xref: /openbmc/linux/mm/gup.c (revision 09b35b41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 /**
33  * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
34  * @pages:  array of pages to be maybe marked dirty, and definitely released.
35  * @npages: number of pages in the @pages array.
36  * @make_dirty: whether to mark the pages dirty
37  *
38  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
39  * variants called on that page.
40  *
41  * For each page in the @pages array, make that page (or its head page, if a
42  * compound page) dirty, if @make_dirty is true, and if the page was previously
43  * listed as clean. In any case, releases all pages using put_user_page(),
44  * possibly via put_user_pages(), for the non-dirty case.
45  *
46  * Please see the put_user_page() documentation for details.
47  *
48  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
49  * required, then the caller should a) verify that this is really correct,
50  * because _lock() is usually required, and b) hand code it:
51  * set_page_dirty_lock(), put_user_page().
52  *
53  */
54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
55 			       bool make_dirty)
56 {
57 	unsigned long index;
58 
59 	/*
60 	 * TODO: this can be optimized for huge pages: if a series of pages is
61 	 * physically contiguous and part of the same compound page, then a
62 	 * single operation to the head page should suffice.
63 	 */
64 
65 	if (!make_dirty) {
66 		put_user_pages(pages, npages);
67 		return;
68 	}
69 
70 	for (index = 0; index < npages; index++) {
71 		struct page *page = compound_head(pages[index]);
72 		/*
73 		 * Checking PageDirty at this point may race with
74 		 * clear_page_dirty_for_io(), but that's OK. Two key
75 		 * cases:
76 		 *
77 		 * 1) This code sees the page as already dirty, so it
78 		 * skips the call to set_page_dirty(). That could happen
79 		 * because clear_page_dirty_for_io() called
80 		 * page_mkclean(), followed by set_page_dirty().
81 		 * However, now the page is going to get written back,
82 		 * which meets the original intention of setting it
83 		 * dirty, so all is well: clear_page_dirty_for_io() goes
84 		 * on to call TestClearPageDirty(), and write the page
85 		 * back.
86 		 *
87 		 * 2) This code sees the page as clean, so it calls
88 		 * set_page_dirty(). The page stays dirty, despite being
89 		 * written back, so it gets written back again in the
90 		 * next writeback cycle. This is harmless.
91 		 */
92 		if (!PageDirty(page))
93 			set_page_dirty_lock(page);
94 		put_user_page(page);
95 	}
96 }
97 EXPORT_SYMBOL(put_user_pages_dirty_lock);
98 
99 /**
100  * put_user_pages() - release an array of gup-pinned pages.
101  * @pages:  array of pages to be marked dirty and released.
102  * @npages: number of pages in the @pages array.
103  *
104  * For each page in the @pages array, release the page using put_user_page().
105  *
106  * Please see the put_user_page() documentation for details.
107  */
108 void put_user_pages(struct page **pages, unsigned long npages)
109 {
110 	unsigned long index;
111 
112 	/*
113 	 * TODO: this can be optimized for huge pages: if a series of pages is
114 	 * physically contiguous and part of the same compound page, then a
115 	 * single operation to the head page should suffice.
116 	 */
117 	for (index = 0; index < npages; index++)
118 		put_user_page(pages[index]);
119 }
120 EXPORT_SYMBOL(put_user_pages);
121 
122 #ifdef CONFIG_MMU
123 static struct page *no_page_table(struct vm_area_struct *vma,
124 		unsigned int flags)
125 {
126 	/*
127 	 * When core dumping an enormous anonymous area that nobody
128 	 * has touched so far, we don't want to allocate unnecessary pages or
129 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
130 	 * then get_dump_page() will return NULL to leave a hole in the dump.
131 	 * But we can only make this optimization where a hole would surely
132 	 * be zero-filled if handle_mm_fault() actually did handle it.
133 	 */
134 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
135 		return ERR_PTR(-EFAULT);
136 	return NULL;
137 }
138 
139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
140 		pte_t *pte, unsigned int flags)
141 {
142 	/* No page to get reference */
143 	if (flags & FOLL_GET)
144 		return -EFAULT;
145 
146 	if (flags & FOLL_TOUCH) {
147 		pte_t entry = *pte;
148 
149 		if (flags & FOLL_WRITE)
150 			entry = pte_mkdirty(entry);
151 		entry = pte_mkyoung(entry);
152 
153 		if (!pte_same(*pte, entry)) {
154 			set_pte_at(vma->vm_mm, address, pte, entry);
155 			update_mmu_cache(vma, address, pte);
156 		}
157 	}
158 
159 	/* Proper page table entry exists, but no corresponding struct page */
160 	return -EEXIST;
161 }
162 
163 /*
164  * FOLL_FORCE can write to even unwritable pte's, but only
165  * after we've gone through a COW cycle and they are dirty.
166  */
167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
168 {
169 	return pte_write(pte) ||
170 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
171 }
172 
173 static struct page *follow_page_pte(struct vm_area_struct *vma,
174 		unsigned long address, pmd_t *pmd, unsigned int flags,
175 		struct dev_pagemap **pgmap)
176 {
177 	struct mm_struct *mm = vma->vm_mm;
178 	struct page *page;
179 	spinlock_t *ptl;
180 	pte_t *ptep, pte;
181 
182 retry:
183 	if (unlikely(pmd_bad(*pmd)))
184 		return no_page_table(vma, flags);
185 
186 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
187 	pte = *ptep;
188 	if (!pte_present(pte)) {
189 		swp_entry_t entry;
190 		/*
191 		 * KSM's break_ksm() relies upon recognizing a ksm page
192 		 * even while it is being migrated, so for that case we
193 		 * need migration_entry_wait().
194 		 */
195 		if (likely(!(flags & FOLL_MIGRATION)))
196 			goto no_page;
197 		if (pte_none(pte))
198 			goto no_page;
199 		entry = pte_to_swp_entry(pte);
200 		if (!is_migration_entry(entry))
201 			goto no_page;
202 		pte_unmap_unlock(ptep, ptl);
203 		migration_entry_wait(mm, pmd, address);
204 		goto retry;
205 	}
206 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
207 		goto no_page;
208 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
209 		pte_unmap_unlock(ptep, ptl);
210 		return NULL;
211 	}
212 
213 	page = vm_normal_page(vma, address, pte);
214 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
215 		/*
216 		 * Only return device mapping pages in the FOLL_GET case since
217 		 * they are only valid while holding the pgmap reference.
218 		 */
219 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
220 		if (*pgmap)
221 			page = pte_page(pte);
222 		else
223 			goto no_page;
224 	} else if (unlikely(!page)) {
225 		if (flags & FOLL_DUMP) {
226 			/* Avoid special (like zero) pages in core dumps */
227 			page = ERR_PTR(-EFAULT);
228 			goto out;
229 		}
230 
231 		if (is_zero_pfn(pte_pfn(pte))) {
232 			page = pte_page(pte);
233 		} else {
234 			int ret;
235 
236 			ret = follow_pfn_pte(vma, address, ptep, flags);
237 			page = ERR_PTR(ret);
238 			goto out;
239 		}
240 	}
241 
242 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
243 		int ret;
244 		get_page(page);
245 		pte_unmap_unlock(ptep, ptl);
246 		lock_page(page);
247 		ret = split_huge_page(page);
248 		unlock_page(page);
249 		put_page(page);
250 		if (ret)
251 			return ERR_PTR(ret);
252 		goto retry;
253 	}
254 
255 	if (flags & FOLL_GET) {
256 		if (unlikely(!try_get_page(page))) {
257 			page = ERR_PTR(-ENOMEM);
258 			goto out;
259 		}
260 	}
261 	if (flags & FOLL_TOUCH) {
262 		if ((flags & FOLL_WRITE) &&
263 		    !pte_dirty(pte) && !PageDirty(page))
264 			set_page_dirty(page);
265 		/*
266 		 * pte_mkyoung() would be more correct here, but atomic care
267 		 * is needed to avoid losing the dirty bit: it is easier to use
268 		 * mark_page_accessed().
269 		 */
270 		mark_page_accessed(page);
271 	}
272 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
273 		/* Do not mlock pte-mapped THP */
274 		if (PageTransCompound(page))
275 			goto out;
276 
277 		/*
278 		 * The preliminary mapping check is mainly to avoid the
279 		 * pointless overhead of lock_page on the ZERO_PAGE
280 		 * which might bounce very badly if there is contention.
281 		 *
282 		 * If the page is already locked, we don't need to
283 		 * handle it now - vmscan will handle it later if and
284 		 * when it attempts to reclaim the page.
285 		 */
286 		if (page->mapping && trylock_page(page)) {
287 			lru_add_drain();  /* push cached pages to LRU */
288 			/*
289 			 * Because we lock page here, and migration is
290 			 * blocked by the pte's page reference, and we
291 			 * know the page is still mapped, we don't even
292 			 * need to check for file-cache page truncation.
293 			 */
294 			mlock_vma_page(page);
295 			unlock_page(page);
296 		}
297 	}
298 out:
299 	pte_unmap_unlock(ptep, ptl);
300 	return page;
301 no_page:
302 	pte_unmap_unlock(ptep, ptl);
303 	if (!pte_none(pte))
304 		return NULL;
305 	return no_page_table(vma, flags);
306 }
307 
308 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
309 				    unsigned long address, pud_t *pudp,
310 				    unsigned int flags,
311 				    struct follow_page_context *ctx)
312 {
313 	pmd_t *pmd, pmdval;
314 	spinlock_t *ptl;
315 	struct page *page;
316 	struct mm_struct *mm = vma->vm_mm;
317 
318 	pmd = pmd_offset(pudp, address);
319 	/*
320 	 * The READ_ONCE() will stabilize the pmdval in a register or
321 	 * on the stack so that it will stop changing under the code.
