xref: /openbmc/linux/mm/gup.c (revision 1b36955c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in page_try_share_anon_rmap().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 	}
714 	if (likely(!pmd_trans_huge(pmdval)))
715 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716 
717 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
718 		return no_page_table(vma, flags);
719 
720 	ptl = pmd_lock(mm, pmd);
721 	if (unlikely(!pmd_present(*pmd))) {
722 		spin_unlock(ptl);
723 		return no_page_table(vma, flags);
724 	}
725 	if (unlikely(!pmd_trans_huge(*pmd))) {
726 		spin_unlock(ptl);
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 	}
729 	if (flags & FOLL_SPLIT_PMD) {
730 		spin_unlock(ptl);
731 		split_huge_pmd(vma, pmd, address);
732 		/* If pmd was left empty, stuff a page table in there quickly */
733 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735 	}
736 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 	spin_unlock(ptl);
738 	ctx->page_mask = HPAGE_PMD_NR - 1;
739 	return page;
740 }
741 
742 static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 				    unsigned long address, p4d_t *p4dp,
744 				    unsigned int flags,
745 				    struct follow_page_context *ctx)
746 {
747 	pud_t *pud;
748 	spinlock_t *ptl;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	pud = pud_offset(p4dp, address);
753 	if (pud_none(*pud))
754 		return no_page_table(vma, flags);
755 	if (pud_devmap(*pud)) {
756 		ptl = pud_lock(mm, pud);
757 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 		spin_unlock(ptl);
759 		if (page)
760 			return page;
761 	}
762 	if (unlikely(pud_bad(*pud)))
763 		return no_page_table(vma, flags);
764 
765 	return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767 
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 				    unsigned long address, pgd_t *pgdp,
770 				    unsigned int flags,
771 				    struct follow_page_context *ctx)
772 {
773 	p4d_t *p4d;
774 
775 	p4d = p4d_offset(pgdp, address);
776 	if (p4d_none(*p4d))
777 		return no_page_table(vma, flags);
778 	BUILD_BUG_ON(p4d_huge(*p4d));
779 	if (unlikely(p4d_bad(*p4d)))
780 		return no_page_table(vma, flags);
781 
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct page *page;
815 	struct mm_struct *mm = vma->vm_mm;
816 
817 	ctx->page_mask = 0;
818 
819 	/*
820 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
821 	 * special hugetlb page table walking code.  This eliminates the
822 	 * need to check for hugetlb entries in the general walking code.
823 	 *
824 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
825 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
826 	 */
827 	if (is_vm_hugetlb_page(vma)) {
828 		page = hugetlb_follow_page_mask(vma, address, flags);
829 		if (!page)
830 			page = no_page_table(vma, flags);
831 		return page;
832 	}
833 
834 	pgd = pgd_offset(mm, address);
835 
836 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
837 		return no_page_table(vma, flags);
838 
839 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
840 }
841 
842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
843 			 unsigned int foll_flags)
844 {
845 	struct follow_page_context ctx = { NULL };
846 	struct page *page;
847 
848 	if (vma_is_secretmem(vma))
849 		return NULL;
850 
851 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
852 		return NULL;
853 
854 	/*
855 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
856 	 * to fail on PROT_NONE-mapped pages.
857 	 */
858 	page = follow_page_mask(vma, address, foll_flags, &ctx);
859 	if (ctx.pgmap)
860 		put_dev_pagemap(ctx.pgmap);
861 	return page;
862 }
863 
864 static int get_gate_page(struct mm_struct *mm, unsigned long address,
865 		unsigned int gup_flags, struct vm_area_struct **vma,
866 		struct page **page)
867 {
868 	pgd_t *pgd;
869 	p4d_t *p4d;
870 	pud_t *pud;
871 	pmd_t *pmd;
872 	pte_t *pte;
873 	pte_t entry;
874 	int ret = -EFAULT;
875 
876 	/* user gate pages are read-only */
877 	if (gup_flags & FOLL_WRITE)
878 		return -EFAULT;
879 	if (address > TASK_SIZE)
880 		pgd = pgd_offset_k(address);
881 	else
882 		pgd = pgd_offset_gate(mm, address);
883 	if (pgd_none(*pgd))
884 		return -EFAULT;
885 	p4d = p4d_offset(pgd, address);
886 	if (p4d_none(*p4d))
887 		return -EFAULT;
888 	pud = pud_offset(p4d, address);
889 	if (pud_none(*pud))
890 		return -EFAULT;
891 	pmd = pmd_offset(pud, address);
892 	if (!pmd_present(*pmd))
893 		return -EFAULT;
894 	pte = pte_offset_map(pmd, address);
895 	if (!pte)
896 		return -EFAULT;
897 	entry = ptep_get(pte);
898 	if (pte_none(entry))
899 		goto unmap;
900 	*vma = get_gate_vma(mm);
901 	if (!page)
902 		goto out;
903 	*page = vm_normal_page(*vma, address, entry);
904 	if (!*page) {
905 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
906 			goto unmap;
907 		*page = pte_page(entry);
908 	}
909 	ret = try_grab_page(*page, gup_flags);
910 	if (unlikely(ret))
911 		goto unmap;
912 out:
913 	ret = 0;
914 unmap:
915 	pte_unmap(pte);
916 	return ret;
917 }
918 
919 /*
920  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
921  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
922  * to 0 and -EBUSY returned.
923  */
924 static int faultin_page(struct vm_area_struct *vma,
925 		unsigned long address, unsigned int *flags, bool unshare,
926 		int *locked)
927 {
928 	unsigned int fault_flags = 0;
929 	vm_fault_t ret;
930 
931 	if (*flags & FOLL_NOFAULT)
932 		return -EFAULT;
933 	if (*flags & FOLL_WRITE)
934 		fault_flags |= FAULT_FLAG_WRITE;
935 	if (*flags & FOLL_REMOTE)
936 		fault_flags |= FAULT_FLAG_REMOTE;
937 	if (*flags & FOLL_UNLOCKABLE) {
938 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
939 		/*
940 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
941 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
942 		 * That's because some callers may not be prepared to
943 		 * handle early exits caused by non-fatal signals.
944 		 */
945 		if (*flags & FOLL_INTERRUPTIBLE)
946 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
947 	}
948 	if (*flags & FOLL_NOWAIT)
949 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
950 	if (*flags & FOLL_TRIED) {
951 		/*
952 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
953 		 * can co-exist
954 		 */
955 		fault_flags |= FAULT_FLAG_TRIED;
956 	}
957 	if (unshare) {
958 		fault_flags |= FAULT_FLAG_UNSHARE;
959 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
960 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
961 	}
962 
963 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
964 
965 	if (ret & VM_FAULT_COMPLETED) {
966 		/*
967 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
968 		 * mmap lock in the page fault handler. Sanity check this.
969 		 */
970 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
971 		*locked = 0;
972 
973 		/*
974 		 * We should do the same as VM_FAULT_RETRY, but let's not
975 		 * return -EBUSY since that's not reflecting the reality of
976 		 * what has happened - we've just fully completed a page
977 		 * fault, with the mmap lock released.  Use -EAGAIN to show
978 		 * that we want to take the mmap lock _again_.
979 		 */
980 		return -EAGAIN;
981 	}
982 
983 	if (ret & VM_FAULT_ERROR) {
984 		int err = vm_fault_to_errno(ret, *flags);
985 
986 		if (err)
987 			return err;
988 		BUG();
989 	}
990 
991 	if (ret & VM_FAULT_RETRY) {
992 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
993 			*locked = 0;
994 		return -EBUSY;
995 	}
996 
997 	return 0;
998 }
999 
1000 /*
1001  * Writing to file-backed mappings which require folio dirty tracking using GUP
1002  * is a fundamentally broken operation, as kernel write access to GUP mappings
1003  * do not adhere to the semantics expected by a file system.
1004  *
1005  * Consider the following scenario:-
1006  *
1007  * 1. A folio is written to via GUP which write-faults the memory, notifying
1008  *    the file system and dirtying the folio.
1009  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1010  *    the PTE being marked read-only.
1011  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1012  *    direct mapping.
1013  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1014  *    (though it does not have to).
1015  *
1016  * This results in both data being written to a folio without writenotify, and
1017  * the folio being dirtied unexpectedly (if the caller decides to do so).
1018  */
1019 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1020 					  unsigned long gup_flags)
1021 {
1022 	/*
1023 	 * If we aren't pinning then no problematic write can occur. A long term
1024 	 * pin is the most egregious case so this is the case we disallow.
1025 	 */
1026 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1027 	    (FOLL_PIN | FOLL_LONGTERM))
1028 		return true;
1029 
1030 	/*
1031 	 * If the VMA does not require dirty tracking then no problematic write
1032 	 * can occur either.
1033 	 */
1034 	return !vma_needs_dirty_tracking(vma);
1035 }
1036 
1037 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1038 {
1039 	vm_flags_t vm_flags = vma->vm_flags;
1040 	int write = (gup_flags & FOLL_WRITE);
1041 	int foreign = (gup_flags & FOLL_REMOTE);
1042 	bool vma_anon = vma_is_anonymous(vma);
1043 
1044 	if (vm_flags & (VM_IO | VM_PFNMAP))
1045 		return -EFAULT;
1046 
1047 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1048 		return -EFAULT;
1049 
1050 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1051 		return -EOPNOTSUPP;
1052 
1053 	if (vma_is_secretmem(vma))
1054 		return -EFAULT;
1055 
1056 	if (write) {
1057 		if (!vma_anon &&
1058 		    !writable_file_mapping_allowed(vma, gup_flags))
1059 			return -EFAULT;
1060 
1061 		if (!(vm_flags & VM_WRITE)) {
1062 			if (!(gup_flags & FOLL_FORCE))
1063 				return -EFAULT;
1064 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1065 			if (is_vm_hugetlb_page(vma))
1066 				return -EFAULT;
1067 			/*
1068 			 * We used to let the write,force case do COW in a
1069 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1070 			 * set a breakpoint in a read-only mapping of an
1071 			 * executable, without corrupting the file (yet only
1072 			 * when that file had been opened for writing!).
1073 			 * Anon pages in shared mappings are surprising: now
1074 			 * just reject it.
1075 			 */
1076 			if (!is_cow_mapping(vm_flags))
1077 				return -EFAULT;
1078 		}
1079 	} else if (!(vm_flags & VM_READ)) {
1080 		if (!(gup_flags & FOLL_FORCE))
1081 			return -EFAULT;
1082 		/*
1083 		 * Is there actually any vma we can reach here which does not
1084 		 * have VM_MAYREAD set?
