xref: /openbmc/linux/mm/gup.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 /*
33  * Return the compound head page with ref appropriately incremented,
34  * or NULL if that failed.
35  */
36 static inline struct page *try_get_compound_head(struct page *page, int refs)
37 {
38 	struct page *head = compound_head(page);
39 
40 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
41 		return NULL;
42 	if (unlikely(!page_cache_add_speculative(head, refs)))
43 		return NULL;
44 	return head;
45 }
46 
47 /**
48  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
49  * @pages:  array of pages to be maybe marked dirty, and definitely released.
50  * @npages: number of pages in the @pages array.
51  * @make_dirty: whether to mark the pages dirty
52  *
53  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
54  * variants called on that page.
55  *
56  * For each page in the @pages array, make that page (or its head page, if a
57  * compound page) dirty, if @make_dirty is true, and if the page was previously
58  * listed as clean. In any case, releases all pages using unpin_user_page(),
59  * possibly via unpin_user_pages(), for the non-dirty case.
60  *
61  * Please see the unpin_user_page() documentation for details.
62  *
63  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
64  * required, then the caller should a) verify that this is really correct,
65  * because _lock() is usually required, and b) hand code it:
66  * set_page_dirty_lock(), unpin_user_page().
67  *
68  */
69 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
70 				 bool make_dirty)
71 {
72 	unsigned long index;
73 
74 	/*
75 	 * TODO: this can be optimized for huge pages: if a series of pages is
76 	 * physically contiguous and part of the same compound page, then a
77 	 * single operation to the head page should suffice.
78 	 */
79 
80 	if (!make_dirty) {
81 		unpin_user_pages(pages, npages);
82 		return;
83 	}
84 
85 	for (index = 0; index < npages; index++) {
86 		struct page *page = compound_head(pages[index]);
87 		/*
88 		 * Checking PageDirty at this point may race with
89 		 * clear_page_dirty_for_io(), but that's OK. Two key
90 		 * cases:
91 		 *
92 		 * 1) This code sees the page as already dirty, so it
93 		 * skips the call to set_page_dirty(). That could happen
94 		 * because clear_page_dirty_for_io() called
95 		 * page_mkclean(), followed by set_page_dirty().
96 		 * However, now the page is going to get written back,
97 		 * which meets the original intention of setting it
98 		 * dirty, so all is well: clear_page_dirty_for_io() goes
99 		 * on to call TestClearPageDirty(), and write the page
100 		 * back.
101 		 *
102 		 * 2) This code sees the page as clean, so it calls
103 		 * set_page_dirty(). The page stays dirty, despite being
104 		 * written back, so it gets written back again in the
105 		 * next writeback cycle. This is harmless.
106 		 */
107 		if (!PageDirty(page))
108 			set_page_dirty_lock(page);
109 		unpin_user_page(page);
110 	}
111 }
112 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
113 
114 /**
115  * unpin_user_pages() - release an array of gup-pinned pages.
116  * @pages:  array of pages to be marked dirty and released.
117  * @npages: number of pages in the @pages array.
118  *
119  * For each page in the @pages array, release the page using unpin_user_page().
120  *
121  * Please see the unpin_user_page() documentation for details.
122  */
123 void unpin_user_pages(struct page **pages, unsigned long npages)
124 {
125 	unsigned long index;
126 
127 	/*
128 	 * TODO: this can be optimized for huge pages: if a series of pages is
129 	 * physically contiguous and part of the same compound page, then a
130 	 * single operation to the head page should suffice.
131 	 */
132 	for (index = 0; index < npages; index++)
133 		unpin_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(unpin_user_pages);
136 
137 #ifdef CONFIG_MMU
138 static struct page *no_page_table(struct vm_area_struct *vma,
139 		unsigned int flags)
140 {
141 	/*
142 	 * When core dumping an enormous anonymous area that nobody
143 	 * has touched so far, we don't want to allocate unnecessary pages or
144 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
145 	 * then get_dump_page() will return NULL to leave a hole in the dump.
146 	 * But we can only make this optimization where a hole would surely
147 	 * be zero-filled if handle_mm_fault() actually did handle it.
148 	 */
149 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 		return ERR_PTR(-EFAULT);
151 	return NULL;
152 }
153 
154 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 		pte_t *pte, unsigned int flags)
156 {
157 	/* No page to get reference */
158 	if (flags & FOLL_GET)
159 		return -EFAULT;
160 
161 	if (flags & FOLL_TOUCH) {
162 		pte_t entry = *pte;
163 
164 		if (flags & FOLL_WRITE)
165 			entry = pte_mkdirty(entry);
166 		entry = pte_mkyoung(entry);
167 
168 		if (!pte_same(*pte, entry)) {
169 			set_pte_at(vma->vm_mm, address, pte, entry);
170 			update_mmu_cache(vma, address, pte);
171 		}
172 	}
173 
174 	/* Proper page table entry exists, but no corresponding struct page */
175 	return -EEXIST;
176 }
177 
178 /*
179  * FOLL_FORCE can write to even unwritable pte's, but only
180  * after we've gone through a COW cycle and they are dirty.
181  */
182 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183 {
184 	return pte_write(pte) ||
185 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186 }
187 
188 static struct page *follow_page_pte(struct vm_area_struct *vma,
189 		unsigned long address, pmd_t *pmd, unsigned int flags,
190 		struct dev_pagemap **pgmap)
191 {
192 	struct mm_struct *mm = vma->vm_mm;
193 	struct page *page;
194 	spinlock_t *ptl;
195 	pte_t *ptep, pte;
196 
197 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
198 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
199 			 (FOLL_PIN | FOLL_GET)))
200 		return ERR_PTR(-EINVAL);
201 retry:
202 	if (unlikely(pmd_bad(*pmd)))
203 		return no_page_table(vma, flags);
204 
205 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
206 	pte = *ptep;
207 	if (!pte_present(pte)) {
208 		swp_entry_t entry;
209 		/*
210 		 * KSM's break_ksm() relies upon recognizing a ksm page
211 		 * even while it is being migrated, so for that case we
212 		 * need migration_entry_wait().
213 		 */
214 		if (likely(!(flags & FOLL_MIGRATION)))
215 			goto no_page;
216 		if (pte_none(pte))
217 			goto no_page;
218 		entry = pte_to_swp_entry(pte);
219 		if (!is_migration_entry(entry))
220 			goto no_page;
221 		pte_unmap_unlock(ptep, ptl);
222 		migration_entry_wait(mm, pmd, address);
223 		goto retry;
224 	}
225 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
226 		goto no_page;
227 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
228 		pte_unmap_unlock(ptep, ptl);
229 		return NULL;
230 	}
231 
232 	page = vm_normal_page(vma, address, pte);
233 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
234 		/*
235 		 * Only return device mapping pages in the FOLL_GET case since
236 		 * they are only valid while holding the pgmap reference.
237 		 */
238 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
239 		if (*pgmap)
240 			page = pte_page(pte);
241 		else
242 			goto no_page;
243 	} else if (unlikely(!page)) {
244 		if (flags & FOLL_DUMP) {
245 			/* Avoid special (like zero) pages in core dumps */
246 			page = ERR_PTR(-EFAULT);
247 			goto out;
248 		}
249 
250 		if (is_zero_pfn(pte_pfn(pte))) {
251 			page = pte_page(pte);
252 		} else {
253 			int ret;
254 
255 			ret = follow_pfn_pte(vma, address, ptep, flags);
256 			page = ERR_PTR(ret);
257 			goto out;
258 		}
259 	}
260 
261 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
262 		int ret;
263 		get_page(page);
264 		pte_unmap_unlock(ptep, ptl);
265 		lock_page(page);
266 		ret = split_huge_page(page);
267 		unlock_page(page);
268 		put_page(page);
269 		if (ret)
270 			return ERR_PTR(ret);
271 		goto retry;
272 	}
273 
274 	if (flags & FOLL_GET) {
275 		if (unlikely(!try_get_page(page))) {
276 			page = ERR_PTR(-ENOMEM);
277 			goto out;
278 		}
279 	}
280 	if (flags & FOLL_TOUCH) {
281 		if ((flags & FOLL_WRITE) &&
282 		    !pte_dirty(pte) && !PageDirty(page))
283 			set_page_dirty(page);
284 		/*
285 		 * pte_mkyoung() would be more correct here, but atomic care
286 		 * is needed to avoid losing the dirty bit: it is easier to use
287 		 * mark_page_accessed().
288 		 */
289 		mark_page_accessed(page);
290 	}
291 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
292 		/* Do not mlock pte-mapped THP */
293 		if (PageTransCompound(page))
294 			goto out;
295 
296 		/*
297 		 * The preliminary mapping check is mainly to avoid the
298 		 * pointless overhead of lock_page on the ZERO_PAGE
299 		 * which might bounce very badly if there is contention.
300 		 *
301 		 * If the page is already locked, we don't need to
302 		 * handle it now - vmscan will handle it later if and
303 		 * when it attempts to reclaim the page.
304 		 */
305 		if (page->mapping && trylock_page(page)) {
306 			lru_add_drain();  /* push cached pages to LRU */
307 			/*
308 			 * Because we lock page here, and migration is
309 			 * blocked by the pte's page reference, and we
310 			 * know the page is still mapped, we don't even
311 			 * need to check for file-cache page truncation.
312 			 */
313 			mlock_vma_page(page);
314 			unlock_page(page);
315 		}
316 	}
317 out:
318 	pte_unmap_unlock(ptep, ptl);
319 	return page;
320 no_page:
321 	pte_unmap_unlock(ptep, ptl);
322 	if (!pte_none(pte))
323 		return NULL;
324 	return no_page_table(vma, flags);
325 }
326 
327 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
328 				    unsigned long address, pud_t *pudp,
329 				    unsigned int flags,
330 				    struct follow_page_context *ctx)
331 {
332 	pmd_t *pmd, pmdval;
333 	spinlock_t *ptl;
334 	struct page *page;
335 	struct mm_struct *mm = vma->vm_mm;
336 
337 	pmd = pmd_offset(pudp, address);
338 	/*
339 	 * The READ_ONCE() will stabilize the pmdval in a register or
340 	 * on the stack so that it will stop changing under the code.