322 	 */
323 	pmdval = READ_ONCE(*pmd);
324 	if (pmd_none(pmdval))
325 		return no_page_table(vma, flags);
326 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
327 		page = follow_huge_pmd(mm, address, pmd, flags);
328 		if (page)
329 			return page;
330 		return no_page_table(vma, flags);
331 	}
332 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
333 		page = follow_huge_pd(vma, address,
334 				      __hugepd(pmd_val(pmdval)), flags,
335 				      PMD_SHIFT);
336 		if (page)
337 			return page;
338 		return no_page_table(vma, flags);
339 	}
340 retry:
341 	if (!pmd_present(pmdval)) {
342 		if (likely(!(flags & FOLL_MIGRATION)))
343 			return no_page_table(vma, flags);
344 		VM_BUG_ON(thp_migration_supported() &&
345 				  !is_pmd_migration_entry(pmdval));
346 		if (is_pmd_migration_entry(pmdval))
347 			pmd_migration_entry_wait(mm, pmd);
348 		pmdval = READ_ONCE(*pmd);
349 		/*
350 		 * MADV_DONTNEED may convert the pmd to null because
351 		 * mmap_sem is held in read mode
352 		 */
353 		if (pmd_none(pmdval))
354 			return no_page_table(vma, flags);
355 		goto retry;
356 	}
357 	if (pmd_devmap(pmdval)) {
358 		ptl = pmd_lock(mm, pmd);
359 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
360 		spin_unlock(ptl);
361 		if (page)
362 			return page;
363 	}
364 	if (likely(!pmd_trans_huge(pmdval)))
365 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
366 
367 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
368 		return no_page_table(vma, flags);
369 
370 retry_locked:
371 	ptl = pmd_lock(mm, pmd);
372 	if (unlikely(pmd_none(*pmd))) {
373 		spin_unlock(ptl);
374 		return no_page_table(vma, flags);
375 	}
376 	if (unlikely(!pmd_present(*pmd))) {
377 		spin_unlock(ptl);
378 		if (likely(!(flags & FOLL_MIGRATION)))
379 			return no_page_table(vma, flags);
380 		pmd_migration_entry_wait(mm, pmd);
381 		goto retry_locked;
382 	}
383 	if (unlikely(!pmd_trans_huge(*pmd))) {
384 		spin_unlock(ptl);
385 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
386 	}
387 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
388 		int ret;
389 		page = pmd_page(*pmd);
390 		if (is_huge_zero_page(page)) {
391 			spin_unlock(ptl);
392 			ret = 0;
393 			split_huge_pmd(vma, pmd, address);
394 			if (pmd_trans_unstable(pmd))
395 				ret = -EBUSY;
396 		} else if (flags & FOLL_SPLIT) {
397 			if (unlikely(!try_get_page(page))) {
398 				spin_unlock(ptl);
399 				return ERR_PTR(-ENOMEM);
400 			}
401 			spin_unlock(ptl);
402 			lock_page(page);
403 			ret = split_huge_page(page);
404 			unlock_page(page);
405 			put_page(page);
406 			if (pmd_none(*pmd))
407 				return no_page_table(vma, flags);
408 		} else {  /* flags & FOLL_SPLIT_PMD */
409 			spin_unlock(ptl);
410 			split_huge_pmd(vma, pmd, address);
411 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
412 		}
413 
414 		return ret ? ERR_PTR(ret) :
415 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
416 	}
417 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
418 	spin_unlock(ptl);
419 	ctx->page_mask = HPAGE_PMD_NR - 1;
420 	return page;
421 }
422 
423 static struct page *follow_pud_mask(struct vm_area_struct *vma,
424 				    unsigned long address, p4d_t *p4dp,
425 				    unsigned int flags,
426 				    struct follow_page_context *ctx)
427 {
428 	pud_t *pud;
429 	spinlock_t *ptl;
430 	struct page *page;
431 	struct mm_struct *mm = vma->vm_mm;
432 
433 	pud = pud_offset(p4dp, address);
434 	if (pud_none(*pud))
435 		return no_page_table(vma, flags);
436 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
437 		page = follow_huge_pud(mm, address, pud, flags);
438 		if (page)
439 			return page;
440 		return no_page_table(vma, flags);
441 	}
442 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
443 		page = follow_huge_pd(vma, address,
444 				      __hugepd(pud_val(*pud)), flags,
445 				      PUD_SHIFT);
446 		if (page)
447 			return page;
448 		return no_page_table(vma, flags);
449 	}
450 	if (pud_devmap(*pud)) {
451 		ptl = pud_lock(mm, pud);
452 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
453 		spin_unlock(ptl);
454 		if (page)
455 			return page;
456 	}
457 	if (unlikely(pud_bad(*pud)))
458 		return no_page_table(vma, flags);
459 
460 	return follow_pmd_mask(vma, address, pud, flags, ctx);
461 }
462 
463 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
464 				    unsigned long address, pgd_t *pgdp,
465 				    unsigned int flags,
466 				    struct follow_page_context *ctx)
467 {
468 	p4d_t *p4d;
469 	struct page *page;
470 
471 	p4d = p4d_offset(pgdp, address);
472 	if (p4d_none(*p4d))
473 		return no_page_table(vma, flags);
474 	BUILD_BUG_ON(p4d_huge(*p4d));
475 	if (unlikely(p4d_bad(*p4d)))
476 		return no_page_table(vma, flags);
477 
478 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
479 		page = follow_huge_pd(vma, address,
480 				      __hugepd(p4d_val(*p4d)), flags,
481 				      P4D_SHIFT);
482 		if (page)
483 			return page;
484 		return no_page_table(vma, flags);
485 	}
486 	return follow_pud_mask(vma, address, p4d, flags, ctx);
487 }
488 
489 /**
490  * follow_page_mask - look up a page descriptor from a user-virtual address
491  * @vma: vm_area_struct mapping @address
492  * @address: virtual address to look up
493  * @flags: flags modifying lookup behaviour
494  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
495  *       pointer to output page_mask
496  *
497  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
498  *
499  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
500  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
501  *
502  * On output, the @ctx->page_mask is set according to the size of the page.
503  *
504  * Return: the mapped (struct page *), %NULL if no mapping exists, or
505  * an error pointer if there is a mapping to something not represented
506  * by a page descriptor (see also vm_normal_page()).
507  */
508 static struct page *follow_page_mask(struct vm_area_struct *vma,
509 			      unsigned long address, unsigned int flags,
510 			      struct follow_page_context *ctx)
511 {
512 	pgd_t *pgd;
513 	struct page *page;
514 	struct mm_struct *mm = vma->vm_mm;
515 
516 	ctx->page_mask = 0;
517 
518 	/* make this handle hugepd */
519 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
520 	if (!IS_ERR(page)) {
521 		BUG_ON(flags & FOLL_GET);
522 		return page;
523 	}
524 
525 	pgd = pgd_offset(mm, address);
526 
527 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
528 		return no_page_table(vma, flags);
529 
530 	if (pgd_huge(*pgd)) {
531 		page = follow_huge_pgd(mm, address, pgd, flags);
532 		if (page)
533 			return page;
534 		return no_page_table(vma, flags);
535 	}
536 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
537 		page = follow_huge_pd(vma, address,
538 				      __hugepd(pgd_val(*pgd)), flags,
539 				      PGDIR_SHIFT);
540 		if (page)
541 			return page;
542 		return no_page_table(vma, flags);
543 	}
544 
545 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
546 }
547 
548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
549 			 unsigned int foll_flags)
550 {
551 	struct follow_page_context ctx = { NULL };
552 	struct page *page;
553 
554 	page = follow_page_mask(vma, address, foll_flags, &ctx);
555 	if (ctx.pgmap)
556 		put_dev_pagemap(ctx.pgmap);
557 	return page;
558 }
559 
560 static int get_gate_page(struct mm_struct *mm, unsigned long address,
561 		unsigned int gup_flags, struct vm_area_struct **vma,
562 		struct page **page)
563 {
564 	pgd_t *pgd;
565 	p4d_t *p4d;
566 	pud_t *pud;
567 	pmd_t *pmd;
568 	pte_t *pte;
569 	int ret = -EFAULT;
570 
571 	/* user gate pages are read-only */
572 	if (gup_flags & FOLL_WRITE)
573 		return -EFAULT;
574 	if (address > TASK_SIZE)
575 		pgd = pgd_offset_k(address);
576 	else
577 		pgd = pgd_offset_gate(mm, address);
578 	if (pgd_none(*pgd))
579 		return -EFAULT;
580 	p4d = p4d_offset(pgd, address);
581 	if (p4d_none(*p4d))
582 		return -EFAULT;
583 	pud = pud_offset(p4d, address);
584 	if (pud_none(*pud))
585 		return -EFAULT;
586 	pmd = pmd_offset(pud, address);
587 	if (!pmd_present(*pmd))
588 		return -EFAULT;
589 	VM_BUG_ON(pmd_trans_huge(*pmd));
590 	pte = pte_offset_map(pmd, address);
591 	if (pte_none(*pte))
592 		goto unmap;
593 	*vma = get_gate_vma(mm);
594 	if (!page)
595 		goto out;
596 	*page = vm_normal_page(*vma, address, *pte);
597 	if (!*page) {
598 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
599 			goto unmap;
600 		*page = pte_page(*pte);
601 	}
602 	if (unlikely(!try_get_page(*page))) {
603 		ret = -ENOMEM;
604 		goto unmap;
605 	}
606 out:
607 	ret = 0;
608 unmap:
609 	pte_unmap(pte);
610 	return ret;
611 }
612 
613 /*
614  * mmap_sem must be held on entry.  If @nonblocking != NULL and
615  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
616  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
617  */
618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
619 		unsigned long address, unsigned int *flags, int *nonblocking)
620 {
621 	unsigned int fault_flags = 0;
622 	vm_fault_t ret;
623 
624 	/* mlock all present pages, but do not fault in new pages */
625 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
626 		return -ENOENT;
627 	if (*flags & FOLL_WRITE)
628 		fault_flags |= FAULT_FLAG_WRITE;
629 	if (*flags & FOLL_REMOTE)
630 		fault_flags |= FAULT_FLAG_REMOTE;
631 	if (nonblocking)
632 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
633 	if (*flags & FOLL_NOWAIT)
634 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
635 	if (*flags & FOLL_TRIED) {
636 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
637 		fault_flags |= FAULT_FLAG_TRIED;
638 	}
639 
640 	ret = handle_mm_fault(vma, address, fault_flags);
641 	if (ret & VM_FAULT_ERROR) {
642 		int err = vm_fault_to_errno(ret, *flags);
643 
644 		if (err)
645 			return err;
646 		BUG();
647 	}
648 
649 	if (tsk) {
650 		if (ret & VM_FAULT_MAJOR)
651 			tsk->maj_flt++;
652 		else
653 			tsk->min_flt++;
654 	}
655 
656 	if (ret & VM_FAULT_RETRY) {
657 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
658 			*nonblocking = 0;
659 		return -EBUSY;
660 	}
661 
662 	/*
663 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
664 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
665 	 * can thus safely do subsequent page lookups as if they were reads.