1085 		 */
1086 		if (!(vm_flags & VM_MAYREAD))
1087 			return -EFAULT;
1088 	}
1089 	/*
1090 	 * gups are always data accesses, not instruction
1091 	 * fetches, so execute=false here
1092 	 */
1093 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1094 		return -EFAULT;
1095 	return 0;
1096 }
1097 
1098 /*
1099  * This is "vma_lookup()", but with a warning if we would have
1100  * historically expanded the stack in the GUP code.
1101  */
1102 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1103 	 unsigned long addr)
1104 {
1105 #ifdef CONFIG_STACK_GROWSUP
1106 	return vma_lookup(mm, addr);
1107 #else
1108 	static volatile unsigned long next_warn;
1109 	struct vm_area_struct *vma;
1110 	unsigned long now, next;
1111 
1112 	vma = find_vma(mm, addr);
1113 	if (!vma || (addr >= vma->vm_start))
1114 		return vma;
1115 
1116 	/* Only warn for half-way relevant accesses */
1117 	if (!(vma->vm_flags & VM_GROWSDOWN))
1118 		return NULL;
1119 	if (vma->vm_start - addr > 65536)
1120 		return NULL;
1121 
1122 	/* Let's not warn more than once an hour.. */
1123 	now = jiffies; next = next_warn;
1124 	if (next && time_before(now, next))
1125 		return NULL;
1126 	next_warn = now + 60*60*HZ;
1127 
1128 	/* Let people know things may have changed. */
1129 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1130 		current->comm, task_pid_nr(current),
1131 		vma->vm_start, vma->vm_end, addr);
1132 	dump_stack();
1133 	return NULL;
1134 #endif
1135 }
1136 
1137 /**
1138  * __get_user_pages() - pin user pages in memory
1139  * @mm:		mm_struct of target mm
1140  * @start:	starting user address
1141  * @nr_pages:	number of pages from start to pin
1142  * @gup_flags:	flags modifying pin behaviour
1143  * @pages:	array that receives pointers to the pages pinned.
1144  *		Should be at least nr_pages long. Or NULL, if caller
1145  *		only intends to ensure the pages are faulted in.
1146  * @locked:     whether we're still with the mmap_lock held
1147  *
1148  * Returns either number of pages pinned (which may be less than the
1149  * number requested), or an error. Details about the return value:
1150  *
1151  * -- If nr_pages is 0, returns 0.
1152  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1153  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1154  *    pages pinned. Again, this may be less than nr_pages.
1155  * -- 0 return value is possible when the fault would need to be retried.
1156  *
1157  * The caller is responsible for releasing returned @pages, via put_page().
1158  *
1159  * Must be called with mmap_lock held.  It may be released.  See below.
1160  *
1161  * __get_user_pages walks a process's page tables and takes a reference to
1162  * each struct page that each user address corresponds to at a given
1163  * instant. That is, it takes the page that would be accessed if a user
1164  * thread accesses the given user virtual address at that instant.
1165  *
1166  * This does not guarantee that the page exists in the user mappings when
1167  * __get_user_pages returns, and there may even be a completely different
1168  * page there in some cases (eg. if mmapped pagecache has been invalidated
1169  * and subsequently re-faulted). However it does guarantee that the page
1170  * won't be freed completely. And mostly callers simply care that the page
1171  * contains data that was valid *at some point in time*. Typically, an IO
1172  * or similar operation cannot guarantee anything stronger anyway because
1173  * locks can't be held over the syscall boundary.
1174  *
1175  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1176  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1177  * appropriate) must be called after the page is finished with, and
1178  * before put_page is called.
1179  *
1180  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1181  * be released. If this happens *@locked will be set to 0 on return.
1182  *
1183  * A caller using such a combination of @gup_flags must therefore hold the
1184  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1185  * it must be held for either reading or writing and will not be released.
1186  *
1187  * In most cases, get_user_pages or get_user_pages_fast should be used
1188  * instead of __get_user_pages. __get_user_pages should be used only if
1189  * you need some special @gup_flags.
1190  */
1191 static long __get_user_pages(struct mm_struct *mm,
1192 		unsigned long start, unsigned long nr_pages,
1193 		unsigned int gup_flags, struct page **pages,
1194 		int *locked)
1195 {
1196 	long ret = 0, i = 0;
1197 	struct vm_area_struct *vma = NULL;
1198 	struct follow_page_context ctx = { NULL };
1199 
1200 	if (!nr_pages)
1201 		return 0;
1202 
1203 	start = untagged_addr_remote(mm, start);
1204 
1205 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1206 
1207 	do {
1208 		struct page *page;
1209 		unsigned int foll_flags = gup_flags;
1210 		unsigned int page_increm;
1211 
1212 		/* first iteration or cross vma bound */
1213 		if (!vma || start >= vma->vm_end) {
1214 			vma = gup_vma_lookup(mm, start);
1215 			if (!vma && in_gate_area(mm, start)) {
1216 				ret = get_gate_page(mm, start & PAGE_MASK,
1217 						gup_flags, &vma,
1218 						pages ? &pages[i] : NULL);
1219 				if (ret)
1220 					goto out;
1221 				ctx.page_mask = 0;
1222 				goto next_page;
1223 			}
1224 
1225 			if (!vma) {
1226 				ret = -EFAULT;
1227 				goto out;
1228 			}
1229 			ret = check_vma_flags(vma, gup_flags);
1230 			if (ret)
1231 				goto out;
1232 
1233 			if (is_vm_hugetlb_page(vma)) {
1234 				i = follow_hugetlb_page(mm, vma, pages,
1235 							&start, &nr_pages, i,
1236 							gup_flags, locked);
1237 				if (!*locked) {
1238 					/*
1239 					 * We've got a VM_FAULT_RETRY
1240 					 * and we've lost mmap_lock.
1241 					 * We must stop here.
1242 					 */
1243 					BUG_ON(gup_flags & FOLL_NOWAIT);
1244 					goto out;
1245 				}
1246 				continue;
1247 			}
1248 		}
1249 retry:
1250 		/*
1251 		 * If we have a pending SIGKILL, don't keep faulting pages and
1252 		 * potentially allocating memory.
1253 		 */
1254 		if (fatal_signal_pending(current)) {
1255 			ret = -EINTR;
1256 			goto out;
1257 		}
1258 		cond_resched();
1259 
1260 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1261 		if (!page || PTR_ERR(page) == -EMLINK) {
1262 			ret = faultin_page(vma, start, &foll_flags,
1263 					   PTR_ERR(page) == -EMLINK, locked);
1264 			switch (ret) {
1265 			case 0:
1266 				goto retry;
1267 			case -EBUSY:
1268 			case -EAGAIN:
1269 				ret = 0;
1270 				fallthrough;
1271 			case -EFAULT:
1272 			case -ENOMEM:
1273 			case -EHWPOISON:
1274 				goto out;
1275 			}
1276 			BUG();
1277 		} else if (PTR_ERR(page) == -EEXIST) {
1278 			/*
1279 			 * Proper page table entry exists, but no corresponding
1280 			 * struct page. If the caller expects **pages to be
1281 			 * filled in, bail out now, because that can't be done
1282 			 * for this page.
1283 			 */
1284 			if (pages) {
1285 				ret = PTR_ERR(page);
1286 				goto out;
1287 			}
1288 
1289 			goto next_page;
1290 		} else if (IS_ERR(page)) {
1291 			ret = PTR_ERR(page);
1292 			goto out;
1293 		}
1294 		if (pages) {
1295 			pages[i] = page;
1296 			flush_anon_page(vma, page, start);
1297 			flush_dcache_page(page);
1298 			ctx.page_mask = 0;
1299 		}
1300 next_page:
1301 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1302 		if (page_increm > nr_pages)
1303 			page_increm = nr_pages;
1304 		i += page_increm;
1305 		start += page_increm * PAGE_SIZE;
1306 		nr_pages -= page_increm;
1307 	} while (nr_pages);
1308 out:
1309 	if (ctx.pgmap)
1310 		put_dev_pagemap(ctx.pgmap);
1311 	return i ? i : ret;
1312 }
1313 
1314 static bool vma_permits_fault(struct vm_area_struct *vma,
1315 			      unsigned int fault_flags)
1316 {
1317 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1318 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1319 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1320 
1321 	if (!(vm_flags & vma->vm_flags))
1322 		return false;
1323 
1324 	/*
1325 	 * The architecture might have a hardware protection
1326 	 * mechanism other than read/write that can deny access.
1327 	 *
1328 	 * gup always represents data access, not instruction
1329 	 * fetches, so execute=false here:
1330 	 */
1331 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1332 		return false;
1333 
1334 	return true;
1335 }
1336 
1337 /**
1338  * fixup_user_fault() - manually resolve a user page fault
1339  * @mm:		mm_struct of target mm
1340  * @address:	user address
1341  * @fault_flags:flags to pass down to handle_mm_fault()
1342  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1343  *		does not allow retry. If NULL, the caller must guarantee
1344  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1345  *
1346  * This is meant to be called in the specific scenario where for locking reasons
1347  * we try to access user memory in atomic context (within a pagefault_disable()
1348  * section), this returns -EFAULT, and we want to resolve the user fault before
1349  * trying again.
1350  *
1351  * Typically this is meant to be used by the futex code.
1352  *
1353  * The main difference with get_user_pages() is that this function will
1354  * unconditionally call handle_mm_fault() which will in turn perform all the
1355  * necessary SW fixup of the dirty and young bits in the PTE, while
1356  * get_user_pages() only guarantees to update these in the struct page.
1357  *
1358  * This is important for some architectures where those bits also gate the
1359  * access permission to the page because they are maintained in software.  On
1360  * such architectures, gup() will not be enough to make a subsequent access
1361  * succeed.
