1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in page_try_share_anon_rmap(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 } 714 if (likely(!pmd_trans_huge(pmdval))) 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 716 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 718 return no_page_table(vma, flags); 719 720 ptl = pmd_lock(mm, pmd); 721 if (unlikely(!pmd_present(*pmd))) { 722 spin_unlock(ptl); 723 return no_page_table(vma, flags); 724 } 725 if (unlikely(!pmd_trans_huge(*pmd))) { 726 spin_unlock(ptl); 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 } 729 if (flags & FOLL_SPLIT_PMD) { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 /* If pmd was left empty, stuff a page table in there quickly */ 733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 735 } 736 page = follow_trans_huge_pmd(vma, address, pmd, flags); 737 spin_unlock(ptl); 738 ctx->page_mask = HPAGE_PMD_NR - 1; 739 return page; 740 } 741 742 static struct page *follow_pud_mask(struct vm_area_struct *vma, 743 unsigned long address, p4d_t *p4dp, 744 unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pud_t *pud; 748 spinlock_t *ptl; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 pud = pud_offset(p4dp, address); 753 if (pud_none(*pud)) 754 return no_page_table(vma, flags); 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct page *page; 815 struct mm_struct *mm = vma->vm_mm; 816 817 ctx->page_mask = 0; 818 819 /* 820 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 821 * special hugetlb page table walking code. This eliminates the 822 * need to check for hugetlb entries in the general walking code. 823 * 824 * hugetlb_follow_page_mask is only for follow_page() handling here. 825 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 826 */ 827 if (is_vm_hugetlb_page(vma)) { 828 page = hugetlb_follow_page_mask(vma, address, flags); 829 if (!page) 830 page = no_page_table(vma, flags); 831 return page; 832 } 833 834 pgd = pgd_offset(mm, address); 835 836 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 837 return no_page_table(vma, flags); 838 839 return follow_p4d_mask(vma, address, pgd, flags, ctx); 840 } 841 842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 843 unsigned int foll_flags) 844 { 845 struct follow_page_context ctx = { NULL }; 846 struct page *page; 847 848 if (vma_is_secretmem(vma)) 849 return NULL; 850 851 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 852 return NULL; 853 854 /* 855 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 856 * to fail on PROT_NONE-mapped pages. 857 */ 858 page = follow_page_mask(vma, address, foll_flags, &ctx); 859 if (ctx.pgmap) 860 put_dev_pagemap(ctx.pgmap); 861 return page; 862 } 863 864 static int get_gate_page(struct mm_struct *mm, unsigned long address, 865 unsigned int gup_flags, struct vm_area_struct **vma, 866 struct page **page) 867 { 868 pgd_t *pgd; 869 p4d_t *p4d; 870 pud_t *pud; 871 pmd_t *pmd; 872 pte_t *pte; 873 pte_t entry; 874 int ret = -EFAULT; 875 876 /* user gate pages are read-only */ 877 if (gup_flags & FOLL_WRITE) 878 return -EFAULT; 879 if (address > TASK_SIZE) 880 pgd = pgd_offset_k(address); 881 else 882 pgd = pgd_offset_gate(mm, address); 883 if (pgd_none(*pgd)) 884 return -EFAULT; 885 p4d = p4d_offset(pgd, address); 886 if (p4d_none(*p4d)) 887 return -EFAULT; 888 pud = pud_offset(p4d, address); 889 if (pud_none(*pud)) 890 return -EFAULT; 891 pmd = pmd_offset(pud, address); 892 if (!pmd_present(*pmd)) 893 return -EFAULT; 894 pte = pte_offset_map(pmd, address); 895 if (!pte) 896 return -EFAULT; 897 entry = ptep_get(pte); 898 if (pte_none(entry)) 899 goto unmap; 900 *vma = get_gate_vma(mm); 901 if (!page) 902 goto out; 903 *page = vm_normal_page(*vma, address, entry); 904 if (!*page) { 905 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 906 goto unmap; 907 *page = pte_page(entry); 908 } 909 ret = try_grab_page(*page, gup_flags); 910 if (unlikely(ret)) 911 goto unmap; 912 out: 913 ret = 0; 914 unmap: 915 pte_unmap(pte); 916 return ret; 917 } 918 919 /* 920 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 921 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 922 * to 0 and -EBUSY returned. 923 */ 924 static int faultin_page(struct vm_area_struct *vma, 925 unsigned long address, unsigned int *flags, bool unshare, 926 int *locked) 927 { 928 unsigned int fault_flags = 0; 929 vm_fault_t ret; 930 931 if (*flags & FOLL_NOFAULT) 932 return -EFAULT; 933 if (*flags & FOLL_WRITE) 934 fault_flags |= FAULT_FLAG_WRITE; 935 if (*flags & FOLL_REMOTE) 936 fault_flags |= FAULT_FLAG_REMOTE; 937 if (*flags & FOLL_UNLOCKABLE) { 938 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 939 /* 940 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 941 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 942 * That's because some callers may not be prepared to 943 * handle early exits caused by non-fatal signals. 944 */ 945 if (*flags & FOLL_INTERRUPTIBLE) 946 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 947 } 948 if (*flags & FOLL_NOWAIT) 949 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 950 if (*flags & FOLL_TRIED) { 951 /* 952 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 953 * can co-exist 954 */ 955 fault_flags |= FAULT_FLAG_TRIED; 956 } 957 if (unshare) { 958 fault_flags |= FAULT_FLAG_UNSHARE; 959 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 960 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 961 } 962 963 ret = handle_mm_fault(vma, address, fault_flags, NULL); 964 965 if (ret & VM_FAULT_COMPLETED) { 966 /* 967 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 968 * mmap lock in the page fault handler. Sanity check this. 969 */ 970 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 971 *locked = 0; 972 973 /* 974 * We should do the same as VM_FAULT_RETRY, but let's not 975 * return -EBUSY since that's not reflecting the reality of 976 * what has happened - we've just fully completed a page 977 * fault, with the mmap lock released. Use -EAGAIN to show 978 * that we want to take the mmap lock _again_. 979 */ 980 return -EAGAIN; 981 } 982 983 if (ret & VM_FAULT_ERROR) { 984 int err = vm_fault_to_errno(ret, *flags); 985 986 if (err) 987 return err; 988 BUG(); 989 } 990 991 if (ret & VM_FAULT_RETRY) { 992 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 993 *locked = 0; 994 return -EBUSY; 995 } 996 997 return 0; 998 } 999 1000 /* 1001 * Writing to file-backed mappings which require folio dirty tracking using GUP 1002 * is a fundamentally broken operation, as kernel write access to GUP mappings 1003 * do not adhere to the semantics expected by a file system. 1004 * 1005 * Consider the following scenario:- 1006 * 1007 * 1. A folio is written to via GUP which write-faults the memory, notifying 1008 * the file system and dirtying the folio. 1009 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1010 * the PTE being marked read-only. 1011 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1012 * direct mapping. 1013 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1014 * (though it does not have to). 1015 * 1016 * This results in both data being written to a folio without writenotify, and 1017 * the folio being dirtied unexpectedly (if the caller decides to do so). 1018 */ 1019 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1020 unsigned long gup_flags) 1021 { 1022 /* 1023 * If we aren't pinning then no problematic write can occur. A long term 1024 * pin is the most egregious case so this is the case we disallow. 1025 */ 1026 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1027 (FOLL_PIN | FOLL_LONGTERM)) 1028 return true; 1029 1030 /* 1031 * If the VMA does not require dirty tracking then no problematic write 1032 * can occur either. 1033 */ 1034 return !vma_needs_dirty_tracking(vma); 1035 } 1036 1037 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1038 { 1039 vm_flags_t vm_flags = vma->vm_flags; 1040 int write = (gup_flags & FOLL_WRITE); 1041 int foreign = (gup_flags & FOLL_REMOTE); 1042 bool vma_anon = vma_is_anonymous(vma); 1043 1044 if (vm_flags & (VM_IO | VM_PFNMAP)) 1045 return -EFAULT; 1046 1047 if ((gup_flags & FOLL_ANON) && !vma_anon) 1048 return -EFAULT; 1049 1050 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1051 return -EOPNOTSUPP; 1052 1053 if (vma_is_secretmem(vma)) 1054 return -EFAULT; 1055 1056 if (write) { 1057 if (!vma_anon && 1058 !writable_file_mapping_allowed(vma, gup_flags)) 1059 return -EFAULT; 1060 1061 if (!(vm_flags & VM_WRITE)) { 1062 if (!(gup_flags & FOLL_FORCE)) 1063 return -EFAULT; 1064 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1065 if (is_vm_hugetlb_page(vma)) 1066 return -EFAULT; 1067 /* 1068 * We used to let the write,force case do COW in a 1069 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1070 * set a breakpoint in a read-only mapping of an 1071 * executable, without corrupting the file (yet only 1072 * when that file had been opened for writing!). 1073 * Anon pages in shared mappings are surprising: now 1074 * just reject it. 1075 */ 1076 if (!is_cow_mapping(vm_flags)) 1077 return -EFAULT; 1078 } 1079 } else if (!(vm_flags & VM_READ)) { 1080 if (!(gup_flags & FOLL_FORCE)) 1081 return -EFAULT; 1082 /* 1083 * Is there actually any vma we can reach here which does not 1084 * have VM_MAYREAD set? 1085 */ 1086 if (!(vm_flags & VM_MAYREAD)) 1087 return -EFAULT; 1088 } 1089 /* 1090 * gups are always data accesses, not instruction 1091 * fetches, so execute=false here 1092 */ 1093 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1094 return -EFAULT; 1095 return 0; 1096 } 1097 1098 /* 1099 * This is "vma_lookup()", but with a warning if we would have 1100 * historically expanded the stack in the GUP code. 1101 */ 1102 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1103 unsigned long addr) 1104 { 1105 #ifdef CONFIG_STACK_GROWSUP 1106 return vma_lookup(mm, addr); 1107 #else 1108 static volatile unsigned long next_warn; 1109 struct vm_area_struct *vma; 1110 unsigned long now, next; 1111 1112 vma = find_vma(mm, addr); 1113 if (!vma || (addr >= vma->vm_start)) 1114 return vma; 1115 1116 /* Only warn for half-way relevant accesses */ 1117 if (!