1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 folio_put_refs(folio, refs); 91 goto retry; 92 } 93 94 return folio; 95 } 96 97 /** 98 * try_grab_folio() - Attempt to get or pin a folio. 99 * @page: pointer to page to be grabbed 100 * @refs: the value to (effectively) add to the folio's refcount 101 * @flags: gup flags: these are the FOLL_* flag values. 102 * 103 * "grab" names in this file mean, "look at flags to decide whether to use 104 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 105 * 106 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 107 * same time. (That's true throughout the get_user_pages*() and 108 * pin_user_pages*() APIs.) Cases: 109 * 110 * FOLL_GET: folio's refcount will be incremented by @refs. 111 * 112 * FOLL_PIN on large folios: folio's refcount will be incremented by 113 * @refs, and its compound_pincount will be incremented by @refs. 114 * 115 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 116 * @refs * GUP_PIN_COUNTING_BIAS. 117 * 118 * Return: The folio containing @page (with refcount appropriately 119 * incremented) for success, or NULL upon failure. If neither FOLL_GET 120 * nor FOLL_PIN was set, that's considered failure, and furthermore, 121 * a likely bug in the caller, so a warning is also emitted. 122 */ 123 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 124 { 125 if (flags & FOLL_GET) 126 return try_get_folio(page, refs); 127 else if (flags & FOLL_PIN) { 128 struct folio *folio; 129 130 /* 131 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 132 * right zone, so fail and let the caller fall back to the slow 133 * path. 134 */ 135 if (unlikely((flags & FOLL_LONGTERM) && 136 !is_pinnable_page(page))) 137 return NULL; 138 139 /* 140 * CAUTION: Don't use compound_head() on the page before this 141 * point, the result won't be stable. 142 */ 143 folio = try_get_folio(page, refs); 144 if (!folio) 145 return NULL; 146 147 /* 148 * When pinning a large folio, use an exact count to track it. 149 * 150 * However, be sure to *also* increment the normal folio 151 * refcount field at least once, so that the folio really 152 * is pinned. That's why the refcount from the earlier 153 * try_get_folio() is left intact. 154 */ 155 if (folio_test_large(folio)) 156 atomic_add(refs, folio_pincount_ptr(folio)); 157 else 158 folio_ref_add(folio, 159 refs * (GUP_PIN_COUNTING_BIAS - 1)); 160 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 161 162 return folio; 163 } 164 165 WARN_ON_ONCE(1); 166 return NULL; 167 } 168 169 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 170 { 171 if (flags & FOLL_PIN) { 172 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 173 if (folio_test_large(folio)) 174 atomic_sub(refs, folio_pincount_ptr(folio)); 175 else 176 refs *= GUP_PIN_COUNTING_BIAS; 177 } 178 179 folio_put_refs(folio, refs); 180 } 181 182 /** 183 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 184 * @page: pointer to page to be grabbed 185 * @flags: gup flags: these are the FOLL_* flag values. 186 * 187 * This might not do anything at all, depending on the flags argument. 188 * 189 * "grab" names in this file mean, "look at flags to decide whether to use 190 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 191 * 192 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 193 * time. Cases: please see the try_grab_folio() documentation, with 194 * "refs=1". 195 * 196 * Return: true for success, or if no action was required (if neither FOLL_PIN 197 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 198 * FOLL_PIN was set, but the page could not be grabbed. 199 */ 200 bool __must_check try_grab_page(struct page *page, unsigned int flags) 201 { 202 struct folio *folio = page_folio(page); 203 204 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 205 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 206 return false; 207 208 if (flags & FOLL_GET) 209 folio_ref_inc(folio); 210 else if (flags & FOLL_PIN) { 211 /* 212 * Similar to try_grab_folio(): be sure to *also* 213 * increment the normal page refcount field at least once, 214 * so that the page really is pinned. 215 */ 216 if (folio_test_large(folio)) { 217 folio_ref_add(folio, 1); 218 atomic_add(1, folio_pincount_ptr(folio)); 219 } else { 220 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 221 } 222 223 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 224 } 225 226 return true; 227 } 228 229 /** 230 * unpin_user_page() - release a dma-pinned page 231 * @page: pointer to page to be released 232 * 233 * Pages that were pinned via pin_user_pages*() must be released via either 234 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 235 * that such pages can be separately tracked and uniquely handled. In 236 * particular, interactions with RDMA and filesystems need special handling. 237 */ 238 void unpin_user_page(struct page *page) 239 { 240 sanity_check_pinned_pages(&page, 1); 241 gup_put_folio(page_folio(page), 1, FOLL_PIN); 242 } 243 EXPORT_SYMBOL(unpin_user_page); 244 245 static inline struct folio *gup_folio_range_next(struct page *start, 246 unsigned long npages, unsigned long i, unsigned int *ntails) 247 { 248 struct page *next = nth_page(start, i); 249 struct folio *folio = page_folio(next); 250 unsigned int nr = 1; 251 252 if (folio_test_large(folio)) 253 nr = min_t(unsigned int, npages - i, 254 folio_nr_pages(folio) - folio_page_idx(folio, next)); 255 256 *ntails = nr; 257 return folio; 258 } 259 260 static inline struct folio *gup_folio_next(struct page **list, 261 unsigned long npages, unsigned long i, unsigned int *ntails) 262 { 263 struct folio *folio = page_folio(list[i]); 264 unsigned int nr; 265 266 for (nr = i + 1; nr < npages; nr++) { 267 if (page_folio(list[nr]) != folio) 268 break; 269 } 270 271 *ntails = nr - i; 272 return folio; 273 } 274 275 /** 276 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 277 * @pages: array of pages to be maybe marked dirty, and definitely released. 278 * @npages: number of pages in the @pages array. 279 * @make_dirty: whether to mark the pages dirty 280 * 281 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 282 * variants called on that page. 283 * 284 * For each page in the @pages array, make that page (or its head page, if a 285 * compound page) dirty, if @make_dirty is true, and if the page was previously 286 * listed as clean. In any case, releases all pages using unpin_user_page(), 287 * possibly via unpin_user_pages(), for the non-dirty case. 288 * 289 * Please see the unpin_user_page() documentation for details. 290 * 291 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 292 * required, then the caller should a) verify that this is really correct, 293 * because _lock() is usually required, and b) hand code it: 294 * set_page_dirty_lock(), unpin_user_page(). 295 * 296 */ 297 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 298 bool make_dirty) 299 { 300 unsigned long i; 301 struct folio *folio; 302 unsigned int nr; 303 304 if (!make_dirty) { 305 unpin_user_pages(pages, npages); 306 return; 307 } 308 309 sanity_check_pinned_pages(pages, npages); 310 for (i = 0; i < npages; i += nr) { 311 folio = gup_folio_next(pages, npages, i, &nr); 312 /* 313 * Checking PageDirty at this point may race with 314 * clear_page_dirty_for_io(), but that's OK. Two key 315 * cases: 316 * 317 * 1) This code sees the page as already dirty, so it 318 * skips the call to set_page_dirty(). That could happen 319 * because clear_page_dirty_for_io() called 320 * page_mkclean(), followed by set_page_dirty(). 321 * However, now the page is going to get written back, 322 * which meets the original intention of setting it 323 * dirty, so all is well: clear_page_dirty_for_io() goes 324 * on to call TestClearPageDirty(), and write the page 325 * back. 326 * 327 * 2) This code sees the page as clean, so it calls 328 * set_page_dirty(). The page stays dirty, despite being 329 * written back, so it gets written back again in the 330 * next writeback cycle. This is harmless. 331 */ 332 if (!folio_test_dirty(folio)) { 333 folio_lock(folio); 334 folio_mark_dirty(folio); 335 folio_unlock(folio); 336 } 337 gup_put_folio(folio, nr, FOLL_PIN); 338 } 339 } 340 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 341 342 /** 343 * unpin_user_page_range_dirty_lock() - release and optionally dirty 344 * gup-pinned page range 345 * 346 * @page: the starting page of a range maybe marked dirty, and definitely released. 347 * @npages: number of consecutive pages to release. 348 * @make_dirty: whether to mark the pages dirty 349 * 350 * "gup-pinned page range" refers to a range of pages that has had one of the 351 * pin_user_pages() variants called on that page. 352 * 353 * For the page ranges defined by [page .. page+npages], make that range (or 354 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 355 * page range was previously listed as clean. 356 * 357 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 358 * required, then the caller should a) verify that this is really correct, 359 * because _lock() is usually required, and b) hand code it: 360 * set_page_dirty_lock(), unpin_user_page(). 361 * 362 */ 363 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 364 bool make_dirty) 365 { 366 unsigned long i; 367 struct folio *folio; 368 unsigned int nr; 369 370 for (i = 0; i < npages; i += nr) { 371 folio = gup_folio_range_next(page, npages, i, &nr); 372 if (make_dirty && !folio_test_dirty(folio)) { 373 folio_lock(folio); 374 folio_mark_dirty(folio); 375 folio_unlock(folio); 376 } 377 gup_put_folio(folio, nr, FOLL_PIN); 378 } 379 } 380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 381 382 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 383 { 384 unsigned long i; 385 struct folio *folio; 386 unsigned int nr; 387 388 /* 389 * Don't perform any sanity checks because we might have raced with 390 * fork() and some anonymous pages might now actually be shared -- 391 * which is why we're unpinning after all. 392 */ 393 for (i = 0; i < npages; i += nr) { 394 folio = gup_folio_next(pages, npages, i, &nr); 395 gup_put_folio(folio, nr, FOLL_PIN); 396 } 397 } 398 399 /** 400 * unpin_user_pages() - release an array of gup-pinned pages. 401 * @pages: array of pages to be marked dirty and released. 402 * @npages: number of pages in the @pages array. 403 * 404 * For each page in the @pages array, release the page using unpin_user_page(). 405 * 406 * Please see the unpin_user_page() documentation for details. 407 */ 408 void unpin_user_pages(struct page **pages, unsigned long npages) 409 { 410 unsigned long i; 411 struct folio *folio; 412 unsigned int nr; 413 414 /* 415 * If this WARN_ON() fires, then the system *might* be leaking pages (by 416 * leaving them pinned), but probably not. More likely, gup/pup returned 417 * a hard -ERRNO error to the caller, who erroneously passed it here. 418 */ 419 if (WARN_ON(IS_ERR_VALUE(npages))) 420 return; 421 422 sanity_check_pinned_pages(pages, npages); 423 for (i = 0; i < npages; i += nr) { 424 folio = gup_folio_next(pages, npages, i, &nr); 425 gup_put_folio(folio, nr, FOLL_PIN); 426 } 427 } 428 EXPORT_SYMBOL(unpin_user_pages); 429 430 /* 431 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 432 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 433 * cache bouncing on large SMP machines for concurrent pinned gups. 434 */ 435 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 436 { 437 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 438 set_bit(MMF_HAS_PINNED, mm_flags); 439 } 440 441 #ifdef CONFIG_MMU 442 static struct page *no_page_table(struct vm_area_struct *vma, 443 unsigned int flags) 444 { 445 /* 446 * When core dumping an enormous anonymous area that nobody 447 * has touched so far, we don't want to allocate unnecessary pages or 448 * page tables. Return error instead of NULL to skip handle_mm_fault, 449 * then get_dump_page() will return NULL to leave a hole in the dump. 450 * But we can only make this optimization where a hole would surely 451 * be zero-filled if handle_mm_fault() actually did handle it. 452 */ 453 if ((flags & FOLL_DUMP) && 454 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 455 return ERR_PTR(-EFAULT); 456 return NULL; 457 } 458 459 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 460 pte_t *pte, unsigned int flags) 461 { 462 if (flags & FOLL_TOUCH) { 463 pte_t entry = *pte; 464 465 if (flags & FOLL_WRITE) 466 entry = pte_mkdirty(entry); 467 entry = pte_mkyoung(entry); 468 469 if (!pte_same(*pte, entry)) { 470 set_pte_at(vma->vm_mm, address, pte, entry); 471 update_mmu_cache(vma, address, pte); 472 } 473 } 474 475 /* Proper page table entry exists, but no corresponding struct page */ 476 return -EEXIST; 477 } 478 479 /* 480 * FOLL_FORCE can write to even unwritable pte's, but only 481 * after we've gone through a COW cycle and they are dirty. 