xref: /openbmc/linux/mm/gup.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /*
66  * Return the compound head page with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 	struct page *head = compound_head(page);
72 
73 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 		return NULL;
75 	if (unlikely(!page_cache_add_speculative(head, refs)))
76 		return NULL;
77 
78 	/*
79 	 * At this point we have a stable reference to the head page; but it
80 	 * could be that between the compound_head() lookup and the refcount
81 	 * increment, the compound page was split, in which case we'd end up
82 	 * holding a reference on a page that has nothing to do with the page
83 	 * we were given anymore.
84 	 * So now that the head page is stable, recheck that the pages still
85 	 * belong together.
86 	 */
87 	if (unlikely(compound_head(page) != head)) {
88 		put_page_refs(head, refs);
89 		return NULL;
90 	}
91 
92 	return head;
93 }
94 
95 /**
96  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97  * flags-dependent amount.
98  *
99  * Even though the name includes "compound_head", this function is still
100  * appropriate for callers that have a non-compound @page to get.
101  *
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the page's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: page's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
116  *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
117  *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  *    FOLL_PIN on normal pages, or compound pages that are two pages long:
120  *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121  *
122  * Return: head page (with refcount appropriately incremented) for success, or
123  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124  * considered failure, and furthermore, a likely bug in the caller, so a warning
125  * is also emitted.
126  */
127 __maybe_unused struct page *try_grab_compound_head(struct page *page,
128 						   int refs, unsigned int flags)
129 {
130 	if (flags & FOLL_GET)
131 		return try_get_compound_head(page, refs);
132 	else if (flags & FOLL_PIN) {
133 		/*
134 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 		 * right zone, so fail and let the caller fall back to the slow
136 		 * path.
137 		 */
138 		if (unlikely((flags & FOLL_LONGTERM) &&
139 			     !is_pinnable_page(page)))
140 			return NULL;
141 
142 		/*
143 		 * CAUTION: Don't use compound_head() on the page before this
144 		 * point, the result won't be stable.
145 		 */
146 		page = try_get_compound_head(page, refs);
147 		if (!page)
148 			return NULL;
149 
150 		/*
151 		 * When pinning a compound page of order > 1 (which is what
152 		 * hpage_pincount_available() checks for), use an exact count to
153 		 * track it, via hpage_pincount_add/_sub().
154 		 *
155 		 * However, be sure to *also* increment the normal page refcount
156 		 * field at least once, so that the page really is pinned.
157 		 * That's why the refcount from the earlier
158 		 * try_get_compound_head() is left intact.
159 		 */
160 		if (hpage_pincount_available(page))
161 			hpage_pincount_add(page, refs);
162 		else
163 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164 
165 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 				    refs);
167 
168 		return page;
169 	}
170 
171 	WARN_ON_ONCE(1);
172 	return NULL;
173 }
174 
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 	if (flags & FOLL_PIN) {
178 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 				    refs);
180 
181 		if (hpage_pincount_available(page))
182 			hpage_pincount_sub(page, refs);
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	put_page_refs(page, refs);
188 }
189 
190 /**
191  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192  *
193  * This might not do anything at all, depending on the flags argument.
194  *
195  * "grab" names in this file mean, "look at flags to decide whether to use
196  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197  *
198  * @page:    pointer to page to be grabbed
199  * @flags:   gup flags: these are the FOLL_* flag values.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_compound_head() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
212 
213 	if (flags & FOLL_GET)
214 		return try_get_page(page);
215 	else if (flags & FOLL_PIN) {
216 		int refs = 1;
217 
218 		page = compound_head(page);
219 
220 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
221 			return false;
222 
223 		if (hpage_pincount_available(page))
224 			hpage_pincount_add(page, 1);
225 		else
226 			refs = GUP_PIN_COUNTING_BIAS;
227 
228 		/*
229 		 * Similar to try_grab_compound_head(): even if using the
230 		 * hpage_pincount_add/_sub() routines, be sure to
231 		 * *also* increment the normal page refcount field at least
232 		 * once, so that the page really is pinned.
233 		 */
234 		page_ref_add(page, refs);
235 
236 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
237 	}
238 
239 	return true;
240 }
241 
242 /**
243  * unpin_user_page() - release a dma-pinned page
244  * @page:            pointer to page to be released
245  *
246  * Pages that were pinned via pin_user_pages*() must be released via either
247  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
248  * that such pages can be separately tracked and uniquely handled. In
249  * particular, interactions with RDMA and filesystems need special handling.
250  */
251 void unpin_user_page(struct page *page)
252 {
253 	put_compound_head(compound_head(page), 1, FOLL_PIN);
254 }
255 EXPORT_SYMBOL(unpin_user_page);
256 
257 static inline void compound_range_next(unsigned long i, unsigned long npages,
258 				       struct page **list, struct page **head,
259 				       unsigned int *ntails)
260 {
261 	struct page *next, *page;
262 	unsigned int nr = 1;
263 
264 	if (i >= npages)
265 		return;
266 
267 	next = *list + i;
268 	page = compound_head(next);
269 	if (PageCompound(page) && compound_order(page) >= 1)
270 		nr = min_t(unsigned int,
271 			   page + compound_nr(page) - next, npages - i);
272 
273 	*head = page;
274 	*ntails = nr;
275 }
276 
277 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
278 	for (__i = 0, \
279 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
280 	     __i < __npages; __i += __ntails, \
281 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
282 
283 static inline void compound_next(unsigned long i, unsigned long npages,
284 				 struct page **list, struct page **head,
285 				 unsigned int *ntails)
286 {
287 	struct page *page;
288 	unsigned int nr;
289 
290 	if (i >= npages)
291 		return;
292 
293 	page = compound_head(list[i]);
294 	for (nr = i + 1; nr < npages; nr++) {
295 		if (compound_head(list[nr]) != page)
296 			break;
297 	}
298 
299 	*head = page;
300 	*ntails = nr - i;
301 }
302 
303 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
304 	for (__i = 0, \
305 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
306 	     __i < __npages; __i += __ntails, \
307 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
308 
309 /**
310  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
311  * @pages:  array of pages to be maybe marked dirty, and definitely released.
312  * @npages: number of pages in the @pages array.
313  * @make_dirty: whether to mark the pages dirty
314  *
315  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
316  * variants called on that page.
317  *
318  * For each page in the @pages array, make that page (or its head page, if a
319  * compound page) dirty, if @make_dirty is true, and if the page was previously
320  * listed as clean. In any case, releases all pages using unpin_user_page(),
321  * possibly via unpin_user_pages(), for the non-dirty case.
322  *
323  * Please see the unpin_user_page() documentation for details.
324  *
325  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
326  * required, then the caller should a) verify that this is really correct,
327  * because _lock() is usually required, and b) hand code it:
328  * set_page_dirty_lock(), unpin_user_page().
329  *
330  */
331 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
332 				 bool make_dirty)
333 {
334 	unsigned long index;
335 	struct page *head;
336 	unsigned int ntails;
337 
338 	if (!make_dirty) {
339 		unpin_user_pages(pages, npages);
340 		return;
341 	}
342 
343 	for_each_compound_head(index, pages, npages, head, ntails) {
344 		/*
345 		 * Checking PageDirty at this point may race with
346 		 * clear_page_dirty_for_io(), but that's OK. Two key
347 		 * cases:
348 		 *
349 		 * 1) This code sees the page as already dirty, so it
350 		 * skips the call to set_page_dirty(). That could happen
351 		 * because clear_page_dirty_for_io() called
352 		 * page_mkclean(), followed by set_page_dirty().
353 		 * However, now the page is going to get written back,
354 		 * which meets the original intention of setting it
355 		 * dirty, so all is well: clear_page_dirty_for_io() goes
356 		 * on to call TestClearPageDirty(), and write the page
357 		 * back.
358 		 *
359 		 * 2) This code sees the page as clean, so it calls
360 		 * set_page_dirty(). The page stays dirty, despite being
361 		 * written back, so it gets written back again in the
362 		 * next writeback cycle. This is harmless.
363 		 */
364 		if (!PageDirty(head))
365 			set_page_dirty_lock(head);
366 		put_compound_head(head, ntails, FOLL_PIN);
367 	}
368 }
369 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
370 
371 /**
372  * unpin_user_page_range_dirty_lock() - release and optionally dirty
373  * gup-pinned page range
374  *
375  * @page:  the starting page of a range maybe marked dirty, and definitely released.
376  * @npages: number of consecutive pages to release.
377  * @make_dirty: whether to mark the pages dirty
378  *
379  * "gup-pinned page range" refers to a range of pages that has had one of the
380  * pin_user_pages() variants called on that page.
381  *
382  * For the page ranges defined by [page .. page+npages], make that range (or
383  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
384  * page range was previously listed as clean.
385  *
386  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
387  * required, then the caller should a) verify that this is really correct,
388  * because _lock() is usually required, and b) hand code it:
389  * set_page_dirty_lock(), unpin_user_page().
390  *
391  */
392 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
393 				      bool make_dirty)
394 {
395 	unsigned long index;
396 	struct page *head;
397 	unsigned int ntails;
398 
399 	for_each_compound_range(index, &page, npages, head, ntails) {
400 		if (make_dirty && !PageDirty(head))
401 			set_page_dirty_lock(head);
402 		put_compound_head(head, ntails, FOLL_PIN);
403 	}
404 }
405 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
406 
407 /**
408  * unpin_user_pages() - release an array of gup-pinned pages.
409  * @pages:  array of pages to be marked dirty and released.
410  * @npages: number of pages in the @pages array.
411  *
412  * For each page in the @pages array, release the page using unpin_user_page().
413  *
414  * Please see the unpin_user_page() documentation for details.
415  */
416 void unpin_user_pages(struct page **pages, unsigned long npages)
417 {
418 	unsigned long index;
419 	struct page *head;
420 	unsigned int ntails;
421 
422 	/*
423 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
424 	 * leaving them pinned), but probably not. More likely, gup/pup returned
425 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
426 	 */
427 	if (WARN_ON(IS_ERR_VALUE(npages)))
428 		return;
429 
430 	for_each_compound_head(index, pages, npages, head, ntails)
431 		put_compound_head(head, ntails, FOLL_PIN);
432 }
433 EXPORT_SYMBOL(unpin_user_pages);
434 
435 /*
436  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
437  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
438  * cache bouncing on large SMP machines for concurrent pinned gups.
439  */
440 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
441 {
442 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
443 		set_bit(MMF_HAS_PINNED, mm_flags);
444 }
445 
446 #ifdef CONFIG_MMU
447 static struct page *no_page_table(struct vm_area_struct *vma,
448 		unsigned int flags)
449 {
450 	/*
451 	 * When core dumping an enormous anonymous area that nobody
452 	 * has touched so far, we don't want to allocate unnecessary pages or
453 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
454 	 * then get_dump_page() will return NULL to leave a hole in the dump.
455 	 * But we can only make this optimization where a hole would surely
456 	 * be zero-filled if handle_mm_fault() actually did handle it.
457 	 */
458 	if ((flags & FOLL_DUMP) &&
459 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
460 		return ERR_PTR(-EFAULT);
461 	return NULL;
462 }
463 
464 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
465 		pte_t *pte, unsigned int flags)
466 {
467 	/* No page to get reference */
468 	if (flags & FOLL_GET)
469 		return -EFAULT;
470 
471 	if (flags & FOLL_TOUCH) {
472 		pte_t entry = *pte;
473 
474 		if (flags & FOLL_WRITE)
475 			entry = pte_mkdirty(entry);
476 		entry = pte_mkyoung(entry);
477 
478 		if (!pte_same(*pte, entry)) {
479 			set_pte_at(vma->vm_mm, address, pte, entry);
480 			update_mmu_cache(vma, address, pte);
481 		}
482 	}
483 
484 	/* Proper page table entry exists, but no corresponding struct page */
485 	return -EEXIST;
486 }
487 
488 /*
489  * FOLL_FORCE can write to even unwritable pte's, but only
490  * after we've gone through a COW cycle and they are dirty.