(vma->vm_flags & VM_GROWSDOWN)) 1118 return NULL; 1119 if (vma->vm_start - addr > 65536) 1120 return NULL; 1121 1122 /* Let's not warn more than once an hour.. */ 1123 now = jiffies; next = next_warn; 1124 if (next && time_before(now, next)) 1125 return NULL; 1126 next_warn = now + 60*60*HZ; 1127 1128 /* Let people know things may have changed. */ 1129 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1130 current->comm, task_pid_nr(current), 1131 vma->vm_start, vma->vm_end, addr); 1132 dump_stack(); 1133 return NULL; 1134 #endif 1135 } 1136 1137 /** 1138 * __get_user_pages() - pin user pages in memory 1139 * @mm: mm_struct of target mm 1140 * @start: starting user address 1141 * @nr_pages: number of pages from start to pin 1142 * @gup_flags: flags modifying pin behaviour 1143 * @pages: array that receives pointers to the pages pinned. 1144 * Should be at least nr_pages long. Or NULL, if caller 1145 * only intends to ensure the pages are faulted in. 1146 * @locked: whether we're still with the mmap_lock held 1147 * 1148 * Returns either number of pages pinned (which may be less than the 1149 * number requested), or an error. Details about the return value: 1150 * 1151 * -- If nr_pages is 0, returns 0. 1152 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1153 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1154 * pages pinned. Again, this may be less than nr_pages. 1155 * -- 0 return value is possible when the fault would need to be retried. 1156 * 1157 * The caller is responsible for releasing returned @pages, via put_page(). 1158 * 1159 * Must be called with mmap_lock held. It may be released. See below. 1160 * 1161 * __get_user_pages walks a process's page tables and takes a reference to 1162 * each struct page that each user address corresponds to at a given 1163 * instant. That is, it takes the page that would be accessed if a user 1164 * thread accesses the given user virtual address at that instant. 1165 * 1166 * This does not guarantee that the page exists in the user mappings when 1167 * __get_user_pages returns, and there may even be a completely different 1168 * page there in some cases (eg. if mmapped pagecache has been invalidated 1169 * and subsequently re-faulted). However it does guarantee that the page 1170 * won't be freed completely. And mostly callers simply care that the page 1171 * contains data that was valid *at some point in time*. Typically, an IO 1172 * or similar operation cannot guarantee anything stronger anyway because 1173 * locks can't be held over the syscall boundary. 1174 * 1175 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1176 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1177 * appropriate) must be called after the page is finished with, and 1178 * before put_page is called. 1179 * 1180 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1181 * be released. If this happens *@locked will be set to 0 on return. 1182 * 1183 * A caller using such a combination of @gup_flags must therefore hold the 1184 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1185 * it must be held for either reading or writing and will not be released. 1186 * 1187 * In most cases, get_user_pages or get_user_pages_fast should be used 1188 * instead of __get_user_pages. __get_user_pages should be used only if 1189 * you need some special @gup_flags. 1190 */ 1191 static long __get_user_pages(struct mm_struct *mm, 1192 unsigned long start, unsigned long nr_pages, 1193 unsigned int gup_flags, struct page **pages, 1194 int *locked) 1195 { 1196 long ret = 0, i = 0; 1197 struct vm_area_struct *vma = NULL; 1198 struct follow_page_context ctx = { NULL }; 1199 1200 if (!nr_pages) 1201 return 0; 1202 1203 start = untagged_addr_remote(mm, start); 1204 1205 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1206 1207 do { 1208 struct page *page; 1209 unsigned int foll_flags = gup_flags; 1210 unsigned int page_increm; 1211 1212 /* first iteration or cross vma bound */ 1213 if (!vma || start >= vma->vm_end) { 1214 vma = gup_vma_lookup(mm, start); 1215 if (!vma && in_gate_area(mm, start)) { 1216 ret = get_gate_page(mm, start & PAGE_MASK, 1217 gup_flags, &vma, 1218 pages ? &pages[i] : NULL); 1219 if (ret) 1220 goto out; 1221 ctx.page_mask = 0; 1222 goto next_page; 1223 } 1224 1225 if (!vma) { 1226 ret = -EFAULT; 1227 goto out; 1228 } 1229 ret = check_vma_flags(vma, gup_flags); 1230 if (ret) 1231 goto out; 1232 1233 if (is_vm_hugetlb_page(vma)) { 1234 i = follow_hugetlb_page(mm, vma, pages, 1235 &start, &nr_pages, i, 1236 gup_flags, locked); 1237 if (!*locked) { 1238 /* 1239 * We've got a VM_FAULT_RETRY 1240 * and we've lost mmap_lock. 1241 * We must stop here. 1242 */ 1243 BUG_ON(gup_flags & FOLL_NOWAIT); 1244 goto out; 1245 } 1246 continue; 1247 } 1248 } 1249 retry: 1250 /* 1251 * If we have a pending SIGKILL, don't keep faulting pages and 1252 * potentially allocating memory. 1253 */ 1254 if (fatal_signal_pending(current)) { 1255 ret = -EINTR; 1256 goto out; 1257 } 1258 cond_resched(); 1259 1260 page = follow_page_mask(vma, start, foll_flags, &ctx); 1261 if (!page || PTR_ERR(page) == -EMLINK) { 1262 ret = faultin_page(vma, start, &foll_flags, 1263 PTR_ERR(page) == -EMLINK, locked); 1264 switch (ret) { 1265 case 0: 1266 goto retry; 1267 case -EBUSY: 1268 case -EAGAIN: 1269 ret = 0; 1270 fallthrough; 1271 case -EFAULT: 1272 case -ENOMEM: 1273 case -EHWPOISON: 1274 goto out; 1275 } 1276 BUG(); 1277 } else if (PTR_ERR(page) == -EEXIST) { 1278 /* 1279 * Proper page table entry exists, but no corresponding 1280 * struct page. If the caller expects **pages to be 1281 * filled in, bail out now, because that can't be done 1282 * for this page. 1283 */ 1284 if (pages) { 1285 ret = PTR_ERR(page); 1286 goto out; 1287 } 1288 1289 goto next_page; 1290 } else if (IS_ERR(page)) { 1291 ret = PTR_ERR(page); 1292 goto out; 1293 } 1294 if (pages) { 1295 pages[i] = page; 1296 flush_anon_page(vma, page, start); 1297 flush_dcache_page(page); 1298 ctx.page_mask = 0; 1299 } 1300 next_page: 1301 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1302 if (page_increm > nr_pages) 1303 page_increm = nr_pages; 1304 i += page_increm; 1305 start += page_increm * PAGE_SIZE; 1306 nr_pages -= page_increm; 1307 } while (nr_pages); 1308 out: 1309 if (ctx.pgmap) 1310 put_dev_pagemap(ctx.pgmap); 1311 return i ? i : ret; 1312 } 1313 1314 static bool vma_permits_fault(struct vm_area_struct *vma, 1315 unsigned int fault_flags) 1316 { 1317 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1318 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1319 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1320 1321 if (!(vm_flags & vma->vm_flags)) 1322 return false; 1323 1324 /* 1325 * The architecture might have a hardware protection 1326 * mechanism other than read/write that can deny access. 1327 * 1328 * gup always represents data access, not instruction 1329 * fetches, so execute=false here: 1330 */ 1331 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1332 return false; 1333 1334 return true; 1335 } 1336 1337 /** 1338 * fixup_user_fault() - manually resolve a user page fault 1339 * @mm: mm_struct of target mm 1340 * @address: user address 1341 * @fault_flags:flags to pass down to handle_mm_fault() 1342 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1343 * does not allow retry. If NULL, the caller must guarantee 1344 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1345 * 1346 * This is meant to be called in the specific scenario where for locking reasons 1347 * we try to access user memory in atomic context (within a pagefault_disable() 1348 * section), this returns -EFAULT, and we want to resolve the user fault before 1349 * trying again. 1350 * 1351 * Typically this is meant to be used by the futex code. 1352 * 1353 * The main difference with get_user_pages() is that this function will 1354 * unconditionally call handle_mm_fault() which will in turn perform all the 1355 * necessary SW fixup of the dirty and young bits in the PTE, while 1356 * get_user_pages() only guarantees to update these in the struct page. 1357 * 1358 * This is important for some architectures where those bits also gate the 1359 * access permission to the page because they are maintained in software. On 1360 * such architectures, gup() will not be enough to make a subsequent access 1361 * succeed. 1362 * 1363 * This function will not return with an unlocked mmap_lock. So it has not the 1364 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1365 */ 1366 int fixup_user_fault(struct mm_struct *mm, 1367 unsigned long address, unsigned int fault_flags, 1368 bool *unlocked) 1369 { 1370 struct vm_area_struct *vma; 1371 vm_fault_t ret; 1372 1373 address = untagged_addr_remote(mm, address); 1374 1375 if (unlocked) 1376 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1377 1378 retry: 1379 vma = gup_vma_lookup(mm, address); 1380 if (!vma) 1381 return -EFAULT; 1382 1383 if (!vma_permits_fault(vma, fault_flags)) 1384 return -EFAULT; 1385 1386 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1387 fatal_signal_pending(current)) 1388 return -EINTR; 1389 1390 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1391 1392 if (ret & VM_FAULT_COMPLETED) { 1393 /* 1394 * NOTE: it's a pity that we need to retake the lock here 1395 * to pair with the unlock() in the callers. Ideally we 1396 * could tell the callers so they do not need to unlock. 1397 */ 1398 mmap_read_lock(mm); 1399 *unlocked = true; 1400 return 0; 1401 } 1402 1403 if (ret & VM_FAULT_ERROR) { 1404 int err = vm_fault_to_errno(ret, 0); 1405 1406 if (err) 1407 return err; 1408 BUG(); 1409 } 1410 1411 if (ret & VM_FAULT_RETRY) { 1412 mmap_read_lock(mm); 1413 *unlocked = true; 1414 fault_flags |= FAULT_FLAG_TRIED; 1415 goto retry; 1416 } 1417 1418 return 0; 1419 } 1420 EXPORT_SYMBOL_GPL(fixup_user_fault); 1421 1422 /* 1423 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1424 * specified, it'll also respond to generic signals. The caller of GUP 1425 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1426 */ 1427 static bool gup_signal_pending(unsigned int flags) 1428 { 1429 if (fatal_signal_pending(current)) 1430 return true; 1431 1432 if (!