xref: /openbmc/linux/mm/gup.c (revision 174cd4b1)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		get_page(page);
157 
158 		/* drop the pgmap reference now that we hold the page */
159 		if (pgmap) {
160 			put_dev_pagemap(pgmap);
161 			pgmap = NULL;
162 		}
163 	}
164 	if (flags & FOLL_TOUCH) {
165 		if ((flags & FOLL_WRITE) &&
166 		    !pte_dirty(pte) && !PageDirty(page))
167 			set_page_dirty(page);
168 		/*
169 		 * pte_mkyoung() would be more correct here, but atomic care
170 		 * is needed to avoid losing the dirty bit: it is easier to use
171 		 * mark_page_accessed().
172 		 */
173 		mark_page_accessed(page);
174 	}
175 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 		/* Do not mlock pte-mapped THP */
177 		if (PageTransCompound(page))
178 			goto out;
179 
180 		/*
181 		 * The preliminary mapping check is mainly to avoid the
182 		 * pointless overhead of lock_page on the ZERO_PAGE
183 		 * which might bounce very badly if there is contention.
184 		 *
185 		 * If the page is already locked, we don't need to
186 		 * handle it now - vmscan will handle it later if and
187 		 * when it attempts to reclaim the page.
188 		 */
189 		if (page->mapping && trylock_page(page)) {
190 			lru_add_drain();  /* push cached pages to LRU */
191 			/*
192 			 * Because we lock page here, and migration is
193 			 * blocked by the pte's page reference, and we
194 			 * know the page is still mapped, we don't even
195 			 * need to check for file-cache page truncation.
196 			 */
197 			mlock_vma_page(page);
198 			unlock_page(page);
199 		}
200 	}
201 out:
202 	pte_unmap_unlock(ptep, ptl);
203 	return page;
204 no_page:
205 	pte_unmap_unlock(ptep, ptl);
206 	if (!pte_none(pte))
207 		return NULL;
208 	return no_page_table(vma, flags);
209 }
210 
211 /**
212  * follow_page_mask - look up a page descriptor from a user-virtual address
213  * @vma: vm_area_struct mapping @address
214  * @address: virtual address to look up
215  * @flags: flags modifying lookup behaviour
216  * @page_mask: on output, *page_mask is set according to the size of the page
217  *
218  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219  *
220  * Returns the mapped (struct page *), %NULL if no mapping exists, or
221  * an error pointer if there is a mapping to something not represented
222  * by a page descriptor (see also vm_normal_page()).
223  */
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 			      unsigned long address, unsigned int flags,
226 			      unsigned int *page_mask)
227 {
228 	pgd_t *pgd;
229 	pud_t *pud;
230 	pmd_t *pmd;
231 	spinlock_t *ptl;
232 	struct page *page;
233 	struct mm_struct *mm = vma->vm_mm;
234 
235 	*page_mask = 0;
236 
237 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 	if (!IS_ERR(page)) {
239 		BUG_ON(flags & FOLL_GET);
240 		return page;
241 	}
242 
243 	pgd = pgd_offset(mm, address);
244 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 		return no_page_table(vma, flags);
246 
247 	pud = pud_offset(pgd, address);
248 	if (pud_none(*pud))
249 		return no_page_table(vma, flags);
250 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
251 		page = follow_huge_pud(mm, address, pud, flags);
252 		if (page)
253 			return page;
254 		return no_page_table(vma, flags);
255 	}
256 	if (pud_devmap(*pud)) {
257 		ptl = pud_lock(mm, pud);
258 		page = follow_devmap_pud(vma, address, pud, flags);
259 		spin_unlock(ptl);
260 		if (page)
261 			return page;
262 	}
263 	if (unlikely(pud_bad(*pud)))
264 		return no_page_table(vma, flags);
265 
266 	pmd = pmd_offset(pud, address);
267 	if (pmd_none(*pmd))
268 		return no_page_table(vma, flags);
269 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
270 		page = follow_huge_pmd(mm, address, pmd, flags);
271 		if (page)
272 			return page;
273 		return no_page_table(vma, flags);
274 	}
275 	if (pmd_devmap(*pmd)) {
276 		ptl = pmd_lock(mm, pmd);
277 		page = follow_devmap_pmd(vma, address, pmd, flags);
278 		spin_unlock(ptl);
279 		if (page)
280 			return page;
281 	}
282 	if (likely(!pmd_trans_huge(*pmd)))
283 		return follow_page_pte(vma, address, pmd, flags);
284 
285 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
286 		return no_page_table(vma, flags);
287 
288 	ptl = pmd_lock(mm, pmd);
289 	if (unlikely(!pmd_trans_huge(*pmd))) {
290 		spin_unlock(ptl);
291 		return follow_page_pte(vma, address, pmd, flags);
292 	}
293 	if (flags & FOLL_SPLIT) {
294 		int ret;
295 		page = pmd_page(*pmd);
296 		if (is_huge_zero_page(page)) {
297 			spin_unlock(ptl);
298 			ret = 0;
299 			split_huge_pmd(vma, pmd, address);
300 			if (pmd_trans_unstable(pmd))
301 				ret = -EBUSY;
302 		} else {
303 			get_page(page);
304 			spin_unlock(ptl);
305 			lock_page(page);
306 			ret = split_huge_page(page);
307 			unlock_page(page);
308 			put_page(page);
309 			if (pmd_none(*pmd))
310 				return no_page_table(vma, flags);
311 		}
312 
313 		return ret ? ERR_PTR(ret) :
314 			follow_page_pte(vma, address, pmd, flags);
315 	}
316 
317 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
318 	spin_unlock(ptl);
319 	*page_mask = HPAGE_PMD_NR - 1;
320 	return page;
321 }
322 
323 static int get_gate_page(struct mm_struct *mm, unsigned long address,
