1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 struct follow_page_context { 24 struct dev_pagemap *pgmap; 25 unsigned int page_mask; 26 }; 27 28 static struct page *no_page_table(struct vm_area_struct *vma, 29 unsigned int flags) 30 { 31 /* 32 * When core dumping an enormous anonymous area that nobody 33 * has touched so far, we don't want to allocate unnecessary pages or 34 * page tables. Return error instead of NULL to skip handle_mm_fault, 35 * then get_dump_page() will return NULL to leave a hole in the dump. 36 * But we can only make this optimization where a hole would surely 37 * be zero-filled if handle_mm_fault() actually did handle it. 38 */ 39 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 40 return ERR_PTR(-EFAULT); 41 return NULL; 42 } 43 44 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 45 pte_t *pte, unsigned int flags) 46 { 47 /* No page to get reference */ 48 if (flags & FOLL_GET) 49 return -EFAULT; 50 51 if (flags & FOLL_TOUCH) { 52 pte_t entry = *pte; 53 54 if (flags & FOLL_WRITE) 55 entry = pte_mkdirty(entry); 56 entry = pte_mkyoung(entry); 57 58 if (!pte_same(*pte, entry)) { 59 set_pte_at(vma->vm_mm, address, pte, entry); 60 update_mmu_cache(vma, address, pte); 61 } 62 } 63 64 /* Proper page table entry exists, but no corresponding struct page */ 65 return -EEXIST; 66 } 67 68 /* 69 * FOLL_FORCE can write to even unwritable pte's, but only 70 * after we've gone through a COW cycle and they are dirty. 71 */ 72 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 73 { 74 return pte_write(pte) || 75 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 76 } 77 78 static struct page *follow_page_pte(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmd, unsigned int flags, 80 struct dev_pagemap **pgmap) 81 { 82 struct mm_struct *mm = vma->vm_mm; 83 struct page *page; 84 spinlock_t *ptl; 85 pte_t *ptep, pte; 86 87 retry: 88 if (unlikely(pmd_bad(*pmd))) 89 return no_page_table(vma, flags); 90 91 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 92 pte = *ptep; 93 if (!pte_present(pte)) { 94 swp_entry_t entry; 95 /* 96 * KSM's break_ksm() relies upon recognizing a ksm page 97 * even while it is being migrated, so for that case we 98 * need migration_entry_wait(). 99 */ 100 if (likely(!(flags & FOLL_MIGRATION))) 101 goto no_page; 102 if (pte_none(pte)) 103 goto no_page; 104 entry = pte_to_swp_entry(pte); 105 if (!is_migration_entry(entry)) 106 goto no_page; 107 pte_unmap_unlock(ptep, ptl); 108 migration_entry_wait(mm, pmd, address); 109 goto retry; 110 } 111 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 112 goto no_page; 113 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 114 pte_unmap_unlock(ptep, ptl); 115 return NULL; 116 } 117 118 page = vm_normal_page(vma, address, pte); 119 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 120 /* 121 * Only return device mapping pages in the FOLL_GET case since 122 * they are only valid while holding the pgmap reference. 123 */ 124 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 125 if (*pgmap) 126 page = pte_page(pte); 127 else 128 goto no_page; 129 } else if (unlikely(!page)) { 130 if (flags & FOLL_DUMP) { 131 /* Avoid special (like zero) pages in core dumps */ 132 page = ERR_PTR(-EFAULT); 133 goto out; 134 } 135 136 if (is_zero_pfn(pte_pfn(pte))) { 137 page = pte_page(pte); 138 } else { 139 int ret; 140 141 ret = follow_pfn_pte(vma, address, ptep, flags); 142 page = ERR_PTR(ret); 143 goto out; 144 } 145 } 146 147 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 148 int ret; 149 get_page(page); 150 pte_unmap_unlock(ptep, ptl); 151 lock_page(page); 152 ret = split_huge_page(page); 153 unlock_page(page); 154 put_page(page); 155 if (ret) 156 return ERR_PTR(ret); 157 goto retry; 158 } 159 160 if (flags & FOLL_GET) 161 get_page(page); 162 if (flags & FOLL_TOUCH) { 163 if ((flags & FOLL_WRITE) && 164 !pte_dirty(pte) && !PageDirty(page)) 165 set_page_dirty(page); 166 /* 167 * pte_mkyoung() would be more correct here, but atomic care 168 * is needed to avoid losing the dirty bit: it is easier to use 169 * mark_page_accessed(). 170 */ 171 mark_page_accessed(page); 172 } 173 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 174 /* Do not mlock pte-mapped THP */ 175 if (PageTransCompound(page)) 176 goto out; 177 178 /* 179 * The preliminary mapping check is mainly to avoid the 180 * pointless overhead of lock_page on the ZERO_PAGE 181 * which might bounce very badly if there is contention. 182 * 183 * If the page is already locked, we don't need to 184 * handle it now - vmscan will handle it later if and 185 * when it attempts to reclaim the page. 186 */ 187 if (page->mapping && trylock_page(page)) { 188 lru_add_drain(); /* push cached pages to LRU */ 189 /* 190 * Because we lock page here, and migration is 191 * blocked by the pte's page reference, and we 192 * know the page is still mapped, we don't even 193 * need to check for file-cache page truncation. 194 */ 195 mlock_vma_page(page); 196 unlock_page(page); 197 } 198 } 199 out: 200 pte_unmap_unlock(ptep, ptl); 201 return page; 202 no_page: 203 pte_unmap_unlock(ptep, ptl); 204 if (!pte_none(pte)) 205 return NULL; 206 return no_page_table(vma, flags); 207 } 208 209 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 210 unsigned long address, pud_t *pudp, 211 unsigned int flags, 212 struct follow_page_context *ctx) 213 { 214 pmd_t *pmd, pmdval; 215 spinlock_t *ptl; 216 struct page *page; 217 struct mm_struct *mm = vma->vm_mm; 218 219 pmd = pmd_offset(pudp, address); 220 /* 221 * The READ_ONCE() will stabilize the pmdval in a register or 222 * on the stack so that it will stop changing under the code. 223 */ 224 pmdval = READ_ONCE(*pmd); 225 if (pmd_none(pmdval)) 226 return no_page_table(vma, flags); 227 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 228 page = follow_huge_pmd(mm, address, pmd, flags); 229 if (page) 230 return page; 231 return no_page_table(vma, flags); 232 } 233 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 234 page = follow_huge_pd(vma, address, 235 __hugepd(pmd_val(pmdval)), flags, 236 PMD_SHIFT); 237 if (page) 238 return page; 239 return no_page_table(vma, flags); 240 } 241 retry: 242 if (!pmd_present(pmdval)) { 243 if (likely(!(flags & FOLL_MIGRATION))) 244 return no_page_table(vma, flags); 245 VM_BUG_ON(thp_migration_supported() && 246 !is_pmd_migration_entry(pmdval)); 247 if (is_pmd_migration_entry(pmdval)) 248 pmd_migration_entry_wait(mm, pmd); 249 pmdval = READ_ONCE(*pmd); 250 /* 251 * MADV_DONTNEED may convert the pmd to null because 252 * mmap_sem is held in read mode 253 */ 254 if (pmd_none(pmdval)) 255 return no_page_table(vma, flags); 256 goto retry; 257 } 258 if (pmd_devmap(pmdval)) { 259 ptl = pmd_lock(mm, pmd); 260 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 261 spin_unlock(ptl); 262 if (page) 263 return page; 264 } 265 if (likely(!pmd_trans_huge(pmdval))) 266 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 267 268 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 269 return no_page_table(vma, flags); 270 271 retry_locked: 272 ptl = pmd_lock(mm, pmd); 273 if (unlikely(pmd_none(*pmd))) { 274 spin_unlock(ptl); 275 return no_page_table(vma, flags); 276 } 277 if (unlikely(!pmd_present(*pmd))) { 278 spin_unlock(ptl); 279 if (likely(!