(flags & FOLL_INTERRUPTIBLE)) 1433 return false; 1434 1435 return signal_pending(current); 1436 } 1437 1438 /* 1439 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1440 * the caller. This function may drop the mmap_lock. If it does so, then it will 1441 * set (*locked = 0). 1442 * 1443 * (*locked == 0) means that the caller expects this function to acquire and 1444 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1445 * the function returns, even though it may have changed temporarily during 1446 * function execution. 1447 * 1448 * Please note that this function, unlike __get_user_pages(), will not return 0 1449 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1450 */ 1451 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1452 unsigned long start, 1453 unsigned long nr_pages, 1454 struct page **pages, 1455 int *locked, 1456 unsigned int flags) 1457 { 1458 long ret, pages_done; 1459 bool must_unlock = false; 1460 1461 /* 1462 * The internal caller expects GUP to manage the lock internally and the 1463 * lock must be released when this returns. 1464 */ 1465 if (!*locked) { 1466 if (mmap_read_lock_killable(mm)) 1467 return -EAGAIN; 1468 must_unlock = true; 1469 *locked = 1; 1470 } 1471 else 1472 mmap_assert_locked(mm); 1473 1474 if (flags & FOLL_PIN) 1475 mm_set_has_pinned_flag(&mm->flags); 1476 1477 /* 1478 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1479 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1480 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1481 * for FOLL_GET, not for the newer FOLL_PIN. 1482 * 1483 * FOLL_PIN always expects pages to be non-null, but no need to assert 1484 * that here, as any failures will be obvious enough. 1485 */ 1486 if (pages && !(flags & FOLL_PIN)) 1487 flags |= FOLL_GET; 1488 1489 pages_done = 0; 1490 for (;;) { 1491 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1492 locked); 1493 if (!(flags & FOLL_UNLOCKABLE)) { 1494 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1495 pages_done = ret; 1496 break; 1497 } 1498 1499 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1500 if (!*locked) { 1501 BUG_ON(ret < 0); 1502 BUG_ON(ret >= nr_pages); 1503 } 1504 1505 if (ret > 0) { 1506 nr_pages -= ret; 1507 pages_done += ret; 1508 if (!nr_pages) 1509 break; 1510 } 1511 if (*locked) { 1512 /* 1513 * VM_FAULT_RETRY didn't trigger or it was a 1514 * FOLL_NOWAIT. 1515 */ 1516 if (!pages_done) 1517 pages_done = ret; 1518 break; 1519 } 1520 /* 1521 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1522 * For the prefault case (!pages) we only update counts. 1523 */ 1524 if (likely(pages)) 1525 pages += ret; 1526 start += ret << PAGE_SHIFT; 1527 1528 /* The lock was temporarily dropped, so we must unlock later */ 1529 must_unlock = true; 1530 1531 retry: 1532 /* 1533 * Repeat on the address that fired VM_FAULT_RETRY 1534 * with both FAULT_FLAG_ALLOW_RETRY and 1535 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1536 * by fatal signals of even common signals, depending on 1537 * the caller's request. So we need to check it before we 1538 * start trying again otherwise it can loop forever. 1539 */ 1540 if (gup_signal_pending(flags)) { 1541 if (!pages_done) 1542 pages_done = -EINTR; 1543 break; 1544 } 1545 1546 ret = mmap_read_lock_killable(mm); 1547 if (ret) { 1548 BUG_ON(ret > 0); 1549 if (!pages_done) 1550 pages_done = ret; 1551 break; 1552 } 1553 1554 *locked = 1; 1555 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1556 pages, locked); 1557 if (!*locked) { 1558 /* Continue to retry until we succeeded */ 1559 BUG_ON(ret != 0); 1560 goto retry; 1561 } 1562 if (ret != 1) { 1563 BUG_ON(ret > 1); 1564 if (!pages_done) 1565 pages_done = ret; 1566 break; 1567 } 1568 nr_pages--; 1569 pages_done++; 1570 if (!nr_pages) 1571 break; 1572 if (likely(pages)) 1573 pages++; 1574 start += PAGE_SIZE; 1575 } 1576 if (must_unlock && *locked) { 1577 /* 1578 * We either temporarily dropped the lock, or the caller 1579 * requested that we both acquire and drop the lock. Either way, 1580 * we must now unlock, and notify the caller of that state. 1581 */ 1582 mmap_read_unlock(mm); 1583 *locked = 0; 1584 } 1585 return pages_done; 1586 } 1587 1588 /** 1589 * populate_vma_page_range() - populate a range of pages in the vma. 1590 * @vma: target vma 1591 * @start: start address 1592 * @end: end address 1593 * @locked: whether the mmap_lock is still held 1594 * 1595 * This takes care of mlocking the pages too if VM_LOCKED is set. 1596 * 1597 * Return either number of pages pinned in the vma, or a negative error 1598 * code on error. 1599 * 1600 * vma->vm_mm->mmap_lock must be held. 1601 * 1602 * If @locked is NULL, it may be held for read or write and will 1603 * be unperturbed. 1604 * 1605 * If @locked is non-NULL, it must held for read only and may be 1606 * released. If it's released, *@locked will be set to 0. 1607 */ 1608 long populate_vma_page_range(struct vm_area_struct *vma, 1609 unsigned long start, unsigned long end, int *locked) 1610 { 1611 struct mm_struct *mm = vma->vm_mm; 1612 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1613 int local_locked = 1; 1614 int gup_flags; 1615 long ret; 1616 1617 VM_BUG_ON(!PAGE_ALIGNED(start)); 1618 VM_BUG_ON(!PAGE_ALIGNED(end)); 1619 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1620 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1621 mmap_assert_locked(mm); 1622 1623 /* 1624 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1625 * faultin_page() to break COW, so it has no work to do here. 1626 */ 1627 if (vma->vm_flags & VM_LOCKONFAULT) 1628 return nr_pages; 1629 1630 gup_flags = FOLL_TOUCH; 1631 /* 1632 * We want to touch writable mappings with a write fault in order 1633 * to break COW, except for shared mappings because these don't COW 1634 * and we would not want to dirty them for nothing. 1635 */ 1636 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1637 gup_flags |= FOLL_WRITE; 1638 1639 /* 1640 * We want mlock to succeed for regions that have any permissions 1641 * other than PROT_NONE. 1642 */ 1643 if (vma_is_accessible(vma)) 1644 gup_flags |= FOLL_FORCE; 1645 1646 if (locked) 1647 gup_flags |= FOLL_UNLOCKABLE; 1648 1649 /* 1650 * We made sure addr is within a VMA, so the following will 1651 * not result in a stack expansion that recurses back here. 1652 */ 1653 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1654 NULL, locked ? locked : &local_locked); 1655 lru_add_drain(); 1656 return ret; 1657 } 1658 1659 /* 1660 * faultin_vma_page_range() - populate (prefault) page tables inside the 1661 * given VMA range readable/writable 1662 * 1663 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1664 * 1665 * @vma: target vma 1666 * @start: start address 1667 * @end: end address 1668 * @write: whether to prefault readable or writable 1669 * @locked: whether the mmap_lock is still held 1670 * 1671 * Returns either number of processed pages in the vma, or a negative error 1672 * code on error (see __get_user_pages()). 1673 * 1674 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1675 * covered by the VMA. If it's released, *@locked will be set to 0. 1676 */ 1677 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1678 unsigned long end, bool write, int *locked) 1679 { 1680 struct mm_struct *mm = vma->vm_mm; 1681 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1682 int gup_flags; 1683 long ret; 1684 1685 VM_BUG_ON(!PAGE_ALIGNED(start)); 1686 VM_BUG_ON(!PAGE_ALIGNED(end)); 1687 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1688 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1689 mmap_assert_locked(mm); 1690 1691 /* 1692 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1693 * the page dirty with FOLL_WRITE -- which doesn't make a 1694 * difference with !FOLL_FORCE, because the page is writable 1695 * in the page table. 1696 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1697 * a poisoned page. 1698 * !FOLL_FORCE: Require proper access permissions. 1699 */ 1700 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1701 if (write) 1702 gup_flags |= FOLL_WRITE; 1703 1704 /* 1705 * We want to report -EINVAL instead of -EFAULT for any permission 1706 * problems or incompatible mappings. 1707 */ 1708 if (check_vma_flags(vma, gup_flags)) 1709 return -EINVAL; 1710 1711 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1712 NULL, locked); 1713 lru_add_drain(); 1714 return ret; 1715 } 1716 1717 /* 1718 * __mm_populate - populate and/or mlock pages within a range of address space. 1719 * 1720 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1721 * flags. VMAs must be already marked with the desired vm_flags, and 1722 * mmap_lock must not be held. 1723 */ 1724 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1725 { 1726 struct mm_struct *mm = current->mm; 1727 unsigned long end, nstart, nend; 1728 struct vm_area_struct *vma = NULL; 1729 int locked = 0; 1730 long ret = 0; 1731 1732 end = start + len; 1733 1734 for (nstart = start; nstart < end; nstart = nend) { 1735 /* 1736 * We want to fault in pages for [nstart; end) address range. 1737 * Find first corresponding VMA. 1738 */ 1739 if (!locked) { 1740 locked = 1; 1741 mmap_read_lock(mm); 1742 vma = find_vma_intersection(mm, nstart, end); 1743 } else if (nstart >= vma->vm_end) 1744 vma = find_vma_intersection(mm, vma->vm_end, end); 1745 1746 if (!vma) 1747 break; 1748 /* 1749 * Set [nstart; nend) to intersection of desired address 1750 * range with the first VMA. Also, skip undesirable VMA types. 1751 */ 1752 nend = min(end, vma->vm_end); 1753 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1754 continue; 1755 if (nstart < vma->vm_start) 1756 nstart = vma->vm_start; 1757 /* 1758 * Now fault in a range of pages. populate_vma_page_range() 1759 * double checks the vma flags, so that it won't mlock pages 1760 * if the vma was already munlocked. 