1362  *
1363  * This function will not return with an unlocked mmap_lock. So it has not the
1364  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1365  */
1366 int fixup_user_fault(struct mm_struct *mm,
1367 		     unsigned long address, unsigned int fault_flags,
1368 		     bool *unlocked)
1369 {
1370 	struct vm_area_struct *vma;
1371 	vm_fault_t ret;
1372 
1373 	address = untagged_addr_remote(mm, address);
1374 
1375 	if (unlocked)
1376 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1377 
1378 retry:
1379 	vma = gup_vma_lookup(mm, address);
1380 	if (!vma)
1381 		return -EFAULT;
1382 
1383 	if (!vma_permits_fault(vma, fault_flags))
1384 		return -EFAULT;
1385 
1386 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1387 	    fatal_signal_pending(current))
1388 		return -EINTR;
1389 
1390 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1391 
1392 	if (ret & VM_FAULT_COMPLETED) {
1393 		/*
1394 		 * NOTE: it's a pity that we need to retake the lock here
1395 		 * to pair with the unlock() in the callers. Ideally we
1396 		 * could tell the callers so they do not need to unlock.
1397 		 */
1398 		mmap_read_lock(mm);
1399 		*unlocked = true;
1400 		return 0;
1401 	}
1402 
1403 	if (ret & VM_FAULT_ERROR) {
1404 		int err = vm_fault_to_errno(ret, 0);
1405 
1406 		if (err)
1407 			return err;
1408 		BUG();
1409 	}
1410 
1411 	if (ret & VM_FAULT_RETRY) {
1412 		mmap_read_lock(mm);
1413 		*unlocked = true;
1414 		fault_flags |= FAULT_FLAG_TRIED;
1415 		goto retry;
1416 	}
1417 
1418 	return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(fixup_user_fault);
1421 
1422 /*
1423  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1424  * specified, it'll also respond to generic signals.  The caller of GUP
1425  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1426  */
1427 static bool gup_signal_pending(unsigned int flags)
1428 {
1429 	if (fatal_signal_pending(current))
1430 		return true;
1431 
1432 	if (!(flags & FOLL_INTERRUPTIBLE))
1433 		return false;
1434 
1435 	return signal_pending(current);
1436 }
1437 
1438 /*
1439  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1440  * the caller. This function may drop the mmap_lock. If it does so, then it will
1441  * set (*locked = 0).
1442  *
1443  * (*locked == 0) means that the caller expects this function to acquire and
1444  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1445  * the function returns, even though it may have changed temporarily during
1446  * function execution.
1447  *
1448  * Please note that this function, unlike __get_user_pages(), will not return 0
1449  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1450  */
1451 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1452 						unsigned long start,
1453 						unsigned long nr_pages,
1454 						struct page **pages,
1455 						int *locked,
1456 						unsigned int flags)
1457 {
1458 	long ret, pages_done;
1459 	bool must_unlock = false;
1460 
1461 	/*
1462 	 * The internal caller expects GUP to manage the lock internally and the
1463 	 * lock must be released when this returns.
1464 	 */
1465 	if (!*locked) {
1466 		if (mmap_read_lock_killable(mm))
1467 			return -EAGAIN;
1468 		must_unlock = true;
1469 		*locked = 1;
1470 	}
1471 	else
1472 		mmap_assert_locked(mm);
1473 
1474 	if (flags & FOLL_PIN)
1475 		mm_set_has_pinned_flag(&mm->flags);
1476 
1477 	/*
1478 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1479 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1480 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1481 	 * for FOLL_GET, not for the newer FOLL_PIN.
1482 	 *
1483 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1484 	 * that here, as any failures will be obvious enough.
1485 	 */
1486 	if (pages && !(flags & FOLL_PIN))
1487 		flags |= FOLL_GET;
1488 
1489 	pages_done = 0;
1490 	for (;;) {
1491 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1492 				       locked);
1493 		if (!(flags & FOLL_UNLOCKABLE)) {
1494 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1495 			pages_done = ret;
1496 			break;
1497 		}
1498 
1499 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1500 		if (!*locked) {
1501 			BUG_ON(ret < 0);
1502 			BUG_ON(ret >= nr_pages);
1503 		}
1504 
1505 		if (ret > 0) {
1506 			nr_pages -= ret;
1507 			pages_done += ret;
1508 			if (!nr_pages)
1509 				break;
1510 		}
1511 		if (*locked) {
1512 			/*
1513 			 * VM_FAULT_RETRY didn't trigger or it was a
1514 			 * FOLL_NOWAIT.
1515 			 */
1516 			if (!pages_done)
1517 				pages_done = ret;
1518 			break;
1519 		}
1520 		/*
1521 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1522 		 * For the prefault case (!pages) we only update counts.
1523 		 */
1524 		if (likely(pages))
1525 			pages += ret;
1526 		start += ret << PAGE_SHIFT;
1527 
1528 		/* The lock was temporarily dropped, so we must unlock later */
1529 		must_unlock = true;
1530 
1531 retry:
1532 		/*
1533 		 * Repeat on the address that fired VM_FAULT_RETRY
1534 		 * with both FAULT_FLAG_ALLOW_RETRY and
1535 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1536 		 * by fatal signals of even common signals, depending on
1537 		 * the caller's request. So we need to check it before we
1538 		 * start trying again otherwise it can loop forever.
1539 		 */
1540 		if (gup_signal_pending(flags)) {
1541 			if (!pages_done)
1542 				pages_done = -EINTR;
1543 			break;
1544 		}
1545 
1546 		ret = mmap_read_lock_killable(mm);
1547 		if (ret) {
1548 			BUG_ON(ret > 0);
1549 			if (!pages_done)
1550 				pages_done = ret;
1551 			break;
1552 		}
1553 
1554 		*locked = 1;
1555 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1556 				       pages, locked);
1557 		if (!*locked) {
1558 			/* Continue to retry until we succeeded */
1559 			BUG_ON(ret != 0);
1560 			goto retry;
1561 		}
1562 		if (ret != 1) {
1563 			BUG_ON(ret > 1);
1564 			if (!pages_done)
1565 				pages_done = ret;
1566 			break;
1567 		}
1568 		nr_pages--;
1569 		pages_done++;
1570 		if (!nr_pages)
1571 			break;
1572 		if (likely(pages))
1573 			pages++;
1574 		start += PAGE_SIZE;
1575 	}
1576 	if (must_unlock && *locked) {
1577 		/*
1578 		 * We either temporarily dropped the lock, or the caller
1579 		 * requested that we both acquire and drop the lock. Either way,
1580 		 * we must now unlock, and notify the caller of that state.
1581 		 */
1582 		mmap_read_unlock(mm);
1583 		*locked = 0;
1584 	}
1585 	return pages_done;
1586 }
1587 
1588 /**
1589  * populate_vma_page_range() -  populate a range of pages in the vma.
1590  * @vma:   target vma
1591  * @start: start address
1592  * @end:   end address
1593  * @locked: whether the mmap_lock is still held
1594  *
1595  * This takes care of mlocking the pages too if VM_LOCKED is set.
1596  *
1597  * Return either number of pages pinned in the vma, or a negative error
1598  * code on error.
1599  *
1600  * vma->vm_mm->mmap_lock must be held.
1601  *
1602  * If @locked is NULL, it may be held for read or write and will
1603  * be unperturbed.
1604  *
1605  * If @locked is non-NULL, it must held for read only and may be
1606  * released.  If it's released, *@locked will be set to 0.
1607  */
1608 long populate_vma_page_range(struct vm_area_struct *vma,
1609 		unsigned long start, unsigned long end, int *locked)
1610 {
1611 	struct mm_struct *mm = vma->vm_mm;
1612 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1613 	int local_locked = 1;
1614 	int gup_flags;
1615 	long ret;
1616 
1617 	VM_BUG_ON(!PAGE_ALIGNED(start));
1618 	VM_BUG_ON(!PAGE_ALIGNED(end));
1619 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1620 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1621 	mmap_assert_locked(mm);
1622 
1623 	/*
1624 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1625 	 * faultin_page() to break COW, so it has no work to do here.
1626 	 */
1627 	if (vma->vm_flags & VM_LOCKONFAULT)
1628 		return nr_pages;
1629 
1630 	gup_flags = FOLL_TOUCH;
1631 	/*
1632 	 * We want to touch writable mappings with a write fault in order
1633 	 * to break COW, except for shared mappings because these don't COW
1634 	 * and we would not want to dirty them for nothing.
1635 	 */
1636 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1637 		gup_flags |= FOLL_WRITE;
1638 
1639 	/*
1640 	 * We want mlock to succeed for regions that have any permissions
1641 	 * other than PROT_NONE.
1642 	 */
1643 	if (vma_is_accessible(vma))
1644 		gup_flags |= FOLL_FORCE;
1645 
1646 	if (locked)
1647 		gup_flags |= FOLL_UNLOCKABLE;
1648 
1649 	/*
1650 	 * We made sure addr is within a VMA, so the following will
1651 	 * not result in a stack expansion that recurses back here.
1652 	 */
1653 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1654 			       NULL, locked ? locked : &local_locked);
1655 	lru_add_drain();
1656 	return ret;
1657 }
1658 
1659 /*
1660  * faultin_vma_page_range() - populate (prefault) page tables inside the
1661  *			      given VMA range readable/writable
1662  *
1663  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1664  *
1665  * @vma: target vma
1666  * @start: start address
1667  * @end: end address
1668  * @write: whether to prefault readable or writable
1669  * @locked: whether the mmap_lock is still held
1670  *
1671  * Returns either number of processed pages in the vma, or a negative error
1672  * code on error (see __get_user_pages()).
1673  *
1674  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1675  * covered by the VMA. If it's released, *@locked will be set to 0.
1676  */
1677 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1678 			    unsigned long end, bool write, int *locked)
1679 {
1680 	struct mm_struct *mm = vma->vm_mm;
1681 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1682 	int gup_flags;
1683 	long ret;
1684 
1685 	VM_BUG_ON(!PAGE_ALIGNED(start));
1686 	VM_BUG_ON(!PAGE_ALIGNED(end));
1687 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1688 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1689 	mmap_assert_locked(mm);
1690 
1691 	/*
1692 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1693 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1694 	 *	       difference with !FOLL_FORCE, because the page is writable
1695 	 *	       in the page table.
1696 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1697 	 *		  a poisoned page.
1698 	 * !FOLL_FORCE: Require proper access permissions.
1699 	 */
1700 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1701 	if (write)
1702 		gup_flags |= FOLL_WRITE;
1703 
1704 	/*
1705 	 * We want to report -EINVAL instead of -EFAULT for any permission
1706 	 * problems or incompatible mappings.
1707 	 */
1708 	if (check_vma_flags(vma, gup_flags))
1709 		return -EINVAL;
1710 
1711 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1712 			       NULL, locked);
1713 	lru_add_drain();
1714 	return ret;
1715 }
1716 
1717 /*
1718  * __mm_populate - populate and/or mlock pages within a range of address space.