341 	 */
342 	pmdval = READ_ONCE(*pmd);
343 	if (pmd_none(pmdval))
344 		return no_page_table(vma, flags);
345 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
346 		page = follow_huge_pmd(mm, address, pmd, flags);
347 		if (page)
348 			return page;
349 		return no_page_table(vma, flags);
350 	}
351 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
352 		page = follow_huge_pd(vma, address,
353 				      __hugepd(pmd_val(pmdval)), flags,
354 				      PMD_SHIFT);
355 		if (page)
356 			return page;
357 		return no_page_table(vma, flags);
358 	}
359 retry:
360 	if (!pmd_present(pmdval)) {
361 		if (likely(!(flags & FOLL_MIGRATION)))
362 			return no_page_table(vma, flags);
363 		VM_BUG_ON(thp_migration_supported() &&
364 				  !is_pmd_migration_entry(pmdval));
365 		if (is_pmd_migration_entry(pmdval))
366 			pmd_migration_entry_wait(mm, pmd);
367 		pmdval = READ_ONCE(*pmd);
368 		/*
369 		 * MADV_DONTNEED may convert the pmd to null because
370 		 * mmap_sem is held in read mode
371 		 */
372 		if (pmd_none(pmdval))
373 			return no_page_table(vma, flags);
374 		goto retry;
375 	}
376 	if (pmd_devmap(pmdval)) {
377 		ptl = pmd_lock(mm, pmd);
378 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
379 		spin_unlock(ptl);
380 		if (page)
381 			return page;
382 	}
383 	if (likely(!pmd_trans_huge(pmdval)))
384 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
385 
386 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
387 		return no_page_table(vma, flags);
388 
389 retry_locked:
390 	ptl = pmd_lock(mm, pmd);
391 	if (unlikely(pmd_none(*pmd))) {
392 		spin_unlock(ptl);
393 		return no_page_table(vma, flags);
394 	}
395 	if (unlikely(!pmd_present(*pmd))) {
396 		spin_unlock(ptl);
397 		if (likely(!(flags & FOLL_MIGRATION)))
398 			return no_page_table(vma, flags);
399 		pmd_migration_entry_wait(mm, pmd);
400 		goto retry_locked;
401 	}
402 	if (unlikely(!pmd_trans_huge(*pmd))) {
403 		spin_unlock(ptl);
404 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
405 	}
406 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
407 		int ret;
408 		page = pmd_page(*pmd);
409 		if (is_huge_zero_page(page)) {
410 			spin_unlock(ptl);
411 			ret = 0;
412 			split_huge_pmd(vma, pmd, address);
413 			if (pmd_trans_unstable(pmd))
414 				ret = -EBUSY;
415 		} else if (flags & FOLL_SPLIT) {
416 			if (unlikely(!try_get_page(page))) {
417 				spin_unlock(ptl);
418 				return ERR_PTR(-ENOMEM);
419 			}
420 			spin_unlock(ptl);
421 			lock_page(page);
422 			ret = split_huge_page(page);
423 			unlock_page(page);
424 			put_page(page);
425 			if (pmd_none(*pmd))
426 				return no_page_table(vma, flags);
427 		} else {  /* flags & FOLL_SPLIT_PMD */
428 			spin_unlock(ptl);
429 			split_huge_pmd(vma, pmd, address);
430 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
431 		}
432 
433 		return ret ? ERR_PTR(ret) :
434 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
435 	}
436 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
437 	spin_unlock(ptl);
438 	ctx->page_mask = HPAGE_PMD_NR - 1;
439 	return page;
440 }
441 
442 static struct page *follow_pud_mask(struct vm_area_struct *vma,
443 				    unsigned long address, p4d_t *p4dp,
444 				    unsigned int flags,
445 				    struct follow_page_context *ctx)
446 {
447 	pud_t *pud;
448 	spinlock_t *ptl;
449 	struct page *page;
450 	struct mm_struct *mm = vma->vm_mm;
451 
452 	pud = pud_offset(p4dp, address);
453 	if (pud_none(*pud))
454 		return no_page_table(vma, flags);
455 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
456 		page = follow_huge_pud(mm, address, pud, flags);
457 		if (page)
458 			return page;
459 		return no_page_table(vma, flags);
460 	}
461 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
462 		page = follow_huge_pd(vma, address,
463 				      __hugepd(pud_val(*pud)), flags,
464 				      PUD_SHIFT);
465 		if (page)
466 			return page;
467 		return no_page_table(vma, flags);
468 	}
469 	if (pud_devmap(*pud)) {
470 		ptl = pud_lock(mm, pud);
471 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
472 		spin_unlock(ptl);
473 		if (page)
474 			return page;
475 	}
476 	if (unlikely(pud_bad(*pud)))
477 		return no_page_table(vma, flags);
478 
479 	return follow_pmd_mask(vma, address, pud, flags, ctx);
480 }
481 
482 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
483 				    unsigned long address, pgd_t *pgdp,
484 				    unsigned int flags,
485 				    struct follow_page_context *ctx)
486 {
487 	p4d_t *p4d;
488 	struct page *page;
489 
490 	p4d = p4d_offset(pgdp, address);
491 	if (p4d_none(*p4d))
492 		return no_page_table(vma, flags);
493 	BUILD_BUG_ON(p4d_huge(*p4d));
494 	if (unlikely(p4d_bad(*p4d)))
495 		return no_page_table(vma, flags);
496 
497 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
498 		page = follow_huge_pd(vma, address,
499 				      __hugepd(p4d_val(*p4d)), flags,
500 				      P4D_SHIFT);
501 		if (page)
502 			return page;
503 		return no_page_table(vma, flags);
504 	}
505 	return follow_pud_mask(vma, address, p4d, flags, ctx);
506 }
507 
508 /**
509  * follow_page_mask - look up a page descriptor from a user-virtual address
510  * @vma: vm_area_struct mapping @address
511  * @address: virtual address to look up
512  * @flags: flags modifying lookup behaviour
513  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
514  *       pointer to output page_mask
515  *
516  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
517  *
518  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
519  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
520  *
521  * On output, the @ctx->page_mask is set according to the size of the page.
522  *
523  * Return: the mapped (struct page *), %NULL if no mapping exists, or
524  * an error pointer if there is a mapping to something not represented
525  * by a page descriptor (see also vm_normal_page()).
526  */
527 static struct page *follow_page_mask(struct vm_area_struct *vma,
528 			      unsigned long address, unsigned int flags,
529 			      struct follow_page_context *ctx)
530 {
531 	pgd_t *pgd;
532 	struct page *page;
533 	struct mm_struct *mm = vma->vm_mm;
534 
535 	ctx->page_mask = 0;
536 
537 	/* make this handle hugepd */
538 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
539 	if (!IS_ERR(page)) {
540 		BUG_ON(flags & FOLL_GET);
541 		return page;
542 	}
543 
544 	pgd = pgd_offset(mm, address);
545 
546 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
547 		return no_page_table(vma, flags);
548 
549 	if (pgd_huge(*pgd)) {
550 		page = follow_huge_pgd(mm, address, pgd, flags);
551 		if (page)
552 			return page;
553 		return no_page_table(vma, flags);
554 	}
555 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
556 		page = follow_huge_pd(vma, address,
557 				      __hugepd(pgd_val(*pgd)), flags,
558 				      PGDIR_SHIFT);
559 		if (page)
560 			return page;
561 		return no_page_table(vma, flags);
562 	}
563 
564 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
565 }
566 
567 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
568 			 unsigned int foll_flags)
569 {
570 	struct follow_page_context ctx = { NULL };
571 	struct page *page;
572 
573 	page = follow_page_mask(vma, address, foll_flags, &ctx);
574 	if (ctx.pgmap)
575 		put_dev_pagemap(ctx.pgmap);
576 	return page;
577 }
578 
579 static int get_gate_page(struct mm_struct *mm, unsigned long address,
580 		unsigned int gup_flags, struct vm_area_struct **vma,
581 		struct page **page)
582 {
583 	pgd_t *pgd;
584 	p4d_t *p4d;
585 	pud_t *pud;
586 	pmd_t *pmd;
587 	pte_t *pte;
588 	int ret = -EFAULT;
589 
590 	/* user gate pages are read-only */
591 	if (gup_flags & FOLL_WRITE)
592 		return -EFAULT;
593 	if (address > TASK_SIZE)
594 		pgd = pgd_offset_k(address);
595 	else
596 		pgd = pgd_offset_gate(mm, address);
597 	if (pgd_none(*pgd))
598 		return -EFAULT;
599 	p4d = p4d_offset(pgd, address);
600 	if (p4d_none(*p4d))
601 		return -EFAULT;
602 	pud = pud_offset(p4d, address);
603 	if (pud_none(*pud))
604 		return -EFAULT;
605 	pmd = pmd_offset(pud, address);
606 	if (!pmd_present(*pmd))
607 		return -EFAULT;
608 	VM_BUG_ON(pmd_trans_huge(*pmd));
609 	pte = pte_offset_map(pmd, address);
610 	if (pte_none(*pte))
611 		goto unmap;
612 	*vma = get_gate_vma(mm);
613 	if (!page)
614 		goto out;
615 	*page = vm_normal_page(*vma, address, *pte);
616 	if (!*page) {
617 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
618 			goto unmap;
619 		*page = pte_page(*pte);
620 	}
621 	if (unlikely(!try_get_page(*page))) {
622 		ret = -ENOMEM;
623 		goto unmap;
624 	}
625 out:
626 	ret = 0;
627 unmap:
628 	pte_unmap(pte);
629 	return ret;
630 }
631 
632 /*
633  * mmap_sem must be held on entry.  If @nonblocking != NULL and
634  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
635  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
636  */
637 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
638 		unsigned long address, unsigned int *flags, int *nonblocking)
639 {
640 	unsigned int fault_flags = 0;
641 	vm_fault_t ret;
642 
643 	/* mlock all present pages, but do not fault in new pages */
644 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
645 		return -ENOENT;
646 	if (*flags & FOLL_WRITE)
647 		fault_flags |= FAULT_FLAG_WRITE;
648 	if (*flags & FOLL_REMOTE)
649 		fault_flags |= FAULT_FLAG_REMOTE;
650 	if (nonblocking)
651 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
652 	if (*flags & FOLL_NOWAIT)
653 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
654 	if (*flags & FOLL_TRIED) {
655 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
656 		fault_flags |= FAULT_FLAG_TRIED;
657 	}
658 
659 	ret = handle_mm_fault(vma, address, fault_flags);
660 	if (ret & VM_FAULT_ERROR) {
661 		int err = vm_fault_to_errno(ret, *flags);
662 
663 		if (err)
664 			return err;
665 		BUG();
666 	}
667 
668 	if (tsk) {
669 		if (ret & VM_FAULT_MAJOR)
670 			tsk->maj_flt++;
671 		else
672 			tsk->min_flt++;
673 	}
674 
675 	if (ret & VM_FAULT_RETRY) {
676 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
677 			*nonblocking = 0;
678 		return -EBUSY;
679 	}
680 
681 	/*
682 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
683 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
684 	 * can thus safely do subsequent page lookups as if they were reads.
