1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 /** 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 133 * 134 * @page: pointer to page to be grabbed 135 * @flags: gup flags: these are the FOLL_* flag values. 136 * 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 138 * time. Cases: 139 * 140 * FOLL_GET: page's refcount will be incremented by 1. 141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 142 * 143 * Return: true for success, or if no action was required (if neither FOLL_PIN 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 145 * FOLL_PIN was set, but the page could not be grabbed. 146 */ 147 bool __must_check try_grab_page(struct page *page, unsigned int flags) 148 { 149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 150 151 if (flags & FOLL_GET) 152 return try_get_page(page); 153 else if (flags & FOLL_PIN) { 154 int refs = 1; 155 156 page = compound_head(page); 157 158 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 159 return false; 160 161 if (hpage_pincount_available(page)) 162 hpage_pincount_add(page, 1); 163 else 164 refs = GUP_PIN_COUNTING_BIAS; 165 166 /* 167 * Similar to try_grab_compound_head(): even if using the 168 * hpage_pincount_add/_sub() routines, be sure to 169 * *also* increment the normal page refcount field at least 170 * once, so that the page really is pinned. 171 */ 172 page_ref_add(page, refs); 173 174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 175 } 176 177 return true; 178 } 179 180 #ifdef CONFIG_DEV_PAGEMAP_OPS 181 static bool __unpin_devmap_managed_user_page(struct page *page) 182 { 183 int count, refs = 1; 184 185 if (!page_is_devmap_managed(page)) 186 return false; 187 188 if (hpage_pincount_available(page)) 189 hpage_pincount_sub(page, 1); 190 else 191 refs = GUP_PIN_COUNTING_BIAS; 192 193 count = page_ref_sub_return(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 196 /* 197 * devmap page refcounts are 1-based, rather than 0-based: if 198 * refcount is 1, then the page is free and the refcount is 199 * stable because nobody holds a reference on the page. 200 */ 201 if (count == 1) 202 free_devmap_managed_page(page); 203 else if (!count) 204 __put_page(page); 205 206 return true; 207 } 208 #else 209 static bool __unpin_devmap_managed_user_page(struct page *page) 210 { 211 return false; 212 } 213 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 214 215 /** 216 * unpin_user_page() - release a dma-pinned page 217 * @page: pointer to page to be released 218 * 219 * Pages that were pinned via pin_user_pages*() must be released via either 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 221 * that such pages can be separately tracked and uniquely handled. In 222 * particular, interactions with RDMA and filesystems need special handling. 223 */ 224 void unpin_user_page(struct page *page) 225 { 226 int refs = 1; 227 228 page = compound_head(page); 229 230 /* 231 * For devmap managed pages we need to catch refcount transition from 232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 233 * page is free and we need to inform the device driver through 234 * callback. See include/linux/memremap.h and HMM for details. 235 */ 236 if (__unpin_devmap_managed_user_page(page)) 237 return; 238 239 if (hpage_pincount_available(page)) 240 hpage_pincount_sub(page, 1); 241 else 242 refs = GUP_PIN_COUNTING_BIAS; 243 244 if (page_ref_sub_and_test(page, refs)) 245 __put_page(page); 246 247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 248 } 249 EXPORT_SYMBOL(unpin_user_page); 250 251 /** 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 253 * @pages: array of pages to be maybe marked dirty, and definitely released. 254 * @npages: number of pages in the @pages array. 255 * @make_dirty: whether to mark the pages dirty 256 * 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 258 * variants called on that page. 259 * 260 * For each page in the @pages array, make that page (or its head page, if a 261 * compound page) dirty, if @make_dirty is true, and if the page was previously 262 * listed as clean. In any case, releases all pages using unpin_user_page(), 263 * possibly via unpin_user_pages(), for the non-dirty case. 264 * 265 * Please see the unpin_user_page() documentation for details. 266 * 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 268 * required, then the caller should a) verify that this is really correct, 269 * because _lock() is usually required, and b) hand code it: 270 * set_page_dirty_lock(), unpin_user_page(). 271 * 272 */ 273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 274 bool make_dirty) 275 { 276 unsigned long index; 277 278 /* 279 * TODO: this can be optimized for huge pages: if a series of pages is 280 * physically contiguous and part of the same compound page, then a 281 * single operation to the head page should suffice. 282 */ 283 284 if (!make_dirty) { 285 unpin_user_pages(pages, npages); 286 return; 287 } 288 289 for (index = 0; index < npages; index++) { 290 struct page *page = compound_head(pages[index]); 291 /* 292 * Checking PageDirty at this point may race with 293 * clear_page_dirty_for_io(), but that's OK. Two key 294 * cases: 295 * 296 * 1) This code sees the page as already dirty, so it 297 * skips the call to set_page_dirty(). That could happen 298 * because clear_page_dirty_for_io() called 299 * page_mkclean(), followed by set_page_dirty(). 300 * However, now the page is going to get written back, 301 * which meets the original intention of setting it 302 * dirty, so all is well: clear_page_dirty_for_io() goes 303 * on to call TestClearPageDirty(), and write the page 304 * back. 305 * 306 * 2) This code sees the page as clean, so it calls 307 * set_page_dirty(). The page stays dirty, despite being 308 * written back, so it gets written back again in the 309 * next writeback cycle. This is harmless. 310 */ 311 if (!PageDirty(page)) 312 set_page_dirty_lock(page); 313 unpin_user_page(page); 314 } 315 } 316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 317 318 /** 319 * unpin_user_pages() - release an array of gup-pinned pages. 320 * @pages: array of pages to be marked dirty and released. 321 * @npages: number of pages in the @pages array. 322 * 323 * For each page in the @pages array, release the page using unpin_user_page(). 324 * 325 * Please see the unpin_user_page() documentation for details. 326 */ 327 void unpin_user_pages(struct page **pages, unsigned long npages) 328 { 329 unsigned long index; 330 331 /* 332 * TODO: this can be optimized for huge pages: if a series of pages is 333 * physically contiguous and part of the same compound page, then a 334 * single operation to the head page should suffice. 335 */ 336 for (index = 0; index < npages; index++) 337 unpin_user_page(pages[index]); 338 } 339 EXPORT_SYMBOL(unpin_user_pages); 340 341 #ifdef CONFIG_MMU 342 static struct page *no_page_table(struct vm_area_struct *vma, 343 unsigned int flags) 344 { 345 /* 346 * When core dumping an enormous anonymous area that nobody 347 * has touched so far, we don't want to allocate unnecessary pages or 348 * page tables. Return error instead of NULL to skip handle_mm_fault, 349 * then get_dump_page() will return NULL to leave a hole in the dump. 350 * But we can only make this optimization where a hole would surely 351 * be zero-filled if handle_mm_fault() actually did handle it. 352 */ 353 if ((flags & FOLL_DUMP) && 354 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 355 return ERR_PTR(-EFAULT); 356 return NULL; 357 } 358 359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 360 pte_t *pte, unsigned int flags) 361 { 362 /* No page to get reference */ 363 if (flags & FOLL_GET) 364 return -EFAULT; 365 366 if (flags & FOLL_TOUCH) { 367 pte_t entry = *pte; 368 369 if (flags & FOLL_WRITE) 370 entry = pte_mkdirty(entry); 371 entry = pte_mkyoung(entry); 372 373 if (!pte_same(*pte, entry)) { 374 set_pte_at(vma->vm_mm, address, pte, entry); 375 update_mmu_cache(vma, address, pte); 376 } 377 } 378 379 /* Proper page table entry exists, but no corresponding struct page */ 380 return -EEXIST; 381 } 382 383 /* 384 * FOLL_FORCE or a forced COW break can write even to unwritable pte's, 385 * but only after we've gone through a COW cycle and they are dirty. 386 */ 387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 388 { 389 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte)); 390 } 391 392 /* 393 * A (separate) COW fault might break the page the other way and 394 * get_user_pages() would return the page from what is now the wrong 395 * VM. So we need to force a COW break at GUP time even for reads. 396 */ 397 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags) 398 { 399 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN)); 400 } 401 402 static struct page *follow_page_pte(struct vm_area_struct *vma, 403 unsigned long address, pmd_t *pmd, unsigned int flags, 404 struct dev_pagemap **pgmap) 405 { 406 struct mm_struct *mm = vma->vm_mm; 407 struct page *page; 408 spinlock_t *ptl; 409 pte_t *ptep, pte; 410 int ret; 411 412 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 413 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 414 (FOLL_PIN | FOLL_GET))) 415 return ERR_PTR(-EINVAL); 416 retry: 417 if (unlikely(pmd_bad(*pmd))) 418 return no_page_table(vma, flags); 419 420 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 421 pte = *ptep; 422 if (!pte_present(pte)) { 423 swp_entry_t entry; 424 /* 425 * KSM's break_ksm() relies upon recognizing a ksm page 426 * even while it is being migrated, so for that case we 427 * need migration_entry_wait(). 428 */ 429 if (likely(!(flags & FOLL_MIGRATION))) 430 goto no_page; 431 if (pte_none(pte)) 432 goto no_page; 433 entry = pte_to_swp_entry(pte); 434 if (!is_migration_entry(entry)) 435 goto no_page; 436 pte_unmap_unlock(ptep, ptl); 437 migration_entry_wait(mm, pmd, address); 438 goto retry; 439 } 440 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 441 goto no_page; 442 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 443 pte_unmap_unlock(ptep, ptl); 444 return NULL; 445 } 446 447 page = vm_normal_page(vma, address, pte); 448 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 449 /* 450 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 451 * case since they are only valid while holding the pgmap 452 * reference. 453 */ 454 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 455 if (*pgmap) 456 page = pte_page(pte); 457 else 458 goto no_page; 459 } else if (unlikely(!page)) { 460 if (flags & FOLL_DUMP) { 461 /* Avoid special (like zero) pages in core dumps */ 462 page = ERR_PTR(-EFAULT); 463 goto out; 464 } 465 466 if (is_zero_pfn(pte_pfn(pte))) { 467 page = pte_page(pte); 468 } else { 469 ret = follow_pfn_pte(vma, address, ptep, flags); 470 page = ERR_PTR(ret); 471 goto out; 472 } 473 } 474 475 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 476 get_page(page); 477 pte_unmap_unlock(ptep, ptl); 478 lock_page(page); 479 ret = split_huge_page(page); 480 unlock_page(page); 481 put_page(page); 482 if (ret) 483 return ERR_PTR(ret); 484 goto retry; 485 } 486 487 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 488 if (unlikely(!try_grab_page(page, flags))) { 489 page = ERR_PTR(-ENOMEM); 490 goto out; 491 } 492 /* 493 * We need to make the page accessible if and only if we are going 494 * to access its content (the FOLL_PIN case). Please see 495 * Documentation/core-api/pin_user_pages.rst for details. 