to null because
654 		 * mmap_lock is held in read mode
655 		 */
656 		if (pmd_none(pmdval))
657 			return no_page_table(vma, flags);
658 		goto retry;
659 	}
660 	if (pmd_devmap(pmdval)) {
661 		ptl = pmd_lock(mm, pmd);
662 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
663 		spin_unlock(ptl);
664 		if (page)
665 			return page;
666 	}
667 	if (likely(!pmd_trans_huge(pmdval)))
668 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
669 
670 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
671 		return no_page_table(vma, flags);
672 
673 retry_locked:
674 	ptl = pmd_lock(mm, pmd);
675 	if (unlikely(pmd_none(*pmd))) {
676 		spin_unlock(ptl);
677 		return no_page_table(vma, flags);
678 	}
679 	if (unlikely(!pmd_present(*pmd))) {
680 		spin_unlock(ptl);
681 		if (likely(!(flags & FOLL_MIGRATION)))
682 			return no_page_table(vma, flags);
683 		pmd_migration_entry_wait(mm, pmd);
684 		goto retry_locked;
685 	}
686 	if (unlikely(!pmd_trans_huge(*pmd))) {
687 		spin_unlock(ptl);
688 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
689 	}
690 	if (flags & FOLL_SPLIT_PMD) {
691 		int ret;
692 		page = pmd_page(*pmd);
693 		if (is_huge_zero_page(page)) {
694 			spin_unlock(ptl);
695 			ret = 0;
696 			split_huge_pmd(vma, pmd, address);
697 			if (pmd_trans_unstable(pmd))
698 				ret = -EBUSY;
699 		} else {
700 			spin_unlock(ptl);
701 			split_huge_pmd(vma, pmd, address);
702 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
703 		}
704 
705 		return ret ? ERR_PTR(ret) :
706 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
707 	}
708 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
709 	spin_unlock(ptl);
710 	ctx->page_mask = HPAGE_PMD_NR - 1;
711 	return page;
712 }
713 
714 static struct page *follow_pud_mask(struct vm_area_struct *vma,
715 				    unsigned long address, p4d_t *p4dp,
716 				    unsigned int flags,
717 				    struct follow_page_context *ctx)
718 {
719 	pud_t *pud;
720 	spinlock_t *ptl;
721 	struct page *page;
722 	struct mm_struct *mm = vma->vm_mm;
723 
724 	pud = pud_offset(p4dp, address);
725 	if (pud_none(*pud))
726 		return no_page_table(vma, flags);
727 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
728 		page = follow_huge_pud(mm, address, pud, flags);
729 		if (page)
730 			return page;
731 		return no_page_table(vma, flags);
732 	}
733 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
734 		page = follow_huge_pd(vma, address,
735 				      __hugepd(pud_val(*pud)), flags,
736 				      PUD_SHIFT);
737 		if (page)
738 			return page;
739 		return no_page_table(vma, flags);
740 	}
741 	if (pud_devmap(*pud)) {
742 		ptl = pud_lock(mm, pud);
743 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
744 		spin_unlock(ptl);
745 		if (page)
746 			return page;
747 	}
748 	if (unlikely(pud_bad(*pud)))
749 		return no_page_table(vma, flags);
750 
751 	return follow_pmd_mask(vma, address, pud, flags, ctx);
752 }
753 
754 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
755 				    unsigned long address, pgd_t *pgdp,
756 				    unsigned int flags,
757 				    struct follow_page_context *ctx)
758 {
759 	p4d_t *p4d;
760 	struct page *page;
761 
762 	p4d = p4d_offset(pgdp, address);
763 	if (p4d_none(*p4d))
764 		return no_page_table(vma, flags);
765 	BUILD_BUG_ON(p4d_huge(*p4d));
766 	if (unlikely(p4d_bad(*p4d)))
767 		return no_page_table(vma, flags);
768 
769 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
770 		page = follow_huge_pd(vma, address,
771 				      __hugepd(p4d_val(*p4d)), flags,
772 				      P4D_SHIFT);
773 		if (page)
774 			return page;
775 		return no_page_table(vma, flags);
776 	}
777 	return follow_pud_mask(vma, address, p4d, flags, ctx);
778 }
779 
780 /**
781  * follow_page_mask - look up a page descriptor from a user-virtual address
782  * @vma: vm_area_struct mapping @address
783  * @address: virtual address to look up
784  * @flags: flags modifying lookup behaviour
785  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
786  *       pointer to output page_mask
787  *
788  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
789  *
790  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
791  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
792  *
793  * On output, the @ctx->page_mask is set according to the size of the page.
794  *
795  * Return: the mapped (struct page *), %NULL if no mapping exists, or
796  * an error pointer if there is a mapping to something not represented
797  * by a page descriptor (see also vm_normal_page()).
798  */
799 static struct page *follow_page_mask(struct vm_area_struct *vma,
800 			      unsigned long address, unsigned int flags,
801 			      struct follow_page_context *ctx)
802 {
803 	pgd_t *pgd;
804 	struct page *page;
805 	struct mm_struct *mm = vma->vm_mm;
806 
807 	ctx->page_mask = 0;
808 
809 	/* make this handle hugepd */
810 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
811 	if (!IS_ERR(page)) {
812 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
813 		return page;
814 	}
815 
816 	pgd = pgd_offset(mm, address);
817 
818 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
819 		return no_page_table(vma, flags);
820 
821 	if (pgd_huge(*pgd)) {
822 		page = follow_huge_pgd(mm, address, pgd, flags);
823 		if (page)
824 			return page;
825 		return no_page_table(vma, flags);
826 	}
827 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
828 		page = follow_huge_pd(vma, address,
829 				      __hugepd(pgd_val(*pgd)), flags,
830 				      PGDIR_SHIFT);
831 		if (page)
832 			return page;
833 		return no_page_table(vma, flags);
834 	}
835 
836 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
837 }
838 
839 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
840 			 unsigned int foll_flags)
841 {
842 	struct follow_page_context ctx = { NULL };
843 	struct page *page;
844 
845 	if (vma_is_secretmem(vma))
846 		return NULL;
847 
848 	page = follow_page_mask(vma, address, foll_flags, &ctx);
849 	if (ctx.pgmap)
850 		put_dev_pagemap(ctx.pgmap);
851 	return page;
852 }
853 
854 static int get_gate_page(struct mm_struct *mm, unsigned long address,
855 		unsigned int gup_flags, struct vm_area_struct **vma,
856 		struct page **page)
857 {
858 	pgd_t *pgd;
859 	p4d_t *p4d;
860 	pud_t *pud;
861 	pmd_t *pmd;
862 	pte_t *pte;
863 	int ret = -EFAULT;
864 
865 	/* user gate pages are read-only */
866 	if (gup_flags & FOLL_WRITE)
867 		return -EFAULT;
868 	if (address > TASK_SIZE)
869 		pgd = pgd_offset_k(address);
870 	else
871 		pgd = pgd_offset_gate(mm, address);
872 	if (pgd_none(*pgd))
873 		return -EFAULT;
874 	p4d = p4d_offset(pgd, address);
875 	if (p4d_none(*p4d))
876 		return -EFAULT;
877 	pud = pud_offset(p4d, address);
878 	if (pud_none(*pud))
879 		return -EFAULT;
880 	pmd = pmd_offset(pud, address);
881 	if (!pmd_present(*pmd))
882 		return -EFAULT;
883 	VM_BUG_ON(pmd_trans_huge(*pmd));
884 	pte = pte_offset_map(pmd, address);
885 	if (pte_none(*pte))
886 		goto unmap;
887 	*vma = get_gate_vma(mm);
888 	if (!page)
889 		goto out;
890 	*page = vm_normal_page(*vma, address, *pte);
891 	if (!*page) {
892 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
893 			goto unmap;
894 		*page = pte_page(*pte);
895 	}
896 	if (unlikely(!try_grab_page(*page, gup_flags))) {
897 		ret = -ENOMEM;
898 		goto unmap;
899 	}
900 out:
901 	ret = 0;
902 unmap:
903 	pte_unmap(pte);
904 	return ret;
905 }
906 
907 /*
908  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
909  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
910  * is, *@locked will be set to 0 and -EBUSY returned.
911  */
912 static int faultin_page(struct vm_area_struct *vma,
913 		unsigned long address, unsigned int *flags, int *locked)
914 {
915 	unsigned int fault_flags = 0;
916 	vm_fault_t ret;
917 
918 	/* mlock all present pages, but do not fault in new pages */
919 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
920 		return -ENOENT;
921 	if (*flags & FOLL_WRITE)
922 		fault_flags |= FAULT_FLAG_WRITE;
923 	if (*flags & FOLL_REMOTE)
924 		fault_flags |= FAULT_FLAG_REMOTE;
925 	if (locked)
926 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
927 	if (*flags & FOLL_NOWAIT)
928 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
929 	if (*flags & FOLL_TRIED) {
930 		/*
931 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
932 		 * can co-exist
933 		 */
934 		fault_flags |= FAULT_FLAG_TRIED;
935 	}
936 
937 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
938 	if (ret & VM_FAULT_ERROR) {
939 		int err = vm_fault_to_errno(ret, *flags);
940 
941 		if (err)
942 			return err;
943 		BUG();
944 	}
945 
946 	if (ret & VM_FAULT_RETRY) {
947 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
948 			*locked = 0;
949 		return -EBUSY;
950 	}
951 
952 	/*
953 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
954 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
955 	 * can thus safely do subsequent page lookups as if they were reads.