(flags & FOLL_MIGRATION))) 280 return no_page_table(vma, flags); 281 pmd_migration_entry_wait(mm, pmd); 282 goto retry_locked; 283 } 284 if (unlikely(!pmd_trans_huge(*pmd))) { 285 spin_unlock(ptl); 286 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 287 } 288 if (flags & FOLL_SPLIT) { 289 int ret; 290 page = pmd_page(*pmd); 291 if (is_huge_zero_page(page)) { 292 spin_unlock(ptl); 293 ret = 0; 294 split_huge_pmd(vma, pmd, address); 295 if (pmd_trans_unstable(pmd)) 296 ret = -EBUSY; 297 } else { 298 get_page(page); 299 spin_unlock(ptl); 300 lock_page(page); 301 ret = split_huge_page(page); 302 unlock_page(page); 303 put_page(page); 304 if (pmd_none(*pmd)) 305 return no_page_table(vma, flags); 306 } 307 308 return ret ? ERR_PTR(ret) : 309 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 310 } 311 page = follow_trans_huge_pmd(vma, address, pmd, flags); 312 spin_unlock(ptl); 313 ctx->page_mask = HPAGE_PMD_NR - 1; 314 return page; 315 } 316 317 static struct page *follow_pud_mask(struct vm_area_struct *vma, 318 unsigned long address, p4d_t *p4dp, 319 unsigned int flags, 320 struct follow_page_context *ctx) 321 { 322 pud_t *pud; 323 spinlock_t *ptl; 324 struct page *page; 325 struct mm_struct *mm = vma->vm_mm; 326 327 pud = pud_offset(p4dp, address); 328 if (pud_none(*pud)) 329 return no_page_table(vma, flags); 330 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 331 page = follow_huge_pud(mm, address, pud, flags); 332 if (page) 333 return page; 334 return no_page_table(vma, flags); 335 } 336 if (is_hugepd(__hugepd(pud_val(*pud)))) { 337 page = follow_huge_pd(vma, address, 338 __hugepd(pud_val(*pud)), flags, 339 PUD_SHIFT); 340 if (page) 341 return page; 342 return no_page_table(vma, flags); 343 } 344 if (pud_devmap(*pud)) { 345 ptl = pud_lock(mm, pud); 346 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 347 spin_unlock(ptl); 348 if (page) 349 return page; 350 } 351 if (unlikely(pud_bad(*pud))) 352 return no_page_table(vma, flags); 353 354 return follow_pmd_mask(vma, address, pud, flags, ctx); 355 } 356 357 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 358 unsigned long address, pgd_t *pgdp, 359 unsigned int flags, 360 struct follow_page_context *ctx) 361 { 362 p4d_t *p4d; 363 struct page *page; 364 365 p4d = p4d_offset(pgdp, address); 366 if (p4d_none(*p4d)) 367 return no_page_table(vma, flags); 368 BUILD_BUG_ON(p4d_huge(*p4d)); 369 if (unlikely(p4d_bad(*p4d))) 370 return no_page_table(vma, flags); 371 372 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 373 page = follow_huge_pd(vma, address, 374 __hugepd(p4d_val(*p4d)), flags, 375 P4D_SHIFT); 376 if (page) 377 return page; 378 return no_page_table(vma, flags); 379 } 380 return follow_pud_mask(vma, address, p4d, flags, ctx); 381 } 382 383 /** 384 * follow_page_mask - look up a page descriptor from a user-virtual address 385 * @vma: vm_area_struct mapping @address 386 * @address: virtual address to look up 387 * @flags: flags modifying lookup behaviour 388 * @page_mask: on output, *page_mask is set according to the size of the page 389 * 390 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 391 * 392 * Returns the mapped (struct page *), %NULL if no mapping exists, or 393 * an error pointer if there is a mapping to something not represented 394 * by a page descriptor (see also vm_normal_page()). 395 */ 396 struct page *follow_page_mask(struct vm_area_struct *vma, 397 unsigned long address, unsigned int flags, 398 struct follow_page_context *ctx) 399 { 400 pgd_t *pgd; 401 struct page *page; 402 struct mm_struct *mm = vma->vm_mm; 403 404 ctx->page_mask = 0; 405 406 /* make this handle hugepd */ 407 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 408 if (!IS_ERR(page)) { 409 BUG_ON(flags & FOLL_GET); 410 return page; 411 } 412 413 pgd = pgd_offset(mm, address); 414 415 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 416 return no_page_table(vma, flags); 417 418 if (pgd_huge(*pgd)) { 419 page = follow_huge_pgd(mm, address, pgd, flags); 420 if (page) 421 return page; 422 return no_page_table(vma, flags); 423 } 424 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 425 page = follow_huge_pd(vma, address, 426 __hugepd(pgd_val(*pgd)), flags, 427 PGDIR_SHIFT); 428 if (page) 429 return page; 430 return no_page_table(vma, flags); 431 } 432 433 return follow_p4d_mask(vma, address, pgd, flags, ctx); 434 } 435 436 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 437 unsigned int foll_flags) 438 { 439 struct follow_page_context ctx = { NULL }; 440 struct page *page; 441 442 page = follow_page_mask(vma, address, foll_flags, &ctx); 443 if (ctx.pgmap) 444 put_dev_pagemap(ctx.pgmap); 445 return page; 446 } 447 448 static int get_gate_page(struct mm_struct *mm, unsigned long address, 449 unsigned int gup_flags, struct vm_area_struct **vma, 450 struct page **page) 451 { 452 pgd_t *pgd; 453 p4d_t *p4d; 454 pud_t *pud; 455 pmd_t *pmd; 456 pte_t *pte; 457 int ret = -EFAULT; 458 459 /* user gate pages are read-only */ 460 if (gup_flags & FOLL_WRITE) 461 return -EFAULT; 462 if (address > TASK_SIZE) 463 pgd = pgd_offset_k(address); 464 else 465 pgd = pgd_offset_gate(mm, address); 466 BUG_ON(pgd_none(*pgd)); 467 p4d = p4d_offset(pgd, address); 468 BUG_ON(p4d_none(*p4d)); 469 pud = pud_offset(p4d, address); 470 BUG_ON(pud_none(*pud)); 471 pmd = pmd_offset(pud, address); 472 if (!pmd_present(*pmd)) 473 return -EFAULT; 474 VM_BUG_ON(pmd_trans_huge(*pmd)); 475 pte = pte_offset_map(pmd, address); 476 if (pte_none(*pte)) 477 goto unmap; 478 *vma = get_gate_vma(mm); 479 if (!page) 480 goto out; 481 *page = vm_normal_page(*vma, address, *pte); 482 if (!*page) { 483 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 484 goto unmap; 485 *page = pte_page(*pte); 486 487 /* 488 * This should never happen (a device public page in the gate 489 * area). 