1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (flags & FOLL_GET) 127 return try_get_folio(page, refs); 128 else if (flags & FOLL_PIN) { 129 struct folio *folio; 130 131 /* 132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 133 * right zone, so fail and let the caller fall back to the slow 134 * path. 135 */ 136 if (unlikely((flags & FOLL_LONGTERM) && 137 !is_longterm_pinnable_page(page))) 138 return NULL; 139 140 /* 141 * CAUTION: Don't use compound_head() on the page before this 142 * point, the result won't be stable. 143 */ 144 folio = try_get_folio(page, refs); 145 if (!folio) 146 return NULL; 147 148 /* 149 * When pinning a large folio, use an exact count to track it. 150 * 151 * However, be sure to *also* increment the normal folio 152 * refcount field at least once, so that the folio really 153 * is pinned. That's why the refcount from the earlier 154 * try_get_folio() is left intact. 155 */ 156 if (folio_test_large(folio)) 157 atomic_add(refs, folio_pincount_ptr(folio)); 158 else 159 folio_ref_add(folio, 160 refs * (GUP_PIN_COUNTING_BIAS - 1)); 161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 162 163 return folio; 164 } 165 166 WARN_ON_ONCE(1); 167 return NULL; 168 } 169 170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 171 { 172 if (flags & FOLL_PIN) { 173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 174 if (folio_test_large(folio)) 175 atomic_sub(refs, folio_pincount_ptr(folio)); 176 else 177 refs *= GUP_PIN_COUNTING_BIAS; 178 } 179 180 if (!put_devmap_managed_page_refs(&folio->page, refs)) 181 folio_put_refs(folio, refs); 182 } 183 184 /** 185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 186 * @page: pointer to page to be grabbed 187 * @flags: gup flags: these are the FOLL_* flag values. 188 * 189 * This might not do anything at all, depending on the flags argument. 190 * 191 * "grab" names in this file mean, "look at flags to decide whether to use 192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 193 * 194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 195 * time. Cases: please see the try_grab_folio() documentation, with 196 * "refs=1". 197 * 198 * Return: true for success, or if no action was required (if neither FOLL_PIN 199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 200 * FOLL_PIN was set, but the page could not be grabbed. 201 */ 202 bool __must_check try_grab_page(struct page *page, unsigned int flags) 203 { 204 struct folio *folio = page_folio(page); 205 206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 208 return false; 209 210 if (flags & FOLL_GET) 211 folio_ref_inc(folio); 212 else if (flags & FOLL_PIN) { 213 /* 214 * Similar to try_grab_folio(): be sure to *also* 215 * increment the normal page refcount field at least once, 216 * so that the page really is pinned. 217 */ 218 if (folio_test_large(folio)) { 219 folio_ref_add(folio, 1); 220 atomic_add(1, folio_pincount_ptr(folio)); 221 } else { 222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 223 } 224 225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 226 } 227 228 return true; 229 } 230 231 /** 232 * unpin_user_page() - release a dma-pinned page 233 * @page: pointer to page to be released 234 * 235 * Pages that were pinned via pin_user_pages*() must be released via either 236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 237 * that such pages can be separately tracked and uniquely handled. In 238 * particular, interactions with RDMA and filesystems need special handling. 239 */ 240 void unpin_user_page(struct page *page) 241 { 242 sanity_check_pinned_pages(&page, 1); 243 gup_put_folio(page_folio(page), 1, FOLL_PIN); 244 } 245 EXPORT_SYMBOL(unpin_user_page); 246 247 static inline struct folio *gup_folio_range_next(struct page *start, 248 unsigned long npages, unsigned long i, unsigned int *ntails) 249 { 250 struct page *next = nth_page(start, i); 251 struct folio *folio = page_folio(next); 252 unsigned int nr = 1; 253 254 if (folio_test_large(folio)) 255 nr = min_t(unsigned int, npages - i, 256 folio_nr_pages(folio) - folio_page_idx(folio, next)); 257 258 *ntails = nr; 259 return folio; 260 } 261 262 static inline struct folio *gup_folio_next(struct page **list, 263 unsigned long npages, unsigned long i, unsigned int *ntails) 264 { 265 struct folio *folio = page_folio(list[i]); 266 unsigned int nr; 267 268 for (nr = i + 1; nr < npages; nr++) { 269 if (page_folio(list[nr]) != folio) 270 break; 271 } 272 273 *ntails = nr - i; 274 return folio; 275 } 276 277 /** 278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 279 * @pages: array of pages to be maybe marked dirty, and definitely released. 280 * @npages: number of pages in the @pages array. 281 * @make_dirty: whether to mark the pages dirty 282 * 283 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 284 * variants called on that page. 285 * 286 * For each page in the @pages array, make that page (or its head page, if a 287 * compound page) dirty, if @make_dirty is true, and if the page was previously 288 * listed as clean. In any case, releases all pages using unpin_user_page(), 289 * possibly via unpin_user_pages(), for the non-dirty case. 290 * 291 * Please see the unpin_user_page() documentation for details. 292 * 293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 294 * required, then the caller should a) verify that this is really correct, 295 * because _lock() is usually required, and b) hand code it: 296 * set_page_dirty_lock(), unpin_user_page(). 297 * 298 */ 299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 300 bool make_dirty) 301 { 302 unsigned long i; 303 struct folio *folio; 304 unsigned int nr; 305 306 if (!make_dirty) { 307 unpin_user_pages(pages, npages); 308 return; 309 } 310 311 sanity_check_pinned_pages(pages, npages); 312 for (i = 0; i < npages; i += nr) { 313 folio = gup_folio_next(pages, npages, i, &nr); 314 /* 315 * Checking PageDirty at this point may race with 316 * clear_page_dirty_for_io(), but that's OK. Two key 317 * cases: 318 * 319 * 1) This code sees the page as already dirty, so it 320 * skips the call to set_page_dirty(). That could happen 321 * because clear_page_dirty_for_io() called 322 * page_mkclean(), followed by set_page_dirty(). 323 * However, now the page is going to get written back, 324 * which meets the original intention of setting it 325 * dirty, so all is well: clear_page_dirty_for_io() goes 326 * on to call TestClearPageDirty(), and write the page 327 * back. 328 * 329 * 2) This code sees the page as clean, so it calls 330 * set_page_dirty(). The page stays dirty, despite being 331 * written back, so it gets written back again in the 332 * next writeback cycle. This is harmless. 333 */ 334 if (!folio_test_dirty(folio)) { 335 folio_lock(folio); 336 folio_mark_dirty(folio); 337 folio_unlock(folio); 338 } 339 gup_put_folio(folio, nr, FOLL_PIN); 340 } 341 } 342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 343 344 /** 345 * unpin_user_page_range_dirty_lock() - release and optionally dirty 346 * gup-pinned page range 347 * 348 * @page: the starting page of a range maybe marked dirty, and definitely released. 349 * @npages: number of consecutive pages to release. 350 * @make_dirty: whether to mark the pages dirty 351 * 352 * "gup-pinned page range" refers to a range of pages that has had one of the 353 * pin_user_pages() variants called on that page. 354 * 355 * For the page ranges defined by [page .. page+npages], make that range (or 356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 357 * page range was previously listed as clean. 358 * 359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 360 * required, then the caller should a) verify that this is really correct, 361 * because _lock() is usually required, and b) hand code it: 362 * set_page_dirty_lock(), unpin_user_page(). 363 * 364 */ 365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 366 bool make_dirty) 367 { 368 unsigned long i; 369 struct folio *folio; 370 unsigned int nr; 371 372 for (i = 0; i < npages; i += nr) { 373 folio = gup_folio_range_next(page, npages, i, &nr); 374 if (make_dirty && !folio_test_dirty(folio)) { 375 folio_lock(folio); 376 folio_mark_dirty(folio); 377 folio_unlock(folio); 378 } 379 gup_put_folio(folio, nr, FOLL_PIN); 380 } 381 } 382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 383 384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 385 { 386 unsigned long i; 387 struct folio *folio; 388 unsigned int nr; 389 390 /* 391 * Don't perform any sanity checks because we might have raced with 392 * fork() and some anonymous pages might now actually be shared -- 393 * which is why we're unpinning after all. 394 */ 395 for (i = 0; i < npages; i += nr) { 396 folio = gup_folio_next(pages, npages, i, &nr); 397 gup_put_folio(folio, nr, FOLL_PIN); 398 } 399 } 400 401 /** 402 * unpin_user_pages() - release an array of gup-pinned pages. 403 * @pages: array of pages to be marked dirty and released. 404 * @npages: number of pages in the @pages array. 405 * 406 * For each page in the @pages array, release the page using unpin_user_page(). 407 * 408 * Please see the unpin_user_page() documentation for details. 409 */ 410 void unpin_user_pages(struct page **pages, unsigned long npages) 411 { 412 unsigned long i; 413 struct folio *folio; 414 unsigned int nr; 415 416 /* 417 * If this WARN_ON() fires, then the system *might* be leaking pages (by 418 * leaving them pinned), but probably not. More likely, gup/pup returned 419 * a hard -ERRNO error to the caller, who erroneously passed it here. 420 */ 421 if (WARN_ON(IS_ERR_VALUE(npages))) 422 return; 423 424 sanity_check_pinned_pages(pages, npages); 425 for (i = 0; i < npages; i += nr) { 426 folio = gup_folio_next(pages, npages, i, &nr); 427 gup_put_folio(folio, nr, FOLL_PIN); 428 } 429 } 430 EXPORT_SYMBOL(unpin_user_pages); 431 432 /* 433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 435 * cache bouncing on large SMP machines for concurrent pinned gups. 436 */ 437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 438 { 439 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 440 set_bit(MMF_HAS_PINNED, mm_flags); 441 } 442 443 #ifdef CONFIG_MMU 444 static struct page *no_page_table(struct vm_area_struct *vma, 445 unsigned int flags) 446 { 447 /* 448 * When core dumping an enormous anonymous area that nobody 449 * has touched so far, we don't want to allocate unnecessary pages or 450 * page tables. Return error instead of NULL to skip handle_mm_fault, 451 * then get_dump_page() will return NULL to leave a hole in the dump. 452 * But we can only make this optimization where a hole would surely 453 * be zero-filled if handle_mm_fault() actually did handle it. 454 */ 455 if ((flags & FOLL_DUMP) && 456 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 457 return ERR_PTR(-EFAULT); 458 return NULL; 459 } 460 461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 462 pte_t *pte, unsigned int flags) 463 { 464 if (flags & FOLL_TOUCH) { 465 pte_t entry = *pte; 466 467 if (flags & FOLL_WRITE) 468 entry = pte_mkdirty(entry); 469 entry = pte_mkyoung(entry); 470 471 if (!pte_same(*pte, entry)) { 472 set_pte_at(vma->vm_mm, address, pte, entry); 473 update_mmu_cache(vma, address, pte); 474 } 475 } 476 477 /* Proper page table entry exists, but no corresponding struct page */ 478 return -EEXIST; 479 } 480 481 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 482 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 483 struct vm_area_struct *vma, 484 unsigned int flags) 485 { 486 /* If the pte is writable, we can write to the page. */ 487 if (pte_write(pte)) 488 return true; 489 490 /* Maybe FOLL_FORCE is set to override it? */ 491 if (!(flags & FOLL_FORCE)) 492 return false; 493 494 /* But FOLL_FORCE has no effect on shared mappings */ 495 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 496 return false; 497 498 /* ... or read-only private ones */ 499 if (!