685 	 * But only do so when looping for pte_write is futile: in some cases
686 	 * userspace may also be wanting to write to the gotten user page,
687 	 * which a read fault here might prevent (a readonly page might get
688 	 * reCOWed by userspace write).
689 	 */
690 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
691 		*flags |= FOLL_COW;
692 	return 0;
693 }
694 
695 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
696 {
697 	vm_flags_t vm_flags = vma->vm_flags;
698 	int write = (gup_flags & FOLL_WRITE);
699 	int foreign = (gup_flags & FOLL_REMOTE);
700 
701 	if (vm_flags & (VM_IO | VM_PFNMAP))
702 		return -EFAULT;
703 
704 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
705 		return -EFAULT;
706 
707 	if (write) {
708 		if (!(vm_flags & VM_WRITE)) {
709 			if (!(gup_flags & FOLL_FORCE))
710 				return -EFAULT;
711 			/*
712 			 * We used to let the write,force case do COW in a
713 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
714 			 * set a breakpoint in a read-only mapping of an
715 			 * executable, without corrupting the file (yet only
716 			 * when that file had been opened for writing!).
717 			 * Anon pages in shared mappings are surprising: now
718 			 * just reject it.
719 			 */
720 			if (!is_cow_mapping(vm_flags))
721 				return -EFAULT;
722 		}
723 	} else if (!(vm_flags & VM_READ)) {
724 		if (!(gup_flags & FOLL_FORCE))
725 			return -EFAULT;
726 		/*
727 		 * Is there actually any vma we can reach here which does not
728 		 * have VM_MAYREAD set?
729 		 */
730 		if (!(vm_flags & VM_MAYREAD))
731 			return -EFAULT;
732 	}
733 	/*
734 	 * gups are always data accesses, not instruction
735 	 * fetches, so execute=false here
736 	 */
737 	if (!arch_vma_access_permitted(vma, write, false, foreign))
738 		return -EFAULT;
739 	return 0;
740 }
741 
742 /**
743  * __get_user_pages() - pin user pages in memory
744  * @tsk:	task_struct of target task
745  * @mm:		mm_struct of target mm
746  * @start:	starting user address
747  * @nr_pages:	number of pages from start to pin
748  * @gup_flags:	flags modifying pin behaviour
749  * @pages:	array that receives pointers to the pages pinned.
750  *		Should be at least nr_pages long. Or NULL, if caller
751  *		only intends to ensure the pages are faulted in.
752  * @vmas:	array of pointers to vmas corresponding to each page.
753  *		Or NULL if the caller does not require them.
754  * @nonblocking: whether waiting for disk IO or mmap_sem contention
755  *
756  * Returns either number of pages pinned (which may be less than the
757  * number requested), or an error. Details about the return value:
758  *
759  * -- If nr_pages is 0, returns 0.
760  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
761  * -- If nr_pages is >0, and some pages were pinned, returns the number of
762  *    pages pinned. Again, this may be less than nr_pages.
763  *
764  * The caller is responsible for releasing returned @pages, via put_page().
765  *
766  * @vmas are valid only as long as mmap_sem is held.
767  *
768  * Must be called with mmap_sem held.  It may be released.  See below.
769  *
770  * __get_user_pages walks a process's page tables and takes a reference to
771  * each struct page that each user address corresponds to at a given
772  * instant. That is, it takes the page that would be accessed if a user
773  * thread accesses the given user virtual address at that instant.
774  *
775  * This does not guarantee that the page exists in the user mappings when
776  * __get_user_pages returns, and there may even be a completely different
777  * page there in some cases (eg. if mmapped pagecache has been invalidated
778  * and subsequently re faulted). However it does guarantee that the page
779  * won't be freed completely. And mostly callers simply care that the page
780  * contains data that was valid *at some point in time*. Typically, an IO
781  * or similar operation cannot guarantee anything stronger anyway because
782  * locks can't be held over the syscall boundary.
783  *
784  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
785  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
786  * appropriate) must be called after the page is finished with, and
787  * before put_page is called.
788  *
789  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
790  * or mmap_sem contention, and if waiting is needed to pin all pages,
791  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
792  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
793  * this case.
794  *
795  * A caller using such a combination of @nonblocking and @gup_flags
796  * must therefore hold the mmap_sem for reading only, and recognize
797  * when it's been released.  Otherwise, it must be held for either
798  * reading or writing and will not be released.
799  *
800  * In most cases, get_user_pages or get_user_pages_fast should be used
801  * instead of __get_user_pages. __get_user_pages should be used only if
802  * you need some special @gup_flags.
803  */
804 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
805 		unsigned long start, unsigned long nr_pages,
806 		unsigned int gup_flags, struct page **pages,
807 		struct vm_area_struct **vmas, int *nonblocking)
808 {
809 	long ret = 0, i = 0;
810 	struct vm_area_struct *vma = NULL;
811 	struct follow_page_context ctx = { NULL };
812 
813 	if (!nr_pages)
814 		return 0;
815 
816 	start = untagged_addr(start);
817 
818 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
819 
820 	/*
821 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
822 	 * fault information is unrelated to the reference behaviour of a task
823 	 * using the address space
824 	 */
825 	if (!(gup_flags & FOLL_FORCE))
826 		gup_flags |= FOLL_NUMA;
827 
828 	do {
829 		struct page *page;
830 		unsigned int foll_flags = gup_flags;
831 		unsigned int page_increm;
832 
833 		/* first iteration or cross vma bound */
834 		if (!vma || start >= vma->vm_end) {
835 			vma = find_extend_vma(mm, start);
836 			if (!vma && in_gate_area(mm, start)) {
837 				ret = get_gate_page(mm, start & PAGE_MASK,
838 						gup_flags, &vma,
839 						pages ? &pages[i] : NULL);
840 				if (ret)
841 					goto out;
842 				ctx.page_mask = 0;
843 				goto next_page;
844 			}
845 
846 			if (!vma || check_vma_flags(vma, gup_flags)) {
847 				ret = -EFAULT;
848 				goto out;
849 			}
850 			if (is_vm_hugetlb_page(vma)) {
851 				i = follow_hugetlb_page(mm, vma, pages, vmas,
852 						&start, &nr_pages, i,
853 						gup_flags, nonblocking);
854 				continue;
855 			}
856 		}
857 retry:
858 		/*
859 		 * If we have a pending SIGKILL, don't keep faulting pages and
860 		 * potentially allocating memory.
861 		 */
862 		if (fatal_signal_pending(current)) {
863 			ret = -ERESTARTSYS;
864 			goto out;
865 		}
866 		cond_resched();
867 
868 		page = follow_page_mask(vma, start, foll_flags, &ctx);
869 		if (!page) {
870 			ret = faultin_page(tsk, vma, start, &foll_flags,
871 					nonblocking);
872 			switch (ret) {
873 			case 0:
874 				goto retry;
875 			case -EBUSY:
876 				ret = 0;
877 				/* FALLTHRU */
878 			case -EFAULT:
879 			case -ENOMEM:
880 			case -EHWPOISON:
881 				goto out;
882 			case -ENOENT:
883 				goto next_page;
884 			}
885 			BUG();
886 		} else if (PTR_ERR(page) == -EEXIST) {
887 			/*
888 			 * Proper page table entry exists, but no corresponding
889 			 * struct page.
890 			 */
891 			goto next_page;
892 		} else if (IS_ERR(page)) {
893 			ret = PTR_ERR(page);
894 			goto out;
895 		}
896 		if (pages) {
897 			pages[i] = page;
898 			flush_anon_page(vma, page, start);
899 			flush_dcache_page(page);
900 			ctx.page_mask = 0;
901 		}
902 next_page:
903 		if (vmas) {
904 			vmas[i] = vma;
905 			ctx.page_mask = 0;
906 		}
907 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
908 		if (page_increm > nr_pages)
909 			page_increm = nr_pages;
910 		i += page_increm;
911 		start += page_increm * PAGE_SIZE;
912 		nr_pages -= page_increm;
913 	} while (nr_pages);
914 out:
915 	if (ctx.pgmap)
916 		put_dev_pagemap(ctx.pgmap);
917 	return i ? i : ret;
918 }
919 
920 static bool vma_permits_fault(struct vm_area_struct *vma,
921 			      unsigned int fault_flags)
922 {
923 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
924 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
925 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
926 
927 	if (!(vm_flags & vma->vm_flags))
928 		return false;
929 
930 	/*
931 	 * The architecture might have a hardware protection
932 	 * mechanism other than read/write that can deny access.