324 		unsigned int gup_flags, struct vm_area_struct **vma,
325 		struct page **page)
326 {
327 	pgd_t *pgd;
328 	pud_t *pud;
329 	pmd_t *pmd;
330 	pte_t *pte;
331 	int ret = -EFAULT;
332 
333 	/* user gate pages are read-only */
334 	if (gup_flags & FOLL_WRITE)
335 		return -EFAULT;
336 	if (address > TASK_SIZE)
337 		pgd = pgd_offset_k(address);
338 	else
339 		pgd = pgd_offset_gate(mm, address);
340 	BUG_ON(pgd_none(*pgd));
341 	pud = pud_offset(pgd, address);
342 	BUG_ON(pud_none(*pud));
343 	pmd = pmd_offset(pud, address);
344 	if (pmd_none(*pmd))
345 		return -EFAULT;
346 	VM_BUG_ON(pmd_trans_huge(*pmd));
347 	pte = pte_offset_map(pmd, address);
348 	if (pte_none(*pte))
349 		goto unmap;
350 	*vma = get_gate_vma(mm);
351 	if (!page)
352 		goto out;
353 	*page = vm_normal_page(*vma, address, *pte);
354 	if (!*page) {
355 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
356 			goto unmap;
357 		*page = pte_page(*pte);
358 	}
359 	get_page(*page);
360 out:
361 	ret = 0;
362 unmap:
363 	pte_unmap(pte);
364 	return ret;
365 }
366 
367 /*
368  * mmap_sem must be held on entry.  If @nonblocking != NULL and
369  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
370  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
371  */
372 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
373 		unsigned long address, unsigned int *flags, int *nonblocking)
374 {
375 	unsigned int fault_flags = 0;
376 	int ret;
377 
378 	/* mlock all present pages, but do not fault in new pages */
379 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
380 		return -ENOENT;
381 	/* For mm_populate(), just skip the stack guard page. */
382 	if ((*flags & FOLL_POPULATE) &&
383 			(stack_guard_page_start(vma, address) ||
384 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
385 		return -ENOENT;
386 	if (*flags & FOLL_WRITE)
387 		fault_flags |= FAULT_FLAG_WRITE;
388 	if (*flags & FOLL_REMOTE)
389 		fault_flags |= FAULT_FLAG_REMOTE;
390 	if (nonblocking)
391 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
392 	if (*flags & FOLL_NOWAIT)
393 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
394 	if (*flags & FOLL_TRIED) {
395 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
396 		fault_flags |= FAULT_FLAG_TRIED;
397 	}
398 
399 	ret = handle_mm_fault(vma, address, fault_flags);
400 	if (ret & VM_FAULT_ERROR) {
401 		if (ret & VM_FAULT_OOM)
402 			return -ENOMEM;
403 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
404 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
405 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
406 			return -EFAULT;
407 		BUG();
408 	}
409 
410 	if (tsk) {
411 		if (ret & VM_FAULT_MAJOR)
412 			tsk->maj_flt++;
413 		else
414 			tsk->min_flt++;
415 	}
416 
417 	if (ret & VM_FAULT_RETRY) {
418 		if (nonblocking)
419 			*nonblocking = 0;
420 		return -EBUSY;
421 	}
422 
423 	/*
424 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
425 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
426 	 * can thus safely do subsequent page lookups as if they were reads.
427 	 * But only do so when looping for pte_write is futile: in some cases
428 	 * userspace may also be wanting to write to the gotten user page,
429 	 * which a read fault here might prevent (a readonly page might get
430 	 * reCOWed by userspace write).
431 	 */
432 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
433 	        *flags |= FOLL_COW;
434 	return 0;
435 }
436 
437 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
438 {
439 	vm_flags_t vm_flags = vma->vm_flags;
440 	int write = (gup_flags & FOLL_WRITE);
441 	int foreign = (gup_flags & FOLL_REMOTE);
442 
443 	if (vm_flags & (VM_IO | VM_PFNMAP))
444 		return -EFAULT;
445 
446 	if (write) {
447 		if (!(vm_flags & VM_WRITE)) {
448 			if (!(gup_flags & FOLL_FORCE))
449 				return -EFAULT;
450 			/*
451 			 * We used to let the write,force case do COW in a
452 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
453 			 * set a breakpoint in a read-only mapping of an
454 			 * executable, without corrupting the file (yet only
455 			 * when that file had been opened for writing!).
456 			 * Anon pages in shared mappings are surprising: now
457 			 * just reject it.
458 			 */
459 			if (!is_cow_mapping(vm_flags))
460 				return -EFAULT;
461 		}
462 	} else if (!(vm_flags & VM_READ)) {
463 		if (!(gup_flags & FOLL_FORCE))
464 			return -EFAULT;
465 		/*
466 		 * Is there actually any vma we can reach here which does not
467 		 * have VM_MAYREAD set?
468 		 */
469 		if (!(vm_flags & VM_MAYREAD))
470 			return -EFAULT;
471 	}
472 	/*
473 	 * gups are always data accesses, not instruction
474 	 * fetches, so execute=false here
475 	 */
476 	if (!arch_vma_access_permitted(vma, write, false, foreign))
477 		return -EFAULT;
478 	return 0;
479 }
480 
481 /**
482  * __get_user_pages() - pin user pages in memory
483  * @tsk:	task_struct of target task
484  * @mm:		mm_struct of target mm
485  * @start:	starting user address
486  * @nr_pages:	number of pages from start to pin
487  * @gup_flags:	flags modifying pin behaviour
488  * @pages:	array that receives pointers to the pages pinned.
