xref: /openbmc/linux/mm/gup.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
101 {
102 	if (flags & FOLL_PIN) {
103 		if (is_zero_folio(folio))
104 			return;
105 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
106 		if (folio_test_large(folio))
107 			atomic_sub(refs, &folio->_pincount);
108 		else
109 			refs *= GUP_PIN_COUNTING_BIAS;
110 	}
111 
112 	if (!put_devmap_managed_page_refs(&folio->page, refs))
113 		folio_put_refs(folio, refs);
114 }
115 
116 /**
117  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
118  * @folio:    pointer to folio to be grabbed
119  * @refs:     the value to (effectively) add to the folio's refcount
120  * @flags:    gup flags: these are the FOLL_* flag values
121  *
122  * This might not do anything at all, depending on the flags argument.
123  *
124  * "grab" names in this file mean, "look at flags to decide whether to use
125  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
126  *
127  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
128  * time.
129  *
130  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
131  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
132  *
133  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
134  *			be grabbed.
135  *
136  * It is called when we have a stable reference for the folio, typically in
137  * GUP slow path.
138  */
139 int __must_check try_grab_folio(struct folio *folio, int refs,
140 				unsigned int flags)
141 {
142 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
143 		return -ENOMEM;
144 
145 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
146 		return -EREMOTEIO;
147 
148 	if (flags & FOLL_GET)
149 		folio_ref_add(folio, refs);
150 	else if (flags & FOLL_PIN) {
151 		/*
152 		 * Don't take a pin on the zero page - it's not going anywhere
153 		 * and it is used in a *lot* of places.
154 		 */
155 		if (is_zero_folio(folio))
156 			return 0;
157 
158 		/*
159 		 * Increment the normal page refcount field at least once,
160 		 * so that the page really is pinned.
161 		 */
162 		if (folio_test_large(folio)) {
163 			folio_ref_add(folio, refs);
164 			atomic_add(refs, &folio->_pincount);
165 		} else {
166 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
167 		}
168 
169 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
170 	}
171 
172 	return 0;
173 }
174 
175 /**
176  * unpin_user_page() - release a dma-pinned page
177  * @page:            pointer to page to be released
178  *
179  * Pages that were pinned via pin_user_pages*() must be released via either
180  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
181  * that such pages can be separately tracked and uniquely handled. In
182  * particular, interactions with RDMA and filesystems need special handling.
183  */
184 void unpin_user_page(struct page *page)
185 {
186 	sanity_check_pinned_pages(&page, 1);
187 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
188 }
189 EXPORT_SYMBOL(unpin_user_page);
190 
191 /**
192  * folio_add_pin - Try to get an additional pin on a pinned folio
193  * @folio: The folio to be pinned
194  *
195  * Get an additional pin on a folio we already have a pin on.  Makes no change
196  * if the folio is a zero_page.
197  */
198 void folio_add_pin(struct folio *folio)
199 {
200 	if (is_zero_folio(folio))
201 		return;
202 
203 	/*
204 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
205 	 * page refcount field at least once, so that the page really is
206 	 * pinned.
207 	 */
208 	if (folio_test_large(folio)) {
209 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
210 		folio_ref_inc(folio);
211 		atomic_inc(&folio->_pincount);
212 	} else {
213 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
214 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
215 	}
216 }
217 
218 static inline struct folio *gup_folio_range_next(struct page *start,
219 		unsigned long npages, unsigned long i, unsigned int *ntails)
220 {
221 	struct page *next = nth_page(start, i);
222 	struct folio *folio = page_folio(next);
223 	unsigned int nr = 1;
224 
225 	if (folio_test_large(folio))
226 		nr = min_t(unsigned int, npages - i,
227 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
228 
229 	*ntails = nr;
230 	return folio;
231 }
232 
233 static inline struct folio *gup_folio_next(struct page **list,
234 		unsigned long npages, unsigned long i, unsigned int *ntails)
235 {
236 	struct folio *folio = page_folio(list[i]);
237 	unsigned int nr;
238 
239 	for (nr = i + 1; nr < npages; nr++) {
240 		if (page_folio(list[nr]) != folio)
241 			break;
242 	}
243 
244 	*ntails = nr - i;
245 	return folio;
246 }
247 
248 /**
249  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
250  * @pages:  array of pages to be maybe marked dirty, and definitely released.
251  * @npages: number of pages in the @pages array.
252  * @make_dirty: whether to mark the pages dirty
253  *
254  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
255  * variants called on that page.
256  *
257  * For each page in the @pages array, make that page (or its head page, if a
258  * compound page) dirty, if @make_dirty is true, and if the page was previously
259  * listed as clean. In any case, releases all pages using unpin_user_page(),
260  * possibly via unpin_user_pages(), for the non-dirty case.
261  *
262  * Please see the unpin_user_page() documentation for details.
263  *
264  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
265  * required, then the caller should a) verify that this is really correct,
266  * because _lock() is usually required, and b) hand code it:
267  * set_page_dirty_lock(), unpin_user_page().
268  *
269  */
270 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
271 				 bool make_dirty)
272 {
273 	unsigned long i;
274 	struct folio *folio;
275 	unsigned int nr;
276 
277 	if (!make_dirty) {
278 		unpin_user_pages(pages, npages);
279 		return;
280 	}
281 
282 	sanity_check_pinned_pages(pages, npages);
283 	for (i = 0; i < npages; i += nr) {
284 		folio = gup_folio_next(pages, npages, i, &nr);
285 		/*
286 		 * Checking PageDirty at this point may race with
287 		 * clear_page_dirty_for_io(), but that's OK. Two key
288 		 * cases:
289 		 *
290 		 * 1) This code sees the page as already dirty, so it
291 		 * skips the call to set_page_dirty(). That could happen
292 		 * because clear_page_dirty_for_io() called
293 		 * page_mkclean(), followed by set_page_dirty().
294 		 * However, now the page is going to get written back,
295 		 * which meets the original intention of setting it
296 		 * dirty, so all is well: clear_page_dirty_for_io() goes
297 		 * on to call TestClearPageDirty(), and write the page
298 		 * back.
299 		 *
300 		 * 2) This code sees the page as clean, so it calls
301 		 * set_page_dirty(). The page stays dirty, despite being
302 		 * written back, so it gets written back again in the
303 		 * next writeback cycle. This is harmless.
304 		 */
305 		if (!folio_test_dirty(folio)) {
306 			folio_lock(folio);
307 			folio_mark_dirty(folio);
308 			folio_unlock(folio);
309 		}
310 		gup_put_folio(folio, nr, FOLL_PIN);
311 	}
312 }
313 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
314 
315 /**
316  * unpin_user_page_range_dirty_lock() - release and optionally dirty
317  * gup-pinned page range
318  *
319  * @page:  the starting page of a range maybe marked dirty, and definitely released.
320  * @npages: number of consecutive pages to release.
321  * @make_dirty: whether to mark the pages dirty
322  *
323  * "gup-pinned page range" refers to a range of pages that has had one of the
324  * pin_user_pages() variants called on that page.
325  *
326  * For the page ranges defined by [page .. page+npages], make that range (or
327  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
328  * page range was previously listed as clean.
329  *
330  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
331  * required, then the caller should a) verify that this is really correct,
332  * because _lock() is usually required, and b) hand code it:
333  * set_page_dirty_lock(), unpin_user_page().
334  *
335  */
336 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
337 				      bool make_dirty)
338 {
339 	unsigned long i;
340 	struct folio *folio;
341 	unsigned int nr;
342 
343 	for (i = 0; i < npages; i += nr) {
344 		folio = gup_folio_range_next(page, npages, i, &nr);
345 		if (make_dirty && !folio_test_dirty(folio)) {
346 			folio_lock(folio);
347 			folio_mark_dirty(folio);
348 			folio_unlock(folio);
349 		}
350 		gup_put_folio(folio, nr, FOLL_PIN);
351 	}
352 }
353 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
354 
355 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
356 {
357 	unsigned long i;
358 	struct folio *folio;
359 	unsigned int nr;
360 
361 	/*
362 	 * Don't perform any sanity checks because we might have raced with
363 	 * fork() and some anonymous pages might now actually be shared --
364 	 * which is why we're unpinning after all.
365 	 */
366 	for (i = 0; i < npages; i += nr) {
367 		folio = gup_folio_next(pages, npages, i, &nr);
368 		gup_put_folio(folio, nr, FOLL_PIN);
369 	}
370 }
371 
372 /**
373  * unpin_user_pages() - release an array of gup-pinned pages.
374  * @pages:  array of pages to be marked dirty and released.
375  * @npages: number of pages in the @pages array.
376  *
377  * For each page in the @pages array, release the page using unpin_user_page().
378  *
379  * Please see the unpin_user_page() documentation for details.
380  */
381 void unpin_user_pages(struct page **pages, unsigned long npages)
382 {
383 	unsigned long i;
384 	struct folio *folio;
385 	unsigned int nr;
386 
387 	/*
388 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
389 	 * leaving them pinned), but probably not. More likely, gup/pup returned
390 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
391 	 */
392 	if (WARN_ON(IS_ERR_VALUE(npages)))
393 		return;
394 
395 	sanity_check_pinned_pages(pages, npages);
396 	for (i = 0; i < npages; i += nr) {
397 		folio = gup_folio_next(pages, npages, i, &nr);
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages);
402 
403 /*
404  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
405  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
406  * cache bouncing on large SMP machines for concurrent pinned gups.
407  */
408 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
409 {
410 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
411 		set_bit(MMF_HAS_PINNED, mm_flags);
412 }
413 
414 #ifdef CONFIG_MMU
415 static struct page *no_page_table(struct vm_area_struct *vma,
416 		unsigned int flags)
417 {
418 	/*
419 	 * When core dumping an enormous anonymous area that nobody
420 	 * has touched so far, we don't want to allocate unnecessary pages or
421 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
422 	 * then get_dump_page() will return NULL to leave a hole in the dump.
423 	 * But we can only make this optimization where a hole would surely
424 	 * be zero-filled if handle_mm_fault() actually did handle it.
425 	 */
426 	if ((flags & FOLL_DUMP) &&
427 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
428 		return ERR_PTR(-EFAULT);
429 	return NULL;
430 }
431 
432 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
433 		pte_t *pte, unsigned int flags)
434 {
435 	if (flags & FOLL_TOUCH) {
436 		pte_t orig_entry = ptep_get(pte);
437 		pte_t entry = orig_entry;
438 
439 		if (flags & FOLL_WRITE)
440 			entry = pte_mkdirty(entry);
441 		entry = pte_mkyoung(entry);
442 
443 		if (!pte_same(orig_entry, entry)) {
444 			set_pte_at(vma->vm_mm, address, pte, entry);
445 			update_mmu_cache(vma, address, pte);
446 		}
447 	}
448 
449 	/* Proper page table entry exists, but no corresponding struct page */
450 	return -EEXIST;
451 }
452 
453 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
454 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
455 					struct vm_area_struct *vma,
456 					unsigned int flags)
457 {
458 	/* If the pte is writable, we can write to the page. */
459 	if (pte_write(pte))
460 		return true;
461 
462 	/* Maybe FOLL_FORCE is set to override it? */
463 	if (!(flags & FOLL_FORCE))
464 		return false;
465 
466 	/* But FOLL_FORCE has no effect on shared mappings */
467 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
468 		return false;
469 
470 	/* ... or read-only private ones */
471 	if (!(vma->vm_flags & VM_MAYWRITE))
472 		return false;
473 
474 	/* ... or already writable ones that just need to take a write fault */
475 	if (vma->vm_flags & VM_WRITE)
476 		return false;
477 
478 	/*
479 	 * See can_change_pte_writable(): we broke COW and could map the page
480 	 * writable if we have an exclusive anonymous page ...
481 	 */
482 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
483 		return false;
484 
485 	/* ... and a write-fault isn't required for other reasons. */
486 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
487 		return false;
488 	return !userfaultfd_pte_wp(vma, pte);
489 }
490 
491 static struct page *follow_page_pte(struct vm_area_struct *vma,
492 		unsigned long address, pmd_t *pmd, unsigned int flags,
493 		struct dev_pagemap **pgmap)
494 {
495 	struct mm_struct *mm = vma->vm_mm;
496 	struct page *page;
497 	spinlock_t *ptl;
498 	pte_t *ptep, pte;
499 	int ret;
500 
501 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
502 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
503 			 (FOLL_PIN | FOLL_GET)))
504 		return ERR_PTR(-EINVAL);
505 
506 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
507 	if (!ptep)
508 		return no_page_table(vma, flags);
509 	pte = ptep_get(ptep);
510 	if (!pte_present(pte))
511 		goto no_page;
512 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
513 		goto no_page;
514 
515 	page = vm_normal_page(vma, address, pte);
516 
517 	/*
518 	 * We only care about anon pages in can_follow_write_pte() and don't
519 	 * have to worry about pte_devmap() because they are never anon.