496 */ 497 if (flags & FOLL_PIN) { 498 ret = arch_make_page_accessible(page); 499 if (ret) { 500 unpin_user_page(page); 501 page = ERR_PTR(ret); 502 goto out; 503 } 504 } 505 if (flags & FOLL_TOUCH) { 506 if ((flags & FOLL_WRITE) && 507 !pte_dirty(pte) && !PageDirty(page)) 508 set_page_dirty(page); 509 /* 510 * pte_mkyoung() would be more correct here, but atomic care 511 * is needed to avoid losing the dirty bit: it is easier to use 512 * mark_page_accessed(). 513 */ 514 mark_page_accessed(page); 515 } 516 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 517 /* Do not mlock pte-mapped THP */ 518 if (PageTransCompound(page)) 519 goto out; 520 521 /* 522 * The preliminary mapping check is mainly to avoid the 523 * pointless overhead of lock_page on the ZERO_PAGE 524 * which might bounce very badly if there is contention. 525 * 526 * If the page is already locked, we don't need to 527 * handle it now - vmscan will handle it later if and 528 * when it attempts to reclaim the page. 529 */ 530 if (page->mapping && trylock_page(page)) { 531 lru_add_drain(); /* push cached pages to LRU */ 532 /* 533 * Because we lock page here, and migration is 534 * blocked by the pte's page reference, and we 535 * know the page is still mapped, we don't even 536 * need to check for file-cache page truncation. 537 */ 538 mlock_vma_page(page); 539 unlock_page(page); 540 } 541 } 542 out: 543 pte_unmap_unlock(ptep, ptl); 544 return page; 545 no_page: 546 pte_unmap_unlock(ptep, ptl); 547 if (!pte_none(pte)) 548 return NULL; 549 return no_page_table(vma, flags); 550 } 551 552 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 553 unsigned long address, pud_t *pudp, 554 unsigned int flags, 555 struct follow_page_context *ctx) 556 { 557 pmd_t *pmd, pmdval; 558 spinlock_t *ptl; 559 struct page *page; 560 struct mm_struct *mm = vma->vm_mm; 561 562 pmd = pmd_offset(pudp, address); 563 /* 564 * The READ_ONCE() will stabilize the pmdval in a register or 565 * on the stack so that it will stop changing under the code. 566 */ 567 pmdval = READ_ONCE(*pmd); 568 if (pmd_none(pmdval)) 569 return no_page_table(vma, flags); 570 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 571 page = follow_huge_pmd(mm, address, pmd, flags); 572 if (page) 573 return page; 574 return no_page_table(vma, flags); 575 } 576 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 577 page = follow_huge_pd(vma, address, 578 __hugepd(pmd_val(pmdval)), flags, 579 PMD_SHIFT); 580 if (page) 581 return page; 582 return no_page_table(vma, flags); 583 } 584 retry: 585 if (!pmd_present(pmdval)) { 586 if (likely(!(flags & FOLL_MIGRATION))) 587 return no_page_table(vma, flags); 588 VM_BUG_ON(thp_migration_supported() && 589 !is_pmd_migration_entry(pmdval)); 590 if (is_pmd_migration_entry(pmdval)) 591 pmd_migration_entry_wait(mm, pmd); 592 pmdval = READ_ONCE(*pmd); 593 /* 594 * MADV_DONTNEED may convert the pmd to null because 595 * mmap_lock is held in read mode 596 */ 597 if (pmd_none(pmdval)) 598 return no_page_table(vma, flags); 599 goto retry; 600 } 601 if (pmd_devmap(pmdval)) { 602 ptl = pmd_lock(mm, pmd); 603 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 604 spin_unlock(ptl); 605 if (page) 606 return page; 607 } 608 if (likely(!pmd_trans_huge(pmdval))) 609 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 610 611 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 612 return no_page_table(vma, flags); 613 614 retry_locked: 615 ptl = pmd_lock(mm, pmd); 616 if (unlikely(pmd_none(*pmd))) { 617 spin_unlock(ptl); 618 return no_page_table(vma, flags); 619 } 620 if (unlikely(!pmd_present(*pmd))) { 621 spin_unlock(ptl); 622 if (likely(!(flags & FOLL_MIGRATION))) 623 return no_page_table(vma, flags); 624 pmd_migration_entry_wait(mm, pmd); 625 goto retry_locked; 626 } 627 if (unlikely(!pmd_trans_huge(*pmd))) { 628 spin_unlock(ptl); 629 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 630 } 631 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 632 int ret; 633 page = pmd_page(*pmd); 634 if (is_huge_zero_page(page)) { 635 spin_unlock(ptl); 636 ret = 0; 637 split_huge_pmd(vma, pmd, address); 638 if (pmd_trans_unstable(pmd)) 639 ret = -EBUSY; 640 } else if (flags & FOLL_SPLIT) { 641 if (unlikely(!try_get_page(page))) { 642 spin_unlock(ptl); 643 return ERR_PTR(-ENOMEM); 644 } 645 spin_unlock(ptl); 646 lock_page(page); 647 ret = split_huge_page(page); 648 unlock_page(page); 649 put_page(page); 650 if (pmd_none(*pmd)) 651 return no_page_table(vma, flags); 652 } else { /* flags & FOLL_SPLIT_PMD */ 653 spin_unlock(ptl); 654 split_huge_pmd(vma, pmd, address); 655 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 656 } 657 658 return ret ? ERR_PTR(ret) : 659 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 660 } 661 page = follow_trans_huge_pmd(vma, address, pmd, flags); 662 spin_unlock(ptl); 663 ctx->page_mask = HPAGE_PMD_NR - 1; 664 return page; 665 } 666 667 static struct page *follow_pud_mask(struct vm_area_struct *vma, 668 unsigned long address, p4d_t *p4dp, 669 unsigned int flags, 670 struct follow_page_context *ctx) 671 { 672 pud_t *pud; 673 spinlock_t *ptl; 674 struct page *page; 675 struct mm_struct *mm = vma->vm_mm; 676 677 pud = pud_offset(p4dp, address); 678 if (pud_none(*pud)) 679 return no_page_table(vma, flags); 680 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 681 page = follow_huge_pud(mm, address, pud, flags); 682 if (page) 683 return page; 684 return no_page_table(vma, flags); 685 } 686 if (is_hugepd(__hugepd(pud_val(*pud)))) { 687 page = follow_huge_pd(vma, address, 688 __hugepd(pud_val(*pud)), flags, 689 PUD_SHIFT); 690 if (page) 691 return page; 692 return no_page_table(vma, flags); 693 } 694 if (pud_devmap(*pud)) { 695 ptl = pud_lock(mm, pud); 696 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 697 spin_unlock(ptl); 698 if (page) 699 return page; 700 } 701 if (unlikely(pud_bad(*pud))) 702 return no_page_table(vma, flags); 703 704 return follow_pmd_mask(vma, address, pud, flags, ctx); 705 } 706 707 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 708 unsigned long address, pgd_t *pgdp, 709 unsigned int flags, 710 struct follow_page_context *ctx) 711 { 712 p4d_t *p4d; 713 struct page *page; 714 715 p4d = p4d_offset(pgdp, address); 716 if (p4d_none(*p4d)) 717 return no_page_table(vma, flags); 718 BUILD_BUG_ON(p4d_huge(*p4d)); 719 if (unlikely(p4d_bad(*p4d))) 720 return no_page_table(vma, flags); 721 722 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 723 page = follow_huge_pd(vma, address, 724 __hugepd(p4d_val(*p4d)), flags, 725 P4D_SHIFT); 726 if (page) 727 return page; 728 return no_page_table(vma, flags); 729 } 730 return follow_pud_mask(vma, address, p4d, flags, ctx); 731 } 732 733 /** 734 * follow_page_mask - look up a page descriptor from a user-virtual address 735 * @vma: vm_area_struct mapping @address 736 * @address: virtual address to look up 737 * @flags: flags modifying lookup behaviour 738 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 739 * pointer to output page_mask 740 * 741 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 742 * 743 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 744 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 745 * 746 * On output, the @ctx->page_mask is set according to the size of the page. 747 * 748 * Return: the mapped (struct page *), %NULL if no mapping exists, or 749 * an error pointer if there is a mapping to something not represented 750 * by a page descriptor (see also vm_normal_page()). 751 */ 752 static struct page *follow_page_mask(struct vm_area_struct *vma, 753 unsigned long address, unsigned int flags, 754 struct follow_page_context *ctx) 755 { 756 pgd_t *pgd; 757 struct page *page; 758 struct mm_struct *mm = vma->vm_mm; 759 760 ctx->page_mask = 0; 761 762 /* make this handle hugepd */ 763 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 764 if (!IS_ERR(page)) { 765 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 766 return page; 767 } 768 769 pgd = pgd_offset(mm, address); 770 771 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 772 return no_page_table(vma, flags); 773 774 if (pgd_huge(*pgd)) { 775 page = follow_huge_pgd(mm, address, pgd, flags); 776 if (page) 777 return page; 778 return no_page_table(vma, flags); 779 } 780 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 781 page = follow_huge_pd(vma, address, 782 __hugepd(pgd_val(*pgd)), flags, 783 PGDIR_SHIFT); 784 if (page) 785 return page; 786 return no_page_table(vma, flags); 787 } 788 789 return follow_p4d_mask(vma, address, pgd, flags, ctx); 790 } 791 792 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 793 unsigned int foll_flags) 794 { 795 struct follow_page_context ctx = { NULL }; 796 struct page *page; 797 798 page = follow_page_mask(vma, address, foll_flags, &ctx); 799 if (ctx.pgmap) 800 put_dev_pagemap(ctx.pgmap); 801 return page; 802 } 803 804 static int get_gate_page(struct mm_struct *mm, unsigned long address, 805 unsigned int gup_flags, struct vm_area_struct **vma, 806 struct page **page) 807 { 808 pgd_t *pgd; 809 p4d_t *p4d; 810 pud_t *pud; 811 pmd_t *pmd; 812 pte_t *pte; 813 int ret = -EFAULT; 814 815 /* user gate pages are read-only */ 816 if (gup_flags & FOLL_WRITE) 817 return -EFAULT; 818 if (address > TASK_SIZE) 819 pgd = pgd_offset_k(address); 820 else 821 pgd = pgd_offset_gate(mm, address); 822 if (pgd_none(*pgd)) 823 return -EFAULT; 824 p4d = p4d_offset(pgd, address); 825 if (p4d_none(*p4d)) 826 return -EFAULT; 827 pud = pud_offset(p4d, address); 828 if (pud_none(*pud)) 829 return -EFAULT; 830 pmd = pmd_offset(pud, address); 831 if (!pmd_present(*pmd)) 832 return -EFAULT; 833 VM_BUG_ON(pmd_trans_huge(*pmd)); 834 pte = pte_offset_map(pmd, address); 835 if (pte_none(*pte)) 836 goto unmap; 837 *vma = get_gate_vma(mm); 838 if (!page) 839 goto out; 840 *page = vm_normal_page(*vma, address, *pte); 841 if (!*page) { 842 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 843 goto unmap; 844 *page = pte_page(*pte); 845 } 846 if (unlikely(!try_get_page(*page))) { 847 ret = -ENOMEM; 848 goto unmap; 849 } 850 out: 851 ret = 0; 852 unmap: 853 pte_unmap(pte); 854 return ret; 855 } 856 857 /* 858 * mmap_lock must be held on entry. If @locked != NULL and *@flags 859 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 860 * is, *@locked will be set to 0 and -EBUSY returned. 