482 */ 483 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 484 { 485 return pte_write(pte) || 486 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 487 } 488 489 static struct page *follow_page_pte(struct vm_area_struct *vma, 490 unsigned long address, pmd_t *pmd, unsigned int flags, 491 struct dev_pagemap **pgmap) 492 { 493 struct mm_struct *mm = vma->vm_mm; 494 struct page *page; 495 spinlock_t *ptl; 496 pte_t *ptep, pte; 497 int ret; 498 499 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 500 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 501 (FOLL_PIN | FOLL_GET))) 502 return ERR_PTR(-EINVAL); 503 retry: 504 if (unlikely(pmd_bad(*pmd))) 505 return no_page_table(vma, flags); 506 507 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 508 pte = *ptep; 509 if (!pte_present(pte)) { 510 swp_entry_t entry; 511 /* 512 * KSM's break_ksm() relies upon recognizing a ksm page 513 * even while it is being migrated, so for that case we 514 * need migration_entry_wait(). 515 */ 516 if (likely(!(flags & FOLL_MIGRATION))) 517 goto no_page; 518 if (pte_none(pte)) 519 goto no_page; 520 entry = pte_to_swp_entry(pte); 521 if (!is_migration_entry(entry)) 522 goto no_page; 523 pte_unmap_unlock(ptep, ptl); 524 migration_entry_wait(mm, pmd, address); 525 goto retry; 526 } 527 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 528 goto no_page; 529 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 530 pte_unmap_unlock(ptep, ptl); 531 return NULL; 532 } 533 534 page = vm_normal_page(vma, address, pte); 535 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 536 /* 537 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 538 * case since they are only valid while holding the pgmap 539 * reference. 540 */ 541 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 542 if (*pgmap) 543 page = pte_page(pte); 544 else 545 goto no_page; 546 } else if (unlikely(!page)) { 547 if (flags & FOLL_DUMP) { 548 /* Avoid special (like zero) pages in core dumps */ 549 page = ERR_PTR(-EFAULT); 550 goto out; 551 } 552 553 if (is_zero_pfn(pte_pfn(pte))) { 554 page = pte_page(pte); 555 } else { 556 ret = follow_pfn_pte(vma, address, ptep, flags); 557 page = ERR_PTR(ret); 558 goto out; 559 } 560 } 561 562 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 563 page = ERR_PTR(-EMLINK); 564 goto out; 565 } 566 567 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 568 !PageAnonExclusive(page), page); 569 570 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 571 if (unlikely(!try_grab_page(page, flags))) { 572 page = ERR_PTR(-ENOMEM); 573 goto out; 574 } 575 /* 576 * We need to make the page accessible if and only if we are going 577 * to access its content (the FOLL_PIN case). Please see 578 * Documentation/core-api/pin_user_pages.rst for details. 579 */ 580 if (flags & FOLL_PIN) { 581 ret = arch_make_page_accessible(page); 582 if (ret) { 583 unpin_user_page(page); 584 page = ERR_PTR(ret); 585 goto out; 586 } 587 } 588 if (flags & FOLL_TOUCH) { 589 if ((flags & FOLL_WRITE) && 590 !pte_dirty(pte) && !PageDirty(page)) 591 set_page_dirty(page); 592 /* 593 * pte_mkyoung() would be more correct here, but atomic care 594 * is needed to avoid losing the dirty bit: it is easier to use 595 * mark_page_accessed(). 596 */ 597 mark_page_accessed(page); 598 } 599 out: 600 pte_unmap_unlock(ptep, ptl); 601 return page; 602 no_page: 603 pte_unmap_unlock(ptep, ptl); 604 if (!pte_none(pte)) 605 return NULL; 606 return no_page_table(vma, flags); 607 } 608 609 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 610 unsigned long address, pud_t *pudp, 611 unsigned int flags, 612 struct follow_page_context *ctx) 613 { 614 pmd_t *pmd, pmdval; 615 spinlock_t *ptl; 616 struct page *page; 617 struct mm_struct *mm = vma->vm_mm; 618 619 pmd = pmd_offset(pudp, address); 620 /* 621 * The READ_ONCE() will stabilize the pmdval in a register or 622 * on the stack so that it will stop changing under the code. 623 */ 624 pmdval = READ_ONCE(*pmd); 625 if (pmd_none(pmdval)) 626 return no_page_table(vma, flags); 627 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 628 page = follow_huge_pmd(mm, address, pmd, flags); 629 if (page) 630 return page; 631 return no_page_table(vma, flags); 632 } 633 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 634 page = follow_huge_pd(vma, address, 635 __hugepd(pmd_val(pmdval)), flags, 636 PMD_SHIFT); 637 if (page) 638 return page; 639 return no_page_table(vma, flags); 640 } 641 retry: 642 if (!pmd_present(pmdval)) { 643 /* 644 * Should never reach here, if thp migration is not supported; 645 * Otherwise, it must be a thp migration entry. 646 */ 647 VM_BUG_ON(!thp_migration_supported() || 648 !is_pmd_migration_entry(pmdval)); 649 650 if (likely(!(flags & FOLL_MIGRATION))) 651 return no_page_table(vma, flags); 652 653 pmd_migration_entry_wait(mm, pmd); 654 pmdval = READ_ONCE(*pmd); 655 /* 656 * MADV_DONTNEED may convert the pmd to null because 657 * mmap_lock is held in read mode 658 */ 659 if (pmd_none(pmdval)) 660 return no_page_table(vma, flags); 661 goto retry; 662 } 663 if (pmd_devmap(pmdval)) { 664 ptl = pmd_lock(mm, pmd); 665 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 666 spin_unlock(ptl); 667 if (page) 668 return page; 669 } 670 if (likely(!pmd_trans_huge(pmdval))) 671 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 672 673 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 674 return no_page_table(vma, flags); 675 676 retry_locked: 677 ptl = pmd_lock(mm, pmd); 678 if (unlikely(pmd_none(*pmd))) { 679 spin_unlock(ptl); 680 return no_page_table(vma, flags); 681 } 682 if (unlikely(!pmd_present(*pmd))) { 683 spin_unlock(ptl); 684 if (likely(!(flags & FOLL_MIGRATION))) 685 return no_page_table(vma, flags); 686 pmd_migration_entry_wait(mm, pmd); 687 goto retry_locked; 688 } 689 if (unlikely(!pmd_trans_huge(*pmd))) { 690 spin_unlock(ptl); 691 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 692 } 693 if (flags & FOLL_SPLIT_PMD) { 694 int ret; 695 page = pmd_page(*pmd); 696 if (is_huge_zero_page(page)) { 697 spin_unlock(ptl); 698 ret = 0; 699 split_huge_pmd(vma, pmd, address); 700 if (pmd_trans_unstable(pmd)) 701 ret = -EBUSY; 702 } else { 703 spin_unlock(ptl); 704 split_huge_pmd(vma, pmd, address); 705 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 706 } 707 708 return ret ? ERR_PTR(ret) : 709 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 710 } 711 page = follow_trans_huge_pmd(vma, address, pmd, flags); 712 spin_unlock(ptl); 713 ctx->page_mask = HPAGE_PMD_NR - 1; 714 return page; 715 } 716 717 static struct page *follow_pud_mask(struct vm_area_struct *vma, 718 unsigned long address, p4d_t *p4dp, 719 unsigned int flags, 720 struct follow_page_context *ctx) 721 { 722 pud_t *pud; 723 spinlock_t *ptl; 724 struct page *page; 725 struct mm_struct *mm = vma->vm_mm; 726 727 pud = pud_offset(p4dp, address); 728 if (pud_none(*pud)) 729 return no_page_table(vma, flags); 730 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 731 page = follow_huge_pud(mm, address, pud, flags); 732 if (page) 733 return page; 734 return no_page_table(vma, flags); 735 } 736 if (is_hugepd(__hugepd(pud_val(*pud)))) { 737 page = follow_huge_pd(vma, address, 738 __hugepd(pud_val(*pud)), flags, 739 PUD_SHIFT); 740 if (page) 741 return page; 742 return no_page_table(vma, flags); 743 } 744 if (pud_devmap(*pud)) { 745 ptl = pud_lock(mm, pud); 746 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 747 spin_unlock(ptl); 748 if (page) 749 return page; 750 } 751 if (unlikely(pud_bad(*pud))) 752 return no_page_table(vma, flags); 753 754 return follow_pmd_mask(vma, address, pud, flags, ctx); 755 } 756 757 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 758 unsigned long address, pgd_t *pgdp, 759 unsigned int flags, 760 struct follow_page_context *ctx) 761 { 762 p4d_t *p4d; 763 struct page *page; 764 765 p4d = p4d_offset(pgdp, address); 766 if (p4d_none(*p4d)) 767 return no_page_table(vma, flags); 768 BUILD_BUG_ON(p4d_huge(*p4d)); 769 if (unlikely(p4d_bad(*p4d))) 770 return no_page_table(vma, flags); 771 772 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 773 page = follow_huge_pd(vma, address, 774 __hugepd(p4d_val(*p4d)), flags, 775 P4D_SHIFT); 776 if (page) 777 return page; 778 return no_page_table(vma, flags); 779 } 780 return follow_pud_mask(vma, address, p4d, flags, ctx); 781 } 782 783 /** 784 * follow_page_mask - look up a page descriptor from a user-virtual address 785 * @vma: vm_area_struct mapping @address 786 * @address: virtual address to look up 787 * @flags: flags modifying lookup behaviour 788 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 789 * pointer to output page_mask 790 * 791 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 792 * 793 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 794 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 795 * 796 * When getting an anonymous page and the caller has to trigger unsharing 797 * of a shared anonymous page first, -EMLINK is returned. The caller should 798 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 799 * relevant with FOLL_PIN and !FOLL_WRITE. 800 * 801 * On output, the @ctx->page_mask is set according to the size of the page. 802 * 803 * Return: the mapped (struct page *), %NULL if no mapping exists, or 804 * an error pointer if there is a mapping to something not represented 805 * by a page descriptor (see also vm_normal_page()). 806 */ 807 static struct page *follow_page_mask(struct vm_area_struct *vma, 808 unsigned long address, unsigned int flags, 809 struct follow_page_context *ctx) 810 { 811 pgd_t *pgd; 812 struct page *page; 813 struct mm_struct *mm = vma->vm_mm; 814 815 ctx->page_mask = 0; 816 817 /* make this handle hugepd */ 818 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 819 if (!IS_ERR(page)) { 820 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 821 return page; 822 } 823 824 pgd = pgd_offset(mm, address); 825 826 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 827 return no_page_table(vma, flags); 828 829 if (pgd_huge(*pgd)) { 830 page = follow_huge_pgd(mm, address, pgd, flags); 831 if (page) 832 return page; 833 return no_page_table(vma, flags); 834 } 835 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 836 page = follow_huge_pd(vma, address, 837 __hugepd(pgd_val(*pgd)), flags, 838 PGDIR_SHIFT); 839 if (page) 840 return page; 841 return no_page_table(vma, flags); 842 } 843 844 return follow_p4d_mask(vma, address, pgd, flags, ctx); 845 } 846 847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 848 unsigned int foll_flags) 849 { 850 struct follow_page_context ctx = { NULL }; 851 struct page *page; 852 853 if (vma_is_secretmem(vma)) 854 return NULL; 855 856 if (foll_flags & FOLL_PIN) 857 return NULL; 858 859 page = follow_page_mask(vma, address, foll_flags, &ctx); 860 if (ctx.pgmap) 861 put_dev_pagemap(ctx.pgmap); 862 return page; 863 } 864 865 static int get_gate_page(struct mm_struct *mm, unsigned long address, 866 unsigned int gup_flags, struct vm_area_struct **vma, 867 struct page **page) 868 { 869 pgd_t *pgd; 870 p4d_t *p4d; 871 pud_t *pud; 872 pmd_t *pmd; 873 pte_t *pte; 874 int ret = -EFAULT; 875 876 /* user gate pages are read-only */ 877 if (gup_flags & FOLL_WRITE) 878 return -EFAULT; 879 if (address > TASK_SIZE) 880 pgd = pgd_offset_k(address); 881 else 882 pgd = pgd_offset_gate(mm, address); 883 if (pgd_none(*pgd)) 884 return -EFAULT; 885 p4d = p4d_offset(pgd, address); 886 if (p4d_none(*p4d)) 887 return -EFAULT; 888 pud = pud_offset(p4d, address); 889 if (pud_none(*pud)) 890 return -EFAULT; 891 pmd = pmd_offset(pud, address); 892 if (!pmd_present(*pmd)) 893 return -EFAULT; 894 VM_BUG_ON(pmd_trans_huge(*pmd)); 895 pte = pte_offset_map(pmd, address); 896 if (pte_none(*pte)) 897 goto unmap; 898 *vma = get_gate_vma(mm); 899 if (!page) 900 goto out; 901 *page = vm_normal_page(*vma, address, *pte); 902 if (!