491  */
492 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
493 {
494 	return pte_write(pte) ||
495 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
496 }
497 
498 static struct page *follow_page_pte(struct vm_area_struct *vma,
499 		unsigned long address, pmd_t *pmd, unsigned int flags,
500 		struct dev_pagemap **pgmap)
501 {
502 	struct mm_struct *mm = vma->vm_mm;
503 	struct page *page;
504 	spinlock_t *ptl;
505 	pte_t *ptep, pte;
506 	int ret;
507 
508 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
509 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
510 			 (FOLL_PIN | FOLL_GET)))
511 		return ERR_PTR(-EINVAL);
512 retry:
513 	if (unlikely(pmd_bad(*pmd)))
514 		return no_page_table(vma, flags);
515 
516 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
517 	pte = *ptep;
518 	if (!pte_present(pte)) {
519 		swp_entry_t entry;
520 		/*
521 		 * KSM's break_ksm() relies upon recognizing a ksm page
522 		 * even while it is being migrated, so for that case we
523 		 * need migration_entry_wait().
524 		 */
525 		if (likely(!(flags & FOLL_MIGRATION)))
526 			goto no_page;
527 		if (pte_none(pte))
528 			goto no_page;
529 		entry = pte_to_swp_entry(pte);
530 		if (!is_migration_entry(entry))
531 			goto no_page;
532 		pte_unmap_unlock(ptep, ptl);
533 		migration_entry_wait(mm, pmd, address);
534 		goto retry;
535 	}
536 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
537 		goto no_page;
538 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
539 		pte_unmap_unlock(ptep, ptl);
540 		return NULL;
541 	}
542 
543 	page = vm_normal_page(vma, address, pte);
544 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
545 		/*
546 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
547 		 * case since they are only valid while holding the pgmap
548 		 * reference.
549 		 */
550 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
551 		if (*pgmap)
552 			page = pte_page(pte);
553 		else
554 			goto no_page;
555 	} else if (unlikely(!page)) {
556 		if (flags & FOLL_DUMP) {
557 			/* Avoid special (like zero) pages in core dumps */
558 			page = ERR_PTR(-EFAULT);
559 			goto out;
560 		}
561 
562 		if (is_zero_pfn(pte_pfn(pte))) {
563 			page = pte_page(pte);
564 		} else {
565 			ret = follow_pfn_pte(vma, address, ptep, flags);
566 			page = ERR_PTR(ret);
567 			goto out;
568 		}
569 	}
570 
571 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
572 	if (unlikely(!try_grab_page(page, flags))) {
573 		page = ERR_PTR(-ENOMEM);
574 		goto out;
575 	}
576 	/*
577 	 * We need to make the page accessible if and only if we are going
578 	 * to access its content (the FOLL_PIN case).  Please see
579 	 * Documentation/core-api/pin_user_pages.rst for details.
580 	 */
581 	if (flags & FOLL_PIN) {
582 		ret = arch_make_page_accessible(page);
583 		if (ret) {
584 			unpin_user_page(page);
585 			page = ERR_PTR(ret);
586 			goto out;
587 		}
588 	}
589 	if (flags & FOLL_TOUCH) {
590 		if ((flags & FOLL_WRITE) &&
591 		    !pte_dirty(pte) && !PageDirty(page))
592 			set_page_dirty(page);
593 		/*
594 		 * pte_mkyoung() would be more correct here, but atomic care
595 		 * is needed to avoid losing the dirty bit: it is easier to use
596 		 * mark_page_accessed().
597 		 */
598 		mark_page_accessed(page);
599 	}
600 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
601 		/* Do not mlock pte-mapped THP */
602 		if (PageTransCompound(page))
603 			goto out;
604 
605 		/*
606 		 * The preliminary mapping check is mainly to avoid the
607 		 * pointless overhead of lock_page on the ZERO_PAGE
608 		 * which might bounce very badly if there is contention.
609 		 *
610 		 * If the page is already locked, we don't need to
611 		 * handle it now - vmscan will handle it later if and
612 		 * when it attempts to reclaim the page.
613 		 */
614 		if (page->mapping && trylock_page(page)) {
615 			lru_add_drain();  /* push cached pages to LRU */
616 			/*
617 			 * Because we lock page here, and migration is
618 			 * blocked by the pte's page reference, and we
619 			 * know the page is still mapped, we don't even
620 			 * need to check for file-cache page truncation.
621 			 */
622 			mlock_vma_page(page);
623 			unlock_page(page);
624 		}
625 	}
626 out:
627 	pte_unmap_unlock(ptep, ptl);
628 	return page;
629 no_page:
630 	pte_unmap_unlock(ptep, ptl);
631 	if (!pte_none(pte))
632 		return NULL;
633 	return no_page_table(vma, flags);
634 }
635 
636 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637 				    unsigned long address, pud_t *pudp,
638 				    unsigned int flags,
639 				    struct follow_page_context *ctx)
640 {
641 	pmd_t *pmd, pmdval;
642 	spinlock_t *ptl;
643 	struct page *page;
644 	struct mm_struct *mm = vma->vm_mm;
645 
646 	pmd = pmd_offset(pudp, address);
647 	/*
648 	 * The READ_ONCE() will stabilize the pmdval in a register or
649 	 * on the stack so that it will stop changing under the code.
650 	 */
651 	pmdval = READ_ONCE(*pmd);
652 	if (pmd_none(pmdval))
653 		return no_page_table(vma, flags);
654 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
655 		page = follow_huge_pmd(mm, address, pmd, flags);
656 		if (page)
657 			return page;
658 		return no_page_table(vma, flags);
659 	}
660 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
661 		page = follow_huge_pd(vma, address,
662 				      __hugepd(pmd_val(pmdval)), flags,
663 				      PMD_SHIFT);
664 		if (page)
665 			return page;
666 		return no_page_table(vma, flags);
667 	}
668 retry:
669 	if (!pmd_present(pmdval)) {
670 		/*
671 		 * Should never reach here, if thp migration is not supported;
672 		 * Otherwise, it must be a thp migration entry.
673 		 */
674 		VM_BUG_ON(!thp_migration_supported() ||
675 				  !is_pmd_migration_entry(pmdval));
676 
677 		if (likely(!(flags & FOLL_MIGRATION)))
678 			return no_page_table(vma, flags);
679 
680 		pmd_migration_entry_wait(mm, pmd);
681 		pmdval = READ_ONCE(*pmd);
682 		/*
683 		 * MADV_DONTNEED may convert the pmd to null because
684 		 * mmap_lock is held in read mode
685 		 */
686 		if (pmd_none(pmdval))
687 			return no_page_table(vma, flags);
688 		goto retry;
689 	}
690 	if (pmd_devmap(pmdval)) {
691 		ptl = pmd_lock(mm, pmd);
692 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
693 		spin_unlock(ptl);
694 		if (page)
695 			return page;
696 	}
697 	if (likely(!pmd_trans_huge(pmdval)))
698 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
699 
700 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
701 		return no_page_table(vma, flags);
702 
703 retry_locked:
704 	ptl = pmd_lock(mm, pmd);
705 	if (unlikely(pmd_none(*pmd))) {
706 		spin_unlock(ptl);
707 		return no_page_table(vma, flags);
708 	}
709 	if (unlikely(!pmd_present(*pmd))) {
710 		spin_unlock(ptl);
711 		if (likely(!(flags & FOLL_MIGRATION)))
712 			return no_page_table(vma, flags);
713 		pmd_migration_entry_wait(mm, pmd);
714 		goto retry_locked;
715 	}
716 	if (unlikely(!pmd_trans_huge(*pmd))) {
717 		spin_unlock(ptl);
718 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
719 	}
720 	if (flags & FOLL_SPLIT_PMD) {
721 		int ret;
722 		page = pmd_page(*pmd);
723 		if (is_huge_zero_page(page)) {
724 			spin_unlock(ptl);
725 			ret = 0;
726 			split_huge_pmd(vma, pmd, address);
727 			if (pmd_trans_unstable(pmd))
728 				ret = -EBUSY;
729 		} else {
730 			spin_unlock(ptl);
731 			split_huge_pmd(vma, pmd, address);
732 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
733 		}
734 
735 		return ret ? ERR_PTR(ret) :
736 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
737 	}
738 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
739 	spin_unlock(ptl);
740 	ctx->page_mask = HPAGE_PMD_NR - 1;
741 	return page;
742 }
743 
744 static struct page *follow_pud_mask(struct vm_area_struct *vma,
745 				    unsigned long address, p4d_t *p4dp,
746 				    unsigned int flags,
747 				    struct follow_page_context *ctx)
748 {
749 	pud_t *pud;
750 	spinlock_t *ptl;
751 	struct page *page;
752 	struct mm_struct *mm = vma->vm_mm;
753 
754 	pud = pud_offset(p4dp, address);
755 	if (pud_none(*pud))
756 		return no_page_table(vma, flags);
757 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
758 		page = follow_huge_pud(mm, address, pud, flags);
759 		if (page)
760 			return page;
761 		return no_page_table(vma, flags);
762 	}
763 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
764 		page = follow_huge_pd(vma, address,
765 				      __hugepd(pud_val(*pud)), flags,
766 				      PUD_SHIFT);
767 		if (page)
768 			return page;
769 		return no_page_table(vma, flags);
770 	}
771 	if (pud_devmap(*pud)) {
772 		ptl = pud_lock(mm, pud);
773 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
774 		spin_unlock(ptl);
775 		if (page)
776 			return page;
777 	}
778 	if (unlikely(pud_bad(*pud)))
779 		return no_page_table(vma, flags);
780 
781 	return follow_pmd_mask(vma, address, pud, flags, ctx);
782 }
783 
784 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
785 				    unsigned long address, pgd_t *pgdp,
786 				    unsigned int flags,
787 				    struct follow_page_context *ctx)
788 {
789 	p4d_t *p4d;
790 	struct page *page;
791 
792 	p4d = p4d_offset(pgdp, address);
793 	if (p4d_none(*p4d))
794 		return no_page_table(vma, flags);
795 	BUILD_BUG_ON(p4d_huge(*p4d));
796 	if (unlikely(p4d_bad(*p4d)))
797 		return no_page_table(vma, flags);
798 
799 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
800 		page = follow_huge_pd(vma, address,
801 				      __hugepd(p4d_val(*p4d)), flags,
802 				      P4D_SHIFT);
803 		if (page)
804 			return page;
805 		return no_page_table(vma, flags);
806 	}
807 	return follow_pud_mask(vma, address, p4d, flags, ctx);
808 }
809 
810 /**
811  * follow_page_mask - look up a page descriptor from a user-virtual address
812  * @vma: vm_area_struct mapping @address
813  * @address: virtual address to look up
814  * @flags: flags modifying lookup behaviour
815  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
816  *       pointer to output page_mask
817  *
818  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
819  *
820  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
821  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
822  *
823  * On output, the @ctx->page_mask is set according to the size of the page.
824  *
825  * Return: the mapped (struct page *), %NULL if no mapping exists, or
826  * an error pointer if there is a mapping to something not represented
827  * by a page descriptor (see also vm_normal_page()).