861 */ 862 static int faultin_page(struct vm_area_struct *vma, 863 unsigned long address, unsigned int *flags, int *locked) 864 { 865 unsigned int fault_flags = 0; 866 vm_fault_t ret; 867 868 /* mlock all present pages, but do not fault in new pages */ 869 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 870 return -ENOENT; 871 if (*flags & FOLL_WRITE) 872 fault_flags |= FAULT_FLAG_WRITE; 873 if (*flags & FOLL_REMOTE) 874 fault_flags |= FAULT_FLAG_REMOTE; 875 if (locked) 876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 877 if (*flags & FOLL_NOWAIT) 878 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 879 if (*flags & FOLL_TRIED) { 880 /* 881 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 882 * can co-exist 883 */ 884 fault_flags |= FAULT_FLAG_TRIED; 885 } 886 887 ret = handle_mm_fault(vma, address, fault_flags, NULL); 888 if (ret & VM_FAULT_ERROR) { 889 int err = vm_fault_to_errno(ret, *flags); 890 891 if (err) 892 return err; 893 BUG(); 894 } 895 896 if (ret & VM_FAULT_RETRY) { 897 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 898 *locked = 0; 899 return -EBUSY; 900 } 901 902 /* 903 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 904 * necessary, even if maybe_mkwrite decided not to set pte_write. We 905 * can thus safely do subsequent page lookups as if they were reads. 906 * But only do so when looping for pte_write is futile: in some cases 907 * userspace may also be wanting to write to the gotten user page, 908 * which a read fault here might prevent (a readonly page might get 909 * reCOWed by userspace write). 910 */ 911 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 912 *flags |= FOLL_COW; 913 return 0; 914 } 915 916 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 917 { 918 vm_flags_t vm_flags = vma->vm_flags; 919 int write = (gup_flags & FOLL_WRITE); 920 int foreign = (gup_flags & FOLL_REMOTE); 921 922 if (vm_flags & (VM_IO | VM_PFNMAP)) 923 return -EFAULT; 924 925 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 926 return -EFAULT; 927 928 if (write) { 929 if (!(vm_flags & VM_WRITE)) { 930 if (!(gup_flags & FOLL_FORCE)) 931 return -EFAULT; 932 /* 933 * We used to let the write,force case do COW in a 934 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 935 * set a breakpoint in a read-only mapping of an 936 * executable, without corrupting the file (yet only 937 * when that file had been opened for writing!). 938 * Anon pages in shared mappings are surprising: now 939 * just reject it. 940 */ 941 if (!is_cow_mapping(vm_flags)) 942 return -EFAULT; 943 } 944 } else if (!(vm_flags & VM_READ)) { 945 if (!(gup_flags & FOLL_FORCE)) 946 return -EFAULT; 947 /* 948 * Is there actually any vma we can reach here which does not 949 * have VM_MAYREAD set? 950 */ 951 if (!(vm_flags & VM_MAYREAD)) 952 return -EFAULT; 953 } 954 /* 955 * gups are always data accesses, not instruction 956 * fetches, so execute=false here 957 */ 958 if (!arch_vma_access_permitted(vma, write, false, foreign)) 959 return -EFAULT; 960 return 0; 961 } 962 963 /** 964 * __get_user_pages() - pin user pages in memory 965 * @mm: mm_struct of target mm 966 * @start: starting user address 967 * @nr_pages: number of pages from start to pin 968 * @gup_flags: flags modifying pin behaviour 969 * @pages: array that receives pointers to the pages pinned. 970 * Should be at least nr_pages long. Or NULL, if caller 971 * only intends to ensure the pages are faulted in. 972 * @vmas: array of pointers to vmas corresponding to each page. 973 * Or NULL if the caller does not require them. 974 * @locked: whether we're still with the mmap_lock held 975 * 976 * Returns either number of pages pinned (which may be less than the 977 * number requested), or an error. Details about the return value: 978 * 979 * -- If nr_pages is 0, returns 0. 980 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 981 * -- If nr_pages is >0, and some pages were pinned, returns the number of 982 * pages pinned. Again, this may be less than nr_pages. 983 * -- 0 return value is possible when the fault would need to be retried. 984 * 985 * The caller is responsible for releasing returned @pages, via put_page(). 986 * 987 * @vmas are valid only as long as mmap_lock is held. 988 * 989 * Must be called with mmap_lock held. It may be released. See below. 990 * 991 * __get_user_pages walks a process's page tables and takes a reference to 992 * each struct page that each user address corresponds to at a given 993 * instant. That is, it takes the page that would be accessed if a user 994 * thread accesses the given user virtual address at that instant. 995 * 996 * This does not guarantee that the page exists in the user mappings when 997 * __get_user_pages returns, and there may even be a completely different 998 * page there in some cases (eg. if mmapped pagecache has been invalidated 999 * and subsequently re faulted). However it does guarantee that the page 1000 * won't be freed completely. And mostly callers simply care that the page 1001 * contains data that was valid *at some point in time*. Typically, an IO 1002 * or similar operation cannot guarantee anything stronger anyway because 1003 * locks can't be held over the syscall boundary. 1004 * 1005 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1006 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1007 * appropriate) must be called after the page is finished with, and 1008 * before put_page is called. 1009 * 1010 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1011 * released by an up_read(). That can happen if @gup_flags does not 1012 * have FOLL_NOWAIT. 1013 * 1014 * A caller using such a combination of @locked and @gup_flags 1015 * must therefore hold the mmap_lock for reading only, and recognize 1016 * when it's been released. Otherwise, it must be held for either 1017 * reading or writing and will not be released. 1018 * 1019 * In most cases, get_user_pages or get_user_pages_fast should be used 1020 * instead of __get_user_pages. __get_user_pages should be used only if 1021 * you need some special @gup_flags. 1022 */ 1023 static long __get_user_pages(struct mm_struct *mm, 1024 unsigned long start, unsigned long nr_pages, 1025 unsigned int gup_flags, struct page **pages, 1026 struct vm_area_struct **vmas, int *locked) 1027 { 1028 long ret = 0, i = 0; 1029 struct vm_area_struct *vma = NULL; 1030 struct follow_page_context ctx = { NULL }; 1031 1032 if (!nr_pages) 1033 return 0; 1034 1035 start = untagged_addr(start); 1036 1037 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1038 1039 /* 1040 * If FOLL_FORCE is set then do not force a full fault as the hinting 1041 * fault information is unrelated to the reference behaviour of a task 1042 * using the address space 1043 */ 1044 if (!(gup_flags & FOLL_FORCE)) 1045 gup_flags |= FOLL_NUMA; 1046 1047 do { 1048 struct page *page; 1049 unsigned int foll_flags = gup_flags; 1050 unsigned int page_increm; 1051 1052 /* first iteration or cross vma bound */ 1053 if (!vma || start >= vma->vm_end) { 1054 vma = find_extend_vma(mm, start); 1055 if (!vma && in_gate_area(mm, start)) { 1056 ret = get_gate_page(mm, start & PAGE_MASK, 1057 gup_flags, &vma, 1058 pages ? &pages[i] : NULL); 1059 if (ret) 1060 goto out; 1061 ctx.page_mask = 0; 1062 goto next_page; 1063 } 1064 1065 if (!vma || check_vma_flags(vma, gup_flags)) { 1066 ret = -EFAULT; 1067 goto out; 1068 } 1069 if (is_vm_hugetlb_page(vma)) { 1070 if (should_force_cow_break(vma, foll_flags)) 1071 foll_flags |= FOLL_WRITE; 1072 i = follow_hugetlb_page(mm, vma, pages, vmas, 1073 &start, &nr_pages, i, 1074 foll_flags, locked); 1075 if (locked && *locked == 0) { 1076 /* 1077 * We've got a VM_FAULT_RETRY 1078 * and we've lost mmap_lock. 1079 * We must stop here. 1080 */ 1081 BUG_ON(gup_flags & FOLL_NOWAIT); 1082 BUG_ON(ret != 0); 1083 goto out; 1084 } 1085 continue; 1086 } 1087 } 1088 1089 if (should_force_cow_break(vma, foll_flags)) 1090 foll_flags |= FOLL_WRITE; 1091 1092 retry: 1093 /* 1094 * If we have a pending SIGKILL, don't keep faulting pages and 1095 * potentially allocating memory. 1096 */ 1097 if (fatal_signal_pending(current)) { 1098 ret = -EINTR; 1099 goto out; 1100 } 1101 cond_resched(); 1102 1103 page = follow_page_mask(vma, start, foll_flags, &ctx); 1104 if (!page) { 1105 ret = faultin_page(vma, start, &foll_flags, locked); 1106 switch (ret) { 1107 case 0: 1108 goto retry; 1109 case -EBUSY: 1110 ret = 0; 1111 fallthrough; 1112 case -EFAULT: 1113 case -ENOMEM: 1114 case -EHWPOISON: 1115 goto out; 1116 case -ENOENT: 1117 goto next_page; 1118 } 1119 BUG(); 1120 } else if (PTR_ERR(page) == -EEXIST) { 1121 /* 1122 * Proper page table entry exists, but no corresponding 1123 * struct page. 1124 */ 1125 goto next_page; 1126 } else if (IS_ERR(page)) { 1127 ret = PTR_ERR(page); 1128 goto out; 1129 } 1130 if (pages) { 1131 pages[i] = page; 1132 flush_anon_page(vma, page, start); 1133 flush_dcache_page(page); 1134 ctx.page_mask = 0; 1135 } 1136 next_page: 1137 if (vmas) { 1138 vmas[i] = vma; 1139 ctx.page_mask = 0; 1140 } 1141 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1142 if (page_increm > nr_pages) 1143 page_increm = nr_pages; 1144 i += page_increm; 1145 start += page_increm * PAGE_SIZE; 1146 nr_pages -= page_increm; 1147 } while (nr_pages); 1148 out: 1149 if (ctx.pgmap) 1150 put_dev_pagemap(ctx.pgmap); 1151 return i ? i : ret; 1152 } 1153 1154 static bool vma_permits_fault(struct vm_area_struct *vma, 1155 unsigned int fault_flags) 1156 { 1157 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1158 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1159 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1160 1161 if (!(vm_flags & vma->vm_flags)) 1162 return false; 1163 1164 /* 1165 * The architecture might have a hardware protection 1166 * mechanism other than read/write that can deny access. 1167 * 1168 * gup always represents data access, not instruction 1169 * fetches, so execute=false here: 1170 */ 1171 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1172 return false; 1173 1174 return true; 1175 } 1176 1177 /** 1178 * fixup_user_fault() - manually resolve a user page fault 1179 * @mm: mm_struct of target mm 1180 * @address: user address 1181 * @fault_flags:flags to pass down to handle_mm_fault() 1182 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1183 * does not allow retry. If NULL, the caller must guarantee 1184 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1185 * 1186 * This is meant to be called in the specific scenario where for locking reasons 1187 * we try to access user memory in atomic context (within a pagefault_disable() 1188 * section), this returns -EFAULT, and we want to resolve the user fault before 1189 * trying again. 1190 * 1191 * Typically this is meant to be used by the futex code. 1192 * 1193 * The main difference with get_user_pages() is that this function will 1194 * unconditionally call handle_mm_fault() which will in turn perform all the 1195 * necessary SW fixup of the dirty and young bits in the PTE, while 1196 * get_user_pages() only guarantees to update these in the struct page. 1197 * 1198 * This is important for some architectures where those bits also gate the 1199 * access permission to the page because they are maintained in software. On 1200 * such architectures, gup() will not be enough to make a subsequent access 1201 * succeed. 