(vma->vm_flags & VM_MAYWRITE)) 500 return false; 501 502 /* ... or already writable ones that just need to take a write fault */ 503 if (vma->vm_flags & VM_WRITE) 504 return false; 505 506 /* 507 * See can_change_pte_writable(): we broke COW and could map the page 508 * writable if we have an exclusive anonymous page ... 509 */ 510 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 511 return false; 512 513 /* ... and a write-fault isn't required for other reasons. */ 514 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 515 return false; 516 return !userfaultfd_pte_wp(vma, pte); 517 } 518 519 static struct page *follow_page_pte(struct vm_area_struct *vma, 520 unsigned long address, pmd_t *pmd, unsigned int flags, 521 struct dev_pagemap **pgmap) 522 { 523 struct mm_struct *mm = vma->vm_mm; 524 struct page *page; 525 spinlock_t *ptl; 526 pte_t *ptep, pte; 527 int ret; 528 529 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 530 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 531 (FOLL_PIN | FOLL_GET))) 532 return ERR_PTR(-EINVAL); 533 retry: 534 if (unlikely(pmd_bad(*pmd))) 535 return no_page_table(vma, flags); 536 537 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 538 pte = *ptep; 539 if (!pte_present(pte)) { 540 swp_entry_t entry; 541 /* 542 * KSM's break_ksm() relies upon recognizing a ksm page 543 * even while it is being migrated, so for that case we 544 * need migration_entry_wait(). 545 */ 546 if (likely(!(flags & FOLL_MIGRATION))) 547 goto no_page; 548 if (pte_none(pte)) 549 goto no_page; 550 entry = pte_to_swp_entry(pte); 551 if (!is_migration_entry(entry)) 552 goto no_page; 553 pte_unmap_unlock(ptep, ptl); 554 migration_entry_wait(mm, pmd, address); 555 goto retry; 556 } 557 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 558 goto no_page; 559 560 page = vm_normal_page(vma, address, pte); 561 562 /* 563 * We only care about anon pages in can_follow_write_pte() and don't 564 * have to worry about pte_devmap() because they are never anon. 565 */ 566 if ((flags & FOLL_WRITE) && 567 !can_follow_write_pte(pte, page, vma, flags)) { 568 page = NULL; 569 goto out; 570 } 571 572 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 573 /* 574 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 575 * case since they are only valid while holding the pgmap 576 * reference. 577 */ 578 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 579 if (*pgmap) 580 page = pte_page(pte); 581 else 582 goto no_page; 583 } else if (unlikely(!page)) { 584 if (flags & FOLL_DUMP) { 585 /* Avoid special (like zero) pages in core dumps */ 586 page = ERR_PTR(-EFAULT); 587 goto out; 588 } 589 590 if (is_zero_pfn(pte_pfn(pte))) { 591 page = pte_page(pte); 592 } else { 593 ret = follow_pfn_pte(vma, address, ptep, flags); 594 page = ERR_PTR(ret); 595 goto out; 596 } 597 } 598 599 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 600 page = ERR_PTR(-EMLINK); 601 goto out; 602 } 603 604 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 605 !PageAnonExclusive(page), page); 606 607 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 608 if (unlikely(!try_grab_page(page, flags))) { 609 page = ERR_PTR(-ENOMEM); 610 goto out; 611 } 612 /* 613 * We need to make the page accessible if and only if we are going 614 * to access its content (the FOLL_PIN case). Please see 615 * Documentation/core-api/pin_user_pages.rst for details. 616 */ 617 if (flags & FOLL_PIN) { 618 ret = arch_make_page_accessible(page); 619 if (ret) { 620 unpin_user_page(page); 621 page = ERR_PTR(ret); 622 goto out; 623 } 624 } 625 if (flags & FOLL_TOUCH) { 626 if ((flags & FOLL_WRITE) && 627 !pte_dirty(pte) && !PageDirty(page)) 628 set_page_dirty(page); 629 /* 630 * pte_mkyoung() would be more correct here, but atomic care 631 * is needed to avoid losing the dirty bit: it is easier to use 632 * mark_page_accessed(). 633 */ 634 mark_page_accessed(page); 635 } 636 out: 637 pte_unmap_unlock(ptep, ptl); 638 return page; 639 no_page: 640 pte_unmap_unlock(ptep, ptl); 641 if (!pte_none(pte)) 642 return NULL; 643 return no_page_table(vma, flags); 644 } 645 646 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 647 unsigned long address, pud_t *pudp, 648 unsigned int flags, 649 struct follow_page_context *ctx) 650 { 651 pmd_t *pmd, pmdval; 652 spinlock_t *ptl; 653 struct page *page; 654 struct mm_struct *mm = vma->vm_mm; 655 656 pmd = pmd_offset(pudp, address); 657 /* 658 * The READ_ONCE() will stabilize the pmdval in a register or 659 * on the stack so that it will stop changing under the code. 660 */ 661 pmdval = READ_ONCE(*pmd); 662 if (pmd_none(pmdval)) 663 return no_page_table(vma, flags); 664 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 665 page = follow_huge_pmd(mm, address, pmd, flags); 666 if (page) 667 return page; 668 return no_page_table(vma, flags); 669 } 670 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 671 page = follow_huge_pd(vma, address, 672 __hugepd(pmd_val(pmdval)), flags, 673 PMD_SHIFT); 674 if (page) 675 return page; 676 return no_page_table(vma, flags); 677 } 678 retry: 679 if (!pmd_present(pmdval)) { 680 /* 681 * Should never reach here, if thp migration is not supported; 682 * Otherwise, it must be a thp migration entry. 683 */ 684 VM_BUG_ON(!thp_migration_supported() || 685 !is_pmd_migration_entry(pmdval)); 686 687 if (likely(!(flags & FOLL_MIGRATION))) 688 return no_page_table(vma, flags); 689 690 pmd_migration_entry_wait(mm, pmd); 691 pmdval = READ_ONCE(*pmd); 692 /* 693 * MADV_DONTNEED may convert the pmd to null because 694 * mmap_lock is held in read mode 695 */ 696 if (pmd_none(pmdval)) 697 return no_page_table(vma, flags); 698 goto retry; 699 } 700 if (pmd_devmap(pmdval)) { 701 ptl = pmd_lock(mm, pmd); 702 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 703 spin_unlock(ptl); 704 if (page) 705 return page; 706 } 707 if (likely(!pmd_trans_huge(pmdval))) 708 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 709 710 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 711 return no_page_table(vma, flags); 712 713 retry_locked: 714 ptl = pmd_lock(mm, pmd); 715 if (unlikely(pmd_none(*pmd))) { 716 spin_unlock(ptl); 717 return no_page_table(vma, flags); 718 } 719 if (unlikely(!pmd_present(*pmd))) { 720 spin_unlock(ptl); 721 if (likely(!(flags & FOLL_MIGRATION))) 722 return no_page_table(vma, flags); 723 pmd_migration_entry_wait(mm, pmd); 724 goto retry_locked; 725 } 726 if (unlikely(!pmd_trans_huge(*pmd))) { 727 spin_unlock(ptl); 728 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 729 } 730 if (flags & FOLL_SPLIT_PMD) { 731 int ret; 732 page = pmd_page(*pmd); 733 if (is_huge_zero_page(page)) { 734 spin_unlock(ptl); 735 ret = 0; 736 split_huge_pmd(vma, pmd, address); 737 if (pmd_trans_unstable(pmd)) 738 ret = -EBUSY; 739 } else { 740 spin_unlock(ptl); 741 split_huge_pmd(vma, pmd, address); 742 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 743 } 744 745 return ret ? ERR_PTR(ret) : 746 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 747 } 748 page = follow_trans_huge_pmd(vma, address, pmd, flags); 749 spin_unlock(ptl); 750 ctx->page_mask = HPAGE_PMD_NR - 1; 751 return page; 752 } 753 754 static struct page *follow_pud_mask(struct vm_area_struct *vma, 755 unsigned long address, p4d_t *p4dp, 756 unsigned int flags, 757 struct follow_page_context *ctx) 758 { 759 pud_t *pud; 760 spinlock_t *ptl; 761 struct page *page; 762 struct mm_struct *mm = vma->vm_mm; 763 764 pud = pud_offset(p4dp, address); 765 if (pud_none(*pud)) 766 return no_page_table(vma, flags); 767 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 768 page = follow_huge_pud(mm, address, pud, flags); 769 if (page) 770 return page; 771 return no_page_table(vma, flags); 772 } 773 if (is_hugepd(__hugepd(pud_val(*pud)))) { 774 page = follow_huge_pd(vma, address, 775 __hugepd(pud_val(*pud)), flags, 776 PUD_SHIFT); 777 if (page) 778 return page; 779 return no_page_table(vma, flags); 780 } 781 if (pud_devmap(*pud)) { 782 ptl = pud_lock(mm, pud); 783 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 784 spin_unlock(ptl); 785 if (page) 786 return page; 787 } 788 if (unlikely(pud_bad(*pud))) 789 return no_page_table(vma, flags); 790 791 return follow_pmd_mask(vma, address, pud, flags, ctx); 792 } 793 794 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 795 unsigned long address, pgd_t *pgdp, 796 unsigned int flags, 797 struct follow_page_context *ctx) 798 { 799 p4d_t *p4d; 800 struct page *page; 801 802 p4d = p4d_offset(pgdp, address); 803 if (p4d_none(*p4d)) 804 return no_page_table(vma, flags); 805 BUILD_BUG_ON(p4d_huge(*p4d)); 806 if (unlikely(p4d_bad(*p4d))) 807 return no_page_table(vma, flags); 808 809 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 810 page = follow_huge_pd(vma, address, 811 __hugepd(p4d_val(*p4d)), flags, 812 P4D_SHIFT); 813 if (page) 814 return page; 815 return no_page_table(vma, flags); 816 } 817 return follow_pud_mask(vma, address, p4d, flags, ctx); 818 } 819 820 /** 821 * follow_page_mask - look up a page descriptor from a user-virtual address 822 * @vma: vm_area_struct mapping @address 823 * @address: virtual address to look up 824 * @flags: flags modifying lookup behaviour 825 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 826 * pointer to output page_mask 827 * 828 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 829 * 830 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 831 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 832 * 833 * When getting an anonymous page and the caller has to trigger unsharing 834 * of a shared anonymous page first, -EMLINK is returned. The caller should 835 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 836 * relevant with FOLL_PIN and !FOLL_WRITE. 837 * 838 * On output, the @ctx->page_mask is set according to the size of the page. 839 * 840 * Return: the mapped (struct page *), %NULL if no mapping exists, or 841 * an error pointer if there is a mapping to something not represented 842 * by a page descriptor (see also vm_normal_page()). 843 */ 844 static struct page *follow_page_mask(struct vm_area_struct *vma, 845 unsigned long address, unsigned int flags, 846 struct follow_page_context *ctx) 847 { 848 pgd_t *pgd; 849 struct page *page; 850 struct mm_struct *mm = vma->vm_mm; 851 852 ctx->page_mask = 0; 853 854 /* make this handle hugepd */ 855 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 856 if (!IS_ERR(page)) { 857 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 858 return page; 859 } 860 861 pgd = pgd_offset(mm, address); 862 863 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 864 return no_page_table(vma, flags); 865 866 if (pgd_huge(*pgd)) { 867 page = follow_huge_pgd(mm, address, pgd, flags); 868 if (page) 869 return page; 870 return no_page_table(vma, flags); 871 } 872 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 873 page = follow_huge_pd(vma, address, 874 __hugepd(pgd_val(*pgd)), flags, 875 PGDIR_SHIFT); 876 if (page) 877 return page; 878 return no_page_table(vma, flags); 879 } 880 881 return follow_p4d_mask(vma, address, pgd, flags, ctx); 882 } 883 884 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 885 unsigned int foll_flags) 886 { 887 struct follow_page_context ctx = { NULL }; 888 struct page *page; 889 890 if (vma_is_secretmem(vma)) 891 return NULL; 892 893 if (foll_flags & FOLL_PIN) 894 return NULL; 895 896 page = follow_page_mask(vma, address, foll_flags, &ctx); 897 if (ctx.pgmap) 898 put_dev_pagemap(ctx.pgmap); 899 return page; 900 } 901 902 static int get_gate_page(struct mm_struct *mm, unsigned long address, 903 unsigned int gup_flags, struct vm_area_struct **vma, 904 struct page **page) 905 { 906 pgd_t *pgd; 907 p4d_t *p4d; 908 pud_t *pud; 909 pmd_t *pmd; 910 pte_t *pte; 911 int ret = -EFAULT; 912 913 /* user gate pages are read-only */ 914 if (gup_flags & FOLL_WRITE) 915 return -EFAULT; 916 if (address > TASK_SIZE) 917 pgd = pgd_offset_k(address); 918 else 919 pgd = pgd_offset_gate(mm, address); 920 if (pgd_none(*pgd)) 921 return -EFAULT; 922 p4d = p4d_offset(pgd, address); 923 if (p4d_none(*p4d)) 924 return -EFAULT; 925 pud = pud_offset(p4d, address); 926 if (pud_none(*pud)) 927 return -EFAULT; 928 pmd = pmd_offset(pud, address); 929 if (!pmd_present(*pmd)) 930 return -EFAULT; 931 VM_BUG_ON(pmd_trans_huge(*pmd)); 932 pte = pte_offset_map(pmd, address); 933 if (pte_none(*pte)) 934 goto unmap; 935 *vma = get_gate_vma(mm); 936 if (!page) 937 goto out; 938 *page = vm_normal_page(*vma, address, *pte); 939 if (!