956 	 * But only do so when looping for pte_write is futile: in some cases
957 	 * userspace may also be wanting to write to the gotten user page,
958 	 * which a read fault here might prevent (a readonly page might get
959 	 * reCOWed by userspace write).
960 	 */
961 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
962 		*flags |= FOLL_COW;
963 	return 0;
964 }
965 
966 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
967 {
968 	vm_flags_t vm_flags = vma->vm_flags;
969 	int write = (gup_flags & FOLL_WRITE);
970 	int foreign = (gup_flags & FOLL_REMOTE);
971 
972 	if (vm_flags & (VM_IO | VM_PFNMAP))
973 		return -EFAULT;
974 
975 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
976 		return -EFAULT;
977 
978 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
979 		return -EOPNOTSUPP;
980 
981 	if (vma_is_secretmem(vma))
982 		return -EFAULT;
983 
984 	if (write) {
985 		if (!(vm_flags & VM_WRITE)) {
986 			if (!(gup_flags & FOLL_FORCE))
987 				return -EFAULT;
988 			/*
989 			 * We used to let the write,force case do COW in a
990 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
991 			 * set a breakpoint in a read-only mapping of an
992 			 * executable, without corrupting the file (yet only
993 			 * when that file had been opened for writing!).
994 			 * Anon pages in shared mappings are surprising: now
995 			 * just reject it.
996 			 */
997 			if (!is_cow_mapping(vm_flags))
998 				return -EFAULT;
999 		}
1000 	} else if (!(vm_flags & VM_READ)) {
1001 		if (!(gup_flags & FOLL_FORCE))
1002 			return -EFAULT;
1003 		/*
1004 		 * Is there actually any vma we can reach here which does not
1005 		 * have VM_MAYREAD set?
1006 		 */
1007 		if (!(vm_flags & VM_MAYREAD))
1008 			return -EFAULT;
1009 	}
1010 	/*
1011 	 * gups are always data accesses, not instruction
1012 	 * fetches, so execute=false here
1013 	 */
1014 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1015 		return -EFAULT;
1016 	return 0;
1017 }
1018 
1019 /**
1020  * __get_user_pages() - pin user pages in memory
1021  * @mm:		mm_struct of target mm
1022  * @start:	starting user address
1023  * @nr_pages:	number of pages from start to pin
1024  * @gup_flags:	flags modifying pin behaviour
1025  * @pages:	array that receives pointers to the pages pinned.
1026  *		Should be at least nr_pages long. Or NULL, if caller
1027  *		only intends to ensure the pages are faulted in.
1028  * @vmas:	array of pointers to vmas corresponding to each page.
1029  *		Or NULL if the caller does not require them.
1030  * @locked:     whether we're still with the mmap_lock held
1031  *
1032  * Returns either number of pages pinned (which may be less than the
1033  * number requested), or an error. Details about the return value:
1034  *
1035  * -- If nr_pages is 0, returns 0.
1036  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1037  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1038  *    pages pinned. Again, this may be less than nr_pages.
1039  * -- 0 return value is possible when the fault would need to be retried.
1040  *
1041  * The caller is responsible for releasing returned @pages, via put_page().
1042  *
1043  * @vmas are valid only as long as mmap_lock is held.
1044  *
1045  * Must be called with mmap_lock held.  It may be released.  See below.
1046  *
1047  * __get_user_pages walks a process's page tables and takes a reference to
1048  * each struct page that each user address corresponds to at a given
1049  * instant. That is, it takes the page that would be accessed if a user
1050  * thread accesses the given user virtual address at that instant.
1051  *
1052  * This does not guarantee that the page exists in the user mappings when
1053  * __get_user_pages returns, and there may even be a completely different
1054  * page there in some cases (eg. if mmapped pagecache has been invalidated
1055  * and subsequently re faulted). However it does guarantee that the page
1056  * won't be freed completely. And mostly callers simply care that the page
1057  * contains data that was valid *at some point in time*. Typically, an IO
1058  * or similar operation cannot guarantee anything stronger anyway because
1059  * locks can't be held over the syscall boundary.
1060  *
1061  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1062  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1063  * appropriate) must be called after the page is finished with, and
1064  * before put_page is called.
1065  *
1066  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1067  * released by an up_read().  That can happen if @gup_flags does not
1068  * have FOLL_NOWAIT.
1069  *
1070  * A caller using such a combination of @locked and @gup_flags
1071  * must therefore hold the mmap_lock for reading only, and recognize
1072  * when it's been released.  Otherwise, it must be held for either
1073  * reading or writing and will not be released.
1074  *
1075  * In most cases, get_user_pages or get_user_pages_fast should be used
1076  * instead of __get_user_pages. __get_user_pages should be used only if
1077  * you need some special @gup_flags.
1078  */
1079 static long __get_user_pages(struct mm_struct *mm,
1080 		unsigned long start, unsigned long nr_pages,
1081 		unsigned int gup_flags, struct page **pages,
1082 		struct vm_area_struct **vmas, int *locked)
1083 {
1084 	long ret = 0, i = 0;
1085 	struct vm_area_struct *vma = NULL;
1086 	struct follow_page_context ctx = { NULL };
1087 
1088 	if (!nr_pages)
1089 		return 0;
1090 
1091 	start = untagged_addr(start);
1092 
1093 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1094 
1095 	/*
1096 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1097 	 * fault information is unrelated to the reference behaviour of a task
1098 	 * using the address space
1099 	 */
1100 	if (!(gup_flags & FOLL_FORCE))
1101 		gup_flags |= FOLL_NUMA;
1102 
1103 	do {
1104 		struct page *page;
1105 		unsigned int foll_flags = gup_flags;
1106 		unsigned int page_increm;
1107 
1108 		/* first iteration or cross vma bound */
1109 		if (!vma || start >= vma->vm_end) {
1110 			vma = find_extend_vma(mm, start);
1111 			if (!vma && in_gate_area(mm, start)) {
1112 				ret = get_gate_page(mm, start & PAGE_MASK,
1113 						gup_flags, &vma,
1114 						pages ? &pages[i] : NULL);
1115 				if (ret)
1116 					goto out;
1117 				ctx.page_mask = 0;
1118 				goto next_page;
1119 			}
1120 
1121 			if (!vma) {
1122 				ret = -EFAULT;
1123 				goto out;
1124 			}
1125 			ret = check_vma_flags(vma, gup_flags);
1126 			if (ret)
1127 				goto out;
1128 
1129 			if (is_vm_hugetlb_page(vma)) {
1130 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1131 						&start, &nr_pages, i,
1132 						gup_flags, locked);
1133 				if (locked && *locked == 0) {
1134 					/*
1135 					 * We've got a VM_FAULT_RETRY
1136 					 * and we've lost mmap_lock.
1137 					 * We must stop here.
1138 					 */
1139 					BUG_ON(gup_flags & FOLL_NOWAIT);
1140 					goto out;
1141 				}
1142 				continue;
1143 			}
1144 		}
1145 retry:
1146 		/*
1147 		 * If we have a pending SIGKILL, don't keep faulting pages and
1148 		 * potentially allocating memory.
1149 		 */
1150 		if (fatal_signal_pending(current)) {
1151 			ret = -EINTR;
1152 			goto out;
1153 		}
1154 		cond_resched();
1155 
1156 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1157 		if (!page) {
1158 			ret = faultin_page(vma, start, &foll_flags, locked);
1159 			switch (ret) {
1160 			case 0:
1161 				goto retry;
1162 			case -EBUSY:
1163 				ret = 0;
1164 				fallthrough;
1165 			case -EFAULT:
1166 			case -ENOMEM:
1167 			case -EHWPOISON:
1168 				goto out;
1169 			case -ENOENT:
1170 				goto next_page;
1171 			}
1172 			BUG();
1173 		} else if (PTR_ERR(page) == -EEXIST) {
1174 			/*
1175 			 * Proper page table entry exists, but no corresponding
1176 			 * struct page.
1177 			 */
1178 			goto next_page;
1179 		} else if (IS_ERR(page)) {
1180 			ret = PTR_ERR(page);
1181 			goto out;
1182 		}
1183 		if (pages) {
1184 			pages[i] = page;
1185 			flush_anon_page(vma, page, start);
1186 			flush_dcache_page(page);
1187 			ctx.page_mask = 0;
1188 		}
1189 next_page:
1190 		if (vmas) {
1191 			vmas[i] = vma;
1192 			ctx.page_mask = 0;
1193 		}
1194 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1195 		if (page_increm > nr_pages)
1196 			page_increm = nr_pages;
1197 		i += page_increm;
1198 		start += page_increm * PAGE_SIZE;
1199 		nr_pages -= page_increm;
1200 	} while (nr_pages);
1201 out:
1202 	if (ctx.pgmap)
1203 		put_dev_pagemap(ctx.pgmap);
1204 	return i ? i : ret;
1205 }
1206 
1207 static bool vma_permits_fault(struct vm_area_struct *vma,
1208 			      unsigned int fault_flags)
1209 {
1210 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1211 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1212 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1213 
1214 	if (!(vm_flags & vma->vm_flags))
1215 		return false;
1216 
1217 	/*
1218 	 * The architecture might have a hardware protection
1219 	 * mechanism other than read/write that can deny access.