490 */ 491 if (is_device_public_page(*page)) 492 goto unmap; 493 } 494 get_page(*page); 495 out: 496 ret = 0; 497 unmap: 498 pte_unmap(pte); 499 return ret; 500 } 501 502 /* 503 * mmap_sem must be held on entry. If @nonblocking != NULL and 504 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 505 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 506 */ 507 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 508 unsigned long address, unsigned int *flags, int *nonblocking) 509 { 510 unsigned int fault_flags = 0; 511 vm_fault_t ret; 512 513 /* mlock all present pages, but do not fault in new pages */ 514 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 515 return -ENOENT; 516 if (*flags & FOLL_WRITE) 517 fault_flags |= FAULT_FLAG_WRITE; 518 if (*flags & FOLL_REMOTE) 519 fault_flags |= FAULT_FLAG_REMOTE; 520 if (nonblocking) 521 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 522 if (*flags & FOLL_NOWAIT) 523 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 524 if (*flags & FOLL_TRIED) { 525 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 526 fault_flags |= FAULT_FLAG_TRIED; 527 } 528 529 ret = handle_mm_fault(vma, address, fault_flags); 530 if (ret & VM_FAULT_ERROR) { 531 int err = vm_fault_to_errno(ret, *flags); 532 533 if (err) 534 return err; 535 BUG(); 536 } 537 538 if (tsk) { 539 if (ret & VM_FAULT_MAJOR) 540 tsk->maj_flt++; 541 else 542 tsk->min_flt++; 543 } 544 545 if (ret & VM_FAULT_RETRY) { 546 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 547 *nonblocking = 0; 548 return -EBUSY; 549 } 550 551 /* 552 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 553 * necessary, even if maybe_mkwrite decided not to set pte_write. We 554 * can thus safely do subsequent page lookups as if they were reads. 555 * But only do so when looping for pte_write is futile: in some cases 556 * userspace may also be wanting to write to the gotten user page, 557 * which a read fault here might prevent (a readonly page might get 558 * reCOWed by userspace write). 559 */ 560 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 561 *flags |= FOLL_COW; 562 return 0; 563 } 564 565 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 566 { 567 vm_flags_t vm_flags = vma->vm_flags; 568 int write = (gup_flags & FOLL_WRITE); 569 int foreign = (gup_flags & FOLL_REMOTE); 570 571 if (vm_flags & (VM_IO | VM_PFNMAP)) 572 return -EFAULT; 573 574 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 575 return -EFAULT; 576 577 if (write) { 578 if (!(vm_flags & VM_WRITE)) { 579 if (!(gup_flags & FOLL_FORCE)) 580 return -EFAULT; 581 /* 582 * We used to let the write,force case do COW in a 583 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 584 * set a breakpoint in a read-only mapping of an 585 * executable, without corrupting the file (yet only 586 * when that file had been opened for writing!). 587 * Anon pages in shared mappings are surprising: now 588 * just reject it. 589 */ 590 if (!is_cow_mapping(vm_flags)) 591 return -EFAULT; 592 } 593 } else if (!(vm_flags & VM_READ)) { 594 if (!(gup_flags & FOLL_FORCE)) 595 return -EFAULT; 596 /* 597 * Is there actually any vma we can reach here which does not 598 * have VM_MAYREAD set? 599 */ 600 if (!(vm_flags & VM_MAYREAD)) 601 return -EFAULT; 602 } 603 /* 604 * gups are always data accesses, not instruction 605 * fetches, so execute=false here 606 */ 607 if (!arch_vma_access_permitted(vma, write, false, foreign)) 608 return -EFAULT; 609 return 0; 610 } 611 612 /** 613 * __get_user_pages() - pin user pages in memory 614 * @tsk: task_struct of target task 615 * @mm: mm_struct of target mm 616 * @start: starting user address 617 * @nr_pages: number of pages from start to pin 618 * @gup_flags: flags modifying pin behaviour 619 * @pages: array that receives pointers to the pages pinned. 620 * Should be at least nr_pages long. Or NULL, if caller 621 * only intends to ensure the pages are faulted in. 622 * @vmas: array of pointers to vmas corresponding to each page. 623 * Or NULL if the caller does not require them. 624 * @nonblocking: whether waiting for disk IO or mmap_sem contention 625 * 626 * Returns number of pages pinned. This may be fewer than the number 627 * requested. If nr_pages is 0 or negative, returns 0. If no pages 628 * were pinned, returns -errno. Each page returned must be released 629 * with a put_page() call when it is finished with. vmas will only 630 * remain valid while mmap_sem is held. 631 * 632 * Must be called with mmap_sem held. It may be released. See below. 633 * 634 * __get_user_pages walks a process's page tables and takes a reference to 635 * each struct page that each user address corresponds to at a given 636 * instant. That is, it takes the page that would be accessed if a user 637 * thread accesses the given user virtual address at that instant. 638 * 639 * This does not guarantee that the page exists in the user mappings when 640 * __get_user_pages returns, and there may even be a completely different 641 * page there in some cases (eg. if mmapped pagecache has been invalidated 642 * and subsequently re faulted). However it does guarantee that the page 643 * won't be freed completely. And mostly callers simply care that the page 644 * contains data that was valid *at some point in time*. Typically, an IO 645 * or similar operation cannot guarantee anything stronger anyway because 646 * locks can't be held over the syscall boundary. 647 * 648 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 649 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 650 * appropriate) must be called after the page is finished with, and 651 * before put_page is called. 652 * 653 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 654 * or mmap_sem contention, and if waiting is needed to pin all pages, 655 * *@nonblocking will be set to 0. Further, if @gup_flags does not 656 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 657 * this case. 658 * 659 * A caller using such a combination of @nonblocking and @gup_flags 660 * must therefore hold the mmap_sem for reading only, and recognize 661 * when it's been released. Otherwise, it must be held for either 662 * reading or writing and will not be released. 663 * 664 * In most cases, get_user_pages or get_user_pages_fast should be used 665 * instead of __get_user_pages. __get_user_pages should be used only if 666 * you need some special @gup_flags. 667 */ 668 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 669 unsigned long start, unsigned long nr_pages, 670 unsigned int gup_flags, struct page **pages, 671 struct vm_area_struct **vmas, int *nonblocking) 672 { 673 long ret = 0, i = 0; 674 struct vm_area_struct *vma = NULL; 675 struct follow_page_context ctx = { NULL }; 676 677 if (!nr_pages) 678 return 0; 679 680 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 681 682 /* 683 * If FOLL_FORCE is set then do not force a full fault as the hinting 684 * fault information is unrelated to the reference behaviour of a task 685 * using the address space 686 */ 687 if (!(gup_flags & FOLL_FORCE)) 688 gup_flags |= FOLL_NUMA; 689 690 do { 691 struct page *page; 692 unsigned int foll_flags = gup_flags; 693 unsigned int page_increm; 694 695 /* first iteration or cross vma bound */ 696 if (!vma || start >= vma->vm_end) { 697 vma = find_extend_vma(mm, start); 698 if (!vma && in_gate_area(mm, start)) { 699 int ret; 700 ret = get_gate_page(mm, start & PAGE_MASK, 701 gup_flags, &vma, 702 pages ? &pages[i] : NULL); 703 if (ret) 704 return i ? : ret; 705 ctx.page_mask = 0; 706 goto next_page; 707 } 708 709 if (!vma || check_vma_flags(vma, gup_flags)) { 710 ret = -EFAULT; 711 goto out; 712 } 713 if (is_vm_hugetlb_page(vma)) { 714 i = follow_hugetlb_page(mm, vma, pages, vmas, 715 &start, &nr_pages, i, 716 gup_flags, nonblocking); 717 continue; 718 } 719 } 720 retry: 721 /* 722 * If we have a pending SIGKILL, don't keep faulting pages and 723 * potentially allocating memory. 