489  *		Should be at least nr_pages long. Or NULL, if caller
490  *		only intends to ensure the pages are faulted in.
491  * @vmas:	array of pointers to vmas corresponding to each page.
492  *		Or NULL if the caller does not require them.
493  * @nonblocking: whether waiting for disk IO or mmap_sem contention
494  *
495  * Returns number of pages pinned. This may be fewer than the number
496  * requested. If nr_pages is 0 or negative, returns 0. If no pages
497  * were pinned, returns -errno. Each page returned must be released
498  * with a put_page() call when it is finished with. vmas will only
499  * remain valid while mmap_sem is held.
500  *
501  * Must be called with mmap_sem held.  It may be released.  See below.
502  *
503  * __get_user_pages walks a process's page tables and takes a reference to
504  * each struct page that each user address corresponds to at a given
505  * instant. That is, it takes the page that would be accessed if a user
506  * thread accesses the given user virtual address at that instant.
507  *
508  * This does not guarantee that the page exists in the user mappings when
509  * __get_user_pages returns, and there may even be a completely different
510  * page there in some cases (eg. if mmapped pagecache has been invalidated
511  * and subsequently re faulted). However it does guarantee that the page
512  * won't be freed completely. And mostly callers simply care that the page
513  * contains data that was valid *at some point in time*. Typically, an IO
514  * or similar operation cannot guarantee anything stronger anyway because
515  * locks can't be held over the syscall boundary.
516  *
517  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
518  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
519  * appropriate) must be called after the page is finished with, and
520  * before put_page is called.
521  *
522  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
523  * or mmap_sem contention, and if waiting is needed to pin all pages,
524  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
525  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
526  * this case.
527  *
528  * A caller using such a combination of @nonblocking and @gup_flags
529  * must therefore hold the mmap_sem for reading only, and recognize
530  * when it's been released.  Otherwise, it must be held for either
531  * reading or writing and will not be released.
532  *
533  * In most cases, get_user_pages or get_user_pages_fast should be used
534  * instead of __get_user_pages. __get_user_pages should be used only if
535  * you need some special @gup_flags.
536  */
537 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
538 		unsigned long start, unsigned long nr_pages,
539 		unsigned int gup_flags, struct page **pages,
540 		struct vm_area_struct **vmas, int *nonblocking)
541 {
542 	long i = 0;
543 	unsigned int page_mask;
544 	struct vm_area_struct *vma = NULL;
545 
546 	if (!nr_pages)
547 		return 0;
548 
549 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
550 
551 	/*
552 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
553 	 * fault information is unrelated to the reference behaviour of a task
554 	 * using the address space
555 	 */
556 	if (!(gup_flags & FOLL_FORCE))
557 		gup_flags |= FOLL_NUMA;
558 
559 	do {
560 		struct page *page;
561 		unsigned int foll_flags = gup_flags;
562 		unsigned int page_increm;
563 
564 		/* first iteration or cross vma bound */
565 		if (!vma || start >= vma->vm_end) {
566 			vma = find_extend_vma(mm, start);
567 			if (!vma && in_gate_area(mm, start)) {
568 				int ret;
569 				ret = get_gate_page(mm, start & PAGE_MASK,
570 						gup_flags, &vma,
571 						pages ? &pages[i] : NULL);
572 				if (ret)
573 					return i ? : ret;
574 				page_mask = 0;
575 				goto next_page;
576 			}
577 
578 			if (!vma || check_vma_flags(vma, gup_flags))
579 				return i ? : -EFAULT;
580 			if (is_vm_hugetlb_page(vma)) {
581 				i = follow_hugetlb_page(mm, vma, pages, vmas,
582 						&start, &nr_pages, i,
583 						gup_flags, nonblocking);
584 				continue;
585 			}
586 		}
587 retry:
588 		/*
589 		 * If we have a pending SIGKILL, don't keep faulting pages and
590 		 * potentially allocating memory.
591 		 */
592 		if (unlikely(fatal_signal_pending(current)))
593 			return i ? i : -ERESTARTSYS;
594 		cond_resched();
595 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
596 		if (!page) {
597 			int ret;
598 			ret = faultin_page(tsk, vma, start, &foll_flags,
599 					nonblocking);
600 			switch (ret) {
601 			case 0:
602 				goto retry;
603 			case -EFAULT:
604 			case -ENOMEM:
605 			case -EHWPOISON:
606 				return i ? i : ret;
607 			case -EBUSY:
608 				return i;
609 			case -ENOENT:
610 				goto next_page;
611 			}
612 			BUG();
613 		} else if (PTR_ERR(page) == -EEXIST) {
614 			/*
615 			 * Proper page table entry exists, but no corresponding
616 			 * struct page.
617 			 */
618 			goto next_page;
619 		} else if (IS_ERR(page)) {
620 			return i ? i : PTR_ERR(page);
621 		}
622 		if (pages) {
623 			pages[i] = page;
624 			flush_anon_page(vma, page, start);
625 			flush_dcache_page(page);
626 			page_mask = 0;
627 		}
628 next_page:
629 		if (vmas) {
630 			vmas[i] = vma;
631 			page_mask = 0;
632 		}
633 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
634 		if (page_increm > nr_pages)
635 			page_increm = nr_pages;
636 		i += page_increm;
637 		start += page_increm * PAGE_SIZE;
638 		nr_pages -= page_increm;
639 	} while (nr_pages);
640 	return i;
641 }
642 
643 static bool vma_permits_fault(struct vm_area_struct *vma,
644 			      unsigned int fault_flags)
645 {
646 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
647 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
648 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
649 
650 	if (!(vm_flags & vma->vm_flags))
651 		return false;
652 
653 	/*
654 	 * The architecture might have a hardware protection
655 	 * mechanism other than read/write that can deny access.