1202 * 1203 * This function will not return with an unlocked mmap_lock. So it has not the 1204 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1205 */ 1206 int fixup_user_fault(struct mm_struct *mm, 1207 unsigned long address, unsigned int fault_flags, 1208 bool *unlocked) 1209 { 1210 struct vm_area_struct *vma; 1211 vm_fault_t ret, major = 0; 1212 1213 address = untagged_addr(address); 1214 1215 if (unlocked) 1216 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1217 1218 retry: 1219 vma = find_extend_vma(mm, address); 1220 if (!vma || address < vma->vm_start) 1221 return -EFAULT; 1222 1223 if (!vma_permits_fault(vma, fault_flags)) 1224 return -EFAULT; 1225 1226 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1227 fatal_signal_pending(current)) 1228 return -EINTR; 1229 1230 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1231 major |= ret & VM_FAULT_MAJOR; 1232 if (ret & VM_FAULT_ERROR) { 1233 int err = vm_fault_to_errno(ret, 0); 1234 1235 if (err) 1236 return err; 1237 BUG(); 1238 } 1239 1240 if (ret & VM_FAULT_RETRY) { 1241 mmap_read_lock(mm); 1242 *unlocked = true; 1243 fault_flags |= FAULT_FLAG_TRIED; 1244 goto retry; 1245 } 1246 1247 return 0; 1248 } 1249 EXPORT_SYMBOL_GPL(fixup_user_fault); 1250 1251 /* 1252 * Please note that this function, unlike __get_user_pages will not 1253 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1254 */ 1255 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1256 unsigned long start, 1257 unsigned long nr_pages, 1258 struct page **pages, 1259 struct vm_area_struct **vmas, 1260 int *locked, 1261 unsigned int flags) 1262 { 1263 long ret, pages_done; 1264 bool lock_dropped; 1265 1266 if (locked) { 1267 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1268 BUG_ON(vmas); 1269 /* check caller initialized locked */ 1270 BUG_ON(*locked != 1); 1271 } 1272 1273 /* 1274 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1275 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1276 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1277 * for FOLL_GET, not for the newer FOLL_PIN. 1278 * 1279 * FOLL_PIN always expects pages to be non-null, but no need to assert 1280 * that here, as any failures will be obvious enough. 1281 */ 1282 if (pages && !(flags & FOLL_PIN)) 1283 flags |= FOLL_GET; 1284 1285 pages_done = 0; 1286 lock_dropped = false; 1287 for (;;) { 1288 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1289 vmas, locked); 1290 if (!locked) 1291 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1292 return ret; 1293 1294 /* VM_FAULT_RETRY cannot return errors */ 1295 if (!*locked) { 1296 BUG_ON(ret < 0); 1297 BUG_ON(ret >= nr_pages); 1298 } 1299 1300 if (ret > 0) { 1301 nr_pages -= ret; 1302 pages_done += ret; 1303 if (!nr_pages) 1304 break; 1305 } 1306 if (*locked) { 1307 /* 1308 * VM_FAULT_RETRY didn't trigger or it was a 1309 * FOLL_NOWAIT. 1310 */ 1311 if (!pages_done) 1312 pages_done = ret; 1313 break; 1314 } 1315 /* 1316 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1317 * For the prefault case (!pages) we only update counts. 1318 */ 1319 if (likely(pages)) 1320 pages += ret; 1321 start += ret << PAGE_SHIFT; 1322 lock_dropped = true; 1323 1324 retry: 1325 /* 1326 * Repeat on the address that fired VM_FAULT_RETRY 1327 * with both FAULT_FLAG_ALLOW_RETRY and 1328 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1329 * by fatal signals, so we need to check it before we 1330 * start trying again otherwise it can loop forever. 1331 */ 1332 1333 if (fatal_signal_pending(current)) { 1334 if (!pages_done) 1335 pages_done = -EINTR; 1336 break; 1337 } 1338 1339 ret = mmap_read_lock_killable(mm); 1340 if (ret) { 1341 BUG_ON(ret > 0); 1342 if (!pages_done) 1343 pages_done = ret; 1344 break; 1345 } 1346 1347 *locked = 1; 1348 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1349 pages, NULL, locked); 1350 if (!*locked) { 1351 /* Continue to retry until we succeeded */ 1352 BUG_ON(ret != 0); 1353 goto retry; 1354 } 1355 if (ret != 1) { 1356 BUG_ON(ret > 1); 1357 if (!pages_done) 1358 pages_done = ret; 1359 break; 1360 } 1361 nr_pages--; 1362 pages_done++; 1363 if (!nr_pages) 1364 break; 1365 if (likely(pages)) 1366 pages++; 1367 start += PAGE_SIZE; 1368 } 1369 if (lock_dropped && *locked) { 1370 /* 1371 * We must let the caller know we temporarily dropped the lock 1372 * and so the critical section protected by it was lost. 1373 */ 1374 mmap_read_unlock(mm); 1375 *locked = 0; 1376 } 1377 return pages_done; 1378 } 1379 1380 /** 1381 * populate_vma_page_range() - populate a range of pages in the vma. 1382 * @vma: target vma 1383 * @start: start address 1384 * @end: end address 1385 * @locked: whether the mmap_lock is still held 1386 * 1387 * This takes care of mlocking the pages too if VM_LOCKED is set. 1388 * 1389 * Return either number of pages pinned in the vma, or a negative error 1390 * code on error. 1391 * 1392 * vma->vm_mm->mmap_lock must be held. 1393 * 1394 * If @locked is NULL, it may be held for read or write and will 1395 * be unperturbed. 1396 * 1397 * If @locked is non-NULL, it must held for read only and may be 1398 * released. If it's released, *@locked will be set to 0. 1399 */ 1400 long populate_vma_page_range(struct vm_area_struct *vma, 1401 unsigned long start, unsigned long end, int *locked) 1402 { 1403 struct mm_struct *mm = vma->vm_mm; 1404 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1405 int gup_flags; 1406 1407 VM_BUG_ON(start & ~PAGE_MASK); 1408 VM_BUG_ON(end & ~PAGE_MASK); 1409 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1410 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1411 mmap_assert_locked(mm); 1412 1413 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1414 if (vma->vm_flags & VM_LOCKONFAULT) 1415 gup_flags &= ~FOLL_POPULATE; 1416 /* 1417 * We want to touch writable mappings with a write fault in order 1418 * to break COW, except for shared mappings because these don't COW 1419 * and we would not want to dirty them for nothing. 1420 */ 1421 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1422 gup_flags |= FOLL_WRITE; 1423 1424 /* 1425 * We want mlock to succeed for regions that have any permissions 1426 * other than PROT_NONE. 1427 */ 1428 if (vma_is_accessible(vma)) 1429 gup_flags |= FOLL_FORCE; 1430 1431 /* 1432 * We made sure addr is within a VMA, so the following will 1433 * not result in a stack expansion that recurses back here. 1434 */ 1435 return __get_user_pages(mm, start, nr_pages, gup_flags, 1436 NULL, NULL, locked); 1437 } 1438 1439 /* 1440 * __mm_populate - populate and/or mlock pages within a range of address space. 1441 * 1442 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1443 * flags. VMAs must be already marked with the desired vm_flags, and 1444 * mmap_lock must not be held. 1445 */ 1446 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1447 { 1448 struct mm_struct *mm = current->mm; 1449 unsigned long end, nstart, nend; 1450 struct vm_area_struct *vma = NULL; 1451 int locked = 0; 1452 long ret = 0; 1453 1454 end = start + len; 1455 1456 for (nstart = start; nstart < end; nstart = nend) { 1457 /* 1458 * We want to fault in pages for [nstart; end) address range. 1459 * Find first corresponding VMA. 1460 */ 1461 if (!locked) { 1462 locked = 1; 1463 mmap_read_lock(mm); 1464 vma = find_vma(mm, nstart); 1465 } else if (nstart >= vma->vm_end) 1466 vma = vma->vm_next; 1467 if (!vma || vma->vm_start >= end) 1468 break; 1469 /* 1470 * Set [nstart; nend) to intersection of desired address 1471 * range with the first VMA. Also, skip undesirable VMA types. 1472 */ 1473 nend = min(end, vma->vm_end); 1474 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1475 continue; 1476 if (nstart < vma->vm_start) 1477 nstart = vma->vm_start; 1478 /* 1479 * Now fault in a range of pages. populate_vma_page_range() 1480 * double checks the vma flags, so that it won't mlock pages 1481 * if the vma was already munlocked. 1482 */ 1483 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1484 if (ret < 0) { 1485 if (ignore_errors) { 1486 ret = 0; 1487 continue; /* continue at next VMA */ 1488 } 1489 break; 1490 } 1491 nend = nstart + ret * PAGE_SIZE; 1492 ret = 0; 1493 } 1494 if (locked) 1495 mmap_read_unlock(mm); 1496 return ret; /* 0 or negative error code */ 1497 } 1498 1499 /** 1500 * get_dump_page() - pin user page in memory while writing it to core dump 1501 * @addr: user address 1502 * 1503 * Returns struct page pointer of user page pinned for dump, 1504 * to be freed afterwards by put_page(). 1505 * 1506 * Returns NULL on any kind of failure - a hole must then be inserted into 1507 * the corefile, to preserve alignment with its headers; and also returns 1508 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1509 * allowing a hole to be left in the corefile to save diskspace. 1510 * 1511 * Called without mmap_lock, but after all other threads have been killed. 1512 */ 1513 #ifdef CONFIG_ELF_CORE 1514 struct page *get_dump_page(unsigned long addr) 1515 { 1516 struct vm_area_struct *vma; 1517 struct page *page; 1518 1519 if (__get_user_pages(current->mm, addr, 1, 1520 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1521 NULL) < 1) 1522 return NULL; 1523 flush_cache_page(vma, addr, page_to_pfn(page)); 1524 return page; 1525 } 1526 #endif /* CONFIG_ELF_CORE */ 1527 #else /* CONFIG_MMU */ 1528 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1529 unsigned long nr_pages, struct page **pages, 1530 struct vm_area_struct **vmas, int *locked, 1531 unsigned int foll_flags) 1532 { 1533 struct vm_area_struct *vma; 1534 unsigned long vm_flags; 1535 int i; 1536 1537 /* calculate required read or write permissions. 1538 * If FOLL_FORCE is set, we only require the "MAY" flags. 1539 */ 1540 vm_flags = (foll_flags & FOLL_WRITE) ? 1541 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1542 vm_flags &= (foll_flags & FOLL_FORCE) ? 1543 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1544 1545 for (i = 0; i < nr_pages; i++) { 1546 vma = find_vma(mm, start); 1547 if (!vma) 1548 goto finish_or_fault; 1549 1550 /* protect what we can, including chardevs */ 1551 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1552 !(vm_flags & vma->vm_flags)) 1553 goto finish_or_fault; 1554 1555 if (pages) { 1556 pages[i] = virt_to_page(start); 1557 if (pages[i]) 1558 get_page(pages[i]); 1559 } 1560 if (vmas) 1561 vmas[i] = vma; 1562 start = (start + PAGE_SIZE) & PAGE_MASK; 1563 } 1564 1565 return i; 1566 1567 finish_or_fault: 1568 return i ? : -EFAULT; 1569 } 1570 #endif /* !CONFIG_MMU */ 1571 1572 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1573 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1574 { 1575 long i; 1576 struct vm_area_struct *vma_prev = NULL; 1577 1578 for (i = 0; i < nr_pages; i++) { 1579 struct vm_area_struct *vma = vmas[i]; 1580 1581 if (vma == vma_prev) 1582 continue; 1583 1584 vma_prev = vma; 1585 1586 if (vma_is_fsdax(vma)) 1587 return true; 1588 } 1589 return false; 1590 } 1591 1592 #ifdef CONFIG_CMA 1593 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1594 unsigned long start, 1595 unsigned long nr_pages, 1596 struct page **pages, 1597 struct vm_area_struct **vmas, 1598 unsigned int gup_flags) 1599 { 1600 unsigned long i; 1601 unsigned long step; 1602 bool drain_allow = true; 1603 bool migrate_allow = true; 1604 LIST_HEAD(cma_page_list); 1605 long ret = nr_pages; 1606 struct migration_target_control mtc = { 1607 .nid = NUMA_NO_NODE, 1608 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1609 }; 1610 1611 check_again: 1612 for (i = 0; i < nr_pages;) { 1613 1614 struct page *head = compound_head(pages[i]); 1615 1616 /* 1617 * gup may start from a tail page. Advance step by the left 1618 * part. 1619 */ 1620 step = compound_nr(head) - (pages[i] - head); 1621 /* 1622 * If we get a page from the CMA zone, since we are going to 1623 * be pinning these entries, we might as well move them out 1624 * of the CMA zone if possible. 