828  */
829 static struct page *follow_page_mask(struct vm_area_struct *vma,
830 			      unsigned long address, unsigned int flags,
831 			      struct follow_page_context *ctx)
832 {
833 	pgd_t *pgd;
834 	struct page *page;
835 	struct mm_struct *mm = vma->vm_mm;
836 
837 	ctx->page_mask = 0;
838 
839 	/* make this handle hugepd */
840 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
841 	if (!IS_ERR(page)) {
842 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
843 		return page;
844 	}
845 
846 	pgd = pgd_offset(mm, address);
847 
848 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
849 		return no_page_table(vma, flags);
850 
851 	if (pgd_huge(*pgd)) {
852 		page = follow_huge_pgd(mm, address, pgd, flags);
853 		if (page)
854 			return page;
855 		return no_page_table(vma, flags);
856 	}
857 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
858 		page = follow_huge_pd(vma, address,
859 				      __hugepd(pgd_val(*pgd)), flags,
860 				      PGDIR_SHIFT);
861 		if (page)
862 			return page;
863 		return no_page_table(vma, flags);
864 	}
865 
866 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
867 }
868 
869 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
870 			 unsigned int foll_flags)
871 {
872 	struct follow_page_context ctx = { NULL };
873 	struct page *page;
874 
875 	if (vma_is_secretmem(vma))
876 		return NULL;
877 
878 	page = follow_page_mask(vma, address, foll_flags, &ctx);
879 	if (ctx.pgmap)
880 		put_dev_pagemap(ctx.pgmap);
881 	return page;
882 }
883 
884 static int get_gate_page(struct mm_struct *mm, unsigned long address,
885 		unsigned int gup_flags, struct vm_area_struct **vma,
886 		struct page **page)
887 {
888 	pgd_t *pgd;
889 	p4d_t *p4d;
890 	pud_t *pud;
891 	pmd_t *pmd;
892 	pte_t *pte;
893 	int ret = -EFAULT;
894 
895 	/* user gate pages are read-only */
896 	if (gup_flags & FOLL_WRITE)
897 		return -EFAULT;
898 	if (address > TASK_SIZE)
899 		pgd = pgd_offset_k(address);
900 	else
901 		pgd = pgd_offset_gate(mm, address);
902 	if (pgd_none(*pgd))
903 		return -EFAULT;
904 	p4d = p4d_offset(pgd, address);
905 	if (p4d_none(*p4d))
906 		return -EFAULT;
907 	pud = pud_offset(p4d, address);
908 	if (pud_none(*pud))
909 		return -EFAULT;
910 	pmd = pmd_offset(pud, address);
911 	if (!pmd_present(*pmd))
912 		return -EFAULT;
913 	VM_BUG_ON(pmd_trans_huge(*pmd));
914 	pte = pte_offset_map(pmd, address);
915 	if (pte_none(*pte))
916 		goto unmap;
917 	*vma = get_gate_vma(mm);
918 	if (!page)
919 		goto out;
920 	*page = vm_normal_page(*vma, address, *pte);
921 	if (!*page) {
922 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
923 			goto unmap;
924 		*page = pte_page(*pte);
925 	}
926 	if (unlikely(!try_grab_page(*page, gup_flags))) {
927 		ret = -ENOMEM;
928 		goto unmap;
929 	}
930 out:
931 	ret = 0;
932 unmap:
933 	pte_unmap(pte);
934 	return ret;
935 }
936 
937 /*
938  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
939  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
940  * is, *@locked will be set to 0 and -EBUSY returned.
941  */
942 static int faultin_page(struct vm_area_struct *vma,
943 		unsigned long address, unsigned int *flags, int *locked)
944 {
945 	unsigned int fault_flags = 0;
946 	vm_fault_t ret;
947 
948 	/* mlock all present pages, but do not fault in new pages */
949 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
950 		return -ENOENT;
951 	if (*flags & FOLL_NOFAULT)
952 		return -EFAULT;
953 	if (*flags & FOLL_WRITE)
954 		fault_flags |= FAULT_FLAG_WRITE;
955 	if (*flags & FOLL_REMOTE)
956 		fault_flags |= FAULT_FLAG_REMOTE;
957 	if (locked)
958 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
959 	if (*flags & FOLL_NOWAIT)
960 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
961 	if (*flags & FOLL_TRIED) {
962 		/*
963 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
964 		 * can co-exist
965 		 */
966 		fault_flags |= FAULT_FLAG_TRIED;
967 	}
968 
969 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
970 	if (ret & VM_FAULT_ERROR) {
971 		int err = vm_fault_to_errno(ret, *flags);
972 
973 		if (err)
974 			return err;
975 		BUG();
976 	}
977 
978 	if (ret & VM_FAULT_RETRY) {
979 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
980 			*locked = 0;
981 		return -EBUSY;
982 	}
983 
984 	/*
985 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
986 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
987 	 * can thus safely do subsequent page lookups as if they were reads.
988 	 * But only do so when looping for pte_write is futile: in some cases
989 	 * userspace may also be wanting to write to the gotten user page,
990 	 * which a read fault here might prevent (a readonly page might get
991 	 * reCOWed by userspace write).
992 	 */
993 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
994 		*flags |= FOLL_COW;
995 	return 0;
996 }
997 
998 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
999 {
1000 	vm_flags_t vm_flags = vma->vm_flags;
1001 	int write = (gup_flags & FOLL_WRITE);
1002 	int foreign = (gup_flags & FOLL_REMOTE);
1003 
1004 	if (vm_flags & (VM_IO | VM_PFNMAP))
1005 		return -EFAULT;
1006 
1007 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1008 		return -EFAULT;
1009 
1010 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1011 		return -EOPNOTSUPP;
1012 
1013 	if (vma_is_secretmem(vma))
1014 		return -EFAULT;
1015 
1016 	if (write) {
1017 		if (!(vm_flags & VM_WRITE)) {
1018 			if (!(gup_flags & FOLL_FORCE))
1019 				return -EFAULT;
1020 			/*
1021 			 * We used to let the write,force case do COW in a
1022 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1023 			 * set a breakpoint in a read-only mapping of an
1024 			 * executable, without corrupting the file (yet only
1025 			 * when that file had been opened for writing!).
1026 			 * Anon pages in shared mappings are surprising: now
1027 			 * just reject it.
1028 			 */
1029 			if (!is_cow_mapping(vm_flags))
1030 				return -EFAULT;
1031 		}
1032 	} else if (!(vm_flags & VM_READ)) {
1033 		if (!(gup_flags & FOLL_FORCE))
1034 			return -EFAULT;
1035 		/*
1036 		 * Is there actually any vma we can reach here which does not
1037 		 * have VM_MAYREAD set?
1038 		 */
1039 		if (!(vm_flags & VM_MAYREAD))
1040 			return -EFAULT;
1041 	}
1042 	/*
1043 	 * gups are always data accesses, not instruction
1044 	 * fetches, so execute=false here
1045 	 */
1046 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1047 		return -EFAULT;
1048 	return 0;
1049 }
1050 
1051 /**
1052  * __get_user_pages() - pin user pages in memory
1053  * @mm:		mm_struct of target mm
1054  * @start:	starting user address
1055  * @nr_pages:	number of pages from start to pin
1056  * @gup_flags:	flags modifying pin behaviour
1057  * @pages:	array that receives pointers to the pages pinned.
1058  *		Should be at least nr_pages long. Or NULL, if caller
1059  *		only intends to ensure the pages are faulted in.
1060  * @vmas:	array of pointers to vmas corresponding to each page.
1061  *		Or NULL if the caller does not require them.
1062  * @locked:     whether we're still with the mmap_lock held
1063  *
1064  * Returns either number of pages pinned (which may be less than the
1065  * number requested), or an error. Details about the return value:
1066  *
1067  * -- If nr_pages is 0, returns 0.
1068  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1069  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1070  *    pages pinned. Again, this may be less than nr_pages.
1071  * -- 0 return value is possible when the fault would need to be retried.
1072  *
1073  * The caller is responsible for releasing returned @pages, via put_page().
1074  *
1075  * @vmas are valid only as long as mmap_lock is held.
1076  *
1077  * Must be called with mmap_lock held.  It may be released.  See below.
1078  *
1079  * __get_user_pages walks a process's page tables and takes a reference to
1080  * each struct page that each user address corresponds to at a given
1081  * instant. That is, it takes the page that would be accessed if a user
1082  * thread accesses the given user virtual address at that instant.
1083  *
1084  * This does not guarantee that the page exists in the user mappings when
1085  * __get_user_pages returns, and there may even be a completely different
1086  * page there in some cases (eg. if mmapped pagecache has been invalidated
1087  * and subsequently re faulted). However it does guarantee that the page
1088  * won't be freed completely. And mostly callers simply care that the page
1089  * contains data that was valid *at some point in time*. Typically, an IO
1090  * or similar operation cannot guarantee anything stronger anyway because
1091  * locks can't be held over the syscall boundary.
1092  *
1093  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1094  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1095  * appropriate) must be called after the page is finished with, and
1096  * before put_page is called.
1097  *
1098  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1099  * released by an up_read().  That can happen if @gup_flags does not
1100  * have FOLL_NOWAIT.
1101  *
1102  * A caller using such a combination of @locked and @gup_flags
1103  * must therefore hold the mmap_lock for reading only, and recognize
1104  * when it's been released.  Otherwise, it must be held for either
1105  * reading or writing and will not be released.
1106  *
1107  * In most cases, get_user_pages or get_user_pages_fast should be used
1108  * instead of __get_user_pages. __get_user_pages should be used only if
1109  * you need some special @gup_flags.
1110  */
1111 static long __get_user_pages(struct mm_struct *mm,
1112 		unsigned long start, unsigned long nr_pages,
1113 		unsigned int gup_flags, struct page **pages,
1114 		struct vm_area_struct **vmas, int *locked)
1115 {
1116 	long ret = 0, i = 0;
1117 	struct vm_area_struct *vma = NULL;
1118 	struct follow_page_context ctx = { NULL };
1119 
1120 	if (!nr_pages)
1121 		return 0;
1122 
1123 	start = untagged_addr(start);
1124 
1125 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1126 
1127 	/*
1128 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1129 	 * fault information is unrelated to the reference behaviour of a task
1130 	 * using the address space
1131 	 */
1132 	if (!(gup_flags & FOLL_FORCE))
1133 		gup_flags |= FOLL_NUMA;
1134 
1135 	do {
1136 		struct page *page;
1137 		unsigned int foll_flags = gup_flags;
1138 		unsigned int page_increm;
1139 
1140 		/* first iteration or cross vma bound */
1141 		if (!vma || start >= vma->vm_end) {
1142 			vma = find_extend_vma(mm, start);
1143 			if (!vma && in_gate_area(mm, start)) {
1144 				ret = get_gate_page(mm, start & PAGE_MASK,
1145 						gup_flags, &vma,
1146 						pages ? &pages[i] : NULL);
1147 				if (ret)
1148 					goto out;
1149 				ctx.page_mask = 0;
1150 				goto next_page;
1151 			}
1152 
1153 			if (!vma) {
1154 				ret = -EFAULT;
1155 				goto out;
1156 			}
1157 			ret = check_vma_flags(vma, gup_flags);
1158 			if (ret)
1159 				goto out;
1160 
1161 			if (is_vm_hugetlb_page(vma)) {
1162 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1163 						&start, &nr_pages, i,
1164 						gup_flags, locked);
1165 				if (locked && *locked == 0) {
1166 					/*
1167 					 * We've got a VM_FAULT_RETRY
1168 					 * and we've lost mmap_lock.
1169 					 * We must stop here.
1170 					 */
1171 					BUG_ON(gup_flags & FOLL_NOWAIT);
1172 					goto out;
1173 				}
1174 				continue;
1175 			}
1176 		}
1177 retry:
1178 		/*
1179 		 * If we have a pending SIGKILL, don't keep faulting pages and
1180 		 * potentially allocating memory.
1181 		 */
1182 		if (fatal_signal_pending(current)) {
1183 			ret = -EINTR;
1184 			goto out;
1185 		}
1186 		cond_resched();
1187 
1188 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1189 		if (!page) {
1190 			ret = faultin_page(vma, start, &foll_flags, locked);
1191 			switch (ret) {
1192 			case 0:
1193 				goto retry;
1194 			case -EBUSY:
1195 				ret = 0;
1196 				fallthrough;
1197 			case -EFAULT:
1198 			case -ENOMEM:
1199 			case -EHWPOISON:
1200 				goto out;
1201 			case -ENOENT:
1202 				goto next_page;
1203 			}
1204 			BUG();
1205 		} else if (PTR_ERR(page) == -EEXIST) {
1206 			/*
1207 			 * Proper page table entry exists, but no corresponding
1208 			 * struct page.