*page) { 940 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 941 goto unmap; 942 *page = pte_page(*pte); 943 } 944 if (unlikely(!try_grab_page(*page, gup_flags))) { 945 ret = -ENOMEM; 946 goto unmap; 947 } 948 out: 949 ret = 0; 950 unmap: 951 pte_unmap(pte); 952 return ret; 953 } 954 955 /* 956 * mmap_lock must be held on entry. If @locked != NULL and *@flags 957 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 958 * is, *@locked will be set to 0 and -EBUSY returned. 959 */ 960 static int faultin_page(struct vm_area_struct *vma, 961 unsigned long address, unsigned int *flags, bool unshare, 962 int *locked) 963 { 964 unsigned int fault_flags = 0; 965 vm_fault_t ret; 966 967 if (*flags & FOLL_NOFAULT) 968 return -EFAULT; 969 if (*flags & FOLL_WRITE) 970 fault_flags |= FAULT_FLAG_WRITE; 971 if (*flags & FOLL_REMOTE) 972 fault_flags |= FAULT_FLAG_REMOTE; 973 if (locked) 974 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 975 if (*flags & FOLL_NOWAIT) 976 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 977 if (*flags & FOLL_TRIED) { 978 /* 979 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 980 * can co-exist 981 */ 982 fault_flags |= FAULT_FLAG_TRIED; 983 } 984 if (unshare) { 985 fault_flags |= FAULT_FLAG_UNSHARE; 986 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 987 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 988 } 989 990 ret = handle_mm_fault(vma, address, fault_flags, NULL); 991 992 if (ret & VM_FAULT_COMPLETED) { 993 /* 994 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 995 * mmap lock in the page fault handler. Sanity check this. 996 */ 997 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 998 if (locked) 999 *locked = 0; 1000 /* 1001 * We should do the same as VM_FAULT_RETRY, but let's not 1002 * return -EBUSY since that's not reflecting the reality of 1003 * what has happened - we've just fully completed a page 1004 * fault, with the mmap lock released. Use -EAGAIN to show 1005 * that we want to take the mmap lock _again_. 1006 */ 1007 return -EAGAIN; 1008 } 1009 1010 if (ret & VM_FAULT_ERROR) { 1011 int err = vm_fault_to_errno(ret, *flags); 1012 1013 if (err) 1014 return err; 1015 BUG(); 1016 } 1017 1018 if (ret & VM_FAULT_RETRY) { 1019 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1020 *locked = 0; 1021 return -EBUSY; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1028 { 1029 vm_flags_t vm_flags = vma->vm_flags; 1030 int write = (gup_flags & FOLL_WRITE); 1031 int foreign = (gup_flags & FOLL_REMOTE); 1032 1033 if (vm_flags & (VM_IO | VM_PFNMAP)) 1034 return -EFAULT; 1035 1036 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 1037 return -EFAULT; 1038 1039 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1040 return -EOPNOTSUPP; 1041 1042 if (vma_is_secretmem(vma)) 1043 return -EFAULT; 1044 1045 if (write) { 1046 if (!(vm_flags & VM_WRITE)) { 1047 if (!(gup_flags & FOLL_FORCE)) 1048 return -EFAULT; 1049 /* 1050 * We used to let the write,force case do COW in a 1051 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1052 * set a breakpoint in a read-only mapping of an 1053 * executable, without corrupting the file (yet only 1054 * when that file had been opened for writing!). 1055 * Anon pages in shared mappings are surprising: now 1056 * just reject it. 1057 */ 1058 if (!is_cow_mapping(vm_flags)) 1059 return -EFAULT; 1060 } 1061 } else if (!(vm_flags & VM_READ)) { 1062 if (!(gup_flags & FOLL_FORCE)) 1063 return -EFAULT; 1064 /* 1065 * Is there actually any vma we can reach here which does not 1066 * have VM_MAYREAD set? 1067 */ 1068 if (!(vm_flags & VM_MAYREAD)) 1069 return -EFAULT; 1070 } 1071 /* 1072 * gups are always data accesses, not instruction 1073 * fetches, so execute=false here 1074 */ 1075 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1076 return -EFAULT; 1077 return 0; 1078 } 1079 1080 /** 1081 * __get_user_pages() - pin user pages in memory 1082 * @mm: mm_struct of target mm 1083 * @start: starting user address 1084 * @nr_pages: number of pages from start to pin 1085 * @gup_flags: flags modifying pin behaviour 1086 * @pages: array that receives pointers to the pages pinned. 1087 * Should be at least nr_pages long. Or NULL, if caller 1088 * only intends to ensure the pages are faulted in. 1089 * @vmas: array of pointers to vmas corresponding to each page. 1090 * Or NULL if the caller does not require them. 1091 * @locked: whether we're still with the mmap_lock held 1092 * 1093 * Returns either number of pages pinned (which may be less than the 1094 * number requested), or an error. Details about the return value: 1095 * 1096 * -- If nr_pages is 0, returns 0. 1097 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1098 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1099 * pages pinned. Again, this may be less than nr_pages. 1100 * -- 0 return value is possible when the fault would need to be retried. 1101 * 1102 * The caller is responsible for releasing returned @pages, via put_page(). 1103 * 1104 * @vmas are valid only as long as mmap_lock is held. 1105 * 1106 * Must be called with mmap_lock held. It may be released. See below. 1107 * 1108 * __get_user_pages walks a process's page tables and takes a reference to 1109 * each struct page that each user address corresponds to at a given 1110 * instant. That is, it takes the page that would be accessed if a user 1111 * thread accesses the given user virtual address at that instant. 1112 * 1113 * This does not guarantee that the page exists in the user mappings when 1114 * __get_user_pages returns, and there may even be a completely different 1115 * page there in some cases (eg. if mmapped pagecache has been invalidated 1116 * and subsequently re faulted). However it does guarantee that the page 1117 * won't be freed completely. And mostly callers simply care that the page 1118 * contains data that was valid *at some point in time*. Typically, an IO 1119 * or similar operation cannot guarantee anything stronger anyway because 1120 * locks can't be held over the syscall boundary. 1121 * 1122 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1123 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1124 * appropriate) must be called after the page is finished with, and 1125 * before put_page is called. 1126 * 1127 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1128 * released by an up_read(). That can happen if @gup_flags does not 1129 * have FOLL_NOWAIT. 1130 * 1131 * A caller using such a combination of @locked and @gup_flags 1132 * must therefore hold the mmap_lock for reading only, and recognize 1133 * when it's been released. Otherwise, it must be held for either 1134 * reading or writing and will not be released. 1135 * 1136 * In most cases, get_user_pages or get_user_pages_fast should be used 1137 * instead of __get_user_pages. __get_user_pages should be used only if 1138 * you need some special @gup_flags. 1139 */ 1140 static long __get_user_pages(struct mm_struct *mm, 1141 unsigned long start, unsigned long nr_pages, 1142 unsigned int gup_flags, struct page **pages, 1143 struct vm_area_struct **vmas, int *locked) 1144 { 1145 long ret = 0, i = 0; 1146 struct vm_area_struct *vma = NULL; 1147 struct follow_page_context ctx = { NULL }; 1148 1149 if (!nr_pages) 1150 return 0; 1151 1152 start = untagged_addr(start); 1153 1154 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1155 1156 /* 1157 * If FOLL_FORCE is set then do not force a full fault as the hinting 1158 * fault information is unrelated to the reference behaviour of a task 1159 * using the address space 1160 */ 1161 if (!(gup_flags & FOLL_FORCE)) 1162 gup_flags |= FOLL_NUMA; 1163 1164 do { 1165 struct page *page; 1166 unsigned int foll_flags = gup_flags; 1167 unsigned int page_increm; 1168 1169 /* first iteration or cross vma bound */ 1170 if (!vma || start >= vma->vm_end) { 1171 vma = find_extend_vma(mm, start); 1172 if (!vma && in_gate_area(mm, start)) { 1173 ret = get_gate_page(mm, start & PAGE_MASK, 1174 gup_flags, &vma, 1175 pages ? &pages[i] : NULL); 1176 if (ret) 1177 goto out; 1178 ctx.page_mask = 0; 1179 goto next_page; 1180 } 1181 1182 if (!vma) { 1183 ret = -EFAULT; 1184 goto out; 1185 } 1186 ret = check_vma_flags(vma, gup_flags); 1187 if (ret) 1188 goto out; 1189 1190 if (is_vm_hugetlb_page(vma)) { 1191 i = follow_hugetlb_page(mm, vma, pages, vmas, 1192 &start, &nr_pages, i, 1193 gup_flags, locked); 1194 if (locked && *locked == 0) { 1195 /* 1196 * We've got a VM_FAULT_RETRY 1197 * and we've lost mmap_lock. 1198 * We must stop here. 1199 */ 1200 BUG_ON(gup_flags & FOLL_NOWAIT); 1201 goto out; 1202 } 1203 continue; 1204 } 1205 } 1206 retry: 1207 /* 1208 * If we have a pending SIGKILL, don't keep faulting pages and 1209 * potentially allocating memory. 1210 */ 1211 if (fatal_signal_pending(current)) { 1212 ret = -EINTR; 1213 goto out; 1214 } 1215 cond_resched(); 1216 1217 page = follow_page_mask(vma, start, foll_flags, &ctx); 1218 if (!page || PTR_ERR(page) == -EMLINK) { 1219 ret = faultin_page(vma, start, &foll_flags, 1220 PTR_ERR(page) == -EMLINK, locked); 1221 switch (ret) { 1222 case 0: 1223 goto retry; 1224 case -EBUSY: 1225 case -EAGAIN: 1226 ret = 0; 1227 fallthrough; 1228 case -EFAULT: 1229 case -ENOMEM: 1230 case -EHWPOISON: 1231 goto out; 1232 } 1233 BUG(); 1234 } else if (PTR_ERR(page) == -EEXIST) { 1235 /* 1236 * Proper page table entry exists, but no corresponding 1237 * struct page. If the caller expects **pages to be 1238 * filled in, bail out now, because that can't be done 1239 * for this page. 1240 */ 1241 if (pages) { 1242 ret = PTR_ERR(page); 1243 goto out; 1244 } 1245 1246 goto next_page; 1247 } else if (IS_ERR(page)) { 1248 ret = PTR_ERR(page); 1249 goto out; 1250 } 1251 if (pages) { 1252 pages[i] = page; 1253 flush_anon_page(vma, page, start); 1254 flush_dcache_page(page); 1255 ctx.page_mask = 0; 1256 } 1257 next_page: 1258 if (vmas) { 1259 vmas[i] = vma; 1260 ctx.page_mask = 0; 1261 } 1262 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1263 if (page_increm > nr_pages) 1264 page_increm = nr_pages; 1265 i += page_increm; 1266 start += page_increm * PAGE_SIZE; 1267 nr_pages -= page_increm; 1268 } while (nr_pages); 1269 out: 1270 if (ctx.pgmap) 1271 put_dev_pagemap(ctx.pgmap); 1272 return i ? i : ret; 1273 } 1274 1275 static bool vma_permits_fault(struct vm_area_struct *vma, 1276 unsigned int fault_flags) 1277 { 1278 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1279 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1280 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1281 1282 if (!(vm_flags & vma->vm_flags)) 1283 return false; 1284 1285 /* 1286 * The architecture might have a hardware protection 1287 * mechanism other than read/write that can deny access. 1288 * 1289 * gup always represents data access, not instruction 1290 * fetches, so execute=false here: 1291 */ 1292 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1293 return false; 1294 1295 return true; 1296 } 1297 1298 /** 1299 * fixup_user_fault() - manually resolve a user page fault 1300 * @mm: mm_struct of target mm 1301 * @address: user address 1302 * @fault_flags:flags to pass down to handle_mm_fault() 1303 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1304 * does not allow retry. If NULL, the caller must guarantee 1305 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1306 * 1307 * This is meant to be called in the specific scenario where for locking reasons 1308 * we try to access user memory in atomic context (within a pagefault_disable() 1309 * section), this returns -EFAULT, and we want to resolve the user fault before 1310 * trying again. 