520 	 */
521 	if ((flags & FOLL_WRITE) &&
522 	    !can_follow_write_pte(pte, page, vma, flags)) {
523 		page = NULL;
524 		goto out;
525 	}
526 
527 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
528 		/*
529 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
530 		 * case since they are only valid while holding the pgmap
531 		 * reference.
532 		 */
533 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
534 		if (*pgmap)
535 			page = pte_page(pte);
536 		else
537 			goto no_page;
538 	} else if (unlikely(!page)) {
539 		if (flags & FOLL_DUMP) {
540 			/* Avoid special (like zero) pages in core dumps */
541 			page = ERR_PTR(-EFAULT);
542 			goto out;
543 		}
544 
545 		if (is_zero_pfn(pte_pfn(pte))) {
546 			page = pte_page(pte);
547 		} else {
548 			ret = follow_pfn_pte(vma, address, ptep, flags);
549 			page = ERR_PTR(ret);
550 			goto out;
551 		}
552 	}
553 
554 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
555 		page = ERR_PTR(-EMLINK);
556 		goto out;
557 	}
558 
559 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
560 		       !PageAnonExclusive(page), page);
561 
562 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
563 	ret = try_grab_folio(page_folio(page), 1, flags);
564 	if (unlikely(ret)) {
565 		page = ERR_PTR(ret);
566 		goto out;
567 	}
568 
569 	/*
570 	 * We need to make the page accessible if and only if we are going
571 	 * to access its content (the FOLL_PIN case).  Please see
572 	 * Documentation/core-api/pin_user_pages.rst for details.
573 	 */
574 	if (flags & FOLL_PIN) {
575 		ret = arch_make_page_accessible(page);
576 		if (ret) {
577 			unpin_user_page(page);
578 			page = ERR_PTR(ret);
579 			goto out;
580 		}
581 	}
582 	if (flags & FOLL_TOUCH) {
583 		if ((flags & FOLL_WRITE) &&
584 		    !pte_dirty(pte) && !PageDirty(page))
585 			set_page_dirty(page);
586 		/*
587 		 * pte_mkyoung() would be more correct here, but atomic care
588 		 * is needed to avoid losing the dirty bit: it is easier to use
589 		 * mark_page_accessed().
590 		 */
591 		mark_page_accessed(page);
592 	}
593 out:
594 	pte_unmap_unlock(ptep, ptl);
595 	return page;
596 no_page:
597 	pte_unmap_unlock(ptep, ptl);
598 	if (!pte_none(pte))
599 		return NULL;
600 	return no_page_table(vma, flags);
601 }
602 
603 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
604 				    unsigned long address, pud_t *pudp,
605 				    unsigned int flags,
606 				    struct follow_page_context *ctx)
607 {
608 	pmd_t *pmd, pmdval;
609 	spinlock_t *ptl;
610 	struct page *page;
611 	struct mm_struct *mm = vma->vm_mm;
612 
613 	pmd = pmd_offset(pudp, address);
614 	pmdval = pmdp_get_lockless(pmd);
615 	if (pmd_none(pmdval))
616 		return no_page_table(vma, flags);
617 	if (!pmd_present(pmdval))
618 		return no_page_table(vma, flags);
619 	if (pmd_devmap(pmdval)) {
620 		ptl = pmd_lock(mm, pmd);
621 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
622 		spin_unlock(ptl);
623 		if (page)
624 			return page;
625 	}
626 	if (likely(!pmd_trans_huge(pmdval)))
627 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
628 
629 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
630 		return no_page_table(vma, flags);
631 
632 	ptl = pmd_lock(mm, pmd);
633 	if (unlikely(!pmd_present(*pmd))) {
634 		spin_unlock(ptl);
635 		return no_page_table(vma, flags);
636 	}
637 	if (unlikely(!pmd_trans_huge(*pmd))) {
638 		spin_unlock(ptl);
639 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
640 	}
641 	if (flags & FOLL_SPLIT_PMD) {
642 		spin_unlock(ptl);
643 		split_huge_pmd(vma, pmd, address);
644 		/* If pmd was left empty, stuff a page table in there quickly */
645 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
646 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
647 	}
648 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
649 	spin_unlock(ptl);
650 	ctx->page_mask = HPAGE_PMD_NR - 1;
651 	return page;
652 }
653 
654 static struct page *follow_pud_mask(struct vm_area_struct *vma,
655 				    unsigned long address, p4d_t *p4dp,
656 				    unsigned int flags,
657 				    struct follow_page_context *ctx)
658 {
659 	pud_t *pud;
660 	spinlock_t *ptl;
661 	struct page *page;
662 	struct mm_struct *mm = vma->vm_mm;
663 
664 	pud = pud_offset(p4dp, address);
665 	if (pud_none(*pud))
666 		return no_page_table(vma, flags);
667 	if (pud_devmap(*pud)) {
668 		ptl = pud_lock(mm, pud);
669 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
670 		spin_unlock(ptl);
671 		if (page)
672 			return page;
673 	}
674 	if (unlikely(pud_bad(*pud)))
675 		return no_page_table(vma, flags);
676 
677 	return follow_pmd_mask(vma, address, pud, flags, ctx);
678 }
679 
680 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
681 				    unsigned long address, pgd_t *pgdp,
682 				    unsigned int flags,
683 				    struct follow_page_context *ctx)
684 {
685 	p4d_t *p4d;
686 
687 	p4d = p4d_offset(pgdp, address);
688 	if (p4d_none(*p4d))
689 		return no_page_table(vma, flags);
690 	BUILD_BUG_ON(p4d_huge(*p4d));
691 	if (unlikely(p4d_bad(*p4d)))
692 		return no_page_table(vma, flags);
693 
694 	return follow_pud_mask(vma, address, p4d, flags, ctx);
695 }
696 
697 /**
698  * follow_page_mask - look up a page descriptor from a user-virtual address
699  * @vma: vm_area_struct mapping @address
700  * @address: virtual address to look up
701  * @flags: flags modifying lookup behaviour
702  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
703  *       pointer to output page_mask
704  *
705  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
706  *
707  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
708  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
709  *
710  * When getting an anonymous page and the caller has to trigger unsharing
711  * of a shared anonymous page first, -EMLINK is returned. The caller should
712  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
713  * relevant with FOLL_PIN and !FOLL_WRITE.
714  *
715  * On output, the @ctx->page_mask is set according to the size of the page.
716  *
717  * Return: the mapped (struct page *), %NULL if no mapping exists, or
718  * an error pointer if there is a mapping to something not represented
719  * by a page descriptor (see also vm_normal_page()).
720  */
721 static struct page *follow_page_mask(struct vm_area_struct *vma,
722 			      unsigned long address, unsigned int flags,
723 			      struct follow_page_context *ctx)
724 {
725 	pgd_t *pgd;
726 	struct mm_struct *mm = vma->vm_mm;
727 
728 	ctx->page_mask = 0;
729 
730 	/*
731 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
732 	 * special hugetlb page table walking code.  This eliminates the
733 	 * need to check for hugetlb entries in the general walking code.
734 	 */
735 	if (is_vm_hugetlb_page(vma))
736 		return hugetlb_follow_page_mask(vma, address, flags,
737 						&ctx->page_mask);
738 
739 	pgd = pgd_offset(mm, address);
740 
741 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
742 		return no_page_table(vma, flags);
743 
744 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
745 }
746 
747 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
748 			 unsigned int foll_flags)
749 {
750 	struct follow_page_context ctx = { NULL };
751 	struct page *page;
752 
753 	if (vma_is_secretmem(vma))
754 		return NULL;
755 
756 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
757 		return NULL;
758 
759 	/*
760 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
761 	 * to fail on PROT_NONE-mapped pages.
762 	 */
763 	page = follow_page_mask(vma, address, foll_flags, &ctx);
764 	if (ctx.pgmap)
765 		put_dev_pagemap(ctx.pgmap);
766 	return page;
767 }
768 
769 static int get_gate_page(struct mm_struct *mm, unsigned long address,
770 		unsigned int gup_flags, struct vm_area_struct **vma,
771 		struct page **page)
772 {
773 	pgd_t *pgd;
774 	p4d_t *p4d;
775 	pud_t *pud;
776 	pmd_t *pmd;
777 	pte_t *pte;
778 	pte_t entry;
779 	int ret = -EFAULT;
780 
781 	/* user gate pages are read-only */
782 	if (gup_flags & FOLL_WRITE)
783 		return -EFAULT;
784 	if (address > TASK_SIZE)
785 		pgd = pgd_offset_k(address);
786 	else
787 		pgd = pgd_offset_gate(mm, address);
788 	if (pgd_none(*pgd))
789 		return -EFAULT;
790 	p4d = p4d_offset(pgd, address);
791 	if (p4d_none(*p4d))
792 		return -EFAULT;
793 	pud = pud_offset(p4d, address);
794 	if (pud_none(*pud))
795 		return -EFAULT;
796 	pmd = pmd_offset(pud, address);
797 	if (!pmd_present(*pmd))
798 		return -EFAULT;
799 	pte = pte_offset_map(pmd, address);
800 	if (!pte)
801 		return -EFAULT;
802 	entry = ptep_get(pte);
803 	if (pte_none(entry))
804 		goto unmap;
805 	*vma = get_gate_vma(mm);
806 	if (!page)
807 		goto out;
808 	*page = vm_normal_page(*vma, address, entry);
809 	if (!*page) {
810 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
811 			goto unmap;
812 		*page = pte_page(entry);
813 	}
814 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
815 	if (unlikely(ret))
816 		goto unmap;
817 out:
818 	ret = 0;
819 unmap:
820 	pte_unmap(pte);
821 	return ret;
822 }
823 
824 /*
825  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
826  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
827  * to 0 and -EBUSY returned.
828  */
829 static int faultin_page(struct vm_area_struct *vma,
830 		unsigned long address, unsigned int *flags, bool unshare,
831 		int *locked)
832 {
833 	unsigned int fault_flags = 0;
834 	vm_fault_t ret;
835 
836 	if (*flags & FOLL_NOFAULT)
837 		return -EFAULT;
838 	if (*flags & FOLL_WRITE)
839 		fault_flags |= FAULT_FLAG_WRITE;
840 	if (*flags & FOLL_REMOTE)
841 		fault_flags |= FAULT_FLAG_REMOTE;
842 	if (*flags & FOLL_UNLOCKABLE) {
843 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
844 		/*
845 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
846 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
847 		 * That's because some callers may not be prepared to
848 		 * handle early exits caused by non-fatal signals.
849 		 */
850 		if (*flags & FOLL_INTERRUPTIBLE)
851 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
852 	}
853 	if (*flags & FOLL_NOWAIT)
854 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
855 	if (*flags & FOLL_TRIED) {
856 		/*
857 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
858 		 * can co-exist
859 		 */
860 		fault_flags |= FAULT_FLAG_TRIED;
861 	}
862 	if (unshare) {
863 		fault_flags |= FAULT_FLAG_UNSHARE;
864 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
865 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
866 	}
867 
868 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
869 
870 	if (ret & VM_FAULT_COMPLETED) {
871 		/*
872 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
873 		 * mmap lock in the page fault handler. Sanity check this.
874 		 */
875 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
876 		*locked = 0;
877 
878 		/*
879 		 * We should do the same as VM_FAULT_RETRY, but let's not
880 		 * return -EBUSY since that's not reflecting the reality of
881 		 * what has happened - we've just fully completed a page
882 		 * fault, with the mmap lock released.  Use -EAGAIN to show
883 		 * that we want to take the mmap lock _again_.
884 		 */
885 		return -EAGAIN;
886 	}
887 
888 	if (ret & VM_FAULT_ERROR) {
889 		int err = vm_fault_to_errno(ret, *flags);
890 
891 		if (err)
892 			return err;
893 		BUG();
894 	}
895 
896 	if (ret & VM_FAULT_RETRY) {
897 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
898 			*locked = 0;
899 		return -EBUSY;
900 	}
901 
902 	return 0;
903 }
904 
905 /*
906  * Writing to file-backed mappings which require folio dirty tracking using GUP
907  * is a fundamentally broken operation, as kernel write access to GUP mappings
908  * do not adhere to the semantics expected by a file system.
909  *
910  * Consider the following scenario:-
911  *
912  * 1. A folio is written to via GUP which write-faults the memory, notifying
913  *    the file system and dirtying the folio.
914  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
915  *    the PTE being marked read-only.
916  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
917  *    direct mapping.
918  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
919  *    (though it does not have to).
920  *
921  * This results in both data being written to a folio without writenotify, and
922  * the folio being dirtied unexpectedly (if the caller decides to do so).
923  */
924 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
925 					  unsigned long gup_flags)
926 {
927 	/*
928 	 * If we aren't pinning then no problematic write can occur. A long term
929 	 * pin is the most egregious case so this is the case we disallow.
930 	 */
931 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
932 	    (FOLL_PIN | FOLL_LONGTERM))
933 		return true;
934 
935 	/*
936 	 * If the VMA does not require dirty tracking then no problematic write
937 	 * can occur either.