1209 			 */
1210 			goto next_page;
1211 		} else if (IS_ERR(page)) {
1212 			ret = PTR_ERR(page);
1213 			goto out;
1214 		}
1215 		if (pages) {
1216 			pages[i] = page;
1217 			flush_anon_page(vma, page, start);
1218 			flush_dcache_page(page);
1219 			ctx.page_mask = 0;
1220 		}
1221 next_page:
1222 		if (vmas) {
1223 			vmas[i] = vma;
1224 			ctx.page_mask = 0;
1225 		}
1226 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1227 		if (page_increm > nr_pages)
1228 			page_increm = nr_pages;
1229 		i += page_increm;
1230 		start += page_increm * PAGE_SIZE;
1231 		nr_pages -= page_increm;
1232 	} while (nr_pages);
1233 out:
1234 	if (ctx.pgmap)
1235 		put_dev_pagemap(ctx.pgmap);
1236 	return i ? i : ret;
1237 }
1238 
1239 static bool vma_permits_fault(struct vm_area_struct *vma,
1240 			      unsigned int fault_flags)
1241 {
1242 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1243 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1244 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1245 
1246 	if (!(vm_flags & vma->vm_flags))
1247 		return false;
1248 
1249 	/*
1250 	 * The architecture might have a hardware protection
1251 	 * mechanism other than read/write that can deny access.
1252 	 *
1253 	 * gup always represents data access, not instruction
1254 	 * fetches, so execute=false here:
1255 	 */
1256 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1257 		return false;
1258 
1259 	return true;
1260 }
1261 
1262 /**
1263  * fixup_user_fault() - manually resolve a user page fault
1264  * @mm:		mm_struct of target mm
1265  * @address:	user address
1266  * @fault_flags:flags to pass down to handle_mm_fault()
1267  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1268  *		does not allow retry. If NULL, the caller must guarantee
1269  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1270  *
1271  * This is meant to be called in the specific scenario where for locking reasons
1272  * we try to access user memory in atomic context (within a pagefault_disable()
1273  * section), this returns -EFAULT, and we want to resolve the user fault before
1274  * trying again.
1275  *
1276  * Typically this is meant to be used by the futex code.
1277  *
1278  * The main difference with get_user_pages() is that this function will
1279  * unconditionally call handle_mm_fault() which will in turn perform all the
1280  * necessary SW fixup of the dirty and young bits in the PTE, while
1281  * get_user_pages() only guarantees to update these in the struct page.
1282  *
1283  * This is important for some architectures where those bits also gate the
1284  * access permission to the page because they are maintained in software.  On
1285  * such architectures, gup() will not be enough to make a subsequent access
1286  * succeed.
1287  *
1288  * This function will not return with an unlocked mmap_lock. So it has not the
1289  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1290  */
1291 int fixup_user_fault(struct mm_struct *mm,
1292 		     unsigned long address, unsigned int fault_flags,
1293 		     bool *unlocked)
1294 {
1295 	struct vm_area_struct *vma;
1296 	vm_fault_t ret;
1297 
1298 	address = untagged_addr(address);
1299 
1300 	if (unlocked)
1301 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1302 
1303 retry:
1304 	vma = find_extend_vma(mm, address);
1305 	if (!vma || address < vma->vm_start)
1306 		return -EFAULT;
1307 
1308 	if (!vma_permits_fault(vma, fault_flags))
1309 		return -EFAULT;
1310 
1311 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1312 	    fatal_signal_pending(current))
1313 		return -EINTR;
1314 
1315 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1316 	if (ret & VM_FAULT_ERROR) {
1317 		int err = vm_fault_to_errno(ret, 0);
1318 
1319 		if (err)
1320 			return err;
1321 		BUG();
1322 	}
1323 
1324 	if (ret & VM_FAULT_RETRY) {
1325 		mmap_read_lock(mm);
1326 		*unlocked = true;
1327 		fault_flags |= FAULT_FLAG_TRIED;
1328 		goto retry;
1329 	}
1330 
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(fixup_user_fault);
1334 
1335 /*
1336  * Please note that this function, unlike __get_user_pages will not
1337  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1338  */
1339 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1340 						unsigned long start,
1341 						unsigned long nr_pages,
1342 						struct page **pages,
1343 						struct vm_area_struct **vmas,
1344 						int *locked,
1345 						unsigned int flags)
1346 {
1347 	long ret, pages_done;
1348 	bool lock_dropped;
1349 
1350 	if (locked) {
1351 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1352 		BUG_ON(vmas);
1353 		/* check caller initialized locked */
1354 		BUG_ON(*locked != 1);
1355 	}
1356 
1357 	if (flags & FOLL_PIN)
1358 		mm_set_has_pinned_flag(&mm->flags);
1359 
1360 	/*
1361 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1362 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1363 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1364 	 * for FOLL_GET, not for the newer FOLL_PIN.
1365 	 *
1366 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1367 	 * that here, as any failures will be obvious enough.
1368 	 */
1369 	if (pages && !(flags & FOLL_PIN))
1370 		flags |= FOLL_GET;
1371 
1372 	pages_done = 0;
1373 	lock_dropped = false;
1374 	for (;;) {
1375 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1376 				       vmas, locked);
1377 		if (!locked)
1378 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1379 			return ret;
1380 
1381 		/* VM_FAULT_RETRY cannot return errors */
1382 		if (!*locked) {
1383 			BUG_ON(ret < 0);
1384 			BUG_ON(ret >= nr_pages);
1385 		}
1386 
1387 		if (ret > 0) {
1388 			nr_pages -= ret;
1389 			pages_done += ret;
1390 			if (!nr_pages)
1391 				break;
1392 		}
1393 		if (*locked) {
1394 			/*
1395 			 * VM_FAULT_RETRY didn't trigger or it was a
1396 			 * FOLL_NOWAIT.
1397 			 */
1398 			if (!pages_done)
1399 				pages_done = ret;
1400 			break;
1401 		}
1402 		/*
1403 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1404 		 * For the prefault case (!pages) we only update counts.
1405 		 */
1406 		if (likely(pages))
1407 			pages += ret;
1408 		start += ret << PAGE_SHIFT;
1409 		lock_dropped = true;
1410 
1411 retry:
1412 		/*
1413 		 * Repeat on the address that fired VM_FAULT_RETRY
1414 		 * with both FAULT_FLAG_ALLOW_RETRY and
1415 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1416 		 * by fatal signals, so we need to check it before we
1417 		 * start trying again otherwise it can loop forever.
1418 		 */
1419 
1420 		if (fatal_signal_pending(current)) {
1421 			if (!pages_done)
1422 				pages_done = -EINTR;
1423 			break;
1424 		}
1425 
1426 		ret = mmap_read_lock_killable(mm);
1427 		if (ret) {
1428 			BUG_ON(ret > 0);
1429 			if (!pages_done)
1430 				pages_done = ret;
1431 			break;
1432 		}
1433 
1434 		*locked = 1;
1435 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1436 				       pages, NULL, locked);
1437 		if (!*locked) {
1438 			/* Continue to retry until we succeeded */
1439 			BUG_ON(ret != 0);
1440 			goto retry;
1441 		}
1442 		if (ret != 1) {
1443 			BUG_ON(ret > 1);
1444 			if (!pages_done)
1445 				pages_done = ret;
1446 			break;
1447 		}
1448 		nr_pages--;
1449 		pages_done++;
1450 		if (!nr_pages)
1451 			break;
1452 		if (likely(pages))
1453 			pages++;
1454 		start += PAGE_SIZE;
1455 	}
1456 	if (lock_dropped && *locked) {
1457 		/*
1458 		 * We must let the caller know we temporarily dropped the lock
1459 		 * and so the critical section protected by it was lost.
1460 		 */
1461 		mmap_read_unlock(mm);
1462 		*locked = 0;
1463 	}
1464 	return pages_done;
1465 }
1466 
1467 /**
1468  * populate_vma_page_range() -  populate a range of pages in the vma.
1469  * @vma:   target vma
1470  * @start: start address
1471  * @end:   end address
1472  * @locked: whether the mmap_lock is still held
1473  *
1474  * This takes care of mlocking the pages too if VM_LOCKED is set.
1475  *
1476  * Return either number of pages pinned in the vma, or a negative error
1477  * code on error.
1478  *
1479  * vma->vm_mm->mmap_lock must be held.
1480  *
1481  * If @locked is NULL, it may be held for read or write and will
1482  * be unperturbed.
1483  *
1484  * If @locked is non-NULL, it must held for read only and may be
1485  * released.  If it's released, *@locked will be set to 0.
1486  */
1487 long populate_vma_page_range(struct vm_area_struct *vma,
1488 		unsigned long start, unsigned long end, int *locked)
1489 {
1490 	struct mm_struct *mm = vma->vm_mm;
1491 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1492 	int gup_flags;
1493 
1494 	VM_BUG_ON(!PAGE_ALIGNED(start));
1495 	VM_BUG_ON(!PAGE_ALIGNED(end));
1496 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1497 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1498 	mmap_assert_locked(mm);
1499 
1500 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1501 	if (vma->vm_flags & VM_LOCKONFAULT)
1502 		gup_flags &= ~FOLL_POPULATE;
1503 	/*
1504 	 * We want to touch writable mappings with a write fault in order
1505 	 * to break COW, except for shared mappings because these don't COW
1506 	 * and we would not want to dirty them for nothing.
1507 	 */
1508 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1509 		gup_flags |= FOLL_WRITE;
1510 
1511 	/*
1512 	 * We want mlock to succeed for regions that have any permissions
1513 	 * other than PROT_NONE.
1514 	 */
1515 	if (vma_is_accessible(vma))
1516 		gup_flags |= FOLL_FORCE;
1517 
1518 	/*
1519 	 * We made sure addr is within a VMA, so the following will
1520 	 * not result in a stack expansion that recurses back here.
1521 	 */
1522 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1523 				NULL, NULL, locked);
1524 }
1525 
1526 /*
1527  * faultin_vma_page_range() - populate (prefault) page tables inside the
1528  *			      given VMA range readable/writable
1529  *
1530  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1531  *
1532  * @vma: target vma
1533  * @start: start address
1534  * @end: end address
1535  * @write: whether to prefault readable or writable
1536  * @locked: whether the mmap_lock is still held
1537  *
1538  * Returns either number of processed pages in the vma, or a negative error
1539  * code on error (see __get_user_pages()).
1540  *
1541  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1542  * covered by the VMA.
1543  *
1544  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1545  *
1546  * If @locked is non-NULL, it must held for read only and may be released.  If
1547  * it's released, *@locked will be set to 0.
1548  */
1549 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1550 			    unsigned long end, bool write, int *locked)
1551 {
1552 	struct mm_struct *mm = vma->vm_mm;
1553 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1554 	int gup_flags;
1555 
1556 	VM_BUG_ON(!PAGE_ALIGNED(start));
1557 	VM_BUG_ON(!PAGE_ALIGNED(end));
1558 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1559 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1560 	mmap_assert_locked(mm);
1561 
1562 	/*
1563 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1564 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1565 	 *	       difference with !FOLL_FORCE, because the page is writable
1566 	 *	       in the page table.
1567 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1568 	 *		  a poisoned page.
1569 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1570 	 * !FOLL_FORCE: Require proper access permissions.
1571 	 */
1572 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1573 	if (write)
1574 		gup_flags |= FOLL_WRITE;
1575 
1576 	/*
1577 	 * We want to report -EINVAL instead of -EFAULT for any permission
1578 	 * problems or incompatible mappings.
1579 	 */
1580 	if (check_vma_flags(vma, gup_flags))
1581 		return -EINVAL;
1582 
1583 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1584 				NULL, NULL, locked);
1585 }
1586 
1587 /*
1588  * __mm_populate - populate and/or mlock pages within a range of address space.
1589  *
1590  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591  * flags. VMAs must be already marked with the desired vm_flags, and
1592  * mmap_lock must not be held.
1593  */
1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1595 {
1596 	struct mm_struct *mm = current->mm;
1597 	unsigned long end, nstart, nend;
1598 	struct vm_area_struct *vma = NULL;
1599 	int locked = 0;
1600 	long ret = 0;
1601 
1602 	end = start + len;
1603 
1604 	for (nstart = start; nstart < end; nstart = nend) {
1605 		/*
1606 		 * We want to fault in pages for [nstart; end) address range.
1607 		 * Find first corresponding VMA.
1608 		 */
1609 		if (!locked) {
1610 			locked = 1;
1611 			mmap_read_lock(mm);
1612 			vma = find_vma(mm, nstart);
1613 		} else if (nstart >= vma->vm_end)
1614 			vma = vma->vm_next;
1615 		if (!vma || vma->vm_start >= end)
1616 			break;
1617 		/*
1618 		 * Set [nstart; nend) to intersection of desired address
1619 		 * range with the first VMA. Also, skip undesirable VMA types.