1311 * 1312 * Typically this is meant to be used by the futex code. 1313 * 1314 * The main difference with get_user_pages() is that this function will 1315 * unconditionally call handle_mm_fault() which will in turn perform all the 1316 * necessary SW fixup of the dirty and young bits in the PTE, while 1317 * get_user_pages() only guarantees to update these in the struct page. 1318 * 1319 * This is important for some architectures where those bits also gate the 1320 * access permission to the page because they are maintained in software. On 1321 * such architectures, gup() will not be enough to make a subsequent access 1322 * succeed. 1323 * 1324 * This function will not return with an unlocked mmap_lock. So it has not the 1325 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1326 */ 1327 int fixup_user_fault(struct mm_struct *mm, 1328 unsigned long address, unsigned int fault_flags, 1329 bool *unlocked) 1330 { 1331 struct vm_area_struct *vma; 1332 vm_fault_t ret; 1333 1334 address = untagged_addr(address); 1335 1336 if (unlocked) 1337 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1338 1339 retry: 1340 vma = find_extend_vma(mm, address); 1341 if (!vma || address < vma->vm_start) 1342 return -EFAULT; 1343 1344 if (!vma_permits_fault(vma, fault_flags)) 1345 return -EFAULT; 1346 1347 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1348 fatal_signal_pending(current)) 1349 return -EINTR; 1350 1351 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1352 1353 if (ret & VM_FAULT_COMPLETED) { 1354 /* 1355 * NOTE: it's a pity that we need to retake the lock here 1356 * to pair with the unlock() in the callers. Ideally we 1357 * could tell the callers so they do not need to unlock. 1358 */ 1359 mmap_read_lock(mm); 1360 *unlocked = true; 1361 return 0; 1362 } 1363 1364 if (ret & VM_FAULT_ERROR) { 1365 int err = vm_fault_to_errno(ret, 0); 1366 1367 if (err) 1368 return err; 1369 BUG(); 1370 } 1371 1372 if (ret & VM_FAULT_RETRY) { 1373 mmap_read_lock(mm); 1374 *unlocked = true; 1375 fault_flags |= FAULT_FLAG_TRIED; 1376 goto retry; 1377 } 1378 1379 return 0; 1380 } 1381 EXPORT_SYMBOL_GPL(fixup_user_fault); 1382 1383 /* 1384 * Please note that this function, unlike __get_user_pages will not 1385 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1386 */ 1387 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1388 unsigned long start, 1389 unsigned long nr_pages, 1390 struct page **pages, 1391 struct vm_area_struct **vmas, 1392 int *locked, 1393 unsigned int flags) 1394 { 1395 long ret, pages_done; 1396 bool lock_dropped; 1397 1398 if (locked) { 1399 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1400 BUG_ON(vmas); 1401 /* check caller initialized locked */ 1402 BUG_ON(*locked != 1); 1403 } 1404 1405 if (flags & FOLL_PIN) 1406 mm_set_has_pinned_flag(&mm->flags); 1407 1408 /* 1409 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1410 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1411 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1412 * for FOLL_GET, not for the newer FOLL_PIN. 1413 * 1414 * FOLL_PIN always expects pages to be non-null, but no need to assert 1415 * that here, as any failures will be obvious enough. 1416 */ 1417 if (pages && !(flags & FOLL_PIN)) 1418 flags |= FOLL_GET; 1419 1420 pages_done = 0; 1421 lock_dropped = false; 1422 for (;;) { 1423 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1424 vmas, locked); 1425 if (!locked) 1426 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1427 return ret; 1428 1429 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1430 if (!*locked) { 1431 BUG_ON(ret < 0); 1432 BUG_ON(ret >= nr_pages); 1433 } 1434 1435 if (ret > 0) { 1436 nr_pages -= ret; 1437 pages_done += ret; 1438 if (!nr_pages) 1439 break; 1440 } 1441 if (*locked) { 1442 /* 1443 * VM_FAULT_RETRY didn't trigger or it was a 1444 * FOLL_NOWAIT. 1445 */ 1446 if (!pages_done) 1447 pages_done = ret; 1448 break; 1449 } 1450 /* 1451 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1452 * For the prefault case (!pages) we only update counts. 1453 */ 1454 if (likely(pages)) 1455 pages += ret; 1456 start += ret << PAGE_SHIFT; 1457 lock_dropped = true; 1458 1459 retry: 1460 /* 1461 * Repeat on the address that fired VM_FAULT_RETRY 1462 * with both FAULT_FLAG_ALLOW_RETRY and 1463 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1464 * by fatal signals, so we need to check it before we 1465 * start trying again otherwise it can loop forever. 1466 */ 1467 1468 if (fatal_signal_pending(current)) { 1469 if (!pages_done) 1470 pages_done = -EINTR; 1471 break; 1472 } 1473 1474 ret = mmap_read_lock_killable(mm); 1475 if (ret) { 1476 BUG_ON(ret > 0); 1477 if (!pages_done) 1478 pages_done = ret; 1479 break; 1480 } 1481 1482 *locked = 1; 1483 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1484 pages, NULL, locked); 1485 if (!*locked) { 1486 /* Continue to retry until we succeeded */ 1487 BUG_ON(ret != 0); 1488 goto retry; 1489 } 1490 if (ret != 1) { 1491 BUG_ON(ret > 1); 1492 if (!pages_done) 1493 pages_done = ret; 1494 break; 1495 } 1496 nr_pages--; 1497 pages_done++; 1498 if (!nr_pages) 1499 break; 1500 if (likely(pages)) 1501 pages++; 1502 start += PAGE_SIZE; 1503 } 1504 if (lock_dropped && *locked) { 1505 /* 1506 * We must let the caller know we temporarily dropped the lock 1507 * and so the critical section protected by it was lost. 1508 */ 1509 mmap_read_unlock(mm); 1510 *locked = 0; 1511 } 1512 return pages_done; 1513 } 1514 1515 /** 1516 * populate_vma_page_range() - populate a range of pages in the vma. 1517 * @vma: target vma 1518 * @start: start address 1519 * @end: end address 1520 * @locked: whether the mmap_lock is still held 1521 * 1522 * This takes care of mlocking the pages too if VM_LOCKED is set. 1523 * 1524 * Return either number of pages pinned in the vma, or a negative error 1525 * code on error. 1526 * 1527 * vma->vm_mm->mmap_lock must be held. 1528 * 1529 * If @locked is NULL, it may be held for read or write and will 1530 * be unperturbed. 1531 * 1532 * If @locked is non-NULL, it must held for read only and may be 1533 * released. If it's released, *@locked will be set to 0. 1534 */ 1535 long populate_vma_page_range(struct vm_area_struct *vma, 1536 unsigned long start, unsigned long end, int *locked) 1537 { 1538 struct mm_struct *mm = vma->vm_mm; 1539 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1540 int gup_flags; 1541 long ret; 1542 1543 VM_BUG_ON(!PAGE_ALIGNED(start)); 1544 VM_BUG_ON(!PAGE_ALIGNED(end)); 1545 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1546 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1547 mmap_assert_locked(mm); 1548 1549 /* 1550 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1551 * faultin_page() to break COW, so it has no work to do here. 1552 */ 1553 if (vma->vm_flags & VM_LOCKONFAULT) 1554 return nr_pages; 1555 1556 gup_flags = FOLL_TOUCH; 1557 /* 1558 * We want to touch writable mappings with a write fault in order 1559 * to break COW, except for shared mappings because these don't COW 1560 * and we would not want to dirty them for nothing. 1561 */ 1562 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1563 gup_flags |= FOLL_WRITE; 1564 1565 /* 1566 * We want mlock to succeed for regions that have any permissions 1567 * other than PROT_NONE. 1568 */ 1569 if (vma_is_accessible(vma)) 1570 gup_flags |= FOLL_FORCE; 1571 1572 /* 1573 * We made sure addr is within a VMA, so the following will 1574 * not result in a stack expansion that recurses back here. 1575 */ 1576 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1577 NULL, NULL, locked); 1578 lru_add_drain(); 1579 return ret; 1580 } 1581 1582 /* 1583 * faultin_vma_page_range() - populate (prefault) page tables inside the 1584 * given VMA range readable/writable 1585 * 1586 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1587 * 1588 * @vma: target vma 1589 * @start: start address 1590 * @end: end address 1591 * @write: whether to prefault readable or writable 1592 * @locked: whether the mmap_lock is still held 1593 * 1594 * Returns either number of processed pages in the vma, or a negative error 1595 * code on error (see __get_user_pages()). 1596 * 1597 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1598 * covered by the VMA. 1599 * 1600 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1601 * 1602 * If @locked is non-NULL, it must held for read only and may be released. If 1603 * it's released, *@locked will be set to 0. 1604 */ 1605 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1606 unsigned long end, bool write, int *locked) 1607 { 1608 struct mm_struct *mm = vma->vm_mm; 1609 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1610 int gup_flags; 1611 long ret; 1612 1613 VM_BUG_ON(!PAGE_ALIGNED(start)); 1614 VM_BUG_ON(!PAGE_ALIGNED(end)); 1615 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1616 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1617 mmap_assert_locked(mm); 1618 1619 /* 1620 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1621 * the page dirty with FOLL_WRITE -- which doesn't make a 1622 * difference with !FOLL_FORCE, because the page is writable 1623 * in the page table. 1624 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1625 * a poisoned page. 1626 * !FOLL_FORCE: Require proper access permissions. 1627 */ 1628 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1629 if (write) 1630 gup_flags |= FOLL_WRITE; 1631 1632 /* 1633 * We want to report -EINVAL instead of -EFAULT for any permission 1634 * problems or incompatible mappings. 1635 */ 1636 if (check_vma_flags(vma, gup_flags)) 1637 return -EINVAL; 1638 1639 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1640 NULL, NULL, locked); 1641 lru_add_drain(); 1642 return ret; 1643 } 1644 1645 /* 1646 * __mm_populate - populate and/or mlock pages within a range of address space. 1647 * 1648 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1649 * flags. VMAs must be already marked with the desired vm_flags, and 1650 * mmap_lock must not be held. 1651 */ 1652 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1653 { 1654 struct mm_struct *mm = current->mm; 1655 unsigned long end, nstart, nend; 1656 struct vm_area_struct *vma = NULL; 1657 int locked = 0; 1658 long ret = 0; 1659 1660 end = start + len; 1661 1662 for (nstart = start; nstart < end; nstart = nend) { 1663 /* 1664 * We want to fault in pages for [nstart; end) address range. 1665 * Find first corresponding VMA. 1666 */ 1667 if (!locked) { 1668 locked = 1; 1669 mmap_read_lock(mm); 1670 vma = find_vma(mm, nstart); 1671 } else if (nstart >= vma->vm_end) 1672 vma = vma->vm_next; 1673 if (!vma || vma->vm_start >= end) 1674 break; 1675 /* 1676 * Set [nstart; nend) to intersection of desired address 1677 * range with the first VMA. Also, skip undesirable VMA types. 1678 */ 1679 nend = min(end, vma->vm_end); 1680 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1681 continue; 1682 if (nstart < vma->vm_start) 1683 nstart = vma->vm_start; 1684 /* 1685 * Now fault in a range of pages. populate_vma_page_range() 1686 * double checks the vma flags, so that it won't mlock pages 1687 * if the vma was already munlocked. 1688 */ 1689 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1690 if (ret < 0) { 1691 if (ignore_errors) { 1692 ret = 0; 1693 continue; /* continue at next VMA */ 1694 } 1695 break; 1696 } 1697 nend = nstart + ret * PAGE_SIZE; 1698 ret = 0; 1699 } 1700 if (locked) 1701 mmap_read_unlock(mm); 1702 return ret; /* 0 or negative error code */ 1703 } 1704 #else /* CONFIG_MMU */ 1705 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1706 unsigned long nr_pages, struct page **pages, 1707 struct vm_area_struct **vmas, int *locked, 1708 unsigned int foll_flags) 1709 { 1710 struct vm_area_struct *vma; 1711 unsigned long vm_flags; 1712 long i; 1713 1714 /* calculate required read or write permissions. 