666 	 * But only do so when looping for pte_write is futile: in some cases
667 	 * userspace may also be wanting to write to the gotten user page,
668 	 * which a read fault here might prevent (a readonly page might get
669 	 * reCOWed by userspace write).
670 	 */
671 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
672 		*flags |= FOLL_COW;
673 	return 0;
674 }
675 
676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
677 {
678 	vm_flags_t vm_flags = vma->vm_flags;
679 	int write = (gup_flags & FOLL_WRITE);
680 	int foreign = (gup_flags & FOLL_REMOTE);
681 
682 	if (vm_flags & (VM_IO | VM_PFNMAP))
683 		return -EFAULT;
684 
685 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
686 		return -EFAULT;
687 
688 	if (write) {
689 		if (!(vm_flags & VM_WRITE)) {
690 			if (!(gup_flags & FOLL_FORCE))
691 				return -EFAULT;
692 			/*
693 			 * We used to let the write,force case do COW in a
694 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
695 			 * set a breakpoint in a read-only mapping of an
696 			 * executable, without corrupting the file (yet only
697 			 * when that file had been opened for writing!).
698 			 * Anon pages in shared mappings are surprising: now
699 			 * just reject it.
700 			 */
701 			if (!is_cow_mapping(vm_flags))
702 				return -EFAULT;
703 		}
704 	} else if (!(vm_flags & VM_READ)) {
705 		if (!(gup_flags & FOLL_FORCE))
706 			return -EFAULT;
707 		/*
708 		 * Is there actually any vma we can reach here which does not
709 		 * have VM_MAYREAD set?
710 		 */
711 		if (!(vm_flags & VM_MAYREAD))
712 			return -EFAULT;
713 	}
714 	/*
715 	 * gups are always data accesses, not instruction
716 	 * fetches, so execute=false here
717 	 */
718 	if (!arch_vma_access_permitted(vma, write, false, foreign))
719 		return -EFAULT;
720 	return 0;
721 }
722 
723 /**
724  * __get_user_pages() - pin user pages in memory
725  * @tsk:	task_struct of target task
726  * @mm:		mm_struct of target mm
727  * @start:	starting user address
728  * @nr_pages:	number of pages from start to pin
729  * @gup_flags:	flags modifying pin behaviour
730  * @pages:	array that receives pointers to the pages pinned.
731  *		Should be at least nr_pages long. Or NULL, if caller
732  *		only intends to ensure the pages are faulted in.
733  * @vmas:	array of pointers to vmas corresponding to each page.
734  *		Or NULL if the caller does not require them.
735  * @nonblocking: whether waiting for disk IO or mmap_sem contention
736  *
737  * Returns number of pages pinned. This may be fewer than the number
738  * requested. If nr_pages is 0 or negative, returns 0. If no pages
739  * were pinned, returns -errno. Each page returned must be released
740  * with a put_page() call when it is finished with. vmas will only
741  * remain valid while mmap_sem is held.
742  *
743  * Must be called with mmap_sem held.  It may be released.  See below.
744  *
745  * __get_user_pages walks a process's page tables and takes a reference to
746  * each struct page that each user address corresponds to at a given
747  * instant. That is, it takes the page that would be accessed if a user
748  * thread accesses the given user virtual address at that instant.
749  *
750  * This does not guarantee that the page exists in the user mappings when
751  * __get_user_pages returns, and there may even be a completely different
752  * page there in some cases (eg. if mmapped pagecache has been invalidated
753  * and subsequently re faulted). However it does guarantee that the page
754  * won't be freed completely. And mostly callers simply care that the page
755  * contains data that was valid *at some point in time*. Typically, an IO
756  * or similar operation cannot guarantee anything stronger anyway because
757  * locks can't be held over the syscall boundary.
758  *
759  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
760  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
761  * appropriate) must be called after the page is finished with, and
762  * before put_page is called.
763  *
764  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
765  * or mmap_sem contention, and if waiting is needed to pin all pages,
766  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
767  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
768  * this case.
769  *
770  * A caller using such a combination of @nonblocking and @gup_flags
771  * must therefore hold the mmap_sem for reading only, and recognize
772  * when it's been released.  Otherwise, it must be held for either
773  * reading or writing and will not be released.
774  *
775  * In most cases, get_user_pages or get_user_pages_fast should be used
776  * instead of __get_user_pages. __get_user_pages should be used only if
777  * you need some special @gup_flags.
778  */
779 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
780 		unsigned long start, unsigned long nr_pages,
781 		unsigned int gup_flags, struct page **pages,
782 		struct vm_area_struct **vmas, int *nonblocking)
783 {
784 	long ret = 0, i = 0;
785 	struct vm_area_struct *vma = NULL;
786 	struct follow_page_context ctx = { NULL };
787 
788 	if (!nr_pages)
789 		return 0;
790 
791 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
792 
793 	/*
794 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
795 	 * fault information is unrelated to the reference behaviour of a task
796 	 * using the address space
797 	 */
798 	if (!(gup_flags & FOLL_FORCE))
799 		gup_flags |= FOLL_NUMA;
800 
801 	do {
802 		struct page *page;
803 		unsigned int foll_flags = gup_flags;
804 		unsigned int page_increm;
805 
806 		/* first iteration or cross vma bound */
807 		if (!vma || start >= vma->vm_end) {
808 			vma = find_extend_vma(mm, start);
809 			if (!vma && in_gate_area(mm, start)) {
810 				ret = get_gate_page(mm, start & PAGE_MASK,
811 						gup_flags, &vma,
812 						pages ? &pages[i] : NULL);
813 				if (ret)
814 					goto out;
815 				ctx.page_mask = 0;
816 				goto next_page;
817 			}
818 
819 			if (!vma || check_vma_flags(vma, gup_flags)) {
820 				ret = -EFAULT;
821 				goto out;
822 			}
823 			if (is_vm_hugetlb_page(vma)) {
824 				i = follow_hugetlb_page(mm, vma, pages, vmas,
825 						&start, &nr_pages, i,
826 						gup_flags, nonblocking);
827 				continue;
828 			}
829 		}
830 retry:
831 		/*
832 		 * If we have a pending SIGKILL, don't keep faulting pages and
833 		 * potentially allocating memory.
834 		 */
835 		if (fatal_signal_pending(current)) {
836 			ret = -ERESTARTSYS;
837 			goto out;
838 		}
839 		cond_resched();
840 
841 		page = follow_page_mask(vma, start, foll_flags, &ctx);
842 		if (!page) {
843 			ret = faultin_page(tsk, vma, start, &foll_flags,
844 					nonblocking);
845 			switch (ret) {
846 			case 0:
847 				goto retry;
848 			case -EBUSY:
849 				ret = 0;
850 				/* FALLTHRU */
851 			case -EFAULT:
852 			case -ENOMEM:
853 			case -EHWPOISON:
854 				goto out;
855 			case -ENOENT:
856 				goto next_page;
857 			}
858 			BUG();
859 		} else if (PTR_ERR(page) == -EEXIST) {
860 			/*
861 			 * Proper page table entry exists, but no corresponding
862 			 * struct page.