1620 		 */
1621 		nend = min(end, vma->vm_end);
1622 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1623 			continue;
1624 		if (nstart < vma->vm_start)
1625 			nstart = vma->vm_start;
1626 		/*
1627 		 * Now fault in a range of pages. populate_vma_page_range()
1628 		 * double checks the vma flags, so that it won't mlock pages
1629 		 * if the vma was already munlocked.
1630 		 */
1631 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1632 		if (ret < 0) {
1633 			if (ignore_errors) {
1634 				ret = 0;
1635 				continue;	/* continue at next VMA */
1636 			}
1637 			break;
1638 		}
1639 		nend = nstart + ret * PAGE_SIZE;
1640 		ret = 0;
1641 	}
1642 	if (locked)
1643 		mmap_read_unlock(mm);
1644 	return ret;	/* 0 or negative error code */
1645 }
1646 #else /* CONFIG_MMU */
1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648 		unsigned long nr_pages, struct page **pages,
1649 		struct vm_area_struct **vmas, int *locked,
1650 		unsigned int foll_flags)
1651 {
1652 	struct vm_area_struct *vma;
1653 	unsigned long vm_flags;
1654 	long i;
1655 
1656 	/* calculate required read or write permissions.
1657 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1658 	 */
1659 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1660 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1662 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1663 
1664 	for (i = 0; i < nr_pages; i++) {
1665 		vma = find_vma(mm, start);
1666 		if (!vma)
1667 			goto finish_or_fault;
1668 
1669 		/* protect what we can, including chardevs */
1670 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671 		    !(vm_flags & vma->vm_flags))
1672 			goto finish_or_fault;
1673 
1674 		if (pages) {
1675 			pages[i] = virt_to_page(start);
1676 			if (pages[i])
1677 				get_page(pages[i]);
1678 		}
1679 		if (vmas)
1680 			vmas[i] = vma;
1681 		start = (start + PAGE_SIZE) & PAGE_MASK;
1682 	}
1683 
1684 	return i;
1685 
1686 finish_or_fault:
1687 	return i ? : -EFAULT;
1688 }
1689 #endif /* !CONFIG_MMU */
1690 
1691 /**
1692  * fault_in_writeable - fault in userspace address range for writing
1693  * @uaddr: start of address range
1694  * @size: size of address range
1695  *
1696  * Returns the number of bytes not faulted in (like copy_to_user() and
1697  * copy_from_user()).
1698  */
1699 size_t fault_in_writeable(char __user *uaddr, size_t size)
1700 {
1701 	char __user *start = uaddr, *end;
1702 
1703 	if (unlikely(size == 0))
1704 		return 0;
1705 	if (!user_write_access_begin(uaddr, size))
1706 		return size;
1707 	if (!PAGE_ALIGNED(uaddr)) {
1708 		unsafe_put_user(0, uaddr, out);
1709 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1710 	}
1711 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712 	if (unlikely(end < start))
1713 		end = NULL;
1714 	while (uaddr != end) {
1715 		unsafe_put_user(0, uaddr, out);
1716 		uaddr += PAGE_SIZE;
1717 	}
1718 
1719 out:
1720 	user_write_access_end();
1721 	if (size > uaddr - start)
1722 		return size - (uaddr - start);
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(fault_in_writeable);
1726 
1727 /*
1728  * fault_in_safe_writeable - fault in an address range for writing
1729  * @uaddr: start of address range
1730  * @size: length of address range
1731  *
1732  * Faults in an address range using get_user_pages, i.e., without triggering
1733  * hardware page faults.  This is primarily useful when we already know that
1734  * some or all of the pages in the address range aren't in memory.
1735  *
1736  * Other than fault_in_writeable(), this function is non-destructive.
1737  *
1738  * Note that we don't pin or otherwise hold the pages referenced that we fault
1739  * in.  There's no guarantee that they'll stay in memory for any duration of
1740  * time.
1741  *
1742  * Returns the number of bytes not faulted in, like copy_to_user() and
1743  * copy_from_user().
1744  */
1745 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1746 {
1747 	unsigned long start = (unsigned long)untagged_addr(uaddr);
1748 	unsigned long end, nstart, nend;
1749 	struct mm_struct *mm = current->mm;
1750 	struct vm_area_struct *vma = NULL;
1751 	int locked = 0;
1752 
1753 	nstart = start & PAGE_MASK;
1754 	end = PAGE_ALIGN(start + size);
1755 	if (end < nstart)
1756 		end = 0;
1757 	for (; nstart != end; nstart = nend) {
1758 		unsigned long nr_pages;
1759 		long ret;
1760 
1761 		if (!locked) {
1762 			locked = 1;
1763 			mmap_read_lock(mm);
1764 			vma = find_vma(mm, nstart);
1765 		} else if (nstart >= vma->vm_end)
1766 			vma = vma->vm_next;
1767 		if (!vma || vma->vm_start >= end)
1768 			break;
1769 		nend = end ? min(end, vma->vm_end) : vma->vm_end;
1770 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1771 			continue;
1772 		if (nstart < vma->vm_start)
1773 			nstart = vma->vm_start;
1774 		nr_pages = (nend - nstart) / PAGE_SIZE;
1775 		ret = __get_user_pages_locked(mm, nstart, nr_pages,
1776 					      NULL, NULL, &locked,
1777 					      FOLL_TOUCH | FOLL_WRITE);
1778 		if (ret <= 0)
1779 			break;
1780 		nend = nstart + ret * PAGE_SIZE;
1781 	}
1782 	if (locked)
1783 		mmap_read_unlock(mm);
1784 	if (nstart == end)
1785 		return 0;
1786 	return size - min_t(size_t, nstart - start, size);
1787 }
1788 EXPORT_SYMBOL(fault_in_safe_writeable);
1789 
1790 /**
1791  * fault_in_readable - fault in userspace address range for reading
1792  * @uaddr: start of user address range
1793  * @size: size of user address range
1794  *
1795  * Returns the number of bytes not faulted in (like copy_to_user() and
1796  * copy_from_user()).
1797  */
1798 size_t fault_in_readable(const char __user *uaddr, size_t size)
1799 {
1800 	const char __user *start = uaddr, *end;
1801 	volatile char c;
1802 
1803 	if (unlikely(size == 0))
1804 		return 0;
1805 	if (!user_read_access_begin(uaddr, size))
1806 		return size;
1807 	if (!PAGE_ALIGNED(uaddr)) {
1808 		unsafe_get_user(c, uaddr, out);
1809 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1810 	}
1811 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1812 	if (unlikely(end < start))
1813 		end = NULL;
1814 	while (uaddr != end) {
1815 		unsafe_get_user(c, uaddr, out);
1816 		uaddr += PAGE_SIZE;
1817 	}
1818 
1819 out:
1820 	user_read_access_end();
1821 	(void)c;
1822 	if (size > uaddr - start)
1823 		return size - (uaddr - start);
1824 	return 0;
1825 }
1826 EXPORT_SYMBOL(fault_in_readable);
1827 
1828 /**
1829  * get_dump_page() - pin user page in memory while writing it to core dump
1830  * @addr: user address
1831  *
1832  * Returns struct page pointer of user page pinned for dump,
1833  * to be freed afterwards by put_page().
1834  *
1835  * Returns NULL on any kind of failure - a hole must then be inserted into
1836  * the corefile, to preserve alignment with its headers; and also returns
1837  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1838  * allowing a hole to be left in the corefile to save disk space.
1839  *
1840  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1841  */
1842 #ifdef CONFIG_ELF_CORE
1843 struct page *get_dump_page(unsigned long addr)
1844 {
1845 	struct mm_struct *mm = current->mm;
1846 	struct page *page;
1847 	int locked = 1;
1848 	int ret;
1849 
1850 	if (mmap_read_lock_killable(mm))
1851 		return NULL;
1852 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1853 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1854 	if (locked)
1855 		mmap_read_unlock(mm);
1856 	return (ret == 1) ? page : NULL;
1857 }
1858 #endif /* CONFIG_ELF_CORE */
1859 
1860 #ifdef CONFIG_MIGRATION
1861 /*
1862  * Check whether all pages are pinnable, if so return number of pages.  If some
1863  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1864  * pages were migrated, or if some pages were not successfully isolated.
1865  * Return negative error if migration fails.
1866  */
1867 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1868 					    struct page **pages,
1869 					    unsigned int gup_flags)
1870 {
1871 	unsigned long i;
1872 	unsigned long isolation_error_count = 0;
1873 	bool drain_allow = true;
1874 	LIST_HEAD(movable_page_list);
1875 	long ret = 0;
1876 	struct page *prev_head = NULL;
1877 	struct page *head;
1878 	struct migration_target_control mtc = {
1879 		.nid = NUMA_NO_NODE,
1880 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1881 	};
1882 
1883 	for (i = 0; i < nr_pages; i++) {
1884 		head = compound_head(pages[i]);
1885 		if (head == prev_head)
1886 			continue;
1887 		prev_head = head;
1888 		/*
1889 		 * If we get a movable page, since we are going to be pinning
1890 		 * these entries, try to move them out if possible.
1891 		 */
1892 		if (!is_pinnable_page(head)) {
1893 			if (PageHuge(head)) {
1894 				if (!isolate_huge_page(head, &movable_page_list))
1895 					isolation_error_count++;
1896 			} else {
1897 				if (!PageLRU(head) && drain_allow) {
1898 					lru_add_drain_all();
1899 					drain_allow = false;
1900 				}
1901 
1902 				if (isolate_lru_page(head)) {
1903 					isolation_error_count++;
1904 					continue;
1905 				}
1906 				list_add_tail(&head->lru, &movable_page_list);
1907 				mod_node_page_state(page_pgdat(head),
1908 						    NR_ISOLATED_ANON +
1909 						    page_is_file_lru(head),
1910 						    thp_nr_pages(head));
1911 			}
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * If list is empty, and no isolation errors, means that all pages are
1917 	 * in the correct zone.
1918 	 */
1919 	if (list_empty(&movable_page_list) && !isolation_error_count)
1920 		return nr_pages;
1921 
1922 	if (gup_flags & FOLL_PIN) {
1923 		unpin_user_pages(pages, nr_pages);
1924 	} else {
1925 		for (i = 0; i < nr_pages; i++)
1926 			put_page(pages[i]);
1927 	}
1928 	if (!list_empty(&movable_page_list)) {
1929 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1930 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1931 				    MR_LONGTERM_PIN, NULL);
1932 		if (ret && !list_empty(&movable_page_list))
1933 			putback_movable_pages(&movable_page_list);
1934 	}
1935 
1936 	return ret > 0 ? -ENOMEM : ret;
1937 }
1938 #else
1939 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1940 					    struct page **pages,
1941 					    unsigned int gup_flags)
1942 {
1943 	return nr_pages;
1944 }
1945 #endif /* CONFIG_MIGRATION */
1946 
1947 /*
1948  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1949  * allows us to process the FOLL_LONGTERM flag.
1950  */
1951 static long __gup_longterm_locked(struct mm_struct *mm,
1952 				  unsigned long start,
1953 				  unsigned long nr_pages,
1954 				  struct page **pages,
1955 				  struct vm_area_struct **vmas,
1956 				  unsigned int gup_flags)
1957 {
1958 	unsigned int flags;
1959 	long rc;
1960 
1961 	if (!(gup_flags & FOLL_LONGTERM))
1962 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1963 					       NULL, gup_flags);
1964 	flags = memalloc_pin_save();
1965 	do {
1966 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1967 					     NULL, gup_flags);
1968 		if (rc <= 0)
1969 			break;
1970 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1971 	} while (!rc);
1972 	memalloc_pin_restore(flags);
1973 
1974 	return rc;
1975 }
1976 
1977 static bool is_valid_gup_flags(unsigned int gup_flags)
1978 {
1979 	/*
1980 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1981 	 * never directly by the caller, so enforce that with an assertion:
1982 	 */
1983 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1984 		return false;
1985 	/*
1986 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1987 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1988 	 * FOLL_PIN.