938 	 */
939 	return !vma_needs_dirty_tracking(vma);
940 }
941 
942 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
943 {
944 	vm_flags_t vm_flags = vma->vm_flags;
945 	int write = (gup_flags & FOLL_WRITE);
946 	int foreign = (gup_flags & FOLL_REMOTE);
947 	bool vma_anon = vma_is_anonymous(vma);
948 
949 	if (vm_flags & (VM_IO | VM_PFNMAP))
950 		return -EFAULT;
951 
952 	if ((gup_flags & FOLL_ANON) && !vma_anon)
953 		return -EFAULT;
954 
955 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
956 		return -EOPNOTSUPP;
957 
958 	if (vma_is_secretmem(vma))
959 		return -EFAULT;
960 
961 	if (write) {
962 		if (!vma_anon &&
963 		    !writable_file_mapping_allowed(vma, gup_flags))
964 			return -EFAULT;
965 
966 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
967 			if (!(gup_flags & FOLL_FORCE))
968 				return -EFAULT;
969 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
970 			if (is_vm_hugetlb_page(vma))
971 				return -EFAULT;
972 			/*
973 			 * We used to let the write,force case do COW in a
974 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
975 			 * set a breakpoint in a read-only mapping of an
976 			 * executable, without corrupting the file (yet only
977 			 * when that file had been opened for writing!).
978 			 * Anon pages in shared mappings are surprising: now
979 			 * just reject it.
980 			 */
981 			if (!is_cow_mapping(vm_flags))
982 				return -EFAULT;
983 		}
984 	} else if (!(vm_flags & VM_READ)) {
985 		if (!(gup_flags & FOLL_FORCE))
986 			return -EFAULT;
987 		/*
988 		 * Is there actually any vma we can reach here which does not
989 		 * have VM_MAYREAD set?
990 		 */
991 		if (!(vm_flags & VM_MAYREAD))
992 			return -EFAULT;
993 	}
994 	/*
995 	 * gups are always data accesses, not instruction
996 	 * fetches, so execute=false here
997 	 */
998 	if (!arch_vma_access_permitted(vma, write, false, foreign))
999 		return -EFAULT;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * This is "vma_lookup()", but with a warning if we would have
1005  * historically expanded the stack in the GUP code.
1006  */
1007 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1008 	 unsigned long addr)
1009 {
1010 #ifdef CONFIG_STACK_GROWSUP
1011 	return vma_lookup(mm, addr);
1012 #else
1013 	static volatile unsigned long next_warn;
1014 	struct vm_area_struct *vma;
1015 	unsigned long now, next;
1016 
1017 	vma = find_vma(mm, addr);
1018 	if (!vma || (addr >= vma->vm_start))
1019 		return vma;
1020 
1021 	/* Only warn for half-way relevant accesses */
1022 	if (!(vma->vm_flags & VM_GROWSDOWN))
1023 		return NULL;
1024 	if (vma->vm_start - addr > 65536)
1025 		return NULL;
1026 
1027 	/* Let's not warn more than once an hour.. */
1028 	now = jiffies; next = next_warn;
1029 	if (next && time_before(now, next))
1030 		return NULL;
1031 	next_warn = now + 60*60*HZ;
1032 
1033 	/* Let people know things may have changed. */
1034 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1035 		current->comm, task_pid_nr(current),
1036 		vma->vm_start, vma->vm_end, addr);
1037 	dump_stack();
1038 	return NULL;
1039 #endif
1040 }
1041 
1042 /**
1043  * __get_user_pages() - pin user pages in memory
1044  * @mm:		mm_struct of target mm
1045  * @start:	starting user address
1046  * @nr_pages:	number of pages from start to pin
1047  * @gup_flags:	flags modifying pin behaviour
1048  * @pages:	array that receives pointers to the pages pinned.
1049  *		Should be at least nr_pages long. Or NULL, if caller
1050  *		only intends to ensure the pages are faulted in.
1051  * @locked:     whether we're still with the mmap_lock held
1052  *
1053  * Returns either number of pages pinned (which may be less than the
1054  * number requested), or an error. Details about the return value:
1055  *
1056  * -- If nr_pages is 0, returns 0.
1057  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1058  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1059  *    pages pinned. Again, this may be less than nr_pages.
1060  * -- 0 return value is possible when the fault would need to be retried.
1061  *
1062  * The caller is responsible for releasing returned @pages, via put_page().
1063  *
1064  * Must be called with mmap_lock held.  It may be released.  See below.
1065  *
1066  * __get_user_pages walks a process's page tables and takes a reference to
1067  * each struct page that each user address corresponds to at a given
1068  * instant. That is, it takes the page that would be accessed if a user
1069  * thread accesses the given user virtual address at that instant.
1070  *
1071  * This does not guarantee that the page exists in the user mappings when
1072  * __get_user_pages returns, and there may even be a completely different
1073  * page there in some cases (eg. if mmapped pagecache has been invalidated
1074  * and subsequently re-faulted). However it does guarantee that the page
1075  * won't be freed completely. And mostly callers simply care that the page
1076  * contains data that was valid *at some point in time*. Typically, an IO
1077  * or similar operation cannot guarantee anything stronger anyway because
1078  * locks can't be held over the syscall boundary.
1079  *
1080  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1081  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1082  * appropriate) must be called after the page is finished with, and
1083  * before put_page is called.
1084  *
1085  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1086  * be released. If this happens *@locked will be set to 0 on return.
1087  *
1088  * A caller using such a combination of @gup_flags must therefore hold the
1089  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1090  * it must be held for either reading or writing and will not be released.
1091  *
1092  * In most cases, get_user_pages or get_user_pages_fast should be used
1093  * instead of __get_user_pages. __get_user_pages should be used only if
1094  * you need some special @gup_flags.
1095  */
1096 static long __get_user_pages(struct mm_struct *mm,
1097 		unsigned long start, unsigned long nr_pages,
1098 		unsigned int gup_flags, struct page **pages,
1099 		int *locked)
1100 {
1101 	long ret = 0, i = 0;
1102 	struct vm_area_struct *vma = NULL;
1103 	struct follow_page_context ctx = { NULL };
1104 
1105 	if (!nr_pages)
1106 		return 0;
1107 
1108 	start = untagged_addr_remote(mm, start);
1109 
1110 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1111 
1112 	do {
1113 		struct page *page;
1114 		unsigned int foll_flags = gup_flags;
1115 		unsigned int page_increm;
1116 
1117 		/* first iteration or cross vma bound */
1118 		if (!vma || start >= vma->vm_end) {
1119 			/*
1120 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1121 			 * lookups+error reporting differently.
1122 			 */
1123 			if (gup_flags & FOLL_MADV_POPULATE) {
1124 				vma = vma_lookup(mm, start);
1125 				if (!vma) {
1126 					ret = -ENOMEM;
1127 					goto out;
1128 				}
1129 				if (check_vma_flags(vma, gup_flags)) {
1130 					ret = -EINVAL;
1131 					goto out;
1132 				}
1133 				goto retry;
1134 			}
1135 			vma = gup_vma_lookup(mm, start);
1136 			if (!vma && in_gate_area(mm, start)) {
1137 				ret = get_gate_page(mm, start & PAGE_MASK,
1138 						gup_flags, &vma,
1139 						pages ? &page : NULL);
1140 				if (ret)
1141 					goto out;
1142 				ctx.page_mask = 0;
1143 				goto next_page;
1144 			}
1145 
1146 			if (!vma) {
1147 				ret = -EFAULT;
1148 				goto out;
1149 			}
1150 			ret = check_vma_flags(vma, gup_flags);
1151 			if (ret)
1152 				goto out;
1153 		}
1154 retry:
1155 		/*
1156 		 * If we have a pending SIGKILL, don't keep faulting pages and
1157 		 * potentially allocating memory.
1158 		 */
1159 		if (fatal_signal_pending(current)) {
1160 			ret = -EINTR;
1161 			goto out;
1162 		}
1163 		cond_resched();
1164 
1165 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1166 		if (!page || PTR_ERR(page) == -EMLINK) {
1167 			ret = faultin_page(vma, start, &foll_flags,
1168 					   PTR_ERR(page) == -EMLINK, locked);
1169 			switch (ret) {
1170 			case 0:
1171 				goto retry;
1172 			case -EBUSY:
1173 			case -EAGAIN:
1174 				ret = 0;
1175 				fallthrough;
1176 			case -EFAULT:
1177 			case -ENOMEM:
1178 			case -EHWPOISON:
1179 				goto out;
1180 			}
1181 			BUG();
1182 		} else if (PTR_ERR(page) == -EEXIST) {
1183 			/*
1184 			 * Proper page table entry exists, but no corresponding
1185 			 * struct page. If the caller expects **pages to be
1186 			 * filled in, bail out now, because that can't be done
1187 			 * for this page.
1188 			 */
1189 			if (pages) {
1190 				ret = PTR_ERR(page);
1191 				goto out;
1192 			}
1193 		} else if (IS_ERR(page)) {
1194 			ret = PTR_ERR(page);
1195 			goto out;
1196 		}
1197 next_page:
1198 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1199 		if (page_increm > nr_pages)
1200 			page_increm = nr_pages;
1201 
1202 		if (pages) {
1203 			struct page *subpage;
1204 			unsigned int j;
1205 
1206 			/*
1207 			 * This must be a large folio (and doesn't need to
1208 			 * be the whole folio; it can be part of it), do
1209 			 * the refcount work for all the subpages too.
1210 			 *
1211 			 * NOTE: here the page may not be the head page
1212 			 * e.g. when start addr is not thp-size aligned.
1213 			 * try_grab_folio() should have taken care of tail
1214 			 * pages.
1215 			 */
1216 			if (page_increm > 1) {
1217 				struct folio *folio = page_folio(page);
1218 
1219 				/*
1220 				 * Since we already hold refcount on the
1221 				 * large folio, this should never fail.
1222 				 */
1223 				if (try_grab_folio(folio, page_increm - 1,
1224 						       foll_flags)) {
1225 					/*
1226 					 * Release the 1st page ref if the
1227 					 * folio is problematic, fail hard.
1228 					 */
1229 					gup_put_folio(folio, 1,
1230 						      foll_flags);
1231 					ret = -EFAULT;
1232 					goto out;
1233 				}
1234 			}
1235 
1236 			for (j = 0; j < page_increm; j++) {
1237 				subpage = nth_page(page, j);
1238 				pages[i + j] = subpage;
1239 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1240 				flush_dcache_page(subpage);
1241 			}
1242 		}
1243 
1244 		i += page_increm;
1245 		start += page_increm * PAGE_SIZE;
1246 		nr_pages -= page_increm;
1247 	} while (nr_pages);
1248 out:
1249 	if (ctx.pgmap)
1250 		put_dev_pagemap(ctx.pgmap);
1251 	return i ? i : ret;
1252 }
1253 
1254 static bool vma_permits_fault(struct vm_area_struct *vma,
1255 			      unsigned int fault_flags)
1256 {
1257 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1258 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1259 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1260 
1261 	if (!(vm_flags & vma->vm_flags))
1262 		return false;
1263 
1264 	/*
1265 	 * The architecture might have a hardware protection
1266 	 * mechanism other than read/write that can deny access.
1267 	 *
1268 	 * gup always represents data access, not instruction
1269 	 * fetches, so execute=false here:
1270 	 */
1271 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1272 		return false;
1273 
1274 	return true;
1275 }
1276 
1277 /**
1278  * fixup_user_fault() - manually resolve a user page fault
1279  * @mm:		mm_struct of target mm
1280  * @address:	user address
1281  * @fault_flags:flags to pass down to handle_mm_fault()
1282  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1283  *		does not allow retry. If NULL, the caller must guarantee
1284  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1285  *
1286  * This is meant to be called in the specific scenario where for locking reasons
1287  * we try to access user memory in atomic context (within a pagefault_disable()
1288  * section), this returns -EFAULT, and we want to resolve the user fault before
1289  * trying again.
1290  *
1291  * Typically this is meant to be used by the futex code.
1292  *
1293  * The main difference with get_user_pages() is that this function will
1294  * unconditionally call handle_mm_fault() which will in turn perform all the
1295  * necessary SW fixup of the dirty and young bits in the PTE, while
1296  * get_user_pages() only guarantees to update these in the struct page.
1297  *
1298  * This is important for some architectures where those bits also gate the
1299  * access permission to the page because they are maintained in software.  On
1300  * such architectures, gup() will not be enough to make a subsequent access
1301  * succeed.
1302  *
1303  * This function will not return with an unlocked mmap_lock. So it has not the
1304  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1305  */
1306 int fixup_user_fault(struct mm_struct *mm,
1307 		     unsigned long address, unsigned int fault_flags,
1308 		     bool *unlocked)
1309 {
1310 	struct vm_area_struct *vma;
1311 	vm_fault_t ret;
1312 
1313 	address = untagged_addr_remote(mm, address);
1314 
1315 	if (unlocked)
1316 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1317 
1318 retry:
1319 	vma = gup_vma_lookup(mm, address);
1320 	if (!vma)
1321 		return -EFAULT;
1322 
1323 	if (!vma_permits_fault(vma, fault_flags))
1324 		return -EFAULT;
1325 
1326 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1327 	    fatal_signal_pending(current))
1328 		return -EINTR;
1329 
1330 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1331 
1332 	if (ret & VM_FAULT_COMPLETED) {
1333 		/*
1334 		 * NOTE: it's a pity that we need to retake the lock here
1335 		 * to pair with the unlock() in the callers. Ideally we
1336 		 * could tell the callers so they do not need to unlock.