863 			 */
864 			goto next_page;
865 		} else if (IS_ERR(page)) {
866 			ret = PTR_ERR(page);
867 			goto out;
868 		}
869 		if (pages) {
870 			pages[i] = page;
871 			flush_anon_page(vma, page, start);
872 			flush_dcache_page(page);
873 			ctx.page_mask = 0;
874 		}
875 next_page:
876 		if (vmas) {
877 			vmas[i] = vma;
878 			ctx.page_mask = 0;
879 		}
880 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
881 		if (page_increm > nr_pages)
882 			page_increm = nr_pages;
883 		i += page_increm;
884 		start += page_increm * PAGE_SIZE;
885 		nr_pages -= page_increm;
886 	} while (nr_pages);
887 out:
888 	if (ctx.pgmap)
889 		put_dev_pagemap(ctx.pgmap);
890 	return i ? i : ret;
891 }
892 
893 static bool vma_permits_fault(struct vm_area_struct *vma,
894 			      unsigned int fault_flags)
895 {
896 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
897 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
898 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
899 
900 	if (!(vm_flags & vma->vm_flags))
901 		return false;
902 
903 	/*
904 	 * The architecture might have a hardware protection
905 	 * mechanism other than read/write that can deny access.
906 	 *
907 	 * gup always represents data access, not instruction
908 	 * fetches, so execute=false here:
909 	 */
910 	if (!arch_vma_access_permitted(vma, write, false, foreign))
911 		return false;
912 
913 	return true;
914 }
915 
916 /*
917  * fixup_user_fault() - manually resolve a user page fault
918  * @tsk:	the task_struct to use for page fault accounting, or
919  *		NULL if faults are not to be recorded.
920  * @mm:		mm_struct of target mm
921  * @address:	user address
922  * @fault_flags:flags to pass down to handle_mm_fault()
923  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
924  *		does not allow retry
925  *
926  * This is meant to be called in the specific scenario where for locking reasons
927  * we try to access user memory in atomic context (within a pagefault_disable()
928  * section), this returns -EFAULT, and we want to resolve the user fault before
929  * trying again.
930  *
931  * Typically this is meant to be used by the futex code.
932  *
933  * The main difference with get_user_pages() is that this function will
934  * unconditionally call handle_mm_fault() which will in turn perform all the
935  * necessary SW fixup of the dirty and young bits in the PTE, while
936  * get_user_pages() only guarantees to update these in the struct page.
937  *
938  * This is important for some architectures where those bits also gate the
939  * access permission to the page because they are maintained in software.  On
940  * such architectures, gup() will not be enough to make a subsequent access
941  * succeed.
942  *
943  * This function will not return with an unlocked mmap_sem. So it has not the
944  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
945  */
946 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
947 		     unsigned long address, unsigned int fault_flags,
948 		     bool *unlocked)
949 {
950 	struct vm_area_struct *vma;
951 	vm_fault_t ret, major = 0;
952 
953 	if (unlocked)
954 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
955 
956 retry:
957 	vma = find_extend_vma(mm, address);
958 	if (!vma || address < vma->vm_start)
959 		return -EFAULT;
960 
961 	if (!vma_permits_fault(vma, fault_flags))
962 		return -EFAULT;
963 
964 	ret = handle_mm_fault(vma, address, fault_flags);
965 	major |= ret & VM_FAULT_MAJOR;
966 	if (ret & VM_FAULT_ERROR) {
967 		int err = vm_fault_to_errno(ret, 0);
968 
969 		if (err)
970 			return err;
971 		BUG();
972 	}
973 
974 	if (ret & VM_FAULT_RETRY) {
975 		down_read(&mm->mmap_sem);
976 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
977 			*unlocked = true;
978 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
979 			fault_flags |= FAULT_FLAG_TRIED;
980 			goto retry;
981 		}
982 	}
983 
984 	if (tsk) {
985 		if (major)
986 			tsk->maj_flt++;
987 		else
988 			tsk->min_flt++;
989 	}
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(fixup_user_fault);
993 
994 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
995 						struct mm_struct *mm,
996 						unsigned long start,
997 						unsigned long nr_pages,
998 						struct page **pages,
999 						struct vm_area_struct **vmas,
1000 						int *locked,
1001 						unsigned int flags)
1002 {
1003 	long ret, pages_done;
1004 	bool lock_dropped;
1005 
1006 	if (locked) {
1007 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1008 		BUG_ON(vmas);
1009 		/* check caller initialized locked */
1010 		BUG_ON(*locked != 1);
1011 	}
1012 
1013 	if (pages)
1014 		flags |= FOLL_GET;
1015 
1016 	pages_done = 0;
1017 	lock_dropped = false;
1018 	for (;;) {
1019 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1020 				       vmas, locked);
1021 		if (!locked)
1022 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1023 			return ret;
1024 
1025 		/* VM_FAULT_RETRY cannot return errors */
1026 		if (!*locked) {
1027 			BUG_ON(ret < 0);
1028 			BUG_ON(ret >= nr_pages);
1029 		}
1030 
1031 		if (ret > 0) {
1032 			nr_pages -= ret;
1033 			pages_done += ret;
1034 			if (!nr_pages)
1035 				break;
1036 		}
1037 		if (*locked) {
1038 			/*
1039 			 * VM_FAULT_RETRY didn't trigger or it was a
1040 			 * FOLL_NOWAIT.
1041 			 */
1042 			if (!pages_done)
1043 				pages_done = ret;
1044 			break;
1045 		}
1046 		/*
1047 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1048 		 * For the prefault case (!pages) we only update counts.
1049 		 */
1050 		if (likely(pages))
1051 			pages += ret;
1052 		start += ret << PAGE_SHIFT;
1053 
1054 		/*
1055 		 * Repeat on the address that fired VM_FAULT_RETRY
1056 		 * without FAULT_FLAG_ALLOW_RETRY but with
1057 		 * FAULT_FLAG_TRIED.
1058 		 */
1059 		*locked = 1;
1060 		lock_dropped = true;
1061 		down_read(&mm->mmap_sem);
1062 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1063 				       pages, NULL, NULL);
1064 		if (ret != 1) {
1065 			BUG_ON(ret > 1);
1066 			if (!pages_done)
1067 				pages_done = ret;
1068 			break;
1069 		}
1070 		nr_pages--;
1071 		pages_done++;
1072 		if (!nr_pages)
1073 			break;
1074 		if (likely(pages))
1075 			pages++;
1076 		start += PAGE_SIZE;
1077 	}
1078 	if (lock_dropped && *locked) {
1079 		/*
1080 		 * We must let the caller know we temporarily dropped the lock
1081 		 * and so the critical section protected by it was lost.
1082 		 */
1083 		up_read(&mm->mmap_sem);
1084 		*locked = 0;
1085 	}
1086 	return pages_done;
1087 }
1088 
1089 /*
1090  * get_user_pages_remote() - pin user pages in memory
1091  * @tsk:	the task_struct to use for page fault accounting, or
1092  *		NULL if faults are not to be recorded.
1093  * @mm:		mm_struct of target mm
1094  * @start:	starting user address
1095  * @nr_pages:	number of pages from start to pin
1096  * @gup_flags:	flags modifying lookup behaviour
1097  * @pages:	array that receives pointers to the pages pinned.
1098  *		Should be at least nr_pages long. Or NULL, if caller
1099  *		only intends to ensure the pages are faulted in.
1100  * @vmas:	array of pointers to vmas corresponding to each page.
1101  *		Or NULL if the caller does not require them.
1102  * @locked:	pointer to lock flag indicating whether lock is held and
1103  *		subsequently whether VM_FAULT_RETRY functionality can be
1104  *		utilised. Lock must initially be held.
1105  *
1106  * Returns number of pages pinned. This may be fewer than the number
1107  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1108  * were pinned, returns -errno. Each page returned must be released
1109  * with a put_page() call when it is finished with. vmas will only
1110  * remain valid while mmap_sem is held.
1111  *
1112  * Must be called with mmap_sem held for read or write.
1113  *
1114  * get_user_pages walks a process's page tables and takes a reference to
1115  * each struct page that each user address corresponds to at a given
1116  * instant. That is, it takes the page that would be accessed if a user
1117  * thread accesses the given user virtual address at that instant.
1118  *
1119  * This does not guarantee that the page exists in the user mappings when
1120  * get_user_pages returns, and there may even be a completely different
1121  * page there in some cases (eg. if mmapped pagecache has been invalidated
1122  * and subsequently re faulted). However it does guarantee that the page
1123  * won't be freed completely. And mostly callers simply care that the page
1124  * contains data that was valid *at some point in time*. Typically, an IO
1125  * or similar operation cannot guarantee anything stronger anyway because
1126  * locks can't be held over the syscall boundary.
1127  *
1128  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1129  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1130  * be called after the page is finished with, and before put_page is called.
1131  *
1132  * get_user_pages is typically used for fewer-copy IO operations, to get a
1133  * handle on the memory by some means other than accesses via the user virtual
1134  * addresses. The pages may be submitted for DMA to devices or accessed via
1135  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1136  * use the correct cache flushing APIs.
1137  *
1138  * See also get_user_pages_fast, for performance critical applications.
1139  *
1140  * get_user_pages should be phased out in favor of
1141  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1142  * should use get_user_pages because it cannot pass
1143  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1144  */
1145 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1146 		unsigned long start, unsigned long nr_pages,
1147 		unsigned int gup_flags, struct page **pages,
1148 		struct vm_area_struct **vmas, int *locked)
1149 {
1150 	/*
1151 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1152 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1153 	 * vmas.  As there are no users of this flag in this call we simply
1154 	 * disallow this option for now.
1155 	 */
1156 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1157 		return -EINVAL;
1158 
1159 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1160 				       locked,
1161 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1162 }
1163 EXPORT_SYMBOL(get_user_pages_remote);
1164 
1165 /**
1166  * populate_vma_page_range() -  populate a range of pages in the vma.