1715 * If FOLL_FORCE is set, we only require the "MAY" flags. 1716 */ 1717 vm_flags = (foll_flags & FOLL_WRITE) ? 1718 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1719 vm_flags &= (foll_flags & FOLL_FORCE) ? 1720 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1721 1722 for (i = 0; i < nr_pages; i++) { 1723 vma = find_vma(mm, start); 1724 if (!vma) 1725 goto finish_or_fault; 1726 1727 /* protect what we can, including chardevs */ 1728 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1729 !(vm_flags & vma->vm_flags)) 1730 goto finish_or_fault; 1731 1732 if (pages) { 1733 pages[i] = virt_to_page((void *)start); 1734 if (pages[i]) 1735 get_page(pages[i]); 1736 } 1737 if (vmas) 1738 vmas[i] = vma; 1739 start = (start + PAGE_SIZE) & PAGE_MASK; 1740 } 1741 1742 return i; 1743 1744 finish_or_fault: 1745 return i ? : -EFAULT; 1746 } 1747 #endif /* !CONFIG_MMU */ 1748 1749 /** 1750 * fault_in_writeable - fault in userspace address range for writing 1751 * @uaddr: start of address range 1752 * @size: size of address range 1753 * 1754 * Returns the number of bytes not faulted in (like copy_to_user() and 1755 * copy_from_user()). 1756 */ 1757 size_t fault_in_writeable(char __user *uaddr, size_t size) 1758 { 1759 char __user *start = uaddr, *end; 1760 1761 if (unlikely(size == 0)) 1762 return 0; 1763 if (!user_write_access_begin(uaddr, size)) 1764 return size; 1765 if (!PAGE_ALIGNED(uaddr)) { 1766 unsafe_put_user(0, uaddr, out); 1767 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1768 } 1769 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1770 if (unlikely(end < start)) 1771 end = NULL; 1772 while (uaddr != end) { 1773 unsafe_put_user(0, uaddr, out); 1774 uaddr += PAGE_SIZE; 1775 } 1776 1777 out: 1778 user_write_access_end(); 1779 if (size > uaddr - start) 1780 return size - (uaddr - start); 1781 return 0; 1782 } 1783 EXPORT_SYMBOL(fault_in_writeable); 1784 1785 /** 1786 * fault_in_subpage_writeable - fault in an address range for writing 1787 * @uaddr: start of address range 1788 * @size: size of address range 1789 * 1790 * Fault in a user address range for writing while checking for permissions at 1791 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1792 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1793 * 1794 * Returns the number of bytes not faulted in (like copy_to_user() and 1795 * copy_from_user()). 1796 */ 1797 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1798 { 1799 size_t faulted_in; 1800 1801 /* 1802 * Attempt faulting in at page granularity first for page table 1803 * permission checking. The arch-specific probe_subpage_writeable() 1804 * functions may not check for this. 1805 */ 1806 faulted_in = size - fault_in_writeable(uaddr, size); 1807 if (faulted_in) 1808 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1809 1810 return size - faulted_in; 1811 } 1812 EXPORT_SYMBOL(fault_in_subpage_writeable); 1813 1814 /* 1815 * fault_in_safe_writeable - fault in an address range for writing 1816 * @uaddr: start of address range 1817 * @size: length of address range 1818 * 1819 * Faults in an address range for writing. This is primarily useful when we 1820 * already know that some or all of the pages in the address range aren't in 1821 * memory. 1822 * 1823 * Unlike fault_in_writeable(), this function is non-destructive. 1824 * 1825 * Note that we don't pin or otherwise hold the pages referenced that we fault 1826 * in. There's no guarantee that they'll stay in memory for any duration of 1827 * time. 1828 * 1829 * Returns the number of bytes not faulted in, like copy_to_user() and 1830 * copy_from_user(). 1831 */ 1832 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1833 { 1834 unsigned long start = (unsigned long)uaddr, end; 1835 struct mm_struct *mm = current->mm; 1836 bool unlocked = false; 1837 1838 if (unlikely(size == 0)) 1839 return 0; 1840 end = PAGE_ALIGN(start + size); 1841 if (end < start) 1842 end = 0; 1843 1844 mmap_read_lock(mm); 1845 do { 1846 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1847 break; 1848 start = (start + PAGE_SIZE) & PAGE_MASK; 1849 } while (start != end); 1850 mmap_read_unlock(mm); 1851 1852 if (size > (unsigned long)uaddr - start) 1853 return size - ((unsigned long)uaddr - start); 1854 return 0; 1855 } 1856 EXPORT_SYMBOL(fault_in_safe_writeable); 1857 1858 /** 1859 * fault_in_readable - fault in userspace address range for reading 1860 * @uaddr: start of user address range 1861 * @size: size of user address range 1862 * 1863 * Returns the number of bytes not faulted in (like copy_to_user() and 1864 * copy_from_user()). 1865 */ 1866 size_t fault_in_readable(const char __user *uaddr, size_t size) 1867 { 1868 const char __user *start = uaddr, *end; 1869 volatile char c; 1870 1871 if (unlikely(size == 0)) 1872 return 0; 1873 if (!user_read_access_begin(uaddr, size)) 1874 return size; 1875 if (!PAGE_ALIGNED(uaddr)) { 1876 unsafe_get_user(c, uaddr, out); 1877 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1878 } 1879 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1880 if (unlikely(end < start)) 1881 end = NULL; 1882 while (uaddr != end) { 1883 unsafe_get_user(c, uaddr, out); 1884 uaddr += PAGE_SIZE; 1885 } 1886 1887 out: 1888 user_read_access_end(); 1889 (void)c; 1890 if (size > uaddr - start) 1891 return size - (uaddr - start); 1892 return 0; 1893 } 1894 EXPORT_SYMBOL(fault_in_readable); 1895 1896 /** 1897 * get_dump_page() - pin user page in memory while writing it to core dump 1898 * @addr: user address 1899 * 1900 * Returns struct page pointer of user page pinned for dump, 1901 * to be freed afterwards by put_page(). 1902 * 1903 * Returns NULL on any kind of failure - a hole must then be inserted into 1904 * the corefile, to preserve alignment with its headers; and also returns 1905 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1906 * allowing a hole to be left in the corefile to save disk space. 1907 * 1908 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1909 */ 1910 #ifdef CONFIG_ELF_CORE 1911 struct page *get_dump_page(unsigned long addr) 1912 { 1913 struct mm_struct *mm = current->mm; 1914 struct page *page; 1915 int locked = 1; 1916 int ret; 1917 1918 if (mmap_read_lock_killable(mm)) 1919 return NULL; 1920 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1921 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1922 if (locked) 1923 mmap_read_unlock(mm); 1924 return (ret == 1) ? page : NULL; 1925 } 1926 #endif /* CONFIG_ELF_CORE */ 1927 1928 #ifdef CONFIG_MIGRATION 1929 /* 1930 * Check whether all pages are pinnable, if so return number of pages. If some 1931 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1932 * pages were migrated, or if some pages were not successfully isolated. 1933 * Return negative error if migration fails. 1934 */ 1935 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1936 struct page **pages, 1937 unsigned int gup_flags) 1938 { 1939 unsigned long isolation_error_count = 0, i; 1940 struct folio *prev_folio = NULL; 1941 LIST_HEAD(movable_page_list); 1942 bool drain_allow = true, coherent_pages = false; 1943 int ret = 0; 1944 1945 for (i = 0; i < nr_pages; i++) { 1946 struct folio *folio = page_folio(pages[i]); 1947 1948 if (folio == prev_folio) 1949 continue; 1950 prev_folio = folio; 1951 1952 /* 1953 * Device coherent pages are managed by a driver and should not 1954 * be pinned indefinitely as it prevents the driver moving the 1955 * page. So when trying to pin with FOLL_LONGTERM instead try 1956 * to migrate the page out of device memory. 1957 */ 1958 if (folio_is_device_coherent(folio)) { 1959 /* 1960 * We always want a new GUP lookup with device coherent 1961 * pages. 1962 */ 1963 pages[i] = 0; 1964 coherent_pages = true; 1965 1966 /* 1967 * Migration will fail if the page is pinned, so convert 1968 * the pin on the source page to a normal reference. 1969 */ 1970 if (gup_flags & FOLL_PIN) { 1971 get_page(&folio->page); 1972 unpin_user_page(&folio->page); 1973 } 1974 1975 ret = migrate_device_coherent_page(&folio->page); 1976 if (ret) 1977 goto unpin_pages; 1978 1979 continue; 1980 } 1981 1982 if (folio_is_longterm_pinnable(folio)) 1983 continue; 1984 /* 1985 * Try to move out any movable page before pinning the range. 1986 */ 1987 if (folio_test_hugetlb(folio)) { 1988 if (isolate_hugetlb(&folio->page, 1989 &movable_page_list)) 1990 isolation_error_count++; 1991 continue; 1992 } 1993 1994 if (!folio_test_lru(folio) && drain_allow) { 1995 lru_add_drain_all(); 1996 drain_allow = false; 1997 } 1998 1999 if (folio_isolate_lru(folio)) { 2000 isolation_error_count++; 2001 continue; 2002 } 2003 list_add_tail(&folio->lru, &movable_page_list); 2004 node_stat_mod_folio(folio, 2005 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2006 folio_nr_pages(folio)); 2007 } 2008 2009 if (!list_empty(&movable_page_list) || isolation_error_count || 2010 coherent_pages) 2011 goto unpin_pages; 2012 2013 /* 2014 * If list is empty, and no isolation errors, means that all pages are 2015 * in the correct zone. 2016 */ 2017 return nr_pages; 2018 2019 unpin_pages: 2020 /* 2021 * pages[i] might be NULL if any device coherent pages were found. 2022 */ 2023 for (i = 0; i < nr_pages; i++) { 2024 if (!pages[i]) 2025 continue; 2026 2027 if (gup_flags & FOLL_PIN) 2028 unpin_user_page(pages[i]); 2029 else 2030 put_page(pages[i]); 2031 } 2032 2033 if (!list_empty(&movable_page_list)) { 2034 struct migration_target_control mtc = { 2035 .nid = NUMA_NO_NODE, 2036 .gfp_mask = GFP_USER | __GFP_NOWARN, 2037 }; 2038 2039 ret = migrate_pages(&movable_page_list, alloc_migration_target, 2040 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2041 MR_LONGTERM_PIN, NULL); 2042 if (ret > 0) /* number of pages not migrated */ 2043 ret = -ENOMEM; 2044 } 2045 2046 if (ret && !list_empty(&movable_page_list)) 2047 putback_movable_pages(&movable_page_list); 2048 return ret; 2049 } 2050 #else 2051 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2052 struct page **pages, 2053 unsigned int gup_flags) 2054 { 2055 return nr_pages; 2056 } 2057 #endif /* CONFIG_MIGRATION */ 2058 2059 /* 2060 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2061 * allows us to process the FOLL_LONGTERM flag. 2062 */ 2063 static long __gup_longterm_locked(struct mm_struct *mm, 2064 unsigned long start, 2065 unsigned long nr_pages, 2066 struct page **pages, 2067 struct vm_area_struct **vmas, 2068 unsigned int gup_flags) 2069 { 2070 unsigned int flags; 2071 long rc; 2072 2073 if (!