656 	 *
657 	 * gup always represents data access, not instruction
658 	 * fetches, so execute=false here:
659 	 */
660 	if (!arch_vma_access_permitted(vma, write, false, foreign))
661 		return false;
662 
663 	return true;
664 }
665 
666 /*
667  * fixup_user_fault() - manually resolve a user page fault
668  * @tsk:	the task_struct to use for page fault accounting, or
669  *		NULL if faults are not to be recorded.
670  * @mm:		mm_struct of target mm
671  * @address:	user address
672  * @fault_flags:flags to pass down to handle_mm_fault()
673  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
674  *		does not allow retry
675  *
676  * This is meant to be called in the specific scenario where for locking reasons
677  * we try to access user memory in atomic context (within a pagefault_disable()
678  * section), this returns -EFAULT, and we want to resolve the user fault before
679  * trying again.
680  *
681  * Typically this is meant to be used by the futex code.
682  *
683  * The main difference with get_user_pages() is that this function will
684  * unconditionally call handle_mm_fault() which will in turn perform all the
685  * necessary SW fixup of the dirty and young bits in the PTE, while
686  * get_user_pages() only guarantees to update these in the struct page.
687  *
688  * This is important for some architectures where those bits also gate the
689  * access permission to the page because they are maintained in software.  On
690  * such architectures, gup() will not be enough to make a subsequent access
691  * succeed.
692  *
693  * This function will not return with an unlocked mmap_sem. So it has not the
694  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
695  */
696 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
697 		     unsigned long address, unsigned int fault_flags,
698 		     bool *unlocked)
699 {
700 	struct vm_area_struct *vma;
701 	int ret, major = 0;
702 
703 	if (unlocked)
704 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
705 
706 retry:
707 	vma = find_extend_vma(mm, address);
708 	if (!vma || address < vma->vm_start)
709 		return -EFAULT;
710 
711 	if (!vma_permits_fault(vma, fault_flags))
712 		return -EFAULT;
713 
714 	ret = handle_mm_fault(vma, address, fault_flags);
715 	major |= ret & VM_FAULT_MAJOR;
716 	if (ret & VM_FAULT_ERROR) {
717 		if (ret & VM_FAULT_OOM)
718 			return -ENOMEM;
719 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
720 			return -EHWPOISON;
721 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
722 			return -EFAULT;
723 		BUG();
724 	}
725 
726 	if (ret & VM_FAULT_RETRY) {
727 		down_read(&mm->mmap_sem);
728 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
729 			*unlocked = true;
730 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
731 			fault_flags |= FAULT_FLAG_TRIED;
732 			goto retry;
733 		}
734 	}
735 
736 	if (tsk) {
737 		if (major)
738 			tsk->maj_flt++;
739 		else
740 			tsk->min_flt++;
741 	}
742 	return 0;
743 }
744 EXPORT_SYMBOL_GPL(fixup_user_fault);
745 
746 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
747 						struct mm_struct *mm,
748 						unsigned long start,
749 						unsigned long nr_pages,
750 						struct page **pages,
751 						struct vm_area_struct **vmas,
752 						int *locked, bool notify_drop,
753 						unsigned int flags)
754 {
755 	long ret, pages_done;
756 	bool lock_dropped;
757 
758 	if (locked) {
759 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
760 		BUG_ON(vmas);
761 		/* check caller initialized locked */
762 		BUG_ON(*locked != 1);
763 	}
764 
765 	if (pages)
766 		flags |= FOLL_GET;
767 
768 	pages_done = 0;
769 	lock_dropped = false;
770 	for (;;) {
771 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
772 				       vmas, locked);
773 		if (!locked)
774 			/* VM_FAULT_RETRY couldn't trigger, bypass */
775 			return ret;
776 
777 		/* VM_FAULT_RETRY cannot return errors */
778 		if (!*locked) {
779 			BUG_ON(ret < 0);
780 			BUG_ON(ret >= nr_pages);
781 		}
782 
783 		if (!pages)
784 			/* If it's a prefault don't insist harder */
785 			return ret;
786 
787 		if (ret > 0) {
788 			nr_pages -= ret;
789 			pages_done += ret;
790 			if (!nr_pages)
791 				break;
792 		}
793 		if (*locked) {
794 			/* VM_FAULT_RETRY didn't trigger */
795 			if (!pages_done)
796 				pages_done = ret;
797 			break;
798 		}
799 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
800 		pages += ret;
801 		start += ret << PAGE_SHIFT;
802 
803 		/*
804 		 * Repeat on the address that fired VM_FAULT_RETRY
805 		 * without FAULT_FLAG_ALLOW_RETRY but with
806 		 * FAULT_FLAG_TRIED.
807 		 */
808 		*locked = 1;
809 		lock_dropped = true;
810 		down_read(&mm->mmap_sem);
811 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
812 				       pages, NULL, NULL);
813 		if (ret != 1) {
814 			BUG_ON(ret > 1);
815 			if (!pages_done)
816 				pages_done = ret;
817 			break;
818 		}
819 		nr_pages--;
820 		pages_done++;
821 		if (!nr_pages)
822 			break;
823 		pages++;
824 		start += PAGE_SIZE;
825 	}
826 	if (notify_drop && lock_dropped && *locked) {
827 		/*
828 		 * We must let the caller know we temporarily dropped the lock
829 		 * and so the critical section protected by it was lost.