724 */ 725 if (unlikely(fatal_signal_pending(current))) { 726 ret = -ERESTARTSYS; 727 goto out; 728 } 729 cond_resched(); 730 731 page = follow_page_mask(vma, start, foll_flags, &ctx); 732 if (!page) { 733 ret = faultin_page(tsk, vma, start, &foll_flags, 734 nonblocking); 735 switch (ret) { 736 case 0: 737 goto retry; 738 case -EBUSY: 739 ret = 0; 740 /* FALLTHRU */ 741 case -EFAULT: 742 case -ENOMEM: 743 case -EHWPOISON: 744 goto out; 745 case -ENOENT: 746 goto next_page; 747 } 748 BUG(); 749 } else if (PTR_ERR(page) == -EEXIST) { 750 /* 751 * Proper page table entry exists, but no corresponding 752 * struct page. 753 */ 754 goto next_page; 755 } else if (IS_ERR(page)) { 756 ret = PTR_ERR(page); 757 goto out; 758 } 759 if (pages) { 760 pages[i] = page; 761 flush_anon_page(vma, page, start); 762 flush_dcache_page(page); 763 ctx.page_mask = 0; 764 } 765 next_page: 766 if (vmas) { 767 vmas[i] = vma; 768 ctx.page_mask = 0; 769 } 770 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 771 if (page_increm > nr_pages) 772 page_increm = nr_pages; 773 i += page_increm; 774 start += page_increm * PAGE_SIZE; 775 nr_pages -= page_increm; 776 } while (nr_pages); 777 out: 778 if (ctx.pgmap) 779 put_dev_pagemap(ctx.pgmap); 780 return i ? i : ret; 781 } 782 783 static bool vma_permits_fault(struct vm_area_struct *vma, 784 unsigned int fault_flags) 785 { 786 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 787 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 788 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 789 790 if (!(vm_flags & vma->vm_flags)) 791 return false; 792 793 /* 794 * The architecture might have a hardware protection 795 * mechanism other than read/write that can deny access. 796 * 797 * gup always represents data access, not instruction 798 * fetches, so execute=false here: 799 */ 800 if (!arch_vma_access_permitted(vma, write, false, foreign)) 801 return false; 802 803 return true; 804 } 805 806 /* 807 * fixup_user_fault() - manually resolve a user page fault 808 * @tsk: the task_struct to use for page fault accounting, or 809 * NULL if faults are not to be recorded. 810 * @mm: mm_struct of target mm 811 * @address: user address 812 * @fault_flags:flags to pass down to handle_mm_fault() 813 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 814 * does not allow retry 815 * 816 * This is meant to be called in the specific scenario where for locking reasons 817 * we try to access user memory in atomic context (within a pagefault_disable() 818 * section), this returns -EFAULT, and we want to resolve the user fault before 819 * trying again. 820 * 821 * Typically this is meant to be used by the futex code. 822 * 823 * The main difference with get_user_pages() is that this function will 824 * unconditionally call handle_mm_fault() which will in turn perform all the 825 * necessary SW fixup of the dirty and young bits in the PTE, while 826 * get_user_pages() only guarantees to update these in the struct page. 827 * 828 * This is important for some architectures where those bits also gate the 829 * access permission to the page because they are maintained in software. On 830 * such architectures, gup() will not be enough to make a subsequent access 831 * succeed. 832 * 833 * This function will not return with an unlocked mmap_sem. So it has not the 834 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 835 */ 836 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 837 unsigned long address, unsigned int fault_flags, 838 bool *unlocked) 839 { 840 struct vm_area_struct *vma; 841 vm_fault_t ret, major = 0; 842 843 if (unlocked) 844 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 845 846 retry: 847 vma = find_extend_vma(mm, address); 848 if (!vma || address < vma->vm_start) 849 return -EFAULT; 850 851 if (!vma_permits_fault(vma, fault_flags)) 852 return -EFAULT; 853 854 ret = handle_mm_fault(vma, address, fault_flags); 855 major |= ret & VM_FAULT_MAJOR; 856 if (ret & VM_FAULT_ERROR) { 857 int err = vm_fault_to_errno(ret, 0); 858 859 if (err) 860 return err; 861 BUG(); 862 } 863 864 if (ret & VM_FAULT_RETRY) { 865 down_read(&mm->mmap_sem); 866 if (!(fault_flags & FAULT_FLAG_TRIED)) { 867 *unlocked = true; 868 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 869 fault_flags |= FAULT_FLAG_TRIED; 870 goto retry; 871 } 872 } 873 874 if (tsk) { 875 if (major) 876 tsk->maj_flt++; 877 else 878 tsk->min_flt++; 879 } 880 return 0; 881 } 882 EXPORT_SYMBOL_GPL(fixup_user_fault); 883 884 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 885 struct mm_struct *mm, 886 unsigned long start, 887 unsigned long nr_pages, 888 struct page **pages, 889 struct vm_area_struct **vmas, 890 int *locked, 891 unsigned int flags) 892 { 893 long ret, pages_done; 894 bool lock_dropped; 895 896 if (locked) { 897 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 898 BUG_ON(vmas); 899 /* check caller initialized locked */ 900 BUG_ON(*locked != 1); 901 } 902 903 if (pages) 904 flags |= FOLL_GET; 905 906 pages_done = 0; 907 lock_dropped = false; 908 for (;;) { 909 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 910 vmas, locked); 911 if (!locked) 912 /* VM_FAULT_RETRY couldn't trigger, bypass */ 913 return ret; 914 915 /* VM_FAULT_RETRY cannot return errors */ 916 if (!*locked) { 917 BUG_ON(ret < 0); 918 BUG_ON(ret >= nr_pages); 919 } 920 921 if (!pages) 922 /* If it's a prefault don't insist harder */ 923 return ret; 924 925 if (ret > 0) { 926 nr_pages -= ret; 927 pages_done += ret; 928 if (!nr_pages) 929 break; 930 } 931 if (*locked) { 932 /* 933 * VM_FAULT_RETRY didn't trigger or it was a 934 * FOLL_NOWAIT. 935 */ 936 if (!pages_done) 937 pages_done = ret; 938 break; 939 } 940 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 941 pages += ret; 942 start += ret << PAGE_SHIFT; 943 944 /* 945 * Repeat on the address that fired VM_FAULT_RETRY 946 * without FAULT_FLAG_ALLOW_RETRY but with 947 * FAULT_FLAG_TRIED. 948 */ 949 *locked = 1; 950 lock_dropped = true; 951 down_read(&mm->mmap_sem); 952 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 953 pages, NULL, NULL); 954 if (ret != 1) { 955 BUG_ON(ret > 1); 956 if (!pages_done) 957 pages_done = ret; 958 break; 959 } 960 nr_pages--; 961 pages_done++; 962 if (!nr_pages) 963 break; 964 pages++; 965 start += PAGE_SIZE; 966 } 967 if (lock_dropped && *locked) { 968 /* 969 * We must let the caller know we temporarily dropped the lock 970 * and so the critical section protected by it was lost. 971 */ 972 up_read(&mm->mmap_sem); 973 *locked = 0; 974 } 975 return pages_done; 976 } 977 978 /* 979 * We can leverage the VM_FAULT_RETRY functionality in the page fault 980 * paths better by using either get_user_pages_locked() or 981 * get_user_pages_unlocked(). 