1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 /** 33 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 34 * @pages: array of pages to be maybe marked dirty, and definitely released. 35 * @npages: number of pages in the @pages array. 36 * @make_dirty: whether to mark the pages dirty 37 * 38 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 39 * variants called on that page. 40 * 41 * For each page in the @pages array, make that page (or its head page, if a 42 * compound page) dirty, if @make_dirty is true, and if the page was previously 43 * listed as clean. In any case, releases all pages using put_user_page(), 44 * possibly via put_user_pages(), for the non-dirty case. 45 * 46 * Please see the put_user_page() documentation for details. 47 * 48 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 49 * required, then the caller should a) verify that this is really correct, 50 * because _lock() is usually required, and b) hand code it: 51 * set_page_dirty_lock(), put_user_page(). 52 * 53 */ 54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 55 bool make_dirty) 56 { 57 unsigned long index; 58 59 /* 60 * TODO: this can be optimized for huge pages: if a series of pages is 61 * physically contiguous and part of the same compound page, then a 62 * single operation to the head page should suffice. 63 */ 64 65 if (!make_dirty) { 66 put_user_pages(pages, npages); 67 return; 68 } 69 70 for (index = 0; index < npages; index++) { 71 struct page *page = compound_head(pages[index]); 72 /* 73 * Checking PageDirty at this point may race with 74 * clear_page_dirty_for_io(), but that's OK. Two key 75 * cases: 76 * 77 * 1) This code sees the page as already dirty, so it 78 * skips the call to set_page_dirty(). That could happen 79 * because clear_page_dirty_for_io() called 80 * page_mkclean(), followed by set_page_dirty(). 81 * However, now the page is going to get written back, 82 * which meets the original intention of setting it 83 * dirty, so all is well: clear_page_dirty_for_io() goes 84 * on to call TestClearPageDirty(), and write the page 85 * back. 86 * 87 * 2) This code sees the page as clean, so it calls 88 * set_page_dirty(). The page stays dirty, despite being 89 * written back, so it gets written back again in the 90 * next writeback cycle. This is harmless. 91 */ 92 if (!PageDirty(page)) 93 set_page_dirty_lock(page); 94 put_user_page(page); 95 } 96 } 97 EXPORT_SYMBOL(put_user_pages_dirty_lock); 98 99 /** 100 * put_user_pages() - release an array of gup-pinned pages. 101 * @pages: array of pages to be marked dirty and released. 102 * @npages: number of pages in the @pages array. 103 * 104 * For each page in the @pages array, release the page using put_user_page(). 105 * 106 * Please see the put_user_page() documentation for details. 107 */ 108 void put_user_pages(struct page **pages, unsigned long npages) 109 { 110 unsigned long index; 111 112 /* 113 * TODO: this can be optimized for huge pages: if a series of pages is 114 * physically contiguous and part of the same compound page, then a 115 * single operation to the head page should suffice. 116 */ 117 for (index = 0; index < npages; index++) 118 put_user_page(pages[index]); 119 } 120 EXPORT_SYMBOL(put_user_pages); 121 122 #ifdef CONFIG_MMU 123 static struct page *no_page_table(struct vm_area_struct *vma, 124 unsigned int flags) 125 { 126 /* 127 * When core dumping an enormous anonymous area that nobody 128 * has touched so far, we don't want to allocate unnecessary pages or 129 * page tables. Return error instead of NULL to skip handle_mm_fault, 130 * then get_dump_page() will return NULL to leave a hole in the dump. 131 * But we can only make this optimization where a hole would surely 132 * be zero-filled if handle_mm_fault() actually did handle it. 133 */ 134 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 135 return ERR_PTR(-EFAULT); 136 return NULL; 137 } 138 139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 140 pte_t *pte, unsigned int flags) 141 { 142 /* No page to get reference */ 143 if (flags & FOLL_GET) 144 return -EFAULT; 145 146 if (flags & FOLL_TOUCH) { 147 pte_t entry = *pte; 148 149 if (flags & FOLL_WRITE) 150 entry = pte_mkdirty(entry); 151 entry = pte_mkyoung(entry); 152 153 if (!pte_same(*pte, entry)) { 154 set_pte_at(vma->vm_mm, address, pte, entry); 155 update_mmu_cache(vma, address, pte); 156 } 157 } 158 159 /* Proper page table entry exists, but no corresponding struct page */ 160 return -EEXIST; 161 } 162 163 /* 164 * FOLL_FORCE can write to even unwritable pte's, but only 165 * after we've gone through a COW cycle and they are dirty. 