*page) { 903 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 904 goto unmap; 905 *page = pte_page(*pte); 906 } 907 if (unlikely(!try_grab_page(*page, gup_flags))) { 908 ret = -ENOMEM; 909 goto unmap; 910 } 911 out: 912 ret = 0; 913 unmap: 914 pte_unmap(pte); 915 return ret; 916 } 917 918 /* 919 * mmap_lock must be held on entry. If @locked != NULL and *@flags 920 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 921 * is, *@locked will be set to 0 and -EBUSY returned. 922 */ 923 static int faultin_page(struct vm_area_struct *vma, 924 unsigned long address, unsigned int *flags, bool unshare, 925 int *locked) 926 { 927 unsigned int fault_flags = 0; 928 vm_fault_t ret; 929 930 if (*flags & FOLL_NOFAULT) 931 return -EFAULT; 932 if (*flags & FOLL_WRITE) 933 fault_flags |= FAULT_FLAG_WRITE; 934 if (*flags & FOLL_REMOTE) 935 fault_flags |= FAULT_FLAG_REMOTE; 936 if (locked) 937 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 938 if (*flags & FOLL_NOWAIT) 939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 940 if (*flags & FOLL_TRIED) { 941 /* 942 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 943 * can co-exist 944 */ 945 fault_flags |= FAULT_FLAG_TRIED; 946 } 947 if (unshare) { 948 fault_flags |= FAULT_FLAG_UNSHARE; 949 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 950 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 951 } 952 953 ret = handle_mm_fault(vma, address, fault_flags, NULL); 954 955 if (ret & VM_FAULT_COMPLETED) { 956 /* 957 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 958 * mmap lock in the page fault handler. Sanity check this. 959 */ 960 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 961 if (locked) 962 *locked = 0; 963 /* 964 * We should do the same as VM_FAULT_RETRY, but let's not 965 * return -EBUSY since that's not reflecting the reality of 966 * what has happened - we've just fully completed a page 967 * fault, with the mmap lock released. Use -EAGAIN to show 968 * that we want to take the mmap lock _again_. 969 */ 970 return -EAGAIN; 971 } 972 973 if (ret & VM_FAULT_ERROR) { 974 int err = vm_fault_to_errno(ret, *flags); 975 976 if (err) 977 return err; 978 BUG(); 979 } 980 981 if (ret & VM_FAULT_RETRY) { 982 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 983 *locked = 0; 984 return -EBUSY; 985 } 986 987 /* 988 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 989 * necessary, even if maybe_mkwrite decided not to set pte_write. We 990 * can thus safely do subsequent page lookups as if they were reads. 991 * But only do so when looping for pte_write is futile: in some cases 992 * userspace may also be wanting to write to the gotten user page, 993 * which a read fault here might prevent (a readonly page might get 994 * reCOWed by userspace write). 995 */ 996 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 997 *flags |= FOLL_COW; 998 return 0; 999 } 1000 1001 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1002 { 1003 vm_flags_t vm_flags = vma->vm_flags; 1004 int write = (gup_flags & FOLL_WRITE); 1005 int foreign = (gup_flags & FOLL_REMOTE); 1006 1007 if (vm_flags & (VM_IO | VM_PFNMAP)) 1008 return -EFAULT; 1009 1010 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 1011 return -EFAULT; 1012 1013 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1014 return -EOPNOTSUPP; 1015 1016 if (vma_is_secretmem(vma)) 1017 return -EFAULT; 1018 1019 if (write) { 1020 if (!(vm_flags & VM_WRITE)) { 1021 if (!(gup_flags & FOLL_FORCE)) 1022 return -EFAULT; 1023 /* 1024 * We used to let the write,force case do COW in a 1025 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1026 * set a breakpoint in a read-only mapping of an 1027 * executable, without corrupting the file (yet only 1028 * when that file had been opened for writing!). 1029 * Anon pages in shared mappings are surprising: now 1030 * just reject it. 1031 */ 1032 if (!is_cow_mapping(vm_flags)) 1033 return -EFAULT; 1034 } 1035 } else if (!(vm_flags & VM_READ)) { 1036 if (!(gup_flags & FOLL_FORCE)) 1037 return -EFAULT; 1038 /* 1039 * Is there actually any vma we can reach here which does not 1040 * have VM_MAYREAD set? 1041 */ 1042 if (!(vm_flags & VM_MAYREAD)) 1043 return -EFAULT; 1044 } 1045 /* 1046 * gups are always data accesses, not instruction 1047 * fetches, so execute=false here 1048 */ 1049 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1050 return -EFAULT; 1051 return 0; 1052 } 1053 1054 /** 1055 * __get_user_pages() - pin user pages in memory 1056 * @mm: mm_struct of target mm 1057 * @start: starting user address 1058 * @nr_pages: number of pages from start to pin 1059 * @gup_flags: flags modifying pin behaviour 1060 * @pages: array that receives pointers to the pages pinned. 1061 * Should be at least nr_pages long. Or NULL, if caller 1062 * only intends to ensure the pages are faulted in. 1063 * @vmas: array of pointers to vmas corresponding to each page. 1064 * Or NULL if the caller does not require them. 1065 * @locked: whether we're still with the mmap_lock held 1066 * 1067 * Returns either number of pages pinned (which may be less than the 1068 * number requested), or an error. Details about the return value: 1069 * 1070 * -- If nr_pages is 0, returns 0. 1071 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1072 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1073 * pages pinned. Again, this may be less than nr_pages. 1074 * -- 0 return value is possible when the fault would need to be retried. 1075 * 1076 * The caller is responsible for releasing returned @pages, via put_page(). 1077 * 1078 * @vmas are valid only as long as mmap_lock is held. 1079 * 1080 * Must be called with mmap_lock held. It may be released. See below. 1081 * 1082 * __get_user_pages walks a process's page tables and takes a reference to 1083 * each struct page that each user address corresponds to at a given 1084 * instant. That is, it takes the page that would be accessed if a user 1085 * thread accesses the given user virtual address at that instant. 1086 * 1087 * This does not guarantee that the page exists in the user mappings when 1088 * __get_user_pages returns, and there may even be a completely different 1089 * page there in some cases (eg. if mmapped pagecache has been invalidated 1090 * and subsequently re faulted). However it does guarantee that the page 1091 * won't be freed completely. And mostly callers simply care that the page 1092 * contains data that was valid *at some point in time*. Typically, an IO 1093 * or similar operation cannot guarantee anything stronger anyway because 1094 * locks can't be held over the syscall boundary. 1095 * 1096 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1097 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1098 * appropriate) must be called after the page is finished with, and 1099 * before put_page is called. 1100 * 1101 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1102 * released by an up_read(). That can happen if @gup_flags does not 1103 * have FOLL_NOWAIT. 1104 * 1105 * A caller using such a combination of @locked and @gup_flags 1106 * must therefore hold the mmap_lock for reading only, and recognize 1107 * when it's been released. Otherwise, it must be held for either 1108 * reading or writing and will not be released. 1109 * 1110 * In most cases, get_user_pages or get_user_pages_fast should be used 1111 * instead of __get_user_pages. __get_user_pages should be used only if 1112 * you need some special @gup_flags. 1113 */ 1114 static long __get_user_pages(struct mm_struct *mm, 1115 unsigned long start, unsigned long nr_pages, 1116 unsigned int gup_flags, struct page **pages, 1117 struct vm_area_struct **vmas, int *locked) 1118 { 1119 long ret = 0, i = 0; 1120 struct vm_area_struct *vma = NULL; 1121 struct follow_page_context ctx = { NULL }; 1122 1123 if (!nr_pages) 1124 return 0; 1125 1126 start = untagged_addr(start); 1127 1128 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1129 1130 /* 1131 * If FOLL_FORCE is set then do not force a full fault as the hinting 1132 * fault information is unrelated to the reference behaviour of a task 1133 * using the address space 1134 */ 1135 if (!(gup_flags & FOLL_FORCE)) 1136 gup_flags |= FOLL_NUMA; 1137 1138 do { 1139 struct page *page; 1140 unsigned int foll_flags = gup_flags; 1141 unsigned int page_increm; 1142 1143 /* first iteration or cross vma bound */ 1144 if (!vma || start >= vma->vm_end) { 1145 vma = find_extend_vma(mm, start); 1146 if (!vma && in_gate_area(mm, start)) { 1147 ret = get_gate_page(mm, start & PAGE_MASK, 1148 gup_flags, &vma, 1149 pages ? &pages[i] : NULL); 1150 if (ret) 1151 goto out; 1152 ctx.page_mask = 0; 1153 goto next_page; 1154 } 1155 1156 if (!vma) { 1157 ret = -EFAULT; 1158 goto out; 1159 } 1160 ret = check_vma_flags(vma, gup_flags); 1161 if (ret) 1162 goto out; 1163 1164 if (is_vm_hugetlb_page(vma)) { 1165 i = follow_hugetlb_page(mm, vma, pages, vmas, 1166 &start, &nr_pages, i, 1167 gup_flags, locked); 1168 if (locked && *locked == 0) { 1169 /* 1170 * We've got a VM_FAULT_RETRY 1171 * and we've lost mmap_lock. 1172 * We must stop here. 1173 */ 1174 BUG_ON(gup_flags & FOLL_NOWAIT); 1175 goto out; 1176 } 1177 continue; 1178 } 1179 } 1180 retry: 1181 /* 1182 * If we have a pending SIGKILL, don't keep faulting pages and 1183 * potentially allocating memory. 1184 */ 1185 if (fatal_signal_pending(current)) { 1186 ret = -EINTR; 1187 goto out; 1188 } 1189 cond_resched(); 1190 1191 page = follow_page_mask(vma, start, foll_flags, &ctx); 1192 if (!page || PTR_ERR(page) == -EMLINK) { 1193 ret = faultin_page(vma, start, &foll_flags, 1194 PTR_ERR(page) == -EMLINK, locked); 1195 switch (ret) { 1196 case 0: 1197 goto retry; 1198 case -EBUSY: 1199 case -EAGAIN: 1200 ret = 0; 1201 fallthrough; 1202 case -EFAULT: 1203 case -ENOMEM: 1204 case -EHWPOISON: 1205 goto out; 1206 } 1207 BUG(); 1208 } else if (PTR_ERR(page) == -EEXIST) { 1209 /* 1210 * Proper page table entry exists, but no corresponding 1211 * struct page. If the caller expects **pages to be 1212 * filled in, bail out now, because that can't be done 1213 * for this page. 1214 */ 1215 if (pages) { 1216 ret = PTR_ERR(page); 1217 goto out; 1218 } 1219 1220 goto next_page; 1221 } else if (IS_ERR(page)) { 1222 ret = PTR_ERR(page); 1223 goto out; 1224 } 1225 if (pages) { 1226 pages[i] = page; 1227 flush_anon_page(vma, page, start); 1228 flush_dcache_page(page); 1229 ctx.page_mask = 0; 1230 } 1231 next_page: 1232 if (vmas) { 1233 vmas[i] = vma; 1234 ctx.page_mask = 0; 1235 } 1236 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1237 if (page_increm > nr_pages) 1238 page_increm = nr_pages; 1239 i += page_increm; 1240 start += page_increm * PAGE_SIZE; 1241 nr_pages -= page_increm; 1242 } while (nr_pages); 1243 out: 1244 if (ctx.pgmap) 1245 put_dev_pagemap(ctx.pgmap); 1246 return i ? i : ret; 1247 } 1248 1249 static bool vma_permits_fault(struct vm_area_struct *vma, 1250 unsigned int fault_flags) 1251 { 1252 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1253 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1254 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1255 1256 if (!