982 * 983 * get_user_pages_locked() is suitable to replace the form: 984 * 985 * down_read(&mm->mmap_sem); 986 * do_something() 987 * get_user_pages(tsk, mm, ..., pages, NULL); 988 * up_read(&mm->mmap_sem); 989 * 990 * to: 991 * 992 * int locked = 1; 993 * down_read(&mm->mmap_sem); 994 * do_something() 995 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 996 * if (locked) 997 * up_read(&mm->mmap_sem); 998 */ 999 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1000 unsigned int gup_flags, struct page **pages, 1001 int *locked) 1002 { 1003 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1004 pages, NULL, locked, 1005 gup_flags | FOLL_TOUCH); 1006 } 1007 EXPORT_SYMBOL(get_user_pages_locked); 1008 1009 /* 1010 * get_user_pages_unlocked() is suitable to replace the form: 1011 * 1012 * down_read(&mm->mmap_sem); 1013 * get_user_pages(tsk, mm, ..., pages, NULL); 1014 * up_read(&mm->mmap_sem); 1015 * 1016 * with: 1017 * 1018 * get_user_pages_unlocked(tsk, mm, ..., pages); 1019 * 1020 * It is functionally equivalent to get_user_pages_fast so 1021 * get_user_pages_fast should be used instead if specific gup_flags 1022 * (e.g. FOLL_FORCE) are not required. 1023 */ 1024 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1025 struct page **pages, unsigned int gup_flags) 1026 { 1027 struct mm_struct *mm = current->mm; 1028 int locked = 1; 1029 long ret; 1030 1031 down_read(&mm->mmap_sem); 1032 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1033 &locked, gup_flags | FOLL_TOUCH); 1034 if (locked) 1035 up_read(&mm->mmap_sem); 1036 return ret; 1037 } 1038 EXPORT_SYMBOL(get_user_pages_unlocked); 1039 1040 /* 1041 * get_user_pages_remote() - pin user pages in memory 1042 * @tsk: the task_struct to use for page fault accounting, or 1043 * NULL if faults are not to be recorded. 1044 * @mm: mm_struct of target mm 1045 * @start: starting user address 1046 * @nr_pages: number of pages from start to pin 1047 * @gup_flags: flags modifying lookup behaviour 1048 * @pages: array that receives pointers to the pages pinned. 1049 * Should be at least nr_pages long. Or NULL, if caller 1050 * only intends to ensure the pages are faulted in. 1051 * @vmas: array of pointers to vmas corresponding to each page. 1052 * Or NULL if the caller does not require them. 1053 * @locked: pointer to lock flag indicating whether lock is held and 1054 * subsequently whether VM_FAULT_RETRY functionality can be 1055 * utilised. Lock must initially be held. 1056 * 1057 * Returns number of pages pinned. This may be fewer than the number 1058 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1059 * were pinned, returns -errno. Each page returned must be released 1060 * with a put_page() call when it is finished with. vmas will only 1061 * remain valid while mmap_sem is held. 1062 * 1063 * Must be called with mmap_sem held for read or write. 1064 * 1065 * get_user_pages walks a process's page tables and takes a reference to 1066 * each struct page that each user address corresponds to at a given 1067 * instant. That is, it takes the page that would be accessed if a user 1068 * thread accesses the given user virtual address at that instant. 1069 * 1070 * This does not guarantee that the page exists in the user mappings when 1071 * get_user_pages returns, and there may even be a completely different 1072 * page there in some cases (eg. if mmapped pagecache has been invalidated 1073 * and subsequently re faulted). However it does guarantee that the page 1074 * won't be freed completely. And mostly callers simply care that the page 1075 * contains data that was valid *at some point in time*. Typically, an IO 1076 * or similar operation cannot guarantee anything stronger anyway because 1077 * locks can't be held over the syscall boundary. 1078 * 1079 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1080 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1081 * be called after the page is finished with, and before put_page is called. 1082 * 1083 * get_user_pages is typically used for fewer-copy IO operations, to get a 1084 * handle on the memory by some means other than accesses via the user virtual 1085 * addresses. The pages may be submitted for DMA to devices or accessed via 1086 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1087 * use the correct cache flushing APIs. 1088 * 1089 * See also get_user_pages_fast, for performance critical applications. 1090 * 1091 * get_user_pages should be phased out in favor of 1092 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1093 * should use get_user_pages because it cannot pass 1094 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1095 */ 1096 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1097 unsigned long start, unsigned long nr_pages, 1098 unsigned int gup_flags, struct page **pages, 1099 struct vm_area_struct **vmas, int *locked) 1100 { 1101 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1102 locked, 1103 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1104 } 1105 EXPORT_SYMBOL(get_user_pages_remote); 1106 1107 /* 1108 * This is the same as get_user_pages_remote(), just with a 1109 * less-flexible calling convention where we assume that the task 1110 * and mm being operated on are the current task's and don't allow 1111 * passing of a locked parameter. We also obviously don't pass 1112 * FOLL_REMOTE in here. 1113 */ 1114 long get_user_pages(unsigned long start, unsigned long nr_pages, 1115 unsigned int gup_flags, struct page **pages, 1116 struct vm_area_struct **vmas) 1117 { 1118 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1119 pages, vmas, NULL, 1120 gup_flags | FOLL_TOUCH); 1121 } 1122 EXPORT_SYMBOL(get_user_pages); 1123 1124 #ifdef CONFIG_FS_DAX 1125 /* 1126 * This is the same as get_user_pages() in that it assumes we are 1127 * operating on the current task's mm, but it goes further to validate 1128 * that the vmas associated with the address range are suitable for 1129 * longterm elevated page reference counts. For example, filesystem-dax 1130 * mappings are subject to the lifetime enforced by the filesystem and 1131 * we need guarantees that longterm users like RDMA and V4L2 only 1132 * establish mappings that have a kernel enforced revocation mechanism. 1133 * 1134 * "longterm" == userspace controlled elevated page count lifetime. 1135 * Contrast this to iov_iter_get_pages() usages which are transient. 1136 */ 1137 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1138 unsigned int gup_flags, struct page **pages, 1139 struct vm_area_struct **vmas_arg) 1140 { 1141 struct vm_area_struct **vmas = vmas_arg; 1142 struct vm_area_struct *vma_prev = NULL; 1143 long rc, i; 1144 1145 if (!pages) 1146 return -EINVAL; 1147 1148 if (!vmas) { 1149 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1150 GFP_KERNEL); 1151 if (!vmas) 1152 return -ENOMEM; 1153 } 1154 1155 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1156 1157 for (i = 0; i < rc; i++) { 1158 struct vm_area_struct *vma = vmas[i]; 1159 1160 if (vma == vma_prev) 1161 continue; 1162 1163 vma_prev = vma; 1164 1165 if (vma_is_fsdax(vma)) 1166 break; 1167 } 1168 1169 /* 1170 * Either get_user_pages() failed, or the vma validation 1171 * succeeded, in either case we don't need to put_page() before 1172 * returning. 