830 		 */
831 		up_read(&mm->mmap_sem);
832 		*locked = 0;
833 	}
834 	return pages_done;
835 }
836 
837 /*
838  * We can leverage the VM_FAULT_RETRY functionality in the page fault
839  * paths better by using either get_user_pages_locked() or
840  * get_user_pages_unlocked().
841  *
842  * get_user_pages_locked() is suitable to replace the form:
843  *
844  *      down_read(&mm->mmap_sem);
845  *      do_something()
846  *      get_user_pages(tsk, mm, ..., pages, NULL);
847  *      up_read(&mm->mmap_sem);
848  *
849  *  to:
850  *
851  *      int locked = 1;
852  *      down_read(&mm->mmap_sem);
853  *      do_something()
854  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
855  *      if (locked)
856  *          up_read(&mm->mmap_sem);
857  */
858 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
859 			   unsigned int gup_flags, struct page **pages,
860 			   int *locked)
861 {
862 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
863 				       pages, NULL, locked, true,
864 				       gup_flags | FOLL_TOUCH);
865 }
866 EXPORT_SYMBOL(get_user_pages_locked);
867 
868 /*
869  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
870  * tsk, mm to be specified.
871  *
872  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
873  * caller if required (just like with __get_user_pages). "FOLL_GET"
874  * is set implicitly if "pages" is non-NULL.
875  */
876 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
877 		struct mm_struct *mm, unsigned long start,
878 		unsigned long nr_pages, struct page **pages,
879 		unsigned int gup_flags)
880 {
881 	long ret;
882 	int locked = 1;
883 
884 	down_read(&mm->mmap_sem);
885 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
886 				      &locked, false, gup_flags);
887 	if (locked)
888 		up_read(&mm->mmap_sem);
889 	return ret;
890 }
891 
892 /*
893  * get_user_pages_unlocked() is suitable to replace the form:
894  *
895  *      down_read(&mm->mmap_sem);
896  *      get_user_pages(tsk, mm, ..., pages, NULL);
897  *      up_read(&mm->mmap_sem);
898  *
899  *  with:
900  *
901  *      get_user_pages_unlocked(tsk, mm, ..., pages);
902  *
903  * It is functionally equivalent to get_user_pages_fast so
904  * get_user_pages_fast should be used instead if specific gup_flags
905  * (e.g. FOLL_FORCE) are not required.
906  */
907 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
908 			     struct page **pages, unsigned int gup_flags)
909 {
910 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
911 					 pages, gup_flags | FOLL_TOUCH);
912 }
913 EXPORT_SYMBOL(get_user_pages_unlocked);
914 
915 /*
916  * get_user_pages_remote() - pin user pages in memory
917  * @tsk:	the task_struct to use for page fault accounting, or
918  *		NULL if faults are not to be recorded.
919  * @mm:		mm_struct of target mm
920  * @start:	starting user address
921  * @nr_pages:	number of pages from start to pin
922  * @gup_flags:	flags modifying lookup behaviour
923  * @pages:	array that receives pointers to the pages pinned.
924  *		Should be at least nr_pages long. Or NULL, if caller
925  *		only intends to ensure the pages are faulted in.
926  * @vmas:	array of pointers to vmas corresponding to each page.
927  *		Or NULL if the caller does not require them.
928  * @locked:	pointer to lock flag indicating whether lock is held and
929  *		subsequently whether VM_FAULT_RETRY functionality can be
930  *		utilised. Lock must initially be held.
931  *
932  * Returns number of pages pinned. This may be fewer than the number
933  * requested. If nr_pages is 0 or negative, returns 0. If no pages
934  * were pinned, returns -errno. Each page returned must be released
935  * with a put_page() call when it is finished with. vmas will only
936  * remain valid while mmap_sem is held.
937  *
938  * Must be called with mmap_sem held for read or write.
939  *
940  * get_user_pages walks a process's page tables and takes a reference to
941  * each struct page that each user address corresponds to at a given
942  * instant. That is, it takes the page that would be accessed if a user
943  * thread accesses the given user virtual address at that instant.
944  *
945  * This does not guarantee that the page exists in the user mappings when
946  * get_user_pages returns, and there may even be a completely different
947  * page there in some cases (eg. if mmapped pagecache has been invalidated
948  * and subsequently re faulted). However it does guarantee that the page
949  * won't be freed completely. And mostly callers simply care that the page
950  * contains data that was valid *at some point in time*. Typically, an IO
951  * or similar operation cannot guarantee anything stronger anyway because
952  * locks can't be held over the syscall boundary.
953  *
954  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
955  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
956  * be called after the page is finished with, and before put_page is called.
957  *
958  * get_user_pages is typically used for fewer-copy IO operations, to get a
959  * handle on the memory by some means other than accesses via the user virtual
960  * addresses. The pages may be submitted for DMA to devices or accessed via
961  * their kernel linear mapping (via the kmap APIs). Care should be taken to
962  * use the correct cache flushing APIs.
963  *
964  * See also get_user_pages_fast, for performance critical applications.
965  *
966  * get_user_pages should be phased out in favor of
967  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
968  * should use get_user_pages because it cannot pass
969  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
970  */
971 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
972 		unsigned long start, unsigned long nr_pages,
973 		unsigned int gup_flags, struct page **pages,
974 		struct vm_area_struct **vmas, int *locked)
975 {
976 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
977 				       locked, true,
978 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
979 }
980 EXPORT_SYMBOL(get_user_pages_remote);
981 
982 /*
983  * This is the same as get_user_pages_remote(), just with a
984  * less-flexible calling convention where we assume that the task
985  * and mm being operated on are the current task's and don't allow
986  * passing of a locked parameter.  We also obviously don't pass
987  * FOLL_REMOTE in here.