933 	 *
934 	 * gup always represents data access, not instruction
935 	 * fetches, so execute=false here:
936 	 */
937 	if (!arch_vma_access_permitted(vma, write, false, foreign))
938 		return false;
939 
940 	return true;
941 }
942 
943 /*
944  * fixup_user_fault() - manually resolve a user page fault
945  * @tsk:	the task_struct to use for page fault accounting, or
946  *		NULL if faults are not to be recorded.
947  * @mm:		mm_struct of target mm
948  * @address:	user address
949  * @fault_flags:flags to pass down to handle_mm_fault()
950  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
951  *		does not allow retry
952  *
953  * This is meant to be called in the specific scenario where for locking reasons
954  * we try to access user memory in atomic context (within a pagefault_disable()
955  * section), this returns -EFAULT, and we want to resolve the user fault before
956  * trying again.
957  *
958  * Typically this is meant to be used by the futex code.
959  *
960  * The main difference with get_user_pages() is that this function will
961  * unconditionally call handle_mm_fault() which will in turn perform all the
962  * necessary SW fixup of the dirty and young bits in the PTE, while
963  * get_user_pages() only guarantees to update these in the struct page.
964  *
965  * This is important for some architectures where those bits also gate the
966  * access permission to the page because they are maintained in software.  On
967  * such architectures, gup() will not be enough to make a subsequent access
968  * succeed.
969  *
970  * This function will not return with an unlocked mmap_sem. So it has not the
971  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
972  */
973 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
974 		     unsigned long address, unsigned int fault_flags,
975 		     bool *unlocked)
976 {
977 	struct vm_area_struct *vma;
978 	vm_fault_t ret, major = 0;
979 
980 	address = untagged_addr(address);
981 
982 	if (unlocked)
983 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
984 
985 retry:
986 	vma = find_extend_vma(mm, address);
987 	if (!vma || address < vma->vm_start)
988 		return -EFAULT;
989 
990 	if (!vma_permits_fault(vma, fault_flags))
991 		return -EFAULT;
992 
993 	ret = handle_mm_fault(vma, address, fault_flags);
994 	major |= ret & VM_FAULT_MAJOR;
995 	if (ret & VM_FAULT_ERROR) {
996 		int err = vm_fault_to_errno(ret, 0);
997 
998 		if (err)
999 			return err;
1000 		BUG();
1001 	}
1002 
1003 	if (ret & VM_FAULT_RETRY) {
1004 		down_read(&mm->mmap_sem);
1005 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
1006 			*unlocked = true;
1007 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
1008 			fault_flags |= FAULT_FLAG_TRIED;
1009 			goto retry;
1010 		}
1011 	}
1012 
1013 	if (tsk) {
1014 		if (major)
1015 			tsk->maj_flt++;
1016 		else
1017 			tsk->min_flt++;
1018 	}
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(fixup_user_fault);
1022 
1023 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1024 						struct mm_struct *mm,
1025 						unsigned long start,
1026 						unsigned long nr_pages,
1027 						struct page **pages,
1028 						struct vm_area_struct **vmas,
1029 						int *locked,
1030 						unsigned int flags)
1031 {
1032 	long ret, pages_done;
1033 	bool lock_dropped;
1034 
1035 	if (locked) {
1036 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1037 		BUG_ON(vmas);
1038 		/* check caller initialized locked */
1039 		BUG_ON(*locked != 1);
1040 	}
1041 
1042 	/*
1043 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1044 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1045 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1046 	 * for FOLL_GET, not for the newer FOLL_PIN.
1047 	 *
1048 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1049 	 * that here, as any failures will be obvious enough.
1050 	 */
1051 	if (pages && !(flags & FOLL_PIN))
1052 		flags |= FOLL_GET;
1053 
1054 	pages_done = 0;
1055 	lock_dropped = false;
1056 	for (;;) {
1057 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1058 				       vmas, locked);
1059 		if (!locked)
1060 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1061 			return ret;
1062 
1063 		/* VM_FAULT_RETRY cannot return errors */
1064 		if (!*locked) {
1065 			BUG_ON(ret < 0);
1066 			BUG_ON(ret >= nr_pages);
1067 		}
1068 
1069 		if (ret > 0) {
1070 			nr_pages -= ret;
1071 			pages_done += ret;
1072 			if (!nr_pages)
1073 				break;
1074 		}
1075 		if (*locked) {
1076 			/*
1077 			 * VM_FAULT_RETRY didn't trigger or it was a
1078 			 * FOLL_NOWAIT.
1079 			 */
1080 			if (!pages_done)
1081 				pages_done = ret;
1082 			break;
1083 		}
1084 		/*
1085 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1086 		 * For the prefault case (!pages) we only update counts.
1087 		 */
1088 		if (likely(pages))
1089 			pages += ret;
1090 		start += ret << PAGE_SHIFT;
1091 
1092 		/*
1093 		 * Repeat on the address that fired VM_FAULT_RETRY
1094 		 * without FAULT_FLAG_ALLOW_RETRY but with
1095 		 * FAULT_FLAG_TRIED.
1096 		 */
1097 		*locked = 1;
1098 		lock_dropped = true;
1099 		down_read(&mm->mmap_sem);
1100 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1101 				       pages, NULL, NULL);
1102 		if (ret != 1) {
1103 			BUG_ON(ret > 1);
1104 			if (!pages_done)
1105 				pages_done = ret;
1106 			break;
1107 		}
1108 		nr_pages--;
1109 		pages_done++;
1110 		if (!nr_pages)
1111 			break;
1112 		if (likely(pages))
1113 			pages++;
1114 		start += PAGE_SIZE;
1115 	}
1116 	if (lock_dropped && *locked) {
1117 		/*
1118 		 * We must let the caller know we temporarily dropped the lock
1119 		 * and so the critical section protected by it was lost.
1120 		 */
1121 		up_read(&mm->mmap_sem);
1122 		*locked = 0;
1123 	}
1124 	return pages_done;
1125 }
1126 
1127 /**
1128  * populate_vma_page_range() -  populate a range of pages in the vma.
1129  * @vma:   target vma
1130  * @start: start address
1131  * @end:   end address
1132  * @nonblocking:
1133  *
1134  * This takes care of mlocking the pages too if VM_LOCKED is set.
1135  *
1136  * return 0 on success, negative error code on error.
1137  *
1138  * vma->vm_mm->mmap_sem must be held.
1139  *
1140  * If @nonblocking is NULL, it may be held for read or write and will
1141  * be unperturbed.
1142  *
1143  * If @nonblocking is non-NULL, it must held for read only and may be
1144  * released.  If it's released, *@nonblocking will be set to 0.
1145  */
1146 long populate_vma_page_range(struct vm_area_struct *vma,
1147 		unsigned long start, unsigned long end, int *nonblocking)
1148 {
1149 	struct mm_struct *mm = vma->vm_mm;
1150 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1151 	int gup_flags;
1152 
1153 	VM_BUG_ON(start & ~PAGE_MASK);
1154 	VM_BUG_ON(end   & ~PAGE_MASK);
1155 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1156 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1157 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1158 
1159 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1160 	if (vma->vm_flags & VM_LOCKONFAULT)
1161 		gup_flags &= ~FOLL_POPULATE;
1162 	/*
1163 	 * We want to touch writable mappings with a write fault in order
1164 	 * to break COW, except for shared mappings because these don't COW
1165 	 * and we would not want to dirty them for nothing.
1166 	 */
1167 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1168 		gup_flags |= FOLL_WRITE;
1169 
1170 	/*
1171 	 * We want mlock to succeed for regions that have any permissions
1172 	 * other than PROT_NONE.
1173 	 */
1174 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1175 		gup_flags |= FOLL_FORCE;
1176 
1177 	/*
1178 	 * We made sure addr is within a VMA, so the following will
1179 	 * not result in a stack expansion that recurses back here.
1180 	 */
1181 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1182 				NULL, NULL, nonblocking);
1183 }
1184 
1185 /*
1186  * __mm_populate - populate and/or mlock pages within a range of address space.
1187  *
1188  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1189  * flags. VMAs must be already marked with the desired vm_flags, and
1190  * mmap_sem must not be held.
1191  */
1192 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1193 {
1194 	struct mm_struct *mm = current->mm;
1195 	unsigned long end, nstart, nend;
1196 	struct vm_area_struct *vma = NULL;
1197 	int locked = 0;
1198 	long ret = 0;
1199 
1200 	end = start + len;
1201 
1202 	for (nstart = start; nstart < end; nstart = nend) {
1203 		/*
1204 		 * We want to fault in pages for [nstart; end) address range.
1205 		 * Find first corresponding VMA.
1206 		 */
1207 		if (!locked) {
1208 			locked = 1;
1209 			down_read(&mm->mmap_sem);
1210 			vma = find_vma(mm, nstart);
1211 		} else if (nstart >= vma->vm_end)
1212 			vma = vma->vm_next;
1213 		if (!vma || vma->vm_start >= end)
1214 			break;
1215 		/*
1216 		 * Set [nstart; nend) to intersection of desired address
1217 		 * range with the first VMA. Also, skip undesirable VMA types.
1218 		 */
1219 		nend = min(end, vma->vm_end);
1220 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1221 			continue;
1222 		if (nstart < vma->vm_start)
1223 			nstart = vma->vm_start;
1224 		/*
1225 		 * Now fault in a range of pages. populate_vma_page_range()
1226 		 * double checks the vma flags, so that it won't mlock pages
1227 		 * if the vma was already munlocked.
1228 		 */
1229 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1230 		if (ret < 0) {
1231 			if (ignore_errors) {
1232 				ret = 0;
1233 				continue;	/* continue at next VMA */
1234 			}
1235 			break;
1236 		}
1237 		nend = nstart + ret * PAGE_SIZE;
1238 		ret = 0;
1239 	}
1240 	if (locked)
1241 		up_read(&mm->mmap_sem);
1242 	return ret;	/* 0 or negative error code */
1243 }
1244 
1245 /**
1246  * get_dump_page() - pin user page in memory while writing it to core dump
1247  * @addr: user address
1248  *
1249  * Returns struct page pointer of user page pinned for dump,
1250  * to be freed afterwards by put_page().