1220 	 *
1221 	 * gup always represents data access, not instruction
1222 	 * fetches, so execute=false here:
1223 	 */
1224 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
1230 /**
1231  * fixup_user_fault() - manually resolve a user page fault
1232  * @mm:		mm_struct of target mm
1233  * @address:	user address
1234  * @fault_flags:flags to pass down to handle_mm_fault()
1235  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1236  *		does not allow retry. If NULL, the caller must guarantee
1237  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1238  *
1239  * This is meant to be called in the specific scenario where for locking reasons
1240  * we try to access user memory in atomic context (within a pagefault_disable()
1241  * section), this returns -EFAULT, and we want to resolve the user fault before
1242  * trying again.
1243  *
1244  * Typically this is meant to be used by the futex code.
1245  *
1246  * The main difference with get_user_pages() is that this function will
1247  * unconditionally call handle_mm_fault() which will in turn perform all the
1248  * necessary SW fixup of the dirty and young bits in the PTE, while
1249  * get_user_pages() only guarantees to update these in the struct page.
1250  *
1251  * This is important for some architectures where those bits also gate the
1252  * access permission to the page because they are maintained in software.  On
1253  * such architectures, gup() will not be enough to make a subsequent access
1254  * succeed.
1255  *
1256  * This function will not return with an unlocked mmap_lock. So it has not the
1257  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1258  */
1259 int fixup_user_fault(struct mm_struct *mm,
1260 		     unsigned long address, unsigned int fault_flags,
1261 		     bool *unlocked)
1262 {
1263 	struct vm_area_struct *vma;
1264 	vm_fault_t ret;
1265 
1266 	address = untagged_addr(address);
1267 
1268 	if (unlocked)
1269 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1270 
1271 retry:
1272 	vma = find_extend_vma(mm, address);
1273 	if (!vma || address < vma->vm_start)
1274 		return -EFAULT;
1275 
1276 	if (!vma_permits_fault(vma, fault_flags))
1277 		return -EFAULT;
1278 
1279 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1280 	    fatal_signal_pending(current))
1281 		return -EINTR;
1282 
1283 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1284 	if (ret & VM_FAULT_ERROR) {
1285 		int err = vm_fault_to_errno(ret, 0);
1286 
1287 		if (err)
1288 			return err;
1289 		BUG();
1290 	}
1291 
1292 	if (ret & VM_FAULT_RETRY) {
1293 		mmap_read_lock(mm);
1294 		*unlocked = true;
1295 		fault_flags |= FAULT_FLAG_TRIED;
1296 		goto retry;
1297 	}
1298 
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(fixup_user_fault);
1302 
1303 /*
1304  * Please note that this function, unlike __get_user_pages will not
1305  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1306  */
1307 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1308 						unsigned long start,
1309 						unsigned long nr_pages,
1310 						struct page **pages,
1311 						struct vm_area_struct **vmas,
1312 						int *locked,
1313 						unsigned int flags)
1314 {
1315 	long ret, pages_done;
1316 	bool lock_dropped;
1317 
1318 	if (locked) {
1319 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1320 		BUG_ON(vmas);
1321 		/* check caller initialized locked */
1322 		BUG_ON(*locked != 1);
1323 	}
1324 
1325 	if (flags & FOLL_PIN)
1326 		mm_set_has_pinned_flag(&mm->flags);
1327 
1328 	/*
1329 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1330 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1331 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1332 	 * for FOLL_GET, not for the newer FOLL_PIN.
1333 	 *
1334 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1335 	 * that here, as any failures will be obvious enough.
1336 	 */
1337 	if (pages && !(flags & FOLL_PIN))
1338 		flags |= FOLL_GET;
1339 
1340 	pages_done = 0;
1341 	lock_dropped = false;
1342 	for (;;) {
1343 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1344 				       vmas, locked);
1345 		if (!locked)
1346 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1347 			return ret;
1348 
1349 		/* VM_FAULT_RETRY cannot return errors */
1350 		if (!*locked) {
1351 			BUG_ON(ret < 0);
1352 			BUG_ON(ret >= nr_pages);
1353 		}
1354 
1355 		if (ret > 0) {
1356 			nr_pages -= ret;
1357 			pages_done += ret;
1358 			if (!nr_pages)
1359 				break;
1360 		}
1361 		if (*locked) {
1362 			/*
1363 			 * VM_FAULT_RETRY didn't trigger or it was a
1364 			 * FOLL_NOWAIT.
1365 			 */
1366 			if (!pages_done)
1367 				pages_done = ret;
1368 			break;
1369 		}
1370 		/*
1371 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1372 		 * For the prefault case (!pages) we only update counts.
1373 		 */
1374 		if (likely(pages))
1375 			pages += ret;
1376 		start += ret << PAGE_SHIFT;
1377 		lock_dropped = true;
1378 
1379 retry:
1380 		/*
1381 		 * Repeat on the address that fired VM_FAULT_RETRY
1382 		 * with both FAULT_FLAG_ALLOW_RETRY and
1383 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1384 		 * by fatal signals, so we need to check it before we
1385 		 * start trying again otherwise it can loop forever.
1386 		 */
1387 
1388 		if (fatal_signal_pending(current)) {
1389 			if (!pages_done)
1390 				pages_done = -EINTR;
1391 			break;
1392 		}
1393 
1394 		ret = mmap_read_lock_killable(mm);
1395 		if (ret) {
1396 			BUG_ON(ret > 0);
1397 			if (!pages_done)
1398 				pages_done = ret;
1399 			break;
1400 		}
1401 
1402 		*locked = 1;
1403 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1404 				       pages, NULL, locked);
1405 		if (!*locked) {
1406 			/* Continue to retry until we succeeded */
1407 			BUG_ON(ret != 0);
1408 			goto retry;
1409 		}
1410 		if (ret != 1) {
1411 			BUG_ON(ret > 1);
1412 			if (!pages_done)
1413 				pages_done = ret;
1414 			break;
1415 		}
1416 		nr_pages--;
1417 		pages_done++;
1418 		if (!nr_pages)
1419 			break;
1420 		if (likely(pages))
1421 			pages++;
1422 		start += PAGE_SIZE;
1423 	}
1424 	if (lock_dropped && *locked) {
1425 		/*
1426 		 * We must let the caller know we temporarily dropped the lock
1427 		 * and so the critical section protected by it was lost.
1428 		 */
1429 		mmap_read_unlock(mm);
1430 		*locked = 0;
1431 	}
1432 	return pages_done;
1433 }
1434 
1435 /**
1436  * populate_vma_page_range() -  populate a range of pages in the vma.
1437  * @vma:   target vma
1438  * @start: start address
1439  * @end:   end address
1440  * @locked: whether the mmap_lock is still held
1441  *
1442  * This takes care of mlocking the pages too if VM_LOCKED is set.
1443  *
1444  * Return either number of pages pinned in the vma, or a negative error
1445  * code on error.
1446  *
1447  * vma->vm_mm->mmap_lock must be held.
1448  *
1449  * If @locked is NULL, it may be held for read or write and will
1450  * be unperturbed.
1451  *
1452  * If @locked is non-NULL, it must held for read only and may be
1453  * released.  If it's released, *@locked will be set to 0.
1454  */
1455 long populate_vma_page_range(struct vm_area_struct *vma,
1456 		unsigned long start, unsigned long end, int *locked)
1457 {
1458 	struct mm_struct *mm = vma->vm_mm;
1459 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1460 	int gup_flags;
1461 
1462 	VM_BUG_ON(!PAGE_ALIGNED(start));
1463 	VM_BUG_ON(!PAGE_ALIGNED(end));
1464 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1465 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1466 	mmap_assert_locked(mm);
1467 
1468 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1469 	if (vma->vm_flags & VM_LOCKONFAULT)
1470 		gup_flags &= ~FOLL_POPULATE;
1471 	/*
1472 	 * We want to touch writable mappings with a write fault in order
1473 	 * to break COW, except for shared mappings because these don't COW
1474 	 * and we would not want to dirty them for nothing.
1475 	 */
1476 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1477 		gup_flags |= FOLL_WRITE;
1478 
1479 	/*
1480 	 * We want mlock to succeed for regions that have any permissions
1481 	 * other than PROT_NONE.
1482 	 */
1483 	if (vma_is_accessible(vma))
1484 		gup_flags |= FOLL_FORCE;
1485 
1486 	/*
1487 	 * We made sure addr is within a VMA, so the following will
1488 	 * not result in a stack expansion that recurses back here.
1489 	 */
1490 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1491 				NULL, NULL, locked);
1492 }
1493 
1494 /*
1495  * faultin_vma_page_range() - populate (prefault) page tables inside the
1496  *			      given VMA range readable/writable
1497  *
1498  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1499  *
1500  * @vma: target vma
1501  * @start: start address
1502  * @end: end address
1503  * @write: whether to prefault readable or writable
1504  * @locked: whether the mmap_lock is still held
1505  *
1506  * Returns either number of processed pages in the vma, or a negative error
1507  * code on error (see __get_user_pages()).
1508  *
1509  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1510  * covered by the VMA.
1511  *
1512  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1513  *
1514  * If @locked is non-NULL, it must held for read only and may be released.  If
1515  * it's released, *@locked will be set to 0.