1761 */ 1762 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1763 if (ret < 0) { 1764 if (ignore_errors) { 1765 ret = 0; 1766 continue; /* continue at next VMA */ 1767 } 1768 break; 1769 } 1770 nend = nstart + ret * PAGE_SIZE; 1771 ret = 0; 1772 } 1773 if (locked) 1774 mmap_read_unlock(mm); 1775 return ret; /* 0 or negative error code */ 1776 } 1777 #else /* CONFIG_MMU */ 1778 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1779 unsigned long nr_pages, struct page **pages, 1780 int *locked, unsigned int foll_flags) 1781 { 1782 struct vm_area_struct *vma; 1783 bool must_unlock = false; 1784 unsigned long vm_flags; 1785 long i; 1786 1787 if (!nr_pages) 1788 return 0; 1789 1790 /* 1791 * The internal caller expects GUP to manage the lock internally and the 1792 * lock must be released when this returns. 1793 */ 1794 if (!*locked) { 1795 if (mmap_read_lock_killable(mm)) 1796 return -EAGAIN; 1797 must_unlock = true; 1798 *locked = 1; 1799 } 1800 1801 /* calculate required read or write permissions. 1802 * If FOLL_FORCE is set, we only require the "MAY" flags. 1803 */ 1804 vm_flags = (foll_flags & FOLL_WRITE) ? 1805 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1806 vm_flags &= (foll_flags & FOLL_FORCE) ? 1807 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1808 1809 for (i = 0; i < nr_pages; i++) { 1810 vma = find_vma(mm, start); 1811 if (!vma) 1812 break; 1813 1814 /* protect what we can, including chardevs */ 1815 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1816 !(vm_flags & vma->vm_flags)) 1817 break; 1818 1819 if (pages) { 1820 pages[i] = virt_to_page((void *)start); 1821 if (pages[i]) 1822 get_page(pages[i]); 1823 } 1824 1825 start = (start + PAGE_SIZE) & PAGE_MASK; 1826 } 1827 1828 if (must_unlock && *locked) { 1829 mmap_read_unlock(mm); 1830 *locked = 0; 1831 } 1832 1833 return i ? : -EFAULT; 1834 } 1835 #endif /* !CONFIG_MMU */ 1836 1837 /** 1838 * fault_in_writeable - fault in userspace address range for writing 1839 * @uaddr: start of address range 1840 * @size: size of address range 1841 * 1842 * Returns the number of bytes not faulted in (like copy_to_user() and 1843 * copy_from_user()). 1844 */ 1845 size_t fault_in_writeable(char __user *uaddr, size_t size) 1846 { 1847 char __user *start = uaddr, *end; 1848 1849 if (unlikely(size == 0)) 1850 return 0; 1851 if (!user_write_access_begin(uaddr, size)) 1852 return size; 1853 if (!PAGE_ALIGNED(uaddr)) { 1854 unsafe_put_user(0, uaddr, out); 1855 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1856 } 1857 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1858 if (unlikely(end < start)) 1859 end = NULL; 1860 while (uaddr != end) { 1861 unsafe_put_user(0, uaddr, out); 1862 uaddr += PAGE_SIZE; 1863 } 1864 1865 out: 1866 user_write_access_end(); 1867 if (size > uaddr - start) 1868 return size - (uaddr - start); 1869 return 0; 1870 } 1871 EXPORT_SYMBOL(fault_in_writeable); 1872 1873 /** 1874 * fault_in_subpage_writeable - fault in an address range for writing 1875 * @uaddr: start of address range 1876 * @size: size of address range 1877 * 1878 * Fault in a user address range for writing while checking for permissions at 1879 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1880 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1881 * 1882 * Returns the number of bytes not faulted in (like copy_to_user() and 1883 * copy_from_user()). 1884 */ 1885 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1886 { 1887 size_t faulted_in; 1888 1889 /* 1890 * Attempt faulting in at page granularity first for page table 1891 * permission checking. The arch-specific probe_subpage_writeable() 1892 * functions may not check for this. 1893 */ 1894 faulted_in = size - fault_in_writeable(uaddr, size); 1895 if (faulted_in) 1896 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1897 1898 return size - faulted_in; 1899 } 1900 EXPORT_SYMBOL(fault_in_subpage_writeable); 1901 1902 /* 1903 * fault_in_safe_writeable - fault in an address range for writing 1904 * @uaddr: start of address range 1905 * @size: length of address range 1906 * 1907 * Faults in an address range for writing. This is primarily useful when we 1908 * already know that some or all of the pages in the address range aren't in 1909 * memory. 1910 * 1911 * Unlike fault_in_writeable(), this function is non-destructive. 1912 * 1913 * Note that we don't pin or otherwise hold the pages referenced that we fault 1914 * in. There's no guarantee that they'll stay in memory for any duration of 1915 * time. 1916 * 1917 * Returns the number of bytes not faulted in, like copy_to_user() and 1918 * copy_from_user(). 1919 */ 1920 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1921 { 1922 unsigned long start = (unsigned long)uaddr, end; 1923 struct mm_struct *mm = current->mm; 1924 bool unlocked = false; 1925 1926 if (unlikely(size == 0)) 1927 return 0; 1928 end = PAGE_ALIGN(start + size); 1929 if (end < start) 1930 end = 0; 1931 1932 mmap_read_lock(mm); 1933 do { 1934 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1935 break; 1936 start = (start + PAGE_SIZE) & PAGE_MASK; 1937 } while (start != end); 1938 mmap_read_unlock(mm); 1939 1940 if (size > (unsigned long)uaddr - start) 1941 return size - ((unsigned long)uaddr - start); 1942 return 0; 1943 } 1944 EXPORT_SYMBOL(fault_in_safe_writeable); 1945 1946 /** 1947 * fault_in_readable - fault in userspace address range for reading 1948 * @uaddr: start of user address range 1949 * @size: size of user address range 1950 * 1951 * Returns the number of bytes not faulted in (like copy_to_user() and 1952 * copy_from_user()). 1953 */ 1954 size_t fault_in_readable(const char __user *uaddr, size_t size) 1955 { 1956 const char __user *start = uaddr, *end; 1957 volatile char c; 1958 1959 if (unlikely(size == 0)) 1960 return 0; 1961 if (!user_read_access_begin(uaddr, size)) 1962 return size; 1963 if (!PAGE_ALIGNED(uaddr)) { 1964 unsafe_get_user(c, uaddr, out); 1965 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1966 } 1967 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1968 if (unlikely(end < start)) 1969 end = NULL; 1970 while (uaddr != end) { 1971 unsafe_get_user(c, uaddr, out); 1972 uaddr += PAGE_SIZE; 1973 } 1974 1975 out: 1976 user_read_access_end(); 1977 (void)c; 1978 if (size > uaddr - start) 1979 return size - (uaddr - start); 1980 return 0; 1981 } 1982 EXPORT_SYMBOL(fault_in_readable); 1983 1984 /** 1985 * get_dump_page() - pin user page in memory while writing it to core dump 1986 * @addr: user address 1987 * 1988 * Returns struct page pointer of user page pinned for dump, 1989 * to be freed afterwards by put_page(). 1990 * 1991 * Returns NULL on any kind of failure - a hole must then be inserted into 1992 * the corefile, to preserve alignment with its headers; and also returns 1993 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1994 * allowing a hole to be left in the corefile to save disk space. 1995 * 1996 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1997 */ 1998 #ifdef CONFIG_ELF_CORE 1999 struct page *get_dump_page(unsigned long addr) 2000 { 2001 struct page *page; 2002 int locked = 0; 2003 int ret; 2004 2005 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2006 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2007 return (ret == 1) ? page : NULL; 2008 } 2009 #endif /* CONFIG_ELF_CORE */ 2010 2011 #ifdef CONFIG_MIGRATION 2012 /* 2013 * Returns the number of collected pages. Return value is always >= 0. 2014 */ 2015 static unsigned long collect_longterm_unpinnable_pages( 2016 struct list_head *movable_page_list, 2017 unsigned long nr_pages, 2018 struct page **pages) 2019 { 2020 unsigned long i, collected = 0; 2021 struct folio *prev_folio = NULL; 2022 bool drain_allow = true; 2023 2024 for (i = 0; i < nr_pages; i++) { 2025 struct folio *folio = page_folio(pages[i]); 2026 2027 if (folio == prev_folio) 2028 continue; 2029 prev_folio = folio; 2030 2031 if (folio_is_longterm_pinnable(folio)) 2032 continue; 2033 2034 collected++; 2035 2036 if (folio_is_device_coherent(folio)) 2037 continue; 2038 2039 if (folio_test_hugetlb(folio)) { 2040 isolate_hugetlb(folio, movable_page_list); 2041 continue; 2042 } 2043 2044 if (!folio_test_lru(folio) && drain_allow) { 2045 lru_add_drain_all(); 2046 drain_allow = false; 2047 } 2048 2049 if (!folio_isolate_lru(folio)) 2050 continue; 2051 2052 list_add_tail(&folio->lru, movable_page_list); 2053 node_stat_mod_folio(folio, 2054 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2055 folio_nr_pages(folio)); 2056 } 2057 2058 return collected; 2059 } 2060 2061 /* 2062 * Unpins all pages and migrates device coherent pages and movable_page_list. 2063 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2064 * (or partial success). 2065 */ 2066 static int migrate_longterm_unpinnable_pages( 2067 struct list_head *movable_page_list, 2068 unsigned long nr_pages, 2069 struct page **pages) 2070 { 2071 int ret; 2072 unsigned long i; 2073 2074 for (i = 0; i < nr_pages; i++) { 2075 struct folio *folio = page_folio(pages[i]); 2076 2077 if (folio_is_device_coherent(folio)) { 2078 /* 2079 * Migration will fail if the page is pinned, so convert 2080 * the pin on the source page to a normal reference. 2081 */ 2082 pages[i] = NULL; 2083 folio_get(folio); 2084 gup_put_folio(folio, 1, FOLL_PIN); 2085 2086 if (migrate_device_coherent_page(&folio->page)) { 2087 ret = -EBUSY; 2088 goto err; 2089 } 2090 2091 continue; 2092 } 2093 2094 /* 2095 * We can't migrate pages with unexpected references, so drop 2096 * the reference obtained by __get_user_pages_locked(). 2097 * Migrating pages have been added to movable_page_list after 2098 * calling folio_isolate_lru() which takes a reference so the 2099 * page won't be freed if it's migrating. 2100 */ 2101 unpin_user_page(pages[i]); 2102 pages[i] = NULL; 2103 } 2104 2105 if (!list_empty(movable_page_list)) { 2106 struct migration_target_control mtc = { 2107 .nid = NUMA_NO_NODE, 2108 .gfp_mask = GFP_USER | __GFP_NOWARN, 2109 }; 2110 2111 if (migrate_pages(movable_page_list, alloc_migration_target, 2112 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2113 MR_LONGTERM_PIN, NULL)) { 2114 ret = -ENOMEM; 2115 goto err; 2116 } 2117 } 2118 2119 putback_movable_pages(movable_page_list); 2120 2121 return -EAGAIN; 2122 2123 err: 2124 for (i = 0; i < nr_pages; i++) 2125 if (pages[i]) 2126 unpin_user_page(pages[i]); 2127 putback_movable_pages(movable_page_list); 2128 2129 return ret; 2130 } 2131 2132 /* 2133 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2134 * pages in the range are required to be pinned via FOLL_PIN, before calling 2135 * this routine. 