1625 */ 1626 if (is_migrate_cma_page(head)) { 1627 if (PageHuge(head)) 1628 isolate_huge_page(head, &cma_page_list); 1629 else { 1630 if (!PageLRU(head) && drain_allow) { 1631 lru_add_drain_all(); 1632 drain_allow = false; 1633 } 1634 1635 if (!isolate_lru_page(head)) { 1636 list_add_tail(&head->lru, &cma_page_list); 1637 mod_node_page_state(page_pgdat(head), 1638 NR_ISOLATED_ANON + 1639 page_is_file_lru(head), 1640 thp_nr_pages(head)); 1641 } 1642 } 1643 } 1644 1645 i += step; 1646 } 1647 1648 if (!list_empty(&cma_page_list)) { 1649 /* 1650 * drop the above get_user_pages reference. 1651 */ 1652 for (i = 0; i < nr_pages; i++) 1653 put_page(pages[i]); 1654 1655 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1656 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1657 /* 1658 * some of the pages failed migration. Do get_user_pages 1659 * without migration. 1660 */ 1661 migrate_allow = false; 1662 1663 if (!list_empty(&cma_page_list)) 1664 putback_movable_pages(&cma_page_list); 1665 } 1666 /* 1667 * We did migrate all the pages, Try to get the page references 1668 * again migrating any new CMA pages which we failed to isolate 1669 * earlier. 1670 */ 1671 ret = __get_user_pages_locked(mm, start, nr_pages, 1672 pages, vmas, NULL, 1673 gup_flags); 1674 1675 if ((ret > 0) && migrate_allow) { 1676 nr_pages = ret; 1677 drain_allow = true; 1678 goto check_again; 1679 } 1680 } 1681 1682 return ret; 1683 } 1684 #else 1685 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1686 unsigned long start, 1687 unsigned long nr_pages, 1688 struct page **pages, 1689 struct vm_area_struct **vmas, 1690 unsigned int gup_flags) 1691 { 1692 return nr_pages; 1693 } 1694 #endif /* CONFIG_CMA */ 1695 1696 /* 1697 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1698 * allows us to process the FOLL_LONGTERM flag. 1699 */ 1700 static long __gup_longterm_locked(struct mm_struct *mm, 1701 unsigned long start, 1702 unsigned long nr_pages, 1703 struct page **pages, 1704 struct vm_area_struct **vmas, 1705 unsigned int gup_flags) 1706 { 1707 struct vm_area_struct **vmas_tmp = vmas; 1708 unsigned long flags = 0; 1709 long rc, i; 1710 1711 if (gup_flags & FOLL_LONGTERM) { 1712 if (!pages) 1713 return -EINVAL; 1714 1715 if (!vmas_tmp) { 1716 vmas_tmp = kcalloc(nr_pages, 1717 sizeof(struct vm_area_struct *), 1718 GFP_KERNEL); 1719 if (!vmas_tmp) 1720 return -ENOMEM; 1721 } 1722 flags = memalloc_nocma_save(); 1723 } 1724 1725 rc = __get_user_pages_locked(mm, start, nr_pages, pages, 1726 vmas_tmp, NULL, gup_flags); 1727 1728 if (gup_flags & FOLL_LONGTERM) { 1729 if (rc < 0) 1730 goto out; 1731 1732 if (check_dax_vmas(vmas_tmp, rc)) { 1733 for (i = 0; i < rc; i++) 1734 put_page(pages[i]); 1735 rc = -EOPNOTSUPP; 1736 goto out; 1737 } 1738 1739 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1740 vmas_tmp, gup_flags); 1741 out: 1742 memalloc_nocma_restore(flags); 1743 } 1744 1745 if (vmas_tmp != vmas) 1746 kfree(vmas_tmp); 1747 return rc; 1748 } 1749 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1750 static __always_inline long __gup_longterm_locked(struct mm_struct *mm, 1751 unsigned long start, 1752 unsigned long nr_pages, 1753 struct page **pages, 1754 struct vm_area_struct **vmas, 1755 unsigned int flags) 1756 { 1757 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1758 NULL, flags); 1759 } 1760 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1761 1762 #ifdef CONFIG_MMU 1763 static long __get_user_pages_remote(struct mm_struct *mm, 1764 unsigned long start, unsigned long nr_pages, 1765 unsigned int gup_flags, struct page **pages, 1766 struct vm_area_struct **vmas, int *locked) 1767 { 1768 /* 1769 * Parts of FOLL_LONGTERM behavior are incompatible with 1770 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1771 * vmas. However, this only comes up if locked is set, and there are 1772 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1773 * allow what we can. 1774 */ 1775 if (gup_flags & FOLL_LONGTERM) { 1776 if (WARN_ON_ONCE(locked)) 1777 return -EINVAL; 1778 /* 1779 * This will check the vmas (even if our vmas arg is NULL) 1780 * and return -ENOTSUPP if DAX isn't allowed in this case: 1781 */ 1782 return __gup_longterm_locked(mm, start, nr_pages, pages, 1783 vmas, gup_flags | FOLL_TOUCH | 1784 FOLL_REMOTE); 1785 } 1786 1787 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1788 locked, 1789 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1790 } 1791 1792 /** 1793 * get_user_pages_remote() - pin user pages in memory 1794 * @mm: mm_struct of target mm 1795 * @start: starting user address 1796 * @nr_pages: number of pages from start to pin 1797 * @gup_flags: flags modifying lookup behaviour 1798 * @pages: array that receives pointers to the pages pinned. 1799 * Should be at least nr_pages long. Or NULL, if caller 1800 * only intends to ensure the pages are faulted in. 1801 * @vmas: array of pointers to vmas corresponding to each page. 1802 * Or NULL if the caller does not require them. 1803 * @locked: pointer to lock flag indicating whether lock is held and 1804 * subsequently whether VM_FAULT_RETRY functionality can be 1805 * utilised. Lock must initially be held. 1806 * 1807 * Returns either number of pages pinned (which may be less than the 1808 * number requested), or an error. Details about the return value: 1809 * 1810 * -- If nr_pages is 0, returns 0. 1811 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1812 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1813 * pages pinned. Again, this may be less than nr_pages. 1814 * 1815 * The caller is responsible for releasing returned @pages, via put_page(). 1816 * 1817 * @vmas are valid only as long as mmap_lock is held. 1818 * 1819 * Must be called with mmap_lock held for read or write. 1820 * 1821 * get_user_pages_remote walks a process's page tables and takes a reference 1822 * to each struct page that each user address corresponds to at a given 1823 * instant. That is, it takes the page that would be accessed if a user 1824 * thread accesses the given user virtual address at that instant. 1825 * 1826 * This does not guarantee that the page exists in the user mappings when 1827 * get_user_pages_remote returns, and there may even be a completely different 1828 * page there in some cases (eg. if mmapped pagecache has been invalidated 1829 * and subsequently re faulted). However it does guarantee that the page 1830 * won't be freed completely. And mostly callers simply care that the page 1831 * contains data that was valid *at some point in time*. Typically, an IO 1832 * or similar operation cannot guarantee anything stronger anyway because 1833 * locks can't be held over the syscall boundary. 1834 * 1835 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1836 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1837 * be called after the page is finished with, and before put_page is called. 1838 * 1839 * get_user_pages_remote is typically used for fewer-copy IO operations, 1840 * to get a handle on the memory by some means other than accesses 1841 * via the user virtual addresses. The pages may be submitted for 1842 * DMA to devices or accessed via their kernel linear mapping (via the 1843 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1844 * 1845 * See also get_user_pages_fast, for performance critical applications. 1846 * 1847 * get_user_pages_remote should be phased out in favor of 1848 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1849 * should use get_user_pages_remote because it cannot pass 1850 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1851 */ 1852 long get_user_pages_remote(struct mm_struct *mm, 1853 unsigned long start, unsigned long nr_pages, 1854 unsigned int gup_flags, struct page **pages, 1855 struct vm_area_struct **vmas, int *locked) 1856 { 1857 /* 1858 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1859 * never directly by the caller, so enforce that with an assertion: 1860 */ 1861 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1862 return -EINVAL; 1863 1864 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1865 pages, vmas, locked); 1866 } 1867 EXPORT_SYMBOL(get_user_pages_remote); 1868 1869 #else /* CONFIG_MMU */ 1870 long get_user_pages_remote(struct mm_struct *mm, 1871 unsigned long start, unsigned long nr_pages, 1872 unsigned int gup_flags, struct page **pages, 1873 struct vm_area_struct **vmas, int *locked) 1874 { 1875 return 0; 1876 } 1877 1878 static long __get_user_pages_remote(struct mm_struct *mm, 1879 unsigned long start, unsigned long nr_pages, 1880 unsigned int gup_flags, struct page **pages, 1881 struct vm_area_struct **vmas, int *locked) 1882 { 1883 return 0; 1884 } 1885 #endif /* !CONFIG_MMU */ 1886 1887 /** 1888 * get_user_pages() - pin user pages in memory 1889 * @start: starting user address 1890 * @nr_pages: number of pages from start to pin 1891 * @gup_flags: flags modifying lookup behaviour 1892 * @pages: array that receives pointers to the pages pinned. 1893 * Should be at least nr_pages long. Or NULL, if caller 1894 * only intends to ensure the pages are faulted in. 1895 * @vmas: array of pointers to vmas corresponding to each page. 1896 * Or NULL if the caller does not require them. 1897 * 1898 * This is the same as get_user_pages_remote(), just with a less-flexible 1899 * calling convention where we assume that the mm being operated on belongs to 1900 * the current task, and doesn't allow passing of a locked parameter. We also 1901 * obviously don't pass FOLL_REMOTE in here. 1902 */ 1903 long get_user_pages(unsigned long start, unsigned long nr_pages, 1904 unsigned int gup_flags, struct page **pages, 1905 struct vm_area_struct **vmas) 1906 { 1907 /* 1908 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1909 * never directly by the caller, so enforce that with an assertion: 1910 */ 1911 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1912 return -EINVAL; 1913 1914 return __gup_longterm_locked(current->mm, start, nr_pages, 1915 pages, vmas, gup_flags | FOLL_TOUCH); 1916 } 1917 EXPORT_SYMBOL(get_user_pages); 1918 1919 /** 1920 * get_user_pages_locked() is suitable to replace the form: 1921 * 1922 * mmap_read_lock(mm); 1923 * do_something() 1924 * get_user_pages(mm, ..., pages, NULL); 1925 * mmap_read_unlock(mm); 1926 * 1927 * to: 1928 * 1929 * int locked = 1; 1930 * mmap_read_lock(mm); 1931 * do_something() 1932 * get_user_pages_locked(mm, ..., pages, &locked); 1933 * if (locked) 1934 * mmap_read_unlock(mm); 1935 * 1936 * @start: starting user address 1937 * @nr_pages: number of pages from start to pin 1938 * @gup_flags: flags modifying lookup behaviour 1939 * @pages: array that receives pointers to the pages pinned. 