988  */
989 long get_user_pages(unsigned long start, unsigned long nr_pages,
990 		unsigned int gup_flags, struct page **pages,
991 		struct vm_area_struct **vmas)
992 {
993 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
994 				       pages, vmas, NULL, false,
995 				       gup_flags | FOLL_TOUCH);
996 }
997 EXPORT_SYMBOL(get_user_pages);
998 
999 /**
1000  * populate_vma_page_range() -  populate a range of pages in the vma.
1001  * @vma:   target vma
1002  * @start: start address
1003  * @end:   end address
1004  * @nonblocking:
1005  *
1006  * This takes care of mlocking the pages too if VM_LOCKED is set.
1007  *
1008  * return 0 on success, negative error code on error.
1009  *
1010  * vma->vm_mm->mmap_sem must be held.
1011  *
1012  * If @nonblocking is NULL, it may be held for read or write and will
1013  * be unperturbed.
1014  *
1015  * If @nonblocking is non-NULL, it must held for read only and may be
1016  * released.  If it's released, *@nonblocking will be set to 0.
1017  */
1018 long populate_vma_page_range(struct vm_area_struct *vma,
1019 		unsigned long start, unsigned long end, int *nonblocking)
1020 {
1021 	struct mm_struct *mm = vma->vm_mm;
1022 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1023 	int gup_flags;
1024 
1025 	VM_BUG_ON(start & ~PAGE_MASK);
1026 	VM_BUG_ON(end   & ~PAGE_MASK);
1027 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1028 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1029 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1030 
1031 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1032 	if (vma->vm_flags & VM_LOCKONFAULT)
1033 		gup_flags &= ~FOLL_POPULATE;
1034 	/*
1035 	 * We want to touch writable mappings with a write fault in order
1036 	 * to break COW, except for shared mappings because these don't COW
1037 	 * and we would not want to dirty them for nothing.
1038 	 */
1039 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1040 		gup_flags |= FOLL_WRITE;
1041 
1042 	/*
1043 	 * We want mlock to succeed for regions that have any permissions
1044 	 * other than PROT_NONE.
1045 	 */
1046 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1047 		gup_flags |= FOLL_FORCE;
1048 
1049 	/*
1050 	 * We made sure addr is within a VMA, so the following will
1051 	 * not result in a stack expansion that recurses back here.
1052 	 */
1053 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1054 				NULL, NULL, nonblocking);
1055 }
1056 
1057 /*
1058  * __mm_populate - populate and/or mlock pages within a range of address space.
1059  *
1060  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1061  * flags. VMAs must be already marked with the desired vm_flags, and
1062  * mmap_sem must not be held.
1063  */
1064 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1065 {
1066 	struct mm_struct *mm = current->mm;
1067 	unsigned long end, nstart, nend;
1068 	struct vm_area_struct *vma = NULL;
1069 	int locked = 0;
1070 	long ret = 0;
1071 
1072 	VM_BUG_ON(start & ~PAGE_MASK);
1073 	VM_BUG_ON(len != PAGE_ALIGN(len));
1074 	end = start + len;
1075 
1076 	for (nstart = start; nstart < end; nstart = nend) {
1077 		/*
1078 		 * We want to fault in pages for [nstart; end) address range.
1079 		 * Find first corresponding VMA.
1080 		 */
1081 		if (!locked) {
1082 			locked = 1;
1083 			down_read(&mm->mmap_sem);
1084 			vma = find_vma(mm, nstart);
1085 		} else if (nstart >= vma->vm_end)
1086 			vma = vma->vm_next;
1087 		if (!vma || vma->vm_start >= end)
1088 			break;
1089 		/*
1090 		 * Set [nstart; nend) to intersection of desired address
1091 		 * range with the first VMA. Also, skip undesirable VMA types.
1092 		 */
1093 		nend = min(end, vma->vm_end);
1094 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1095 			continue;
1096 		if (nstart < vma->vm_start)
1097 			nstart = vma->vm_start;
1098 		/*
1099 		 * Now fault in a range of pages. populate_vma_page_range()
1100 		 * double checks the vma flags, so that it won't mlock pages
1101 		 * if the vma was already munlocked.
1102 		 */
1103 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1104 		if (ret < 0) {
1105 			if (ignore_errors) {
1106 				ret = 0;
1107 				continue;	/* continue at next VMA */
1108 			}
1109 			break;
1110 		}
1111 		nend = nstart + ret * PAGE_SIZE;
1112 		ret = 0;
1113 	}
1114 	if (locked)
1115 		up_read(&mm->mmap_sem);
1116 	return ret;	/* 0 or negative error code */
1117 }
1118 
1119 /**
1120  * get_dump_page() - pin user page in memory while writing it to core dump
1121  * @addr: user address
1122  *
1123  * Returns struct page pointer of user page pinned for dump,
1124  * to be freed afterwards by put_page().
1125  *
1126  * Returns NULL on any kind of failure - a hole must then be inserted into
1127  * the corefile, to preserve alignment with its headers; and also returns
1128  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1129  * allowing a hole to be left in the corefile to save diskspace.
1130  *
1131  * Called without mmap_sem, but after all other threads have been killed.