1167  * @vma:   target vma
1168  * @start: start address
1169  * @end:   end address
1170  * @nonblocking:
1171  *
1172  * This takes care of mlocking the pages too if VM_LOCKED is set.
1173  *
1174  * return 0 on success, negative error code on error.
1175  *
1176  * vma->vm_mm->mmap_sem must be held.
1177  *
1178  * If @nonblocking is NULL, it may be held for read or write and will
1179  * be unperturbed.
1180  *
1181  * If @nonblocking is non-NULL, it must held for read only and may be
1182  * released.  If it's released, *@nonblocking will be set to 0.
1183  */
1184 long populate_vma_page_range(struct vm_area_struct *vma,
1185 		unsigned long start, unsigned long end, int *nonblocking)
1186 {
1187 	struct mm_struct *mm = vma->vm_mm;
1188 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1189 	int gup_flags;
1190 
1191 	VM_BUG_ON(start & ~PAGE_MASK);
1192 	VM_BUG_ON(end   & ~PAGE_MASK);
1193 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1194 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1195 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1196 
1197 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1198 	if (vma->vm_flags & VM_LOCKONFAULT)
1199 		gup_flags &= ~FOLL_POPULATE;
1200 	/*
1201 	 * We want to touch writable mappings with a write fault in order
1202 	 * to break COW, except for shared mappings because these don't COW
1203 	 * and we would not want to dirty them for nothing.
1204 	 */
1205 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1206 		gup_flags |= FOLL_WRITE;
1207 
1208 	/*
1209 	 * We want mlock to succeed for regions that have any permissions
1210 	 * other than PROT_NONE.
1211 	 */
1212 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1213 		gup_flags |= FOLL_FORCE;
1214 
1215 	/*
1216 	 * We made sure addr is within a VMA, so the following will
1217 	 * not result in a stack expansion that recurses back here.
1218 	 */
1219 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1220 				NULL, NULL, nonblocking);
1221 }
1222 
1223 /*
1224  * __mm_populate - populate and/or mlock pages within a range of address space.
1225  *
1226  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1227  * flags. VMAs must be already marked with the desired vm_flags, and
1228  * mmap_sem must not be held.
1229  */
1230 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1231 {
1232 	struct mm_struct *mm = current->mm;
1233 	unsigned long end, nstart, nend;
1234 	struct vm_area_struct *vma = NULL;
1235 	int locked = 0;
1236 	long ret = 0;
1237 
1238 	end = start + len;
1239 
1240 	for (nstart = start; nstart < end; nstart = nend) {
1241 		/*
1242 		 * We want to fault in pages for [nstart; end) address range.
1243 		 * Find first corresponding VMA.
1244 		 */
1245 		if (!locked) {
1246 			locked = 1;
1247 			down_read(&mm->mmap_sem);
1248 			vma = find_vma(mm, nstart);
1249 		} else if (nstart >= vma->vm_end)
1250 			vma = vma->vm_next;
1251 		if (!vma || vma->vm_start >= end)
1252 			break;
1253 		/*
1254 		 * Set [nstart; nend) to intersection of desired address
1255 		 * range with the first VMA. Also, skip undesirable VMA types.
1256 		 */
1257 		nend = min(end, vma->vm_end);
1258 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1259 			continue;
1260 		if (nstart < vma->vm_start)
1261 			nstart = vma->vm_start;
1262 		/*
1263 		 * Now fault in a range of pages. populate_vma_page_range()
1264 		 * double checks the vma flags, so that it won't mlock pages
1265 		 * if the vma was already munlocked.
1266 		 */
1267 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1268 		if (ret < 0) {
1269 			if (ignore_errors) {
1270 				ret = 0;
1271 				continue;	/* continue at next VMA */
1272 			}
1273 			break;
1274 		}
1275 		nend = nstart + ret * PAGE_SIZE;
1276 		ret = 0;
1277 	}
1278 	if (locked)
1279 		up_read(&mm->mmap_sem);
1280 	return ret;	/* 0 or negative error code */
1281 }
1282 
1283 /**
1284  * get_dump_page() - pin user page in memory while writing it to core dump
1285  * @addr: user address
1286  *
1287  * Returns struct page pointer of user page pinned for dump,
1288  * to be freed afterwards by put_page().
1289  *
1290  * Returns NULL on any kind of failure - a hole must then be inserted into
1291  * the corefile, to preserve alignment with its headers; and also returns
1292  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1293  * allowing a hole to be left in the corefile to save diskspace.
1294  *
1295  * Called without mmap_sem, but after all other threads have been killed.
1296  */
1297 #ifdef CONFIG_ELF_CORE
1298 struct page *get_dump_page(unsigned long addr)
1299 {
1300 	struct vm_area_struct *vma;
1301 	struct page *page;
1302 
1303 	if (__get_user_pages(current, current->mm, addr, 1,
1304 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1305 			     NULL) < 1)
1306 		return NULL;
1307 	flush_cache_page(vma, addr, page_to_pfn(page));
1308 	return page;
1309 }
1310 #endif /* CONFIG_ELF_CORE */
1311 #else /* CONFIG_MMU */
1312 static long __get_user_pages_locked(struct task_struct *tsk,
1313 		struct mm_struct *mm, unsigned long start,
1314 		unsigned long nr_pages, struct page **pages,
1315 		struct vm_area_struct **vmas, int *locked,
1316 		unsigned int foll_flags)
1317 {
1318 	struct vm_area_struct *vma;
1319 	unsigned long vm_flags;
1320 	int i;
1321 
1322 	/* calculate required read or write permissions.
1323 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1324 	 */
1325 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1326 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1327 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1328 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1329 
1330 	for (i = 0; i < nr_pages; i++) {
1331 		vma = find_vma(mm, start);
1332 		if (!vma)
1333 			goto finish_or_fault;
1334 
1335 		/* protect what we can, including chardevs */
1336 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1337 		    !(vm_flags & vma->vm_flags))
1338 			goto finish_or_fault;
1339 
1340 		if (pages) {
1341 			pages[i] = virt_to_page(start);
1342 			if (pages[i])
1343 				get_page(pages[i]);
1344 		}
1345 		if (vmas)
1346 			vmas[i] = vma;
1347 		start = (start + PAGE_SIZE) & PAGE_MASK;
1348 	}
1349 
1350 	return i;
1351 
1352 finish_or_fault:
1353 	return i ? : -EFAULT;
1354 }
1355 #endif /* !CONFIG_MMU */
1356 
1357 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1358 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1359 {
1360 	long i;
1361 	struct vm_area_struct *vma_prev = NULL;
1362 
1363 	for (i = 0; i < nr_pages; i++) {
1364 		struct vm_area_struct *vma = vmas[i];
1365 
1366 		if (vma == vma_prev)
1367 			continue;
1368 
1369 		vma_prev = vma;
1370 
1371 		if (vma_is_fsdax(vma))
1372 			return true;
1373 	}
1374 	return false;
1375 }
1376 
1377 #ifdef CONFIG_CMA
1378 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1379 {
1380 	/*
1381 	 * We want to make sure we allocate the new page from the same node
1382 	 * as the source page.
1383 	 */
1384 	int nid = page_to_nid(page);
1385 	/*
1386 	 * Trying to allocate a page for migration. Ignore allocation
1387 	 * failure warnings. We don't force __GFP_THISNODE here because
1388 	 * this node here is the node where we have CMA reservation and
1389 	 * in some case these nodes will have really less non movable
1390 	 * allocation memory.
1391 	 */
1392 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1393 
1394 	if (PageHighMem(page))
1395 		gfp_mask |= __GFP_HIGHMEM;
1396 
1397 #ifdef CONFIG_HUGETLB_PAGE
1398 	if (PageHuge(page)) {
1399 		struct hstate *h = page_hstate(page);
1400 		/*
1401 		 * We don't want to dequeue from the pool because pool pages will
1402 		 * mostly be from the CMA region.
1403 		 */
1404 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1405 	}
1406 #endif
1407 	if (PageTransHuge(page)) {
1408 		struct page *thp;
1409 		/*
1410 		 * ignore allocation failure warnings
1411 		 */
1412 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1413 
1414 		/*
1415 		 * Remove the movable mask so that we don't allocate from
1416 		 * CMA area again.
1417 		 */
1418 		thp_gfpmask &= ~__GFP_MOVABLE;
1419 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1420 		if (!thp)
1421 			return NULL;
1422 		prep_transhuge_page(thp);
1423 		return thp;
1424 	}
1425 
1426 	return __alloc_pages_node(nid, gfp_mask, 0);
1427 }
1428 
1429 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1430 					struct mm_struct *mm,
1431 					unsigned long start,
1432 					unsigned long nr_pages,
1433 					struct page **pages,
1434 					struct vm_area_struct **vmas,
1435 					unsigned int gup_flags)
1436 {
1437 	unsigned long i;
1438 	unsigned long step;
1439 	bool drain_allow = true;
1440 	bool migrate_allow = true;
1441 	LIST_HEAD(cma_page_list);
1442 
1443 check_again:
1444 	for (i = 0; i < nr_pages;) {
1445 
1446 		struct page *head = compound_head(pages[i]);
1447 
1448 		/*
1449 		 * gup may start from a tail page. Advance step by the left
1450 		 * part.
1451 		 */
1452 		step = compound_nr(head) - (pages[i] - head);
1453 		/*
1454 		 * If we get a page from the CMA zone, since we are going to
1455 		 * be pinning these entries, we might as well move them out
1456 		 * of the CMA zone if possible.