1173 */ 1174 if (i >= rc) 1175 goto out; 1176 1177 for (i = 0; i < rc; i++) 1178 put_page(pages[i]); 1179 rc = -EOPNOTSUPP; 1180 out: 1181 if (vmas != vmas_arg) 1182 kfree(vmas); 1183 return rc; 1184 } 1185 EXPORT_SYMBOL(get_user_pages_longterm); 1186 #endif /* CONFIG_FS_DAX */ 1187 1188 /** 1189 * populate_vma_page_range() - populate a range of pages in the vma. 1190 * @vma: target vma 1191 * @start: start address 1192 * @end: end address 1193 * @nonblocking: 1194 * 1195 * This takes care of mlocking the pages too if VM_LOCKED is set. 1196 * 1197 * return 0 on success, negative error code on error. 1198 * 1199 * vma->vm_mm->mmap_sem must be held. 1200 * 1201 * If @nonblocking is NULL, it may be held for read or write and will 1202 * be unperturbed. 1203 * 1204 * If @nonblocking is non-NULL, it must held for read only and may be 1205 * released. If it's released, *@nonblocking will be set to 0. 1206 */ 1207 long populate_vma_page_range(struct vm_area_struct *vma, 1208 unsigned long start, unsigned long end, int *nonblocking) 1209 { 1210 struct mm_struct *mm = vma->vm_mm; 1211 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1212 int gup_flags; 1213 1214 VM_BUG_ON(start & ~PAGE_MASK); 1215 VM_BUG_ON(end & ~PAGE_MASK); 1216 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1217 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1218 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1219 1220 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1221 if (vma->vm_flags & VM_LOCKONFAULT) 1222 gup_flags &= ~FOLL_POPULATE; 1223 /* 1224 * We want to touch writable mappings with a write fault in order 1225 * to break COW, except for shared mappings because these don't COW 1226 * and we would not want to dirty them for nothing. 1227 */ 1228 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1229 gup_flags |= FOLL_WRITE; 1230 1231 /* 1232 * We want mlock to succeed for regions that have any permissions 1233 * other than PROT_NONE. 1234 */ 1235 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1236 gup_flags |= FOLL_FORCE; 1237 1238 /* 1239 * We made sure addr is within a VMA, so the following will 1240 * not result in a stack expansion that recurses back here. 1241 */ 1242 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1243 NULL, NULL, nonblocking); 1244 } 1245 1246 /* 1247 * __mm_populate - populate and/or mlock pages within a range of address space. 1248 * 1249 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1250 * flags. VMAs must be already marked with the desired vm_flags, and 1251 * mmap_sem must not be held. 1252 */ 1253 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1254 { 1255 struct mm_struct *mm = current->mm; 1256 unsigned long end, nstart, nend; 1257 struct vm_area_struct *vma = NULL; 1258 int locked = 0; 1259 long ret = 0; 1260 1261 end = start + len; 1262 1263 for (nstart = start; nstart < end; nstart = nend) { 1264 /* 1265 * We want to fault in pages for [nstart; end) address range. 1266 * Find first corresponding VMA. 1267 */ 1268 if (!locked) { 1269 locked = 1; 1270 down_read(&mm->mmap_sem); 1271 vma = find_vma(mm, nstart); 1272 } else if (nstart >= vma->vm_end) 1273 vma = vma->vm_next; 1274 if (!vma || vma->vm_start >= end) 1275 break; 1276 /* 1277 * Set [nstart; nend) to intersection of desired address 1278 * range with the first VMA. Also, skip undesirable VMA types. 1279 */ 1280 nend = min(end, vma->vm_end); 1281 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1282 continue; 1283 if (nstart < vma->vm_start) 1284 nstart = vma->vm_start; 1285 /* 1286 * Now fault in a range of pages. populate_vma_page_range() 1287 * double checks the vma flags, so that it won't mlock pages 1288 * if the vma was already munlocked. 1289 */ 1290 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1291 if (ret < 0) { 1292 if (ignore_errors) { 1293 ret = 0; 1294 continue; /* continue at next VMA */ 1295 } 1296 break; 1297 } 1298 nend = nstart + ret * PAGE_SIZE; 1299 ret = 0; 1300 } 1301 if (locked) 1302 up_read(&mm->mmap_sem); 1303 return ret; /* 0 or negative error code */ 1304 } 1305 1306 /** 1307 * get_dump_page() - pin user page in memory while writing it to core dump 1308 * @addr: user address 1309 * 1310 * Returns struct page pointer of user page pinned for dump, 1311 * to be freed afterwards by put_page(). 1312 * 1313 * Returns NULL on any kind of failure - a hole must then be inserted into 1314 * the corefile, to preserve alignment with its headers; and also returns 1315 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1316 * allowing a hole to be left in the corefile to save diskspace. 1317 * 1318 * Called without mmap_sem, but after all other threads have been killed. 1319 */ 1320 #ifdef CONFIG_ELF_CORE 1321 struct page *get_dump_page(unsigned long addr) 1322 { 1323 struct vm_area_struct *vma; 1324 struct page *page; 1325 1326 if (__get_user_pages(current, current->mm, addr, 1, 1327 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1328 NULL) < 1) 1329 return NULL; 1330 flush_cache_page(vma, addr, page_to_pfn(page)); 1331 return page; 1332 } 1333 #endif /* CONFIG_ELF_CORE */ 1334 1335 /* 1336 * Generic Fast GUP 1337 * 1338 * get_user_pages_fast attempts to pin user pages by walking the page 1339 * tables directly and avoids taking locks. Thus the walker needs to be 1340 * protected from page table pages being freed from under it, and should 1341 * block any THP splits. 1342 * 1343 * One way to achieve this is to have the walker disable interrupts, and 1344 * rely on IPIs from the TLB flushing code blocking before the page table 1345 * pages are freed. This is unsuitable for architectures that do not need 1346 * to broadcast an IPI when invalidating TLBs. 1347 * 1348 * Another way to achieve this is to batch up page table containing pages 1349 * belonging to more than one mm_user, then rcu_sched a callback to free those 1350 * pages. Disabling interrupts will allow the fast_gup walker to both block 1351 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1352 * (which is a relatively rare event). The code below adopts this strategy. 1353 * 1354 * Before activating this code, please be aware that the following assumptions 1355 * are currently made: 1356 * 1357 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1358 * free pages containing page tables or TLB flushing requires IPI broadcast. 1359 * 1360 * *) ptes can be read atomically by the architecture. 1361 * 1362 * *) access_ok is sufficient to validate userspace address ranges. 1363 * 1364 * The last two assumptions can be relaxed by the addition of helper functions. 