1337 		 */
1338 		mmap_read_lock(mm);
1339 		*unlocked = true;
1340 		return 0;
1341 	}
1342 
1343 	if (ret & VM_FAULT_ERROR) {
1344 		int err = vm_fault_to_errno(ret, 0);
1345 
1346 		if (err)
1347 			return err;
1348 		BUG();
1349 	}
1350 
1351 	if (ret & VM_FAULT_RETRY) {
1352 		mmap_read_lock(mm);
1353 		*unlocked = true;
1354 		fault_flags |= FAULT_FLAG_TRIED;
1355 		goto retry;
1356 	}
1357 
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(fixup_user_fault);
1361 
1362 /*
1363  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1364  * specified, it'll also respond to generic signals.  The caller of GUP
1365  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1366  */
1367 static bool gup_signal_pending(unsigned int flags)
1368 {
1369 	if (fatal_signal_pending(current))
1370 		return true;
1371 
1372 	if (!(flags & FOLL_INTERRUPTIBLE))
1373 		return false;
1374 
1375 	return signal_pending(current);
1376 }
1377 
1378 /*
1379  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1380  * the caller. This function may drop the mmap_lock. If it does so, then it will
1381  * set (*locked = 0).
1382  *
1383  * (*locked == 0) means that the caller expects this function to acquire and
1384  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1385  * the function returns, even though it may have changed temporarily during
1386  * function execution.
1387  *
1388  * Please note that this function, unlike __get_user_pages(), will not return 0
1389  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1390  */
1391 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1392 						unsigned long start,
1393 						unsigned long nr_pages,
1394 						struct page **pages,
1395 						int *locked,
1396 						unsigned int flags)
1397 {
1398 	long ret, pages_done;
1399 	bool must_unlock = false;
1400 
1401 	/*
1402 	 * The internal caller expects GUP to manage the lock internally and the
1403 	 * lock must be released when this returns.
1404 	 */
1405 	if (!*locked) {
1406 		if (mmap_read_lock_killable(mm))
1407 			return -EAGAIN;
1408 		must_unlock = true;
1409 		*locked = 1;
1410 	}
1411 	else
1412 		mmap_assert_locked(mm);
1413 
1414 	if (flags & FOLL_PIN)
1415 		mm_set_has_pinned_flag(&mm->flags);
1416 
1417 	/*
1418 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1419 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1420 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1421 	 * for FOLL_GET, not for the newer FOLL_PIN.
1422 	 *
1423 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1424 	 * that here, as any failures will be obvious enough.
1425 	 */
1426 	if (pages && !(flags & FOLL_PIN))
1427 		flags |= FOLL_GET;
1428 
1429 	pages_done = 0;
1430 	for (;;) {
1431 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1432 				       locked);
1433 		if (!(flags & FOLL_UNLOCKABLE)) {
1434 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1435 			pages_done = ret;
1436 			break;
1437 		}
1438 
1439 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1440 		if (!*locked) {
1441 			BUG_ON(ret < 0);
1442 			BUG_ON(ret >= nr_pages);
1443 		}
1444 
1445 		if (ret > 0) {
1446 			nr_pages -= ret;
1447 			pages_done += ret;
1448 			if (!nr_pages)
1449 				break;
1450 		}
1451 		if (*locked) {
1452 			/*
1453 			 * VM_FAULT_RETRY didn't trigger or it was a
1454 			 * FOLL_NOWAIT.
1455 			 */
1456 			if (!pages_done)
1457 				pages_done = ret;
1458 			break;
1459 		}
1460 		/*
1461 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1462 		 * For the prefault case (!pages) we only update counts.
1463 		 */
1464 		if (likely(pages))
1465 			pages += ret;
1466 		start += ret << PAGE_SHIFT;
1467 
1468 		/* The lock was temporarily dropped, so we must unlock later */
1469 		must_unlock = true;
1470 
1471 retry:
1472 		/*
1473 		 * Repeat on the address that fired VM_FAULT_RETRY
1474 		 * with both FAULT_FLAG_ALLOW_RETRY and
1475 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1476 		 * by fatal signals of even common signals, depending on
1477 		 * the caller's request. So we need to check it before we
1478 		 * start trying again otherwise it can loop forever.
1479 		 */
1480 		if (gup_signal_pending(flags)) {
1481 			if (!pages_done)
1482 				pages_done = -EINTR;
1483 			break;
1484 		}
1485 
1486 		ret = mmap_read_lock_killable(mm);
1487 		if (ret) {
1488 			BUG_ON(ret > 0);
1489 			if (!pages_done)
1490 				pages_done = ret;
1491 			break;
1492 		}
1493 
1494 		*locked = 1;
1495 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1496 				       pages, locked);
1497 		if (!*locked) {
1498 			/* Continue to retry until we succeeded */
1499 			BUG_ON(ret != 0);
1500 			goto retry;
1501 		}
1502 		if (ret != 1) {
1503 			BUG_ON(ret > 1);
1504 			if (!pages_done)
1505 				pages_done = ret;
1506 			break;
1507 		}
1508 		nr_pages--;
1509 		pages_done++;
1510 		if (!nr_pages)
1511 			break;
1512 		if (likely(pages))
1513 			pages++;
1514 		start += PAGE_SIZE;
1515 	}
1516 	if (must_unlock && *locked) {
1517 		/*
1518 		 * We either temporarily dropped the lock, or the caller
1519 		 * requested that we both acquire and drop the lock. Either way,
1520 		 * we must now unlock, and notify the caller of that state.
1521 		 */
1522 		mmap_read_unlock(mm);
1523 		*locked = 0;
1524 	}
1525 	return pages_done;
1526 }
1527 
1528 /**
1529  * populate_vma_page_range() -  populate a range of pages in the vma.
1530  * @vma:   target vma
1531  * @start: start address
1532  * @end:   end address
1533  * @locked: whether the mmap_lock is still held
1534  *
1535  * This takes care of mlocking the pages too if VM_LOCKED is set.
1536  *
1537  * Return either number of pages pinned in the vma, or a negative error
1538  * code on error.
1539  *
1540  * vma->vm_mm->mmap_lock must be held.
1541  *
1542  * If @locked is NULL, it may be held for read or write and will
1543  * be unperturbed.
1544  *
1545  * If @locked is non-NULL, it must held for read only and may be
1546  * released.  If it's released, *@locked will be set to 0.
1547  */
1548 long populate_vma_page_range(struct vm_area_struct *vma,
1549 		unsigned long start, unsigned long end, int *locked)
1550 {
1551 	struct mm_struct *mm = vma->vm_mm;
1552 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1553 	int local_locked = 1;
1554 	int gup_flags;
1555 	long ret;
1556 
1557 	VM_BUG_ON(!PAGE_ALIGNED(start));
1558 	VM_BUG_ON(!PAGE_ALIGNED(end));
1559 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1560 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1561 	mmap_assert_locked(mm);
1562 
1563 	/*
1564 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1565 	 * faultin_page() to break COW, so it has no work to do here.
1566 	 */
1567 	if (vma->vm_flags & VM_LOCKONFAULT)
1568 		return nr_pages;
1569 
1570 	gup_flags = FOLL_TOUCH;
1571 	/*
1572 	 * We want to touch writable mappings with a write fault in order
1573 	 * to break COW, except for shared mappings because these don't COW
1574 	 * and we would not want to dirty them for nothing.
1575 	 */
1576 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1577 		gup_flags |= FOLL_WRITE;
1578 
1579 	/*
1580 	 * We want mlock to succeed for regions that have any permissions
1581 	 * other than PROT_NONE.
1582 	 */
1583 	if (vma_is_accessible(vma))
1584 		gup_flags |= FOLL_FORCE;
1585 
1586 	if (locked)
1587 		gup_flags |= FOLL_UNLOCKABLE;
1588 
1589 	/*
1590 	 * We made sure addr is within a VMA, so the following will
1591 	 * not result in a stack expansion that recurses back here.
1592 	 */
1593 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1594 			       NULL, locked ? locked : &local_locked);
1595 	lru_add_drain();
1596 	return ret;
1597 }
1598 
1599 /*
1600  * faultin_page_range() - populate (prefault) page tables inside the
1601  *			  given range readable/writable
1602  *
1603  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1604  *
1605  * @mm: the mm to populate page tables in
1606  * @start: start address
1607  * @end: end address
1608  * @write: whether to prefault readable or writable
1609  * @locked: whether the mmap_lock is still held
1610  *
1611  * Returns either number of processed pages in the MM, or a negative error
1612  * code on error (see __get_user_pages()). Note that this function reports
1613  * errors related to VMAs, such as incompatible mappings, as expected by
1614  * MADV_POPULATE_(READ|WRITE).
1615  *
1616  * The range must be page-aligned.
1617  *
1618  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1619  */
1620 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1621 			unsigned long end, bool write, int *locked)
1622 {
1623 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1624 	int gup_flags;
1625 	long ret;
1626 
1627 	VM_BUG_ON(!PAGE_ALIGNED(start));
1628 	VM_BUG_ON(!PAGE_ALIGNED(end));
1629 	mmap_assert_locked(mm);
1630 
1631 	/*
1632 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1633 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1634 	 *	       difference with !FOLL_FORCE, because the page is writable
1635 	 *	       in the page table.
1636 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1637 	 *		  a poisoned page.
1638 	 * !FOLL_FORCE: Require proper access permissions.
1639 	 */
1640 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1641 		    FOLL_MADV_POPULATE;
1642 	if (write)
1643 		gup_flags |= FOLL_WRITE;
1644 
1645 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1646 				      gup_flags);
1647 	lru_add_drain();
1648 	return ret;
1649 }
1650 
1651 /*
1652  * __mm_populate - populate and/or mlock pages within a range of address space.
1653  *
1654  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1655  * flags. VMAs must be already marked with the desired vm_flags, and
1656  * mmap_lock must not be held.
1657  */
1658 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1659 {
1660 	struct mm_struct *mm = current->mm;
1661 	unsigned long end, nstart, nend;
1662 	struct vm_area_struct *vma = NULL;
1663 	int locked = 0;
1664 	long ret = 0;
1665 
1666 	end = start + len;
1667 
1668 	for (nstart = start; nstart < end; nstart = nend) {
1669 		/*
1670 		 * We want to fault in pages for [nstart; end) address range.
1671 		 * Find first corresponding VMA.
1672 		 */
1673 		if (!locked) {
1674 			locked = 1;
1675 			mmap_read_lock(mm);
1676 			vma = find_vma_intersection(mm, nstart, end);
1677 		} else if (nstart >= vma->vm_end)
1678 			vma = find_vma_intersection(mm, vma->vm_end, end);
1679 
1680 		if (!vma)
1681 			break;
1682 		/*
1683 		 * Set [nstart; nend) to intersection of desired address
1684 		 * range with the first VMA. Also, skip undesirable VMA types.
1685 		 */
1686 		nend = min(end, vma->vm_end);
1687 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1688 			continue;
1689 		if (nstart < vma->vm_start)
1690 			nstart = vma->vm_start;
1691 		/*
1692 		 * Now fault in a range of pages. populate_vma_page_range()
1693 		 * double checks the vma flags, so that it won't mlock pages
1694 		 * if the vma was already munlocked.
1695 		 */
1696 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1697 		if (ret < 0) {
1698 			if (ignore_errors) {
1699 				ret = 0;
1700 				continue;	/* continue at next VMA */
1701 			}
1702 			break;
1703 		}
1704 		nend = nstart + ret * PAGE_SIZE;
1705 		ret = 0;
1706 	}
1707 	if (locked)
1708 		mmap_read_unlock(mm);
1709 	return ret;	/* 0 or negative error code */
1710 }
1711 #else /* CONFIG_MMU */
1712 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1713 		unsigned long nr_pages, struct page **pages,
1714 		int *locked, unsigned int foll_flags)
1715 {
1716 	struct vm_area_struct *vma;
1717 	bool must_unlock = false;
1718 	unsigned long vm_flags;
1719 	long i;
1720 
1721 	if (!nr_pages)
1722 		return 0;
1723 
1724 	/*
1725 	 * The internal caller expects GUP to manage the lock internally and the
1726 	 * lock must be released when this returns.
1727 	 */
1728 	if (!*locked) {
1729 		if (mmap_read_lock_killable(mm))
1730 			return -EAGAIN;
1731 		must_unlock = true;
1732 		*locked = 1;
1733 	}
1734 
1735 	/* calculate required read or write permissions.