1132  */
1133 #ifdef CONFIG_ELF_CORE
1134 struct page *get_dump_page(unsigned long addr)
1135 {
1136 	struct vm_area_struct *vma;
1137 	struct page *page;
1138 
1139 	if (__get_user_pages(current, current->mm, addr, 1,
1140 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1141 			     NULL) < 1)
1142 		return NULL;
1143 	flush_cache_page(vma, addr, page_to_pfn(page));
1144 	return page;
1145 }
1146 #endif /* CONFIG_ELF_CORE */
1147 
1148 /*
1149  * Generic RCU Fast GUP
1150  *
1151  * get_user_pages_fast attempts to pin user pages by walking the page
1152  * tables directly and avoids taking locks. Thus the walker needs to be
1153  * protected from page table pages being freed from under it, and should
1154  * block any THP splits.
1155  *
1156  * One way to achieve this is to have the walker disable interrupts, and
1157  * rely on IPIs from the TLB flushing code blocking before the page table
1158  * pages are freed. This is unsuitable for architectures that do not need
1159  * to broadcast an IPI when invalidating TLBs.
1160  *
1161  * Another way to achieve this is to batch up page table containing pages
1162  * belonging to more than one mm_user, then rcu_sched a callback to free those
1163  * pages. Disabling interrupts will allow the fast_gup walker to both block
1164  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1165  * (which is a relatively rare event). The code below adopts this strategy.
1166  *
1167  * Before activating this code, please be aware that the following assumptions
1168  * are currently made:
1169  *
1170  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1171  *      pages containing page tables.
1172  *
1173  *  *) ptes can be read atomically by the architecture.
1174  *
1175  *  *) access_ok is sufficient to validate userspace address ranges.
1176  *
1177  * The last two assumptions can be relaxed by the addition of helper functions.
1178  *
1179  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1180  */
1181 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1182 
1183 #ifdef __HAVE_ARCH_PTE_SPECIAL
1184 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1185 			 int write, struct page **pages, int *nr)
1186 {
1187 	pte_t *ptep, *ptem;
1188 	int ret = 0;
1189 
1190 	ptem = ptep = pte_offset_map(&pmd, addr);
1191 	do {
1192 		/*
1193 		 * In the line below we are assuming that the pte can be read
1194 		 * atomically. If this is not the case for your architecture,
1195 		 * please wrap this in a helper function!
1196 		 *
1197 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1198 		 */
1199 		pte_t pte = READ_ONCE(*ptep);
1200 		struct page *head, *page;
1201 
1202 		/*
1203 		 * Similar to the PMD case below, NUMA hinting must take slow
1204 		 * path using the pte_protnone check.
1205 		 */
1206 		if (!pte_present(pte) || pte_special(pte) ||
1207 			pte_protnone(pte) || (write && !pte_write(pte)))
1208 			goto pte_unmap;
1209 
1210 		if (!arch_pte_access_permitted(pte, write))
1211 			goto pte_unmap;
1212 
1213 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1214 		page = pte_page(pte);
1215 		head = compound_head(page);
1216 
1217 		if (!page_cache_get_speculative(head))
1218 			goto pte_unmap;
1219 
1220 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1221 			put_page(head);
1222 			goto pte_unmap;
1223 		}
1224 
1225 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1226 		pages[*nr] = page;
1227 		(*nr)++;
1228 
1229 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1230 
1231 	ret = 1;
1232 
1233 pte_unmap:
1234 	pte_unmap(ptem);
1235 	return ret;
1236 }
1237 #else
1238 
1239 /*
1240  * If we can't determine whether or not a pte is special, then fail immediately
1241  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1242  * to be special.
1243  *
1244  * For a futex to be placed on a THP tail page, get_futex_key requires a
1245  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1246  * useful to have gup_huge_pmd even if we can't operate on ptes.
1247  */
1248 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1249 			 int write, struct page **pages, int *nr)
1250 {
1251 	return 0;
1252 }
1253 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1254 
1255 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1256 		unsigned long end, int write, struct page **pages, int *nr)
1257 {
1258 	struct page *head, *page;
1259 	int refs;
1260 
1261 	if (write && !pmd_write(orig))
1262 		return 0;
1263 
1264 	refs = 0;
1265 	head = pmd_page(orig);
1266 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1267 	do {
1268 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1269 		pages[*nr] = page;
1270 		(*nr)++;
1271 		page++;
1272 		refs++;
1273 	} while (addr += PAGE_SIZE, addr != end);
1274 
1275 	if (!page_cache_add_speculative(head, refs)) {
1276 		*nr -= refs;
1277 		return 0;
1278 	}
1279 
1280 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1281 		*nr -= refs;
1282 		while (refs--)
1283 			put_page(head);
1284 		return 0;
1285 	}
1286 
1287 	return 1;
1288 }
1289 
1290 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1291 		unsigned long end, int write, struct page **pages, int *nr)
1292 {
1293 	struct page *head, *page;
1294 	int refs;
1295 
1296 	if (write && !pud_write(orig))
1297 		return 0;
1298 
1299 	refs = 0;
1300 	head = pud_page(orig);
1301 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1302 	do {
1303 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1304 		pages[*nr] = page;
1305 		(*nr)++;
1306 		page++;
1307 		refs++;
1308 	} while (addr += PAGE_SIZE, addr != end);
1309 
1310 	if (!page_cache_add_speculative(head, refs)) {
1311 		*nr -= refs;
1312 		return 0;
1313 	}
1314 
1315 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1316 		*nr -= refs;
1317 		while (refs--)
1318 			put_page(head);
1319 		return 0;
1320 	}
1321 
1322 	return 1;
1323 }
1324 
1325 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1326 			unsigned long end, int write,
1327 			struct page **pages, int *nr)
1328 {
1329 	int refs;
1330 	struct page *head, *page;
1331 
1332 	if (write && !pgd_write(orig))
1333 		return 0;
1334 
1335 	refs = 0;
1336 	head = pgd_page(orig);
1337 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1338 	do {
1339 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1340 		pages[*nr] = page;
1341 		(*nr)++;
1342 		page++;
1343 		refs++;
1344 	} while (addr += PAGE_SIZE, addr != end);
1345 
1346 	if (!page_cache_add_speculative(head, refs)) {
1347 		*nr -= refs;
1348 		return 0;
1349 	}
1350 
1351 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1352 		*nr -= refs;
1353 		while (refs--)
1354 			put_page(head);
1355 		return 0;
1356 	}
1357 
1358 	return 1;
1359 }
1360 
1361 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1362 		int write, struct page **pages, int *nr)
1363 {
1364 	unsigned long next;
1365 	pmd_t *pmdp;
1366 
1367 	pmdp = pmd_offset(&pud, addr);
1368 	do {
1369 		pmd_t pmd = READ_ONCE(*pmdp);
1370 
1371 		next = pmd_addr_end(addr, end);
1372 		if (pmd_none(pmd))
1373 			return 0;
1374 
1375 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1376 			/*
1377 			 * NUMA hinting faults need to be handled in the GUP
1378 			 * slowpath for accounting purposes and so that they
1379 			 * can be serialised against THP migration.