(vm_flags & vma->vm_flags)) 1257 return false; 1258 1259 /* 1260 * The architecture might have a hardware protection 1261 * mechanism other than read/write that can deny access. 1262 * 1263 * gup always represents data access, not instruction 1264 * fetches, so execute=false here: 1265 */ 1266 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1267 return false; 1268 1269 return true; 1270 } 1271 1272 /** 1273 * fixup_user_fault() - manually resolve a user page fault 1274 * @mm: mm_struct of target mm 1275 * @address: user address 1276 * @fault_flags:flags to pass down to handle_mm_fault() 1277 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1278 * does not allow retry. If NULL, the caller must guarantee 1279 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1280 * 1281 * This is meant to be called in the specific scenario where for locking reasons 1282 * we try to access user memory in atomic context (within a pagefault_disable() 1283 * section), this returns -EFAULT, and we want to resolve the user fault before 1284 * trying again. 1285 * 1286 * Typically this is meant to be used by the futex code. 1287 * 1288 * The main difference with get_user_pages() is that this function will 1289 * unconditionally call handle_mm_fault() which will in turn perform all the 1290 * necessary SW fixup of the dirty and young bits in the PTE, while 1291 * get_user_pages() only guarantees to update these in the struct page. 1292 * 1293 * This is important for some architectures where those bits also gate the 1294 * access permission to the page because they are maintained in software. On 1295 * such architectures, gup() will not be enough to make a subsequent access 1296 * succeed. 1297 * 1298 * This function will not return with an unlocked mmap_lock. So it has not the 1299 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1300 */ 1301 int fixup_user_fault(struct mm_struct *mm, 1302 unsigned long address, unsigned int fault_flags, 1303 bool *unlocked) 1304 { 1305 struct vm_area_struct *vma; 1306 vm_fault_t ret; 1307 1308 address = untagged_addr(address); 1309 1310 if (unlocked) 1311 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1312 1313 retry: 1314 vma = find_extend_vma(mm, address); 1315 if (!vma || address < vma->vm_start) 1316 return -EFAULT; 1317 1318 if (!vma_permits_fault(vma, fault_flags)) 1319 return -EFAULT; 1320 1321 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1322 fatal_signal_pending(current)) 1323 return -EINTR; 1324 1325 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1326 1327 if (ret & VM_FAULT_COMPLETED) { 1328 /* 1329 * NOTE: it's a pity that we need to retake the lock here 1330 * to pair with the unlock() in the callers. Ideally we 1331 * could tell the callers so they do not need to unlock. 1332 */ 1333 mmap_read_lock(mm); 1334 *unlocked = true; 1335 return 0; 1336 } 1337 1338 if (ret & VM_FAULT_ERROR) { 1339 int err = vm_fault_to_errno(ret, 0); 1340 1341 if (err) 1342 return err; 1343 BUG(); 1344 } 1345 1346 if (ret & VM_FAULT_RETRY) { 1347 mmap_read_lock(mm); 1348 *unlocked = true; 1349 fault_flags |= FAULT_FLAG_TRIED; 1350 goto retry; 1351 } 1352 1353 return 0; 1354 } 1355 EXPORT_SYMBOL_GPL(fixup_user_fault); 1356 1357 /* 1358 * Please note that this function, unlike __get_user_pages will not 1359 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1360 */ 1361 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1362 unsigned long start, 1363 unsigned long nr_pages, 1364 struct page **pages, 1365 struct vm_area_struct **vmas, 1366 int *locked, 1367 unsigned int flags) 1368 { 1369 long ret, pages_done; 1370 bool lock_dropped; 1371 1372 if (locked) { 1373 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1374 BUG_ON(vmas); 1375 /* check caller initialized locked */ 1376 BUG_ON(*locked != 1); 1377 } 1378 1379 if (flags & FOLL_PIN) 1380 mm_set_has_pinned_flag(&mm->flags); 1381 1382 /* 1383 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1384 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1385 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1386 * for FOLL_GET, not for the newer FOLL_PIN. 1387 * 1388 * FOLL_PIN always expects pages to be non-null, but no need to assert 1389 * that here, as any failures will be obvious enough. 1390 */ 1391 if (pages && !(flags & FOLL_PIN)) 1392 flags |= FOLL_GET; 1393 1394 pages_done = 0; 1395 lock_dropped = false; 1396 for (;;) { 1397 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1398 vmas, locked); 1399 if (!locked) 1400 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1401 return ret; 1402 1403 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1404 if (!*locked) { 1405 BUG_ON(ret < 0); 1406 BUG_ON(ret >= nr_pages); 1407 } 1408 1409 if (ret > 0) { 1410 nr_pages -= ret; 1411 pages_done += ret; 1412 if (!nr_pages) 1413 break; 1414 } 1415 if (*locked) { 1416 /* 1417 * VM_FAULT_RETRY didn't trigger or it was a 1418 * FOLL_NOWAIT. 1419 */ 1420 if (!pages_done) 1421 pages_done = ret; 1422 break; 1423 } 1424 /* 1425 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1426 * For the prefault case (!pages) we only update counts. 1427 */ 1428 if (likely(pages)) 1429 pages += ret; 1430 start += ret << PAGE_SHIFT; 1431 lock_dropped = true; 1432 1433 retry: 1434 /* 1435 * Repeat on the address that fired VM_FAULT_RETRY 1436 * with both FAULT_FLAG_ALLOW_RETRY and 1437 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1438 * by fatal signals, so we need to check it before we 1439 * start trying again otherwise it can loop forever. 1440 */ 1441 1442 if (fatal_signal_pending(current)) { 1443 if (!pages_done) 1444 pages_done = -EINTR; 1445 break; 1446 } 1447 1448 ret = mmap_read_lock_killable(mm); 1449 if (ret) { 1450 BUG_ON(ret > 0); 1451 if (!pages_done) 1452 pages_done = ret; 1453 break; 1454 } 1455 1456 *locked = 1; 1457 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1458 pages, NULL, locked); 1459 if (!*locked) { 1460 /* Continue to retry until we succeeded */ 1461 BUG_ON(ret != 0); 1462 goto retry; 1463 } 1464 if (ret != 1) { 1465 BUG_ON(ret > 1); 1466 if (!pages_done) 1467 pages_done = ret; 1468 break; 1469 } 1470 nr_pages--; 1471 pages_done++; 1472 if (!nr_pages) 1473 break; 1474 if (likely(pages)) 1475 pages++; 1476 start += PAGE_SIZE; 1477 } 1478 if (lock_dropped && *locked) { 1479 /* 1480 * We must let the caller know we temporarily dropped the lock 1481 * and so the critical section protected by it was lost. 1482 */ 1483 mmap_read_unlock(mm); 1484 *locked = 0; 1485 } 1486 return pages_done; 1487 } 1488 1489 /** 1490 * populate_vma_page_range() - populate a range of pages in the vma. 1491 * @vma: target vma 1492 * @start: start address 1493 * @end: end address 1494 * @locked: whether the mmap_lock is still held 1495 * 1496 * This takes care of mlocking the pages too if VM_LOCKED is set. 1497 * 1498 * Return either number of pages pinned in the vma, or a negative error 1499 * code on error. 1500 * 1501 * vma->vm_mm->mmap_lock must be held. 1502 * 1503 * If @locked is NULL, it may be held for read or write and will 1504 * be unperturbed. 1505 * 1506 * If @locked is non-NULL, it must held for read only and may be 1507 * released. If it's released, *@locked will be set to 0. 1508 */ 1509 long populate_vma_page_range(struct vm_area_struct *vma, 1510 unsigned long start, unsigned long end, int *locked) 1511 { 1512 struct mm_struct *mm = vma->vm_mm; 1513 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1514 int gup_flags; 1515 long ret; 1516 1517 VM_BUG_ON(!PAGE_ALIGNED(start)); 1518 VM_BUG_ON(!PAGE_ALIGNED(end)); 1519 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1520 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1521 mmap_assert_locked(mm); 1522 1523 /* 1524 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1525 * faultin_page() to break COW, so it has no work to do here. 1526 */ 1527 if (vma->vm_flags & VM_LOCKONFAULT) 1528 return nr_pages; 1529 1530 gup_flags = FOLL_TOUCH; 1531 /* 1532 * We want to touch writable mappings with a write fault in order 1533 * to break COW, except for shared mappings because these don't COW 1534 * and we would not want to dirty them for nothing. 1535 */ 1536 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1537 gup_flags |= FOLL_WRITE; 1538 1539 /* 1540 * We want mlock to succeed for regions that have any permissions 1541 * other than PROT_NONE. 1542 */ 1543 if (vma_is_accessible(vma)) 1544 gup_flags |= FOLL_FORCE; 1545 1546 /* 1547 * We made sure addr is within a VMA, so the following will 1548 * not result in a stack expansion that recurses back here. 1549 */ 1550 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1551 NULL, NULL, locked); 1552 lru_add_drain(); 1553 return ret; 1554 } 1555 1556 /* 1557 * faultin_vma_page_range() - populate (prefault) page tables inside the 1558 * given VMA range readable/writable 1559 * 1560 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1561 * 1562 * @vma: target vma 1563 * @start: start address 1564 * @end: end address 1565 * @write: whether to prefault readable or writable 1566 * @locked: whether the mmap_lock is still held 1567 * 1568 * Returns either number of processed pages in the vma, or a negative error 1569 * code on error (see __get_user_pages()). 1570 * 1571 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1572 * covered by the VMA. 1573 * 1574 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1575 * 1576 * If @locked is non-NULL, it must held for read only and may be released. If 1577 * it's released, *@locked will be set to 0. 1578 */ 1579 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1580 unsigned long end, bool write, int *locked) 1581 { 1582 struct mm_struct *mm = vma->vm_mm; 1583 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1584 int gup_flags; 1585 long ret; 1586 1587 VM_BUG_ON(!PAGE_ALIGNED(start)); 1588 VM_BUG_ON(!PAGE_ALIGNED(end)); 1589 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1590 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1591 mmap_assert_locked(mm); 1592 1593 /* 1594 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1595 * the page dirty with FOLL_WRITE -- which doesn't make a 1596 * difference with !FOLL_FORCE, because the page is writable 1597 * in the page table. 1598 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1599 * a poisoned page. 1600 * !FOLL_FORCE: Require proper access permissions. 1601 */ 1602 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1603 if (write) 1604 gup_flags |= FOLL_WRITE; 1605 1606 /* 1607 * We want to report -EINVAL instead of -EFAULT for any permission 1608 * problems or incompatible mappings. 1609 */ 1610 if (check_vma_flags(vma, gup_flags)) 1611 return -EINVAL; 1612 1613 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1614 NULL, NULL, locked); 1615 lru_add_drain(); 1616 return ret; 1617 } 1618 1619 /* 1620 * __mm_populate - populate and/or mlock pages within a range of address space. 1621 * 1622 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1623 * flags. VMAs must be already marked with the desired vm_flags, and 1624 * mmap_lock must not be held. 1625 */ 1626 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1627 { 1628 struct mm_struct *mm = current->mm; 1629 unsigned long end, nstart, nend; 1630 struct vm_area_struct *vma = NULL; 1631 int locked = 0; 1632 long ret = 0; 1633 1634 end = start + len; 1635 1636 for (nstart = start; nstart < end; nstart = nend) { 1637 /* 1638 * We want to fault in pages for [nstart; end) address range. 