1251  *
1252  * Returns NULL on any kind of failure - a hole must then be inserted into
1253  * the corefile, to preserve alignment with its headers; and also returns
1254  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1255  * allowing a hole to be left in the corefile to save diskspace.
1256  *
1257  * Called without mmap_sem, but after all other threads have been killed.
1258  */
1259 #ifdef CONFIG_ELF_CORE
1260 struct page *get_dump_page(unsigned long addr)
1261 {
1262 	struct vm_area_struct *vma;
1263 	struct page *page;
1264 
1265 	if (__get_user_pages(current, current->mm, addr, 1,
1266 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1267 			     NULL) < 1)
1268 		return NULL;
1269 	flush_cache_page(vma, addr, page_to_pfn(page));
1270 	return page;
1271 }
1272 #endif /* CONFIG_ELF_CORE */
1273 #else /* CONFIG_MMU */
1274 static long __get_user_pages_locked(struct task_struct *tsk,
1275 		struct mm_struct *mm, unsigned long start,
1276 		unsigned long nr_pages, struct page **pages,
1277 		struct vm_area_struct **vmas, int *locked,
1278 		unsigned int foll_flags)
1279 {
1280 	struct vm_area_struct *vma;
1281 	unsigned long vm_flags;
1282 	int i;
1283 
1284 	/* calculate required read or write permissions.
1285 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1286 	 */
1287 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1288 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1289 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1290 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1291 
1292 	for (i = 0; i < nr_pages; i++) {
1293 		vma = find_vma(mm, start);
1294 		if (!vma)
1295 			goto finish_or_fault;
1296 
1297 		/* protect what we can, including chardevs */
1298 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1299 		    !(vm_flags & vma->vm_flags))
1300 			goto finish_or_fault;
1301 
1302 		if (pages) {
1303 			pages[i] = virt_to_page(start);
1304 			if (pages[i])
1305 				get_page(pages[i]);
1306 		}
1307 		if (vmas)
1308 			vmas[i] = vma;
1309 		start = (start + PAGE_SIZE) & PAGE_MASK;
1310 	}
1311 
1312 	return i;
1313 
1314 finish_or_fault:
1315 	return i ? : -EFAULT;
1316 }
1317 #endif /* !CONFIG_MMU */
1318 
1319 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1320 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1321 {
1322 	long i;
1323 	struct vm_area_struct *vma_prev = NULL;
1324 
1325 	for (i = 0; i < nr_pages; i++) {
1326 		struct vm_area_struct *vma = vmas[i];
1327 
1328 		if (vma == vma_prev)
1329 			continue;
1330 
1331 		vma_prev = vma;
1332 
1333 		if (vma_is_fsdax(vma))
1334 			return true;
1335 	}
1336 	return false;
1337 }
1338 
1339 #ifdef CONFIG_CMA
1340 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1341 {
1342 	/*
1343 	 * We want to make sure we allocate the new page from the same node
1344 	 * as the source page.
1345 	 */
1346 	int nid = page_to_nid(page);
1347 	/*
1348 	 * Trying to allocate a page for migration. Ignore allocation
1349 	 * failure warnings. We don't force __GFP_THISNODE here because
1350 	 * this node here is the node where we have CMA reservation and
1351 	 * in some case these nodes will have really less non movable
1352 	 * allocation memory.
1353 	 */
1354 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1355 
1356 	if (PageHighMem(page))
1357 		gfp_mask |= __GFP_HIGHMEM;
1358 
1359 #ifdef CONFIG_HUGETLB_PAGE
1360 	if (PageHuge(page)) {
1361 		struct hstate *h = page_hstate(page);
1362 		/*
1363 		 * We don't want to dequeue from the pool because pool pages will
1364 		 * mostly be from the CMA region.
1365 		 */
1366 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1367 	}
1368 #endif
1369 	if (PageTransHuge(page)) {
1370 		struct page *thp;
1371 		/*
1372 		 * ignore allocation failure warnings
1373 		 */
1374 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1375 
1376 		/*
1377 		 * Remove the movable mask so that we don't allocate from
1378 		 * CMA area again.
1379 		 */
1380 		thp_gfpmask &= ~__GFP_MOVABLE;
1381 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1382 		if (!thp)
1383 			return NULL;
1384 		prep_transhuge_page(thp);
1385 		return thp;
1386 	}
1387 
1388 	return __alloc_pages_node(nid, gfp_mask, 0);
1389 }
1390 
1391 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1392 					struct mm_struct *mm,
1393 					unsigned long start,
1394 					unsigned long nr_pages,
1395 					struct page **pages,
1396 					struct vm_area_struct **vmas,
1397 					unsigned int gup_flags)
1398 {
1399 	unsigned long i;
1400 	unsigned long step;
1401 	bool drain_allow = true;
1402 	bool migrate_allow = true;
1403 	LIST_HEAD(cma_page_list);
1404 	long ret = nr_pages;
1405 
1406 check_again:
1407 	for (i = 0; i < nr_pages;) {
1408 
1409 		struct page *head = compound_head(pages[i]);
1410 
1411 		/*
1412 		 * gup may start from a tail page. Advance step by the left
1413 		 * part.
1414 		 */
1415 		step = compound_nr(head) - (pages[i] - head);
1416 		/*
1417 		 * If we get a page from the CMA zone, since we are going to
1418 		 * be pinning these entries, we might as well move them out
1419 		 * of the CMA zone if possible.
1420 		 */
1421 		if (is_migrate_cma_page(head)) {
1422 			if (PageHuge(head))
1423 				isolate_huge_page(head, &cma_page_list);
1424 			else {
1425 				if (!PageLRU(head) && drain_allow) {
1426 					lru_add_drain_all();
1427 					drain_allow = false;
1428 				}
1429 
1430 				if (!isolate_lru_page(head)) {
1431 					list_add_tail(&head->lru, &cma_page_list);
1432 					mod_node_page_state(page_pgdat(head),
1433 							    NR_ISOLATED_ANON +
1434 							    page_is_file_cache(head),
1435 							    hpage_nr_pages(head));
1436 				}
1437 			}
1438 		}
1439 
1440 		i += step;
1441 	}
1442 
1443 	if (!list_empty(&cma_page_list)) {
1444 		/*
1445 		 * drop the above get_user_pages reference.
1446 		 */
1447 		for (i = 0; i < nr_pages; i++)
1448 			put_page(pages[i]);
1449 
1450 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1451 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1452 			/*
1453 			 * some of the pages failed migration. Do get_user_pages
1454 			 * without migration.
1455 			 */
1456 			migrate_allow = false;
1457 
1458 			if (!list_empty(&cma_page_list))
1459 				putback_movable_pages(&cma_page_list);
1460 		}
1461 		/*
1462 		 * We did migrate all the pages, Try to get the page references
1463 		 * again migrating any new CMA pages which we failed to isolate
1464 		 * earlier.
1465 		 */
1466 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1467 						   pages, vmas, NULL,
1468 						   gup_flags);
1469 
1470 		if ((ret > 0) && migrate_allow) {
1471 			nr_pages = ret;
1472 			drain_allow = true;
1473 			goto check_again;
1474 		}
1475 	}
1476 
1477 	return ret;
1478 }
1479 #else
1480 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1481 					struct mm_struct *mm,
1482 					unsigned long start,
1483 					unsigned long nr_pages,
1484 					struct page **pages,
1485 					struct vm_area_struct **vmas,
1486 					unsigned int gup_flags)
1487 {
1488 	return nr_pages;
1489 }
1490 #endif /* CONFIG_CMA */
1491 
1492 /*
1493  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1494  * allows us to process the FOLL_LONGTERM flag.
1495  */
1496 static long __gup_longterm_locked(struct task_struct *tsk,
1497 				  struct mm_struct *mm,
1498 				  unsigned long start,
1499 				  unsigned long nr_pages,
1500 				  struct page **pages,
1501 				  struct vm_area_struct **vmas,
1502 				  unsigned int gup_flags)
1503 {
1504 	struct vm_area_struct **vmas_tmp = vmas;
1505 	unsigned long flags = 0;
1506 	long rc, i;
1507 
1508 	if (gup_flags & FOLL_LONGTERM) {
1509 		if (!pages)
1510 			return -EINVAL;
1511 
1512 		if (!vmas_tmp) {
1513 			vmas_tmp = kcalloc(nr_pages,
1514 					   sizeof(struct vm_area_struct *),
1515 					   GFP_KERNEL);
1516 			if (!vmas_tmp)
1517 				return -ENOMEM;
1518 		}
1519 		flags = memalloc_nocma_save();
1520 	}
1521 
1522 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1523 				     vmas_tmp, NULL, gup_flags);
1524 
1525 	if (gup_flags & FOLL_LONGTERM) {
1526 		memalloc_nocma_restore(flags);
1527 		if (rc < 0)
1528 			goto out;
1529 
1530 		if (check_dax_vmas(vmas_tmp, rc)) {
1531 			for (i = 0; i < rc; i++)
1532 				put_page(pages[i]);
1533 			rc = -EOPNOTSUPP;
1534 			goto out;
1535 		}
1536 
1537 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1538 						 vmas_tmp, gup_flags);
1539 	}
1540 
1541 out:
1542 	if (vmas_tmp != vmas)
1543 		kfree(vmas_tmp);
1544 	return rc;
1545 }
1546 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1547 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1548 						  struct mm_struct *mm,
1549 						  unsigned long start,
1550 						  unsigned long nr_pages,
1551 						  struct page **pages,
1552 						  struct vm_area_struct **vmas,
1553 						  unsigned int flags)
1554 {
1555 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1556 				       NULL, flags);
1557 }
1558 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1559 
1560 /*
1561  * get_user_pages_remote() - pin user pages in memory
1562  * @tsk:	the task_struct to use for page fault accounting, or
1563  *		NULL if faults are not to be recorded.
1564  * @mm:		mm_struct of target mm
1565  * @start:	starting user address
1566  * @nr_pages:	number of pages from start to pin
1567  * @gup_flags:	flags modifying lookup behaviour
1568  * @pages:	array that receives pointers to the pages pinned.