1940 * Should be at least nr_pages long. Or NULL, if caller 1941 * only intends to ensure the pages are faulted in. 1942 * @locked: pointer to lock flag indicating whether lock is held and 1943 * subsequently whether VM_FAULT_RETRY functionality can be 1944 * utilised. Lock must initially be held. 1945 * 1946 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1947 * paths better by using either get_user_pages_locked() or 1948 * get_user_pages_unlocked(). 1949 * 1950 */ 1951 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1952 unsigned int gup_flags, struct page **pages, 1953 int *locked) 1954 { 1955 /* 1956 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1957 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1958 * vmas. As there are no users of this flag in this call we simply 1959 * disallow this option for now. 1960 */ 1961 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1962 return -EINVAL; 1963 /* 1964 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1965 * never directly by the caller, so enforce that: 1966 */ 1967 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1968 return -EINVAL; 1969 1970 return __get_user_pages_locked(current->mm, start, nr_pages, 1971 pages, NULL, locked, 1972 gup_flags | FOLL_TOUCH); 1973 } 1974 EXPORT_SYMBOL(get_user_pages_locked); 1975 1976 /* 1977 * get_user_pages_unlocked() is suitable to replace the form: 1978 * 1979 * mmap_read_lock(mm); 1980 * get_user_pages(mm, ..., pages, NULL); 1981 * mmap_read_unlock(mm); 1982 * 1983 * with: 1984 * 1985 * get_user_pages_unlocked(mm, ..., pages); 1986 * 1987 * It is functionally equivalent to get_user_pages_fast so 1988 * get_user_pages_fast should be used instead if specific gup_flags 1989 * (e.g. FOLL_FORCE) are not required. 1990 */ 1991 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1992 struct page **pages, unsigned int gup_flags) 1993 { 1994 struct mm_struct *mm = current->mm; 1995 int locked = 1; 1996 long ret; 1997 1998 /* 1999 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2000 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2001 * vmas. As there are no users of this flag in this call we simply 2002 * disallow this option for now. 2003 */ 2004 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2005 return -EINVAL; 2006 2007 mmap_read_lock(mm); 2008 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2009 &locked, gup_flags | FOLL_TOUCH); 2010 if (locked) 2011 mmap_read_unlock(mm); 2012 return ret; 2013 } 2014 EXPORT_SYMBOL(get_user_pages_unlocked); 2015 2016 /* 2017 * Fast GUP 2018 * 2019 * get_user_pages_fast attempts to pin user pages by walking the page 2020 * tables directly and avoids taking locks. Thus the walker needs to be 2021 * protected from page table pages being freed from under it, and should 2022 * block any THP splits. 2023 * 2024 * One way to achieve this is to have the walker disable interrupts, and 2025 * rely on IPIs from the TLB flushing code blocking before the page table 2026 * pages are freed. This is unsuitable for architectures that do not need 2027 * to broadcast an IPI when invalidating TLBs. 2028 * 2029 * Another way to achieve this is to batch up page table containing pages 2030 * belonging to more than one mm_user, then rcu_sched a callback to free those 2031 * pages. Disabling interrupts will allow the fast_gup walker to both block 2032 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2033 * (which is a relatively rare event). The code below adopts this strategy. 2034 * 2035 * Before activating this code, please be aware that the following assumptions 2036 * are currently made: 2037 * 2038 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2039 * free pages containing page tables or TLB flushing requires IPI broadcast. 2040 * 2041 * *) ptes can be read atomically by the architecture. 2042 * 2043 * *) access_ok is sufficient to validate userspace address ranges. 2044 * 2045 * The last two assumptions can be relaxed by the addition of helper functions. 2046 * 2047 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2048 */ 2049 #ifdef CONFIG_HAVE_FAST_GUP 2050 2051 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2052 { 2053 if (flags & FOLL_PIN) { 2054 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2055 refs); 2056 2057 if (hpage_pincount_available(page)) 2058 hpage_pincount_sub(page, refs); 2059 else 2060 refs *= GUP_PIN_COUNTING_BIAS; 2061 } 2062 2063 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2064 /* 2065 * Calling put_page() for each ref is unnecessarily slow. Only the last 2066 * ref needs a put_page(). 2067 */ 2068 if (refs > 1) 2069 page_ref_sub(page, refs - 1); 2070 put_page(page); 2071 } 2072 2073 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2074 2075 /* 2076 * WARNING: only to be used in the get_user_pages_fast() implementation. 2077 * 2078 * With get_user_pages_fast(), we walk down the pagetables without taking any 2079 * locks. For this we would like to load the pointers atomically, but sometimes 2080 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2081 * we do have is the guarantee that a PTE will only either go from not present 2082 * to present, or present to not present or both -- it will not switch to a 2083 * completely different present page without a TLB flush in between; something 2084 * that we are blocking by holding interrupts off. 2085 * 2086 * Setting ptes from not present to present goes: 2087 * 2088 * ptep->pte_high = h; 2089 * smp_wmb(); 2090 * ptep->pte_low = l; 2091 * 2092 * And present to not present goes: 2093 * 2094 * ptep->pte_low = 0; 2095 * smp_wmb(); 2096 * ptep->pte_high = 0; 2097 * 2098 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2099 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2100 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2101 * picked up a changed pte high. We might have gotten rubbish values from 2102 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2103 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2104 * operates on present ptes we're safe. 2105 */ 2106 static inline pte_t gup_get_pte(pte_t *ptep) 2107 { 2108 pte_t pte; 2109 2110 do { 2111 pte.pte_low = ptep->pte_low; 2112 smp_rmb(); 2113 pte.pte_high = ptep->pte_high; 2114 smp_rmb(); 2115 } while (unlikely(pte.pte_low != ptep->pte_low)); 2116 2117 return pte; 2118 } 2119 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2120 /* 2121 * We require that the PTE can be read atomically. 2122 */ 2123 static inline pte_t gup_get_pte(pte_t *ptep) 2124 { 2125 return ptep_get(ptep); 2126 } 2127 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2128 2129 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2130 unsigned int flags, 2131 struct page **pages) 2132 { 2133 while ((*nr) - nr_start) { 2134 struct page *page = pages[--(*nr)]; 2135 2136 ClearPageReferenced(page); 2137 if (flags & FOLL_PIN) 2138 unpin_user_page(page); 2139 else 2140 put_page(page); 2141 } 2142 } 2143 2144 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2145 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2146 unsigned int flags, struct page **pages, int *nr) 2147 { 2148 struct dev_pagemap *pgmap = NULL; 2149 int nr_start = *nr, ret = 0; 2150 pte_t *ptep, *ptem; 2151 2152 ptem = ptep = pte_offset_map(&pmd, addr); 2153 do { 2154 pte_t pte = gup_get_pte(ptep); 2155 struct page *head, *page; 2156 2157 /* 2158 * Similar to the PMD case below, NUMA hinting must take slow 2159 * path using the pte_protnone check. 2160 */ 2161 if (pte_protnone(pte)) 2162 goto pte_unmap; 2163 2164 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2165 goto pte_unmap; 2166 2167 if (pte_devmap(pte)) { 2168 if (unlikely(flags & FOLL_LONGTERM)) 2169 goto pte_unmap; 2170 2171 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2172 if (unlikely(!pgmap)) { 2173 undo_dev_pagemap(nr, nr_start, flags, pages); 2174 goto pte_unmap; 2175 } 2176 } else if (pte_special(pte)) 2177 goto pte_unmap; 2178 2179 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2180 page = pte_page(pte); 2181 2182 head = try_grab_compound_head(page, 1, flags); 2183 if (!head) 2184 goto pte_unmap; 2185 2186 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2187 put_compound_head(head, 1, flags); 2188 goto pte_unmap; 2189 } 2190 2191 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2192 2193 /* 2194 * We need to make the page accessible if and only if we are 2195 * going to access its content (the FOLL_PIN case). Please 2196 * see Documentation/core-api/pin_user_pages.rst for 2197 * details. 2198 */ 2199 if (flags & FOLL_PIN) { 2200 ret = arch_make_page_accessible(page); 2201 if (ret) { 2202 unpin_user_page(page); 2203 goto pte_unmap; 2204 } 2205 } 2206 SetPageReferenced(page); 2207 pages[*nr] = page; 2208 (*nr)++; 2209 2210 } while (ptep++, addr += PAGE_SIZE, addr != end); 2211 2212 ret = 1; 2213 2214 pte_unmap: 2215 if (pgmap) 2216 put_dev_pagemap(pgmap); 2217 pte_unmap(ptem); 2218 return ret; 2219 } 2220 #else 2221 2222 /* 2223 * If we can't determine whether or not a pte is special, then fail immediately 2224 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2225 * to be special. 2226 * 2227 * For a futex to be placed on a THP tail page, get_futex_key requires a 2228 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2229 * useful to have gup_huge_pmd even if we can't operate on ptes. 2230 */ 2231 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2232 unsigned int flags, struct page **pages, int *nr) 2233 { 2234 return 0; 2235 } 2236 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2237 2238 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2239 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2240 unsigned long end, unsigned int flags, 2241 struct page **pages, int *nr) 2242 { 2243 int nr_start = *nr; 2244 struct dev_pagemap *pgmap = NULL; 2245 2246 do { 2247 struct page *page = pfn_to_page(pfn); 2248 2249 pgmap = get_dev_pagemap(pfn, pgmap); 2250 if (unlikely(!pgmap)) { 2251 undo_dev_pagemap(nr, nr_start, flags, pages); 2252 return 0; 2253 } 2254 SetPageReferenced(page); 2255 pages[*nr] = page; 2256 if (unlikely(!try_grab_page(page, flags))) { 2257 undo_dev_pagemap(nr, nr_start, flags, pages); 2258 return 0; 2259 } 2260 (*nr)++; 2261 pfn++; 2262 } while (addr += PAGE_SIZE, addr != end); 2263 2264 if (pgmap) 2265 put_dev_pagemap(pgmap); 2266 return 1; 2267 } 2268 2269 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2270 unsigned long end, unsigned int flags, 2271 struct page **pages, int *nr) 2272 { 2273 unsigned long fault_pfn; 2274 int nr_start = *nr; 2275 2276 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2277 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2278 return 0; 2279 2280 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2281 undo_dev_pagemap(nr, nr_start, flags, pages); 2282 return 0; 2283 } 2284 return 1; 2285 } 2286 2287 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2288 unsigned long end, unsigned int flags, 2289 struct page **pages, int *nr) 2290 { 2291 unsigned long fault_pfn; 2292 int nr_start = *nr; 2293 2294 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2295 