1516  */
1517 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1518 			    unsigned long end, bool write, int *locked)
1519 {
1520 	struct mm_struct *mm = vma->vm_mm;
1521 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1522 	int gup_flags;
1523 
1524 	VM_BUG_ON(!PAGE_ALIGNED(start));
1525 	VM_BUG_ON(!PAGE_ALIGNED(end));
1526 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1527 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1528 	mmap_assert_locked(mm);
1529 
1530 	/*
1531 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1532 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1533 	 *	       difference with !FOLL_FORCE, because the page is writable
1534 	 *	       in the page table.
1535 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1536 	 *		  a poisoned page.
1537 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1538 	 * !FOLL_FORCE: Require proper access permissions.
1539 	 */
1540 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1541 	if (write)
1542 		gup_flags |= FOLL_WRITE;
1543 
1544 	/*
1545 	 * We want to report -EINVAL instead of -EFAULT for any permission
1546 	 * problems or incompatible mappings.
1547 	 */
1548 	if (check_vma_flags(vma, gup_flags))
1549 		return -EINVAL;
1550 
1551 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1552 				NULL, NULL, locked);
1553 }
1554 
1555 /*
1556  * __mm_populate - populate and/or mlock pages within a range of address space.
1557  *
1558  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1559  * flags. VMAs must be already marked with the desired vm_flags, and
1560  * mmap_lock must not be held.
1561  */
1562 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1563 {
1564 	struct mm_struct *mm = current->mm;
1565 	unsigned long end, nstart, nend;
1566 	struct vm_area_struct *vma = NULL;
1567 	int locked = 0;
1568 	long ret = 0;
1569 
1570 	end = start + len;
1571 
1572 	for (nstart = start; nstart < end; nstart = nend) {
1573 		/*
1574 		 * We want to fault in pages for [nstart; end) address range.
1575 		 * Find first corresponding VMA.
1576 		 */
1577 		if (!locked) {
1578 			locked = 1;
1579 			mmap_read_lock(mm);
1580 			vma = find_vma(mm, nstart);
1581 		} else if (nstart >= vma->vm_end)
1582 			vma = vma->vm_next;
1583 		if (!vma || vma->vm_start >= end)
1584 			break;
1585 		/*
1586 		 * Set [nstart; nend) to intersection of desired address
1587 		 * range with the first VMA. Also, skip undesirable VMA types.
1588 		 */
1589 		nend = min(end, vma->vm_end);
1590 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1591 			continue;
1592 		if (nstart < vma->vm_start)
1593 			nstart = vma->vm_start;
1594 		/*
1595 		 * Now fault in a range of pages. populate_vma_page_range()
1596 		 * double checks the vma flags, so that it won't mlock pages
1597 		 * if the vma was already munlocked.
1598 		 */
1599 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1600 		if (ret < 0) {
1601 			if (ignore_errors) {
1602 				ret = 0;
1603 				continue;	/* continue at next VMA */
1604 			}
1605 			break;
1606 		}
1607 		nend = nstart + ret * PAGE_SIZE;
1608 		ret = 0;
1609 	}
1610 	if (locked)
1611 		mmap_read_unlock(mm);
1612 	return ret;	/* 0 or negative error code */
1613 }
1614 #else /* CONFIG_MMU */
1615 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1616 		unsigned long nr_pages, struct page **pages,
1617 		struct vm_area_struct **vmas, int *locked,
1618 		unsigned int foll_flags)
1619 {
1620 	struct vm_area_struct *vma;
1621 	unsigned long vm_flags;
1622 	long i;
1623 
1624 	/* calculate required read or write permissions.
1625 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1626 	 */
1627 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1628 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1629 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1630 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1631 
1632 	for (i = 0; i < nr_pages; i++) {
1633 		vma = find_vma(mm, start);
1634 		if (!vma)
1635 			goto finish_or_fault;
1636 
1637 		/* protect what we can, including chardevs */
1638 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1639 		    !(vm_flags & vma->vm_flags))
1640 			goto finish_or_fault;
1641 
1642 		if (pages) {
1643 			pages[i] = virt_to_page(start);
1644 			if (pages[i])
1645 				get_page(pages[i]);
1646 		}
1647 		if (vmas)
1648 			vmas[i] = vma;
1649 		start = (start + PAGE_SIZE) & PAGE_MASK;
1650 	}
1651 
1652 	return i;
1653 
1654 finish_or_fault:
1655 	return i ? : -EFAULT;
1656 }
1657 #endif /* !CONFIG_MMU */
1658 
1659 /**
1660  * get_dump_page() - pin user page in memory while writing it to core dump
1661  * @addr: user address
1662  *
1663  * Returns struct page pointer of user page pinned for dump,
1664  * to be freed afterwards by put_page().
1665  *
1666  * Returns NULL on any kind of failure - a hole must then be inserted into
1667  * the corefile, to preserve alignment with its headers; and also returns
1668  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1669  * allowing a hole to be left in the corefile to save disk space.
1670  *
1671  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1672  */
1673 #ifdef CONFIG_ELF_CORE
1674 struct page *get_dump_page(unsigned long addr)
1675 {
1676 	struct mm_struct *mm = current->mm;
1677 	struct page *page;
1678 	int locked = 1;
1679 	int ret;
1680 
1681 	if (mmap_read_lock_killable(mm))
1682 		return NULL;
1683 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1684 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1685 	if (locked)
1686 		mmap_read_unlock(mm);
1687 	return (ret == 1) ? page : NULL;
1688 }
1689 #endif /* CONFIG_ELF_CORE */
1690 
1691 #ifdef CONFIG_MIGRATION
1692 /*
1693  * Check whether all pages are pinnable, if so return number of pages.  If some
1694  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1695  * pages were migrated, or if some pages were not successfully isolated.
1696  * Return negative error if migration fails.
1697  */
1698 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1699 					    struct page **pages,
1700 					    unsigned int gup_flags)
1701 {
1702 	unsigned long i;
1703 	unsigned long isolation_error_count = 0;
1704 	bool drain_allow = true;
1705 	LIST_HEAD(movable_page_list);
1706 	long ret = 0;
1707 	struct page *prev_head = NULL;
1708 	struct page *head;
1709 	struct migration_target_control mtc = {
1710 		.nid = NUMA_NO_NODE,
1711 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1712 	};
1713 
1714 	for (i = 0; i < nr_pages; i++) {
1715 		head = compound_head(pages[i]);
1716 		if (head == prev_head)
1717 			continue;
1718 		prev_head = head;
1719 		/*
1720 		 * If we get a movable page, since we are going to be pinning
1721 		 * these entries, try to move them out if possible.
1722 		 */
1723 		if (!is_pinnable_page(head)) {
1724 			if (PageHuge(head)) {
1725 				if (!isolate_huge_page(head, &movable_page_list))
1726 					isolation_error_count++;
1727 			} else {
1728 				if (!PageLRU(head) && drain_allow) {
1729 					lru_add_drain_all();
1730 					drain_allow = false;
1731 				}
1732 
1733 				if (isolate_lru_page(head)) {
1734 					isolation_error_count++;
1735 					continue;
1736 				}
1737 				list_add_tail(&head->lru, &movable_page_list);
1738 				mod_node_page_state(page_pgdat(head),
1739 						    NR_ISOLATED_ANON +
1740 						    page_is_file_lru(head),
1741 						    thp_nr_pages(head));
1742 			}
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * If list is empty, and no isolation errors, means that all pages are
1748 	 * in the correct zone.
1749 	 */
1750 	if (list_empty(&movable_page_list) && !isolation_error_count)
1751 		return nr_pages;
1752 
1753 	if (gup_flags & FOLL_PIN) {
1754 		unpin_user_pages(pages, nr_pages);
1755 	} else {
1756 		for (i = 0; i < nr_pages; i++)
1757 			put_page(pages[i]);
1758 	}
1759 	if (!list_empty(&movable_page_list)) {
1760 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1761 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1762 				    MR_LONGTERM_PIN, NULL);
1763 		if (ret && !list_empty(&movable_page_list))
1764 			putback_movable_pages(&movable_page_list);
1765 	}
1766 
1767 	return ret > 0 ? -ENOMEM : ret;
1768 }
1769 #else
1770 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1771 					    struct page **pages,
1772 					    unsigned int gup_flags)
1773 {
1774 	return nr_pages;
1775 }
1776 #endif /* CONFIG_MIGRATION */
1777 
1778 /*
1779  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1780  * allows us to process the FOLL_LONGTERM flag.
1781  */
1782 static long __gup_longterm_locked(struct mm_struct *mm,
1783 				  unsigned long start,
1784 				  unsigned long nr_pages,
1785 				  struct page **pages,
1786 				  struct vm_area_struct **vmas,
1787 				  unsigned int gup_flags)
1788 {
1789 	unsigned int flags;
1790 	long rc;
1791 
1792 	if (!(gup_flags & FOLL_LONGTERM))
1793 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1794 					       NULL, gup_flags);
1795 	flags = memalloc_pin_save();
1796 	do {
1797 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1798 					     NULL, gup_flags);
1799 		if (rc <= 0)
1800 			break;
1801 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1802 	} while (!rc);
1803 	memalloc_pin_restore(flags);
1804 
1805 	return rc;
1806 }
1807 
1808 static bool is_valid_gup_flags(unsigned int gup_flags)
1809 {
1810 	/*
1811 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1812 	 * never directly by the caller, so enforce that with an assertion:
1813 	 */
1814 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1815 		return false;
1816 	/*
1817 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1818 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1819 	 * FOLL_PIN.