1989 	 */
1990 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1991 		return false;
1992 
1993 	return true;
1994 }
1995 
1996 #ifdef CONFIG_MMU
1997 static long __get_user_pages_remote(struct mm_struct *mm,
1998 				    unsigned long start, unsigned long nr_pages,
1999 				    unsigned int gup_flags, struct page **pages,
2000 				    struct vm_area_struct **vmas, int *locked)
2001 {
2002 	/*
2003 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2004 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2005 	 * vmas. However, this only comes up if locked is set, and there are
2006 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2007 	 * allow what we can.
2008 	 */
2009 	if (gup_flags & FOLL_LONGTERM) {
2010 		if (WARN_ON_ONCE(locked))
2011 			return -EINVAL;
2012 		/*
2013 		 * This will check the vmas (even if our vmas arg is NULL)
2014 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2015 		 */
2016 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2017 					     vmas, gup_flags | FOLL_TOUCH |
2018 					     FOLL_REMOTE);
2019 	}
2020 
2021 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2022 				       locked,
2023 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2024 }
2025 
2026 /**
2027  * get_user_pages_remote() - pin user pages in memory
2028  * @mm:		mm_struct of target mm
2029  * @start:	starting user address
2030  * @nr_pages:	number of pages from start to pin
2031  * @gup_flags:	flags modifying lookup behaviour
2032  * @pages:	array that receives pointers to the pages pinned.
2033  *		Should be at least nr_pages long. Or NULL, if caller
2034  *		only intends to ensure the pages are faulted in.
2035  * @vmas:	array of pointers to vmas corresponding to each page.
2036  *		Or NULL if the caller does not require them.
2037  * @locked:	pointer to lock flag indicating whether lock is held and
2038  *		subsequently whether VM_FAULT_RETRY functionality can be
2039  *		utilised. Lock must initially be held.
2040  *
2041  * Returns either number of pages pinned (which may be less than the
2042  * number requested), or an error. Details about the return value:
2043  *
2044  * -- If nr_pages is 0, returns 0.
2045  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2046  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2047  *    pages pinned. Again, this may be less than nr_pages.
2048  *
2049  * The caller is responsible for releasing returned @pages, via put_page().
2050  *
2051  * @vmas are valid only as long as mmap_lock is held.
2052  *
2053  * Must be called with mmap_lock held for read or write.
2054  *
2055  * get_user_pages_remote walks a process's page tables and takes a reference
2056  * to each struct page that each user address corresponds to at a given
2057  * instant. That is, it takes the page that would be accessed if a user
2058  * thread accesses the given user virtual address at that instant.
2059  *
2060  * This does not guarantee that the page exists in the user mappings when
2061  * get_user_pages_remote returns, and there may even be a completely different
2062  * page there in some cases (eg. if mmapped pagecache has been invalidated
2063  * and subsequently re faulted). However it does guarantee that the page
2064  * won't be freed completely. And mostly callers simply care that the page
2065  * contains data that was valid *at some point in time*. Typically, an IO
2066  * or similar operation cannot guarantee anything stronger anyway because
2067  * locks can't be held over the syscall boundary.
2068  *
2069  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2070  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2071  * be called after the page is finished with, and before put_page is called.
2072  *
2073  * get_user_pages_remote is typically used for fewer-copy IO operations,
2074  * to get a handle on the memory by some means other than accesses
2075  * via the user virtual addresses. The pages may be submitted for
2076  * DMA to devices or accessed via their kernel linear mapping (via the
2077  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2078  *
2079  * See also get_user_pages_fast, for performance critical applications.
2080  *
2081  * get_user_pages_remote should be phased out in favor of
2082  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2083  * should use get_user_pages_remote because it cannot pass
2084  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2085  */
2086 long get_user_pages_remote(struct mm_struct *mm,
2087 		unsigned long start, unsigned long nr_pages,
2088 		unsigned int gup_flags, struct page **pages,
2089 		struct vm_area_struct **vmas, int *locked)
2090 {
2091 	if (!is_valid_gup_flags(gup_flags))
2092 		return -EINVAL;
2093 
2094 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2095 				       pages, vmas, locked);
2096 }
2097 EXPORT_SYMBOL(get_user_pages_remote);
2098 
2099 #else /* CONFIG_MMU */
2100 long get_user_pages_remote(struct mm_struct *mm,
2101 			   unsigned long start, unsigned long nr_pages,
2102 			   unsigned int gup_flags, struct page **pages,
2103 			   struct vm_area_struct **vmas, int *locked)
2104 {
2105 	return 0;
2106 }
2107 
2108 static long __get_user_pages_remote(struct mm_struct *mm,
2109 				    unsigned long start, unsigned long nr_pages,
2110 				    unsigned int gup_flags, struct page **pages,
2111 				    struct vm_area_struct **vmas, int *locked)
2112 {
2113 	return 0;
2114 }
2115 #endif /* !CONFIG_MMU */
2116 
2117 /**
2118  * get_user_pages() - pin user pages in memory
2119  * @start:      starting user address
2120  * @nr_pages:   number of pages from start to pin
2121  * @gup_flags:  flags modifying lookup behaviour
2122  * @pages:      array that receives pointers to the pages pinned.
2123  *              Should be at least nr_pages long. Or NULL, if caller
2124  *              only intends to ensure the pages are faulted in.
2125  * @vmas:       array of pointers to vmas corresponding to each page.
2126  *              Or NULL if the caller does not require them.
2127  *
2128  * This is the same as get_user_pages_remote(), just with a less-flexible
2129  * calling convention where we assume that the mm being operated on belongs to
2130  * the current task, and doesn't allow passing of a locked parameter.  We also
2131  * obviously don't pass FOLL_REMOTE in here.
2132  */
2133 long get_user_pages(unsigned long start, unsigned long nr_pages,
2134 		unsigned int gup_flags, struct page **pages,
2135 		struct vm_area_struct **vmas)
2136 {
2137 	if (!is_valid_gup_flags(gup_flags))
2138 		return -EINVAL;
2139 
2140 	return __gup_longterm_locked(current->mm, start, nr_pages,
2141 				     pages, vmas, gup_flags | FOLL_TOUCH);
2142 }
2143 EXPORT_SYMBOL(get_user_pages);
2144 
2145 /**
2146  * get_user_pages_locked() - variant of get_user_pages()
2147  *
2148  * @start:      starting user address
2149  * @nr_pages:   number of pages from start to pin
2150  * @gup_flags:  flags modifying lookup behaviour
2151  * @pages:      array that receives pointers to the pages pinned.
2152  *              Should be at least nr_pages long. Or NULL, if caller
2153  *              only intends to ensure the pages are faulted in.
2154  * @locked:     pointer to lock flag indicating whether lock is held and
2155  *              subsequently whether VM_FAULT_RETRY functionality can be
2156  *              utilised. Lock must initially be held.
2157  *
2158  * It is suitable to replace the form:
2159  *
2160  *      mmap_read_lock(mm);
2161  *      do_something()
2162  *      get_user_pages(mm, ..., pages, NULL);
2163  *      mmap_read_unlock(mm);
2164  *
2165  *  to:
2166  *
2167  *      int locked = 1;
2168  *      mmap_read_lock(mm);
2169  *      do_something()
2170  *      get_user_pages_locked(mm, ..., pages, &locked);
2171  *      if (locked)
2172  *          mmap_read_unlock(mm);
2173  *
2174  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2175  * paths better by using either get_user_pages_locked() or
2176  * get_user_pages_unlocked().
2177  *
2178  */
2179 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2180 			   unsigned int gup_flags, struct page **pages,
2181 			   int *locked)
2182 {
2183 	/*
2184 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2185 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2186 	 * vmas.  As there are no users of this flag in this call we simply
2187 	 * disallow this option for now.
2188 	 */
2189 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2190 		return -EINVAL;
2191 	/*
2192 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2193 	 * never directly by the caller, so enforce that:
2194 	 */
2195 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2196 		return -EINVAL;
2197 
2198 	return __get_user_pages_locked(current->mm, start, nr_pages,
2199 				       pages, NULL, locked,
2200 				       gup_flags | FOLL_TOUCH);
2201 }
2202 EXPORT_SYMBOL(get_user_pages_locked);
2203 
2204 /*
2205  * get_user_pages_unlocked() is suitable to replace the form:
2206  *
2207  *      mmap_read_lock(mm);
2208  *      get_user_pages(mm, ..., pages, NULL);
2209  *      mmap_read_unlock(mm);
2210  *
2211  *  with:
2212  *
2213  *      get_user_pages_unlocked(mm, ..., pages);
2214  *
2215  * It is functionally equivalent to get_user_pages_fast so
2216  * get_user_pages_fast should be used instead if specific gup_flags
2217  * (e.g. FOLL_FORCE) are not required.
2218  */
2219 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2220 			     struct page **pages, unsigned int gup_flags)
2221 {
2222 	struct mm_struct *mm = current->mm;
2223 	int locked = 1;
2224 	long ret;
2225 
2226 	/*
2227 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2228 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2229 	 * vmas.  As there are no users of this flag in this call we simply
2230 	 * disallow this option for now.
2231 	 */
2232 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2233 		return -EINVAL;
2234 
2235 	mmap_read_lock(mm);
2236 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2237 				      &locked, gup_flags | FOLL_TOUCH);
2238 	if (locked)
2239 		mmap_read_unlock(mm);
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL(get_user_pages_unlocked);
2243 
2244 /*
2245  * Fast GUP
2246  *
2247  * get_user_pages_fast attempts to pin user pages by walking the page
2248  * tables directly and avoids taking locks. Thus the walker needs to be
2249  * protected from page table pages being freed from under it, and should
2250  * block any THP splits.
2251  *
2252  * One way to achieve this is to have the walker disable interrupts, and
2253  * rely on IPIs from the TLB flushing code blocking before the page table
2254  * pages are freed. This is unsuitable for architectures that do not need
2255  * to broadcast an IPI when invalidating TLBs.
2256  *
2257  * Another way to achieve this is to batch up page table containing pages
2258  * belonging to more than one mm_user, then rcu_sched a callback to free those
2259  * pages. Disabling interrupts will allow the fast_gup walker to both block
2260  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2261  * (which is a relatively rare event). The code below adopts this strategy.
2262  *
2263  * Before activating this code, please be aware that the following assumptions
2264  * are currently made:
2265  *
2266  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2267  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2268  *
2269  *  *) ptes can be read atomically by the architecture.
2270  *
2271  *  *) access_ok is sufficient to validate userspace address ranges.
2272  *
2273  * The last two assumptions can be relaxed by the addition of helper functions.
2274  *
2275  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2276  */
2277 #ifdef CONFIG_HAVE_FAST_GUP
2278 
2279 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2280 					    unsigned int flags,
2281 					    struct page **pages)
2282 {
2283 	while ((*nr) - nr_start) {
2284 		struct page *page = pages[--(*nr)];
2285 
2286 		ClearPageReferenced(page);
2287 		if (flags & FOLL_PIN)
2288 			unpin_user_page(page);
2289 		else
2290 			put_page(page);
2291 	}
2292 }
2293 
2294 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2295 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2296 			 unsigned int flags, struct page **pages, int *nr)
2297 {
2298 	struct dev_pagemap *pgmap = NULL;
2299 	int nr_start = *nr, ret = 0;
2300 	pte_t *ptep, *ptem;
2301 
2302 	ptem = ptep = pte_offset_map(&pmd, addr);
2303 	do {
2304 		pte_t pte = ptep_get_lockless(ptep);
2305 		struct page *head, *page;
2306 
2307 		/*
2308 		 * Similar to the PMD case below, NUMA hinting must take slow
2309 		 * path using the pte_protnone check.