1639 * Find first corresponding VMA. 1640 */ 1641 if (!locked) { 1642 locked = 1; 1643 mmap_read_lock(mm); 1644 vma = find_vma(mm, nstart); 1645 } else if (nstart >= vma->vm_end) 1646 vma = vma->vm_next; 1647 if (!vma || vma->vm_start >= end) 1648 break; 1649 /* 1650 * Set [nstart; nend) to intersection of desired address 1651 * range with the first VMA. Also, skip undesirable VMA types. 1652 */ 1653 nend = min(end, vma->vm_end); 1654 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1655 continue; 1656 if (nstart < vma->vm_start) 1657 nstart = vma->vm_start; 1658 /* 1659 * Now fault in a range of pages. populate_vma_page_range() 1660 * double checks the vma flags, so that it won't mlock pages 1661 * if the vma was already munlocked. 1662 */ 1663 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1664 if (ret < 0) { 1665 if (ignore_errors) { 1666 ret = 0; 1667 continue; /* continue at next VMA */ 1668 } 1669 break; 1670 } 1671 nend = nstart + ret * PAGE_SIZE; 1672 ret = 0; 1673 } 1674 if (locked) 1675 mmap_read_unlock(mm); 1676 return ret; /* 0 or negative error code */ 1677 } 1678 #else /* CONFIG_MMU */ 1679 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1680 unsigned long nr_pages, struct page **pages, 1681 struct vm_area_struct **vmas, int *locked, 1682 unsigned int foll_flags) 1683 { 1684 struct vm_area_struct *vma; 1685 unsigned long vm_flags; 1686 long i; 1687 1688 /* calculate required read or write permissions. 1689 * If FOLL_FORCE is set, we only require the "MAY" flags. 1690 */ 1691 vm_flags = (foll_flags & FOLL_WRITE) ? 1692 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1693 vm_flags &= (foll_flags & FOLL_FORCE) ? 1694 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1695 1696 for (i = 0; i < nr_pages; i++) { 1697 vma = find_vma(mm, start); 1698 if (!vma) 1699 goto finish_or_fault; 1700 1701 /* protect what we can, including chardevs */ 1702 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1703 !(vm_flags & vma->vm_flags)) 1704 goto finish_or_fault; 1705 1706 if (pages) { 1707 pages[i] = virt_to_page(start); 1708 if (pages[i]) 1709 get_page(pages[i]); 1710 } 1711 if (vmas) 1712 vmas[i] = vma; 1713 start = (start + PAGE_SIZE) & PAGE_MASK; 1714 } 1715 1716 return i; 1717 1718 finish_or_fault: 1719 return i ? : -EFAULT; 1720 } 1721 #endif /* !CONFIG_MMU */ 1722 1723 /** 1724 * fault_in_writeable - fault in userspace address range for writing 1725 * @uaddr: start of address range 1726 * @size: size of address range 1727 * 1728 * Returns the number of bytes not faulted in (like copy_to_user() and 1729 * copy_from_user()). 1730 */ 1731 size_t fault_in_writeable(char __user *uaddr, size_t size) 1732 { 1733 char __user *start = uaddr, *end; 1734 1735 if (unlikely(size == 0)) 1736 return 0; 1737 if (!user_write_access_begin(uaddr, size)) 1738 return size; 1739 if (!PAGE_ALIGNED(uaddr)) { 1740 unsafe_put_user(0, uaddr, out); 1741 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1742 } 1743 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1744 if (unlikely(end < start)) 1745 end = NULL; 1746 while (uaddr != end) { 1747 unsafe_put_user(0, uaddr, out); 1748 uaddr += PAGE_SIZE; 1749 } 1750 1751 out: 1752 user_write_access_end(); 1753 if (size > uaddr - start) 1754 return size - (uaddr - start); 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(fault_in_writeable); 1758 1759 /** 1760 * fault_in_subpage_writeable - fault in an address range for writing 1761 * @uaddr: start of address range 1762 * @size: size of address range 1763 * 1764 * Fault in a user address range for writing while checking for permissions at 1765 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1766 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1767 * 1768 * Returns the number of bytes not faulted in (like copy_to_user() and 1769 * copy_from_user()). 1770 */ 1771 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1772 { 1773 size_t faulted_in; 1774 1775 /* 1776 * Attempt faulting in at page granularity first for page table 1777 * permission checking. The arch-specific probe_subpage_writeable() 1778 * functions may not check for this. 1779 */ 1780 faulted_in = size - fault_in_writeable(uaddr, size); 1781 if (faulted_in) 1782 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1783 1784 return size - faulted_in; 1785 } 1786 EXPORT_SYMBOL(fault_in_subpage_writeable); 1787 1788 /* 1789 * fault_in_safe_writeable - fault in an address range for writing 1790 * @uaddr: start of address range 1791 * @size: length of address range 1792 * 1793 * Faults in an address range for writing. This is primarily useful when we 1794 * already know that some or all of the pages in the address range aren't in 1795 * memory. 1796 * 1797 * Unlike fault_in_writeable(), this function is non-destructive. 1798 * 1799 * Note that we don't pin or otherwise hold the pages referenced that we fault 1800 * in. There's no guarantee that they'll stay in memory for any duration of 1801 * time. 1802 * 1803 * Returns the number of bytes not faulted in, like copy_to_user() and 1804 * copy_from_user(). 1805 */ 1806 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1807 { 1808 unsigned long start = (unsigned long)uaddr, end; 1809 struct mm_struct *mm = current->mm; 1810 bool unlocked = false; 1811 1812 if (unlikely(size == 0)) 1813 return 0; 1814 end = PAGE_ALIGN(start + size); 1815 if (end < start) 1816 end = 0; 1817 1818 mmap_read_lock(mm); 1819 do { 1820 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1821 break; 1822 start = (start + PAGE_SIZE) & PAGE_MASK; 1823 } while (start != end); 1824 mmap_read_unlock(mm); 1825 1826 if (size > (unsigned long)uaddr - start) 1827 return size - ((unsigned long)uaddr - start); 1828 return 0; 1829 } 1830 EXPORT_SYMBOL(fault_in_safe_writeable); 1831 1832 /** 1833 * fault_in_readable - fault in userspace address range for reading 1834 * @uaddr: start of user address range 1835 * @size: size of user address range 1836 * 1837 * Returns the number of bytes not faulted in (like copy_to_user() and 1838 * copy_from_user()). 1839 */ 1840 size_t fault_in_readable(const char __user *uaddr, size_t size) 1841 { 1842 const char __user *start = uaddr, *end; 1843 volatile char c; 1844 1845 if (unlikely(size == 0)) 1846 return 0; 1847 if (!user_read_access_begin(uaddr, size)) 1848 return size; 1849 if (!PAGE_ALIGNED(uaddr)) { 1850 unsafe_get_user(c, uaddr, out); 1851 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1852 } 1853 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1854 if (unlikely(end < start)) 1855 end = NULL; 1856 while (uaddr != end) { 1857 unsafe_get_user(c, uaddr, out); 1858 uaddr += PAGE_SIZE; 1859 } 1860 1861 out: 1862 user_read_access_end(); 1863 (void)c; 1864 if (size > uaddr - start) 1865 return size - (uaddr - start); 1866 return 0; 1867 } 1868 EXPORT_SYMBOL(fault_in_readable); 1869 1870 /** 1871 * get_dump_page() - pin user page in memory while writing it to core dump 1872 * @addr: user address 1873 * 1874 * Returns struct page pointer of user page pinned for dump, 1875 * to be freed afterwards by put_page(). 1876 * 1877 * Returns NULL on any kind of failure - a hole must then be inserted into 1878 * the corefile, to preserve alignment with its headers; and also returns 1879 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1880 * allowing a hole to be left in the corefile to save disk space. 1881 * 1882 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1883 */ 1884 #ifdef CONFIG_ELF_CORE 1885 struct page *get_dump_page(unsigned long addr) 1886 { 1887 struct mm_struct *mm = current->mm; 1888 struct page *page; 1889 int locked = 1; 1890 int ret; 1891 1892 if (mmap_read_lock_killable(mm)) 1893 return NULL; 1894 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1895 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1896 if (locked) 1897 mmap_read_unlock(mm); 1898 return (ret == 1) ? page : NULL; 1899 } 1900 #endif /* CONFIG_ELF_CORE */ 1901 1902 #ifdef CONFIG_MIGRATION 1903 /* 1904 * Check whether all pages are pinnable, if so return number of pages. If some 1905 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1906 * pages were migrated, or if some pages were not successfully isolated. 1907 * Return negative error if migration fails. 1908 */ 1909 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1910 struct page **pages, 1911 unsigned int gup_flags) 1912 { 1913 unsigned long isolation_error_count = 0, i; 1914 struct folio *prev_folio = NULL; 1915 LIST_HEAD(movable_page_list); 1916 bool drain_allow = true; 1917 int ret = 0; 1918 1919 for (i = 0; i < nr_pages; i++) { 1920 struct folio *folio = page_folio(pages[i]); 1921 1922 if (folio == prev_folio) 1923 continue; 1924 prev_folio = folio; 1925 1926 if (folio_is_pinnable(folio)) 1927 continue; 1928 1929 /* 1930 * Try to move out any movable page before pinning the range. 1931 */ 1932 if (folio_test_hugetlb(folio)) { 1933 if (isolate_hugetlb(&folio->page, 1934 &movable_page_list)) 1935 isolation_error_count++; 1936 continue; 1937 } 1938 1939 if (!folio_test_lru(folio) && drain_allow) { 1940 lru_add_drain_all(); 1941 drain_allow = false; 1942 } 1943 1944 if (folio_isolate_lru(folio)) { 1945 isolation_error_count++; 1946 continue; 1947 } 1948 list_add_tail(&folio->lru, &movable_page_list); 1949 node_stat_mod_folio(folio, 1950 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1951 folio_nr_pages(folio)); 1952 } 1953 1954 if (!list_empty(&movable_page_list) || isolation_error_count) 1955 goto unpin_pages; 1956 1957 /* 1958 * If list is empty, and no isolation errors, means that all pages are 1959 * in the correct zone. 1960 */ 1961 return nr_pages; 1962 1963 unpin_pages: 1964 if (gup_flags & FOLL_PIN) { 1965 unpin_user_pages(pages, nr_pages); 1966 } else { 1967 for (i = 0; i < nr_pages; i++) 1968 put_page(pages[i]); 1969 } 1970 1971 if (!list_empty(&movable_page_list)) { 1972 struct migration_target_control mtc = { 1973 .nid = NUMA_NO_NODE, 1974 .gfp_mask = GFP_USER | __GFP_NOWARN, 1975 }; 1976 1977 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1978 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1979 MR_LONGTERM_PIN, NULL); 1980 if (ret > 0) /* number of pages not migrated */ 1981 ret = -ENOMEM; 1982 } 1983 1984 if (ret && !list_empty(&movable_page_list)) 1985 putback_movable_pages(&movable_page_list); 1986 return ret; 1987 } 1988 #else 1989 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1990 struct page **pages, 1991 unsigned int gup_flags) 1992 { 1993 return nr_pages; 1994 } 1995 #endif /* CONFIG_MIGRATION */ 1996 1997 /* 1998 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1999 * allows us to process the FOLL_LONGTERM flag. 2000 */ 2001 static long __gup_longterm_locked(struct mm_struct *mm, 2002 unsigned long start, 2003 unsigned long nr_pages, 2004 struct page **pages, 2005 struct vm_area_struct **vmas, 2006 unsigned int gup_flags) 2007 { 2008 unsigned int flags; 2009 long rc; 2010 2011 if (!