1820 	 */
1821 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1822 		return false;
1823 
1824 	return true;
1825 }
1826 
1827 #ifdef CONFIG_MMU
1828 static long __get_user_pages_remote(struct mm_struct *mm,
1829 				    unsigned long start, unsigned long nr_pages,
1830 				    unsigned int gup_flags, struct page **pages,
1831 				    struct vm_area_struct **vmas, int *locked)
1832 {
1833 	/*
1834 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1835 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1836 	 * vmas. However, this only comes up if locked is set, and there are
1837 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1838 	 * allow what we can.
1839 	 */
1840 	if (gup_flags & FOLL_LONGTERM) {
1841 		if (WARN_ON_ONCE(locked))
1842 			return -EINVAL;
1843 		/*
1844 		 * This will check the vmas (even if our vmas arg is NULL)
1845 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1846 		 */
1847 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1848 					     vmas, gup_flags | FOLL_TOUCH |
1849 					     FOLL_REMOTE);
1850 	}
1851 
1852 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1853 				       locked,
1854 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1855 }
1856 
1857 /**
1858  * get_user_pages_remote() - pin user pages in memory
1859  * @mm:		mm_struct of target mm
1860  * @start:	starting user address
1861  * @nr_pages:	number of pages from start to pin
1862  * @gup_flags:	flags modifying lookup behaviour
1863  * @pages:	array that receives pointers to the pages pinned.
1864  *		Should be at least nr_pages long. Or NULL, if caller
1865  *		only intends to ensure the pages are faulted in.
1866  * @vmas:	array of pointers to vmas corresponding to each page.
1867  *		Or NULL if the caller does not require them.
1868  * @locked:	pointer to lock flag indicating whether lock is held and
1869  *		subsequently whether VM_FAULT_RETRY functionality can be
1870  *		utilised. Lock must initially be held.
1871  *
1872  * Returns either number of pages pinned (which may be less than the
1873  * number requested), or an error. Details about the return value:
1874  *
1875  * -- If nr_pages is 0, returns 0.
1876  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1877  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1878  *    pages pinned. Again, this may be less than nr_pages.
1879  *
1880  * The caller is responsible for releasing returned @pages, via put_page().
1881  *
1882  * @vmas are valid only as long as mmap_lock is held.
1883  *
1884  * Must be called with mmap_lock held for read or write.
1885  *
1886  * get_user_pages_remote walks a process's page tables and takes a reference
1887  * to each struct page that each user address corresponds to at a given
1888  * instant. That is, it takes the page that would be accessed if a user
1889  * thread accesses the given user virtual address at that instant.
1890  *
1891  * This does not guarantee that the page exists in the user mappings when
1892  * get_user_pages_remote returns, and there may even be a completely different
1893  * page there in some cases (eg. if mmapped pagecache has been invalidated
1894  * and subsequently re faulted). However it does guarantee that the page
1895  * won't be freed completely. And mostly callers simply care that the page
1896  * contains data that was valid *at some point in time*. Typically, an IO
1897  * or similar operation cannot guarantee anything stronger anyway because
1898  * locks can't be held over the syscall boundary.
1899  *
1900  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1901  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1902  * be called after the page is finished with, and before put_page is called.
1903  *
1904  * get_user_pages_remote is typically used for fewer-copy IO operations,
1905  * to get a handle on the memory by some means other than accesses
1906  * via the user virtual addresses. The pages may be submitted for
1907  * DMA to devices or accessed via their kernel linear mapping (via the
1908  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1909  *
1910  * See also get_user_pages_fast, for performance critical applications.
1911  *
1912  * get_user_pages_remote should be phased out in favor of
1913  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1914  * should use get_user_pages_remote because it cannot pass
1915  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1916  */
1917 long get_user_pages_remote(struct mm_struct *mm,
1918 		unsigned long start, unsigned long nr_pages,
1919 		unsigned int gup_flags, struct page **pages,
1920 		struct vm_area_struct **vmas, int *locked)
1921 {
1922 	if (!is_valid_gup_flags(gup_flags))
1923 		return -EINVAL;
1924 
1925 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1926 				       pages, vmas, locked);
1927 }
1928 EXPORT_SYMBOL(get_user_pages_remote);
1929 
1930 #else /* CONFIG_MMU */
1931 long get_user_pages_remote(struct mm_struct *mm,
1932 			   unsigned long start, unsigned long nr_pages,
1933 			   unsigned int gup_flags, struct page **pages,
1934 			   struct vm_area_struct **vmas, int *locked)
1935 {
1936 	return 0;
1937 }
1938 
1939 static long __get_user_pages_remote(struct mm_struct *mm,
1940 				    unsigned long start, unsigned long nr_pages,
1941 				    unsigned int gup_flags, struct page **pages,
1942 				    struct vm_area_struct **vmas, int *locked)
1943 {
1944 	return 0;
1945 }
1946 #endif /* !CONFIG_MMU */
1947 
1948 /**
1949  * get_user_pages() - pin user pages in memory
1950  * @start:      starting user address
1951  * @nr_pages:   number of pages from start to pin
1952  * @gup_flags:  flags modifying lookup behaviour
1953  * @pages:      array that receives pointers to the pages pinned.
1954  *              Should be at least nr_pages long. Or NULL, if caller
1955  *              only intends to ensure the pages are faulted in.
1956  * @vmas:       array of pointers to vmas corresponding to each page.
1957  *              Or NULL if the caller does not require them.
1958  *
1959  * This is the same as get_user_pages_remote(), just with a less-flexible
1960  * calling convention where we assume that the mm being operated on belongs to
1961  * the current task, and doesn't allow passing of a locked parameter.  We also
1962  * obviously don't pass FOLL_REMOTE in here.
1963  */
1964 long get_user_pages(unsigned long start, unsigned long nr_pages,
1965 		unsigned int gup_flags, struct page **pages,
1966 		struct vm_area_struct **vmas)
1967 {
1968 	if (!is_valid_gup_flags(gup_flags))
1969 		return -EINVAL;
1970 
1971 	return __gup_longterm_locked(current->mm, start, nr_pages,
1972 				     pages, vmas, gup_flags | FOLL_TOUCH);
1973 }
1974 EXPORT_SYMBOL(get_user_pages);
1975 
1976 /**
1977  * get_user_pages_locked() - variant of get_user_pages()
1978  *
1979  * @start:      starting user address
1980  * @nr_pages:   number of pages from start to pin
1981  * @gup_flags:  flags modifying lookup behaviour
1982  * @pages:      array that receives pointers to the pages pinned.
1983  *              Should be at least nr_pages long. Or NULL, if caller
1984  *              only intends to ensure the pages are faulted in.
1985  * @locked:     pointer to lock flag indicating whether lock is held and
1986  *              subsequently whether VM_FAULT_RETRY functionality can be
1987  *              utilised. Lock must initially be held.
1988  *
1989  * It is suitable to replace the form:
1990  *
1991  *      mmap_read_lock(mm);
1992  *      do_something()
1993  *      get_user_pages(mm, ..., pages, NULL);
1994  *      mmap_read_unlock(mm);
1995  *
1996  *  to:
1997  *
1998  *      int locked = 1;
1999  *      mmap_read_lock(mm);
2000  *      do_something()
2001  *      get_user_pages_locked(mm, ..., pages, &locked);
2002  *      if (locked)
2003  *          mmap_read_unlock(mm);
2004  *
2005  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2006  * paths better by using either get_user_pages_locked() or
2007  * get_user_pages_unlocked().
2008  *
2009  */
2010 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2011 			   unsigned int gup_flags, struct page **pages,
2012 			   int *locked)
2013 {
2014 	/*
2015 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2016 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2017 	 * vmas.  As there are no users of this flag in this call we simply
2018 	 * disallow this option for now.
2019 	 */
2020 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2021 		return -EINVAL;
2022 	/*
2023 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2024 	 * never directly by the caller, so enforce that:
2025 	 */
2026 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2027 		return -EINVAL;
2028 
2029 	return __get_user_pages_locked(current->mm, start, nr_pages,
2030 				       pages, NULL, locked,
2031 				       gup_flags | FOLL_TOUCH);
2032 }
2033 EXPORT_SYMBOL(get_user_pages_locked);
2034 
2035 /*
2036  * get_user_pages_unlocked() is suitable to replace the form:
2037  *
2038  *      mmap_read_lock(mm);
2039  *      get_user_pages(mm, ..., pages, NULL);
2040  *      mmap_read_unlock(mm);
2041  *
2042  *  with:
2043  *
2044  *      get_user_pages_unlocked(mm, ..., pages);
2045  *
2046  * It is functionally equivalent to get_user_pages_fast so
2047  * get_user_pages_fast should be used instead if specific gup_flags
2048  * (e.g. FOLL_FORCE) are not required.
2049  */
2050 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2051 			     struct page **pages, unsigned int gup_flags)
2052 {
2053 	struct mm_struct *mm = current->mm;
2054 	int locked = 1;
2055 	long ret;
2056 
2057 	/*
2058 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2059 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2060 	 * vmas.  As there are no users of this flag in this call we simply
2061 	 * disallow this option for now.