1719  *
1720  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1721  * flags. VMAs must be already marked with the desired vm_flags, and
1722  * mmap_lock must not be held.
1723  */
1724 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1725 {
1726 	struct mm_struct *mm = current->mm;
1727 	unsigned long end, nstart, nend;
1728 	struct vm_area_struct *vma = NULL;
1729 	int locked = 0;
1730 	long ret = 0;
1731 
1732 	end = start + len;
1733 
1734 	for (nstart = start; nstart < end; nstart = nend) {
1735 		/*
1736 		 * We want to fault in pages for [nstart; end) address range.
1737 		 * Find first corresponding VMA.
1738 		 */
1739 		if (!locked) {
1740 			locked = 1;
1741 			mmap_read_lock(mm);
1742 			vma = find_vma_intersection(mm, nstart, end);
1743 		} else if (nstart >= vma->vm_end)
1744 			vma = find_vma_intersection(mm, vma->vm_end, end);
1745 
1746 		if (!vma)
1747 			break;
1748 		/*
1749 		 * Set [nstart; nend) to intersection of desired address
1750 		 * range with the first VMA. Also, skip undesirable VMA types.
1751 		 */
1752 		nend = min(end, vma->vm_end);
1753 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1754 			continue;
1755 		if (nstart < vma->vm_start)
1756 			nstart = vma->vm_start;
1757 		/*
1758 		 * Now fault in a range of pages. populate_vma_page_range()
1759 		 * double checks the vma flags, so that it won't mlock pages
1760 		 * if the vma was already munlocked.
1761 		 */
1762 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1763 		if (ret < 0) {
1764 			if (ignore_errors) {
1765 				ret = 0;
1766 				continue;	/* continue at next VMA */
1767 			}
1768 			break;
1769 		}
1770 		nend = nstart + ret * PAGE_SIZE;
1771 		ret = 0;
1772 	}
1773 	if (locked)
1774 		mmap_read_unlock(mm);
1775 	return ret;	/* 0 or negative error code */
1776 }
1777 #else /* CONFIG_MMU */
1778 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1779 		unsigned long nr_pages, struct page **pages,
1780 		int *locked, unsigned int foll_flags)
1781 {
1782 	struct vm_area_struct *vma;
1783 	bool must_unlock = false;
1784 	unsigned long vm_flags;
1785 	long i;
1786 
1787 	if (!nr_pages)
1788 		return 0;
1789 
1790 	/*
1791 	 * The internal caller expects GUP to manage the lock internally and the
1792 	 * lock must be released when this returns.
1793 	 */
1794 	if (!*locked) {
1795 		if (mmap_read_lock_killable(mm))
1796 			return -EAGAIN;
1797 		must_unlock = true;
1798 		*locked = 1;
1799 	}
1800 
1801 	/* calculate required read or write permissions.
1802 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1803 	 */
1804 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1805 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1806 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1807 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1808 
1809 	for (i = 0; i < nr_pages; i++) {
1810 		vma = find_vma(mm, start);
1811 		if (!vma)
1812 			break;
1813 
1814 		/* protect what we can, including chardevs */
1815 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1816 		    !(vm_flags & vma->vm_flags))
1817 			break;
1818 
1819 		if (pages) {
1820 			pages[i] = virt_to_page((void *)start);
1821 			if (pages[i])
1822 				get_page(pages[i]);
1823 		}
1824 
1825 		start = (start + PAGE_SIZE) & PAGE_MASK;
1826 	}
1827 
1828 	if (must_unlock && *locked) {
1829 		mmap_read_unlock(mm);
1830 		*locked = 0;
1831 	}
1832 
1833 	return i ? : -EFAULT;
1834 }
1835 #endif /* !CONFIG_MMU */
1836 
1837 /**
1838  * fault_in_writeable - fault in userspace address range for writing
1839  * @uaddr: start of address range
1840  * @size: size of address range
1841  *
1842  * Returns the number of bytes not faulted in (like copy_to_user() and
1843  * copy_from_user()).
1844  */
1845 size_t fault_in_writeable(char __user *uaddr, size_t size)
1846 {
1847 	char __user *start = uaddr, *end;
1848 
1849 	if (unlikely(size == 0))
1850 		return 0;
1851 	if (!user_write_access_begin(uaddr, size))
1852 		return size;
1853 	if (!PAGE_ALIGNED(uaddr)) {
1854 		unsafe_put_user(0, uaddr, out);
1855 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1856 	}
1857 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1858 	if (unlikely(end < start))
1859 		end = NULL;
1860 	while (uaddr != end) {
1861 		unsafe_put_user(0, uaddr, out);
1862 		uaddr += PAGE_SIZE;
1863 	}
1864 
1865 out:
1866 	user_write_access_end();
1867 	if (size > uaddr - start)
1868 		return size - (uaddr - start);
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(fault_in_writeable);
1872 
1873 /**
1874  * fault_in_subpage_writeable - fault in an address range for writing
1875  * @uaddr: start of address range
1876  * @size: size of address range
1877  *
1878  * Fault in a user address range for writing while checking for permissions at
1879  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1880  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1881  *
1882  * Returns the number of bytes not faulted in (like copy_to_user() and
1883  * copy_from_user()).
1884  */
1885 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1886 {
1887 	size_t faulted_in;
1888 
1889 	/*
1890 	 * Attempt faulting in at page granularity first for page table
1891 	 * permission checking. The arch-specific probe_subpage_writeable()
1892 	 * functions may not check for this.
1893 	 */
1894 	faulted_in = size - fault_in_writeable(uaddr, size);
1895 	if (faulted_in)
1896 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1897 
1898 	return size - faulted_in;
1899 }
1900 EXPORT_SYMBOL(fault_in_subpage_writeable);
1901 
1902 /*
1903  * fault_in_safe_writeable - fault in an address range for writing
1904  * @uaddr: start of address range
1905  * @size: length of address range
1906  *
1907  * Faults in an address range for writing.  This is primarily useful when we
1908  * already know that some or all of the pages in the address range aren't in
1909  * memory.
1910  *
1911  * Unlike fault_in_writeable(), this function is non-destructive.
1912  *
1913  * Note that we don't pin or otherwise hold the pages referenced that we fault
1914  * in.  There's no guarantee that they'll stay in memory for any duration of
1915  * time.
1916  *
1917  * Returns the number of bytes not faulted in, like copy_to_user() and
1918  * copy_from_user().
1919  */
1920 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1921 {
1922 	unsigned long start = (unsigned long)uaddr, end;
1923 	struct mm_struct *mm = current->mm;
1924 	bool unlocked = false;
1925 
1926 	if (unlikely(size == 0))
1927 		return 0;
1928 	end = PAGE_ALIGN(start + size);
1929 	if (end < start)
1930 		end = 0;
1931 
1932 	mmap_read_lock(mm);
1933 	do {
1934 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1935 			break;
1936 		start = (start + PAGE_SIZE) & PAGE_MASK;
1937 	} while (start != end);
1938 	mmap_read_unlock(mm);
1939 
1940 	if (size > (unsigned long)uaddr - start)
1941 		return size - ((unsigned long)uaddr - start);
1942 	return 0;
1943 }
1944 EXPORT_SYMBOL(fault_in_safe_writeable);
1945 
1946 /**
1947  * fault_in_readable - fault in userspace address range for reading
1948  * @uaddr: start of user address range
1949  * @size: size of user address range
1950  *
1951  * Returns the number of bytes not faulted in (like copy_to_user() and
1952  * copy_from_user()).
1953  */
1954 size_t fault_in_readable(const char __user *uaddr, size_t size)
1955 {
1956 	const char __user *start = uaddr, *end;
1957 	volatile char c;
1958 
1959 	if (unlikely(size == 0))
1960 		return 0;
1961 	if (!user_read_access_begin(uaddr, size))
1962 		return size;
1963 	if (!PAGE_ALIGNED(uaddr)) {
1964 		unsafe_get_user(c, uaddr, out);
1965 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1966 	}
1967 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1968 	if (unlikely(end < start))
1969 		end = NULL;
1970 	while (uaddr != end) {
1971 		unsafe_get_user(c, uaddr, out);
1972 		uaddr += PAGE_SIZE;
1973 	}
1974 
1975 out:
1976 	user_read_access_end();
1977 	(void)c;
1978 	if (size > uaddr - start)
1979 		return size - (uaddr - start);
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL(fault_in_readable);
1983 
1984 /**
1985  * get_dump_page() - pin user page in memory while writing it to core dump
1986  * @addr: user address
1987  *
1988  * Returns struct page pointer of user page pinned for dump,
1989  * to be freed afterwards by put_page().
1990  *
1991  * Returns NULL on any kind of failure - a hole must then be inserted into
1992  * the corefile, to preserve alignment with its headers; and also returns
1993  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1994  * allowing a hole to be left in the corefile to save disk space.
1995  *
1996  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1997  */
1998 #ifdef CONFIG_ELF_CORE
1999 struct page *get_dump_page(unsigned long addr)
2000 {
2001 	struct page *page;
2002 	int locked = 0;
2003 	int ret;
2004 
2005 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2006 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2007 	return (ret == 1) ? page : NULL;
2008 }
2009 #endif /* CONFIG_ELF_CORE */
2010 
2011 #ifdef CONFIG_MIGRATION
2012 /*
2013  * Returns the number of collected pages. Return value is always >= 0.
2014  */
2015 static unsigned long collect_longterm_unpinnable_pages(
2016 					struct list_head *movable_page_list,
2017 					unsigned long nr_pages,
2018 					struct page **pages)
2019 {
2020 	unsigned long i, collected = 0;
2021 	struct folio *prev_folio = NULL;
2022 	bool drain_allow = true;
2023 
2024 	for (i = 0; i < nr_pages; i++) {
2025 		struct folio *folio = page_folio(pages[i]);
2026 
2027 		if (folio == prev_folio)
2028 			continue;
2029 		prev_folio = folio;
2030 
2031 		if (folio_is_longterm_pinnable(folio))
2032 			continue;
2033 
2034 		collected++;
2035 
2036 		if (folio_is_device_coherent(folio))
2037 			continue;
2038 
2039 		if (folio_test_hugetlb(folio)) {
2040 			isolate_hugetlb(folio, movable_page_list);
2041 			continue;
2042 		}
2043 
2044 		if (!folio_test_lru(folio) && drain_allow) {
2045 			lru_add_drain_all();
2046 			drain_allow = false;
2047 		}
2048 
2049 		if (!folio_isolate_lru(folio))
2050 			continue;
2051 
2052 		list_add_tail(&folio->lru, movable_page_list);
2053 		node_stat_mod_folio(folio,
2054 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2055 				    folio_nr_pages(folio));
2056 	}
2057 
2058 	return collected;
2059 }
2060 
2061 /*
2062  * Unpins all pages and migrates device coherent pages and movable_page_list.