1457 		 */
1458 		if (is_migrate_cma_page(head)) {
1459 			if (PageHuge(head))
1460 				isolate_huge_page(head, &cma_page_list);
1461 			else {
1462 				if (!PageLRU(head) && drain_allow) {
1463 					lru_add_drain_all();
1464 					drain_allow = false;
1465 				}
1466 
1467 				if (!isolate_lru_page(head)) {
1468 					list_add_tail(&head->lru, &cma_page_list);
1469 					mod_node_page_state(page_pgdat(head),
1470 							    NR_ISOLATED_ANON +
1471 							    page_is_file_cache(head),
1472 							    hpage_nr_pages(head));
1473 				}
1474 			}
1475 		}
1476 
1477 		i += step;
1478 	}
1479 
1480 	if (!list_empty(&cma_page_list)) {
1481 		/*
1482 		 * drop the above get_user_pages reference.
1483 		 */
1484 		for (i = 0; i < nr_pages; i++)
1485 			put_page(pages[i]);
1486 
1487 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1488 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1489 			/*
1490 			 * some of the pages failed migration. Do get_user_pages
1491 			 * without migration.
1492 			 */
1493 			migrate_allow = false;
1494 
1495 			if (!list_empty(&cma_page_list))
1496 				putback_movable_pages(&cma_page_list);
1497 		}
1498 		/*
1499 		 * We did migrate all the pages, Try to get the page references
1500 		 * again migrating any new CMA pages which we failed to isolate
1501 		 * earlier.
1502 		 */
1503 		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1504 						   pages, vmas, NULL,
1505 						   gup_flags);
1506 
1507 		if ((nr_pages > 0) && migrate_allow) {
1508 			drain_allow = true;
1509 			goto check_again;
1510 		}
1511 	}
1512 
1513 	return nr_pages;
1514 }
1515 #else
1516 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1517 					struct mm_struct *mm,
1518 					unsigned long start,
1519 					unsigned long nr_pages,
1520 					struct page **pages,
1521 					struct vm_area_struct **vmas,
1522 					unsigned int gup_flags)
1523 {
1524 	return nr_pages;
1525 }
1526 #endif /* CONFIG_CMA */
1527 
1528 /*
1529  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1530  * allows us to process the FOLL_LONGTERM flag.
1531  */
1532 static long __gup_longterm_locked(struct task_struct *tsk,
1533 				  struct mm_struct *mm,
1534 				  unsigned long start,
1535 				  unsigned long nr_pages,
1536 				  struct page **pages,
1537 				  struct vm_area_struct **vmas,
1538 				  unsigned int gup_flags)
1539 {
1540 	struct vm_area_struct **vmas_tmp = vmas;
1541 	unsigned long flags = 0;
1542 	long rc, i;
1543 
1544 	if (gup_flags & FOLL_LONGTERM) {
1545 		if (!pages)
1546 			return -EINVAL;
1547 
1548 		if (!vmas_tmp) {
1549 			vmas_tmp = kcalloc(nr_pages,
1550 					   sizeof(struct vm_area_struct *),
1551 					   GFP_KERNEL);
1552 			if (!vmas_tmp)
1553 				return -ENOMEM;
1554 		}
1555 		flags = memalloc_nocma_save();
1556 	}
1557 
1558 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1559 				     vmas_tmp, NULL, gup_flags);
1560 
1561 	if (gup_flags & FOLL_LONGTERM) {
1562 		memalloc_nocma_restore(flags);
1563 		if (rc < 0)
1564 			goto out;
1565 
1566 		if (check_dax_vmas(vmas_tmp, rc)) {
1567 			for (i = 0; i < rc; i++)
1568 				put_page(pages[i]);
1569 			rc = -EOPNOTSUPP;
1570 			goto out;
1571 		}
1572 
1573 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1574 						 vmas_tmp, gup_flags);
1575 	}
1576 
1577 out:
1578 	if (vmas_tmp != vmas)
1579 		kfree(vmas_tmp);
1580 	return rc;
1581 }
1582 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1583 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1584 						  struct mm_struct *mm,
1585 						  unsigned long start,
1586 						  unsigned long nr_pages,
1587 						  struct page **pages,
1588 						  struct vm_area_struct **vmas,
1589 						  unsigned int flags)
1590 {
1591 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1592 				       NULL, flags);
1593 }
1594 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1595 
1596 /*
1597  * This is the same as get_user_pages_remote(), just with a
1598  * less-flexible calling convention where we assume that the task
1599  * and mm being operated on are the current task's and don't allow
1600  * passing of a locked parameter.  We also obviously don't pass
1601  * FOLL_REMOTE in here.
1602  */
1603 long get_user_pages(unsigned long start, unsigned long nr_pages,
1604 		unsigned int gup_flags, struct page **pages,
1605 		struct vm_area_struct **vmas)
1606 {
1607 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1608 				     pages, vmas, gup_flags | FOLL_TOUCH);
1609 }
1610 EXPORT_SYMBOL(get_user_pages);
1611 
1612 /*
1613  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1614  * paths better by using either get_user_pages_locked() or
1615  * get_user_pages_unlocked().
1616  *
1617  * get_user_pages_locked() is suitable to replace the form:
1618  *
1619  *      down_read(&mm->mmap_sem);
1620  *      do_something()
1621  *      get_user_pages(tsk, mm, ..., pages, NULL);
1622  *      up_read(&mm->mmap_sem);
1623  *
1624  *  to:
1625  *
1626  *      int locked = 1;
1627  *      down_read(&mm->mmap_sem);
1628  *      do_something()
1629  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1630  *      if (locked)
1631  *          up_read(&mm->mmap_sem);
1632  */
1633 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1634 			   unsigned int gup_flags, struct page **pages,
1635 			   int *locked)
1636 {
1637 	/*
1638 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1639 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1640 	 * vmas.  As there are no users of this flag in this call we simply
1641 	 * disallow this option for now.
1642 	 */
1643 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1644 		return -EINVAL;
1645 
1646 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1647 				       pages, NULL, locked,
1648 				       gup_flags | FOLL_TOUCH);
1649 }
1650 EXPORT_SYMBOL(get_user_pages_locked);
1651 
1652 /*
1653  * get_user_pages_unlocked() is suitable to replace the form:
1654  *
1655  *      down_read(&mm->mmap_sem);
1656  *      get_user_pages(tsk, mm, ..., pages, NULL);
1657  *      up_read(&mm->mmap_sem);
1658  *
1659  *  with:
1660  *
1661  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1662  *
1663  * It is functionally equivalent to get_user_pages_fast so
1664  * get_user_pages_fast should be used instead if specific gup_flags
1665  * (e.g. FOLL_FORCE) are not required.
1666  */
1667 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1668 			     struct page **pages, unsigned int gup_flags)
1669 {
1670 	struct mm_struct *mm = current->mm;
1671 	int locked = 1;
1672 	long ret;
1673 
1674 	/*
1675 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1676 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1677 	 * vmas.  As there are no users of this flag in this call we simply
1678 	 * disallow this option for now.
1679 	 */
1680 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1681 		return -EINVAL;
1682 
1683 	down_read(&mm->mmap_sem);
1684 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1685 				      &locked, gup_flags | FOLL_TOUCH);
1686 	if (locked)
1687 		up_read(&mm->mmap_sem);
1688 	return ret;
1689 }
1690 EXPORT_SYMBOL(get_user_pages_unlocked);
1691 
1692 /*
1693  * Fast GUP
1694  *
1695  * get_user_pages_fast attempts to pin user pages by walking the page
1696  * tables directly and avoids taking locks. Thus the walker needs to be
1697  * protected from page table pages being freed from under it, and should
1698  * block any THP splits.
1699  *
1700  * One way to achieve this is to have the walker disable interrupts, and
1701  * rely on IPIs from the TLB flushing code blocking before the page table
1702  * pages are freed. This is unsuitable for architectures that do not need
1703  * to broadcast an IPI when invalidating TLBs.
1704  *
1705  * Another way to achieve this is to batch up page table containing pages
1706  * belonging to more than one mm_user, then rcu_sched a callback to free those
1707  * pages. Disabling interrupts will allow the fast_gup walker to both block
1708  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1709  * (which is a relatively rare event). The code below adopts this strategy.
1710  *
1711  * Before activating this code, please be aware that the following assumptions
1712  * are currently made:
1713  *
1714  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1715  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1716  *
1717  *  *) ptes can be read atomically by the architecture.
1718  *
1719  *  *) access_ok is sufficient to validate userspace address ranges.
1720  *
1721  * The last two assumptions can be relaxed by the addition of helper functions.
1722  *
1723  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1724  */
1725 #ifdef CONFIG_HAVE_FAST_GUP
1726 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1727 /*
1728  * WARNING: only to be used in the get_user_pages_fast() implementation.
1729  *
1730  * With get_user_pages_fast(), we walk down the pagetables without taking any
1731  * locks.  For this we would like to load the pointers atomically, but sometimes
1732  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1733  * we do have is the guarantee that a PTE will only either go from not present
1734  * to present, or present to not present or both -- it will not switch to a
1735  * completely different present page without a TLB flush in between; something
1736  * that we are blocking by holding interrupts off.
1737  *
1738  * Setting ptes from not present to present goes:
1739  *
1740  *   ptep->pte_high = h;
1741  *   smp_wmb();
1742  *   ptep->pte_low = l;
1743  *
1744  * And present to not present goes:
1745  *
1746  *   ptep->pte_low = 0;
1747  *   smp_wmb();
1748  *   ptep->pte_high = 0;
1749  *
1750  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1751  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1752  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1753  * picked up a changed pte high. We might have gotten rubbish values from
1754  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1755  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1756  * operates on present ptes we're safe.