2062 	 */
2063 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2064 		return -EINVAL;
2065 
2066 	mmap_read_lock(mm);
2067 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2068 				      &locked, gup_flags | FOLL_TOUCH);
2069 	if (locked)
2070 		mmap_read_unlock(mm);
2071 	return ret;
2072 }
2073 EXPORT_SYMBOL(get_user_pages_unlocked);
2074 
2075 /*
2076  * Fast GUP
2077  *
2078  * get_user_pages_fast attempts to pin user pages by walking the page
2079  * tables directly and avoids taking locks. Thus the walker needs to be
2080  * protected from page table pages being freed from under it, and should
2081  * block any THP splits.
2082  *
2083  * One way to achieve this is to have the walker disable interrupts, and
2084  * rely on IPIs from the TLB flushing code blocking before the page table
2085  * pages are freed. This is unsuitable for architectures that do not need
2086  * to broadcast an IPI when invalidating TLBs.
2087  *
2088  * Another way to achieve this is to batch up page table containing pages
2089  * belonging to more than one mm_user, then rcu_sched a callback to free those
2090  * pages. Disabling interrupts will allow the fast_gup walker to both block
2091  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2092  * (which is a relatively rare event). The code below adopts this strategy.
2093  *
2094  * Before activating this code, please be aware that the following assumptions
2095  * are currently made:
2096  *
2097  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2098  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2099  *
2100  *  *) ptes can be read atomically by the architecture.
2101  *
2102  *  *) access_ok is sufficient to validate userspace address ranges.
2103  *
2104  * The last two assumptions can be relaxed by the addition of helper functions.
2105  *
2106  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2107  */
2108 #ifdef CONFIG_HAVE_FAST_GUP
2109 
2110 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2111 					    unsigned int flags,
2112 					    struct page **pages)
2113 {
2114 	while ((*nr) - nr_start) {
2115 		struct page *page = pages[--(*nr)];
2116 
2117 		ClearPageReferenced(page);
2118 		if (flags & FOLL_PIN)
2119 			unpin_user_page(page);
2120 		else
2121 			put_page(page);
2122 	}
2123 }
2124 
2125 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2126 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2127 			 unsigned int flags, struct page **pages, int *nr)
2128 {
2129 	struct dev_pagemap *pgmap = NULL;
2130 	int nr_start = *nr, ret = 0;
2131 	pte_t *ptep, *ptem;
2132 
2133 	ptem = ptep = pte_offset_map(&pmd, addr);
2134 	do {
2135 		pte_t pte = ptep_get_lockless(ptep);
2136 		struct page *head, *page;
2137 
2138 		/*
2139 		 * Similar to the PMD case below, NUMA hinting must take slow
2140 		 * path using the pte_protnone check.
2141 		 */
2142 		if (pte_protnone(pte))
2143 			goto pte_unmap;
2144 
2145 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2146 			goto pte_unmap;
2147 
2148 		if (pte_devmap(pte)) {
2149 			if (unlikely(flags & FOLL_LONGTERM))
2150 				goto pte_unmap;
2151 
2152 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2153 			if (unlikely(!pgmap)) {
2154 				undo_dev_pagemap(nr, nr_start, flags, pages);
2155 				goto pte_unmap;
2156 			}
2157 		} else if (pte_special(pte))
2158 			goto pte_unmap;
2159 
2160 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2161 		page = pte_page(pte);
2162 
2163 		head = try_grab_compound_head(page, 1, flags);
2164 		if (!head)
2165 			goto pte_unmap;
2166 
2167 		if (unlikely(page_is_secretmem(page))) {
2168 			put_compound_head(head, 1, flags);
2169 			goto pte_unmap;
2170 		}
2171 
2172 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2173 			put_compound_head(head, 1, flags);
2174 			goto pte_unmap;
2175 		}
2176 
2177 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2178 
2179 		/*
2180 		 * We need to make the page accessible if and only if we are
2181 		 * going to access its content (the FOLL_PIN case).  Please
2182 		 * see Documentation/core-api/pin_user_pages.rst for
2183 		 * details.
2184 		 */
2185 		if (flags & FOLL_PIN) {
2186 			ret = arch_make_page_accessible(page);
2187 			if (ret) {
2188 				unpin_user_page(page);
2189 				goto pte_unmap;
2190 			}
2191 		}
2192 		SetPageReferenced(page);
2193 		pages[*nr] = page;
2194 		(*nr)++;
2195 
2196 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2197 
2198 	ret = 1;
2199 
2200 pte_unmap:
2201 	if (pgmap)
2202 		put_dev_pagemap(pgmap);
2203 	pte_unmap(ptem);
2204 	return ret;
2205 }
2206 #else
2207 
2208 /*
2209  * If we can't determine whether or not a pte is special, then fail immediately
2210  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2211  * to be special.
2212  *
2213  * For a futex to be placed on a THP tail page, get_futex_key requires a
2214  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2215  * useful to have gup_huge_pmd even if we can't operate on ptes.
2216  */
2217 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2218 			 unsigned int flags, struct page **pages, int *nr)
2219 {
2220 	return 0;
2221 }
2222 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2223 
2224 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2225 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2226 			     unsigned long end, unsigned int flags,
2227 			     struct page **pages, int *nr)
2228 {
2229 	int nr_start = *nr;
2230 	struct dev_pagemap *pgmap = NULL;
2231 	int ret = 1;
2232 
2233 	do {
2234 		struct page *page = pfn_to_page(pfn);
2235 
2236 		pgmap = get_dev_pagemap(pfn, pgmap);
2237 		if (unlikely(!pgmap)) {
2238 			undo_dev_pagemap(nr, nr_start, flags, pages);
2239 			ret = 0;
2240 			break;
2241 		}
2242 		SetPageReferenced(page);
2243 		pages[*nr] = page;
2244 		if (unlikely(!try_grab_page(page, flags))) {
2245 			undo_dev_pagemap(nr, nr_start, flags, pages);
2246 			ret = 0;
2247 			break;
2248 		}
2249 		(*nr)++;
2250 		pfn++;
2251 	} while (addr += PAGE_SIZE, addr != end);
2252 
2253 	put_dev_pagemap(pgmap);
2254 	return ret;
2255 }
2256 
2257 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258 				 unsigned long end, unsigned int flags,
2259 				 struct page **pages, int *nr)
2260 {
2261 	unsigned long fault_pfn;
2262 	int nr_start = *nr;
2263 
2264 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2265 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2266 		return 0;
2267 
2268 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2269 		undo_dev_pagemap(nr, nr_start, flags, pages);
2270 		return 0;
2271 	}
2272 	return 1;
2273 }
2274 
2275 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2276 				 unsigned long end, unsigned int flags,
2277 				 struct page **pages, int *nr)
2278 {
2279 	unsigned long fault_pfn;
2280 	int nr_start = *nr;
2281 
2282 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2283 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284 		return 0;
2285 
2286 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2287 		undo_dev_pagemap(nr, nr_start, flags, pages);
2288 		return 0;
2289 	}
2290 	return 1;
2291 }
2292 #else
2293 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2294 				 unsigned long end, unsigned int flags,
2295 				 struct page **pages, int *nr)
2296 {
2297 	BUILD_BUG();
2298 	return 0;
2299 }
2300 
2301 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2302 				 unsigned long end, unsigned int flags,
2303 				 struct page **pages, int *nr)
2304 {
2305 	BUILD_BUG();
2306 	return 0;
2307 }
2308 #endif
2309 
2310 static int record_subpages(struct page *page, unsigned long addr,
2311 			   unsigned long end, struct page **pages)
2312 {
2313 	int nr;
2314 
2315 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2316 		pages[nr++] = page++;
2317 
2318 	return nr;
2319 }
2320 
2321 #ifdef CONFIG_ARCH_HAS_HUGEPD
2322 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2323 				      unsigned long sz)
2324 {
2325 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2326 	return (__boundary - 1 < end - 1) ? __boundary : end;
2327 }
2328 
2329 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2330 		       unsigned long end, unsigned int flags,
2331 		       struct page **pages, int *nr)
2332 {
2333 	unsigned long pte_end;
2334 	struct page *head, *page;
2335 	pte_t pte;
2336 	int refs;
2337 
2338 	pte_end = (addr + sz) & ~(sz-1);
2339 	if (pte_end < end)
2340 		end = pte_end;
2341 
2342 	pte = huge_ptep_get(ptep);
2343 
2344 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345 		return 0;
2346 
2347 	/* hugepages are never "special" */
2348 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2349 
2350 	head = pte_page(pte);
2351 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2352 	refs = record_subpages(page, addr, end, pages + *nr);
2353 
2354 	head = try_grab_compound_head(head, refs, flags);
2355 	if (!head)
2356 		return 0;
2357 
2358 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2359 		put_compound_head(head, refs, flags);
2360 		return 0;
2361 	}
2362 
2363 	*nr += refs;
2364 	SetPageReferenced(head);
2365 	return 1;
2366 }
2367 