2063  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2064  * (or partial success).
2065  */
2066 static int migrate_longterm_unpinnable_pages(
2067 					struct list_head *movable_page_list,
2068 					unsigned long nr_pages,
2069 					struct page **pages)
2070 {
2071 	int ret;
2072 	unsigned long i;
2073 
2074 	for (i = 0; i < nr_pages; i++) {
2075 		struct folio *folio = page_folio(pages[i]);
2076 
2077 		if (folio_is_device_coherent(folio)) {
2078 			/*
2079 			 * Migration will fail if the page is pinned, so convert
2080 			 * the pin on the source page to a normal reference.
2081 			 */
2082 			pages[i] = NULL;
2083 			folio_get(folio);
2084 			gup_put_folio(folio, 1, FOLL_PIN);
2085 
2086 			if (migrate_device_coherent_page(&folio->page)) {
2087 				ret = -EBUSY;
2088 				goto err;
2089 			}
2090 
2091 			continue;
2092 		}
2093 
2094 		/*
2095 		 * We can't migrate pages with unexpected references, so drop
2096 		 * the reference obtained by __get_user_pages_locked().
2097 		 * Migrating pages have been added to movable_page_list after
2098 		 * calling folio_isolate_lru() which takes a reference so the
2099 		 * page won't be freed if it's migrating.
2100 		 */
2101 		unpin_user_page(pages[i]);
2102 		pages[i] = NULL;
2103 	}
2104 
2105 	if (!list_empty(movable_page_list)) {
2106 		struct migration_target_control mtc = {
2107 			.nid = NUMA_NO_NODE,
2108 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2109 		};
2110 
2111 		if (migrate_pages(movable_page_list, alloc_migration_target,
2112 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2113 				  MR_LONGTERM_PIN, NULL)) {
2114 			ret = -ENOMEM;
2115 			goto err;
2116 		}
2117 	}
2118 
2119 	putback_movable_pages(movable_page_list);
2120 
2121 	return -EAGAIN;
2122 
2123 err:
2124 	for (i = 0; i < nr_pages; i++)
2125 		if (pages[i])
2126 			unpin_user_page(pages[i]);
2127 	putback_movable_pages(movable_page_list);
2128 
2129 	return ret;
2130 }
2131 
2132 /*
2133  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2134  * pages in the range are required to be pinned via FOLL_PIN, before calling
2135  * this routine.
2136  *
2137  * If any pages in the range are not allowed to be pinned, then this routine
2138  * will migrate those pages away, unpin all the pages in the range and return
2139  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2140  * call this routine again.
2141  *
2142  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2143  * The caller should give up, and propagate the error back up the call stack.
2144  *
2145  * If everything is OK and all pages in the range are allowed to be pinned, then
2146  * this routine leaves all pages pinned and returns zero for success.
2147  */
2148 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2149 					    struct page **pages)
2150 {
2151 	unsigned long collected;
2152 	LIST_HEAD(movable_page_list);
2153 
2154 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2155 						nr_pages, pages);
2156 	if (!collected)
2157 		return 0;
2158 
2159 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2160 						pages);
2161 }
2162 #else
2163 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2164 					    struct page **pages)
2165 {
2166 	return 0;
2167 }
2168 #endif /* CONFIG_MIGRATION */
2169 
2170 /*
2171  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2172  * allows us to process the FOLL_LONGTERM flag.
2173  */
2174 static long __gup_longterm_locked(struct mm_struct *mm,
2175 				  unsigned long start,
2176 				  unsigned long nr_pages,
2177 				  struct page **pages,
2178 				  int *locked,
2179 				  unsigned int gup_flags)
2180 {
2181 	unsigned int flags;
2182 	long rc, nr_pinned_pages;
2183 
2184 	if (!(gup_flags & FOLL_LONGTERM))
2185 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2186 					       locked, gup_flags);
2187 
2188 	flags = memalloc_pin_save();
2189 	do {
2190 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2191 							  pages, locked,
2192 							  gup_flags);
2193 		if (nr_pinned_pages <= 0) {
2194 			rc = nr_pinned_pages;
2195 			break;
2196 		}
2197 
2198 		/* FOLL_LONGTERM implies FOLL_PIN */
2199 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2200 	} while (rc == -EAGAIN);
2201 	memalloc_pin_restore(flags);
2202 	return rc ? rc : nr_pinned_pages;
2203 }
2204 
2205 /*
2206  * Check that the given flags are valid for the exported gup/pup interface, and
2207  * update them with the required flags that the caller must have set.
2208  */
2209 static bool is_valid_gup_args(struct page **pages, int *locked,
2210 			      unsigned int *gup_flags_p, unsigned int to_set)
2211 {
2212 	unsigned int gup_flags = *gup_flags_p;
2213 
2214 	/*
2215 	 * These flags not allowed to be specified externally to the gup
2216 	 * interfaces:
2217 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2218 	 * - FOLL_REMOTE is internal only and used on follow_page()
2219 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2220 	 */
2221 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2222 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2223 		return false;
2224 
2225 	gup_flags |= to_set;
2226 	if (locked) {
2227 		/* At the external interface locked must be set */
2228 		if (WARN_ON_ONCE(*locked != 1))
2229 			return false;
2230 
2231 		gup_flags |= FOLL_UNLOCKABLE;
2232 	}
2233 
2234 	/*
2235 	 * For now, always trigger NUMA hinting faults. Some GUP users like
2236 	 * KVM require the hint to be as the calling context of GUP is
2237 	 * functionally similar to a memory reference from task context.
2238 	 */
2239 	gup_flags |= FOLL_HONOR_NUMA_FAULT;
2240 
2241 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2242 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2243 			 (FOLL_PIN | FOLL_GET)))
2244 		return false;
2245 
2246 	/* LONGTERM can only be specified when pinning */
2247 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2248 		return false;
2249 
2250 	/* Pages input must be given if using GET/PIN */
2251 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2252 		return false;
2253 
2254 	/* We want to allow the pgmap to be hot-unplugged at all times */
2255 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2256 			 (gup_flags & FOLL_PCI_P2PDMA)))
2257 		return false;
2258 
2259 	*gup_flags_p = gup_flags;
2260 	return true;
2261 }
2262 
2263 #ifdef CONFIG_MMU
2264 /**
2265  * get_user_pages_remote() - pin user pages in memory
2266  * @mm:		mm_struct of target mm
2267  * @start:	starting user address
2268  * @nr_pages:	number of pages from start to pin
2269  * @gup_flags:	flags modifying lookup behaviour
2270  * @pages:	array that receives pointers to the pages pinned.
2271  *		Should be at least nr_pages long. Or NULL, if caller
2272  *		only intends to ensure the pages are faulted in.
2273  * @locked:	pointer to lock flag indicating whether lock is held and
2274  *		subsequently whether VM_FAULT_RETRY functionality can be
2275  *		utilised. Lock must initially be held.
2276  *
2277  * Returns either number of pages pinned (which may be less than the
2278  * number requested), or an error. Details about the return value:
2279  *
2280  * -- If nr_pages is 0, returns 0.
2281  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2282  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2283  *    pages pinned. Again, this may be less than nr_pages.
2284  *
2285  * The caller is responsible for releasing returned @pages, via put_page().
2286  *
2287  * Must be called with mmap_lock held for read or write.
2288  *
2289  * get_user_pages_remote walks a process's page tables and takes a reference
2290  * to each struct page that each user address corresponds to at a given
2291  * instant. That is, it takes the page that would be accessed if a user
2292  * thread accesses the given user virtual address at that instant.
2293  *
2294  * This does not guarantee that the page exists in the user mappings when
2295  * get_user_pages_remote returns, and there may even be a completely different
2296  * page there in some cases (eg. if mmapped pagecache has been invalidated
2297  * and subsequently re-faulted). However it does guarantee that the page
2298  * won't be freed completely. And mostly callers simply care that the page
2299  * contains data that was valid *at some point in time*. Typically, an IO
2300  * or similar operation cannot guarantee anything stronger anyway because
2301  * locks can't be held over the syscall boundary.
2302  *
2303  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2304  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2305  * be called after the page is finished with, and before put_page is called.
2306  *
2307  * get_user_pages_remote is typically used for fewer-copy IO operations,
2308  * to get a handle on the memory by some means other than accesses
2309  * via the user virtual addresses. The pages may be submitted for
2310  * DMA to devices or accessed via their kernel linear mapping (via the
2311  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2312  *
2313  * See also get_user_pages_fast, for performance critical applications.
2314  *
2315  * get_user_pages_remote should be phased out in favor of
2316  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2317  * should use get_user_pages_remote because it cannot pass
2318  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2319  */
2320 long get_user_pages_remote(struct mm_struct *mm,
2321 		unsigned long start, unsigned long nr_pages,
2322 		unsigned int gup_flags, struct page **pages,
2323 		int *locked)
2324 {
2325 	int local_locked = 1;
2326 
2327 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2328 			       FOLL_TOUCH | FOLL_REMOTE))
2329 		return -EINVAL;
2330 
2331 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2332 				       locked ? locked : &local_locked,
2333 				       gup_flags);
2334 }
2335 EXPORT_SYMBOL(get_user_pages_remote);
2336 
2337 #else /* CONFIG_MMU */
2338 long get_user_pages_remote(struct mm_struct *mm,
2339 			   unsigned long start, unsigned long nr_pages,
2340 			   unsigned int gup_flags, struct page **pages,
2341 			   int *locked)
2342 {
2343 	return 0;
2344 }
2345 #endif /* !CONFIG_MMU */
2346 
2347 /**
2348  * get_user_pages() - pin user pages in memory
2349  * @start:      starting user address
2350  * @nr_pages:   number of pages from start to pin
2351  * @gup_flags:  flags modifying lookup behaviour
2352  * @pages:      array that receives pointers to the pages pinned.
2353  *              Should be at least nr_pages long. Or NULL, if caller
2354  *              only intends to ensure the pages are faulted in.