(gup_flags & FOLL_LONGTERM)) 2074 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2075 NULL, gup_flags); 2076 flags = memalloc_pin_save(); 2077 do { 2078 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2079 NULL, gup_flags); 2080 if (rc <= 0) 2081 break; 2082 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 2083 } while (!rc); 2084 memalloc_pin_restore(flags); 2085 2086 return rc; 2087 } 2088 2089 static bool is_valid_gup_flags(unsigned int gup_flags) 2090 { 2091 /* 2092 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2093 * never directly by the caller, so enforce that with an assertion: 2094 */ 2095 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2096 return false; 2097 /* 2098 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2099 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2100 * FOLL_PIN. 2101 */ 2102 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2103 return false; 2104 2105 return true; 2106 } 2107 2108 #ifdef CONFIG_MMU 2109 static long __get_user_pages_remote(struct mm_struct *mm, 2110 unsigned long start, unsigned long nr_pages, 2111 unsigned int gup_flags, struct page **pages, 2112 struct vm_area_struct **vmas, int *locked) 2113 { 2114 /* 2115 * Parts of FOLL_LONGTERM behavior are incompatible with 2116 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2117 * vmas. However, this only comes up if locked is set, and there are 2118 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2119 * allow what we can. 2120 */ 2121 if (gup_flags & FOLL_LONGTERM) { 2122 if (WARN_ON_ONCE(locked)) 2123 return -EINVAL; 2124 /* 2125 * This will check the vmas (even if our vmas arg is NULL) 2126 * and return -ENOTSUPP if DAX isn't allowed in this case: 2127 */ 2128 return __gup_longterm_locked(mm, start, nr_pages, pages, 2129 vmas, gup_flags | FOLL_TOUCH | 2130 FOLL_REMOTE); 2131 } 2132 2133 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2134 locked, 2135 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2136 } 2137 2138 /** 2139 * get_user_pages_remote() - pin user pages in memory 2140 * @mm: mm_struct of target mm 2141 * @start: starting user address 2142 * @nr_pages: number of pages from start to pin 2143 * @gup_flags: flags modifying lookup behaviour 2144 * @pages: array that receives pointers to the pages pinned. 2145 * Should be at least nr_pages long. Or NULL, if caller 2146 * only intends to ensure the pages are faulted in. 2147 * @vmas: array of pointers to vmas corresponding to each page. 2148 * Or NULL if the caller does not require them. 2149 * @locked: pointer to lock flag indicating whether lock is held and 2150 * subsequently whether VM_FAULT_RETRY functionality can be 2151 * utilised. Lock must initially be held. 2152 * 2153 * Returns either number of pages pinned (which may be less than the 2154 * number requested), or an error. Details about the return value: 2155 * 2156 * -- If nr_pages is 0, returns 0. 2157 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2158 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2159 * pages pinned. Again, this may be less than nr_pages. 2160 * 2161 * The caller is responsible for releasing returned @pages, via put_page(). 2162 * 2163 * @vmas are valid only as long as mmap_lock is held. 2164 * 2165 * Must be called with mmap_lock held for read or write. 2166 * 2167 * get_user_pages_remote walks a process's page tables and takes a reference 2168 * to each struct page that each user address corresponds to at a given 2169 * instant. That is, it takes the page that would be accessed if a user 2170 * thread accesses the given user virtual address at that instant. 2171 * 2172 * This does not guarantee that the page exists in the user mappings when 2173 * get_user_pages_remote returns, and there may even be a completely different 2174 * page there in some cases (eg. if mmapped pagecache has been invalidated 2175 * and subsequently re faulted). However it does guarantee that the page 2176 * won't be freed completely. And mostly callers simply care that the page 2177 * contains data that was valid *at some point in time*. Typically, an IO 2178 * or similar operation cannot guarantee anything stronger anyway because 2179 * locks can't be held over the syscall boundary. 2180 * 2181 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2182 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2183 * be called after the page is finished with, and before put_page is called. 2184 * 2185 * get_user_pages_remote is typically used for fewer-copy IO operations, 2186 * to get a handle on the memory by some means other than accesses 2187 * via the user virtual addresses. The pages may be submitted for 2188 * DMA to devices or accessed via their kernel linear mapping (via the 2189 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2190 * 2191 * See also get_user_pages_fast, for performance critical applications. 2192 * 2193 * get_user_pages_remote should be phased out in favor of 2194 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2195 * should use get_user_pages_remote because it cannot pass 2196 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2197 */ 2198 long get_user_pages_remote(struct mm_struct *mm, 2199 unsigned long start, unsigned long nr_pages, 2200 unsigned int gup_flags, struct page **pages, 2201 struct vm_area_struct **vmas, int *locked) 2202 { 2203 if (!is_valid_gup_flags(gup_flags)) 2204 return -EINVAL; 2205 2206 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2207 pages, vmas, locked); 2208 } 2209 EXPORT_SYMBOL(get_user_pages_remote); 2210 2211 #else /* CONFIG_MMU */ 2212 long get_user_pages_remote(struct mm_struct *mm, 2213 unsigned long start, unsigned long nr_pages, 2214 unsigned int gup_flags, struct page **pages, 2215 struct vm_area_struct **vmas, int *locked) 2216 { 2217 return 0; 2218 } 2219 2220 static long __get_user_pages_remote(struct mm_struct *mm, 2221 unsigned long start, unsigned long nr_pages, 2222 unsigned int gup_flags, struct page **pages, 2223 struct vm_area_struct **vmas, int *locked) 2224 { 2225 return 0; 2226 } 2227 #endif /* !CONFIG_MMU */ 2228 2229 /** 2230 * get_user_pages() - pin user pages in memory 2231 * @start: starting user address 2232 * @nr_pages: number of pages from start to pin 2233 * @gup_flags: flags modifying lookup behaviour 2234 * @pages: array that receives pointers to the pages pinned. 2235 * Should be at least nr_pages long. Or NULL, if caller 2236 * only intends to ensure the pages are faulted in. 2237 * @vmas: array of pointers to vmas corresponding to each page. 2238 * Or NULL if the caller does not require them. 2239 * 2240 * This is the same as get_user_pages_remote(), just with a less-flexible 2241 * calling convention where we assume that the mm being operated on belongs to 2242 * the current task, and doesn't allow passing of a locked parameter. We also 2243 * obviously don't pass FOLL_REMOTE in here. 2244 */ 2245 long get_user_pages(unsigned long start, unsigned long nr_pages, 2246 unsigned int gup_flags, struct page **pages, 2247 struct vm_area_struct **vmas) 2248 { 2249 if (!is_valid_gup_flags(gup_flags)) 2250 return -EINVAL; 2251 2252 return __gup_longterm_locked(current->mm, start, nr_pages, 2253 pages, vmas, gup_flags | FOLL_TOUCH); 2254 } 2255 EXPORT_SYMBOL(get_user_pages); 2256 2257 /* 2258 * get_user_pages_unlocked() is suitable to replace the form: 2259 * 2260 * mmap_read_lock(mm); 2261 * get_user_pages(mm, ..., pages, NULL); 2262 * mmap_read_unlock(mm); 2263 * 2264 * with: 2265 * 2266 * get_user_pages_unlocked(mm, ..., pages); 2267 * 2268 * It is functionally equivalent to get_user_pages_fast so 2269 * get_user_pages_fast should be used instead if specific gup_flags 2270 * (e.g. FOLL_FORCE) are not required. 2271 */ 2272 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2273 struct page **pages, unsigned int gup_flags) 2274 { 2275 struct mm_struct *mm = current->mm; 2276 int locked = 1; 2277 long ret; 2278 2279 /* 2280 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2281 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2282 * vmas. As there are no users of this flag in this call we simply 2283 * disallow this option for now. 2284 */ 2285 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2286 return -EINVAL; 2287 2288 mmap_read_lock(mm); 2289 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2290 &locked, gup_flags | FOLL_TOUCH); 2291 if (locked) 2292 mmap_read_unlock(mm); 2293 return ret; 2294 } 2295 EXPORT_SYMBOL(get_user_pages_unlocked); 2296 2297 /* 2298 * Fast GUP 2299 * 2300 * get_user_pages_fast attempts to pin user pages by walking the page 2301 * tables directly and avoids taking locks. Thus the walker needs to be 2302 * protected from page table pages being freed from under it, and should 2303 * block any THP splits. 2304 * 2305 * One way to achieve this is to have the walker disable interrupts, and 2306 * rely on IPIs from the TLB flushing code blocking before the page table 2307 * pages are freed. This is unsuitable for architectures that do not need 2308 * to broadcast an IPI when invalidating TLBs. 2309 * 2310 * Another way to achieve this is to batch up page table containing pages 2311 * belonging to more than one mm_user, then rcu_sched a callback to free those 2312 * pages. Disabling interrupts will allow the fast_gup walker to both block 2313 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2314 * (which is a relatively rare event). The code below adopts this strategy. 2315 * 2316 * Before activating this code, please be aware that the following assumptions 2317 * are currently made: 2318 * 2319 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2320 * free pages containing page tables or TLB flushing requires IPI broadcast. 2321 * 2322 * *) ptes can be read atomically by the architecture. 2323 * 2324 * *) access_ok is sufficient to validate userspace address ranges. 2325 * 2326 * The last two assumptions can be relaxed by the addition of helper functions. 2327 * 2328 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2329 */ 2330 #ifdef CONFIG_HAVE_FAST_GUP 2331 2332 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2333 unsigned int flags, 2334 struct page **pages) 2335 { 2336 while ((*nr) - nr_start) { 2337 struct page *page = pages[--(*nr)]; 2338 2339 ClearPageReferenced(page); 2340 if (flags & FOLL_PIN) 2341 unpin_user_page(page); 2342 else 2343 put_page(page); 2344 } 2345 } 2346 2347 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2349 unsigned int flags, struct page **pages, int *nr) 2350 { 2351 struct dev_pagemap *pgmap = NULL; 2352 int nr_start = *nr, ret = 0; 2353 pte_t *ptep, *ptem; 2354 2355 ptem = ptep = pte_offset_map(&pmd, addr); 2356 do { 2357 pte_t pte = ptep_get_lockless(ptep); 2358 struct page *page; 2359 struct folio *folio; 2360 2361 /* 2362 * Similar to the PMD case below, NUMA hinting must take slow 2363 * path using the pte_protnone check. 2364 */ 2365 if (pte_protnone(pte)) 2366 goto pte_unmap; 2367 2368 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2369 goto pte_unmap; 2370 2371 if (pte_devmap(pte)) { 2372 if (unlikely(flags & FOLL_LONGTERM)) 2373 goto pte_unmap; 2374 2375 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2376 if (unlikely(!pgmap)) { 2377 undo_dev_pagemap(nr, nr_start, flags, pages); 2378 goto pte_unmap; 2379 } 2380 } else if (pte_special(pte)) 2381 goto pte_unmap; 2382 2383 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2384 page = pte_page(pte); 2385 2386 folio = try_grab_folio(page, 1, flags); 2387 if (!folio) 2388 goto pte_unmap; 2389 2390 if (unlikely(page_is_secretmem(page))) { 2391 gup_put_folio(folio, 1, flags); 2392 goto pte_unmap; 2393 } 2394 2395 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2396 gup_put_folio(folio, 1, flags); 2397 goto pte_unmap; 2398 } 2399 2400 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2401 gup_put_folio(folio, 1, flags); 2402 goto pte_unmap; 2403 } 2404 2405 /* 2406 * We need to make the page accessible if and only if we are 2407 * going to access its content (the FOLL_PIN case). Please 2408 * see Documentation/core-api/pin_user_pages.rst for 2409 * details. 2410 */ 2411 if (flags & FOLL_PIN) { 2412 ret = arch_make_page_accessible(page); 2413 if (ret) { 2414 gup_put_folio(folio, 1, flags); 2415 goto pte_unmap; 2416 } 2417 } 2418 folio_set_referenced(folio); 2419 pages[*nr] = page; 2420 (*nr)++; 2421 } while (ptep++, addr += PAGE_SIZE, addr != end); 2422 2423 ret = 1; 2424 2425 pte_unmap: 2426 if (pgmap) 2427 put_dev_pagemap(pgmap); 2428 pte_unmap(ptem); 2429 return ret; 2430 } 2431 #else 2432 2433 /* 2434 * If we can't determine whether or not a pte is special, then fail immediately 2435 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2436 * to be special. 