2368 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2369 		unsigned int pdshift, unsigned long end, unsigned int flags,
2370 		struct page **pages, int *nr)
2371 {
2372 	pte_t *ptep;
2373 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2374 	unsigned long next;
2375 
2376 	ptep = hugepte_offset(hugepd, addr, pdshift);
2377 	do {
2378 		next = hugepte_addr_end(addr, end, sz);
2379 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2380 			return 0;
2381 	} while (ptep++, addr = next, addr != end);
2382 
2383 	return 1;
2384 }
2385 #else
2386 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387 		unsigned int pdshift, unsigned long end, unsigned int flags,
2388 		struct page **pages, int *nr)
2389 {
2390 	return 0;
2391 }
2392 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2393 
2394 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2395 			unsigned long end, unsigned int flags,
2396 			struct page **pages, int *nr)
2397 {
2398 	struct page *head, *page;
2399 	int refs;
2400 
2401 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2402 		return 0;
2403 
2404 	if (pmd_devmap(orig)) {
2405 		if (unlikely(flags & FOLL_LONGTERM))
2406 			return 0;
2407 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2408 					     pages, nr);
2409 	}
2410 
2411 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412 	refs = record_subpages(page, addr, end, pages + *nr);
2413 
2414 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2415 	if (!head)
2416 		return 0;
2417 
2418 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2419 		put_compound_head(head, refs, flags);
2420 		return 0;
2421 	}
2422 
2423 	*nr += refs;
2424 	SetPageReferenced(head);
2425 	return 1;
2426 }
2427 
2428 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2429 			unsigned long end, unsigned int flags,
2430 			struct page **pages, int *nr)
2431 {
2432 	struct page *head, *page;
2433 	int refs;
2434 
2435 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2436 		return 0;
2437 
2438 	if (pud_devmap(orig)) {
2439 		if (unlikely(flags & FOLL_LONGTERM))
2440 			return 0;
2441 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2442 					     pages, nr);
2443 	}
2444 
2445 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2446 	refs = record_subpages(page, addr, end, pages + *nr);
2447 
2448 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2449 	if (!head)
2450 		return 0;
2451 
2452 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453 		put_compound_head(head, refs, flags);
2454 		return 0;
2455 	}
2456 
2457 	*nr += refs;
2458 	SetPageReferenced(head);
2459 	return 1;
2460 }
2461 
2462 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2463 			unsigned long end, unsigned int flags,
2464 			struct page **pages, int *nr)
2465 {
2466 	int refs;
2467 	struct page *head, *page;
2468 
2469 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2470 		return 0;
2471 
2472 	BUILD_BUG_ON(pgd_devmap(orig));
2473 
2474 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2475 	refs = record_subpages(page, addr, end, pages + *nr);
2476 
2477 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2478 	if (!head)
2479 		return 0;
2480 
2481 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2482 		put_compound_head(head, refs, flags);
2483 		return 0;
2484 	}
2485 
2486 	*nr += refs;
2487 	SetPageReferenced(head);
2488 	return 1;
2489 }
2490 
2491 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2492 		unsigned int flags, struct page **pages, int *nr)
2493 {
2494 	unsigned long next;
2495 	pmd_t *pmdp;
2496 
2497 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2498 	do {
2499 		pmd_t pmd = READ_ONCE(*pmdp);
2500 
2501 		next = pmd_addr_end(addr, end);
2502 		if (!pmd_present(pmd))
2503 			return 0;
2504 
2505 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2506 			     pmd_devmap(pmd))) {
2507 			/*
2508 			 * NUMA hinting faults need to be handled in the GUP
2509 			 * slowpath for accounting purposes and so that they
2510 			 * can be serialised against THP migration.
2511 			 */
2512 			if (pmd_protnone(pmd))
2513 				return 0;
2514 
2515 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2516 				pages, nr))
2517 				return 0;
2518 
2519 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2520 			/*
2521 			 * architecture have different format for hugetlbfs
2522 			 * pmd format and THP pmd format
2523 			 */
2524 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2525 					 PMD_SHIFT, next, flags, pages, nr))
2526 				return 0;
2527 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2528 			return 0;
2529 	} while (pmdp++, addr = next, addr != end);
2530 
2531 	return 1;
2532 }
2533 
2534 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2535 			 unsigned int flags, struct page **pages, int *nr)
2536 {
2537 	unsigned long next;
2538 	pud_t *pudp;
2539 
2540 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2541 	do {
2542 		pud_t pud = READ_ONCE(*pudp);
2543 
2544 		next = pud_addr_end(addr, end);
2545 		if (unlikely(!pud_present(pud)))
2546 			return 0;
2547 		if (unlikely(pud_huge(pud))) {
2548 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2549 					  pages, nr))
2550 				return 0;
2551 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2552 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2553 					 PUD_SHIFT, next, flags, pages, nr))
2554 				return 0;
2555 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2556 			return 0;
2557 	} while (pudp++, addr = next, addr != end);
2558 
2559 	return 1;
2560 }
2561 
2562 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2563 			 unsigned int flags, struct page **pages, int *nr)
2564 {
2565 	unsigned long next;
2566 	p4d_t *p4dp;
2567 
2568 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2569 	do {
2570 		p4d_t p4d = READ_ONCE(*p4dp);
2571 
2572 		next = p4d_addr_end(addr, end);
2573 		if (p4d_none(p4d))
2574 			return 0;
2575 		BUILD_BUG_ON(p4d_huge(p4d));
2576 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2577 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2578 					 P4D_SHIFT, next, flags, pages, nr))
2579 				return 0;
2580 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2581 			return 0;
2582 	} while (p4dp++, addr = next, addr != end);
2583 
2584 	return 1;
2585 }
2586 
2587 static void gup_pgd_range(unsigned long addr, unsigned long end,
2588 		unsigned int flags, struct page **pages, int *nr)
2589 {
2590 	unsigned long next;
2591 	pgd_t *pgdp;
2592 
2593 	pgdp = pgd_offset(current->mm, addr);
2594 	do {
2595 		pgd_t pgd = READ_ONCE(*pgdp);
2596 
2597 		next = pgd_addr_end(addr, end);
2598 		if (pgd_none(pgd))
2599 			return;
2600 		if (unlikely(pgd_huge(pgd))) {
2601 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2602 					  pages, nr))
2603 				return;
2604 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2605 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2606 					 PGDIR_SHIFT, next, flags, pages, nr))
2607 				return;
2608 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2609 			return;
2610 	} while (pgdp++, addr = next, addr != end);
2611 }
2612 #else
2613 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2614 		unsigned int flags, struct page **pages, int *nr)
2615 {
2616 }
2617 #endif /* CONFIG_HAVE_FAST_GUP */
2618 
2619 #ifndef gup_fast_permitted
2620 /*
2621  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2622  * we need to fall back to the slow version:
2623  */
2624 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2625 {
2626 	return true;
2627 }
2628 #endif
2629 
2630 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2631 				   unsigned int gup_flags, struct page **pages)
2632 {
2633 	int ret;
2634 
2635 	/*
2636 	 * FIXME: FOLL_LONGTERM does not work with
2637 	 * get_user_pages_unlocked() (see comments in that function)
2638 	 */
2639 	if (gup_flags & FOLL_LONGTERM) {
2640 		mmap_read_lock(current->mm);
2641 		ret = __gup_longterm_locked(current->mm,
2642 					    start, nr_pages,
2643 					    pages, NULL, gup_flags);
2644 		mmap_read_unlock(current->mm);
2645 	} else {
2646 		ret = get_user_pages_unlocked(start, nr_pages,
2647 					      pages, gup_flags);
2648 	}
2649 
2650 	return ret;
2651 }
2652 
2653 static unsigned long lockless_pages_from_mm(unsigned long start,
2654 					    unsigned long end,
2655 					    unsigned int gup_flags,
2656 					    struct page **pages)
2657 {
2658 	unsigned long flags;
2659 	int nr_pinned = 0;
2660 	unsigned seq;
2661 
2662 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2663 	    !gup_fast_permitted(start, end))
2664 		return 0;
2665 
2666 	if (gup_flags & FOLL_PIN) {
2667 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2668 		if (seq & 1)
2669 			return 0;
2670 	}
2671 
2672 	/*
2673 	 * Disable interrupts. The nested form is used, in order to allow full,
2674 	 * general purpose use of this routine.
2675 	 *
2676 	 * With interrupts disabled, we block page table pages from being freed
2677 	 * from under us. See struct mmu_table_batch comments in
2678 	 * include/asm-generic/tlb.h for more details.
2679 	 *
2680 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2681 	 * that come from THPs splitting.