2355  *
2356  * This is the same as get_user_pages_remote(), just with a less-flexible
2357  * calling convention where we assume that the mm being operated on belongs to
2358  * the current task, and doesn't allow passing of a locked parameter.  We also
2359  * obviously don't pass FOLL_REMOTE in here.
2360  */
2361 long get_user_pages(unsigned long start, unsigned long nr_pages,
2362 		    unsigned int gup_flags, struct page **pages)
2363 {
2364 	int locked = 1;
2365 
2366 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2367 		return -EINVAL;
2368 
2369 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2370 				       &locked, gup_flags);
2371 }
2372 EXPORT_SYMBOL(get_user_pages);
2373 
2374 /*
2375  * get_user_pages_unlocked() is suitable to replace the form:
2376  *
2377  *      mmap_read_lock(mm);
2378  *      get_user_pages(mm, ..., pages, NULL);
2379  *      mmap_read_unlock(mm);
2380  *
2381  *  with:
2382  *
2383  *      get_user_pages_unlocked(mm, ..., pages);
2384  *
2385  * It is functionally equivalent to get_user_pages_fast so
2386  * get_user_pages_fast should be used instead if specific gup_flags
2387  * (e.g. FOLL_FORCE) are not required.
2388  */
2389 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2390 			     struct page **pages, unsigned int gup_flags)
2391 {
2392 	int locked = 0;
2393 
2394 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2395 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2396 		return -EINVAL;
2397 
2398 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2399 				       &locked, gup_flags);
2400 }
2401 EXPORT_SYMBOL(get_user_pages_unlocked);
2402 
2403 /*
2404  * Fast GUP
2405  *
2406  * get_user_pages_fast attempts to pin user pages by walking the page
2407  * tables directly and avoids taking locks. Thus the walker needs to be
2408  * protected from page table pages being freed from under it, and should
2409  * block any THP splits.
2410  *
2411  * One way to achieve this is to have the walker disable interrupts, and
2412  * rely on IPIs from the TLB flushing code blocking before the page table
2413  * pages are freed. This is unsuitable for architectures that do not need
2414  * to broadcast an IPI when invalidating TLBs.
2415  *
2416  * Another way to achieve this is to batch up page table containing pages
2417  * belonging to more than one mm_user, then rcu_sched a callback to free those
2418  * pages. Disabling interrupts will allow the fast_gup walker to both block
2419  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2420  * (which is a relatively rare event). The code below adopts this strategy.
2421  *
2422  * Before activating this code, please be aware that the following assumptions
2423  * are currently made:
2424  *
2425  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2426  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2427  *
2428  *  *) ptes can be read atomically by the architecture.
2429  *
2430  *  *) access_ok is sufficient to validate userspace address ranges.
2431  *
2432  * The last two assumptions can be relaxed by the addition of helper functions.
2433  *
2434  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2435  */
2436 #ifdef CONFIG_HAVE_FAST_GUP
2437 
2438 /*
2439  * Used in the GUP-fast path to determine whether a pin is permitted for a
2440  * specific folio.
2441  *
2442  * This call assumes the caller has pinned the folio, that the lowest page table
2443  * level still points to this folio, and that interrupts have been disabled.
2444  *
2445  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2446  * (see comment describing the writable_file_mapping_allowed() function). We
2447  * therefore try to avoid the most egregious case of a long-term mapping doing
2448  * so.
2449  *
2450  * This function cannot be as thorough as that one as the VMA is not available
2451  * in the fast path, so instead we whitelist known good cases and if in doubt,
2452  * fall back to the slow path.
2453  */
2454 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2455 {
2456 	struct address_space *mapping;
2457 	unsigned long mapping_flags;
2458 
2459 	/*
2460 	 * If we aren't pinning then no problematic write can occur. A long term
2461 	 * pin is the most egregious case so this is the one we disallow.
2462 	 */
2463 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2464 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2465 		return true;
2466 
2467 	/* The folio is pinned, so we can safely access folio fields. */
2468 
2469 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2470 		return false;
2471 
2472 	/* hugetlb mappings do not require dirty-tracking. */
2473 	if (folio_test_hugetlb(folio))
2474 		return true;
2475 
2476 	/*
2477 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2478 	 * cannot proceed, which means no actions performed under RCU can
2479 	 * proceed either.
2480 	 *
2481 	 * inodes and thus their mappings are freed under RCU, which means the
2482 	 * mapping cannot be freed beneath us and thus we can safely dereference
2483 	 * it.
2484 	 */
2485 	lockdep_assert_irqs_disabled();
2486 
2487 	/*
2488 	 * However, there may be operations which _alter_ the mapping, so ensure
2489 	 * we read it once and only once.
2490 	 */
2491 	mapping = READ_ONCE(folio->mapping);
2492 
2493 	/*
2494 	 * The mapping may have been truncated, in any case we cannot determine
2495 	 * if this mapping is safe - fall back to slow path to determine how to
2496 	 * proceed.
2497 	 */
2498 	if (!mapping)
2499 		return false;
2500 
2501 	/* Anonymous folios pose no problem. */
2502 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2503 	if (mapping_flags)
2504 		return mapping_flags & PAGE_MAPPING_ANON;
2505 
2506 	/*
2507 	 * At this point, we know the mapping is non-null and points to an
2508 	 * address_space object. The only remaining whitelisted file system is
2509 	 * shmem.
2510 	 */
2511 	return shmem_mapping(mapping);
2512 }
2513 
2514 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2515 					    unsigned int flags,
2516 					    struct page **pages)
2517 {
2518 	while ((*nr) - nr_start) {
2519 		struct page *page = pages[--(*nr)];
2520 
2521 		ClearPageReferenced(page);
2522 		if (flags & FOLL_PIN)
2523 			unpin_user_page(page);
2524 		else
2525 			put_page(page);
2526 	}
2527 }
2528 
2529 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2530 /*
2531  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2532  * operations.
2533  *
2534  * To pin the page, fast-gup needs to do below in order:
2535  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2536  *
2537  * For the rest of pgtable operations where pgtable updates can be racy
2538  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2539  * is pinned.
2540  *
2541  * Above will work for all pte-level operations, including THP split.
2542  *
2543  * For THP collapse, it's a bit more complicated because fast-gup may be
2544  * walking a pgtable page that is being freed (pte is still valid but pmd
2545  * can be cleared already).  To avoid race in such condition, we need to
2546  * also check pmd here to make sure pmd doesn't change (corresponds to
2547  * pmdp_collapse_flush() in the THP collapse code path).
2548  */
2549 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2550 			 unsigned long end, unsigned int flags,
2551 			 struct page **pages, int *nr)
2552 {
2553 	struct dev_pagemap *pgmap = NULL;
2554 	int nr_start = *nr, ret = 0;
2555 	pte_t *ptep, *ptem;
2556 
2557 	ptem = ptep = pte_offset_map(&pmd, addr);
2558 	if (!ptep)
2559 		return 0;
2560 	do {
2561 		pte_t pte = ptep_get_lockless(ptep);
2562 		struct page *page;
2563 		struct folio *folio;
2564 
2565 		/*
2566 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2567 		 * pte_access_permitted() better should reject these pages
2568 		 * either way: otherwise, GUP-fast might succeed in
2569 		 * cases where ordinary GUP would fail due to VMA access
2570 		 * permissions.
2571 		 */
2572 		if (pte_protnone(pte))
2573 			goto pte_unmap;
2574 
2575 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2576 			goto pte_unmap;
2577 
2578 		if (pte_devmap(pte)) {
2579 			if (unlikely(flags & FOLL_LONGTERM))
2580 				goto pte_unmap;
2581 
2582 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2583 			if (unlikely(!pgmap)) {
2584 				undo_dev_pagemap(nr, nr_start, flags, pages);
2585 				goto pte_unmap;
2586 			}
2587 		} else if (pte_special(pte))
2588 			goto pte_unmap;
2589 
2590 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2591 		page = pte_page(pte);
2592 
2593 		folio = try_grab_folio(page, 1, flags);
2594 		if (!folio)
2595 			goto pte_unmap;
2596 
2597 		if (unlikely(page_is_secretmem(page))) {
2598 			gup_put_folio(folio, 1, flags);
2599 			goto pte_unmap;
2600 		}
2601 
2602 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2603 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2604 			gup_put_folio(folio, 1, flags);
2605 			goto pte_unmap;
2606 		}
2607 
2608 		if (!folio_fast_pin_allowed(folio, flags)) {
2609 			gup_put_folio(folio, 1, flags);
2610 			goto pte_unmap;
2611 		}
2612 
2613 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2614 			gup_put_folio(folio, 1, flags);
2615 			goto pte_unmap;
2616 		}
2617 
2618 		/*
2619 		 * We need to make the page accessible if and only if we are
2620 		 * going to access its content (the FOLL_PIN case).  Please
2621 		 * see Documentation/core-api/pin_user_pages.rst for
2622 		 * details.
2623 		 */
2624 		if (flags & FOLL_PIN) {
2625 			ret = arch_make_page_accessible(page);
2626 			if (ret) {
2627 				gup_put_folio(folio, 1, flags);
2628 				goto pte_unmap;
2629 			}
2630 		}
2631 		folio_set_referenced(folio);
2632 		pages[*nr] = page;
2633 		(*nr)++;
2634 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2635 
2636 	ret = 1;
2637 
2638 pte_unmap:
2639 	if (pgmap)
2640 		put_dev_pagemap(pgmap);
2641 	pte_unmap(ptem);
2642 	return ret;
2643 }
2644 #else
2645 
2646 /*
2647  * If we can't determine whether or not a pte is special, then fail immediately
2648  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2649  * to be special.
2650  *
2651  * For a futex to be placed on a THP tail page, get_futex_key requires a
2652  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2653  * useful to have gup_huge_pmd even if we can't operate on ptes.