1365 * 1366 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1367 */ 1368 #ifdef CONFIG_HAVE_GENERIC_GUP 1369 1370 #ifndef gup_get_pte 1371 /* 1372 * We assume that the PTE can be read atomically. If this is not the case for 1373 * your architecture, please provide the helper. 1374 */ 1375 static inline pte_t gup_get_pte(pte_t *ptep) 1376 { 1377 return READ_ONCE(*ptep); 1378 } 1379 #endif 1380 1381 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1382 { 1383 while ((*nr) - nr_start) { 1384 struct page *page = pages[--(*nr)]; 1385 1386 ClearPageReferenced(page); 1387 put_page(page); 1388 } 1389 } 1390 1391 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1392 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1393 int write, struct page **pages, int *nr) 1394 { 1395 struct dev_pagemap *pgmap = NULL; 1396 int nr_start = *nr, ret = 0; 1397 pte_t *ptep, *ptem; 1398 1399 ptem = ptep = pte_offset_map(&pmd, addr); 1400 do { 1401 pte_t pte = gup_get_pte(ptep); 1402 struct page *head, *page; 1403 1404 /* 1405 * Similar to the PMD case below, NUMA hinting must take slow 1406 * path using the pte_protnone check. 1407 */ 1408 if (pte_protnone(pte)) 1409 goto pte_unmap; 1410 1411 if (!pte_access_permitted(pte, write)) 1412 goto pte_unmap; 1413 1414 if (pte_devmap(pte)) { 1415 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1416 if (unlikely(!pgmap)) { 1417 undo_dev_pagemap(nr, nr_start, pages); 1418 goto pte_unmap; 1419 } 1420 } else if (pte_special(pte)) 1421 goto pte_unmap; 1422 1423 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1424 page = pte_page(pte); 1425 head = compound_head(page); 1426 1427 if (!page_cache_get_speculative(head)) 1428 goto pte_unmap; 1429 1430 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1431 put_page(head); 1432 goto pte_unmap; 1433 } 1434 1435 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1436 1437 SetPageReferenced(page); 1438 pages[*nr] = page; 1439 (*nr)++; 1440 1441 } while (ptep++, addr += PAGE_SIZE, addr != end); 1442 1443 ret = 1; 1444 1445 pte_unmap: 1446 if (pgmap) 1447 put_dev_pagemap(pgmap); 1448 pte_unmap(ptem); 1449 return ret; 1450 } 1451 #else 1452 1453 /* 1454 * If we can't determine whether or not a pte is special, then fail immediately 1455 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1456 * to be special. 1457 * 1458 * For a futex to be placed on a THP tail page, get_futex_key requires a 1459 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1460 * useful to have gup_huge_pmd even if we can't operate on ptes. 1461 */ 1462 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1463 int write, struct page **pages, int *nr) 1464 { 1465 return 0; 1466 } 1467 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1468 1469 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1470 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1471 unsigned long end, struct page **pages, int *nr) 1472 { 1473 int nr_start = *nr; 1474 struct dev_pagemap *pgmap = NULL; 1475 1476 do { 1477 struct page *page = pfn_to_page(pfn); 1478 1479 pgmap = get_dev_pagemap(pfn, pgmap); 1480 if (unlikely(!pgmap)) { 1481 undo_dev_pagemap(nr, nr_start, pages); 1482 return 0; 1483 } 1484 SetPageReferenced(page); 1485 pages[*nr] = page; 1486 get_page(page); 1487 (*nr)++; 1488 pfn++; 1489 } while (addr += PAGE_SIZE, addr != end); 1490 1491 if (pgmap) 1492 put_dev_pagemap(pgmap); 1493 return 1; 1494 } 1495 1496 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1497 unsigned long end, struct page **pages, int *nr) 1498 { 1499 unsigned long fault_pfn; 1500 int nr_start = *nr; 1501 1502 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1503 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1504 return 0; 1505 1506 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1507 undo_dev_pagemap(nr, nr_start, pages); 1508 return 0; 1509 } 1510 return 1; 1511 } 1512 1513 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1514 unsigned long end, struct page **pages, int *nr) 1515 { 1516 unsigned long fault_pfn; 1517 int nr_start = *nr; 1518 1519 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1520 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1521 return 0; 1522 1523 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1524 undo_dev_pagemap(nr, nr_start, pages); 1525 return 0; 1526 } 1527 return 1; 1528 } 1529 #else 1530 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1531 unsigned long end, struct page **pages, int *nr) 1532 { 1533 BUILD_BUG(); 1534 return 0; 1535 } 1536 1537 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1538 unsigned long end, struct page **pages, int *nr) 1539 { 1540 BUILD_BUG(); 1541 return 0; 1542 } 1543 #endif 1544 1545 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1546 unsigned long end, int write, struct page **pages, int *nr) 1547 { 1548 struct page *head, *page; 1549 int refs; 1550 1551 if (!pmd_access_permitted(orig, write)) 1552 return 0; 1553 1554 if (pmd_devmap(orig)) 1555 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 1556 1557 refs = 0; 1558 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1559 do { 1560 pages[*nr] = page; 1561 (*nr)++; 1562 page++; 1563 refs++; 1564 } while (addr += PAGE_SIZE, addr != end); 1565 1566 head = compound_head(pmd_page(orig)); 1567 if (!page_cache_add_speculative(head, refs)) { 1568 *nr -= refs; 1569 return 0; 1570 } 1571 1572 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1573 *nr -= refs; 1574 while (refs--) 1575 put_page(head); 1576 return 0; 1577 } 1578 1579 SetPageReferenced(head); 1580 return 1; 1581 } 1582 1583 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1584 unsigned long end, int write, struct page **pages, int *nr) 1585 { 1586 struct page *head, *page; 1587 int refs; 1588 1589 if (!pud_access_permitted(orig, write)) 1590 return 0; 1591 1592 if (pud_devmap(orig)) 1593 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 1594 1595 refs = 0; 1596 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1597 do { 1598 pages[*nr] = page; 1599 (*nr)++; 1600 page++; 1601 refs++; 1602 } while (addr += PAGE_SIZE, addr != end); 1603 1604 head = compound_head(pud_page(orig)); 1605 if (!page_cache_add_speculative(head, refs)) { 1606 *nr -= refs; 1607 return 0; 1608 } 1609 1610 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1611 *nr -= refs; 1612 while (refs--) 1613 put_page(head); 1614 return 0; 1615 } 1616 1617 SetPageReferenced(head); 1618 return 1; 1619 } 1620 1621 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1622 unsigned long end, int write, 1623 struct page **pages, int *nr) 1624 { 1625 int refs; 1626 struct page *head, *page; 1627 1628 if (!pgd_access_permitted(orig, write)) 1629 return 0; 1630 1631 BUILD_BUG_ON(pgd_devmap(orig)); 1632 refs = 0; 1633 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1634 do { 1635 pages[*nr] = page; 1636 (*nr)++; 1637 page++; 1638 refs++; 1639 } while (addr += PAGE_SIZE, addr != end); 1640 1641 head = compound_head(pgd_page(orig)); 1642 if (!page_cache_add_speculative(head, refs)) { 1643 *nr -= refs; 1644 return 0; 1645 } 1646 1647 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1648 *nr -= refs; 1649 while (refs--) 1650 put_page(head); 1651 return 0; 1652 } 1653 1654 SetPageReferenced(head); 1655 return 1; 1656 } 1657 1658 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1659 int write, struct page **pages, int *nr) 1660 { 1661 unsigned long next; 1662 pmd_t *pmdp; 1663 1664 pmdp = pmd_offset(&pud, addr); 1665 do { 1666 pmd_t pmd = READ_ONCE(*pmdp); 1667 1668 next = pmd_addr_end(addr, end); 1669 if (!pmd_present(pmd)) 1670 return 0; 1671 1672 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1673 /* 1674 * NUMA hinting faults need to be handled in the GUP 1675 * slowpath for accounting purposes and so that they 1676 * can be serialised against THP migration. 