2437 * 2438 * For a futex to be placed on a THP tail page, get_futex_key requires a 2439 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2440 * useful to have gup_huge_pmd even if we can't operate on ptes. 2441 */ 2442 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2443 unsigned int flags, struct page **pages, int *nr) 2444 { 2445 return 0; 2446 } 2447 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2448 2449 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2450 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2451 unsigned long end, unsigned int flags, 2452 struct page **pages, int *nr) 2453 { 2454 int nr_start = *nr; 2455 struct dev_pagemap *pgmap = NULL; 2456 2457 do { 2458 struct page *page = pfn_to_page(pfn); 2459 2460 pgmap = get_dev_pagemap(pfn, pgmap); 2461 if (unlikely(!pgmap)) { 2462 undo_dev_pagemap(nr, nr_start, flags, pages); 2463 break; 2464 } 2465 SetPageReferenced(page); 2466 pages[*nr] = page; 2467 if (unlikely(!try_grab_page(page, flags))) { 2468 undo_dev_pagemap(nr, nr_start, flags, pages); 2469 break; 2470 } 2471 (*nr)++; 2472 pfn++; 2473 } while (addr += PAGE_SIZE, addr != end); 2474 2475 put_dev_pagemap(pgmap); 2476 return addr == end; 2477 } 2478 2479 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2480 unsigned long end, unsigned int flags, 2481 struct page **pages, int *nr) 2482 { 2483 unsigned long fault_pfn; 2484 int nr_start = *nr; 2485 2486 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2487 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2488 return 0; 2489 2490 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2491 undo_dev_pagemap(nr, nr_start, flags, pages); 2492 return 0; 2493 } 2494 return 1; 2495 } 2496 2497 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2498 unsigned long end, unsigned int flags, 2499 struct page **pages, int *nr) 2500 { 2501 unsigned long fault_pfn; 2502 int nr_start = *nr; 2503 2504 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2505 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2506 return 0; 2507 2508 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2509 undo_dev_pagemap(nr, nr_start, flags, pages); 2510 return 0; 2511 } 2512 return 1; 2513 } 2514 #else 2515 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2516 unsigned long end, unsigned int flags, 2517 struct page **pages, int *nr) 2518 { 2519 BUILD_BUG(); 2520 return 0; 2521 } 2522 2523 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2524 unsigned long end, unsigned int flags, 2525 struct page **pages, int *nr) 2526 { 2527 BUILD_BUG(); 2528 return 0; 2529 } 2530 #endif 2531 2532 static int record_subpages(struct page *page, unsigned long addr, 2533 unsigned long end, struct page **pages) 2534 { 2535 int nr; 2536 2537 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2538 pages[nr] = nth_page(page, nr); 2539 2540 return nr; 2541 } 2542 2543 #ifdef CONFIG_ARCH_HAS_HUGEPD 2544 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2545 unsigned long sz) 2546 { 2547 unsigned long __boundary = (addr + sz) & ~(sz-1); 2548 return (__boundary - 1 < end - 1) ? __boundary : end; 2549 } 2550 2551 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2552 unsigned long end, unsigned int flags, 2553 struct page **pages, int *nr) 2554 { 2555 unsigned long pte_end; 2556 struct page *page; 2557 struct folio *folio; 2558 pte_t pte; 2559 int refs; 2560 2561 pte_end = (addr + sz) & ~(sz-1); 2562 if (pte_end < end) 2563 end = pte_end; 2564 2565 pte = huge_ptep_get(ptep); 2566 2567 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2568 return 0; 2569 2570 /* hugepages are never "special" */ 2571 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2572 2573 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2574 refs = record_subpages(page, addr, end, pages + *nr); 2575 2576 folio = try_grab_folio(page, refs, flags); 2577 if (!folio) 2578 return 0; 2579 2580 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2581 gup_put_folio(folio, refs, flags); 2582 return 0; 2583 } 2584 2585 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2586 gup_put_folio(folio, refs, flags); 2587 return 0; 2588 } 2589 2590 *nr += refs; 2591 folio_set_referenced(folio); 2592 return 1; 2593 } 2594 2595 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2596 unsigned int pdshift, unsigned long end, unsigned int flags, 2597 struct page **pages, int *nr) 2598 { 2599 pte_t *ptep; 2600 unsigned long sz = 1UL << hugepd_shift(hugepd); 2601 unsigned long next; 2602 2603 ptep = hugepte_offset(hugepd, addr, pdshift); 2604 do { 2605 next = hugepte_addr_end(addr, end, sz); 2606 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2607 return 0; 2608 } while (ptep++, addr = next, addr != end); 2609 2610 return 1; 2611 } 2612 #else 2613 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2614 unsigned int pdshift, unsigned long end, unsigned int flags, 2615 struct page **pages, int *nr) 2616 { 2617 return 0; 2618 } 2619 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2620 2621 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2622 unsigned long end, unsigned int flags, 2623 struct page **pages, int *nr) 2624 { 2625 struct page *page; 2626 struct folio *folio; 2627 int refs; 2628 2629 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2630 return 0; 2631 2632 if (pmd_devmap(orig)) { 2633 if (unlikely(flags & FOLL_LONGTERM)) 2634 return 0; 2635 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2636 pages, nr); 2637 } 2638 2639 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2640 refs = record_subpages(page, addr, end, pages + *nr); 2641 2642 folio = try_grab_folio(page, refs, flags); 2643 if (!folio) 2644 return 0; 2645 2646 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2647 gup_put_folio(folio, refs, flags); 2648 return 0; 2649 } 2650 2651 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2652 gup_put_folio(folio, refs, flags); 2653 return 0; 2654 } 2655 2656 *nr += refs; 2657 folio_set_referenced(folio); 2658 return 1; 2659 } 2660 2661 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2662 unsigned long end, unsigned int flags, 2663 struct page **pages, int *nr) 2664 { 2665 struct page *page; 2666 struct folio *folio; 2667 int refs; 2668 2669 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2670 return 0; 2671 2672 if (pud_devmap(orig)) { 2673 if (unlikely(flags & FOLL_LONGTERM)) 2674 return 0; 2675 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2676 pages, nr); 2677 } 2678 2679 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2680 refs = record_subpages(page, addr, end, pages + *nr); 2681 2682 folio = try_grab_folio(page, refs, flags); 2683 if (!folio) 2684 return 0; 2685 2686 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2687 gup_put_folio(folio, refs, flags); 2688 return 0; 2689 } 2690 2691 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2692 gup_put_folio(folio, refs, flags); 2693 return 0; 2694 } 2695 2696 *nr += refs; 2697 folio_set_referenced(folio); 2698 return 1; 2699 } 2700 2701 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2702 unsigned long end, unsigned int flags, 2703 struct page **pages, int *nr) 2704 { 2705 int refs; 2706 struct page *page; 2707 struct folio *folio; 2708 2709 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2710 return 0; 2711 2712 BUILD_BUG_ON(pgd_devmap(orig)); 2713 2714 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2715 refs = record_subpages(page, addr, end, pages + *nr); 2716 2717 folio = try_grab_folio(page, refs, flags); 2718 if (!folio) 2719 return 0; 2720 2721 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2722 gup_put_folio(folio, refs, flags); 2723 return 0; 2724 } 2725 2726 *nr += refs; 2727 folio_set_referenced(folio); 2728 return 1; 2729 } 2730 2731 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2732 unsigned int flags, struct page **pages, int *nr) 2733 { 2734 unsigned long next; 2735 pmd_t *pmdp; 2736 2737 pmdp = pmd_offset_lockless(pudp, pud, addr); 2738 do { 2739 pmd_t pmd = READ_ONCE(*pmdp); 2740 2741 next = pmd_addr_end(addr, end); 2742 if (!pmd_present(pmd)) 2743 return 0; 2744 2745 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2746 pmd_devmap(pmd))) { 2747 /* 2748 * NUMA hinting faults need to be handled in the GUP 2749 * slowpath for accounting purposes and so that they 2750 * can be serialised against THP migration. 2751 */ 2752 if (pmd_protnone(pmd)) 2753 return 0; 2754 2755 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2756 pages, nr)) 2757 return 0; 2758 2759 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2760 /* 2761 * architecture have different format for hugetlbfs 2762 * pmd format and THP pmd format 2763 */ 2764 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2765 PMD_SHIFT, next, flags, pages, nr)) 2766 return 0; 2767 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2768 return 0; 2769 } while (pmdp++, addr = next, addr != end); 2770 2771 return 1; 2772 } 2773 2774 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2775 unsigned int flags, struct page **pages, int *nr) 2776 { 2777 unsigned long next; 2778 pud_t *pudp; 2779 2780 pudp = pud_offset_lockless(p4dp, p4d, addr); 2781 do { 2782 pud_t pud = READ_ONCE(*pudp); 2783 2784 next = pud_addr_end(addr, end); 2785 if (unlikely(!pud_present(pud))) 2786 return 0; 2787 if (unlikely(pud_huge(pud))) { 2788 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2789 pages, nr)) 2790 return 0; 2791 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2792 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2793 PUD_SHIFT, next, flags, pages, nr)) 2794 return 0; 2795 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2796 return 0; 2797 } while (pudp++, addr = next, addr != end); 2798 2799 return 1; 2800 } 2801 2802 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2803 unsigned int flags, struct page **pages, int *nr) 2804 { 2805 unsigned long next; 2806 p4d_t *p4dp; 2807 2808 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2809 do { 2810 p4d_t p4d = READ_ONCE(*p4dp); 2811 2812 next = p4d_addr_end(addr, end); 2813 if (p4d_none(p4d)) 2814 return 0; 2815 BUILD_BUG_ON(p4d_huge(p4d)); 2816 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2817 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2818 P4D_SHIFT, next, flags, pages, nr)) 2819 return 0; 2820 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2821 return 0; 2822 } while (p4dp++, addr = next, addr != end); 2823 2824 return 1; 2825 } 2826 2827 static void gup_pgd_range(unsigned long addr, unsigned long end, 2828 unsigned int flags, struct page **pages, int *nr) 2829 { 2830 unsigned long next; 2831 pgd_t *pgdp; 2832 2833 pgdp = pgd_offset(current->mm, addr); 2834 do { 2835 pgd_t pgd = READ_ONCE(*pgdp); 2836 2837 next = pgd_addr_end(addr, end); 2838 if (pgd_none(pgd)) 2839 return; 2840 if (unlikely(pgd_huge(pgd))) { 2841 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2842 pages, nr)) 2843 return; 2844 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2845 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2846 PGDIR_SHIFT, next, flags, pages, nr)) 2847 return; 2848 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2849 return; 2850 } while (pgdp++, addr = next, addr != end); 2851 } 2852 #else 2853 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2854 unsigned int flags, struct page **pages, int *nr) 2855 { 2856 } 2857 #endif /* CONFIG_HAVE_FAST_GUP */ 2858 2859 #ifndef gup_fast_permitted 2860 /* 2861 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2862 * we need to fall back to the slow version: 2863 */ 2864 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2865 { 2866 return true; 2867 } 2868 #endif 2869 2870 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2871 unsigned int gup_flags, struct page **pages) 2872 { 2873 int ret; 2874 2875 /* 2876 * FIXME: FOLL_LONGTERM does not work with 2877 * get_user_pages_unlocked() (see comments in that function) 2878 */ 2879 if (gup_flags & FOLL_LONGTERM) { 2880 mmap_read_lock(current->mm); 2881 ret = __gup_longterm_locked(current->mm, 2882 start, nr_pages, 2883 pages, NULL, gup_flags); 2884 mmap_read_unlock(current->mm); 2885 } else { 2886 ret = get_user_pages_unlocked(start, nr_pages, 2887 pages, gup_flags); 2888 } 2889 2890 return ret; 2891 } 2892 2893 static unsigned long lockless_pages_from_mm(unsigned long start, 2894 unsigned long end, 2895 unsigned int gup_flags, 2896 struct page **pages) 2897 { 2898 unsigned long flags; 2899 int nr_pinned = 0; 2900 unsigned seq; 2901 2902 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2903 !gup_fast_permitted(start, end)) 2904 return 0; 2905 2906 if (gup_flags & FOLL_PIN) { 2907 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2908 if (seq & 1) 2909 return 0; 2910 } 2911 2912 /* 2913 * Disable interrupts. The nested form is used, in order to allow full, 2914 * general purpose use of this routine. 