2310 		 */
2311 		if (pte_protnone(pte))
2312 			goto pte_unmap;
2313 
2314 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2315 			goto pte_unmap;
2316 
2317 		if (pte_devmap(pte)) {
2318 			if (unlikely(flags & FOLL_LONGTERM))
2319 				goto pte_unmap;
2320 
2321 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2322 			if (unlikely(!pgmap)) {
2323 				undo_dev_pagemap(nr, nr_start, flags, pages);
2324 				goto pte_unmap;
2325 			}
2326 		} else if (pte_special(pte))
2327 			goto pte_unmap;
2328 
2329 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2330 		page = pte_page(pte);
2331 
2332 		head = try_grab_compound_head(page, 1, flags);
2333 		if (!head)
2334 			goto pte_unmap;
2335 
2336 		if (unlikely(page_is_secretmem(page))) {
2337 			put_compound_head(head, 1, flags);
2338 			goto pte_unmap;
2339 		}
2340 
2341 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2342 			put_compound_head(head, 1, flags);
2343 			goto pte_unmap;
2344 		}
2345 
2346 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2347 
2348 		/*
2349 		 * We need to make the page accessible if and only if we are
2350 		 * going to access its content (the FOLL_PIN case).  Please
2351 		 * see Documentation/core-api/pin_user_pages.rst for
2352 		 * details.
2353 		 */
2354 		if (flags & FOLL_PIN) {
2355 			ret = arch_make_page_accessible(page);
2356 			if (ret) {
2357 				unpin_user_page(page);
2358 				goto pte_unmap;
2359 			}
2360 		}
2361 		SetPageReferenced(page);
2362 		pages[*nr] = page;
2363 		(*nr)++;
2364 
2365 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2366 
2367 	ret = 1;
2368 
2369 pte_unmap:
2370 	if (pgmap)
2371 		put_dev_pagemap(pgmap);
2372 	pte_unmap(ptem);
2373 	return ret;
2374 }
2375 #else
2376 
2377 /*
2378  * If we can't determine whether or not a pte is special, then fail immediately
2379  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2380  * to be special.
2381  *
2382  * For a futex to be placed on a THP tail page, get_futex_key requires a
2383  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2384  * useful to have gup_huge_pmd even if we can't operate on ptes.
2385  */
2386 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2387 			 unsigned int flags, struct page **pages, int *nr)
2388 {
2389 	return 0;
2390 }
2391 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2392 
2393 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2394 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2395 			     unsigned long end, unsigned int flags,
2396 			     struct page **pages, int *nr)
2397 {
2398 	int nr_start = *nr;
2399 	struct dev_pagemap *pgmap = NULL;
2400 
2401 	do {
2402 		struct page *page = pfn_to_page(pfn);
2403 
2404 		pgmap = get_dev_pagemap(pfn, pgmap);
2405 		if (unlikely(!pgmap)) {
2406 			undo_dev_pagemap(nr, nr_start, flags, pages);
2407 			break;
2408 		}
2409 		SetPageReferenced(page);
2410 		pages[*nr] = page;
2411 		if (unlikely(!try_grab_page(page, flags))) {
2412 			undo_dev_pagemap(nr, nr_start, flags, pages);
2413 			break;
2414 		}
2415 		(*nr)++;
2416 		pfn++;
2417 	} while (addr += PAGE_SIZE, addr != end);
2418 
2419 	put_dev_pagemap(pgmap);
2420 	return addr == end;
2421 }
2422 
2423 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2424 				 unsigned long end, unsigned int flags,
2425 				 struct page **pages, int *nr)
2426 {
2427 	unsigned long fault_pfn;
2428 	int nr_start = *nr;
2429 
2430 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2431 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2432 		return 0;
2433 
2434 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2435 		undo_dev_pagemap(nr, nr_start, flags, pages);
2436 		return 0;
2437 	}
2438 	return 1;
2439 }
2440 
2441 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2442 				 unsigned long end, unsigned int flags,
2443 				 struct page **pages, int *nr)
2444 {
2445 	unsigned long fault_pfn;
2446 	int nr_start = *nr;
2447 
2448 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2449 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2450 		return 0;
2451 
2452 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453 		undo_dev_pagemap(nr, nr_start, flags, pages);
2454 		return 0;
2455 	}
2456 	return 1;
2457 }
2458 #else
2459 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2460 				 unsigned long end, unsigned int flags,
2461 				 struct page **pages, int *nr)
2462 {
2463 	BUILD_BUG();
2464 	return 0;
2465 }
2466 
2467 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2468 				 unsigned long end, unsigned int flags,
2469 				 struct page **pages, int *nr)
2470 {
2471 	BUILD_BUG();
2472 	return 0;
2473 }
2474 #endif
2475 
2476 static int record_subpages(struct page *page, unsigned long addr,
2477 			   unsigned long end, struct page **pages)
2478 {
2479 	int nr;
2480 
2481 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2482 		pages[nr++] = page++;
2483 
2484 	return nr;
2485 }
2486 
2487 #ifdef CONFIG_ARCH_HAS_HUGEPD
2488 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2489 				      unsigned long sz)
2490 {
2491 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2492 	return (__boundary - 1 < end - 1) ? __boundary : end;
2493 }
2494 
2495 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2496 		       unsigned long end, unsigned int flags,
2497 		       struct page **pages, int *nr)
2498 {
2499 	unsigned long pte_end;
2500 	struct page *head, *page;
2501 	pte_t pte;
2502 	int refs;
2503 
2504 	pte_end = (addr + sz) & ~(sz-1);
2505 	if (pte_end < end)
2506 		end = pte_end;
2507 
2508 	pte = huge_ptep_get(ptep);
2509 
2510 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2511 		return 0;
2512 
2513 	/* hugepages are never "special" */
2514 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2515 
2516 	head = pte_page(pte);
2517 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2518 	refs = record_subpages(page, addr, end, pages + *nr);
2519 
2520 	head = try_grab_compound_head(head, refs, flags);
2521 	if (!head)
2522 		return 0;
2523 
2524 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2525 		put_compound_head(head, refs, flags);
2526 		return 0;
2527 	}
2528 
2529 	*nr += refs;
2530 	SetPageReferenced(head);
2531 	return 1;
2532 }
2533 
2534 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2535 		unsigned int pdshift, unsigned long end, unsigned int flags,
2536 		struct page **pages, int *nr)
2537 {
2538 	pte_t *ptep;
2539 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2540 	unsigned long next;
2541 
2542 	ptep = hugepte_offset(hugepd, addr, pdshift);
2543 	do {
2544 		next = hugepte_addr_end(addr, end, sz);
2545 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2546 			return 0;
2547 	} while (ptep++, addr = next, addr != end);
2548 
2549 	return 1;
2550 }
2551 #else
2552 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2553 		unsigned int pdshift, unsigned long end, unsigned int flags,
2554 		struct page **pages, int *nr)
2555 {
2556 	return 0;
2557 }
2558 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2559 
2560 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2561 			unsigned long end, unsigned int flags,
2562 			struct page **pages, int *nr)
2563 {
2564 	struct page *head, *page;
2565 	int refs;
2566 
2567 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2568 		return 0;
2569 
2570 	if (pmd_devmap(orig)) {
2571 		if (unlikely(flags & FOLL_LONGTERM))
2572 			return 0;
2573 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2574 					     pages, nr);
2575 	}
2576 
2577 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2578 	refs = record_subpages(page, addr, end, pages + *nr);
2579 
2580 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2581 	if (!head)
2582 		return 0;
2583 
2584 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2585 		put_compound_head(head, refs, flags);
2586 		return 0;
2587 	}
2588 
2589 	*nr += refs;
2590 	SetPageReferenced(head);
2591 	return 1;
2592 }
2593 
2594 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2595 			unsigned long end, unsigned int flags,
2596 			struct page **pages, int *nr)
2597 {
2598 	struct page *head, *page;
2599 	int refs;
2600 
2601 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2602 		return 0;
2603 
2604 	if (pud_devmap(orig)) {
2605 		if (unlikely(flags & FOLL_LONGTERM))
2606 			return 0;
2607 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2608 					     pages, nr);
2609 	}
2610 
2611 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2612 	refs = record_subpages(page, addr, end, pages + *nr);
2613 
2614 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2615 	if (!head)
2616 		return 0;
2617 
2618 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2619 		put_compound_head(head, refs, flags);
2620 		return 0;
2621 	}
2622 
2623 	*nr += refs;
2624 	SetPageReferenced(head);
2625 	return 1;
2626 }
2627 
2628 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2629 			unsigned long end, unsigned int flags,
2630 			struct page **pages, int *nr)
2631 {
2632 	int refs;
2633 	struct page *head, *page;
2634 
2635 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2636 		return 0;
2637 
2638 	BUILD_BUG_ON(pgd_devmap(orig));
2639 
2640 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2641 	refs = record_subpages(page, addr, end, pages + *nr);
2642 
2643 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2644 	if (!head)
2645 		return 0;
2646 
2647 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2648 		put_compound_head(head, refs, flags);
2649 		return 0;
2650 	}
2651 
2652 	*nr += refs;
2653 	SetPageReferenced(head);
2654 	return 1;
2655 }
2656 
2657 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2658 		unsigned int flags, struct page **pages, int *nr)
2659 {
2660 	unsigned long next;
2661 	pmd_t *pmdp;
2662 
2663 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2664 	do {
2665 		pmd_t pmd = READ_ONCE(*pmdp);
2666 
2667 		next = pmd_addr_end(addr, end);
2668 		if (!pmd_present(pmd))
2669 			return 0;
2670 
2671 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2672 			     pmd_devmap(pmd))) {
2673 			/*
2674 			 * NUMA hinting faults need to be handled in the GUP
2675 			 * slowpath for accounting purposes and so that they
2676 			 * can be serialised against THP migration.
2677 			 */
2678 			if (pmd_protnone(pmd))
2679 				return 0;
2680 
2681 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2682 				pages, nr))
2683 				return 0;
2684 
2685 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2686 			/*
2687 			 * architecture have different format for hugetlbfs
2688 			 * pmd format and THP pmd format
2689 			 */
2690 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2691 					 PMD_SHIFT, next, flags, pages, nr))
2692 				return 0;
2693 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2694 			return 0;
2695 	} while (pmdp++, addr = next, addr != end);
2696 
2697 	return 1;
2698 }
2699 
2700 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2701 			 unsigned int flags, struct page **pages, int *nr)
2702 {
2703 	unsigned long next;
2704 	pud_t *pudp;
2705 
2706 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2707 	do {
2708 		pud_t pud = READ_ONCE(*pudp);
2709 
2710 		next = pud_addr_end(addr, end);
2711 		if (unlikely(!pud_present(pud)))
2712 			return 0;
2713 		if (unlikely(pud_huge(pud))) {
2714 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2715 					  pages, nr))
2716 				return 0;
2717 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2718 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2719 					 PUD_SHIFT, next, flags, pages, nr))
2720 				return 0;
2721 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2722 			return 0;
2723 	} while (pudp++, addr = next, addr != end);
2724 
2725 	return 1;
2726 }
2727 
2728 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2729 			 unsigned int flags, struct page **pages, int *nr)
2730 {
2731 	unsigned long next;
2732 	p4d_t *p4dp;
2733 
2734 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2735 	do {
2736 		p4d_t p4d = READ_ONCE(*p4dp);
2737 
2738 		next = p4d_addr_end(addr, end);
2739 		if (p4d_none(p4d))
2740 			return 0;
2741 		BUILD_BUG_ON(p4d_huge(p4d));
2742 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2743 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2744 					 P4D_SHIFT, next, flags, pages, nr))
2745 				return 0;
2746 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2747 			return 0;
2748 	} while (p4dp++, addr = next, addr != end);
2749 
2750 	return 1;
2751 }
2752 
2753 static void gup_pgd_range(unsigned long addr, unsigned long end,
2754 		unsigned int flags, struct page **pages, int *nr)
2755 {
2756 	unsigned long next;
2757 	pgd_t *pgdp;
2758 
2759 	pgdp = pgd_offset(current->mm, addr);
2760 	do {
2761 		pgd_t pgd = READ_ONCE(*pgdp);
2762 
2763 		next = pgd_addr_end(addr, end);
2764 		if (pgd_none(pgd))
2765 			return;
2766 		if (unlikely(pgd_huge(pgd))) {
2767 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2768 					  pages, nr))
2769 				return;
2770 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2771 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2772 					 PGDIR_SHIFT, next, flags, pages, nr))
2773 				return;
2774 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2775 			return;
2776 	} while (pgdp++, addr = next, addr != end);
2777 }
2778 #else
2779 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2780 		unsigned int flags, struct page **pages, int *nr)
2781 {
2782 }
2783 #endif /* CONFIG_HAVE_FAST_GUP */
2784 
2785 #ifndef gup_fast_permitted
2786 /*
2787  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2788  * we need to fall back to the slow version:
2789  */
2790 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2791 {
2792 	return true;
2793 }
2794 #endif
2795 
2796 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2797 				   unsigned int gup_flags, struct page **pages)
2798 {
2799 	int ret;
2800 
2801 	/*
2802 	 * FIXME: FOLL_LONGTERM does not work with
2803 	 * get_user_pages_unlocked() (see comments in that function)
2804 	 */
2805 	if (gup_flags & FOLL_LONGTERM) {
2806 		mmap_read_lock(current->mm);
2807 		ret = __gup_longterm_locked(current->mm,
2808 					    start, nr_pages,
2809 					    pages, NULL, gup_flags);
2810 		mmap_read_unlock(current->mm);
2811 	} else {
2812 		ret = get_user_pages_unlocked(start, nr_pages,
2813 					      pages, gup_flags);
2814 	}
2815 
2816 	return ret;
2817 }
2818 
2819 static unsigned long lockless_pages_from_mm(unsigned long start,
2820 					    unsigned long end,
2821 					    unsigned int gup_flags,
2822 					    struct page **pages)
2823 {
2824 	unsigned long flags;
2825 	int nr_pinned = 0;
2826 	unsigned seq;
2827 
2828 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2829 	    !gup_fast_permitted(start, end))
2830 		return 0;
2831 
2832 	if (gup_flags & FOLL_PIN) {
2833 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2834 		if (seq & 1)
2835 			return 0;
2836 	}
2837 
2838 	/*
2839 	 * Disable interrupts. The nested form is used, in order to allow full,
2840 	 * general purpose use of this routine.