2136 * 2137 * If any pages in the range are not allowed to be pinned, then this routine 2138 * will migrate those pages away, unpin all the pages in the range and return 2139 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2140 * call this routine again. 2141 * 2142 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2143 * The caller should give up, and propagate the error back up the call stack. 2144 * 2145 * If everything is OK and all pages in the range are allowed to be pinned, then 2146 * this routine leaves all pages pinned and returns zero for success. 2147 */ 2148 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2149 struct page **pages) 2150 { 2151 unsigned long collected; 2152 LIST_HEAD(movable_page_list); 2153 2154 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2155 nr_pages, pages); 2156 if (!collected) 2157 return 0; 2158 2159 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2160 pages); 2161 } 2162 #else 2163 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2164 struct page **pages) 2165 { 2166 return 0; 2167 } 2168 #endif /* CONFIG_MIGRATION */ 2169 2170 /* 2171 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2172 * allows us to process the FOLL_LONGTERM flag. 2173 */ 2174 static long __gup_longterm_locked(struct mm_struct *mm, 2175 unsigned long start, 2176 unsigned long nr_pages, 2177 struct page **pages, 2178 int *locked, 2179 unsigned int gup_flags) 2180 { 2181 unsigned int flags; 2182 long rc, nr_pinned_pages; 2183 2184 if (!(gup_flags & FOLL_LONGTERM)) 2185 return __get_user_pages_locked(mm, start, nr_pages, pages, 2186 locked, gup_flags); 2187 2188 flags = memalloc_pin_save(); 2189 do { 2190 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2191 pages, locked, 2192 gup_flags); 2193 if (nr_pinned_pages <= 0) { 2194 rc = nr_pinned_pages; 2195 break; 2196 } 2197 2198 /* FOLL_LONGTERM implies FOLL_PIN */ 2199 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2200 } while (rc == -EAGAIN); 2201 memalloc_pin_restore(flags); 2202 return rc ? rc : nr_pinned_pages; 2203 } 2204 2205 /* 2206 * Check that the given flags are valid for the exported gup/pup interface, and 2207 * update them with the required flags that the caller must have set. 2208 */ 2209 static bool is_valid_gup_args(struct page **pages, int *locked, 2210 unsigned int *gup_flags_p, unsigned int to_set) 2211 { 2212 unsigned int gup_flags = *gup_flags_p; 2213 2214 /* 2215 * These flags not allowed to be specified externally to the gup 2216 * interfaces: 2217 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2218 * - FOLL_REMOTE is internal only and used on follow_page() 2219 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2220 */ 2221 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2222 FOLL_REMOTE | FOLL_FAST_ONLY))) 2223 return false; 2224 2225 gup_flags |= to_set; 2226 if (locked) { 2227 /* At the external interface locked must be set */ 2228 if (WARN_ON_ONCE(*locked != 1)) 2229 return false; 2230 2231 gup_flags |= FOLL_UNLOCKABLE; 2232 } 2233 2234 /* 2235 * For now, always trigger NUMA hinting faults. Some GUP users like 2236 * KVM require the hint to be as the calling context of GUP is 2237 * functionally similar to a memory reference from task context. 2238 */ 2239 gup_flags |= FOLL_HONOR_NUMA_FAULT; 2240 2241 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2242 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2243 (FOLL_PIN | FOLL_GET))) 2244 return false; 2245 2246 /* LONGTERM can only be specified when pinning */ 2247 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2248 return false; 2249 2250 /* Pages input must be given if using GET/PIN */ 2251 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2252 return false; 2253 2254 /* We want to allow the pgmap to be hot-unplugged at all times */ 2255 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2256 (gup_flags & FOLL_PCI_P2PDMA))) 2257 return false; 2258 2259 *gup_flags_p = gup_flags; 2260 return true; 2261 } 2262 2263 #ifdef CONFIG_MMU 2264 /** 2265 * get_user_pages_remote() - pin user pages in memory 2266 * @mm: mm_struct of target mm 2267 * @start: starting user address 2268 * @nr_pages: number of pages from start to pin 2269 * @gup_flags: flags modifying lookup behaviour 2270 * @pages: array that receives pointers to the pages pinned. 2271 * Should be at least nr_pages long. Or NULL, if caller 2272 * only intends to ensure the pages are faulted in. 2273 * @locked: pointer to lock flag indicating whether lock is held and 2274 * subsequently whether VM_FAULT_RETRY functionality can be 2275 * utilised. Lock must initially be held. 2276 * 2277 * Returns either number of pages pinned (which may be less than the 2278 * number requested), or an error. Details about the return value: 2279 * 2280 * -- If nr_pages is 0, returns 0. 2281 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2282 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2283 * pages pinned. Again, this may be less than nr_pages. 2284 * 2285 * The caller is responsible for releasing returned @pages, via put_page(). 2286 * 2287 * Must be called with mmap_lock held for read or write. 2288 * 2289 * get_user_pages_remote walks a process's page tables and takes a reference 2290 * to each struct page that each user address corresponds to at a given 2291 * instant. That is, it takes the page that would be accessed if a user 2292 * thread accesses the given user virtual address at that instant. 2293 * 2294 * This does not guarantee that the page exists in the user mappings when 2295 * get_user_pages_remote returns, and there may even be a completely different 2296 * page there in some cases (eg. if mmapped pagecache has been invalidated 2297 * and subsequently re-faulted). However it does guarantee that the page 2298 * won't be freed completely. And mostly callers simply care that the page 2299 * contains data that was valid *at some point in time*. Typically, an IO 2300 * or similar operation cannot guarantee anything stronger anyway because 2301 * locks can't be held over the syscall boundary. 2302 * 2303 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2304 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2305 * be called after the page is finished with, and before put_page is called. 2306 * 2307 * get_user_pages_remote is typically used for fewer-copy IO operations, 2308 * to get a handle on the memory by some means other than accesses 2309 * via the user virtual addresses. The pages may be submitted for 2310 * DMA to devices or accessed via their kernel linear mapping (via the 2311 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2312 * 2313 * See also get_user_pages_fast, for performance critical applications. 2314 * 2315 * get_user_pages_remote should be phased out in favor of 2316 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2317 * should use get_user_pages_remote because it cannot pass 2318 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2319 */ 2320 long get_user_pages_remote(struct mm_struct *mm, 2321 unsigned long start, unsigned long nr_pages, 2322 unsigned int gup_flags, struct page **pages, 2323 int *locked) 2324 { 2325 int local_locked = 1; 2326 2327 if (!is_valid_gup_args(pages, locked, &gup_flags, 2328 FOLL_TOUCH | FOLL_REMOTE)) 2329 return -EINVAL; 2330 2331 return __get_user_pages_locked(mm, start, nr_pages, pages, 2332 locked ? locked : &local_locked, 2333 gup_flags); 2334 } 2335 EXPORT_SYMBOL(get_user_pages_remote); 2336 2337 #else /* CONFIG_MMU */ 2338 long get_user_pages_remote(struct mm_struct *mm, 2339 unsigned long start, unsigned long nr_pages, 2340 unsigned int gup_flags, struct page **pages, 2341 int *locked) 2342 { 2343 return 0; 2344 } 2345 #endif /* !CONFIG_MMU */ 2346 2347 /** 2348 * get_user_pages() - pin user pages in memory 2349 * @start: starting user address 2350 * @nr_pages: number of pages from start to pin 2351 * @gup_flags: flags modifying lookup behaviour 2352 * @pages: array that receives pointers to the pages pinned. 2353 * Should be at least nr_pages long. Or NULL, if caller 2354 * only intends to ensure the pages are faulted in. 2355 * 2356 * This is the same as get_user_pages_remote(), just with a less-flexible 2357 * calling convention where we assume that the mm being operated on belongs to 2358 * the current task, and doesn't allow passing of a locked parameter. We also 2359 * obviously don't pass FOLL_REMOTE in here. 2360 */ 2361 long get_user_pages(unsigned long start, unsigned long nr_pages, 2362 unsigned int gup_flags, struct page **pages) 2363 { 2364 int locked = 1; 2365 2366 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2367 return -EINVAL; 2368 2369 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2370 &locked, gup_flags); 2371 } 2372 EXPORT_SYMBOL(get_user_pages); 2373 2374 /* 2375 * get_user_pages_unlocked() is suitable to replace the form: 2376 * 2377 * mmap_read_lock(mm); 2378 * get_user_pages(mm, ..., pages, NULL); 2379 * mmap_read_unlock(mm); 2380 * 2381 * with: 2382 * 2383 * get_user_pages_unlocked(mm, ..., pages); 2384 * 2385 * It is functionally equivalent to get_user_pages_fast so 2386 * get_user_pages_fast should be used instead if specific gup_flags 2387 * (e.g. FOLL_FORCE) are not required. 2388 */ 2389 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2390 struct page **pages, unsigned int gup_flags) 2391 { 2392 int locked = 0; 2393 2394 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2395 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2396 return -EINVAL; 2397 2398 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2399 &locked, gup_flags); 2400 } 2401 EXPORT_SYMBOL(get_user_pages_unlocked); 2402 2403 /* 2404 * Fast GUP 2405 * 2406 * get_user_pages_fast attempts to pin user pages by walking the page 2407 * tables directly and avoids taking locks. Thus the walker needs to be 2408 * protected from page table pages being freed from under it, and should 2409 * block any THP splits. 