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2296 return 0; 2297 2298 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2299 undo_dev_pagemap(nr, nr_start, flags, pages); 2300 return 0; 2301 } 2302 return 1; 2303 } 2304 #else 2305 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2306 unsigned long end, unsigned int flags, 2307 struct page **pages, int *nr) 2308 { 2309 BUILD_BUG(); 2310 return 0; 2311 } 2312 2313 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2314 unsigned long end, unsigned int flags, 2315 struct page **pages, int *nr) 2316 { 2317 BUILD_BUG(); 2318 return 0; 2319 } 2320 #endif 2321 2322 static int record_subpages(struct page *page, unsigned long addr, 2323 unsigned long end, struct page **pages) 2324 { 2325 int nr; 2326 2327 for (nr = 0; addr != end; addr += PAGE_SIZE) 2328 pages[nr++] = page++; 2329 2330 return nr; 2331 } 2332 2333 #ifdef CONFIG_ARCH_HAS_HUGEPD 2334 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2335 unsigned long sz) 2336 { 2337 unsigned long __boundary = (addr + sz) & ~(sz-1); 2338 return (__boundary - 1 < end - 1) ? __boundary : end; 2339 } 2340 2341 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2342 unsigned long end, unsigned int flags, 2343 struct page **pages, int *nr) 2344 { 2345 unsigned long pte_end; 2346 struct page *head, *page; 2347 pte_t pte; 2348 int refs; 2349 2350 pte_end = (addr + sz) & ~(sz-1); 2351 if (pte_end < end) 2352 end = pte_end; 2353 2354 pte = huge_ptep_get(ptep); 2355 2356 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2357 return 0; 2358 2359 /* hugepages are never "special" */ 2360 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2361 2362 head = pte_page(pte); 2363 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2364 refs = record_subpages(page, addr, end, pages + *nr); 2365 2366 head = try_grab_compound_head(head, refs, flags); 2367 if (!head) 2368 return 0; 2369 2370 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2371 put_compound_head(head, refs, flags); 2372 return 0; 2373 } 2374 2375 *nr += refs; 2376 SetPageReferenced(head); 2377 return 1; 2378 } 2379 2380 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2381 unsigned int pdshift, unsigned long end, unsigned int flags, 2382 struct page **pages, int *nr) 2383 { 2384 pte_t *ptep; 2385 unsigned long sz = 1UL << hugepd_shift(hugepd); 2386 unsigned long next; 2387 2388 ptep = hugepte_offset(hugepd, addr, pdshift); 2389 do { 2390 next = hugepte_addr_end(addr, end, sz); 2391 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2392 return 0; 2393 } while (ptep++, addr = next, addr != end); 2394 2395 return 1; 2396 } 2397 #else 2398 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2399 unsigned int pdshift, unsigned long end, unsigned int flags, 2400 struct page **pages, int *nr) 2401 { 2402 return 0; 2403 } 2404 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2405 2406 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2407 unsigned long end, unsigned int flags, 2408 struct page **pages, int *nr) 2409 { 2410 struct page *head, *page; 2411 int refs; 2412 2413 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2414 return 0; 2415 2416 if (pmd_devmap(orig)) { 2417 if (unlikely(flags & FOLL_LONGTERM)) 2418 return 0; 2419 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2420 pages, nr); 2421 } 2422 2423 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2424 refs = record_subpages(page, addr, end, pages + *nr); 2425 2426 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2427 if (!head) 2428 return 0; 2429 2430 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2431 put_compound_head(head, refs, flags); 2432 return 0; 2433 } 2434 2435 *nr += refs; 2436 SetPageReferenced(head); 2437 return 1; 2438 } 2439 2440 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2441 unsigned long end, unsigned int flags, 2442 struct page **pages, int *nr) 2443 { 2444 struct page *head, *page; 2445 int refs; 2446 2447 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2448 return 0; 2449 2450 if (pud_devmap(orig)) { 2451 if (unlikely(flags & FOLL_LONGTERM)) 2452 return 0; 2453 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2454 pages, nr); 2455 } 2456 2457 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2458 refs = record_subpages(page, addr, end, pages + *nr); 2459 2460 head = try_grab_compound_head(pud_page(orig), refs, flags); 2461 if (!head) 2462 return 0; 2463 2464 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2465 put_compound_head(head, refs, flags); 2466 return 0; 2467 } 2468 2469 *nr += refs; 2470 SetPageReferenced(head); 2471 return 1; 2472 } 2473 2474 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2475 unsigned long end, unsigned int flags, 2476 struct page **pages, int *nr) 2477 { 2478 int refs; 2479 struct page *head, *page; 2480 2481 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2482 return 0; 2483 2484 BUILD_BUG_ON(pgd_devmap(orig)); 2485 2486 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2487 refs = record_subpages(page, addr, end, pages + *nr); 2488 2489 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2490 if (!head) 2491 return 0; 2492 2493 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2494 put_compound_head(head, refs, flags); 2495 return 0; 2496 } 2497 2498 *nr += refs; 2499 SetPageReferenced(head); 2500 return 1; 2501 } 2502 2503 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2504 unsigned int flags, struct page **pages, int *nr) 2505 { 2506 unsigned long next; 2507 pmd_t *pmdp; 2508 2509 pmdp = pmd_offset(&pud, addr); 2510 do { 2511 pmd_t pmd = READ_ONCE(*pmdp); 2512 2513 next = pmd_addr_end(addr, end); 2514 if (!pmd_present(pmd)) 2515 return 0; 2516 2517 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2518 pmd_devmap(pmd))) { 2519 /* 2520 * NUMA hinting faults need to be handled in the GUP 2521 * slowpath for accounting purposes and so that they 2522 * can be serialised against THP migration. 2523 */ 2524 if (pmd_protnone(pmd)) 2525 return 0; 2526 2527 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2528 pages, nr)) 2529 return 0; 2530 2531 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2532 /* 2533 * architecture have different format for hugetlbfs 2534 * pmd format and THP pmd format 2535 */ 2536 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2537 PMD_SHIFT, next, flags, pages, nr)) 2538 return 0; 2539 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2540 return 0; 2541 } while (pmdp++, addr = next, addr != end); 2542 2543 return 1; 2544 } 2545 2546 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2547 unsigned int flags, struct page **pages, int *nr) 2548 { 2549 unsigned long next; 2550 pud_t *pudp; 2551 2552 pudp = pud_offset(&p4d, addr); 2553 do { 2554 pud_t pud = READ_ONCE(*pudp); 2555 2556 next = pud_addr_end(addr, end); 2557 if (unlikely(!pud_present(pud))) 2558 return 0; 2559 if (unlikely(pud_huge(pud))) { 2560 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2561 pages, nr)) 2562 return 0; 2563 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2564 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2565 PUD_SHIFT, next, flags, pages, nr)) 2566 return 0; 2567 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2568 return 0; 2569 } while (pudp++, addr = next, addr != end); 2570 2571 return 1; 2572 } 2573 2574 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2575 unsigned int flags, struct page **pages, int *nr) 2576 { 2577 unsigned long next; 2578 p4d_t *p4dp; 2579 2580 p4dp = p4d_offset(&pgd, addr); 2581 do { 2582 p4d_t p4d = READ_ONCE(*p4dp); 2583 2584 next = p4d_addr_end(addr, end); 2585 if (p4d_none(p4d)) 2586 return 0; 2587 BUILD_BUG_ON(p4d_huge(p4d)); 2588 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2589 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2590 P4D_SHIFT, next, flags, pages, nr)) 2591 return 0; 2592 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2593 return 0; 2594 } while (p4dp++, addr = next, addr != end); 2595 2596 return 1; 2597 } 2598 2599 static void gup_pgd_range(unsigned long addr, unsigned long end, 2600 unsigned int flags, struct page **pages, int *nr) 2601 { 2602 unsigned long next; 2603 pgd_t *pgdp; 2604 2605 pgdp = pgd_offset(current->mm, addr); 2606 do { 2607 pgd_t pgd = READ_ONCE(*pgdp); 2608 2609 next = pgd_addr_end(addr, end); 2610 if (pgd_none(pgd)) 2611 return; 2612 if (unlikely(pgd_huge(pgd))) { 2613 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2614 pages, nr)) 2615 return; 2616 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2617 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2618 PGDIR_SHIFT, next, flags, pages, nr)) 2619 return; 2620 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2621 return; 2622 } while (pgdp++, addr = next, addr != end); 2623 } 2624 #else 2625 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2626 unsigned int flags, struct page **pages, int *nr) 2627 { 2628 } 2629 #endif /* CONFIG_HAVE_FAST_GUP */ 2630 2631 #ifndef gup_fast_permitted 2632 /* 2633 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2634 * we need to fall back to the slow version: 2635 */ 2636 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2637 { 2638 return true; 2639 } 2640 #endif 2641 2642 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2643 unsigned int gup_flags, struct page **pages) 2644 { 2645 int ret; 2646 2647 /* 2648 * FIXME: FOLL_LONGTERM does not work with 2649 * get_user_pages_unlocked() (see comments in that function) 2650 */ 2651 if (gup_flags & FOLL_LONGTERM) { 2652 mmap_read_lock(current->mm); 2653 ret = __gup_longterm_locked(current->mm, 2654 start, nr_pages, 2655 pages, NULL, gup_flags); 2656 mmap_read_unlock(current->mm); 2657 } else { 2658 ret = get_user_pages_unlocked(start, nr_pages, 2659 pages, gup_flags); 2660 } 2661 2662 return ret; 2663 } 2664 2665 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2666 unsigned int gup_flags, 2667 struct page **pages) 2668 { 2669 unsigned long addr, len, end; 2670 unsigned long flags; 2671 int nr_pinned = 0, ret = 0; 2672 2673 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2674 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2675 FOLL_FAST_ONLY))) 2676 return -EINVAL; 2677 2678 if (!(gup_flags & FOLL_FAST_ONLY)) 2679 might_lock_read(¤t->mm->mmap_lock); 2680 2681 start = untagged_addr(start) & PAGE_MASK; 2682 addr = start; 2683 len = (unsigned long) nr_pages << PAGE_SHIFT; 2684 end = start + len; 2685 2686 if (end <= start) 2687 return 0; 2688 if (unlikely(!access_ok((void __user *)start, len))) 2689 return -EFAULT; 2690 2691 /* 2692 * The FAST_GUP case requires FOLL_WRITE even for pure reads, 2693 * because get_user_pages() may need to cause an early COW in 2694 * order to avoid confusing the normal COW routines. So only 2695 * targets that are already writable are safe to do by just 2696 * looking at the page tables. 2697 * 2698 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here, 2699 * because there is no slow path to fall back on. But you'd 2700 * better be careful about possible COW pages - you'll get _a_ 2701 * COW page, but not necessarily the one you intended to get 2702 * depending on what COW event happens after this. COW may break 2703 * the page copy in a random direction. 