1736 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1737 	 */
1738 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1739 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1740 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1741 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1742 
1743 	for (i = 0; i < nr_pages; i++) {
1744 		vma = find_vma(mm, start);
1745 		if (!vma)
1746 			break;
1747 
1748 		/* protect what we can, including chardevs */
1749 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1750 		    !(vm_flags & vma->vm_flags))
1751 			break;
1752 
1753 		if (pages) {
1754 			pages[i] = virt_to_page((void *)start);
1755 			if (pages[i])
1756 				get_page(pages[i]);
1757 		}
1758 
1759 		start = (start + PAGE_SIZE) & PAGE_MASK;
1760 	}
1761 
1762 	if (must_unlock && *locked) {
1763 		mmap_read_unlock(mm);
1764 		*locked = 0;
1765 	}
1766 
1767 	return i ? : -EFAULT;
1768 }
1769 #endif /* !CONFIG_MMU */
1770 
1771 /**
1772  * fault_in_writeable - fault in userspace address range for writing
1773  * @uaddr: start of address range
1774  * @size: size of address range
1775  *
1776  * Returns the number of bytes not faulted in (like copy_to_user() and
1777  * copy_from_user()).
1778  */
1779 size_t fault_in_writeable(char __user *uaddr, size_t size)
1780 {
1781 	char __user *start = uaddr, *end;
1782 
1783 	if (unlikely(size == 0))
1784 		return 0;
1785 	if (!user_write_access_begin(uaddr, size))
1786 		return size;
1787 	if (!PAGE_ALIGNED(uaddr)) {
1788 		unsafe_put_user(0, uaddr, out);
1789 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1790 	}
1791 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1792 	if (unlikely(end < start))
1793 		end = NULL;
1794 	while (uaddr != end) {
1795 		unsafe_put_user(0, uaddr, out);
1796 		uaddr += PAGE_SIZE;
1797 	}
1798 
1799 out:
1800 	user_write_access_end();
1801 	if (size > uaddr - start)
1802 		return size - (uaddr - start);
1803 	return 0;
1804 }
1805 EXPORT_SYMBOL(fault_in_writeable);
1806 
1807 /**
1808  * fault_in_subpage_writeable - fault in an address range for writing
1809  * @uaddr: start of address range
1810  * @size: size of address range
1811  *
1812  * Fault in a user address range for writing while checking for permissions at
1813  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1814  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1815  *
1816  * Returns the number of bytes not faulted in (like copy_to_user() and
1817  * copy_from_user()).
1818  */
1819 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1820 {
1821 	size_t faulted_in;
1822 
1823 	/*
1824 	 * Attempt faulting in at page granularity first for page table
1825 	 * permission checking. The arch-specific probe_subpage_writeable()
1826 	 * functions may not check for this.
1827 	 */
1828 	faulted_in = size - fault_in_writeable(uaddr, size);
1829 	if (faulted_in)
1830 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1831 
1832 	return size - faulted_in;
1833 }
1834 EXPORT_SYMBOL(fault_in_subpage_writeable);
1835 
1836 /*
1837  * fault_in_safe_writeable - fault in an address range for writing
1838  * @uaddr: start of address range
1839  * @size: length of address range
1840  *
1841  * Faults in an address range for writing.  This is primarily useful when we
1842  * already know that some or all of the pages in the address range aren't in
1843  * memory.
1844  *
1845  * Unlike fault_in_writeable(), this function is non-destructive.
1846  *
1847  * Note that we don't pin or otherwise hold the pages referenced that we fault
1848  * in.  There's no guarantee that they'll stay in memory for any duration of
1849  * time.
1850  *
1851  * Returns the number of bytes not faulted in, like copy_to_user() and
1852  * copy_from_user().
1853  */
1854 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1855 {
1856 	unsigned long start = (unsigned long)uaddr, end;
1857 	struct mm_struct *mm = current->mm;
1858 	bool unlocked = false;
1859 
1860 	if (unlikely(size == 0))
1861 		return 0;
1862 	end = PAGE_ALIGN(start + size);
1863 	if (end < start)
1864 		end = 0;
1865 
1866 	mmap_read_lock(mm);
1867 	do {
1868 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1869 			break;
1870 		start = (start + PAGE_SIZE) & PAGE_MASK;
1871 	} while (start != end);
1872 	mmap_read_unlock(mm);
1873 
1874 	if (size > (unsigned long)uaddr - start)
1875 		return size - ((unsigned long)uaddr - start);
1876 	return 0;
1877 }
1878 EXPORT_SYMBOL(fault_in_safe_writeable);
1879 
1880 /**
1881  * fault_in_readable - fault in userspace address range for reading
1882  * @uaddr: start of user address range
1883  * @size: size of user address range
1884  *
1885  * Returns the number of bytes not faulted in (like copy_to_user() and
1886  * copy_from_user()).
1887  */
1888 size_t fault_in_readable(const char __user *uaddr, size_t size)
1889 {
1890 	const char __user *start = uaddr, *end;
1891 	volatile char c;
1892 
1893 	if (unlikely(size == 0))
1894 		return 0;
1895 	if (!user_read_access_begin(uaddr, size))
1896 		return size;
1897 	if (!PAGE_ALIGNED(uaddr)) {
1898 		unsafe_get_user(c, uaddr, out);
1899 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1900 	}
1901 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1902 	if (unlikely(end < start))
1903 		end = NULL;
1904 	while (uaddr != end) {
1905 		unsafe_get_user(c, uaddr, out);
1906 		uaddr += PAGE_SIZE;
1907 	}
1908 
1909 out:
1910 	user_read_access_end();
1911 	(void)c;
1912 	if (size > uaddr - start)
1913 		return size - (uaddr - start);
1914 	return 0;
1915 }
1916 EXPORT_SYMBOL(fault_in_readable);
1917 
1918 /**
1919  * get_dump_page() - pin user page in memory while writing it to core dump
1920  * @addr: user address
1921  *
1922  * Returns struct page pointer of user page pinned for dump,
1923  * to be freed afterwards by put_page().
1924  *
1925  * Returns NULL on any kind of failure - a hole must then be inserted into
1926  * the corefile, to preserve alignment with its headers; and also returns
1927  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1928  * allowing a hole to be left in the corefile to save disk space.
1929  *
1930  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1931  */
1932 #ifdef CONFIG_ELF_CORE
1933 struct page *get_dump_page(unsigned long addr)
1934 {
1935 	struct page *page;
1936 	int locked = 0;
1937 	int ret;
1938 
1939 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
1940 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1941 	return (ret == 1) ? page : NULL;
1942 }
1943 #endif /* CONFIG_ELF_CORE */
1944 
1945 #ifdef CONFIG_MIGRATION
1946 /*
1947  * Returns the number of collected pages. Return value is always >= 0.
1948  */
1949 static unsigned long collect_longterm_unpinnable_pages(
1950 					struct list_head *movable_page_list,
1951 					unsigned long nr_pages,
1952 					struct page **pages)
1953 {
1954 	unsigned long i, collected = 0;
1955 	struct folio *prev_folio = NULL;
1956 	bool drain_allow = true;
1957 
1958 	for (i = 0; i < nr_pages; i++) {
1959 		struct folio *folio = page_folio(pages[i]);
1960 
1961 		if (folio == prev_folio)
1962 			continue;
1963 		prev_folio = folio;
1964 
1965 		if (folio_is_longterm_pinnable(folio))
1966 			continue;
1967 
1968 		collected++;
1969 
1970 		if (folio_is_device_coherent(folio))
1971 			continue;
1972 
1973 		if (folio_test_hugetlb(folio)) {
1974 			isolate_hugetlb(folio, movable_page_list);
1975 			continue;
1976 		}
1977 
1978 		if (!folio_test_lru(folio) && drain_allow) {
1979 			lru_add_drain_all();
1980 			drain_allow = false;
1981 		}
1982 
1983 		if (!folio_isolate_lru(folio))
1984 			continue;
1985 
1986 		list_add_tail(&folio->lru, movable_page_list);
1987 		node_stat_mod_folio(folio,
1988 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1989 				    folio_nr_pages(folio));
1990 	}
1991 
1992 	return collected;
1993 }
1994 
1995 /*
1996  * Unpins all pages and migrates device coherent pages and movable_page_list.
1997  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1998  * (or partial success).
1999  */
2000 static int migrate_longterm_unpinnable_pages(
2001 					struct list_head *movable_page_list,
2002 					unsigned long nr_pages,
2003 					struct page **pages)
2004 {
2005 	int ret;
2006 	unsigned long i;
2007 
2008 	for (i = 0; i < nr_pages; i++) {
2009 		struct folio *folio = page_folio(pages[i]);
2010 
2011 		if (folio_is_device_coherent(folio)) {
2012 			/*
2013 			 * Migration will fail if the page is pinned, so convert
2014 			 * the pin on the source page to a normal reference.
2015 			 */
2016 			pages[i] = NULL;
2017 			folio_get(folio);
2018 			gup_put_folio(folio, 1, FOLL_PIN);
2019 
2020 			if (migrate_device_coherent_page(&folio->page)) {
2021 				ret = -EBUSY;
2022 				goto err;
2023 			}
2024 
2025 			continue;
2026 		}
2027 
2028 		/*
2029 		 * We can't migrate pages with unexpected references, so drop
2030 		 * the reference obtained by __get_user_pages_locked().
2031 		 * Migrating pages have been added to movable_page_list after
2032 		 * calling folio_isolate_lru() which takes a reference so the
2033 		 * page won't be freed if it's migrating.
2034 		 */
2035 		unpin_user_page(pages[i]);
2036 		pages[i] = NULL;
2037 	}
2038 
2039 	if (!list_empty(movable_page_list)) {
2040 		struct migration_target_control mtc = {
2041 			.nid = NUMA_NO_NODE,
2042 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2043 		};
2044 
2045 		if (migrate_pages(movable_page_list, alloc_migration_target,
2046 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2047 				  MR_LONGTERM_PIN, NULL)) {
2048 			ret = -ENOMEM;
2049 			goto err;
2050 		}
2051 	}
2052 
2053 	putback_movable_pages(movable_page_list);
2054 
2055 	return -EAGAIN;
2056 
2057 err:
2058 	for (i = 0; i < nr_pages; i++)
2059 		if (pages[i])
2060 			unpin_user_page(pages[i]);
2061 	putback_movable_pages(movable_page_list);
2062 
2063 	return ret;
2064 }
2065 
2066 /*
2067  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2068  * pages in the range are required to be pinned via FOLL_PIN, before calling
2069  * this routine.
2070  *
2071  * If any pages in the range are not allowed to be pinned, then this routine
2072  * will migrate those pages away, unpin all the pages in the range and return
2073  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2074  * call this routine again.
2075  *
2076  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2077  * The caller should give up, and propagate the error back up the call stack.
2078  *
2079  * If everything is OK and all pages in the range are allowed to be pinned, then
2080  * this routine leaves all pages pinned and returns zero for success.
2081  */
2082 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2083 					    struct page **pages)
2084 {
2085 	unsigned long collected;
2086 	LIST_HEAD(movable_page_list);
2087 
2088 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2089 						nr_pages, pages);
2090 	if (!collected)
2091 		return 0;
2092 
2093 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2094 						pages);
2095 }
2096 #else
2097 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2098 					    struct page **pages)
2099 {
2100 	return 0;
2101 }
2102 #endif /* CONFIG_MIGRATION */
2103 
2104 /*
2105  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2106  * allows us to process the FOLL_LONGTERM flag.
2107  */
2108 static long __gup_longterm_locked(struct mm_struct *mm,
2109 				  unsigned long start,
2110 				  unsigned long nr_pages,
2111 				  struct page **pages,
2112 				  int *locked,
2113 				  unsigned int gup_flags)
2114 {
2115 	unsigned int flags;
2116 	long rc, nr_pinned_pages;
2117 
2118 	if (!(gup_flags & FOLL_LONGTERM))
2119 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2120 					       locked, gup_flags);
2121 
2122 	flags = memalloc_pin_save();
2123 	do {
2124 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2125 							  pages, locked,
2126 							  gup_flags);
2127 		if (nr_pinned_pages <= 0) {
2128 			rc = nr_pinned_pages;
2129 			break;
2130 		}
2131 
2132 		/* FOLL_LONGTERM implies FOLL_PIN */
2133 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2134 	} while (rc == -EAGAIN);
2135 	memalloc_pin_restore(flags);
2136 	return rc ? rc : nr_pinned_pages;
2137 }
2138 
2139 /*
2140  * Check that the given flags are valid for the exported gup/pup interface, and
2141  * update them with the required flags that the caller must have set.