2682 	 */
2683 	local_irq_save(flags);
2684 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2685 	local_irq_restore(flags);
2686 
2687 	/*
2688 	 * When pinning pages for DMA there could be a concurrent write protect
2689 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2690 	 */
2691 	if (gup_flags & FOLL_PIN) {
2692 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2693 			unpin_user_pages(pages, nr_pinned);
2694 			return 0;
2695 		}
2696 	}
2697 	return nr_pinned;
2698 }
2699 
2700 static int internal_get_user_pages_fast(unsigned long start,
2701 					unsigned long nr_pages,
2702 					unsigned int gup_flags,
2703 					struct page **pages)
2704 {
2705 	unsigned long len, end;
2706 	unsigned long nr_pinned;
2707 	int ret;
2708 
2709 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2710 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2711 				       FOLL_FAST_ONLY)))
2712 		return -EINVAL;
2713 
2714 	if (gup_flags & FOLL_PIN)
2715 		mm_set_has_pinned_flag(&current->mm->flags);
2716 
2717 	if (!(gup_flags & FOLL_FAST_ONLY))
2718 		might_lock_read(&current->mm->mmap_lock);
2719 
2720 	start = untagged_addr(start) & PAGE_MASK;
2721 	len = nr_pages << PAGE_SHIFT;
2722 	if (check_add_overflow(start, len, &end))
2723 		return 0;
2724 	if (unlikely(!access_ok((void __user *)start, len)))
2725 		return -EFAULT;
2726 
2727 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2728 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2729 		return nr_pinned;
2730 
2731 	/* Slow path: try to get the remaining pages with get_user_pages */
2732 	start += nr_pinned << PAGE_SHIFT;
2733 	pages += nr_pinned;
2734 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2735 				      pages);
2736 	if (ret < 0) {
2737 		/*
2738 		 * The caller has to unpin the pages we already pinned so
2739 		 * returning -errno is not an option
2740 		 */
2741 		if (nr_pinned)
2742 			return nr_pinned;
2743 		return ret;
2744 	}
2745 	return ret + nr_pinned;
2746 }
2747 
2748 /**
2749  * get_user_pages_fast_only() - pin user pages in memory
2750  * @start:      starting user address
2751  * @nr_pages:   number of pages from start to pin
2752  * @gup_flags:  flags modifying pin behaviour
2753  * @pages:      array that receives pointers to the pages pinned.
2754  *              Should be at least nr_pages long.
2755  *
2756  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2757  * the regular GUP.
2758  * Note a difference with get_user_pages_fast: this always returns the
2759  * number of pages pinned, 0 if no pages were pinned.
2760  *
2761  * If the architecture does not support this function, simply return with no
2762  * pages pinned.
2763  *
2764  * Careful, careful! COW breaking can go either way, so a non-write
2765  * access can get ambiguous page results. If you call this function without
2766  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2767  */
2768 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2769 			     unsigned int gup_flags, struct page **pages)
2770 {
2771 	int nr_pinned;
2772 	/*
2773 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2774 	 * because gup fast is always a "pin with a +1 page refcount" request.
2775 	 *
2776 	 * FOLL_FAST_ONLY is required in order to match the API description of
2777 	 * this routine: no fall back to regular ("slow") GUP.
2778 	 */
2779 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2780 
2781 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2782 						 pages);
2783 
2784 	/*
2785 	 * As specified in the API description above, this routine is not
2786 	 * allowed to return negative values. However, the common core
2787 	 * routine internal_get_user_pages_fast() *can* return -errno.
2788 	 * Therefore, correct for that here:
2789 	 */
2790 	if (nr_pinned < 0)
2791 		nr_pinned = 0;
2792 
2793 	return nr_pinned;
2794 }
2795 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2796 
2797 /**
2798  * get_user_pages_fast() - pin user pages in memory
2799  * @start:      starting user address
2800  * @nr_pages:   number of pages from start to pin
2801  * @gup_flags:  flags modifying pin behaviour
2802  * @pages:      array that receives pointers to the pages pinned.
2803  *              Should be at least nr_pages long.
2804  *
2805  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2806  * If not successful, it will fall back to taking the lock and
2807  * calling get_user_pages().
2808  *
2809  * Returns number of pages pinned. This may be fewer than the number requested.
2810  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2811  * -errno.
2812  */
2813 int get_user_pages_fast(unsigned long start, int nr_pages,
2814 			unsigned int gup_flags, struct page **pages)
2815 {
2816 	if (!is_valid_gup_flags(gup_flags))
2817 		return -EINVAL;
2818 
2819 	/*
2820 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2821 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2822 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2823 	 * request.
2824 	 */
2825 	gup_flags |= FOLL_GET;
2826 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2827 }
2828 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2829 
2830 /**
2831  * pin_user_pages_fast() - pin user pages in memory without taking locks
2832  *
2833  * @start:      starting user address
2834  * @nr_pages:   number of pages from start to pin
2835  * @gup_flags:  flags modifying pin behaviour
2836  * @pages:      array that receives pointers to the pages pinned.
2837  *              Should be at least nr_pages long.
2838  *
2839  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2840  * get_user_pages_fast() for documentation on the function arguments, because
2841  * the arguments here are identical.
2842  *
2843  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2844  * see Documentation/core-api/pin_user_pages.rst for further details.
2845  */
2846 int pin_user_pages_fast(unsigned long start, int nr_pages,
2847 			unsigned int gup_flags, struct page **pages)
2848 {
2849 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2850 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851 		return -EINVAL;
2852 
2853 	gup_flags |= FOLL_PIN;
2854 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2855 }
2856 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2857 
2858 /*
2859  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2860  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2861  *
2862  * The API rules are the same, too: no negative values may be returned.
2863  */
2864 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2865 			     unsigned int gup_flags, struct page **pages)
2866 {
2867 	int nr_pinned;
2868 
2869 	/*
2870 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2871 	 * rules require returning 0, rather than -errno:
2872 	 */
2873 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2874 		return 0;
2875 	/*
2876 	 * FOLL_FAST_ONLY is required in order to match the API description of
2877 	 * this routine: no fall back to regular ("slow") GUP.
2878 	 */
2879 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2880 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2881 						 pages);
2882 	/*
2883 	 * This routine is not allowed to return negative values. However,
2884 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2885 	 * correct for that here:
2886 	 */
2887 	if (nr_pinned < 0)
2888 		nr_pinned = 0;
2889 
2890 	return nr_pinned;
2891 }
2892 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2893 
2894 /**
2895  * pin_user_pages_remote() - pin pages of a remote process
2896  *
2897  * @mm:		mm_struct of target mm
2898  * @start:	starting user address
2899  * @nr_pages:	number of pages from start to pin
2900  * @gup_flags:	flags modifying lookup behaviour
2901  * @pages:	array that receives pointers to the pages pinned.
2902  *		Should be at least nr_pages long. Or NULL, if caller
2903  *		only intends to ensure the pages are faulted in.
2904  * @vmas:	array of pointers to vmas corresponding to each page.
2905  *		Or NULL if the caller does not require them.
2906  * @locked:	pointer to lock flag indicating whether lock is held and
2907  *		subsequently whether VM_FAULT_RETRY functionality can be
2908  *		utilised. Lock must initially be held.
2909  *
2910  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2911  * get_user_pages_remote() for documentation on the function arguments, because
2912  * the arguments here are identical.
2913  *
2914  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2915  * see Documentation/core-api/pin_user_pages.rst for details.
2916  */
2917 long pin_user_pages_remote(struct mm_struct *mm,
2918 			   unsigned long start, unsigned long nr_pages,
2919 			   unsigned int gup_flags, struct page **pages,
2920 			   struct vm_area_struct **vmas, int *locked)
2921 {
2922 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2923 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2924 		return -EINVAL;
2925 
2926 	gup_flags |= FOLL_PIN;
2927 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2928 				       pages, vmas, locked);
2929 }
2930 EXPORT_SYMBOL(pin_user_pages_remote);
2931 
2932 /**
2933  * pin_user_pages() - pin user pages in memory for use by other devices
2934  *
2935  * @start:	starting user address
2936  * @nr_pages:	number of pages from start to pin
2937  * @gup_flags:	flags modifying lookup behaviour
2938  * @pages:	array that receives pointers to the pages pinned.
2939  *		Should be at least nr_pages long. Or NULL, if caller
2940  *		only intends to ensure the pages are faulted in.
2941  * @vmas:	array of pointers to vmas corresponding to each page.
2942  *		Or NULL if the caller does not require them.
2943  *
2944  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2945  * FOLL_PIN is set.
2946  *
2947  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2948  * see Documentation/core-api/pin_user_pages.rst for details.
2949  */
2950 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2951 		    unsigned int gup_flags, struct page **pages,
2952 		    struct vm_area_struct **vmas)
2953 {
2954 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2955 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2956 		return -EINVAL;
2957 
2958 	gup_flags |= FOLL_PIN;
2959 	return __gup_longterm_locked(current->mm, start, nr_pages,
2960 				     pages, vmas, gup_flags);
2961 }
2962 EXPORT_SYMBOL(pin_user_pages);
2963 
2964 /*
2965  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2966  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2967  * FOLL_PIN and rejects FOLL_GET.
2968  */
2969 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2970 			     struct page **pages, unsigned int gup_flags)
2971 {
2972 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2973 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2974 		return -EINVAL;
2975 
2976 	gup_flags |= FOLL_PIN;
2977 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2978 }
2979 EXPORT_SYMBOL(pin_user_pages_unlocked);
2980 
2981 /*
2982  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2983  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2984  * FOLL_GET.
2985  */
2986 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2987 			   unsigned int gup_flags, struct page **pages,
2988 			   int *locked)
2989 {
2990 	/*
2991 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2992 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2993 	 * vmas.  As there are no users of this flag in this call we simply
2994 	 * disallow this option for now.
2995 	 */
2996 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2997 		return -EINVAL;
2998 
2999 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 		return -EINVAL;
3002 
3003 	gup_flags |= FOLL_PIN;
3004 	return __get_user_pages_locked(current->mm, start, nr_pages,
3005 				       pages, NULL, locked,
3006 				       gup_flags | FOLL_TOUCH);
3007 }
3008 EXPORT_SYMBOL(pin_user_pages_locked);
3009