1569  *		Should be at least nr_pages long. Or NULL, if caller
1570  *		only intends to ensure the pages are faulted in.
1571  * @vmas:	array of pointers to vmas corresponding to each page.
1572  *		Or NULL if the caller does not require them.
1573  * @locked:	pointer to lock flag indicating whether lock is held and
1574  *		subsequently whether VM_FAULT_RETRY functionality can be
1575  *		utilised. Lock must initially be held.
1576  *
1577  * Returns either number of pages pinned (which may be less than the
1578  * number requested), or an error. Details about the return value:
1579  *
1580  * -- If nr_pages is 0, returns 0.
1581  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1582  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1583  *    pages pinned. Again, this may be less than nr_pages.
1584  *
1585  * The caller is responsible for releasing returned @pages, via put_page().
1586  *
1587  * @vmas are valid only as long as mmap_sem is held.
1588  *
1589  * Must be called with mmap_sem held for read or write.
1590  *
1591  * get_user_pages walks a process's page tables and takes a reference to
1592  * each struct page that each user address corresponds to at a given
1593  * instant. That is, it takes the page that would be accessed if a user
1594  * thread accesses the given user virtual address at that instant.
1595  *
1596  * This does not guarantee that the page exists in the user mappings when
1597  * get_user_pages returns, and there may even be a completely different
1598  * page there in some cases (eg. if mmapped pagecache has been invalidated
1599  * and subsequently re faulted). However it does guarantee that the page
1600  * won't be freed completely. And mostly callers simply care that the page
1601  * contains data that was valid *at some point in time*. Typically, an IO
1602  * or similar operation cannot guarantee anything stronger anyway because
1603  * locks can't be held over the syscall boundary.
1604  *
1605  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1606  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1607  * be called after the page is finished with, and before put_page is called.
1608  *
1609  * get_user_pages is typically used for fewer-copy IO operations, to get a
1610  * handle on the memory by some means other than accesses via the user virtual
1611  * addresses. The pages may be submitted for DMA to devices or accessed via
1612  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1613  * use the correct cache flushing APIs.
1614  *
1615  * See also get_user_pages_fast, for performance critical applications.
1616  *
1617  * get_user_pages should be phased out in favor of
1618  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1619  * should use get_user_pages because it cannot pass
1620  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1621  */
1622 #ifdef CONFIG_MMU
1623 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1624 		unsigned long start, unsigned long nr_pages,
1625 		unsigned int gup_flags, struct page **pages,
1626 		struct vm_area_struct **vmas, int *locked)
1627 {
1628 	/*
1629 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1630 	 * never directly by the caller, so enforce that with an assertion:
1631 	 */
1632 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1633 		return -EINVAL;
1634 
1635 	/*
1636 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1637 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1638 	 * vmas. However, this only comes up if locked is set, and there are
1639 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1640 	 * allow what we can.
1641 	 */
1642 	if (gup_flags & FOLL_LONGTERM) {
1643 		if (WARN_ON_ONCE(locked))
1644 			return -EINVAL;
1645 		/*
1646 		 * This will check the vmas (even if our vmas arg is NULL)
1647 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1648 		 */
1649 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1650 					     vmas, gup_flags | FOLL_TOUCH |
1651 					     FOLL_REMOTE);
1652 	}
1653 
1654 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1655 				       locked,
1656 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1657 }
1658 EXPORT_SYMBOL(get_user_pages_remote);
1659 
1660 #else /* CONFIG_MMU */
1661 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1662 			   unsigned long start, unsigned long nr_pages,
1663 			   unsigned int gup_flags, struct page **pages,
1664 			   struct vm_area_struct **vmas, int *locked)
1665 {
1666 	return 0;
1667 }
1668 #endif /* !CONFIG_MMU */
1669 
1670 /*
1671  * This is the same as get_user_pages_remote(), just with a
1672  * less-flexible calling convention where we assume that the task
1673  * and mm being operated on are the current task's and don't allow
1674  * passing of a locked parameter.  We also obviously don't pass
1675  * FOLL_REMOTE in here.
1676  */
1677 long get_user_pages(unsigned long start, unsigned long nr_pages,
1678 		unsigned int gup_flags, struct page **pages,
1679 		struct vm_area_struct **vmas)
1680 {
1681 	/*
1682 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1683 	 * never directly by the caller, so enforce that with an assertion:
1684 	 */
1685 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1686 		return -EINVAL;
1687 
1688 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1689 				     pages, vmas, gup_flags | FOLL_TOUCH);
1690 }
1691 EXPORT_SYMBOL(get_user_pages);
1692 
1693 /*
1694  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1695  * paths better by using either get_user_pages_locked() or
1696  * get_user_pages_unlocked().
1697  *
1698  * get_user_pages_locked() is suitable to replace the form:
1699  *
1700  *      down_read(&mm->mmap_sem);
1701  *      do_something()
1702  *      get_user_pages(tsk, mm, ..., pages, NULL);
1703  *      up_read(&mm->mmap_sem);
1704  *
1705  *  to:
1706  *
1707  *      int locked = 1;
1708  *      down_read(&mm->mmap_sem);
1709  *      do_something()
1710  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1711  *      if (locked)
1712  *          up_read(&mm->mmap_sem);
1713  */
1714 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1715 			   unsigned int gup_flags, struct page **pages,
1716 			   int *locked)
1717 {
1718 	/*
1719 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1720 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1721 	 * vmas.  As there are no users of this flag in this call we simply
1722 	 * disallow this option for now.
1723 	 */
1724 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1725 		return -EINVAL;
1726 
1727 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1728 				       pages, NULL, locked,
1729 				       gup_flags | FOLL_TOUCH);
1730 }
1731 EXPORT_SYMBOL(get_user_pages_locked);
1732 
1733 /*
1734  * get_user_pages_unlocked() is suitable to replace the form:
1735  *
1736  *      down_read(&mm->mmap_sem);
1737  *      get_user_pages(tsk, mm, ..., pages, NULL);
1738  *      up_read(&mm->mmap_sem);
1739  *
1740  *  with:
1741  *
1742  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1743  *
1744  * It is functionally equivalent to get_user_pages_fast so
1745  * get_user_pages_fast should be used instead if specific gup_flags
1746  * (e.g. FOLL_FORCE) are not required.
1747  */
1748 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1749 			     struct page **pages, unsigned int gup_flags)
1750 {
1751 	struct mm_struct *mm = current->mm;
1752 	int locked = 1;
1753 	long ret;
1754 
1755 	/*
1756 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1757 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1758 	 * vmas.  As there are no users of this flag in this call we simply
1759 	 * disallow this option for now.
1760 	 */
1761 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1762 		return -EINVAL;
1763 
1764 	down_read(&mm->mmap_sem);
1765 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1766 				      &locked, gup_flags | FOLL_TOUCH);
1767 	if (locked)
1768 		up_read(&mm->mmap_sem);
1769 	return ret;
1770 }
1771 EXPORT_SYMBOL(get_user_pages_unlocked);
1772 
1773 /*
1774  * Fast GUP
1775  *
1776  * get_user_pages_fast attempts to pin user pages by walking the page
1777  * tables directly and avoids taking locks. Thus the walker needs to be
1778  * protected from page table pages being freed from under it, and should
1779  * block any THP splits.
1780  *
1781  * One way to achieve this is to have the walker disable interrupts, and
1782  * rely on IPIs from the TLB flushing code blocking before the page table
1783  * pages are freed. This is unsuitable for architectures that do not need
1784  * to broadcast an IPI when invalidating TLBs.
1785  *
1786  * Another way to achieve this is to batch up page table containing pages
1787  * belonging to more than one mm_user, then rcu_sched a callback to free those
1788  * pages. Disabling interrupts will allow the fast_gup walker to both block
1789  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1790  * (which is a relatively rare event). The code below adopts this strategy.
1791  *
1792  * Before activating this code, please be aware that the following assumptions
1793  * are currently made:
1794  *
1795  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1796  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1797  *
1798  *  *) ptes can be read atomically by the architecture.
1799  *
1800  *  *) access_ok is sufficient to validate userspace address ranges.
1801  *
1802  * The last two assumptions can be relaxed by the addition of helper functions.
1803  *
1804  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1805  */
1806 #ifdef CONFIG_HAVE_FAST_GUP
1807 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1808 /*
1809  * WARNING: only to be used in the get_user_pages_fast() implementation.
1810  *
1811  * With get_user_pages_fast(), we walk down the pagetables without taking any
1812  * locks.  For this we would like to load the pointers atomically, but sometimes
1813  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1814  * we do have is the guarantee that a PTE will only either go from not present
1815  * to present, or present to not present or both -- it will not switch to a
1816  * completely different present page without a TLB flush in between; something
1817  * that we are blocking by holding interrupts off.
1818  *
1819  * Setting ptes from not present to present goes:
1820  *
1821  *   ptep->pte_high = h;
1822  *   smp_wmb();
1823  *   ptep->pte_low = l;
1824  *
1825  * And present to not present goes:
1826  *
1827  *   ptep->pte_low = 0;
1828  *   smp_wmb();
1829  *   ptep->pte_high = 0;
1830  *
1831  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1832  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1833  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1834  * picked up a changed pte high. We might have gotten rubbish values from
1835  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1836  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1837  * operates on present ptes we're safe.
1838  */
1839 static inline pte_t gup_get_pte(pte_t *ptep)
1840 {
1841 	pte_t pte;
1842 
1843 	do {
1844 		pte.pte_low = ptep->pte_low;
1845 		smp_rmb();
1846 		pte.pte_high = ptep->pte_high;
1847 		smp_rmb();
1848 	} while (unlikely(pte.pte_low != ptep->pte_low));
1849 
1850 	return pte;
1851 }
1852 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1853 /*
1854  * We require that the PTE can be read atomically.