1757  */
1758 static inline pte_t gup_get_pte(pte_t *ptep)
1759 {
1760 	pte_t pte;
1761 
1762 	do {
1763 		pte.pte_low = ptep->pte_low;
1764 		smp_rmb();
1765 		pte.pte_high = ptep->pte_high;
1766 		smp_rmb();
1767 	} while (unlikely(pte.pte_low != ptep->pte_low));
1768 
1769 	return pte;
1770 }
1771 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1772 /*
1773  * We require that the PTE can be read atomically.
1774  */
1775 static inline pte_t gup_get_pte(pte_t *ptep)
1776 {
1777 	return READ_ONCE(*ptep);
1778 }
1779 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1780 
1781 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1782 					    struct page **pages)
1783 {
1784 	while ((*nr) - nr_start) {
1785 		struct page *page = pages[--(*nr)];
1786 
1787 		ClearPageReferenced(page);
1788 		put_page(page);
1789 	}
1790 }
1791 
1792 /*
1793  * Return the compund head page with ref appropriately incremented,
1794  * or NULL if that failed.
1795  */
1796 static inline struct page *try_get_compound_head(struct page *page, int refs)
1797 {
1798 	struct page *head = compound_head(page);
1799 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1800 		return NULL;
1801 	if (unlikely(!page_cache_add_speculative(head, refs)))
1802 		return NULL;
1803 	return head;
1804 }
1805 
1806 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1807 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1808 			 unsigned int flags, struct page **pages, int *nr)
1809 {
1810 	struct dev_pagemap *pgmap = NULL;
1811 	int nr_start = *nr, ret = 0;
1812 	pte_t *ptep, *ptem;
1813 
1814 	ptem = ptep = pte_offset_map(&pmd, addr);
1815 	do {
1816 		pte_t pte = gup_get_pte(ptep);
1817 		struct page *head, *page;
1818 
1819 		/*
1820 		 * Similar to the PMD case below, NUMA hinting must take slow
1821 		 * path using the pte_protnone check.
1822 		 */
1823 		if (pte_protnone(pte))
1824 			goto pte_unmap;
1825 
1826 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1827 			goto pte_unmap;
1828 
1829 		if (pte_devmap(pte)) {
1830 			if (unlikely(flags & FOLL_LONGTERM))
1831 				goto pte_unmap;
1832 
1833 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1834 			if (unlikely(!pgmap)) {
1835 				undo_dev_pagemap(nr, nr_start, pages);
1836 				goto pte_unmap;
1837 			}
1838 		} else if (pte_special(pte))
1839 			goto pte_unmap;
1840 
1841 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1842 		page = pte_page(pte);
1843 
1844 		head = try_get_compound_head(page, 1);
1845 		if (!head)
1846 			goto pte_unmap;
1847 
1848 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1849 			put_page(head);
1850 			goto pte_unmap;
1851 		}
1852 
1853 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1854 
1855 		SetPageReferenced(page);
1856 		pages[*nr] = page;
1857 		(*nr)++;
1858 
1859 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1860 
1861 	ret = 1;
1862 
1863 pte_unmap:
1864 	if (pgmap)
1865 		put_dev_pagemap(pgmap);
1866 	pte_unmap(ptem);
1867 	return ret;
1868 }
1869 #else
1870 
1871 /*
1872  * If we can't determine whether or not a pte is special, then fail immediately
1873  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1874  * to be special.
1875  *
1876  * For a futex to be placed on a THP tail page, get_futex_key requires a
1877  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1878  * useful to have gup_huge_pmd even if we can't operate on ptes.
1879  */
1880 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1881 			 unsigned int flags, struct page **pages, int *nr)
1882 {
1883 	return 0;
1884 }
1885 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1886 
1887 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1888 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1889 		unsigned long end, struct page **pages, int *nr)
1890 {
1891 	int nr_start = *nr;
1892 	struct dev_pagemap *pgmap = NULL;
1893 
1894 	do {
1895 		struct page *page = pfn_to_page(pfn);
1896 
1897 		pgmap = get_dev_pagemap(pfn, pgmap);
1898 		if (unlikely(!pgmap)) {
1899 			undo_dev_pagemap(nr, nr_start, pages);
1900 			return 0;
1901 		}
1902 		SetPageReferenced(page);
1903 		pages[*nr] = page;
1904 		get_page(page);
1905 		(*nr)++;
1906 		pfn++;
1907 	} while (addr += PAGE_SIZE, addr != end);
1908 
1909 	if (pgmap)
1910 		put_dev_pagemap(pgmap);
1911 	return 1;
1912 }
1913 
1914 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1915 		unsigned long end, struct page **pages, int *nr)
1916 {
1917 	unsigned long fault_pfn;
1918 	int nr_start = *nr;
1919 
1920 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1921 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1922 		return 0;
1923 
1924 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1925 		undo_dev_pagemap(nr, nr_start, pages);
1926 		return 0;
1927 	}
1928 	return 1;
1929 }
1930 
1931 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1932 		unsigned long end, struct page **pages, int *nr)
1933 {
1934 	unsigned long fault_pfn;
1935 	int nr_start = *nr;
1936 
1937 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1938 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1939 		return 0;
1940 
1941 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1942 		undo_dev_pagemap(nr, nr_start, pages);
1943 		return 0;
1944 	}
1945 	return 1;
1946 }
1947 #else
1948 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1949 		unsigned long end, struct page **pages, int *nr)
1950 {
1951 	BUILD_BUG();
1952 	return 0;
1953 }
1954 
1955 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1956 		unsigned long end, struct page **pages, int *nr)
1957 {
1958 	BUILD_BUG();
1959 	return 0;
1960 }
1961 #endif
1962 
1963 #ifdef CONFIG_ARCH_HAS_HUGEPD
1964 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1965 				      unsigned long sz)
1966 {
1967 	unsigned long __boundary = (addr + sz) & ~(sz-1);
1968 	return (__boundary - 1 < end - 1) ? __boundary : end;
1969 }
1970 
1971 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1972 		       unsigned long end, int write, struct page **pages, int *nr)
1973 {
1974 	unsigned long pte_end;
1975 	struct page *head, *page;
1976 	pte_t pte;
1977 	int refs;
1978 
1979 	pte_end = (addr + sz) & ~(sz-1);
1980 	if (pte_end < end)
1981 		end = pte_end;
1982 
1983 	pte = READ_ONCE(*ptep);
1984 
1985 	if (!pte_access_permitted(pte, write))
1986 		return 0;
1987 
1988 	/* hugepages are never "special" */
1989 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1990 
1991 	refs = 0;
1992 	head = pte_page(pte);
1993 
1994 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1995 	do {
1996 		VM_BUG_ON(compound_head(page) != head);
1997 		pages[*nr] = page;
1998 		(*nr)++;
1999 		page++;
2000 		refs++;
2001 	} while (addr += PAGE_SIZE, addr != end);
2002 
2003 	head = try_get_compound_head(head, refs);
2004 	if (!head) {
2005 		*nr -= refs;
2006 		return 0;
2007 	}
2008 
2009 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2010 		/* Could be optimized better */
2011 		*nr -= refs;
2012 		while (refs--)
2013 			put_page(head);
2014 		return 0;
2015 	}
2016 
2017 	SetPageReferenced(head);
2018 	return 1;
2019 }
2020 
2021 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2022 		unsigned int pdshift, unsigned long end, int write,
2023 		struct page **pages, int *nr)
2024 {
2025 	pte_t *ptep;
2026 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2027 	unsigned long next;
2028 
2029 	ptep = hugepte_offset(hugepd, addr, pdshift);
2030 	do {
2031 		next = hugepte_addr_end(addr, end, sz);
2032 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2033 			return 0;
2034 	} while (ptep++, addr = next, addr != end);
2035 
2036 	return 1;
2037 }
2038 #else
2039 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2040 		unsigned pdshift, unsigned long end, int write,
2041 		struct page **pages, int *nr)
2042 {
2043 	return 0;
2044 }
2045 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2046 
2047 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2048 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2049 {
2050 	struct page *head, *page;
2051 	int refs;
2052 
2053 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2054 		return 0;
2055 
2056 	if (pmd_devmap(orig)) {
2057 		if (unlikely(flags & FOLL_LONGTERM))
2058 			return 0;
2059 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2060 	}
2061 
2062 	refs = 0;
2063 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2064 	do {
2065 		pages[*nr] = page;
2066 		(*nr)++;
2067 		page++;
2068 		refs++;
2069 	} while (addr += PAGE_SIZE, addr != end);
2070 
2071 	head = try_get_compound_head(pmd_page(orig), refs);
2072 	if (!head) {
2073 		*nr -= refs;
2074 		return 0;
2075 	}
2076 
2077 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2078 		*nr -= refs;
2079 		while (refs--)
2080 			put_page(head);
2081 		return 0;
2082 	}
2083 
2084 	SetPageReferenced(head);
2085 	return 1;
2086 }
2087 
2088 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2089 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2090 {
2091 	struct page *head, *page;
2092 	int refs;
2093 
2094 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2095 		return 0;
2096 
2097 	if (pud_devmap(orig)) {
2098 		if (unlikely(flags & FOLL_LONGTERM))
2099 			return 0;
2100 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2101 	}
2102 
2103 	refs = 0;
2104 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2105 	do {
2106 		pages[*nr] = page;
2107 		(*nr)++;
2108 		page++;
2109 		refs++;
2110 	} while (addr += PAGE_SIZE, addr != end);
2111 
2112 	head = try_get_compound_head(pud_page(orig), refs);
2113 	if (!head) {
2114 		*nr -= refs;
2115 		return 0;
2116 	}
2117 
2118 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2119 		*nr -= refs;
2120 		while (refs--)
2121 			put_page(head);
2122 		return 0;
2123 	}
2124 
2125 	SetPageReferenced(head);
2126 	return 1;
2127 }
2128 
2129 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2130 			unsigned long end, unsigned int flags,
2131 			struct page **pages, int *nr)
2132 {
2133 	int refs;
2134 	struct page *head, *page;
2135 
2136 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2137 		return 0;
2138 
2139 	BUILD_BUG_ON(pgd_devmap(orig));
2140 	refs = 0;
2141 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2142 	do {
2143 		pages[*nr] = page;
2144 		(*nr)++;
2145 		page++;
2146 		refs++;
2147 	} while (addr += PAGE_SIZE, addr != end);
2148 
2149 	head = try_get_compound_head(pgd_page(orig), refs);
2150 	if (!head) {
2151 		*nr -= refs;
2152 		return 0;
2153 	}
2154 
2155 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2156 		*nr -= refs;
2157 		while (refs--)
2158 			put_page(head);
2159 		return 0;
2160 	}
2161 
2162 	SetPageReferenced(head);
2163 	return 1;
2164 }
2165 
2166 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2167 		unsigned int flags, struct page **pages, int *nr)
2168 {
2169 	unsigned long next;
2170 	pmd_t *pmdp;
2171 
2172 	pmdp = pmd_offset(&pud, addr);
2173 	do {
2174 		pmd_t pmd = READ_ONCE(*pmdp);
2175 
2176 		next = pmd_addr_end(addr, end);
2177 		if (!pmd_present(pmd))
2178 			return 0;
2179 
2180 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2181 			     pmd_devmap(pmd))) {
2182 			/*
2183 			 * NUMA hinting faults need to be handled in the GUP
2184 			 * slowpath for accounting purposes and so that they
2185 			 * can be serialised against THP migration.