(gup_flags & FOLL_LONGTERM)) 2012 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2013 NULL, gup_flags); 2014 flags = memalloc_pin_save(); 2015 do { 2016 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2017 NULL, gup_flags); 2018 if (rc <= 0) 2019 break; 2020 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 2021 } while (!rc); 2022 memalloc_pin_restore(flags); 2023 2024 return rc; 2025 } 2026 2027 static bool is_valid_gup_flags(unsigned int gup_flags) 2028 { 2029 /* 2030 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2031 * never directly by the caller, so enforce that with an assertion: 2032 */ 2033 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2034 return false; 2035 /* 2036 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2037 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2038 * FOLL_PIN. 2039 */ 2040 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2041 return false; 2042 2043 return true; 2044 } 2045 2046 #ifdef CONFIG_MMU 2047 static long __get_user_pages_remote(struct mm_struct *mm, 2048 unsigned long start, unsigned long nr_pages, 2049 unsigned int gup_flags, struct page **pages, 2050 struct vm_area_struct **vmas, int *locked) 2051 { 2052 /* 2053 * Parts of FOLL_LONGTERM behavior are incompatible with 2054 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2055 * vmas. However, this only comes up if locked is set, and there are 2056 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2057 * allow what we can. 2058 */ 2059 if (gup_flags & FOLL_LONGTERM) { 2060 if (WARN_ON_ONCE(locked)) 2061 return -EINVAL; 2062 /* 2063 * This will check the vmas (even if our vmas arg is NULL) 2064 * and return -ENOTSUPP if DAX isn't allowed in this case: 2065 */ 2066 return __gup_longterm_locked(mm, start, nr_pages, pages, 2067 vmas, gup_flags | FOLL_TOUCH | 2068 FOLL_REMOTE); 2069 } 2070 2071 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2072 locked, 2073 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2074 } 2075 2076 /** 2077 * get_user_pages_remote() - pin user pages in memory 2078 * @mm: mm_struct of target mm 2079 * @start: starting user address 2080 * @nr_pages: number of pages from start to pin 2081 * @gup_flags: flags modifying lookup behaviour 2082 * @pages: array that receives pointers to the pages pinned. 2083 * Should be at least nr_pages long. Or NULL, if caller 2084 * only intends to ensure the pages are faulted in. 2085 * @vmas: array of pointers to vmas corresponding to each page. 2086 * Or NULL if the caller does not require them. 2087 * @locked: pointer to lock flag indicating whether lock is held and 2088 * subsequently whether VM_FAULT_RETRY functionality can be 2089 * utilised. Lock must initially be held. 2090 * 2091 * Returns either number of pages pinned (which may be less than the 2092 * number requested), or an error. Details about the return value: 2093 * 2094 * -- If nr_pages is 0, returns 0. 2095 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2096 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2097 * pages pinned. Again, this may be less than nr_pages. 2098 * 2099 * The caller is responsible for releasing returned @pages, via put_page(). 2100 * 2101 * @vmas are valid only as long as mmap_lock is held. 2102 * 2103 * Must be called with mmap_lock held for read or write. 2104 * 2105 * get_user_pages_remote walks a process's page tables and takes a reference 2106 * to each struct page that each user address corresponds to at a given 2107 * instant. That is, it takes the page that would be accessed if a user 2108 * thread accesses the given user virtual address at that instant. 2109 * 2110 * This does not guarantee that the page exists in the user mappings when 2111 * get_user_pages_remote returns, and there may even be a completely different 2112 * page there in some cases (eg. if mmapped pagecache has been invalidated 2113 * and subsequently re faulted). However it does guarantee that the page 2114 * won't be freed completely. And mostly callers simply care that the page 2115 * contains data that was valid *at some point in time*. Typically, an IO 2116 * or similar operation cannot guarantee anything stronger anyway because 2117 * locks can't be held over the syscall boundary. 2118 * 2119 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2120 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2121 * be called after the page is finished with, and before put_page is called. 2122 * 2123 * get_user_pages_remote is typically used for fewer-copy IO operations, 2124 * to get a handle on the memory by some means other than accesses 2125 * via the user virtual addresses. The pages may be submitted for 2126 * DMA to devices or accessed via their kernel linear mapping (via the 2127 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2128 * 2129 * See also get_user_pages_fast, for performance critical applications. 2130 * 2131 * get_user_pages_remote should be phased out in favor of 2132 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2133 * should use get_user_pages_remote because it cannot pass 2134 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2135 */ 2136 long get_user_pages_remote(struct mm_struct *mm, 2137 unsigned long start, unsigned long nr_pages, 2138 unsigned int gup_flags, struct page **pages, 2139 struct vm_area_struct **vmas, int *locked) 2140 { 2141 if (!is_valid_gup_flags(gup_flags)) 2142 return -EINVAL; 2143 2144 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2145 pages, vmas, locked); 2146 } 2147 EXPORT_SYMBOL(get_user_pages_remote); 2148 2149 #else /* CONFIG_MMU */ 2150 long get_user_pages_remote(struct mm_struct *mm, 2151 unsigned long start, unsigned long nr_pages, 2152 unsigned int gup_flags, struct page **pages, 2153 struct vm_area_struct **vmas, int *locked) 2154 { 2155 return 0; 2156 } 2157 2158 static long __get_user_pages_remote(struct mm_struct *mm, 2159 unsigned long start, unsigned long nr_pages, 2160 unsigned int gup_flags, struct page **pages, 2161 struct vm_area_struct **vmas, int *locked) 2162 { 2163 return 0; 2164 } 2165 #endif /* !CONFIG_MMU */ 2166 2167 /** 2168 * get_user_pages() - pin user pages in memory 2169 * @start: starting user address 2170 * @nr_pages: number of pages from start to pin 2171 * @gup_flags: flags modifying lookup behaviour 2172 * @pages: array that receives pointers to the pages pinned. 2173 * Should be at least nr_pages long. Or NULL, if caller 2174 * only intends to ensure the pages are faulted in. 2175 * @vmas: array of pointers to vmas corresponding to each page. 2176 * Or NULL if the caller does not require them. 2177 * 2178 * This is the same as get_user_pages_remote(), just with a less-flexible 2179 * calling convention where we assume that the mm being operated on belongs to 2180 * the current task, and doesn't allow passing of a locked parameter. We also 2181 * obviously don't pass FOLL_REMOTE in here. 2182 */ 2183 long get_user_pages(unsigned long start, unsigned long nr_pages, 2184 unsigned int gup_flags, struct page **pages, 2185 struct vm_area_struct **vmas) 2186 { 2187 if (!is_valid_gup_flags(gup_flags)) 2188 return -EINVAL; 2189 2190 return __gup_longterm_locked(current->mm, start, nr_pages, 2191 pages, vmas, gup_flags | FOLL_TOUCH); 2192 } 2193 EXPORT_SYMBOL(get_user_pages); 2194 2195 /* 2196 * get_user_pages_unlocked() is suitable to replace the form: 2197 * 2198 * mmap_read_lock(mm); 2199 * get_user_pages(mm, ..., pages, NULL); 2200 * mmap_read_unlock(mm); 2201 * 2202 * with: 2203 * 2204 * get_user_pages_unlocked(mm, ..., pages); 2205 * 2206 * It is functionally equivalent to get_user_pages_fast so 2207 * get_user_pages_fast should be used instead if specific gup_flags 2208 * (e.g. FOLL_FORCE) are not required. 2209 */ 2210 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2211 struct page **pages, unsigned int gup_flags) 2212 { 2213 struct mm_struct *mm = current->mm; 2214 int locked = 1; 2215 long ret; 2216 2217 /* 2218 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2219 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2220 * vmas. As there are no users of this flag in this call we simply 2221 * disallow this option for now. 2222 */ 2223 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2224 return -EINVAL; 2225 2226 mmap_read_lock(mm); 2227 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2228 &locked, gup_flags | FOLL_TOUCH); 2229 if (locked) 2230 mmap_read_unlock(mm); 2231 return ret; 2232 } 2233 EXPORT_SYMBOL(get_user_pages_unlocked); 2234 2235 /* 2236 * Fast GUP 2237 * 2238 * get_user_pages_fast attempts to pin user pages by walking the page 2239 * tables directly and avoids taking locks. Thus the walker needs to be 2240 * protected from page table pages being freed from under it, and should 2241 * block any THP splits. 2242 * 2243 * One way to achieve this is to have the walker disable interrupts, and 2244 * rely on IPIs from the TLB flushing code blocking before the page table 2245 * pages are freed. This is unsuitable for architectures that do not need 2246 * to broadcast an IPI when invalidating TLBs. 2247 * 2248 * Another way to achieve this is to batch up page table containing pages 2249 * belonging to more than one mm_user, then rcu_sched a callback to free those 2250 * pages. Disabling interrupts will allow the fast_gup walker to both block 2251 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2252 * (which is a relatively rare event). The code below adopts this strategy. 2253 * 2254 * Before activating this code, please be aware that the following assumptions 2255 * are currently made: 2256 * 2257 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2258 * free pages containing page tables or TLB flushing requires IPI broadcast. 2259 * 2260 * *) ptes can be read atomically by the architecture. 2261 * 2262 * *) access_ok is sufficient to validate userspace address ranges. 2263 * 2264 * The last two assumptions can be relaxed by the addition of helper functions. 2265 * 2266 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2267 */ 2268 #ifdef CONFIG_HAVE_FAST_GUP 2269 2270 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2271 unsigned int flags, 2272 struct page **pages) 2273 { 2274 while ((*nr) - nr_start) { 2275 struct page *page = pages[--(*nr)]; 2276 2277 ClearPageReferenced(page); 2278 if (flags & FOLL_PIN) 2279 unpin_user_page(page); 2280 else 2281 put_page(page); 2282 } 2283 } 2284 2285 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2286 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2287 unsigned int flags, struct page **pages, int *nr) 2288 { 2289 struct dev_pagemap *pgmap = NULL; 2290 int nr_start = *nr, ret = 0; 2291 pte_t *ptep, *ptem; 2292 2293 ptem = ptep = pte_offset_map(&pmd, addr); 2294 do { 2295 pte_t pte = ptep_get_lockless(ptep); 2296 struct page *page; 2297 struct folio *folio; 2298 2299 /* 2300 * Similar to the PMD case below, NUMA hinting must take slow 2301 * path using the pte_protnone check. 2302 */ 2303 if (pte_protnone(pte)) 2304 goto pte_unmap; 2305 2306 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2307 goto pte_unmap; 2308 2309 if (pte_devmap(pte)) { 2310 if (unlikely(flags & FOLL_LONGTERM)) 2311 goto pte_unmap; 2312 2313 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2314 if (unlikely(!pgmap)) { 2315 undo_dev_pagemap(nr, nr_start, flags, pages); 2316 goto pte_unmap; 2317 } 2318 } else if (pte_special(pte)) 2319 goto pte_unmap; 2320 2321 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2322 page = pte_page(pte); 2323 2324 folio = try_grab_folio(page, 1, flags); 2325 if (!folio) 2326 goto pte_unmap; 2327 2328 if (unlikely(page_is_secretmem(page))) { 2329 gup_put_folio(folio, 1, flags); 2330 goto pte_unmap; 2331 } 2332 2333 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2334 gup_put_folio(folio, 1, flags); 2335 goto pte_unmap; 2336 } 2337 2338 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2339 gup_put_folio(folio, 1, flags); 2340 goto pte_unmap; 2341 } 2342 2343 /* 2344 * We need to make the page accessible if and only if we are 2345 * going to access its content (the FOLL_PIN case). Please 2346 * see Documentation/core-api/pin_user_pages.rst for 2347 * details. 2348 */ 2349 if (flags & FOLL_PIN) { 2350 ret = arch_make_page_accessible(page); 2351 if (ret) { 2352 gup_put_folio(folio, 1, flags); 2353 goto pte_unmap; 2354 } 2355 } 2356 folio_set_referenced(folio); 2357 pages[*nr] = page; 2358 (*nr)++; 2359 } while (ptep++, addr += PAGE_SIZE, addr != end); 2360 2361 ret = 1; 2362 2363 pte_unmap: 2364 if (pgmap) 2365 put_dev_pagemap(pgmap); 2366 pte_unmap(ptem); 2367 return ret; 2368 } 2369 #else 2370 2371 /* 2372 * If we can't determine whether or not a pte is special, then fail immediately 2373 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2374 * to be special. 