2841 	 *
2842 	 * With interrupts disabled, we block page table pages from being freed
2843 	 * from under us. See struct mmu_table_batch comments in
2844 	 * include/asm-generic/tlb.h for more details.
2845 	 *
2846 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2847 	 * that come from THPs splitting.
2848 	 */
2849 	local_irq_save(flags);
2850 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2851 	local_irq_restore(flags);
2852 
2853 	/*
2854 	 * When pinning pages for DMA there could be a concurrent write protect
2855 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2856 	 */
2857 	if (gup_flags & FOLL_PIN) {
2858 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2859 			unpin_user_pages(pages, nr_pinned);
2860 			return 0;
2861 		}
2862 	}
2863 	return nr_pinned;
2864 }
2865 
2866 static int internal_get_user_pages_fast(unsigned long start,
2867 					unsigned long nr_pages,
2868 					unsigned int gup_flags,
2869 					struct page **pages)
2870 {
2871 	unsigned long len, end;
2872 	unsigned long nr_pinned;
2873 	int ret;
2874 
2875 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2876 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2877 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2878 		return -EINVAL;
2879 
2880 	if (gup_flags & FOLL_PIN)
2881 		mm_set_has_pinned_flag(&current->mm->flags);
2882 
2883 	if (!(gup_flags & FOLL_FAST_ONLY))
2884 		might_lock_read(&current->mm->mmap_lock);
2885 
2886 	start = untagged_addr(start) & PAGE_MASK;
2887 	len = nr_pages << PAGE_SHIFT;
2888 	if (check_add_overflow(start, len, &end))
2889 		return 0;
2890 	if (unlikely(!access_ok((void __user *)start, len)))
2891 		return -EFAULT;
2892 
2893 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2894 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2895 		return nr_pinned;
2896 
2897 	/* Slow path: try to get the remaining pages with get_user_pages */
2898 	start += nr_pinned << PAGE_SHIFT;
2899 	pages += nr_pinned;
2900 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2901 				      pages);
2902 	if (ret < 0) {
2903 		/*
2904 		 * The caller has to unpin the pages we already pinned so
2905 		 * returning -errno is not an option
2906 		 */
2907 		if (nr_pinned)
2908 			return nr_pinned;
2909 		return ret;
2910 	}
2911 	return ret + nr_pinned;
2912 }
2913 
2914 /**
2915  * get_user_pages_fast_only() - pin user pages in memory
2916  * @start:      starting user address
2917  * @nr_pages:   number of pages from start to pin
2918  * @gup_flags:  flags modifying pin behaviour
2919  * @pages:      array that receives pointers to the pages pinned.
2920  *              Should be at least nr_pages long.
2921  *
2922  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2923  * the regular GUP.
2924  * Note a difference with get_user_pages_fast: this always returns the
2925  * number of pages pinned, 0 if no pages were pinned.
2926  *
2927  * If the architecture does not support this function, simply return with no
2928  * pages pinned.
2929  *
2930  * Careful, careful! COW breaking can go either way, so a non-write
2931  * access can get ambiguous page results. If you call this function without
2932  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2933  */
2934 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2935 			     unsigned int gup_flags, struct page **pages)
2936 {
2937 	int nr_pinned;
2938 	/*
2939 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2940 	 * because gup fast is always a "pin with a +1 page refcount" request.
2941 	 *
2942 	 * FOLL_FAST_ONLY is required in order to match the API description of
2943 	 * this routine: no fall back to regular ("slow") GUP.
2944 	 */
2945 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2946 
2947 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2948 						 pages);
2949 
2950 	/*
2951 	 * As specified in the API description above, this routine is not
2952 	 * allowed to return negative values. However, the common core
2953 	 * routine internal_get_user_pages_fast() *can* return -errno.
2954 	 * Therefore, correct for that here:
2955 	 */
2956 	if (nr_pinned < 0)
2957 		nr_pinned = 0;
2958 
2959 	return nr_pinned;
2960 }
2961 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2962 
2963 /**
2964  * get_user_pages_fast() - pin user pages in memory
2965  * @start:      starting user address
2966  * @nr_pages:   number of pages from start to pin
2967  * @gup_flags:  flags modifying pin behaviour
2968  * @pages:      array that receives pointers to the pages pinned.
2969  *              Should be at least nr_pages long.
2970  *
2971  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2972  * If not successful, it will fall back to taking the lock and
2973  * calling get_user_pages().
2974  *
2975  * Returns number of pages pinned. This may be fewer than the number requested.
2976  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2977  * -errno.
2978  */
2979 int get_user_pages_fast(unsigned long start, int nr_pages,
2980 			unsigned int gup_flags, struct page **pages)
2981 {
2982 	if (!is_valid_gup_flags(gup_flags))
2983 		return -EINVAL;
2984 
2985 	/*
2986 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2987 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2988 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2989 	 * request.
2990 	 */
2991 	gup_flags |= FOLL_GET;
2992 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2993 }
2994 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2995 
2996 /**
2997  * pin_user_pages_fast() - pin user pages in memory without taking locks
2998  *
2999  * @start:      starting user address
3000  * @nr_pages:   number of pages from start to pin
3001  * @gup_flags:  flags modifying pin behaviour
3002  * @pages:      array that receives pointers to the pages pinned.
3003  *              Should be at least nr_pages long.
3004  *
3005  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3006  * get_user_pages_fast() for documentation on the function arguments, because
3007  * the arguments here are identical.
3008  *
3009  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3010  * see Documentation/core-api/pin_user_pages.rst for further details.
3011  */
3012 int pin_user_pages_fast(unsigned long start, int nr_pages,
3013 			unsigned int gup_flags, struct page **pages)
3014 {
3015 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3016 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3017 		return -EINVAL;
3018 
3019 	gup_flags |= FOLL_PIN;
3020 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3021 }
3022 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3023 
3024 /*
3025  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3026  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3027  *
3028  * The API rules are the same, too: no negative values may be returned.
3029  */
3030 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3031 			     unsigned int gup_flags, struct page **pages)
3032 {
3033 	int nr_pinned;
3034 
3035 	/*
3036 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3037 	 * rules require returning 0, rather than -errno:
3038 	 */
3039 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3040 		return 0;
3041 	/*
3042 	 * FOLL_FAST_ONLY is required in order to match the API description of
3043 	 * this routine: no fall back to regular ("slow") GUP.
3044 	 */
3045 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3046 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3047 						 pages);
3048 	/*
3049 	 * This routine is not allowed to return negative values. However,
3050 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3051 	 * correct for that here:
3052 	 */
3053 	if (nr_pinned < 0)
3054 		nr_pinned = 0;
3055 
3056 	return nr_pinned;
3057 }
3058 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3059 
3060 /**
3061  * pin_user_pages_remote() - pin pages of a remote process
3062  *
3063  * @mm:		mm_struct of target mm
3064  * @start:	starting user address
3065  * @nr_pages:	number of pages from start to pin
3066  * @gup_flags:	flags modifying lookup behaviour
3067  * @pages:	array that receives pointers to the pages pinned.
3068  *		Should be at least nr_pages long. Or NULL, if caller
3069  *		only intends to ensure the pages are faulted in.
3070  * @vmas:	array of pointers to vmas corresponding to each page.
3071  *		Or NULL if the caller does not require them.
3072  * @locked:	pointer to lock flag indicating whether lock is held and
3073  *		subsequently whether VM_FAULT_RETRY functionality can be
3074  *		utilised. Lock must initially be held.
3075  *
3076  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3077  * get_user_pages_remote() for documentation on the function arguments, because
3078  * the arguments here are identical.
3079  *
3080  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3081  * see Documentation/core-api/pin_user_pages.rst for details.
3082  */
3083 long pin_user_pages_remote(struct mm_struct *mm,
3084 			   unsigned long start, unsigned long nr_pages,
3085 			   unsigned int gup_flags, struct page **pages,
3086 			   struct vm_area_struct **vmas, int *locked)
3087 {
3088 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3089 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3090 		return -EINVAL;
3091 
3092 	gup_flags |= FOLL_PIN;
3093 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3094 				       pages, vmas, locked);
3095 }
3096 EXPORT_SYMBOL(pin_user_pages_remote);
3097 
3098 /**
3099  * pin_user_pages() - pin user pages in memory for use by other devices
3100  *
3101  * @start:	starting user address
3102  * @nr_pages:	number of pages from start to pin
3103  * @gup_flags:	flags modifying lookup behaviour
3104  * @pages:	array that receives pointers to the pages pinned.
3105  *		Should be at least nr_pages long. Or NULL, if caller
3106  *		only intends to ensure the pages are faulted in.
3107  * @vmas:	array of pointers to vmas corresponding to each page.
3108  *		Or NULL if the caller does not require them.
3109  *
3110  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3111  * FOLL_PIN is set.
3112  *
3113  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3114  * see Documentation/core-api/pin_user_pages.rst for details.
3115  */
3116 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3117 		    unsigned int gup_flags, struct page **pages,
3118 		    struct vm_area_struct **vmas)
3119 {
3120 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3121 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3122 		return -EINVAL;
3123 
3124 	gup_flags |= FOLL_PIN;
3125 	return __gup_longterm_locked(current->mm, start, nr_pages,
3126 				     pages, vmas, gup_flags);
3127 }
3128 EXPORT_SYMBOL(pin_user_pages);
3129 
3130 /*
3131  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3132  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3133  * FOLL_PIN and rejects FOLL_GET.
3134  */
3135 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3136 			     struct page **pages, unsigned int gup_flags)
3137 {
3138 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3139 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3140 		return -EINVAL;
3141 
3142 	gup_flags |= FOLL_PIN;
3143 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3144 }
3145 EXPORT_SYMBOL(pin_user_pages_unlocked);
3146 
3147 /*
3148  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3149  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3150  * FOLL_GET.
3151  */
3152 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3153 			   unsigned int gup_flags, struct page **pages,
3154 			   int *locked)
3155 {
3156 	/*
3157 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3158 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3159 	 * vmas.  As there are no users of this flag in this call we simply
3160 	 * disallow this option for now.
3161 	 */
3162 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3163 		return -EINVAL;
3164 
3165 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3166 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3167 		return -EINVAL;
3168 
3169 	gup_flags |= FOLL_PIN;
3170 	return __get_user_pages_locked(current->mm, start, nr_pages,
3171 				       pages, NULL, locked,
3172 				       gup_flags | FOLL_TOUCH);
3173 }
3174 EXPORT_SYMBOL(pin_user_pages_locked);
3175