2915 * 2916 * With interrupts disabled, we block page table pages from being freed 2917 * from under us. See struct mmu_table_batch comments in 2918 * include/asm-generic/tlb.h for more details. 2919 * 2920 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2921 * that come from THPs splitting. 2922 */ 2923 local_irq_save(flags); 2924 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2925 local_irq_restore(flags); 2926 2927 /* 2928 * When pinning pages for DMA there could be a concurrent write protect 2929 * from fork() via copy_page_range(), in this case always fail fast GUP. 2930 */ 2931 if (gup_flags & FOLL_PIN) { 2932 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2933 unpin_user_pages_lockless(pages, nr_pinned); 2934 return 0; 2935 } else { 2936 sanity_check_pinned_pages(pages, nr_pinned); 2937 } 2938 } 2939 return nr_pinned; 2940 } 2941 2942 static int internal_get_user_pages_fast(unsigned long start, 2943 unsigned long nr_pages, 2944 unsigned int gup_flags, 2945 struct page **pages) 2946 { 2947 unsigned long len, end; 2948 unsigned long nr_pinned; 2949 int ret; 2950 2951 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2952 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2953 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2954 return -EINVAL; 2955 2956 if (gup_flags & FOLL_PIN) 2957 mm_set_has_pinned_flag(¤t->mm->flags); 2958 2959 if (!(gup_flags & FOLL_FAST_ONLY)) 2960 might_lock_read(¤t->mm->mmap_lock); 2961 2962 start = untagged_addr(start) & PAGE_MASK; 2963 len = nr_pages << PAGE_SHIFT; 2964 if (check_add_overflow(start, len, &end)) 2965 return 0; 2966 if (unlikely(!access_ok((void __user *)start, len))) 2967 return -EFAULT; 2968 2969 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2970 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2971 return nr_pinned; 2972 2973 /* Slow path: try to get the remaining pages with get_user_pages */ 2974 start += nr_pinned << PAGE_SHIFT; 2975 pages += nr_pinned; 2976 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2977 pages); 2978 if (ret < 0) { 2979 /* 2980 * The caller has to unpin the pages we already pinned so 2981 * returning -errno is not an option 2982 */ 2983 if (nr_pinned) 2984 return nr_pinned; 2985 return ret; 2986 } 2987 return ret + nr_pinned; 2988 } 2989 2990 /** 2991 * get_user_pages_fast_only() - pin user pages in memory 2992 * @start: starting user address 2993 * @nr_pages: number of pages from start to pin 2994 * @gup_flags: flags modifying pin behaviour 2995 * @pages: array that receives pointers to the pages pinned. 2996 * Should be at least nr_pages long. 2997 * 2998 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2999 * the regular GUP. 3000 * Note a difference with get_user_pages_fast: this always returns the 3001 * number of pages pinned, 0 if no pages were pinned. 3002 * 3003 * If the architecture does not support this function, simply return with no 3004 * pages pinned. 3005 * 3006 * Careful, careful! COW breaking can go either way, so a non-write 3007 * access can get ambiguous page results. If you call this function without 3008 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3009 */ 3010 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3011 unsigned int gup_flags, struct page **pages) 3012 { 3013 int nr_pinned; 3014 /* 3015 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3016 * because gup fast is always a "pin with a +1 page refcount" request. 3017 * 3018 * FOLL_FAST_ONLY is required in order to match the API description of 3019 * this routine: no fall back to regular ("slow") GUP. 3020 */ 3021 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 3022 3023 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3024 pages); 3025 3026 /* 3027 * As specified in the API description above, this routine is not 3028 * allowed to return negative values. However, the common core 3029 * routine internal_get_user_pages_fast() *can* return -errno. 3030 * Therefore, correct for that here: 3031 */ 3032 if (nr_pinned < 0) 3033 nr_pinned = 0; 3034 3035 return nr_pinned; 3036 } 3037 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3038 3039 /** 3040 * get_user_pages_fast() - pin user pages in memory 3041 * @start: starting user address 3042 * @nr_pages: number of pages from start to pin 3043 * @gup_flags: flags modifying pin behaviour 3044 * @pages: array that receives pointers to the pages pinned. 3045 * Should be at least nr_pages long. 3046 * 3047 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3048 * If not successful, it will fall back to taking the lock and 3049 * calling get_user_pages(). 3050 * 3051 * Returns number of pages pinned. This may be fewer than the number requested. 3052 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3053 * -errno. 3054 */ 3055 int get_user_pages_fast(unsigned long start, int nr_pages, 3056 unsigned int gup_flags, struct page **pages) 3057 { 3058 if (!is_valid_gup_flags(gup_flags)) 3059 return -EINVAL; 3060 3061 /* 3062 * The caller may or may not have explicitly set FOLL_GET; either way is 3063 * OK. However, internally (within mm/gup.c), gup fast variants must set 3064 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3065 * request. 3066 */ 3067 gup_flags |= FOLL_GET; 3068 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3069 } 3070 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3071 3072 /** 3073 * pin_user_pages_fast() - pin user pages in memory without taking locks 3074 * 3075 * @start: starting user address 3076 * @nr_pages: number of pages from start to pin 3077 * @gup_flags: flags modifying pin behaviour 3078 * @pages: array that receives pointers to the pages pinned. 3079 * Should be at least nr_pages long. 3080 * 3081 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3082 * get_user_pages_fast() for documentation on the function arguments, because 3083 * the arguments here are identical. 3084 * 3085 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3086 * see Documentation/core-api/pin_user_pages.rst for further details. 3087 */ 3088 int pin_user_pages_fast(unsigned long start, int nr_pages, 3089 unsigned int gup_flags, struct page **pages) 3090 { 3091 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3092 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3093 return -EINVAL; 3094 3095 if (WARN_ON_ONCE(!pages)) 3096 return -EINVAL; 3097 3098 gup_flags |= FOLL_PIN; 3099 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3100 } 3101 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3102 3103 /* 3104 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3105 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3106 * 3107 * The API rules are the same, too: no negative values may be returned. 3108 */ 3109 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3110 unsigned int gup_flags, struct page **pages) 3111 { 3112 int nr_pinned; 3113 3114 /* 3115 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3116 * rules require returning 0, rather than -errno: 3117 */ 3118 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3119 return 0; 3120 3121 if (WARN_ON_ONCE(!pages)) 3122 return 0; 3123 /* 3124 * FOLL_FAST_ONLY is required in order to match the API description of 3125 * this routine: no fall back to regular ("slow") GUP. 3126 */ 3127 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3128 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3129 pages); 3130 /* 3131 * This routine is not allowed to return negative values. However, 3132 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3133 * correct for that here: 3134 */ 3135 if (nr_pinned < 0) 3136 nr_pinned = 0; 3137 3138 return nr_pinned; 3139 } 3140 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3141 3142 /** 3143 * pin_user_pages_remote() - pin pages of a remote process 3144 * 3145 * @mm: mm_struct of target mm 3146 * @start: starting user address 3147 * @nr_pages: number of pages from start to pin 3148 * @gup_flags: flags modifying lookup behaviour 3149 * @pages: array that receives pointers to the pages pinned. 3150 * Should be at least nr_pages long. 3151 * @vmas: array of pointers to vmas corresponding to each page. 3152 * Or NULL if the caller does not require them. 3153 * @locked: pointer to lock flag indicating whether lock is held and 3154 * subsequently whether VM_FAULT_RETRY functionality can be 3155 * utilised. Lock must initially be held. 3156 * 3157 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3158 * get_user_pages_remote() for documentation on the function arguments, because 3159 * the arguments here are identical. 3160 * 3161 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3162 * see Documentation/core-api/pin_user_pages.rst for details. 3163 */ 3164 long pin_user_pages_remote(struct mm_struct *mm, 3165 unsigned long start, unsigned long nr_pages, 3166 unsigned int gup_flags, struct page **pages, 3167 struct vm_area_struct **vmas, int *locked) 3168 { 3169 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3170 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3171 return -EINVAL; 3172 3173 if (WARN_ON_ONCE(!pages)) 3174 return -EINVAL; 3175 3176 gup_flags |= FOLL_PIN; 3177 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3178 pages, vmas, locked); 3179 } 3180 EXPORT_SYMBOL(pin_user_pages_remote); 3181 3182 /** 3183 * pin_user_pages() - pin user pages in memory for use by other devices 3184 * 3185 * @start: starting user address 3186 * @nr_pages: number of pages from start to pin 3187 * @gup_flags: flags modifying lookup behaviour 3188 * @pages: array that receives pointers to the pages pinned. 3189 * Should be at least nr_pages long. 3190 * @vmas: array of pointers to vmas corresponding to each page. 3191 * Or NULL if the caller does not require them. 3192 * 3193 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3194 * FOLL_PIN is set. 3195 * 3196 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3197 * see Documentation/core-api/pin_user_pages.rst for details. 3198 */ 3199 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3200 unsigned int gup_flags, struct page **pages, 3201 struct vm_area_struct **vmas) 3202 { 3203 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3204 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3205 return -EINVAL; 3206 3207 if (WARN_ON_ONCE(!pages)) 3208 return -EINVAL; 3209 3210 gup_flags |= FOLL_PIN; 3211 return __gup_longterm_locked(current->mm, start, nr_pages, 3212 pages, vmas, gup_flags); 3213 } 3214 EXPORT_SYMBOL(pin_user_pages); 3215 3216 /* 3217 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3218 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3219 * FOLL_PIN and rejects FOLL_GET. 3220 */ 3221 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3222 struct page **pages, unsigned int gup_flags) 3223 { 3224 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3225 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3226 return -EINVAL; 3227 3228 if (WARN_ON_ONCE(!pages)) 3229 return -EINVAL; 3230 3231 gup_flags |= FOLL_PIN; 3232 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3233 } 3234 EXPORT_SYMBOL(pin_user_pages_unlocked); 3235