2375 * 2376 * For a futex to be placed on a THP tail page, get_futex_key requires a 2377 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2378 * useful to have gup_huge_pmd even if we can't operate on ptes. 2379 */ 2380 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2381 unsigned int flags, struct page **pages, int *nr) 2382 { 2383 return 0; 2384 } 2385 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2386 2387 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2388 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2389 unsigned long end, unsigned int flags, 2390 struct page **pages, int *nr) 2391 { 2392 int nr_start = *nr; 2393 struct dev_pagemap *pgmap = NULL; 2394 2395 do { 2396 struct page *page = pfn_to_page(pfn); 2397 2398 pgmap = get_dev_pagemap(pfn, pgmap); 2399 if (unlikely(!pgmap)) { 2400 undo_dev_pagemap(nr, nr_start, flags, pages); 2401 break; 2402 } 2403 SetPageReferenced(page); 2404 pages[*nr] = page; 2405 if (unlikely(!try_grab_page(page, flags))) { 2406 undo_dev_pagemap(nr, nr_start, flags, pages); 2407 break; 2408 } 2409 (*nr)++; 2410 pfn++; 2411 } while (addr += PAGE_SIZE, addr != end); 2412 2413 put_dev_pagemap(pgmap); 2414 return addr == end; 2415 } 2416 2417 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2418 unsigned long end, unsigned int flags, 2419 struct page **pages, int *nr) 2420 { 2421 unsigned long fault_pfn; 2422 int nr_start = *nr; 2423 2424 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2425 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2426 return 0; 2427 2428 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2429 undo_dev_pagemap(nr, nr_start, flags, pages); 2430 return 0; 2431 } 2432 return 1; 2433 } 2434 2435 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2436 unsigned long end, unsigned int flags, 2437 struct page **pages, int *nr) 2438 { 2439 unsigned long fault_pfn; 2440 int nr_start = *nr; 2441 2442 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2443 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2444 return 0; 2445 2446 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2447 undo_dev_pagemap(nr, nr_start, flags, pages); 2448 return 0; 2449 } 2450 return 1; 2451 } 2452 #else 2453 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2454 unsigned long end, unsigned int flags, 2455 struct page **pages, int *nr) 2456 { 2457 BUILD_BUG(); 2458 return 0; 2459 } 2460 2461 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2462 unsigned long end, unsigned int flags, 2463 struct page **pages, int *nr) 2464 { 2465 BUILD_BUG(); 2466 return 0; 2467 } 2468 #endif 2469 2470 static int record_subpages(struct page *page, unsigned long addr, 2471 unsigned long end, struct page **pages) 2472 { 2473 int nr; 2474 2475 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2476 pages[nr] = nth_page(page, nr); 2477 2478 return nr; 2479 } 2480 2481 #ifdef CONFIG_ARCH_HAS_HUGEPD 2482 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2483 unsigned long sz) 2484 { 2485 unsigned long __boundary = (addr + sz) & ~(sz-1); 2486 return (__boundary - 1 < end - 1) ? __boundary : end; 2487 } 2488 2489 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2490 unsigned long end, unsigned int flags, 2491 struct page **pages, int *nr) 2492 { 2493 unsigned long pte_end; 2494 struct page *page; 2495 struct folio *folio; 2496 pte_t pte; 2497 int refs; 2498 2499 pte_end = (addr + sz) & ~(sz-1); 2500 if (pte_end < end) 2501 end = pte_end; 2502 2503 pte = huge_ptep_get(ptep); 2504 2505 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2506 return 0; 2507 2508 /* hugepages are never "special" */ 2509 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2510 2511 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2512 refs = record_subpages(page, addr, end, pages + *nr); 2513 2514 folio = try_grab_folio(page, refs, flags); 2515 if (!folio) 2516 return 0; 2517 2518 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2519 gup_put_folio(folio, refs, flags); 2520 return 0; 2521 } 2522 2523 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2524 gup_put_folio(folio, refs, flags); 2525 return 0; 2526 } 2527 2528 *nr += refs; 2529 folio_set_referenced(folio); 2530 return 1; 2531 } 2532 2533 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2534 unsigned int pdshift, unsigned long end, unsigned int flags, 2535 struct page **pages, int *nr) 2536 { 2537 pte_t *ptep; 2538 unsigned long sz = 1UL << hugepd_shift(hugepd); 2539 unsigned long next; 2540 2541 ptep = hugepte_offset(hugepd, addr, pdshift); 2542 do { 2543 next = hugepte_addr_end(addr, end, sz); 2544 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2545 return 0; 2546 } while (ptep++, addr = next, addr != end); 2547 2548 return 1; 2549 } 2550 #else 2551 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2552 unsigned int pdshift, unsigned long end, unsigned int flags, 2553 struct page **pages, int *nr) 2554 { 2555 return 0; 2556 } 2557 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2558 2559 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2560 unsigned long end, unsigned int flags, 2561 struct page **pages, int *nr) 2562 { 2563 struct page *page; 2564 struct folio *folio; 2565 int refs; 2566 2567 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2568 return 0; 2569 2570 if (pmd_devmap(orig)) { 2571 if (unlikely(flags & FOLL_LONGTERM)) 2572 return 0; 2573 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2574 pages, nr); 2575 } 2576 2577 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2578 refs = record_subpages(page, addr, end, pages + *nr); 2579 2580 folio = try_grab_folio(page, refs, flags); 2581 if (!folio) 2582 return 0; 2583 2584 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2585 gup_put_folio(folio, refs, flags); 2586 return 0; 2587 } 2588 2589 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2590 gup_put_folio(folio, refs, flags); 2591 return 0; 2592 } 2593 2594 *nr += refs; 2595 folio_set_referenced(folio); 2596 return 1; 2597 } 2598 2599 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2600 unsigned long end, unsigned int flags, 2601 struct page **pages, int *nr) 2602 { 2603 struct page *page; 2604 struct folio *folio; 2605 int refs; 2606 2607 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2608 return 0; 2609 2610 if (pud_devmap(orig)) { 2611 if (unlikely(flags & FOLL_LONGTERM)) 2612 return 0; 2613 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2614 pages, nr); 2615 } 2616 2617 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2618 refs = record_subpages(page, addr, end, pages + *nr); 2619 2620 folio = try_grab_folio(page, refs, flags); 2621 if (!folio) 2622 return 0; 2623 2624 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2625 gup_put_folio(folio, refs, flags); 2626 return 0; 2627 } 2628 2629 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2630 gup_put_folio(folio, refs, flags); 2631 return 0; 2632 } 2633 2634 *nr += refs; 2635 folio_set_referenced(folio); 2636 return 1; 2637 } 2638 2639 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2640 unsigned long end, unsigned int flags, 2641 struct page **pages, int *nr) 2642 { 2643 int refs; 2644 struct page *page; 2645 struct folio *folio; 2646 2647 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2648 return 0; 2649 2650 BUILD_BUG_ON(pgd_devmap(orig)); 2651 2652 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2653 refs = record_subpages(page, addr, end, pages + *nr); 2654 2655 folio = try_grab_folio(page, refs, flags); 2656 if (!folio) 2657 return 0; 2658 2659 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2660 gup_put_folio(folio, refs, flags); 2661 return 0; 2662 } 2663 2664 *nr += refs; 2665 folio_set_referenced(folio); 2666 return 1; 2667 } 2668 2669 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2670 unsigned int flags, struct page **pages, int *nr) 2671 { 2672 unsigned long next; 2673 pmd_t *pmdp; 2674 2675 pmdp = pmd_offset_lockless(pudp, pud, addr); 2676 do { 2677 pmd_t pmd = READ_ONCE(*pmdp); 2678 2679 next = pmd_addr_end(addr, end); 2680 if (!pmd_present(pmd)) 2681 return 0; 2682 2683 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2684 pmd_devmap(pmd))) { 2685 /* 2686 * NUMA hinting faults need to be handled in the GUP 2687 * slowpath for accounting purposes and so that they 2688 * can be serialised against THP migration. 2689 */ 2690 if (pmd_protnone(pmd)) 2691 return 0; 2692 2693 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2694 pages, nr)) 2695 return 0; 2696 2697 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2698 /* 2699 * architecture have different format for hugetlbfs 2700 * pmd format and THP pmd format 2701 */ 2702 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2703 PMD_SHIFT, next, flags, pages, nr)) 2704 return 0; 2705 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2706 return 0; 2707 } while (pmdp++, addr = next, addr != end); 2708 2709 return 1; 2710 } 2711 2712 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2713 unsigned int flags, struct page **pages, int *nr) 2714 { 2715 unsigned long next; 2716 pud_t *pudp; 2717 2718 pudp = pud_offset_lockless(p4dp, p4d, addr); 2719 do { 2720 pud_t pud = READ_ONCE(*pudp); 2721 2722 next = pud_addr_end(addr, end); 2723 if (unlikely(!pud_present(pud))) 2724 return 0; 2725 if (unlikely(pud_huge(pud))) { 2726 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2727 pages, nr)) 2728 return 0; 2729 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2730 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2731 PUD_SHIFT, next, flags, pages, nr)) 2732 return 0; 2733 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2734 return 0; 2735 } while (pudp++, addr = next, addr != end); 2736 2737 return 1; 2738 } 2739 2740 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2741 unsigned int flags, struct page **pages, int *nr) 2742 { 2743 unsigned long next; 2744 p4d_t *p4dp; 2745 2746 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2747 do { 2748 p4d_t p4d = READ_ONCE(*p4dp); 2749 2750 next = p4d_addr_end(addr, end); 2751 if (p4d_none(p4d)) 2752 return 0; 2753 BUILD_BUG_ON(p4d_huge(p4d)); 2754 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2755 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2756 P4D_SHIFT, next, flags, pages, nr)) 2757 return 0; 2758 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2759 return 0; 2760 } while (p4dp++, addr = next, addr != end); 2761 2762 return 1; 2763 } 2764 2765 static void gup_pgd_range(unsigned long addr, unsigned long end, 2766 unsigned int flags, struct page **pages, int *nr) 2767 { 2768 unsigned long next; 2769 pgd_t *pgdp; 2770 2771 pgdp = pgd_offset(current->mm, addr); 2772 do { 2773 pgd_t pgd = READ_ONCE(*pgdp); 2774 2775 next = pgd_addr_end(addr, end); 2776 if (pgd_none(pgd)) 2777 return; 2778 if (unlikely(pgd_huge(pgd))) { 2779 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2780 pages, nr)) 2781 return; 2782 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2783 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2784 PGDIR_SHIFT, next, flags, pages, nr)) 2785 return; 2786 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2787 return; 2788 } while (pgdp++, addr = next, addr != end); 2789 } 2790 #else 2791 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2792 unsigned int flags, struct page **pages, int *nr) 2793 { 2794 } 2795 #endif /* CONFIG_HAVE_FAST_GUP */ 2796 2797 #ifndef gup_fast_permitted 2798 /* 2799 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2800 * we need to fall back to the slow version: 2801 */ 2802 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2803 { 2804 return true; 2805 } 2806 #endif 2807 2808 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2809 unsigned int gup_flags, struct page **pages) 2810 { 2811 int ret; 2812 2813 /* 2814 * FIXME: FOLL_LONGTERM does not work with 2815 * get_user_pages_unlocked() (see comments in that function) 2816 */ 2817 if (gup_flags & FOLL_LONGTERM) { 2818 mmap_read_lock(current->mm); 2819 ret = __gup_longterm_locked(current->mm, 2820 start, nr_pages, 2821 pages, NULL, gup_flags); 2822 mmap_read_unlock(current->mm); 2823 } else { 2824 ret = get_user_pages_unlocked(start, nr_pages, 2825 pages, gup_flags); 2826 } 2827 2828 return ret; 2829 } 2830 2831 static unsigned long lockless_pages_from_mm(unsigned long start, 2832 unsigned long end, 2833 unsigned int gup_flags, 2834 struct page **pages) 2835 { 2836 unsigned long flags; 2837 int nr_pinned = 0; 2838 unsigned seq; 2839 2840 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2841 !gup_fast_permitted(start, end)) 2842 return 0; 2843 2844 if (gup_flags & FOLL_PIN) { 2845 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2846 if (seq & 1) 2847 return 0; 2848 } 2849 2850 /* 2851 * Disable interrupts. The nested form is used, in order to allow full, 2852 * general purpose use of this routine. 