2142  */
2143 static bool is_valid_gup_args(struct page **pages, int *locked,
2144 			      unsigned int *gup_flags_p, unsigned int to_set)
2145 {
2146 	unsigned int gup_flags = *gup_flags_p;
2147 
2148 	/*
2149 	 * These flags not allowed to be specified externally to the gup
2150 	 * interfaces:
2151 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2152 	 * - FOLL_REMOTE is internal only and used on follow_page()
2153 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2154 	 */
2155 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2156 		return false;
2157 
2158 	gup_flags |= to_set;
2159 	if (locked) {
2160 		/* At the external interface locked must be set */
2161 		if (WARN_ON_ONCE(*locked != 1))
2162 			return false;
2163 
2164 		gup_flags |= FOLL_UNLOCKABLE;
2165 	}
2166 
2167 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2168 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2169 			 (FOLL_PIN | FOLL_GET)))
2170 		return false;
2171 
2172 	/* LONGTERM can only be specified when pinning */
2173 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2174 		return false;
2175 
2176 	/* Pages input must be given if using GET/PIN */
2177 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2178 		return false;
2179 
2180 	/* We want to allow the pgmap to be hot-unplugged at all times */
2181 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2182 			 (gup_flags & FOLL_PCI_P2PDMA)))
2183 		return false;
2184 
2185 	*gup_flags_p = gup_flags;
2186 	return true;
2187 }
2188 
2189 #ifdef CONFIG_MMU
2190 /**
2191  * get_user_pages_remote() - pin user pages in memory
2192  * @mm:		mm_struct of target mm
2193  * @start:	starting user address
2194  * @nr_pages:	number of pages from start to pin
2195  * @gup_flags:	flags modifying lookup behaviour
2196  * @pages:	array that receives pointers to the pages pinned.
2197  *		Should be at least nr_pages long. Or NULL, if caller
2198  *		only intends to ensure the pages are faulted in.
2199  * @locked:	pointer to lock flag indicating whether lock is held and
2200  *		subsequently whether VM_FAULT_RETRY functionality can be
2201  *		utilised. Lock must initially be held.
2202  *
2203  * Returns either number of pages pinned (which may be less than the
2204  * number requested), or an error. Details about the return value:
2205  *
2206  * -- If nr_pages is 0, returns 0.
2207  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2208  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2209  *    pages pinned. Again, this may be less than nr_pages.
2210  *
2211  * The caller is responsible for releasing returned @pages, via put_page().
2212  *
2213  * Must be called with mmap_lock held for read or write.
2214  *
2215  * get_user_pages_remote walks a process's page tables and takes a reference
2216  * to each struct page that each user address corresponds to at a given
2217  * instant. That is, it takes the page that would be accessed if a user
2218  * thread accesses the given user virtual address at that instant.
2219  *
2220  * This does not guarantee that the page exists in the user mappings when
2221  * get_user_pages_remote returns, and there may even be a completely different
2222  * page there in some cases (eg. if mmapped pagecache has been invalidated
2223  * and subsequently re-faulted). However it does guarantee that the page
2224  * won't be freed completely. And mostly callers simply care that the page
2225  * contains data that was valid *at some point in time*. Typically, an IO
2226  * or similar operation cannot guarantee anything stronger anyway because
2227  * locks can't be held over the syscall boundary.
2228  *
2229  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2230  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2231  * be called after the page is finished with, and before put_page is called.
2232  *
2233  * get_user_pages_remote is typically used for fewer-copy IO operations,
2234  * to get a handle on the memory by some means other than accesses
2235  * via the user virtual addresses. The pages may be submitted for
2236  * DMA to devices or accessed via their kernel linear mapping (via the
2237  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2238  *
2239  * See also get_user_pages_fast, for performance critical applications.
2240  *
2241  * get_user_pages_remote should be phased out in favor of
2242  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2243  * should use get_user_pages_remote because it cannot pass
2244  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2245  */
2246 long get_user_pages_remote(struct mm_struct *mm,
2247 		unsigned long start, unsigned long nr_pages,
2248 		unsigned int gup_flags, struct page **pages,
2249 		int *locked)
2250 {
2251 	int local_locked = 1;
2252 
2253 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2254 			       FOLL_TOUCH | FOLL_REMOTE))
2255 		return -EINVAL;
2256 
2257 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2258 				       locked ? locked : &local_locked,
2259 				       gup_flags);
2260 }
2261 EXPORT_SYMBOL(get_user_pages_remote);
2262 
2263 #else /* CONFIG_MMU */
2264 long get_user_pages_remote(struct mm_struct *mm,
2265 			   unsigned long start, unsigned long nr_pages,
2266 			   unsigned int gup_flags, struct page **pages,
2267 			   int *locked)
2268 {
2269 	return 0;
2270 }
2271 #endif /* !CONFIG_MMU */
2272 
2273 /**
2274  * get_user_pages() - pin user pages in memory
2275  * @start:      starting user address
2276  * @nr_pages:   number of pages from start to pin
2277  * @gup_flags:  flags modifying lookup behaviour
2278  * @pages:      array that receives pointers to the pages pinned.
2279  *              Should be at least nr_pages long. Or NULL, if caller
2280  *              only intends to ensure the pages are faulted in.
2281  *
2282  * This is the same as get_user_pages_remote(), just with a less-flexible
2283  * calling convention where we assume that the mm being operated on belongs to
2284  * the current task, and doesn't allow passing of a locked parameter.  We also
2285  * obviously don't pass FOLL_REMOTE in here.
2286  */
2287 long get_user_pages(unsigned long start, unsigned long nr_pages,
2288 		    unsigned int gup_flags, struct page **pages)
2289 {
2290 	int locked = 1;
2291 
2292 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2293 		return -EINVAL;
2294 
2295 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2296 				       &locked, gup_flags);
2297 }
2298 EXPORT_SYMBOL(get_user_pages);
2299 
2300 /*
2301  * get_user_pages_unlocked() is suitable to replace the form:
2302  *
2303  *      mmap_read_lock(mm);
2304  *      get_user_pages(mm, ..., pages, NULL);
2305  *      mmap_read_unlock(mm);
2306  *
2307  *  with:
2308  *
2309  *      get_user_pages_unlocked(mm, ..., pages);
2310  *
2311  * It is functionally equivalent to get_user_pages_fast so
2312  * get_user_pages_fast should be used instead if specific gup_flags
2313  * (e.g. FOLL_FORCE) are not required.
2314  */
2315 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2316 			     struct page **pages, unsigned int gup_flags)
2317 {
2318 	int locked = 0;
2319 
2320 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2321 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2322 		return -EINVAL;
2323 
2324 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2325 				       &locked, gup_flags);
2326 }
2327 EXPORT_SYMBOL(get_user_pages_unlocked);
2328 
2329 /*
2330  * Fast GUP
2331  *
2332  * get_user_pages_fast attempts to pin user pages by walking the page
2333  * tables directly and avoids taking locks. Thus the walker needs to be
2334  * protected from page table pages being freed from under it, and should
2335  * block any THP splits.
2336  *
2337  * One way to achieve this is to have the walker disable interrupts, and
2338  * rely on IPIs from the TLB flushing code blocking before the page table
2339  * pages are freed. This is unsuitable for architectures that do not need
2340  * to broadcast an IPI when invalidating TLBs.
2341  *
2342  * Another way to achieve this is to batch up page table containing pages
2343  * belonging to more than one mm_user, then rcu_sched a callback to free those
2344  * pages. Disabling interrupts will allow the fast_gup walker to both block
2345  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2346  * (which is a relatively rare event). The code below adopts this strategy.
2347  *
2348  * Before activating this code, please be aware that the following assumptions
2349  * are currently made:
2350  *
2351  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2352  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2353  *
2354  *  *) ptes can be read atomically by the architecture.
2355  *
2356  *  *) access_ok is sufficient to validate userspace address ranges.
2357  *
2358  * The last two assumptions can be relaxed by the addition of helper functions.
2359  *
2360  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2361  */
2362 #ifdef CONFIG_HAVE_FAST_GUP
2363 
2364 /*
2365  * Used in the GUP-fast path to determine whether a pin is permitted for a
2366  * specific folio.
2367  *
2368  * This call assumes the caller has pinned the folio, that the lowest page table
2369  * level still points to this folio, and that interrupts have been disabled.
2370  *
2371  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2372  * (see comment describing the writable_file_mapping_allowed() function). We
2373  * therefore try to avoid the most egregious case of a long-term mapping doing
2374  * so.
2375  *
2376  * This function cannot be as thorough as that one as the VMA is not available
2377  * in the fast path, so instead we whitelist known good cases and if in doubt,
2378  * fall back to the slow path.
2379  */
2380 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2381 {
2382 	struct address_space *mapping;
2383 	unsigned long mapping_flags;
2384 
2385 	/*
2386 	 * If we aren't pinning then no problematic write can occur. A long term
2387 	 * pin is the most egregious case so this is the one we disallow.
2388 	 */
2389 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2390 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2391 		return true;
2392 
2393 	/* The folio is pinned, so we can safely access folio fields. */
2394 
2395 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2396 		return false;
2397 
2398 	/* hugetlb mappings do not require dirty-tracking. */
2399 	if (folio_test_hugetlb(folio))
2400 		return true;
2401 
2402 	/*
2403 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2404 	 * cannot proceed, which means no actions performed under RCU can
2405 	 * proceed either.
2406 	 *
2407 	 * inodes and thus their mappings are freed under RCU, which means the
2408 	 * mapping cannot be freed beneath us and thus we can safely dereference
2409 	 * it.
2410 	 */
2411 	lockdep_assert_irqs_disabled();
2412 
2413 	/*
2414 	 * However, there may be operations which _alter_ the mapping, so ensure
2415 	 * we read it once and only once.
2416 	 */
2417 	mapping = READ_ONCE(folio->mapping);
2418 
2419 	/*
2420 	 * The mapping may have been truncated, in any case we cannot determine
2421 	 * if this mapping is safe - fall back to slow path to determine how to
2422 	 * proceed.
2423 	 */
2424 	if (!mapping)
2425 		return false;
2426 
2427 	/* Anonymous folios pose no problem. */
2428 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2429 	if (mapping_flags)
2430 		return mapping_flags & PAGE_MAPPING_ANON;
2431 
2432 	/*
2433 	 * At this point, we know the mapping is non-null and points to an
2434 	 * address_space object. The only remaining whitelisted file system is
2435 	 * shmem.
2436 	 */
2437 	return shmem_mapping(mapping);
2438 }
2439 
2440 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2441 					    unsigned int flags,
2442 					    struct page **pages)
2443 {
2444 	while ((*nr) - nr_start) {
2445 		struct page *page = pages[--(*nr)];
2446 
2447 		ClearPageReferenced(page);
2448 		if (flags & FOLL_PIN)
2449 			unpin_user_page(page);
2450 		else
2451 			put_page(page);
2452 	}
2453 }
2454 
2455 /**
2456  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
2457  * @page:  pointer to page to be grabbed
2458  * @refs:  the value to (effectively) add to the folio's refcount
2459  * @flags: gup flags: these are the FOLL_* flag values.
2460  *
2461  * "grab" names in this file mean, "look at flags to decide whether to use
2462  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
2463  *
2464  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
2465  * same time. (That's true throughout the get_user_pages*() and
2466  * pin_user_pages*() APIs.) Cases:
2467  *
2468  *    FOLL_GET: folio's refcount will be incremented by @refs.
2469  *
2470  *    FOLL_PIN on large folios: folio's refcount will be incremented by
2471  *    @refs, and its pincount will be incremented by @refs.
2472  *
2473  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
2474  *    @refs * GUP_PIN_COUNTING_BIAS.
2475  *
2476  * Return: The folio containing @page (with refcount appropriately
2477  * incremented) for success, or NULL upon failure. If neither FOLL_GET
2478  * nor FOLL_PIN was set, that's considered failure, and furthermore,
2479  * a likely bug in the caller, so a warning is also emitted.
2480  *
2481  * It uses add ref unless zero to elevate the folio refcount and must be called
2482  * in fast path only.
2483  */
2484 static struct folio *try_grab_folio_fast(struct page *page, int refs,
2485 					 unsigned int flags)
2486 {
2487 	struct folio *folio;
2488 
2489 	/* Raise warn if it is not called in fast GUP */
2490 	VM_WARN_ON_ONCE(!irqs_disabled());
2491 
2492 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
2493 		return NULL;
2494 
2495 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
2496 		return NULL;
2497 
2498 	if (flags & FOLL_GET)
2499 		return try_get_folio(page, refs);
2500 
2501 	/* FOLL_PIN is set */
2502 
2503 	/*
2504 	 * Don't take a pin on the zero page - it's not going anywhere
2505 	 * and it is used in a *lot* of places.
2506 	 */
2507 	if (is_zero_page(page))
2508 		return page_folio(page);
2509 
2510 	folio = try_get_folio(page, refs);
2511 	if (!folio)
2512 		return NULL;
2513 
2514 	/*
2515 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
2516 	 * right zone, so fail and let the caller fall back to the slow
2517 	 * path.
2518 	 */
2519 	if (unlikely((flags & FOLL_LONGTERM) &&
2520 		     !folio_is_longterm_pinnable(folio))) {
2521 		if (!put_devmap_managed_page_refs(&folio->page, refs))
2522 			folio_put_refs(folio, refs);
2523 		return NULL;
2524 	}
2525 
2526 	/*
2527 	 * When pinning a large folio, use an exact count to track it.
2528 	 *
2529 	 * However, be sure to *also* increment the normal folio
2530 	 * refcount field at least once, so that the folio really
2531 	 * is pinned.  That's why the refcount from the earlier
2532 	 * try_get_folio() is left intact.