1380 			 */
1381 			if (pmd_protnone(pmd))
1382 				return 0;
1383 
1384 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1385 				pages, nr))
1386 				return 0;
1387 
1388 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1389 			/*
1390 			 * architecture have different format for hugetlbfs
1391 			 * pmd format and THP pmd format
1392 			 */
1393 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1394 					 PMD_SHIFT, next, write, pages, nr))
1395 				return 0;
1396 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1397 				return 0;
1398 	} while (pmdp++, addr = next, addr != end);
1399 
1400 	return 1;
1401 }
1402 
1403 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1404 			 int write, struct page **pages, int *nr)
1405 {
1406 	unsigned long next;
1407 	pud_t *pudp;
1408 
1409 	pudp = pud_offset(&pgd, addr);
1410 	do {
1411 		pud_t pud = READ_ONCE(*pudp);
1412 
1413 		next = pud_addr_end(addr, end);
1414 		if (pud_none(pud))
1415 			return 0;
1416 		if (unlikely(pud_huge(pud))) {
1417 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1418 					  pages, nr))
1419 				return 0;
1420 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1421 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1422 					 PUD_SHIFT, next, write, pages, nr))
1423 				return 0;
1424 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1425 			return 0;
1426 	} while (pudp++, addr = next, addr != end);
1427 
1428 	return 1;
1429 }
1430 
1431 /*
1432  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1433  * the regular GUP. It will only return non-negative values.
1434  */
1435 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1436 			  struct page **pages)
1437 {
1438 	struct mm_struct *mm = current->mm;
1439 	unsigned long addr, len, end;
1440 	unsigned long next, flags;
1441 	pgd_t *pgdp;
1442 	int nr = 0;
1443 
1444 	start &= PAGE_MASK;
1445 	addr = start;
1446 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1447 	end = start + len;
1448 
1449 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1450 					start, len)))
1451 		return 0;
1452 
1453 	/*
1454 	 * Disable interrupts.  We use the nested form as we can already have
1455 	 * interrupts disabled by get_futex_key.
1456 	 *
1457 	 * With interrupts disabled, we block page table pages from being
1458 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1459 	 * for more details.
1460 	 *
1461 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1462 	 * block IPIs that come from THPs splitting.
1463 	 */
1464 
1465 	local_irq_save(flags);
1466 	pgdp = pgd_offset(mm, addr);
1467 	do {
1468 		pgd_t pgd = READ_ONCE(*pgdp);
1469 
1470 		next = pgd_addr_end(addr, end);
1471 		if (pgd_none(pgd))
1472 			break;
1473 		if (unlikely(pgd_huge(pgd))) {
1474 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1475 					  pages, &nr))
1476 				break;
1477 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1478 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1479 					 PGDIR_SHIFT, next, write, pages, &nr))
1480 				break;
1481 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1482 			break;
1483 	} while (pgdp++, addr = next, addr != end);
1484 	local_irq_restore(flags);
1485 
1486 	return nr;
1487 }
1488 
1489 /**
1490  * get_user_pages_fast() - pin user pages in memory
1491  * @start:	starting user address
1492  * @nr_pages:	number of pages from start to pin
1493  * @write:	whether pages will be written to
1494  * @pages:	array that receives pointers to the pages pinned.
1495  *		Should be at least nr_pages long.
1496  *
1497  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1498  * If not successful, it will fall back to taking the lock and
1499  * calling get_user_pages().
1500  *
1501  * Returns number of pages pinned. This may be fewer than the number
1502  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1503  * were pinned, returns -errno.
1504  */
1505 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1506 			struct page **pages)
1507 {
1508 	int nr, ret;
1509 
1510 	start &= PAGE_MASK;
1511 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1512 	ret = nr;
1513 
1514 	if (nr < nr_pages) {
1515 		/* Try to get the remaining pages with get_user_pages */
1516 		start += nr << PAGE_SHIFT;
1517 		pages += nr;
1518 
1519 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1520 				write ? FOLL_WRITE : 0);
1521 
1522 		/* Have to be a bit careful with return values */
1523 		if (nr > 0) {
1524 			if (ret < 0)
1525 				ret = nr;
1526 			else
1527 				ret += nr;
1528 		}
1529 	}
1530 
1531 	return ret;
1532 }
1533 
1534 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1535