2853 * 2854 * With interrupts disabled, we block page table pages from being freed 2855 * from under us. See struct mmu_table_batch comments in 2856 * include/asm-generic/tlb.h for more details. 2857 * 2858 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2859 * that come from THPs splitting. 2860 */ 2861 local_irq_save(flags); 2862 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2863 local_irq_restore(flags); 2864 2865 /* 2866 * When pinning pages for DMA there could be a concurrent write protect 2867 * from fork() via copy_page_range(), in this case always fail fast GUP. 2868 */ 2869 if (gup_flags & FOLL_PIN) { 2870 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2871 unpin_user_pages_lockless(pages, nr_pinned); 2872 return 0; 2873 } else { 2874 sanity_check_pinned_pages(pages, nr_pinned); 2875 } 2876 } 2877 return nr_pinned; 2878 } 2879 2880 static int internal_get_user_pages_fast(unsigned long start, 2881 unsigned long nr_pages, 2882 unsigned int gup_flags, 2883 struct page **pages) 2884 { 2885 unsigned long len, end; 2886 unsigned long nr_pinned; 2887 int ret; 2888 2889 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2890 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2891 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2892 return -EINVAL; 2893 2894 if (gup_flags & FOLL_PIN) 2895 mm_set_has_pinned_flag(¤t->mm->flags); 2896 2897 if (!(gup_flags & FOLL_FAST_ONLY)) 2898 might_lock_read(¤t->mm->mmap_lock); 2899 2900 start = untagged_addr(start) & PAGE_MASK; 2901 len = nr_pages << PAGE_SHIFT; 2902 if (check_add_overflow(start, len, &end)) 2903 return 0; 2904 if (unlikely(!access_ok((void __user *)start, len))) 2905 return -EFAULT; 2906 2907 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2908 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2909 return nr_pinned; 2910 2911 /* Slow path: try to get the remaining pages with get_user_pages */ 2912 start += nr_pinned << PAGE_SHIFT; 2913 pages += nr_pinned; 2914 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2915 pages); 2916 if (ret < 0) { 2917 /* 2918 * The caller has to unpin the pages we already pinned so 2919 * returning -errno is not an option 2920 */ 2921 if (nr_pinned) 2922 return nr_pinned; 2923 return ret; 2924 } 2925 return ret + nr_pinned; 2926 } 2927 2928 /** 2929 * get_user_pages_fast_only() - pin user pages in memory 2930 * @start: starting user address 2931 * @nr_pages: number of pages from start to pin 2932 * @gup_flags: flags modifying pin behaviour 2933 * @pages: array that receives pointers to the pages pinned. 2934 * Should be at least nr_pages long. 2935 * 2936 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2937 * the regular GUP. 2938 * Note a difference with get_user_pages_fast: this always returns the 2939 * number of pages pinned, 0 if no pages were pinned. 2940 * 2941 * If the architecture does not support this function, simply return with no 2942 * pages pinned. 2943 * 2944 * Careful, careful! COW breaking can go either way, so a non-write 2945 * access can get ambiguous page results. If you call this function without 2946 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2947 */ 2948 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2949 unsigned int gup_flags, struct page **pages) 2950 { 2951 int nr_pinned; 2952 /* 2953 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2954 * because gup fast is always a "pin with a +1 page refcount" request. 2955 * 2956 * FOLL_FAST_ONLY is required in order to match the API description of 2957 * this routine: no fall back to regular ("slow") GUP. 2958 */ 2959 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2960 2961 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2962 pages); 2963 2964 /* 2965 * As specified in the API description above, this routine is not 2966 * allowed to return negative values. However, the common core 2967 * routine internal_get_user_pages_fast() *can* return -errno. 2968 * Therefore, correct for that here: 2969 */ 2970 if (nr_pinned < 0) 2971 nr_pinned = 0; 2972 2973 return nr_pinned; 2974 } 2975 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2976 2977 /** 2978 * get_user_pages_fast() - pin user pages in memory 2979 * @start: starting user address 2980 * @nr_pages: number of pages from start to pin 2981 * @gup_flags: flags modifying pin behaviour 2982 * @pages: array that receives pointers to the pages pinned. 2983 * Should be at least nr_pages long. 2984 * 2985 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2986 * If not successful, it will fall back to taking the lock and 2987 * calling get_user_pages(). 2988 * 2989 * Returns number of pages pinned. This may be fewer than the number requested. 2990 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2991 * -errno. 2992 */ 2993 int get_user_pages_fast(unsigned long start, int nr_pages, 2994 unsigned int gup_flags, struct page **pages) 2995 { 2996 if (!is_valid_gup_flags(gup_flags)) 2997 return -EINVAL; 2998 2999 /* 3000 * The caller may or may not have explicitly set FOLL_GET; either way is 3001 * OK. However, internally (within mm/gup.c), gup fast variants must set 3002 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3003 * request. 3004 */ 3005 gup_flags |= FOLL_GET; 3006 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3007 } 3008 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3009 3010 /** 3011 * pin_user_pages_fast() - pin user pages in memory without taking locks 3012 * 3013 * @start: starting user address 3014 * @nr_pages: number of pages from start to pin 3015 * @gup_flags: flags modifying pin behaviour 3016 * @pages: array that receives pointers to the pages pinned. 3017 * Should be at least nr_pages long. 3018 * 3019 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3020 * get_user_pages_fast() for documentation on the function arguments, because 3021 * the arguments here are identical. 3022 * 3023 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3024 * see Documentation/core-api/pin_user_pages.rst for further details. 3025 */ 3026 int pin_user_pages_fast(unsigned long start, int nr_pages, 3027 unsigned int gup_flags, struct page **pages) 3028 { 3029 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3030 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3031 return -EINVAL; 3032 3033 if (WARN_ON_ONCE(!pages)) 3034 return -EINVAL; 3035 3036 gup_flags |= FOLL_PIN; 3037 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3038 } 3039 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3040 3041 /* 3042 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3043 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3044 * 3045 * The API rules are the same, too: no negative values may be returned. 3046 */ 3047 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3048 unsigned int gup_flags, struct page **pages) 3049 { 3050 int nr_pinned; 3051 3052 /* 3053 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3054 * rules require returning 0, rather than -errno: 3055 */ 3056 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3057 return 0; 3058 3059 if (WARN_ON_ONCE(!pages)) 3060 return 0; 3061 /* 3062 * FOLL_FAST_ONLY is required in order to match the API description of 3063 * this routine: no fall back to regular ("slow") GUP. 3064 */ 3065 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3066 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3067 pages); 3068 /* 3069 * This routine is not allowed to return negative values. However, 3070 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3071 * correct for that here: 3072 */ 3073 if (nr_pinned < 0) 3074 nr_pinned = 0; 3075 3076 return nr_pinned; 3077 } 3078 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3079 3080 /** 3081 * pin_user_pages_remote() - pin pages of a remote process 3082 * 3083 * @mm: mm_struct of target mm 3084 * @start: starting user address 3085 * @nr_pages: number of pages from start to pin 3086 * @gup_flags: flags modifying lookup behaviour 3087 * @pages: array that receives pointers to the pages pinned. 3088 * Should be at least nr_pages long. 3089 * @vmas: array of pointers to vmas corresponding to each page. 3090 * Or NULL if the caller does not require them. 3091 * @locked: pointer to lock flag indicating whether lock is held and 3092 * subsequently whether VM_FAULT_RETRY functionality can be 3093 * utilised. Lock must initially be held. 3094 * 3095 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3096 * get_user_pages_remote() for documentation on the function arguments, because 3097 * the arguments here are identical. 3098 * 3099 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3100 * see Documentation/core-api/pin_user_pages.rst for details. 3101 */ 3102 long pin_user_pages_remote(struct mm_struct *mm, 3103 unsigned long start, unsigned long nr_pages, 3104 unsigned int gup_flags, struct page **pages, 3105 struct vm_area_struct **vmas, int *locked) 3106 { 3107 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3108 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3109 return -EINVAL; 3110 3111 if (WARN_ON_ONCE(!pages)) 3112 return -EINVAL; 3113 3114 gup_flags |= FOLL_PIN; 3115 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3116 pages, vmas, locked); 3117 } 3118 EXPORT_SYMBOL(pin_user_pages_remote); 3119 3120 /** 3121 * pin_user_pages() - pin user pages in memory for use by other devices 3122 * 3123 * @start: starting user address 3124 * @nr_pages: number of pages from start to pin 3125 * @gup_flags: flags modifying lookup behaviour 3126 * @pages: array that receives pointers to the pages pinned. 3127 * Should be at least nr_pages long. 3128 * @vmas: array of pointers to vmas corresponding to each page. 3129 * Or NULL if the caller does not require them. 3130 * 3131 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3132 * FOLL_PIN is set. 3133 * 3134 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3135 * see Documentation/core-api/pin_user_pages.rst for details. 3136 */ 3137 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3138 unsigned int gup_flags, struct page **pages, 3139 struct vm_area_struct **vmas) 3140 { 3141 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3142 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3143 return -EINVAL; 3144 3145 if (WARN_ON_ONCE(!pages)) 3146 return -EINVAL; 3147 3148 gup_flags |= FOLL_PIN; 3149 return __gup_longterm_locked(current->mm, start, nr_pages, 3150 pages, vmas, gup_flags); 3151 } 3152 EXPORT_SYMBOL(pin_user_pages); 3153 3154 /* 3155 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3156 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3157 * FOLL_PIN and rejects FOLL_GET. 3158 */ 3159 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3160 struct page **pages, unsigned int gup_flags) 3161 { 3162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3163 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3164 return -EINVAL; 3165 3166 if (WARN_ON_ONCE(!pages)) 3167 return -EINVAL; 3168 3169 gup_flags |= FOLL_PIN; 3170 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3171 } 3172 EXPORT_SYMBOL(pin_user_pages_unlocked); 3173