2654  */
2655 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2656 			 unsigned long end, unsigned int flags,
2657 			 struct page **pages, int *nr)
2658 {
2659 	return 0;
2660 }
2661 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2662 
2663 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2664 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2665 			     unsigned long end, unsigned int flags,
2666 			     struct page **pages, int *nr)
2667 {
2668 	int nr_start = *nr;
2669 	struct dev_pagemap *pgmap = NULL;
2670 
2671 	do {
2672 		struct page *page = pfn_to_page(pfn);
2673 
2674 		pgmap = get_dev_pagemap(pfn, pgmap);
2675 		if (unlikely(!pgmap)) {
2676 			undo_dev_pagemap(nr, nr_start, flags, pages);
2677 			break;
2678 		}
2679 
2680 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2681 			undo_dev_pagemap(nr, nr_start, flags, pages);
2682 			break;
2683 		}
2684 
2685 		SetPageReferenced(page);
2686 		pages[*nr] = page;
2687 		if (unlikely(try_grab_page(page, flags))) {
2688 			undo_dev_pagemap(nr, nr_start, flags, pages);
2689 			break;
2690 		}
2691 		(*nr)++;
2692 		pfn++;
2693 	} while (addr += PAGE_SIZE, addr != end);
2694 
2695 	put_dev_pagemap(pgmap);
2696 	return addr == end;
2697 }
2698 
2699 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2700 				 unsigned long end, unsigned int flags,
2701 				 struct page **pages, int *nr)
2702 {
2703 	unsigned long fault_pfn;
2704 	int nr_start = *nr;
2705 
2706 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2707 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2708 		return 0;
2709 
2710 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2711 		undo_dev_pagemap(nr, nr_start, flags, pages);
2712 		return 0;
2713 	}
2714 	return 1;
2715 }
2716 
2717 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2718 				 unsigned long end, unsigned int flags,
2719 				 struct page **pages, int *nr)
2720 {
2721 	unsigned long fault_pfn;
2722 	int nr_start = *nr;
2723 
2724 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2725 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2726 		return 0;
2727 
2728 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2729 		undo_dev_pagemap(nr, nr_start, flags, pages);
2730 		return 0;
2731 	}
2732 	return 1;
2733 }
2734 #else
2735 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2736 				 unsigned long end, unsigned int flags,
2737 				 struct page **pages, int *nr)
2738 {
2739 	BUILD_BUG();
2740 	return 0;
2741 }
2742 
2743 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2744 				 unsigned long end, unsigned int flags,
2745 				 struct page **pages, int *nr)
2746 {
2747 	BUILD_BUG();
2748 	return 0;
2749 }
2750 #endif
2751 
2752 static int record_subpages(struct page *page, unsigned long addr,
2753 			   unsigned long end, struct page **pages)
2754 {
2755 	int nr;
2756 
2757 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2758 		pages[nr] = nth_page(page, nr);
2759 
2760 	return nr;
2761 }
2762 
2763 #ifdef CONFIG_ARCH_HAS_HUGEPD
2764 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2765 				      unsigned long sz)
2766 {
2767 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2768 	return (__boundary - 1 < end - 1) ? __boundary : end;
2769 }
2770 
2771 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2772 		       unsigned long end, unsigned int flags,
2773 		       struct page **pages, int *nr)
2774 {
2775 	unsigned long pte_end;
2776 	struct page *page;
2777 	struct folio *folio;
2778 	pte_t pte;
2779 	int refs;
2780 
2781 	pte_end = (addr + sz) & ~(sz-1);
2782 	if (pte_end < end)
2783 		end = pte_end;
2784 
2785 	pte = huge_ptep_get(ptep);
2786 
2787 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2788 		return 0;
2789 
2790 	/* hugepages are never "special" */
2791 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2792 
2793 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2794 	refs = record_subpages(page, addr, end, pages + *nr);
2795 
2796 	folio = try_grab_folio(page, refs, flags);
2797 	if (!folio)
2798 		return 0;
2799 
2800 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2801 		gup_put_folio(folio, refs, flags);
2802 		return 0;
2803 	}
2804 
2805 	if (!folio_fast_pin_allowed(folio, flags)) {
2806 		gup_put_folio(folio, refs, flags);
2807 		return 0;
2808 	}
2809 
2810 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2811 		gup_put_folio(folio, refs, flags);
2812 		return 0;
2813 	}
2814 
2815 	*nr += refs;
2816 	folio_set_referenced(folio);
2817 	return 1;
2818 }
2819 
2820 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2821 		unsigned int pdshift, unsigned long end, unsigned int flags,
2822 		struct page **pages, int *nr)
2823 {
2824 	pte_t *ptep;
2825 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2826 	unsigned long next;
2827 
2828 	ptep = hugepte_offset(hugepd, addr, pdshift);
2829 	do {
2830 		next = hugepte_addr_end(addr, end, sz);
2831 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2832 			return 0;
2833 	} while (ptep++, addr = next, addr != end);
2834 
2835 	return 1;
2836 }
2837 #else
2838 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2839 		unsigned int pdshift, unsigned long end, unsigned int flags,
2840 		struct page **pages, int *nr)
2841 {
2842 	return 0;
2843 }
2844 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2845 
2846 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2847 			unsigned long end, unsigned int flags,
2848 			struct page **pages, int *nr)
2849 {
2850 	struct page *page;
2851 	struct folio *folio;
2852 	int refs;
2853 
2854 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2855 		return 0;
2856 
2857 	if (pmd_devmap(orig)) {
2858 		if (unlikely(flags & FOLL_LONGTERM))
2859 			return 0;
2860 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2861 					     pages, nr);
2862 	}
2863 
2864 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2865 	refs = record_subpages(page, addr, end, pages + *nr);
2866 
2867 	folio = try_grab_folio(page, refs, flags);
2868 	if (!folio)
2869 		return 0;
2870 
2871 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2872 		gup_put_folio(folio, refs, flags);
2873 		return 0;
2874 	}
2875 
2876 	if (!folio_fast_pin_allowed(folio, flags)) {
2877 		gup_put_folio(folio, refs, flags);
2878 		return 0;
2879 	}
2880 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2881 		gup_put_folio(folio, refs, flags);
2882 		return 0;
2883 	}
2884 
2885 	*nr += refs;
2886 	folio_set_referenced(folio);
2887 	return 1;
2888 }
2889 
2890 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2891 			unsigned long end, unsigned int flags,
2892 			struct page **pages, int *nr)
2893 {
2894 	struct page *page;
2895 	struct folio *folio;
2896 	int refs;
2897 
2898 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2899 		return 0;
2900 
2901 	if (pud_devmap(orig)) {
2902 		if (unlikely(flags & FOLL_LONGTERM))
2903 			return 0;
2904 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2905 					     pages, nr);
2906 	}
2907 
2908 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2909 	refs = record_subpages(page, addr, end, pages + *nr);
2910 
2911 	folio = try_grab_folio(page, refs, flags);
2912 	if (!folio)
2913 		return 0;
2914 
2915 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2916 		gup_put_folio(folio, refs, flags);
2917 		return 0;
2918 	}
2919 
2920 	if (!folio_fast_pin_allowed(folio, flags)) {
2921 		gup_put_folio(folio, refs, flags);
2922 		return 0;
2923 	}
2924 
2925 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2926 		gup_put_folio(folio, refs, flags);
2927 		return 0;
2928 	}
2929 
2930 	*nr += refs;
2931 	folio_set_referenced(folio);
2932 	return 1;
2933 }
2934 
2935 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2936 			unsigned long end, unsigned int flags,
2937 			struct page **pages, int *nr)
2938 {
2939 	int refs;
2940 	struct page *page;
2941 	struct folio *folio;
2942 
2943 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2944 		return 0;
2945 
2946 	BUILD_BUG_ON(pgd_devmap(orig));
2947 
2948 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2949 	refs = record_subpages(page, addr, end, pages + *nr);
2950 
2951 	folio = try_grab_folio(page, refs, flags);
2952 	if (!folio)
2953 		return 0;
2954 
2955 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2956 		gup_put_folio(folio, refs, flags);
2957 		return 0;
2958 	}
2959 
2960 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2961 		gup_put_folio(folio, refs, flags);
2962 		return 0;
2963 	}
2964 
2965 	if (!folio_fast_pin_allowed(folio, flags)) {
2966 		gup_put_folio(folio, refs, flags);
2967 		return 0;
2968 	}
2969 
2970 	*nr += refs;
2971 	folio_set_referenced(folio);
2972 	return 1;
2973 }
2974 
2975 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2976 		unsigned int flags, struct page **pages, int *nr)
2977 {
2978 	unsigned long next;
2979 	pmd_t *pmdp;
2980 
2981 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2982 	do {
2983 		pmd_t pmd = pmdp_get_lockless(pmdp);
2984 
2985 		next = pmd_addr_end(addr, end);
2986 		if (!pmd_present(pmd))
2987 			return 0;
2988 
2989 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2990 			     pmd_devmap(pmd))) {
2991 			/* See gup_pte_range() */
2992 			if (pmd_protnone(pmd))
2993 				return 0;
2994 
2995 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2996 				pages, nr))
2997 				return 0;
2998 
2999 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3000 			/*
3001 			 * architecture have different format for hugetlbfs
3002 			 * pmd format and THP pmd format
3003 			 */
3004 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3005 					 PMD_SHIFT, next, flags, pages, nr))
3006 				return 0;
3007 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3008 			return 0;
3009 	} while (pmdp++, addr = next, addr != end);
3010 
3011 	return 1;
3012 }
3013 
3014 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3015 			 unsigned int flags, struct page **pages, int *nr)
3016 {
3017 	unsigned long next;
3018 	pud_t *pudp;
3019 
3020 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3021 	do {
3022 		pud_t pud = READ_ONCE(*pudp);
3023 
3024 		next = pud_addr_end(addr, end);
3025 		if (unlikely(!pud_present(pud)))
3026 			return 0;
3027 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3028 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3029 					  pages, nr))
3030 				return 0;
3031 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3032 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3033 					 PUD_SHIFT, next, flags, pages, nr))
3034 				return 0;
3035 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3036 			return 0;
3037 	} while (pudp++, addr = next, addr != end);
3038 
3039 	return 1;
3040 }
3041 
3042 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3043 			 unsigned int flags, struct page **pages, int *nr)
3044 {
3045 	unsigned long next;
3046 	p4d_t *p4dp;
3047 
3048 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3049 	do {
3050 		p4d_t p4d = READ_ONCE(*p4dp);
3051 
3052 		next = p4d_addr_end(addr, end);
3053 		if (p4d_none(p4d))
3054 			return 0;
3055 		BUILD_BUG_ON(p4d_huge(p4d));
3056 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3057 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3058 					 P4D_SHIFT, next, flags, pages, nr))
3059 				return 0;
3060 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3061 			return 0;
3062 	} while (p4dp++, addr = next, addr != end);
3063 
3064 	return 1;
3065 }
3066 
3067 static void gup_pgd_range(unsigned long addr, unsigned long end,
3068 		unsigned int flags, struct page **pages, int *nr)
3069 {
3070 	unsigned long next;
3071 	pgd_t *pgdp;
3072 
3073 	pgdp = pgd_offset(current->mm, addr);
3074 	do {
3075 		pgd_t pgd = READ_ONCE(*pgdp);
3076 
3077 		next = pgd_addr_end(addr, end);
3078 		if (pgd_none(pgd))
3079 			return;
3080 		if (unlikely(pgd_huge(pgd))) {
3081 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3082 					  pages, nr))
3083 				return;
3084 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3085 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3086 					 PGDIR_SHIFT, next, flags, pages, nr))
3087 				return;
3088 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3089 			return;
3090 	} while (pgdp++, addr = next, addr != end);
3091 }
3092 #else
3093 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3094 		unsigned int flags, struct page **pages, int *nr)
3095 {
3096 }
3097 #endif /* CONFIG_HAVE_FAST_GUP */
3098 
3099 #ifndef gup_fast_permitted
3100 /*
3101  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3102  * we need to fall back to the slow version:
3103  */
3104 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3105 {
3106 	return true;
3107 }
3108 #endif
3109 
3110 static unsigned long lockless_pages_from_mm(unsigned long start,
3111 					    unsigned long end,
3112 					    unsigned int gup_flags,
3113 					    struct page **pages)
3114 {
3115 	unsigned long flags;
3116 	int nr_pinned = 0;
3117 	unsigned seq;
3118 
3119 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3120 	    !gup_fast_permitted(start, end))
3121 		return 0;
3122 
3123 	if (gup_flags & FOLL_PIN) {
3124 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3125 		if (seq & 1)
3126 			return 0;
3127 	}
3128 
3129 	/*
3130 	 * Disable interrupts. The nested form is used, in order to allow full,
3131 	 * general purpose use of this routine.