1855  */
1856 static inline pte_t gup_get_pte(pte_t *ptep)
1857 {
1858 	return READ_ONCE(*ptep);
1859 }
1860 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1861 
1862 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1863 					    struct page **pages)
1864 {
1865 	while ((*nr) - nr_start) {
1866 		struct page *page = pages[--(*nr)];
1867 
1868 		ClearPageReferenced(page);
1869 		put_page(page);
1870 	}
1871 }
1872 
1873 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1874 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1875 			 unsigned int flags, struct page **pages, int *nr)
1876 {
1877 	struct dev_pagemap *pgmap = NULL;
1878 	int nr_start = *nr, ret = 0;
1879 	pte_t *ptep, *ptem;
1880 
1881 	ptem = ptep = pte_offset_map(&pmd, addr);
1882 	do {
1883 		pte_t pte = gup_get_pte(ptep);
1884 		struct page *head, *page;
1885 
1886 		/*
1887 		 * Similar to the PMD case below, NUMA hinting must take slow
1888 		 * path using the pte_protnone check.
1889 		 */
1890 		if (pte_protnone(pte))
1891 			goto pte_unmap;
1892 
1893 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1894 			goto pte_unmap;
1895 
1896 		if (pte_devmap(pte)) {
1897 			if (unlikely(flags & FOLL_LONGTERM))
1898 				goto pte_unmap;
1899 
1900 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1901 			if (unlikely(!pgmap)) {
1902 				undo_dev_pagemap(nr, nr_start, pages);
1903 				goto pte_unmap;
1904 			}
1905 		} else if (pte_special(pte))
1906 			goto pte_unmap;
1907 
1908 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1909 		page = pte_page(pte);
1910 
1911 		head = try_get_compound_head(page, 1);
1912 		if (!head)
1913 			goto pte_unmap;
1914 
1915 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1916 			put_page(head);
1917 			goto pte_unmap;
1918 		}
1919 
1920 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1921 
1922 		SetPageReferenced(page);
1923 		pages[*nr] = page;
1924 		(*nr)++;
1925 
1926 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1927 
1928 	ret = 1;
1929 
1930 pte_unmap:
1931 	if (pgmap)
1932 		put_dev_pagemap(pgmap);
1933 	pte_unmap(ptem);
1934 	return ret;
1935 }
1936 #else
1937 
1938 /*
1939  * If we can't determine whether or not a pte is special, then fail immediately
1940  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1941  * to be special.
1942  *
1943  * For a futex to be placed on a THP tail page, get_futex_key requires a
1944  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1945  * useful to have gup_huge_pmd even if we can't operate on ptes.
1946  */
1947 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1948 			 unsigned int flags, struct page **pages, int *nr)
1949 {
1950 	return 0;
1951 }
1952 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1953 
1954 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1955 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1956 		unsigned long end, struct page **pages, int *nr)
1957 {
1958 	int nr_start = *nr;
1959 	struct dev_pagemap *pgmap = NULL;
1960 
1961 	do {
1962 		struct page *page = pfn_to_page(pfn);
1963 
1964 		pgmap = get_dev_pagemap(pfn, pgmap);
1965 		if (unlikely(!pgmap)) {
1966 			undo_dev_pagemap(nr, nr_start, pages);
1967 			return 0;
1968 		}
1969 		SetPageReferenced(page);
1970 		pages[*nr] = page;
1971 		get_page(page);
1972 		(*nr)++;
1973 		pfn++;
1974 	} while (addr += PAGE_SIZE, addr != end);
1975 
1976 	if (pgmap)
1977 		put_dev_pagemap(pgmap);
1978 	return 1;
1979 }
1980 
1981 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1982 		unsigned long end, struct page **pages, int *nr)
1983 {
1984 	unsigned long fault_pfn;
1985 	int nr_start = *nr;
1986 
1987 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1988 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1989 		return 0;
1990 
1991 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1992 		undo_dev_pagemap(nr, nr_start, pages);
1993 		return 0;
1994 	}
1995 	return 1;
1996 }
1997 
1998 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1999 		unsigned long end, struct page **pages, int *nr)
2000 {
2001 	unsigned long fault_pfn;
2002 	int nr_start = *nr;
2003 
2004 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2005 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
2006 		return 0;
2007 
2008 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2009 		undo_dev_pagemap(nr, nr_start, pages);
2010 		return 0;
2011 	}
2012 	return 1;
2013 }
2014 #else
2015 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2016 		unsigned long end, struct page **pages, int *nr)
2017 {
2018 	BUILD_BUG();
2019 	return 0;
2020 }
2021 
2022 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2023 		unsigned long end, struct page **pages, int *nr)
2024 {
2025 	BUILD_BUG();
2026 	return 0;
2027 }
2028 #endif
2029 
2030 static int record_subpages(struct page *page, unsigned long addr,
2031 			   unsigned long end, struct page **pages)
2032 {
2033 	int nr;
2034 
2035 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2036 		pages[nr++] = page++;
2037 
2038 	return nr;
2039 }
2040 
2041 static void put_compound_head(struct page *page, int refs)
2042 {
2043 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2044 	/*
2045 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2046 	 * ref needs a put_page().
2047 	 */
2048 	if (refs > 1)
2049 		page_ref_sub(page, refs - 1);
2050 	put_page(page);
2051 }
2052 
2053 #ifdef CONFIG_ARCH_HAS_HUGEPD
2054 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2055 				      unsigned long sz)
2056 {
2057 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2058 	return (__boundary - 1 < end - 1) ? __boundary : end;
2059 }
2060 
2061 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2062 		       unsigned long end, unsigned int flags,
2063 		       struct page **pages, int *nr)
2064 {
2065 	unsigned long pte_end;
2066 	struct page *head, *page;
2067 	pte_t pte;
2068 	int refs;
2069 
2070 	pte_end = (addr + sz) & ~(sz-1);
2071 	if (pte_end < end)
2072 		end = pte_end;
2073 
2074 	pte = READ_ONCE(*ptep);
2075 
2076 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2077 		return 0;
2078 
2079 	/* hugepages are never "special" */
2080 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2081 
2082 	head = pte_page(pte);
2083 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2084 	refs = record_subpages(page, addr, end, pages + *nr);
2085 
2086 	head = try_get_compound_head(head, refs);
2087 	if (!head)
2088 		return 0;
2089 
2090 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2091 		put_compound_head(head, refs);
2092 		return 0;
2093 	}
2094 
2095 	*nr += refs;
2096 	SetPageReferenced(head);
2097 	return 1;
2098 }
2099 
2100 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2101 		unsigned int pdshift, unsigned long end, unsigned int flags,
2102 		struct page **pages, int *nr)
2103 {
2104 	pte_t *ptep;
2105 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2106 	unsigned long next;
2107 
2108 	ptep = hugepte_offset(hugepd, addr, pdshift);
2109 	do {
2110 		next = hugepte_addr_end(addr, end, sz);
2111 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2112 			return 0;
2113 	} while (ptep++, addr = next, addr != end);
2114 
2115 	return 1;
2116 }
2117 #else
2118 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2119 		unsigned int pdshift, unsigned long end, unsigned int flags,
2120 		struct page **pages, int *nr)
2121 {
2122 	return 0;
2123 }
2124 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2125 
2126 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2127 			unsigned long end, unsigned int flags,
2128 			struct page **pages, int *nr)
2129 {
2130 	struct page *head, *page;
2131 	int refs;
2132 
2133 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2134 		return 0;
2135 
2136 	if (pmd_devmap(orig)) {
2137 		if (unlikely(flags & FOLL_LONGTERM))
2138 			return 0;
2139 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2140 	}
2141 
2142 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2143 	refs = record_subpages(page, addr, end, pages + *nr);
2144 
2145 	head = try_get_compound_head(pmd_page(orig), refs);
2146 	if (!head)
2147 		return 0;
2148 
2149 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2150 		put_compound_head(head, refs);
2151 		return 0;
2152 	}
2153 
2154 	*nr += refs;
2155 	SetPageReferenced(head);
2156 	return 1;
2157 }
2158 
2159 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2160 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2161 {
2162 	struct page *head, *page;
2163 	int refs;
2164 
2165 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2166 		return 0;
2167 
2168 	if (pud_devmap(orig)) {
2169 		if (unlikely(flags & FOLL_LONGTERM))
2170 			return 0;
2171 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2172 	}
2173 
2174 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2175 	refs = record_subpages(page, addr, end, pages + *nr);
2176 
2177 	head = try_get_compound_head(pud_page(orig), refs);
2178 	if (!head)
2179 		return 0;
2180 
2181 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2182 		put_compound_head(head, refs);
2183 		return 0;
2184 	}
2185 
2186 	*nr += refs;
2187 	SetPageReferenced(head);
2188 	return 1;
2189 }
2190 
2191 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2192 			unsigned long end, unsigned int flags,
2193 			struct page **pages, int *nr)
2194 {
2195 	int refs;
2196 	struct page *head, *page;
2197 
2198 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2199 		return 0;
2200 
2201 	BUILD_BUG_ON(pgd_devmap(orig));
2202 
2203 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2204 	refs = record_subpages(page, addr, end, pages + *nr);
2205 
2206 	head = try_get_compound_head(pgd_page(orig), refs);
2207 	if (!head)
2208 		return 0;
2209 
2210 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2211 		put_compound_head(head, refs);
2212 		return 0;
2213 	}
2214 
2215 	*nr += refs;
2216 	SetPageReferenced(head);
2217 	return 1;
2218 }
2219 
2220 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2221 		unsigned int flags, struct page **pages, int *nr)
2222 {
2223 	unsigned long next;
2224 	pmd_t *pmdp;
2225 
2226 	pmdp = pmd_offset(&pud, addr);
2227 	do {
2228 		pmd_t pmd = READ_ONCE(*pmdp);
2229 
2230 		next = pmd_addr_end(addr, end);
2231 		if (!pmd_present(pmd))
2232 			return 0;
2233 
2234 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2235 			     pmd_devmap(pmd))) {
2236 			/*
2237 			 * NUMA hinting faults need to be handled in the GUP
2238 			 * slowpath for accounting purposes and so that they
2239 			 * can be serialised against THP migration.