2186 			 */
2187 			if (pmd_protnone(pmd))
2188 				return 0;
2189 
2190 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2191 				pages, nr))
2192 				return 0;
2193 
2194 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2195 			/*
2196 			 * architecture have different format for hugetlbfs
2197 			 * pmd format and THP pmd format
2198 			 */
2199 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2200 					 PMD_SHIFT, next, flags, pages, nr))
2201 				return 0;
2202 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2203 			return 0;
2204 	} while (pmdp++, addr = next, addr != end);
2205 
2206 	return 1;
2207 }
2208 
2209 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2210 			 unsigned int flags, struct page **pages, int *nr)
2211 {
2212 	unsigned long next;
2213 	pud_t *pudp;
2214 
2215 	pudp = pud_offset(&p4d, addr);
2216 	do {
2217 		pud_t pud = READ_ONCE(*pudp);
2218 
2219 		next = pud_addr_end(addr, end);
2220 		if (pud_none(pud))
2221 			return 0;
2222 		if (unlikely(pud_huge(pud))) {
2223 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2224 					  pages, nr))
2225 				return 0;
2226 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2227 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2228 					 PUD_SHIFT, next, flags, pages, nr))
2229 				return 0;
2230 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2231 			return 0;
2232 	} while (pudp++, addr = next, addr != end);
2233 
2234 	return 1;
2235 }
2236 
2237 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2238 			 unsigned int flags, struct page **pages, int *nr)
2239 {
2240 	unsigned long next;
2241 	p4d_t *p4dp;
2242 
2243 	p4dp = p4d_offset(&pgd, addr);
2244 	do {
2245 		p4d_t p4d = READ_ONCE(*p4dp);
2246 
2247 		next = p4d_addr_end(addr, end);
2248 		if (p4d_none(p4d))
2249 			return 0;
2250 		BUILD_BUG_ON(p4d_huge(p4d));
2251 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2252 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2253 					 P4D_SHIFT, next, flags, pages, nr))
2254 				return 0;
2255 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2256 			return 0;
2257 	} while (p4dp++, addr = next, addr != end);
2258 
2259 	return 1;
2260 }
2261 
2262 static void gup_pgd_range(unsigned long addr, unsigned long end,
2263 		unsigned int flags, struct page **pages, int *nr)
2264 {
2265 	unsigned long next;
2266 	pgd_t *pgdp;
2267 
2268 	pgdp = pgd_offset(current->mm, addr);
2269 	do {
2270 		pgd_t pgd = READ_ONCE(*pgdp);
2271 
2272 		next = pgd_addr_end(addr, end);
2273 		if (pgd_none(pgd))
2274 			return;
2275 		if (unlikely(pgd_huge(pgd))) {
2276 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2277 					  pages, nr))
2278 				return;
2279 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2280 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2281 					 PGDIR_SHIFT, next, flags, pages, nr))
2282 				return;
2283 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2284 			return;
2285 	} while (pgdp++, addr = next, addr != end);
2286 }
2287 #else
2288 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2289 		unsigned int flags, struct page **pages, int *nr)
2290 {
2291 }
2292 #endif /* CONFIG_HAVE_FAST_GUP */
2293 
2294 #ifndef gup_fast_permitted
2295 /*
2296  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2297  * we need to fall back to the slow version:
2298  */
2299 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2300 {
2301 	return true;
2302 }
2303 #endif
2304 
2305 /*
2306  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2307  * the regular GUP.
2308  * Note a difference with get_user_pages_fast: this always returns the
2309  * number of pages pinned, 0 if no pages were pinned.
2310  *
2311  * If the architecture does not support this function, simply return with no
2312  * pages pinned.
2313  */
2314 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2315 			  struct page **pages)
2316 {
2317 	unsigned long len, end;
2318 	unsigned long flags;
2319 	int nr = 0;
2320 
2321 	start = untagged_addr(start) & PAGE_MASK;
2322 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2323 	end = start + len;
2324 
2325 	if (end <= start)
2326 		return 0;
2327 	if (unlikely(!access_ok((void __user *)start, len)))
2328 		return 0;
2329 
2330 	/*
2331 	 * Disable interrupts.  We use the nested form as we can already have
2332 	 * interrupts disabled by get_futex_key.
2333 	 *
2334 	 * With interrupts disabled, we block page table pages from being
2335 	 * freed from under us. See struct mmu_table_batch comments in
2336 	 * include/asm-generic/tlb.h for more details.
2337 	 *
2338 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2339 	 * block IPIs that come from THPs splitting.
2340 	 */
2341 
2342 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2343 	    gup_fast_permitted(start, end)) {
2344 		local_irq_save(flags);
2345 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2346 		local_irq_restore(flags);
2347 	}
2348 
2349 	return nr;
2350 }
2351 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2352 
2353 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2354 				   unsigned int gup_flags, struct page **pages)
2355 {
2356 	int ret;
2357 
2358 	/*
2359 	 * FIXME: FOLL_LONGTERM does not work with
2360 	 * get_user_pages_unlocked() (see comments in that function)
2361 	 */
2362 	if (gup_flags & FOLL_LONGTERM) {
2363 		down_read(&current->mm->mmap_sem);
2364 		ret = __gup_longterm_locked(current, current->mm,
2365 					    start, nr_pages,
2366 					    pages, NULL, gup_flags);
2367 		up_read(&current->mm->mmap_sem);
2368 	} else {
2369 		ret = get_user_pages_unlocked(start, nr_pages,
2370 					      pages, gup_flags);
2371 	}
2372 
2373 	return ret;
2374 }
2375 
2376 /**
2377  * get_user_pages_fast() - pin user pages in memory
2378  * @start:	starting user address
2379  * @nr_pages:	number of pages from start to pin
2380  * @gup_flags:	flags modifying pin behaviour
2381  * @pages:	array that receives pointers to the pages pinned.
2382  *		Should be at least nr_pages long.
2383  *
2384  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2385  * If not successful, it will fall back to taking the lock and
2386  * calling get_user_pages().
2387  *
2388  * Returns number of pages pinned. This may be fewer than the number
2389  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2390  * were pinned, returns -errno.
2391  */
2392 int get_user_pages_fast(unsigned long start, int nr_pages,
2393 			unsigned int gup_flags, struct page **pages)
2394 {
2395 	unsigned long addr, len, end;
2396 	int nr = 0, ret = 0;
2397 
2398 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2399 		return -EINVAL;
2400 
2401 	start = untagged_addr(start) & PAGE_MASK;
2402 	addr = start;
2403 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2404 	end = start + len;
2405 
2406 	if (end <= start)
2407 		return 0;
2408 	if (unlikely(!access_ok((void __user *)start, len)))
2409 		return -EFAULT;
2410 
2411 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2412 	    gup_fast_permitted(start, end)) {
2413 		local_irq_disable();
2414 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2415 		local_irq_enable();
2416 		ret = nr;
2417 	}
2418 
2419 	if (nr < nr_pages) {
2420 		/* Try to get the remaining pages with get_user_pages */
2421 		start += nr << PAGE_SHIFT;
2422 		pages += nr;
2423 
2424 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2425 					      gup_flags, pages);
2426 
2427 		/* Have to be a bit careful with return values */
2428 		if (nr > 0) {
2429 			if (ret < 0)
2430 				ret = nr;
2431 			else
2432 				ret += nr;
2433 		}
2434 	}
2435 
2436 	return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2439