2410 * 2411 * One way to achieve this is to have the walker disable interrupts, and 2412 * rely on IPIs from the TLB flushing code blocking before the page table 2413 * pages are freed. This is unsuitable for architectures that do not need 2414 * to broadcast an IPI when invalidating TLBs. 2415 * 2416 * Another way to achieve this is to batch up page table containing pages 2417 * belonging to more than one mm_user, then rcu_sched a callback to free those 2418 * pages. Disabling interrupts will allow the fast_gup walker to both block 2419 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2420 * (which is a relatively rare event). The code below adopts this strategy. 2421 * 2422 * Before activating this code, please be aware that the following assumptions 2423 * are currently made: 2424 * 2425 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2426 * free pages containing page tables or TLB flushing requires IPI broadcast. 2427 * 2428 * *) ptes can be read atomically by the architecture. 2429 * 2430 * *) access_ok is sufficient to validate userspace address ranges. 2431 * 2432 * The last two assumptions can be relaxed by the addition of helper functions. 2433 * 2434 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2435 */ 2436 #ifdef CONFIG_HAVE_FAST_GUP 2437 2438 /* 2439 * Used in the GUP-fast path to determine whether a pin is permitted for a 2440 * specific folio. 2441 * 2442 * This call assumes the caller has pinned the folio, that the lowest page table 2443 * level still points to this folio, and that interrupts have been disabled. 2444 * 2445 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2446 * (see comment describing the writable_file_mapping_allowed() function). We 2447 * therefore try to avoid the most egregious case of a long-term mapping doing 2448 * so. 2449 * 2450 * This function cannot be as thorough as that one as the VMA is not available 2451 * in the fast path, so instead we whitelist known good cases and if in doubt, 2452 * fall back to the slow path. 2453 */ 2454 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2455 { 2456 struct address_space *mapping; 2457 unsigned long mapping_flags; 2458 2459 /* 2460 * If we aren't pinning then no problematic write can occur. A long term 2461 * pin is the most egregious case so this is the one we disallow. 2462 */ 2463 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2464 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2465 return true; 2466 2467 /* The folio is pinned, so we can safely access folio fields. */ 2468 2469 if (WARN_ON_ONCE(folio_test_slab(folio))) 2470 return false; 2471 2472 /* hugetlb mappings do not require dirty-tracking. */ 2473 if (folio_test_hugetlb(folio)) 2474 return true; 2475 2476 /* 2477 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2478 * cannot proceed, which means no actions performed under RCU can 2479 * proceed either. 2480 * 2481 * inodes and thus their mappings are freed under RCU, which means the 2482 * mapping cannot be freed beneath us and thus we can safely dereference 2483 * it. 2484 */ 2485 lockdep_assert_irqs_disabled(); 2486 2487 /* 2488 * However, there may be operations which _alter_ the mapping, so ensure 2489 * we read it once and only once. 2490 */ 2491 mapping = READ_ONCE(folio->mapping); 2492 2493 /* 2494 * The mapping may have been truncated, in any case we cannot determine 2495 * if this mapping is safe - fall back to slow path to determine how to 2496 * proceed. 2497 */ 2498 if (!mapping) 2499 return false; 2500 2501 /* Anonymous folios pose no problem. */ 2502 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2503 if (mapping_flags) 2504 return mapping_flags & PAGE_MAPPING_ANON; 2505 2506 /* 2507 * At this point, we know the mapping is non-null and points to an 2508 * address_space object. The only remaining whitelisted file system is 2509 * shmem. 2510 */ 2511 return shmem_mapping(mapping); 2512 } 2513 2514 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2515 unsigned int flags, 2516 struct page **pages) 2517 { 2518 while ((*nr) - nr_start) { 2519 struct page *page = pages[--(*nr)]; 2520 2521 ClearPageReferenced(page); 2522 if (flags & FOLL_PIN) 2523 unpin_user_page(page); 2524 else 2525 put_page(page); 2526 } 2527 } 2528 2529 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2530 /* 2531 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2532 * operations. 2533 * 2534 * To pin the page, fast-gup needs to do below in order: 2535 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2536 * 2537 * For the rest of pgtable operations where pgtable updates can be racy 2538 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2539 * is pinned. 2540 * 2541 * Above will work for all pte-level operations, including THP split. 2542 * 2543 * For THP collapse, it's a bit more complicated because fast-gup may be 2544 * walking a pgtable page that is being freed (pte is still valid but pmd 2545 * can be cleared already). To avoid race in such condition, we need to 2546 * also check pmd here to make sure pmd doesn't change (corresponds to 2547 * pmdp_collapse_flush() in the THP collapse code path). 2548 */ 2549 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2550 unsigned long end, unsigned int flags, 2551 struct page **pages, int *nr) 2552 { 2553 struct dev_pagemap *pgmap = NULL; 2554 int nr_start = *nr, ret = 0; 2555 pte_t *ptep, *ptem; 2556 2557 ptem = ptep = pte_offset_map(&pmd, addr); 2558 if (!ptep) 2559 return 0; 2560 do { 2561 pte_t pte = ptep_get_lockless(ptep); 2562 struct page *page; 2563 struct folio *folio; 2564 2565 /* 2566 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2567 * pte_access_permitted() better should reject these pages 2568 * either way: otherwise, GUP-fast might succeed in 2569 * cases where ordinary GUP would fail due to VMA access 2570 * permissions. 2571 */ 2572 if (pte_protnone(pte)) 2573 goto pte_unmap; 2574 2575 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2576 goto pte_unmap; 2577 2578 if (pte_devmap(pte)) { 2579 if (unlikely(flags & FOLL_LONGTERM)) 2580 goto pte_unmap; 2581 2582 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2583 if (unlikely(!pgmap)) { 2584 undo_dev_pagemap(nr, nr_start, flags, pages); 2585 goto pte_unmap; 2586 } 2587 } else if (pte_special(pte)) 2588 goto pte_unmap; 2589 2590 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2591 page = pte_page(pte); 2592 2593 folio = try_grab_folio(page, 1, flags); 2594 if (!folio) 2595 goto pte_unmap; 2596 2597 if (unlikely(page_is_secretmem(page))) { 2598 gup_put_folio(folio, 1, flags); 2599 goto pte_unmap; 2600 } 2601 2602 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2603 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2604 gup_put_folio(folio, 1, flags); 2605 goto pte_unmap; 2606 } 2607 2608 if (!folio_fast_pin_allowed(folio, flags)) { 2609 gup_put_folio(folio, 1, flags); 2610 goto pte_unmap; 2611 } 2612 2613 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2614 gup_put_folio(folio, 1, flags); 2615 goto pte_unmap; 2616 } 2617 2618 /* 2619 * We need to make the page accessible if and only if we are 2620 * going to access its content (the FOLL_PIN case). Please 2621 * see Documentation/core-api/pin_user_pages.rst for 2622 * details. 2623 */ 2624 if (flags & FOLL_PIN) { 2625 ret = arch_make_page_accessible(page); 2626 if (ret) { 2627 gup_put_folio(folio, 1, flags); 2628 goto pte_unmap; 2629 } 2630 } 2631 folio_set_referenced(folio); 2632 pages[*nr] = page; 2633 (*nr)++; 2634 } while (ptep++, addr += PAGE_SIZE, addr != end); 2635 2636 ret = 1; 2637 2638 pte_unmap: 2639 if (pgmap) 2640 put_dev_pagemap(pgmap); 2641 pte_unmap(ptem); 2642 return ret; 2643 } 2644 #else 2645 2646 /* 2647 * If we can't determine whether or not a pte is special, then fail immediately 2648 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2649 * to be special. 2650 * 2651 * For a futex to be placed on a THP tail page, get_futex_key requires a 2652 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2653 * useful to have gup_huge_pmd even if we can't operate on ptes. 2654 */ 2655 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2656 unsigned long end, unsigned int flags, 2657 struct page **pages, int *nr) 2658 { 2659 return 0; 2660 } 2661 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2662 2663 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2664 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2665 unsigned long end, unsigned int flags, 2666 struct page **pages, int *nr) 2667 { 2668 int nr_start = *nr; 2669 struct dev_pagemap *pgmap = NULL; 2670 2671 do { 2672 struct page *page = pfn_to_page(pfn); 2673 2674 pgmap = get_dev_pagemap(pfn, pgmap); 2675 if (unlikely(!pgmap)) { 2676 undo_dev_pagemap(nr, nr_start, flags, pages); 2677 break; 2678 } 2679 2680 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2681 undo_dev_pagemap(nr, nr_start, flags, pages); 2682 break; 2683 } 2684 2685 SetPageReferenced(page); 2686 pages[*nr] = page; 2687 if (unlikely(try_grab_page(page, flags))) { 2688 undo_dev_pagemap(nr, nr_start, flags, pages); 2689 break; 2690 } 2691 (*nr)++; 2692 pfn++; 2693 } while (addr += PAGE_SIZE, addr != end); 2694 2695 put_dev_pagemap(pgmap); 2696 return addr == end; 2697 } 2698 2699 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2700 unsigned long end, unsigned int flags, 2701 struct page **pages, int *nr) 2702 { 2703 unsigned long fault_pfn; 2704 int nr_start = *nr; 2705 2706 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2707 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2708 return 0; 2709 2710 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2711 undo_dev_pagemap(nr, nr_start, flags, pages); 2712 return 0; 2713 } 2714 return 1; 2715 } 2716 2717 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2718 unsigned long end, unsigned int flags, 2719 struct page **pages, int *nr) 2720 { 2721 unsigned long fault_pfn; 2722 int nr_start = *nr; 2723 2724 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2725 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2726 return 0; 2727 2728 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2729 