2240 			 */
2241 			if (pmd_protnone(pmd))
2242 				return 0;
2243 
2244 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2245 				pages, nr))
2246 				return 0;
2247 
2248 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2249 			/*
2250 			 * architecture have different format for hugetlbfs
2251 			 * pmd format and THP pmd format
2252 			 */
2253 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2254 					 PMD_SHIFT, next, flags, pages, nr))
2255 				return 0;
2256 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2257 			return 0;
2258 	} while (pmdp++, addr = next, addr != end);
2259 
2260 	return 1;
2261 }
2262 
2263 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2264 			 unsigned int flags, struct page **pages, int *nr)
2265 {
2266 	unsigned long next;
2267 	pud_t *pudp;
2268 
2269 	pudp = pud_offset(&p4d, addr);
2270 	do {
2271 		pud_t pud = READ_ONCE(*pudp);
2272 
2273 		next = pud_addr_end(addr, end);
2274 		if (unlikely(!pud_present(pud)))
2275 			return 0;
2276 		if (unlikely(pud_huge(pud))) {
2277 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2278 					  pages, nr))
2279 				return 0;
2280 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2281 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2282 					 PUD_SHIFT, next, flags, pages, nr))
2283 				return 0;
2284 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2285 			return 0;
2286 	} while (pudp++, addr = next, addr != end);
2287 
2288 	return 1;
2289 }
2290 
2291 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2292 			 unsigned int flags, struct page **pages, int *nr)
2293 {
2294 	unsigned long next;
2295 	p4d_t *p4dp;
2296 
2297 	p4dp = p4d_offset(&pgd, addr);
2298 	do {
2299 		p4d_t p4d = READ_ONCE(*p4dp);
2300 
2301 		next = p4d_addr_end(addr, end);
2302 		if (p4d_none(p4d))
2303 			return 0;
2304 		BUILD_BUG_ON(p4d_huge(p4d));
2305 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2306 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2307 					 P4D_SHIFT, next, flags, pages, nr))
2308 				return 0;
2309 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2310 			return 0;
2311 	} while (p4dp++, addr = next, addr != end);
2312 
2313 	return 1;
2314 }
2315 
2316 static void gup_pgd_range(unsigned long addr, unsigned long end,
2317 		unsigned int flags, struct page **pages, int *nr)
2318 {
2319 	unsigned long next;
2320 	pgd_t *pgdp;
2321 
2322 	pgdp = pgd_offset(current->mm, addr);
2323 	do {
2324 		pgd_t pgd = READ_ONCE(*pgdp);
2325 
2326 		next = pgd_addr_end(addr, end);
2327 		if (pgd_none(pgd))
2328 			return;
2329 		if (unlikely(pgd_huge(pgd))) {
2330 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2331 					  pages, nr))
2332 				return;
2333 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2334 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2335 					 PGDIR_SHIFT, next, flags, pages, nr))
2336 				return;
2337 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2338 			return;
2339 	} while (pgdp++, addr = next, addr != end);
2340 }
2341 #else
2342 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2343 		unsigned int flags, struct page **pages, int *nr)
2344 {
2345 }
2346 #endif /* CONFIG_HAVE_FAST_GUP */
2347 
2348 #ifndef gup_fast_permitted
2349 /*
2350  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2351  * we need to fall back to the slow version:
2352  */
2353 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2354 {
2355 	return true;
2356 }
2357 #endif
2358 
2359 /*
2360  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2361  * the regular GUP.
2362  * Note a difference with get_user_pages_fast: this always returns the
2363  * number of pages pinned, 0 if no pages were pinned.
2364  *
2365  * If the architecture does not support this function, simply return with no
2366  * pages pinned.
2367  */
2368 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2369 			  struct page **pages)
2370 {
2371 	unsigned long len, end;
2372 	unsigned long flags;
2373 	int nr = 0;
2374 
2375 	start = untagged_addr(start) & PAGE_MASK;
2376 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2377 	end = start + len;
2378 
2379 	if (end <= start)
2380 		return 0;
2381 	if (unlikely(!access_ok((void __user *)start, len)))
2382 		return 0;
2383 
2384 	/*
2385 	 * Disable interrupts.  We use the nested form as we can already have
2386 	 * interrupts disabled by get_futex_key.
2387 	 *
2388 	 * With interrupts disabled, we block page table pages from being
2389 	 * freed from under us. See struct mmu_table_batch comments in
2390 	 * include/asm-generic/tlb.h for more details.
2391 	 *
2392 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2393 	 * block IPIs that come from THPs splitting.
2394 	 */
2395 
2396 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2397 	    gup_fast_permitted(start, end)) {
2398 		local_irq_save(flags);
2399 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2400 		local_irq_restore(flags);
2401 	}
2402 
2403 	return nr;
2404 }
2405 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2406 
2407 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2408 				   unsigned int gup_flags, struct page **pages)
2409 {
2410 	int ret;
2411 
2412 	/*
2413 	 * FIXME: FOLL_LONGTERM does not work with
2414 	 * get_user_pages_unlocked() (see comments in that function)
2415 	 */
2416 	if (gup_flags & FOLL_LONGTERM) {
2417 		down_read(&current->mm->mmap_sem);
2418 		ret = __gup_longterm_locked(current, current->mm,
2419 					    start, nr_pages,
2420 					    pages, NULL, gup_flags);
2421 		up_read(&current->mm->mmap_sem);
2422 	} else {
2423 		ret = get_user_pages_unlocked(start, nr_pages,
2424 					      pages, gup_flags);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2431 					unsigned int gup_flags,
2432 					struct page **pages)
2433 {
2434 	unsigned long addr, len, end;
2435 	int nr = 0, ret = 0;
2436 
2437 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2438 				       FOLL_FORCE | FOLL_PIN)))
2439 		return -EINVAL;
2440 
2441 	start = untagged_addr(start) & PAGE_MASK;
2442 	addr = start;
2443 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2444 	end = start + len;
2445 
2446 	if (end <= start)
2447 		return 0;
2448 	if (unlikely(!access_ok((void __user *)start, len)))
2449 		return -EFAULT;
2450 
2451 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2452 	    gup_fast_permitted(start, end)) {
2453 		local_irq_disable();
2454 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2455 		local_irq_enable();
2456 		ret = nr;
2457 	}
2458 
2459 	if (nr < nr_pages) {
2460 		/* Try to get the remaining pages with get_user_pages */
2461 		start += nr << PAGE_SHIFT;
2462 		pages += nr;
2463 
2464 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2465 					      gup_flags, pages);
2466 
2467 		/* Have to be a bit careful with return values */
2468 		if (nr > 0) {
2469 			if (ret < 0)
2470 				ret = nr;
2471 			else
2472 				ret += nr;
2473 		}
2474 	}
2475 
2476 	return ret;
2477 }
2478 
2479 /**
2480  * get_user_pages_fast() - pin user pages in memory
2481  * @start:	starting user address
2482  * @nr_pages:	number of pages from start to pin
2483  * @gup_flags:	flags modifying pin behaviour
2484  * @pages:	array that receives pointers to the pages pinned.
2485  *		Should be at least nr_pages long.
2486  *
2487  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2488  * If not successful, it will fall back to taking the lock and
2489  * calling get_user_pages().
2490  *
2491  * Returns number of pages pinned. This may be fewer than the number requested.
2492  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2493  * -errno.
2494  */
2495 int get_user_pages_fast(unsigned long start, int nr_pages,
2496 			unsigned int gup_flags, struct page **pages)
2497 {
2498 	/*
2499 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2500 	 * never directly by the caller, so enforce that:
2501 	 */
2502 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2503 		return -EINVAL;
2504 
2505 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2506 }
2507 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2508 
2509 /**
2510  * pin_user_pages_fast() - pin user pages in memory without taking locks
2511  *
2512  * For now, this is a placeholder function, until various call sites are
2513  * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2514  * this is identical to get_user_pages_fast().
2515  *
2516  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2517  * is NOT intended for Case 2 (RDMA: long-term pins).
2518  */
2519 int pin_user_pages_fast(unsigned long start, int nr_pages,
2520 			unsigned int gup_flags, struct page **pages)
2521 {
2522 	/*
2523 	 * This is a placeholder, until the pin functionality is activated.
2524 	 * Until then, just behave like the corresponding get_user_pages*()
2525 	 * routine.
2526 	 */
2527 	return get_user_pages_fast(start, nr_pages, gup_flags, pages);
2528 }
2529 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2530 
2531 /**
2532  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2533  *
2534  * For now, this is a placeholder function, until various call sites are
2535  * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2536  * this is identical to get_user_pages_remote().
2537  *
2538  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2539  * is NOT intended for Case 2 (RDMA: long-term pins).
2540  */
2541 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2542 			   unsigned long start, unsigned long nr_pages,
2543 			   unsigned int gup_flags, struct page **pages,
2544 			   struct vm_area_struct **vmas, int *locked)
2545 {
2546 	/*
2547 	 * This is a placeholder, until the pin functionality is activated.
2548 	 * Until then, just behave like the corresponding get_user_pages*()
2549 	 * routine.
2550 	 */
2551 	return get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, pages,
2552 				     vmas, locked);
2553 }
2554 EXPORT_SYMBOL(pin_user_pages_remote);
2555 
2556 /**
2557  * pin_user_pages() - pin user pages in memory for use by other devices
2558  *
2559  * For now, this is a placeholder function, until various call sites are
2560  * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2561  * this is identical to get_user_pages().
2562  *
2563  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2564  * is NOT intended for Case 2 (RDMA: long-term pins).
2565  */
2566 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2567 		    unsigned int gup_flags, struct page **pages,
2568 		    struct vm_area_struct **vmas)
2569 {
2570 	/*
2571 	 * This is a placeholder, until the pin functionality is activated.
2572 	 * Until then, just behave like the corresponding get_user_pages*()
2573 	 * routine.
2574 	 */
2575 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
2576 }
2577 EXPORT_SYMBOL(pin_user_pages);
2578