2533 	 */
2534 	if (folio_test_large(folio))
2535 		atomic_add(refs, &folio->_pincount);
2536 	else
2537 		folio_ref_add(folio,
2538 				refs * (GUP_PIN_COUNTING_BIAS - 1));
2539 	/*
2540 	 * Adjust the pincount before re-checking the PTE for changes.
2541 	 * This is essentially a smp_mb() and is paired with a memory
2542 	 * barrier in folio_try_share_anon_rmap_*().
2543 	 */
2544 	smp_mb__after_atomic();
2545 
2546 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
2547 
2548 	return folio;
2549 }
2550 
2551 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2552 /*
2553  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2554  * operations.
2555  *
2556  * To pin the page, fast-gup needs to do below in order:
2557  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2558  *
2559  * For the rest of pgtable operations where pgtable updates can be racy
2560  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2561  * is pinned.
2562  *
2563  * Above will work for all pte-level operations, including THP split.
2564  *
2565  * For THP collapse, it's a bit more complicated because fast-gup may be
2566  * walking a pgtable page that is being freed (pte is still valid but pmd
2567  * can be cleared already).  To avoid race in such condition, we need to
2568  * also check pmd here to make sure pmd doesn't change (corresponds to
2569  * pmdp_collapse_flush() in the THP collapse code path).
2570  */
2571 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2572 			 unsigned long end, unsigned int flags,
2573 			 struct page **pages, int *nr)
2574 {
2575 	struct dev_pagemap *pgmap = NULL;
2576 	int nr_start = *nr, ret = 0;
2577 	pte_t *ptep, *ptem;
2578 
2579 	ptem = ptep = pte_offset_map(&pmd, addr);
2580 	if (!ptep)
2581 		return 0;
2582 	do {
2583 		pte_t pte = ptep_get_lockless(ptep);
2584 		struct page *page;
2585 		struct folio *folio;
2586 
2587 		/*
2588 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2589 		 * pte_access_permitted() better should reject these pages
2590 		 * either way: otherwise, GUP-fast might succeed in
2591 		 * cases where ordinary GUP would fail due to VMA access
2592 		 * permissions.
2593 		 */
2594 		if (pte_protnone(pte))
2595 			goto pte_unmap;
2596 
2597 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2598 			goto pte_unmap;
2599 
2600 		if (pte_devmap(pte)) {
2601 			if (unlikely(flags & FOLL_LONGTERM))
2602 				goto pte_unmap;
2603 
2604 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2605 			if (unlikely(!pgmap)) {
2606 				undo_dev_pagemap(nr, nr_start, flags, pages);
2607 				goto pte_unmap;
2608 			}
2609 		} else if (pte_special(pte))
2610 			goto pte_unmap;
2611 
2612 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2613 		page = pte_page(pte);
2614 
2615 		folio = try_grab_folio_fast(page, 1, flags);
2616 		if (!folio)
2617 			goto pte_unmap;
2618 
2619 		if (unlikely(folio_is_secretmem(folio))) {
2620 			gup_put_folio(folio, 1, flags);
2621 			goto pte_unmap;
2622 		}
2623 
2624 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2625 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2626 			gup_put_folio(folio, 1, flags);
2627 			goto pte_unmap;
2628 		}
2629 
2630 		if (!folio_fast_pin_allowed(folio, flags)) {
2631 			gup_put_folio(folio, 1, flags);
2632 			goto pte_unmap;
2633 		}
2634 
2635 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2636 			gup_put_folio(folio, 1, flags);
2637 			goto pte_unmap;
2638 		}
2639 
2640 		/*
2641 		 * We need to make the page accessible if and only if we are
2642 		 * going to access its content (the FOLL_PIN case).  Please
2643 		 * see Documentation/core-api/pin_user_pages.rst for
2644 		 * details.
2645 		 */
2646 		if (flags & FOLL_PIN) {
2647 			ret = arch_make_page_accessible(page);
2648 			if (ret) {
2649 				gup_put_folio(folio, 1, flags);
2650 				goto pte_unmap;
2651 			}
2652 		}
2653 		folio_set_referenced(folio);
2654 		pages[*nr] = page;
2655 		(*nr)++;
2656 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2657 
2658 	ret = 1;
2659 
2660 pte_unmap:
2661 	if (pgmap)
2662 		put_dev_pagemap(pgmap);
2663 	pte_unmap(ptem);
2664 	return ret;
2665 }
2666 #else
2667 
2668 /*
2669  * If we can't determine whether or not a pte is special, then fail immediately
2670  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2671  * to be special.
2672  *
2673  * For a futex to be placed on a THP tail page, get_futex_key requires a
2674  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2675  * useful to have gup_huge_pmd even if we can't operate on ptes.
2676  */
2677 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2678 			 unsigned long end, unsigned int flags,
2679 			 struct page **pages, int *nr)
2680 {
2681 	return 0;
2682 }
2683 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2684 
2685 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2686 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2687 			     unsigned long end, unsigned int flags,
2688 			     struct page **pages, int *nr)
2689 {
2690 	int nr_start = *nr;
2691 	struct dev_pagemap *pgmap = NULL;
2692 
2693 	do {
2694 		struct page *page = pfn_to_page(pfn);
2695 
2696 		pgmap = get_dev_pagemap(pfn, pgmap);
2697 		if (unlikely(!pgmap)) {
2698 			undo_dev_pagemap(nr, nr_start, flags, pages);
2699 			break;
2700 		}
2701 
2702 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2703 			undo_dev_pagemap(nr, nr_start, flags, pages);
2704 			break;
2705 		}
2706 
2707 		SetPageReferenced(page);
2708 		pages[*nr] = page;
2709 		if (unlikely(try_grab_folio(page_folio(page), 1, flags))) {
2710 			undo_dev_pagemap(nr, nr_start, flags, pages);
2711 			break;
2712 		}
2713 		(*nr)++;
2714 		pfn++;
2715 	} while (addr += PAGE_SIZE, addr != end);
2716 
2717 	put_dev_pagemap(pgmap);
2718 	return addr == end;
2719 }
2720 
2721 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2722 				 unsigned long end, unsigned int flags,
2723 				 struct page **pages, int *nr)
2724 {
2725 	unsigned long fault_pfn;
2726 	int nr_start = *nr;
2727 
2728 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2729 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2730 		return 0;
2731 
2732 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2733 		undo_dev_pagemap(nr, nr_start, flags, pages);
2734 		return 0;
2735 	}
2736 	return 1;
2737 }
2738 
2739 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2740 				 unsigned long end, unsigned int flags,
2741 				 struct page **pages, int *nr)
2742 {
2743 	unsigned long fault_pfn;
2744 	int nr_start = *nr;
2745 
2746 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2747 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2748 		return 0;
2749 
2750 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2751 		undo_dev_pagemap(nr, nr_start, flags, pages);
2752 		return 0;
2753 	}
2754 	return 1;
2755 }
2756 #else
2757 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2758 				 unsigned long end, unsigned int flags,
2759 				 struct page **pages, int *nr)
2760 {
2761 	BUILD_BUG();
2762 	return 0;
2763 }
2764 
2765 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2766 				 unsigned long end, unsigned int flags,
2767 				 struct page **pages, int *nr)
2768 {
2769 	BUILD_BUG();
2770 	return 0;
2771 }
2772 #endif
2773 
2774 static int record_subpages(struct page *page, unsigned long addr,
2775 			   unsigned long end, struct page **pages)
2776 {
2777 	int nr;
2778 
2779 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2780 		pages[nr] = nth_page(page, nr);
2781 
2782 	return nr;
2783 }
2784 
2785 #ifdef CONFIG_ARCH_HAS_HUGEPD
2786 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2787 				      unsigned long sz)
2788 {
2789 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2790 	return (__boundary - 1 < end - 1) ? __boundary : end;
2791 }
2792 
2793 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2794 		       unsigned long end, unsigned int flags,
2795 		       struct page **pages, int *nr)
2796 {
2797 	unsigned long pte_end;
2798 	struct page *page;
2799 	struct folio *folio;
2800 	pte_t pte;
2801 	int refs;
2802 
2803 	pte_end = (addr + sz) & ~(sz-1);
2804 	if (pte_end < end)
2805 		end = pte_end;
2806 
2807 	pte = huge_ptep_get(ptep);
2808 
2809 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2810 		return 0;
2811 
2812 	/* hugepages are never "special" */
2813 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2814 
2815 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2816 	refs = record_subpages(page, addr, end, pages + *nr);
2817 
2818 	folio = try_grab_folio_fast(page, refs, flags);
2819 	if (!folio)
2820 		return 0;
2821 
2822 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2823 		gup_put_folio(folio, refs, flags);
2824 		return 0;
2825 	}
2826 
2827 	if (!folio_fast_pin_allowed(folio, flags)) {
2828 		gup_put_folio(folio, refs, flags);
2829 		return 0;
2830 	}
2831 
2832 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2833 		gup_put_folio(folio, refs, flags);
2834 		return 0;
2835 	}
2836 
2837 	*nr += refs;
2838 	folio_set_referenced(folio);
2839 	return 1;
2840 }
2841 
2842 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2843 		unsigned int pdshift, unsigned long end, unsigned int flags,
2844 		struct page **pages, int *nr)
2845 {
2846 	pte_t *ptep;
2847 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2848 	unsigned long next;
2849 
2850 	ptep = hugepte_offset(hugepd, addr, pdshift);
2851 	do {
2852 		next = hugepte_addr_end(addr, end, sz);
2853 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2854 			return 0;
2855 	} while (ptep++, addr = next, addr != end);
2856 
2857 	return 1;
2858 }
2859 #else
2860 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2861 		unsigned int pdshift, unsigned long end, unsigned int flags,
2862 		struct page **pages, int *nr)
2863 {
2864 	return 0;
2865 }
2866 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2867 
2868 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2869 			unsigned long end, unsigned int flags,
2870 			struct page **pages, int *nr)
2871 {
2872 	struct page *page;
2873 	struct folio *folio;
2874 	int refs;
2875 
2876 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2877 		return 0;
2878 
2879 	if (pmd_devmap(orig)) {
2880 		if (unlikely(flags & FOLL_LONGTERM))
2881 			return 0;
2882 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2883 					     pages, nr);
2884 	}
2885 
2886 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2887 	refs = record_subpages(page, addr, end, pages + *nr);
2888 
2889 	folio = try_grab_folio_fast(page, refs, flags);
2890 	if (!folio)
2891 		return 0;
2892 
2893 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2894 		gup_put_folio(folio, refs, flags);
2895 		return 0;
2896 	}
2897 
2898 	if (!folio_fast_pin_allowed(folio, flags)) {
2899 		gup_put_folio(folio, refs, flags);
2900 		return 0;
2901 	}
2902 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2903 		gup_put_folio(folio, refs, flags);
2904 		return 0;
2905 	}
2906 
2907 	*nr += refs;
2908 	folio_set_referenced(folio);
2909 	return 1;
2910 }
2911 
2912 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2913 			unsigned long end, unsigned int flags,
2914 			struct page **pages, int *nr)
2915 {
2916 	struct page *page;
2917 	struct folio *folio;
2918 	int refs;
2919 
2920 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2921 		return 0;
2922 
2923 	if (pud_devmap(orig)) {
2924 		if (unlikely(flags & FOLL_LONGTERM))
2925 			return 0;
2926 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2927 					     pages, nr);
2928 	}
2929 
2930 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2931 	refs = record_subpages(page, addr, end, pages + *nr);
2932 
2933 	folio = try_grab_folio_fast(page, refs, flags);
2934 	if (!folio)
2935 		return 0;
2936 
2937 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2938 		gup_put_folio(folio, refs, flags);
2939 		return 0;
2940 	}
2941 
2942 	if (!folio_fast_pin_allowed(folio, flags)) {
2943 		gup_put_folio(folio, refs, flags);
2944 		return 0;
2945 	}
2946 
2947 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2948 		gup_put_folio(folio, refs, flags);
2949 		return 0;
2950 	}
2951 
2952 	*nr += refs;
2953 	folio_set_referenced(folio);
2954 	return 1;
2955 }
2956 
2957 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2958 			unsigned long end, unsigned int flags,
2959 			struct page **pages, int *nr)
2960 {
2961 	int refs;
2962 	struct page *page;
2963 	struct folio *folio;
2964 
2965 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2966 		return 0;
2967 
2968 	BUILD_BUG_ON(pgd_devmap(orig));
2969 
2970 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2971 	refs = record_subpages(page, addr, end, pages + *nr);
2972 
2973 	folio = try_grab_folio_fast(page, refs, flags);
2974 	if (!folio)
2975 		return 0;
2976 
2977 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2978 		gup_put_folio(folio, refs, flags);
2979 		return 0;
2980 	}
2981 
2982 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2983 		gup_put_folio(folio, refs, flags);
2984 		return 0;
2985 	}
2986 
2987 	if (!folio_fast_pin_allowed(folio, flags)) {
2988 		gup_put_folio(folio, refs, flags);
2989 		return 0;
2990 	}
2991 
2992 	*nr += refs;
2993 	folio_set_referenced(folio);
2994 	return 1;
2995 }
2996 
2997 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2998 		unsigned int flags, struct page **pages, int *nr)
2999 {
3000 	unsigned long next;
3001 	pmd_t *pmdp;
3002 
3003 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3004 	do {
3005 		pmd_t pmd = pmdp_get_lockless(pmdp);
3006 
3007 		next = pmd_addr_end(addr, end);
3008 		if (!pmd_present(pmd))
3009 			return 0;
3010 
3011 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
3012 			     pmd_devmap(pmd))) {
3013 			/* See gup_pte_range() */
3014 			if (pmd_protnone(pmd))
3015 				return 0;
3016 
3017 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3018 				pages, nr))
3019 				return 0;
3020 