1677 */ 1678 if (pmd_protnone(pmd)) 1679 return 0; 1680 1681 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1682 pages, nr)) 1683 return 0; 1684 1685 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1686 /* 1687 * architecture have different format for hugetlbfs 1688 * pmd format and THP pmd format 1689 */ 1690 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1691 PMD_SHIFT, next, write, pages, nr)) 1692 return 0; 1693 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1694 return 0; 1695 } while (pmdp++, addr = next, addr != end); 1696 1697 return 1; 1698 } 1699 1700 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1701 int write, struct page **pages, int *nr) 1702 { 1703 unsigned long next; 1704 pud_t *pudp; 1705 1706 pudp = pud_offset(&p4d, addr); 1707 do { 1708 pud_t pud = READ_ONCE(*pudp); 1709 1710 next = pud_addr_end(addr, end); 1711 if (pud_none(pud)) 1712 return 0; 1713 if (unlikely(pud_huge(pud))) { 1714 if (!gup_huge_pud(pud, pudp, addr, next, write, 1715 pages, nr)) 1716 return 0; 1717 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1718 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1719 PUD_SHIFT, next, write, pages, nr)) 1720 return 0; 1721 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1722 return 0; 1723 } while (pudp++, addr = next, addr != end); 1724 1725 return 1; 1726 } 1727 1728 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1729 int write, struct page **pages, int *nr) 1730 { 1731 unsigned long next; 1732 p4d_t *p4dp; 1733 1734 p4dp = p4d_offset(&pgd, addr); 1735 do { 1736 p4d_t p4d = READ_ONCE(*p4dp); 1737 1738 next = p4d_addr_end(addr, end); 1739 if (p4d_none(p4d)) 1740 return 0; 1741 BUILD_BUG_ON(p4d_huge(p4d)); 1742 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1743 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1744 P4D_SHIFT, next, write, pages, nr)) 1745 return 0; 1746 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1747 return 0; 1748 } while (p4dp++, addr = next, addr != end); 1749 1750 return 1; 1751 } 1752 1753 static void gup_pgd_range(unsigned long addr, unsigned long end, 1754 int write, struct page **pages, int *nr) 1755 { 1756 unsigned long next; 1757 pgd_t *pgdp; 1758 1759 pgdp = pgd_offset(current->mm, addr); 1760 do { 1761 pgd_t pgd = READ_ONCE(*pgdp); 1762 1763 next = pgd_addr_end(addr, end); 1764 if (pgd_none(pgd)) 1765 return; 1766 if (unlikely(pgd_huge(pgd))) { 1767 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1768 pages, nr)) 1769 return; 1770 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1771 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1772 PGDIR_SHIFT, next, write, pages, nr)) 1773 return; 1774 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1775 return; 1776 } while (pgdp++, addr = next, addr != end); 1777 } 1778 1779 #ifndef gup_fast_permitted 1780 /* 1781 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1782 * we need to fall back to the slow version: 1783 */ 1784 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1785 { 1786 unsigned long len, end; 1787 1788 len = (unsigned long) nr_pages << PAGE_SHIFT; 1789 end = start + len; 1790 return end >= start; 1791 } 1792 #endif 1793 1794 /* 1795 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1796 * the regular GUP. 1797 * Note a difference with get_user_pages_fast: this always returns the 1798 * number of pages pinned, 0 if no pages were pinned. 1799 */ 1800 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1801 struct page **pages) 1802 { 1803 unsigned long len, end; 1804 unsigned long flags; 1805 int nr = 0; 1806 1807 start &= PAGE_MASK; 1808 len = (unsigned long) nr_pages << PAGE_SHIFT; 1809 end = start + len; 1810 1811 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1812 (void __user *)start, len))) 1813 return 0; 1814 1815 /* 1816 * Disable interrupts. We use the nested form as we can already have 1817 * interrupts disabled by get_futex_key. 1818 * 1819 * With interrupts disabled, we block page table pages from being 1820 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1821 * for more details. 1822 * 1823 * We do not adopt an rcu_read_lock(.) here as we also want to 1824 * block IPIs that come from THPs splitting. 1825 */ 1826 1827 if (gup_fast_permitted(start, nr_pages, write)) { 1828 local_irq_save(flags); 1829 gup_pgd_range(start, end, write, pages, &nr); 1830 local_irq_restore(flags); 1831 } 1832 1833 return nr; 1834 } 1835 1836 /** 1837 * get_user_pages_fast() - pin user pages in memory 1838 * @start: starting user address 1839 * @nr_pages: number of pages from start to pin 1840 * @write: whether pages will be written to 1841 * @pages: array that receives pointers to the pages pinned. 1842 * Should be at least nr_pages long. 1843 * 1844 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1845 * If not successful, it will fall back to taking the lock and 1846 * calling get_user_pages(). 1847 * 1848 * Returns number of pages pinned. This may be fewer than the number 1849 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1850 * were pinned, returns -errno. 1851 */ 1852 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1853 struct page **pages) 1854 { 1855 unsigned long addr, len, end; 1856 int nr = 0, ret = 0; 1857 1858 start &= PAGE_MASK; 1859 addr = start; 1860 len = (unsigned long) nr_pages << PAGE_SHIFT; 1861 end = start + len; 1862 1863 if (nr_pages <= 0) 1864 return 0; 1865 1866 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1867 (void __user *)start, len))) 1868 return -EFAULT; 1869 1870 if (gup_fast_permitted(start, nr_pages, write)) { 1871 local_irq_disable(); 1872 gup_pgd_range(addr, end, write, pages, &nr); 1873 local_irq_enable(); 1874 ret = nr; 1875 } 1876 1877 if (nr < nr_pages) { 1878 /* Try to get the remaining pages with get_user_pages */ 1879 start += nr << PAGE_SHIFT; 1880 pages += nr; 1881 1882 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1883 write ? FOLL_WRITE : 0); 1884 1885 /* Have to be a bit careful with return values */ 1886 if (nr > 0) { 1887 if (ret < 0) 1888 ret = nr; 1889 else 1890 ret += nr; 1891 } 1892 } 1893 1894 return ret; 1895 } 1896 1897 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1898