undo_dev_pagemap(nr, nr_start, flags, pages); 2730 return 0; 2731 } 2732 return 1; 2733 } 2734 #else 2735 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2736 unsigned long end, unsigned int flags, 2737 struct page **pages, int *nr) 2738 { 2739 BUILD_BUG(); 2740 return 0; 2741 } 2742 2743 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2744 unsigned long end, unsigned int flags, 2745 struct page **pages, int *nr) 2746 { 2747 BUILD_BUG(); 2748 return 0; 2749 } 2750 #endif 2751 2752 static int record_subpages(struct page *page, unsigned long addr, 2753 unsigned long end, struct page **pages) 2754 { 2755 int nr; 2756 2757 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2758 pages[nr] = nth_page(page, nr); 2759 2760 return nr; 2761 } 2762 2763 #ifdef CONFIG_ARCH_HAS_HUGEPD 2764 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2765 unsigned long sz) 2766 { 2767 unsigned long __boundary = (addr + sz) & ~(sz-1); 2768 return (__boundary - 1 < end - 1) ? __boundary : end; 2769 } 2770 2771 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2772 unsigned long end, unsigned int flags, 2773 struct page **pages, int *nr) 2774 { 2775 unsigned long pte_end; 2776 struct page *page; 2777 struct folio *folio; 2778 pte_t pte; 2779 int refs; 2780 2781 pte_end = (addr + sz) & ~(sz-1); 2782 if (pte_end < end) 2783 end = pte_end; 2784 2785 pte = huge_ptep_get(ptep); 2786 2787 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2788 return 0; 2789 2790 /* hugepages are never "special" */ 2791 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2792 2793 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2794 refs = record_subpages(page, addr, end, pages + *nr); 2795 2796 folio = try_grab_folio(page, refs, flags); 2797 if (!folio) 2798 return 0; 2799 2800 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2801 gup_put_folio(folio, refs, flags); 2802 return 0; 2803 } 2804 2805 if (!folio_fast_pin_allowed(folio, flags)) { 2806 gup_put_folio(folio, refs, flags); 2807 return 0; 2808 } 2809 2810 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2811 gup_put_folio(folio, refs, flags); 2812 return 0; 2813 } 2814 2815 *nr += refs; 2816 folio_set_referenced(folio); 2817 return 1; 2818 } 2819 2820 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2821 unsigned int pdshift, unsigned long end, unsigned int flags, 2822 struct page **pages, int *nr) 2823 { 2824 pte_t *ptep; 2825 unsigned long sz = 1UL << hugepd_shift(hugepd); 2826 unsigned long next; 2827 2828 ptep = hugepte_offset(hugepd, addr, pdshift); 2829 do { 2830 next = hugepte_addr_end(addr, end, sz); 2831 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2832 return 0; 2833 } while (ptep++, addr = next, addr != end); 2834 2835 return 1; 2836 } 2837 #else 2838 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2839 unsigned int pdshift, unsigned long end, unsigned int flags, 2840 struct page **pages, int *nr) 2841 { 2842 return 0; 2843 } 2844 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2845 2846 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2847 unsigned long end, unsigned int flags, 2848 struct page **pages, int *nr) 2849 { 2850 struct page *page; 2851 struct folio *folio; 2852 int refs; 2853 2854 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2855 return 0; 2856 2857 if (pmd_devmap(orig)) { 2858 if (unlikely(flags & FOLL_LONGTERM)) 2859 return 0; 2860 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2861 pages, nr); 2862 } 2863 2864 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2865 refs = record_subpages(page, addr, end, pages + *nr); 2866 2867 folio = try_grab_folio(page, refs, flags); 2868 if (!folio) 2869 return 0; 2870 2871 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2872 gup_put_folio(folio, refs, flags); 2873 return 0; 2874 } 2875 2876 if (!folio_fast_pin_allowed(folio, flags)) { 2877 gup_put_folio(folio, refs, flags); 2878 return 0; 2879 } 2880 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2881 gup_put_folio(folio, refs, flags); 2882 return 0; 2883 } 2884 2885 *nr += refs; 2886 folio_set_referenced(folio); 2887 return 1; 2888 } 2889 2890 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2891 unsigned long end, unsigned int flags, 2892 struct page **pages, int *nr) 2893 { 2894 struct page *page; 2895 struct folio *folio; 2896 int refs; 2897 2898 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2899 return 0; 2900 2901 if (pud_devmap(orig)) { 2902 if (unlikely(flags & FOLL_LONGTERM)) 2903 return 0; 2904 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2905 pages, nr); 2906 } 2907 2908 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2909 refs = record_subpages(page, addr, end, pages + *nr); 2910 2911 folio = try_grab_folio(page, refs, flags); 2912 if (!folio) 2913 return 0; 2914 2915 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2916 gup_put_folio(folio, refs, flags); 2917 return 0; 2918 } 2919 2920 if (!folio_fast_pin_allowed(folio, flags)) { 2921 gup_put_folio(folio, refs, flags); 2922 return 0; 2923 } 2924 2925 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2926 gup_put_folio(folio, refs, flags); 2927 return 0; 2928 } 2929 2930 *nr += refs; 2931 folio_set_referenced(folio); 2932 return 1; 2933 } 2934 2935 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2936 unsigned long end, unsigned int flags, 2937 struct page **pages, int *nr) 2938 { 2939 int refs; 2940 struct page *page; 2941 struct folio *folio; 2942 2943 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2944 return 0; 2945 2946 BUILD_BUG_ON(pgd_devmap(orig)); 2947 2948 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2949 refs = record_subpages(page, addr, end, pages + *nr); 2950 2951 folio = try_grab_folio(page, refs, flags); 2952 if (!folio) 2953 return 0; 2954 2955 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2956 gup_put_folio(folio, refs, flags); 2957 return 0; 2958 } 2959 2960 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2961 gup_put_folio(folio, refs, flags); 2962 return 0; 2963 } 2964 2965 if (!folio_fast_pin_allowed(folio, flags)) { 2966 gup_put_folio(folio, refs, flags); 2967 return 0; 2968 } 2969 2970 *nr += refs; 2971 folio_set_referenced(folio); 2972 return 1; 2973 } 2974 2975 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2976 unsigned int flags, struct page **pages, int *nr) 2977 { 2978 unsigned long next; 2979 pmd_t *pmdp; 2980 2981 pmdp = pmd_offset_lockless(pudp, pud, addr); 2982 do { 2983 pmd_t pmd = pmdp_get_lockless(pmdp); 2984 2985 next = pmd_addr_end(addr, end); 2986 if (!pmd_present(pmd)) 2987 return 0; 2988 2989 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2990 pmd_devmap(pmd))) { 2991 /* See gup_pte_range() */ 2992 if (pmd_protnone(pmd)) 2993 return 0; 2994 2995 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2996 pages, nr)) 2997 return 0; 2998 2999 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3000 /* 3001 * architecture have different format for hugetlbfs 3002 * pmd format and THP pmd format 3003 */ 3004 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 3005 PMD_SHIFT, next, flags, pages, nr)) 3006 return 0; 3007 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 3008 return 0; 3009 } while (pmdp++, addr = next, addr != end); 3010 3011 return 1; 3012 } 3013 3014 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 3015 unsigned int flags, struct page **pages, int *nr) 3016 { 3017 unsigned long next; 3018 pud_t *pudp; 3019 3020 pudp = pud_offset_lockless(p4dp, p4d, addr); 3021 do { 3022 pud_t pud = READ_ONCE(*pudp); 3023 3024 next = pud_addr_end(addr, end); 3025 if (unlikely(!pud_present(pud))) 3026 return 0; 3027 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 3028 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3029 pages, nr)) 3030 return 0; 3031 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3032 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3033 PUD_SHIFT, next, flags, pages, nr)) 3034 return 0; 3035 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3036 return 0; 3037 } while (pudp++, addr = next, addr != end); 3038 3039 return 1; 3040 } 3041 3042 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3043 unsigned int flags, struct page **pages, int *nr) 3044 { 3045 unsigned long next; 3046 p4d_t *p4dp; 3047 3048 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3049 do { 3050 p4d_t p4d = READ_ONCE(*p4dp); 3051 3052 next = p4d_addr_end(addr, end); 3053 if (p4d_none(p4d)) 3054 return 0; 3055 BUILD_BUG_ON(p4d_huge(p4d)); 3056 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3057 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3058 P4D_SHIFT, next, flags, pages, nr)) 3059 return 0; 3060 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3061 return 0; 3062 } while (p4dp++, addr = next, addr != end); 3063 3064 return 1; 3065 } 3066 3067 static void gup_pgd_range(unsigned long addr, unsigned long end, 3068 unsigned int flags, struct page **pages, int *nr) 3069 { 3070 unsigned long next; 3071 pgd_t *pgdp; 3072 3073 pgdp = pgd_offset(current->mm, addr); 3074 do { 3075 pgd_t pgd = READ_ONCE(*pgdp); 3076 3077 next = pgd_addr_end(addr, end); 3078 if (pgd_none(pgd)) 3079 return; 3080 if (unlikely(pgd_huge(pgd))) { 3081 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3082 pages, nr)) 3083 return; 3084 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3085 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3086 PGDIR_SHIFT, next, flags, pages, nr)) 3087 return; 3088 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3089 return; 3090 } while (pgdp++, addr = next, addr != end); 3091 } 3092 #else 3093 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3094 unsigned int flags, struct page **pages, int *nr) 3095 { 3096 } 3097 #endif /* CONFIG_HAVE_FAST_GUP */ 3098 3099 #ifndef gup_fast_permitted 3100 /* 3101 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3102 * we need to fall back to the slow version: 3103 */ 3104 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3105 { 3106 return true; 3107 } 3108 #endif 3109 3110 static unsigned long lockless_pages_from_mm(unsigned long start, 3111 unsigned long end, 3112 unsigned int gup_flags, 3113 struct page **pages) 3114 { 3115 unsigned long flags; 3116 int nr_pinned = 0; 3117 unsigned seq; 3118 3119 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3120 !gup_fast_permitted(start, end)) 3121 return 0; 3122 3123 if (gup_flags & FOLL_PIN) { 3124 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3125 if (seq & 1) 3126 return 0; 3127 } 3128 3129 /* 3130 * Disable interrupts. The nested form is used, in order to allow full, 3131 * general purpose use of this routine. 