3021 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3022 			/*
3023 			 * architecture have different format for hugetlbfs
3024 			 * pmd format and THP pmd format
3025 			 */
3026 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3027 					 PMD_SHIFT, next, flags, pages, nr))
3028 				return 0;
3029 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3030 			return 0;
3031 	} while (pmdp++, addr = next, addr != end);
3032 
3033 	return 1;
3034 }
3035 
3036 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3037 			 unsigned int flags, struct page **pages, int *nr)
3038 {
3039 	unsigned long next;
3040 	pud_t *pudp;
3041 
3042 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3043 	do {
3044 		pud_t pud = READ_ONCE(*pudp);
3045 
3046 		next = pud_addr_end(addr, end);
3047 		if (unlikely(!pud_present(pud)))
3048 			return 0;
3049 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3050 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3051 					  pages, nr))
3052 				return 0;
3053 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3054 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3055 					 PUD_SHIFT, next, flags, pages, nr))
3056 				return 0;
3057 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3058 			return 0;
3059 	} while (pudp++, addr = next, addr != end);
3060 
3061 	return 1;
3062 }
3063 
3064 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3065 			 unsigned int flags, struct page **pages, int *nr)
3066 {
3067 	unsigned long next;
3068 	p4d_t *p4dp;
3069 
3070 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3071 	do {
3072 		p4d_t p4d = READ_ONCE(*p4dp);
3073 
3074 		next = p4d_addr_end(addr, end);
3075 		if (p4d_none(p4d))
3076 			return 0;
3077 		BUILD_BUG_ON(p4d_huge(p4d));
3078 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3079 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3080 					 P4D_SHIFT, next, flags, pages, nr))
3081 				return 0;
3082 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3083 			return 0;
3084 	} while (p4dp++, addr = next, addr != end);
3085 
3086 	return 1;
3087 }
3088 
3089 static void gup_pgd_range(unsigned long addr, unsigned long end,
3090 		unsigned int flags, struct page **pages, int *nr)
3091 {
3092 	unsigned long next;
3093 	pgd_t *pgdp;
3094 
3095 	pgdp = pgd_offset(current->mm, addr);
3096 	do {
3097 		pgd_t pgd = READ_ONCE(*pgdp);
3098 
3099 		next = pgd_addr_end(addr, end);
3100 		if (pgd_none(pgd))
3101 			return;
3102 		if (unlikely(pgd_huge(pgd))) {
3103 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3104 					  pages, nr))
3105 				return;
3106 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3107 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3108 					 PGDIR_SHIFT, next, flags, pages, nr))
3109 				return;
3110 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3111 			return;
3112 	} while (pgdp++, addr = next, addr != end);
3113 }
3114 #else
3115 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3116 		unsigned int flags, struct page **pages, int *nr)
3117 {
3118 }
3119 #endif /* CONFIG_HAVE_FAST_GUP */
3120 
3121 #ifndef gup_fast_permitted
3122 /*
3123  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3124  * we need to fall back to the slow version:
3125  */
3126 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3127 {
3128 	return true;
3129 }
3130 #endif
3131 
3132 static unsigned long lockless_pages_from_mm(unsigned long start,
3133 					    unsigned long end,
3134 					    unsigned int gup_flags,
3135 					    struct page **pages)
3136 {
3137 	unsigned long flags;
3138 	int nr_pinned = 0;
3139 	unsigned seq;
3140 
3141 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3142 	    !gup_fast_permitted(start, end))
3143 		return 0;
3144 
3145 	if (gup_flags & FOLL_PIN) {
3146 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3147 		if (seq & 1)
3148 			return 0;
3149 	}
3150 
3151 	/*
3152 	 * Disable interrupts. The nested form is used, in order to allow full,
3153 	 * general purpose use of this routine.
3154 	 *
3155 	 * With interrupts disabled, we block page table pages from being freed
3156 	 * from under us. See struct mmu_table_batch comments in
3157 	 * include/asm-generic/tlb.h for more details.
3158 	 *
3159 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3160 	 * that come from THPs splitting.
3161 	 */
3162 	local_irq_save(flags);
3163 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3164 	local_irq_restore(flags);
3165 
3166 	/*
3167 	 * When pinning pages for DMA there could be a concurrent write protect
3168 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3169 	 */
3170 	if (gup_flags & FOLL_PIN) {
3171 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3172 			unpin_user_pages_lockless(pages, nr_pinned);
3173 			return 0;
3174 		} else {
3175 			sanity_check_pinned_pages(pages, nr_pinned);
3176 		}
3177 	}
3178 	return nr_pinned;
3179 }
3180 
3181 static int internal_get_user_pages_fast(unsigned long start,
3182 					unsigned long nr_pages,
3183 					unsigned int gup_flags,
3184 					struct page **pages)
3185 {
3186 	unsigned long len, end;
3187 	unsigned long nr_pinned;
3188 	int locked = 0;
3189 	int ret;
3190 
3191 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3192 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3193 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3194 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3195 		return -EINVAL;
3196 
3197 	if (gup_flags & FOLL_PIN)
3198 		mm_set_has_pinned_flag(&current->mm->flags);
3199 
3200 	if (!(gup_flags & FOLL_FAST_ONLY))
3201 		might_lock_read(&current->mm->mmap_lock);
3202 
3203 	start = untagged_addr(start) & PAGE_MASK;
3204 	len = nr_pages << PAGE_SHIFT;
3205 	if (check_add_overflow(start, len, &end))
3206 		return -EOVERFLOW;
3207 	if (end > TASK_SIZE_MAX)
3208 		return -EFAULT;
3209 	if (unlikely(!access_ok((void __user *)start, len)))
3210 		return -EFAULT;
3211 
3212 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3213 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3214 		return nr_pinned;
3215 
3216 	/* Slow path: try to get the remaining pages with get_user_pages */
3217 	start += nr_pinned << PAGE_SHIFT;
3218 	pages += nr_pinned;
3219 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3220 				    pages, &locked,
3221 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3222 	if (ret < 0) {
3223 		/*
3224 		 * The caller has to unpin the pages we already pinned so
3225 		 * returning -errno is not an option
3226 		 */
3227 		if (nr_pinned)
3228 			return nr_pinned;
3229 		return ret;
3230 	}
3231 	return ret + nr_pinned;
3232 }
3233 
3234 /**
3235  * get_user_pages_fast_only() - pin user pages in memory
3236  * @start:      starting user address
3237  * @nr_pages:   number of pages from start to pin
3238  * @gup_flags:  flags modifying pin behaviour
3239  * @pages:      array that receives pointers to the pages pinned.
3240  *              Should be at least nr_pages long.
3241  *
3242  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3243  * the regular GUP.
3244  *
3245  * If the architecture does not support this function, simply return with no
3246  * pages pinned.
3247  *
3248  * Careful, careful! COW breaking can go either way, so a non-write
3249  * access can get ambiguous page results. If you call this function without
3250  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3251  */
3252 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3253 			     unsigned int gup_flags, struct page **pages)
3254 {
3255 	/*
3256 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3257 	 * because gup fast is always a "pin with a +1 page refcount" request.
3258 	 *
3259 	 * FOLL_FAST_ONLY is required in order to match the API description of
3260 	 * this routine: no fall back to regular ("slow") GUP.
3261 	 */
3262 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3263 			       FOLL_GET | FOLL_FAST_ONLY))
3264 		return -EINVAL;
3265 
3266 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3267 }
3268 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3269 
3270 /**
3271  * get_user_pages_fast() - pin user pages in memory
3272  * @start:      starting user address
3273  * @nr_pages:   number of pages from start to pin
3274  * @gup_flags:  flags modifying pin behaviour
3275  * @pages:      array that receives pointers to the pages pinned.
3276  *              Should be at least nr_pages long.
3277  *
3278  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3279  * If not successful, it will fall back to taking the lock and
3280  * calling get_user_pages().
3281  *
3282  * Returns number of pages pinned. This may be fewer than the number requested.
3283  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3284  * -errno.
3285  */
3286 int get_user_pages_fast(unsigned long start, int nr_pages,
3287 			unsigned int gup_flags, struct page **pages)
3288 {
3289 	/*
3290 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3291 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3292 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3293 	 * request.
3294 	 */
3295 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3296 		return -EINVAL;
3297 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3298 }
3299 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3300 
3301 /**
3302  * pin_user_pages_fast() - pin user pages in memory without taking locks
3303  *
3304  * @start:      starting user address
3305  * @nr_pages:   number of pages from start to pin
3306  * @gup_flags:  flags modifying pin behaviour
3307  * @pages:      array that receives pointers to the pages pinned.
3308  *              Should be at least nr_pages long.
3309  *
3310  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3311  * get_user_pages_fast() for documentation on the function arguments, because
3312  * the arguments here are identical.
3313  *
3314  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3315  * see Documentation/core-api/pin_user_pages.rst for further details.
3316  *
3317  * Note that if a zero_page is amongst the returned pages, it will not have
3318  * pins in it and unpin_user_page() will not remove pins from it.
3319  */
3320 int pin_user_pages_fast(unsigned long start, int nr_pages,
3321 			unsigned int gup_flags, struct page **pages)
3322 {
3323 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3324 		return -EINVAL;
3325 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3326 }
3327 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3328 
3329 /**
3330  * pin_user_pages_remote() - pin pages of a remote process
3331  *
3332  * @mm:		mm_struct of target mm
3333  * @start:	starting user address
3334  * @nr_pages:	number of pages from start to pin
3335  * @gup_flags:	flags modifying lookup behaviour
3336  * @pages:	array that receives pointers to the pages pinned.
3337  *		Should be at least nr_pages long.
3338  * @locked:	pointer to lock flag indicating whether lock is held and
3339  *		subsequently whether VM_FAULT_RETRY functionality can be
3340  *		utilised. Lock must initially be held.
3341  *
3342  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3343  * get_user_pages_remote() for documentation on the function arguments, because
3344  * the arguments here are identical.
3345  *
3346  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3347  * see Documentation/core-api/pin_user_pages.rst for details.
3348  *
3349  * Note that if a zero_page is amongst the returned pages, it will not have
3350  * pins in it and unpin_user_page*() will not remove pins from it.
3351  */
3352 long pin_user_pages_remote(struct mm_struct *mm,
3353 			   unsigned long start, unsigned long nr_pages,
3354 			   unsigned int gup_flags, struct page **pages,
3355 			   int *locked)
3356 {
3357 	int local_locked = 1;
3358 
3359 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3360 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3361 		return 0;
3362 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3363 				     locked ? locked : &local_locked,
3364 				     gup_flags);
3365 }
3366 EXPORT_SYMBOL(pin_user_pages_remote);
3367 
3368 /**
3369  * pin_user_pages() - pin user pages in memory for use by other devices
3370  *
3371  * @start:	starting user address
3372  * @nr_pages:	number of pages from start to pin
3373  * @gup_flags:	flags modifying lookup behaviour
3374  * @pages:	array that receives pointers to the pages pinned.
3375  *		Should be at least nr_pages long.
3376  *
3377  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3378  * FOLL_PIN is set.
3379  *
3380  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3381  * see Documentation/core-api/pin_user_pages.rst for details.
3382  *
3383  * Note that if a zero_page is amongst the returned pages, it will not have
3384  * pins in it and unpin_user_page*() will not remove pins from it.
3385  */
3386 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3387 		    unsigned int gup_flags, struct page **pages)
3388 {
3389 	int locked = 1;
3390 
3391 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3392 		return 0;
3393 	return __gup_longterm_locked(current->mm, start, nr_pages,
3394 				     pages, &locked, gup_flags);
3395 }
3396 EXPORT_SYMBOL(pin_user_pages);
3397 
3398 /*
3399  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3400  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3401  * FOLL_PIN and rejects FOLL_GET.
3402  *
3403  * Note that if a zero_page is amongst the returned pages, it will not have
3404  * pins in it and unpin_user_page*() will not remove pins from it.
3405  */
3406 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3407 			     struct page **pages, unsigned int gup_flags)
3408 {
3409 	int locked = 0;
3410 
3411 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3412 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3413 		return 0;
3414 
3415 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3416 				     &locked, gup_flags);
3417 }
3418 EXPORT_SYMBOL(pin_user_pages_unlocked);
3419