3132 	 *
3133 	 * With interrupts disabled, we block page table pages from being freed
3134 	 * from under us. See struct mmu_table_batch comments in
3135 	 * include/asm-generic/tlb.h for more details.
3136 	 *
3137 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3138 	 * that come from THPs splitting.
3139 	 */
3140 	local_irq_save(flags);
3141 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3142 	local_irq_restore(flags);
3143 
3144 	/*
3145 	 * When pinning pages for DMA there could be a concurrent write protect
3146 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3147 	 */
3148 	if (gup_flags & FOLL_PIN) {
3149 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3150 			unpin_user_pages_lockless(pages, nr_pinned);
3151 			return 0;
3152 		} else {
3153 			sanity_check_pinned_pages(pages, nr_pinned);
3154 		}
3155 	}
3156 	return nr_pinned;
3157 }
3158 
3159 static int internal_get_user_pages_fast(unsigned long start,
3160 					unsigned long nr_pages,
3161 					unsigned int gup_flags,
3162 					struct page **pages)
3163 {
3164 	unsigned long len, end;
3165 	unsigned long nr_pinned;
3166 	int locked = 0;
3167 	int ret;
3168 
3169 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3170 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3171 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3172 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3173 		return -EINVAL;
3174 
3175 	if (gup_flags & FOLL_PIN)
3176 		mm_set_has_pinned_flag(&current->mm->flags);
3177 
3178 	if (!(gup_flags & FOLL_FAST_ONLY))
3179 		might_lock_read(&current->mm->mmap_lock);
3180 
3181 	start = untagged_addr(start) & PAGE_MASK;
3182 	len = nr_pages << PAGE_SHIFT;
3183 	if (check_add_overflow(start, len, &end))
3184 		return -EOVERFLOW;
3185 	if (end > TASK_SIZE_MAX)
3186 		return -EFAULT;
3187 	if (unlikely(!access_ok((void __user *)start, len)))
3188 		return -EFAULT;
3189 
3190 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3191 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3192 		return nr_pinned;
3193 
3194 	/* Slow path: try to get the remaining pages with get_user_pages */
3195 	start += nr_pinned << PAGE_SHIFT;
3196 	pages += nr_pinned;
3197 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3198 				    pages, &locked,
3199 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3200 	if (ret < 0) {
3201 		/*
3202 		 * The caller has to unpin the pages we already pinned so
3203 		 * returning -errno is not an option
3204 		 */
3205 		if (nr_pinned)
3206 			return nr_pinned;
3207 		return ret;
3208 	}
3209 	return ret + nr_pinned;
3210 }
3211 
3212 /**
3213  * get_user_pages_fast_only() - pin user pages in memory
3214  * @start:      starting user address
3215  * @nr_pages:   number of pages from start to pin
3216  * @gup_flags:  flags modifying pin behaviour
3217  * @pages:      array that receives pointers to the pages pinned.
3218  *              Should be at least nr_pages long.
3219  *
3220  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3221  * the regular GUP.
3222  *
3223  * If the architecture does not support this function, simply return with no
3224  * pages pinned.
3225  *
3226  * Careful, careful! COW breaking can go either way, so a non-write
3227  * access can get ambiguous page results. If you call this function without
3228  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3229  */
3230 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3231 			     unsigned int gup_flags, struct page **pages)
3232 {
3233 	/*
3234 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3235 	 * because gup fast is always a "pin with a +1 page refcount" request.
3236 	 *
3237 	 * FOLL_FAST_ONLY is required in order to match the API description of
3238 	 * this routine: no fall back to regular ("slow") GUP.
3239 	 */
3240 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3241 			       FOLL_GET | FOLL_FAST_ONLY))
3242 		return -EINVAL;
3243 
3244 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3245 }
3246 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3247 
3248 /**
3249  * get_user_pages_fast() - pin user pages in memory
3250  * @start:      starting user address
3251  * @nr_pages:   number of pages from start to pin
3252  * @gup_flags:  flags modifying pin behaviour
3253  * @pages:      array that receives pointers to the pages pinned.
3254  *              Should be at least nr_pages long.
3255  *
3256  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3257  * If not successful, it will fall back to taking the lock and
3258  * calling get_user_pages().
3259  *
3260  * Returns number of pages pinned. This may be fewer than the number requested.
3261  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3262  * -errno.
3263  */
3264 int get_user_pages_fast(unsigned long start, int nr_pages,
3265 			unsigned int gup_flags, struct page **pages)
3266 {
3267 	/*
3268 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3269 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3270 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3271 	 * request.
3272 	 */
3273 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3274 		return -EINVAL;
3275 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3276 }
3277 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3278 
3279 /**
3280  * pin_user_pages_fast() - pin user pages in memory without taking locks
3281  *
3282  * @start:      starting user address
3283  * @nr_pages:   number of pages from start to pin
3284  * @gup_flags:  flags modifying pin behaviour
3285  * @pages:      array that receives pointers to the pages pinned.
3286  *              Should be at least nr_pages long.
3287  *
3288  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3289  * get_user_pages_fast() for documentation on the function arguments, because
3290  * the arguments here are identical.
3291  *
3292  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3293  * see Documentation/core-api/pin_user_pages.rst for further details.
3294  *
3295  * Note that if a zero_page is amongst the returned pages, it will not have
3296  * pins in it and unpin_user_page() will not remove pins from it.
3297  */
3298 int pin_user_pages_fast(unsigned long start, int nr_pages,
3299 			unsigned int gup_flags, struct page **pages)
3300 {
3301 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3302 		return -EINVAL;
3303 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3304 }
3305 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3306 
3307 /**
3308  * pin_user_pages_remote() - pin pages of a remote process
3309  *
3310  * @mm:		mm_struct of target mm
3311  * @start:	starting user address
3312  * @nr_pages:	number of pages from start to pin
3313  * @gup_flags:	flags modifying lookup behaviour
3314  * @pages:	array that receives pointers to the pages pinned.
3315  *		Should be at least nr_pages long.
3316  * @locked:	pointer to lock flag indicating whether lock is held and
3317  *		subsequently whether VM_FAULT_RETRY functionality can be
3318  *		utilised. Lock must initially be held.
3319  *
3320  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3321  * get_user_pages_remote() for documentation on the function arguments, because
3322  * the arguments here are identical.
3323  *
3324  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3325  * see Documentation/core-api/pin_user_pages.rst for details.
3326  *
3327  * Note that if a zero_page is amongst the returned pages, it will not have
3328  * pins in it and unpin_user_page*() will not remove pins from it.
3329  */
3330 long pin_user_pages_remote(struct mm_struct *mm,
3331 			   unsigned long start, unsigned long nr_pages,
3332 			   unsigned int gup_flags, struct page **pages,
3333 			   int *locked)
3334 {
3335 	int local_locked = 1;
3336 
3337 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3338 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3339 		return 0;
3340 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3341 				     locked ? locked : &local_locked,
3342 				     gup_flags);
3343 }
3344 EXPORT_SYMBOL(pin_user_pages_remote);
3345 
3346 /**
3347  * pin_user_pages() - pin user pages in memory for use by other devices
3348  *
3349  * @start:	starting user address
3350  * @nr_pages:	number of pages from start to pin
3351  * @gup_flags:	flags modifying lookup behaviour
3352  * @pages:	array that receives pointers to the pages pinned.
3353  *		Should be at least nr_pages long.
3354  *
3355  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3356  * FOLL_PIN is set.
3357  *
3358  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3359  * see Documentation/core-api/pin_user_pages.rst for details.
3360  *
3361  * Note that if a zero_page is amongst the returned pages, it will not have
3362  * pins in it and unpin_user_page*() will not remove pins from it.
3363  */
3364 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3365 		    unsigned int gup_flags, struct page **pages)
3366 {
3367 	int locked = 1;
3368 
3369 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3370 		return 0;
3371 	return __gup_longterm_locked(current->mm, start, nr_pages,
3372 				     pages, &locked, gup_flags);
3373 }
3374 EXPORT_SYMBOL(pin_user_pages);
3375 
3376 /*
3377  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3378  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3379  * FOLL_PIN and rejects FOLL_GET.
3380  *
3381  * Note that if a zero_page is amongst the returned pages, it will not have
3382  * pins in it and unpin_user_page*() will not remove pins from it.
3383  */
3384 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3385 			     struct page **pages, unsigned int gup_flags)
3386 {
3387 	int locked = 0;
3388 
3389 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3390 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3391 		return 0;
3392 
3393 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3394 				     &locked, gup_flags);
3395 }
3396 EXPORT_SYMBOL(pin_user_pages_unlocked);
3397