3132 * 3133 * With interrupts disabled, we block page table pages from being freed 3134 * from under us. See struct mmu_table_batch comments in 3135 * include/asm-generic/tlb.h for more details. 3136 * 3137 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3138 * that come from THPs splitting. 3139 */ 3140 local_irq_save(flags); 3141 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3142 local_irq_restore(flags); 3143 3144 /* 3145 * When pinning pages for DMA there could be a concurrent write protect 3146 * from fork() via copy_page_range(), in this case always fail fast GUP. 3147 */ 3148 if (gup_flags & FOLL_PIN) { 3149 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3150 unpin_user_pages_lockless(pages, nr_pinned); 3151 return 0; 3152 } else { 3153 sanity_check_pinned_pages(pages, nr_pinned); 3154 } 3155 } 3156 return nr_pinned; 3157 } 3158 3159 static int internal_get_user_pages_fast(unsigned long start, 3160 unsigned long nr_pages, 3161 unsigned int gup_flags, 3162 struct page **pages) 3163 { 3164 unsigned long len, end; 3165 unsigned long nr_pinned; 3166 int locked = 0; 3167 int ret; 3168 3169 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3170 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3171 FOLL_FAST_ONLY | FOLL_NOFAULT | 3172 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3173 return -EINVAL; 3174 3175 if (gup_flags & FOLL_PIN) 3176 mm_set_has_pinned_flag(¤t->mm->flags); 3177 3178 if (!(gup_flags & FOLL_FAST_ONLY)) 3179 might_lock_read(¤t->mm->mmap_lock); 3180 3181 start = untagged_addr(start) & PAGE_MASK; 3182 len = nr_pages << PAGE_SHIFT; 3183 if (check_add_overflow(start, len, &end)) 3184 return -EOVERFLOW; 3185 if (end > TASK_SIZE_MAX) 3186 return -EFAULT; 3187 if (unlikely(!access_ok((void __user *)start, len))) 3188 return -EFAULT; 3189 3190 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3191 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3192 return nr_pinned; 3193 3194 /* Slow path: try to get the remaining pages with get_user_pages */ 3195 start += nr_pinned << PAGE_SHIFT; 3196 pages += nr_pinned; 3197 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3198 pages, &locked, 3199 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3200 if (ret < 0) { 3201 /* 3202 * The caller has to unpin the pages we already pinned so 3203 * returning -errno is not an option 3204 */ 3205 if (nr_pinned) 3206 return nr_pinned; 3207 return ret; 3208 } 3209 return ret + nr_pinned; 3210 } 3211 3212 /** 3213 * get_user_pages_fast_only() - pin user pages in memory 3214 * @start: starting user address 3215 * @nr_pages: number of pages from start to pin 3216 * @gup_flags: flags modifying pin behaviour 3217 * @pages: array that receives pointers to the pages pinned. 3218 * Should be at least nr_pages long. 3219 * 3220 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3221 * the regular GUP. 3222 * 3223 * If the architecture does not support this function, simply return with no 3224 * pages pinned. 3225 * 3226 * Careful, careful! COW breaking can go either way, so a non-write 3227 * access can get ambiguous page results. If you call this function without 3228 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3229 */ 3230 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3231 unsigned int gup_flags, struct page **pages) 3232 { 3233 /* 3234 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3235 * because gup fast is always a "pin with a +1 page refcount" request. 3236 * 3237 * FOLL_FAST_ONLY is required in order to match the API description of 3238 * this routine: no fall back to regular ("slow") GUP. 3239 */ 3240 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3241 FOLL_GET | FOLL_FAST_ONLY)) 3242 return -EINVAL; 3243 3244 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3245 } 3246 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3247 3248 /** 3249 * get_user_pages_fast() - pin user pages in memory 3250 * @start: starting user address 3251 * @nr_pages: number of pages from start to pin 3252 * @gup_flags: flags modifying pin behaviour 3253 * @pages: array that receives pointers to the pages pinned. 3254 * Should be at least nr_pages long. 3255 * 3256 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3257 * If not successful, it will fall back to taking the lock and 3258 * calling get_user_pages(). 3259 * 3260 * Returns number of pages pinned. This may be fewer than the number requested. 3261 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3262 * -errno. 3263 */ 3264 int get_user_pages_fast(unsigned long start, int nr_pages, 3265 unsigned int gup_flags, struct page **pages) 3266 { 3267 /* 3268 * The caller may or may not have explicitly set FOLL_GET; either way is 3269 * OK. However, internally (within mm/gup.c), gup fast variants must set 3270 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3271 * request. 3272 */ 3273 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3274 return -EINVAL; 3275 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3276 } 3277 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3278 3279 /** 3280 * pin_user_pages_fast() - pin user pages in memory without taking locks 3281 * 3282 * @start: starting user address 3283 * @nr_pages: number of pages from start to pin 3284 * @gup_flags: flags modifying pin behaviour 3285 * @pages: array that receives pointers to the pages pinned. 3286 * Should be at least nr_pages long. 3287 * 3288 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3289 * get_user_pages_fast() for documentation on the function arguments, because 3290 * the arguments here are identical. 3291 * 3292 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3293 * see Documentation/core-api/pin_user_pages.rst for further details. 3294 * 3295 * Note that if a zero_page is amongst the returned pages, it will not have 3296 * pins in it and unpin_user_page() will not remove pins from it. 3297 */ 3298 int pin_user_pages_fast(unsigned long start, int nr_pages, 3299 unsigned int gup_flags, struct page **pages) 3300 { 3301 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3302 return -EINVAL; 3303 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3304 } 3305 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3306 3307 /** 3308 * pin_user_pages_remote() - pin pages of a remote process 3309 * 3310 * @mm: mm_struct of target mm 3311 * @start: starting user address 3312 * @nr_pages: number of pages from start to pin 3313 * @gup_flags: flags modifying lookup behaviour 3314 * @pages: array that receives pointers to the pages pinned. 3315 * Should be at least nr_pages long. 3316 * @locked: pointer to lock flag indicating whether lock is held and 3317 * subsequently whether VM_FAULT_RETRY functionality can be 3318 * utilised. Lock must initially be held. 3319 * 3320 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3321 * get_user_pages_remote() for documentation on the function arguments, because 3322 * the arguments here are identical. 3323 * 3324 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3325 * see Documentation/core-api/pin_user_pages.rst for details. 3326 * 3327 * Note that if a zero_page is amongst the returned pages, it will not have 3328 * pins in it and unpin_user_page*() will not remove pins from it. 3329 */ 3330 long pin_user_pages_remote(struct mm_struct *mm, 3331 unsigned long start, unsigned long nr_pages, 3332 unsigned int gup_flags, struct page **pages, 3333 int *locked) 3334 { 3335 int local_locked = 1; 3336 3337 if (!is_valid_gup_args(pages, locked, &gup_flags, 3338 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3339 return 0; 3340 return __gup_longterm_locked(mm, start, nr_pages, pages, 3341 locked ? locked : &local_locked, 3342 gup_flags); 3343 } 3344 EXPORT_SYMBOL(pin_user_pages_remote); 3345 3346 /** 3347 * pin_user_pages() - pin user pages in memory for use by other devices 3348 * 3349 * @start: starting user address 3350 * @nr_pages: number of pages from start to pin 3351 * @gup_flags: flags modifying lookup behaviour 3352 * @pages: array that receives pointers to the pages pinned. 3353 * Should be at least nr_pages long. 3354 * 3355 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3356 * FOLL_PIN is set. 3357 * 3358 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3359 * see Documentation/core-api/pin_user_pages.rst for details. 3360 * 3361 * Note that if a zero_page is amongst the returned pages, it will not have 3362 * pins in it and unpin_user_page*() will not remove pins from it. 3363 */ 3364 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3365 unsigned int gup_flags, struct page **pages) 3366 { 3367 int locked = 1; 3368 3369 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3370 return 0; 3371 return __gup_longterm_locked(current->mm, start, nr_pages, 3372 pages, &locked, gup_flags); 3373 } 3374 EXPORT_SYMBOL(pin_user_pages); 3375 3376 /* 3377 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3378 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3379 * FOLL_PIN and rejects FOLL_GET. 3380 * 3381 * Note that if a zero_page is amongst the returned pages, it will not have 3382 * pins in it and unpin_user_page*() will not remove pins from it. 3383 */ 3384 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3385 struct page **pages, unsigned int gup_flags) 3386 { 3387 int locked = 0; 3388 3389 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3390 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3391 return 0; 3392 3393 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3394 &locked, gup_flags); 3395 } 3396 EXPORT_SYMBOL(pin_user_pages_unlocked); 3397