2704 * 2705 * Disable interrupts. The nested form is used, in order to allow 2706 * full, general purpose use of this routine. 2707 * 2708 * With interrupts disabled, we block page table pages from being 2709 * freed from under us. See struct mmu_table_batch comments in 2710 * include/asm-generic/tlb.h for more details. 2711 * 2712 * We do not adopt an rcu_read_lock(.) here as we also want to 2713 * block IPIs that come from THPs splitting. 2714 */ 2715 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2716 unsigned long fast_flags = gup_flags; 2717 if (!(gup_flags & FOLL_FAST_ONLY)) 2718 fast_flags |= FOLL_WRITE; 2719 2720 local_irq_save(flags); 2721 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2722 local_irq_restore(flags); 2723 ret = nr_pinned; 2724 } 2725 2726 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2727 /* Try to get the remaining pages with get_user_pages */ 2728 start += nr_pinned << PAGE_SHIFT; 2729 pages += nr_pinned; 2730 2731 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2732 gup_flags, pages); 2733 2734 /* Have to be a bit careful with return values */ 2735 if (nr_pinned > 0) { 2736 if (ret < 0) 2737 ret = nr_pinned; 2738 else 2739 ret += nr_pinned; 2740 } 2741 } 2742 2743 return ret; 2744 } 2745 /** 2746 * get_user_pages_fast_only() - pin user pages in memory 2747 * @start: starting user address 2748 * @nr_pages: number of pages from start to pin 2749 * @gup_flags: flags modifying pin behaviour 2750 * @pages: array that receives pointers to the pages pinned. 2751 * Should be at least nr_pages long. 2752 * 2753 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2754 * the regular GUP. 2755 * Note a difference with get_user_pages_fast: this always returns the 2756 * number of pages pinned, 0 if no pages were pinned. 2757 * 2758 * If the architecture does not support this function, simply return with no 2759 * pages pinned. 2760 * 2761 * Careful, careful! COW breaking can go either way, so a non-write 2762 * access can get ambiguous page results. If you call this function without 2763 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2764 */ 2765 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2766 unsigned int gup_flags, struct page **pages) 2767 { 2768 int nr_pinned; 2769 /* 2770 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2771 * because gup fast is always a "pin with a +1 page refcount" request. 2772 * 2773 * FOLL_FAST_ONLY is required in order to match the API description of 2774 * this routine: no fall back to regular ("slow") GUP. 2775 */ 2776 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2777 2778 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2779 pages); 2780 2781 /* 2782 * As specified in the API description above, this routine is not 2783 * allowed to return negative values. However, the common core 2784 * routine internal_get_user_pages_fast() *can* return -errno. 2785 * Therefore, correct for that here: 2786 */ 2787 if (nr_pinned < 0) 2788 nr_pinned = 0; 2789 2790 return nr_pinned; 2791 } 2792 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2793 2794 /** 2795 * get_user_pages_fast() - pin user pages in memory 2796 * @start: starting user address 2797 * @nr_pages: number of pages from start to pin 2798 * @gup_flags: flags modifying pin behaviour 2799 * @pages: array that receives pointers to the pages pinned. 2800 * Should be at least nr_pages long. 2801 * 2802 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2803 * If not successful, it will fall back to taking the lock and 2804 * calling get_user_pages(). 2805 * 2806 * Returns number of pages pinned. This may be fewer than the number requested. 2807 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2808 * -errno. 2809 */ 2810 int get_user_pages_fast(unsigned long start, int nr_pages, 2811 unsigned int gup_flags, struct page **pages) 2812 { 2813 /* 2814 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2815 * never directly by the caller, so enforce that: 2816 */ 2817 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2818 return -EINVAL; 2819 2820 /* 2821 * The caller may or may not have explicitly set FOLL_GET; either way is 2822 * OK. However, internally (within mm/gup.c), gup fast variants must set 2823 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2824 * request. 2825 */ 2826 gup_flags |= FOLL_GET; 2827 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2828 } 2829 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2830 2831 /** 2832 * pin_user_pages_fast() - pin user pages in memory without taking locks 2833 * 2834 * @start: starting user address 2835 * @nr_pages: number of pages from start to pin 2836 * @gup_flags: flags modifying pin behaviour 2837 * @pages: array that receives pointers to the pages pinned. 2838 * Should be at least nr_pages long. 2839 * 2840 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2841 * get_user_pages_fast() for documentation on the function arguments, because 2842 * the arguments here are identical. 2843 * 2844 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2845 * see Documentation/core-api/pin_user_pages.rst for further details. 2846 */ 2847 int pin_user_pages_fast(unsigned long start, int nr_pages, 2848 unsigned int gup_flags, struct page **pages) 2849 { 2850 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2851 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2852 return -EINVAL; 2853 2854 gup_flags |= FOLL_PIN; 2855 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2856 } 2857 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2858 2859 /* 2860 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2861 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2862 * 2863 * The API rules are the same, too: no negative values may be returned. 2864 */ 2865 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2866 unsigned int gup_flags, struct page **pages) 2867 { 2868 int nr_pinned; 2869 2870 /* 2871 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2872 * rules require returning 0, rather than -errno: 2873 */ 2874 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2875 return 0; 2876 /* 2877 * FOLL_FAST_ONLY is required in order to match the API description of 2878 * this routine: no fall back to regular ("slow") GUP. 2879 */ 2880 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2881 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2882 pages); 2883 /* 2884 * This routine is not allowed to return negative values. However, 2885 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2886 * correct for that here: 2887 */ 2888 if (nr_pinned < 0) 2889 nr_pinned = 0; 2890 2891 return nr_pinned; 2892 } 2893 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2894 2895 /** 2896 * pin_user_pages_remote() - pin pages of a remote process 2897 * 2898 * @mm: mm_struct of target mm 2899 * @start: starting user address 2900 * @nr_pages: number of pages from start to pin 2901 * @gup_flags: flags modifying lookup behaviour 2902 * @pages: array that receives pointers to the pages pinned. 2903 * Should be at least nr_pages long. Or NULL, if caller 2904 * only intends to ensure the pages are faulted in. 2905 * @vmas: array of pointers to vmas corresponding to each page. 2906 * Or NULL if the caller does not require them. 2907 * @locked: pointer to lock flag indicating whether lock is held and 2908 * subsequently whether VM_FAULT_RETRY functionality can be 2909 * utilised. Lock must initially be held. 2910 * 2911 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2912 * get_user_pages_remote() for documentation on the function arguments, because 2913 * the arguments here are identical. 2914 * 2915 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2916 * see Documentation/core-api/pin_user_pages.rst for details. 2917 */ 2918 long pin_user_pages_remote(struct mm_struct *mm, 2919 unsigned long start, unsigned long nr_pages, 2920 unsigned int gup_flags, struct page **pages, 2921 struct vm_area_struct **vmas, int *locked) 2922 { 2923 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2924 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2925 return -EINVAL; 2926 2927 gup_flags |= FOLL_PIN; 2928 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2929 pages, vmas, locked); 2930 } 2931 EXPORT_SYMBOL(pin_user_pages_remote); 2932 2933 /** 2934 * pin_user_pages() - pin user pages in memory for use by other devices 2935 * 2936 * @start: starting user address 2937 * @nr_pages: number of pages from start to pin 2938 * @gup_flags: flags modifying lookup behaviour 2939 * @pages: array that receives pointers to the pages pinned. 2940 * Should be at least nr_pages long. Or NULL, if caller 2941 * only intends to ensure the pages are faulted in. 2942 * @vmas: array of pointers to vmas corresponding to each page. 2943 * Or NULL if the caller does not require them. 2944 * 2945 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2946 * FOLL_PIN is set. 2947 * 2948 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2949 * see Documentation/core-api/pin_user_pages.rst for details. 2950 */ 2951 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2952 unsigned int gup_flags, struct page **pages, 2953 struct vm_area_struct **vmas) 2954 { 2955 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2956 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2957 return -EINVAL; 2958 2959 gup_flags |= FOLL_PIN; 2960 return __gup_longterm_locked(current->mm, start, nr_pages, 2961 pages, vmas, gup_flags); 2962 } 2963 EXPORT_SYMBOL(pin_user_pages); 2964 2965 /* 2966 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2967 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2968 * FOLL_PIN and rejects FOLL_GET. 2969 */ 2970 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2971 struct page **pages, unsigned int gup_flags) 2972 { 2973 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2974 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2975 return -EINVAL; 2976 2977 gup_flags |= FOLL_PIN; 2978 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2979 } 2980 EXPORT_SYMBOL(pin_user_pages_unlocked); 2981 2982 /* 2983 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2984 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2985 * FOLL_GET. 2986 */ 2987 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2988 unsigned int gup_flags, struct page **pages, 2989 int *locked) 2990 { 2991 /* 2992 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2993 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2994 * vmas. As there are no users of this flag in this call we simply 2995 * disallow this option for now. 2996 */ 2997 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2998 return -EINVAL; 2999 3000 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3001 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3002 return -EINVAL; 3003 3004 gup_flags |= FOLL_PIN; 3005 return __get_user_pages_locked(current->mm, start, nr_pages, 3006 pages, NULL, locked, 3007 gup_flags | FOLL_TOUCH); 3008 } 3009 EXPORT_SYMBOL(pin_user_pages_locked); 3010