166 */ 167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 168 { 169 return pte_write(pte) || 170 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 171 } 172 173 static struct page *follow_page_pte(struct vm_area_struct *vma, 174 unsigned long address, pmd_t *pmd, unsigned int flags, 175 struct dev_pagemap **pgmap) 176 { 177 struct mm_struct *mm = vma->vm_mm; 178 struct page *page; 179 spinlock_t *ptl; 180 pte_t *ptep, pte; 181 182 retry: 183 if (unlikely(pmd_bad(*pmd))) 184 return no_page_table(vma, flags); 185 186 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 187 pte = *ptep; 188 if (!pte_present(pte)) { 189 swp_entry_t entry; 190 /* 191 * KSM's break_ksm() relies upon recognizing a ksm page 192 * even while it is being migrated, so for that case we 193 * need migration_entry_wait(). 194 */ 195 if (likely(!(flags & FOLL_MIGRATION))) 196 goto no_page; 197 if (pte_none(pte)) 198 goto no_page; 199 entry = pte_to_swp_entry(pte); 200 if (!is_migration_entry(entry)) 201 goto no_page; 202 pte_unmap_unlock(ptep, ptl); 203 migration_entry_wait(mm, pmd, address); 204 goto retry; 205 } 206 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 207 goto no_page; 208 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 209 pte_unmap_unlock(ptep, ptl); 210 return NULL; 211 } 212 213 page = vm_normal_page(vma, address, pte); 214 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 215 /* 216 * Only return device mapping pages in the FOLL_GET case since 217 * they are only valid while holding the pgmap reference. 218 */ 219 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 220 if (*pgmap) 221 page = pte_page(pte); 222 else 223 goto no_page; 224 } else if (unlikely(!page)) { 225 if (flags & FOLL_DUMP) { 226 /* Avoid special (like zero) pages in core dumps */ 227 page = ERR_PTR(-EFAULT); 228 goto out; 229 } 230 231 if (is_zero_pfn(pte_pfn(pte))) { 232 page = pte_page(pte); 233 } else { 234 int ret; 235 236 ret = follow_pfn_pte(vma, address, ptep, flags); 237 page = ERR_PTR(ret); 238 goto out; 239 } 240 } 241 242 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 243 int ret; 244 get_page(page); 245 pte_unmap_unlock(ptep, ptl); 246 lock_page(page); 247 ret = split_huge_page(page); 248 unlock_page(page); 249 put_page(page); 250 if (ret) 251 return ERR_PTR(ret); 252 goto retry; 253 } 254 255 if (flags & FOLL_GET) { 256 if (unlikely(!try_get_page(page))) { 257 page = ERR_PTR(-ENOMEM); 258 goto out; 259 } 260 } 261 if (flags & FOLL_TOUCH) { 262 if ((flags & FOLL_WRITE) && 263 !pte_dirty(pte) && !PageDirty(page)) 264 set_page_dirty(page); 265 /* 266 * pte_mkyoung() would be more correct here, but atomic care 267 * is needed to avoid losing the dirty bit: it is easier to use 268 * mark_page_accessed(). 269 */ 270 mark_page_accessed(page); 271 } 272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 273 /* Do not mlock pte-mapped THP */ 274 if (PageTransCompound(page)) 275 goto out; 276 277 /* 278 * The preliminary mapping check is mainly to avoid the 279 * pointless overhead of lock_page on the ZERO_PAGE 280 * which might bounce very badly if there is contention. 281 * 282 * If the page is already locked, we don't need to 283 * handle it now - vmscan will handle it later if and 284 * when it attempts to reclaim the page. 285 */ 286 if (page->mapping && trylock_page(page)) { 287 lru_add_drain(); /* push cached pages to LRU */ 288 /* 289 * Because we lock page here, and migration is 290 * blocked by the pte's page reference, and we 291 * know the page is still mapped, we don't even 292 * need to check for file-cache page truncation. 293 */ 294 mlock_vma_page(page); 295 unlock_page(page); 296 } 297 } 298 out: 299 pte_unmap_unlock(ptep, ptl); 300 return page; 301 no_page: 302 pte_unmap_unlock(ptep, ptl); 303 if (!pte_none(pte)) 304 return NULL; 305 return no_page_table(vma, flags); 306 } 307 308 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 309 unsigned long address, pud_t *pudp, 310 unsigned int flags, 311 struct follow_page_context *ctx) 312 { 313 pmd_t *pmd, pmdval; 314 spinlock_t *ptl; 315 struct page *page; 316 struct mm_struct *mm = vma->vm_mm; 317 318 pmd = pmd_offset(pudp, address); 319 /* 320 * The READ_ONCE() will stabilize the pmdval in a register or 321 * on the stack so that it will stop changing under the code. 322 */ 323 pmdval = READ_ONCE(*pmd); 324 if (pmd_none(pmdval)) 325 return no_page_table(vma, flags); 326 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 327 page = follow_huge_pmd(mm, address, pmd, flags); 328 if (page) 329 return page; 330 return no_page_table(vma, flags); 331 } 332 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 333 page = follow_huge_pd(vma, address, 334 __hugepd(pmd_val(pmdval)), flags, 335 PMD_SHIFT); 336 if (page) 337 return page; 338 return no_page_table(vma, flags); 339 } 340 retry: 341 if (!pmd_present(pmdval)) { 342 if (likely(!(flags & FOLL_MIGRATION))) 343 return no_page_table(vma, flags); 344 VM_BUG_ON(thp_migration_supported() && 345 !is_pmd_migration_entry(pmdval)); 346 if (is_pmd_migration_entry(pmdval)) 347 pmd_migration_entry_wait(mm, pmd); 348 pmdval = READ_ONCE(*pmd); 349 /* 350 * MADV_DONTNEED may convert the pmd to null because 351 * mmap_sem is held in read mode 352 */ 353 if (pmd_none(pmdval)) 354 return no_page_table(vma, flags); 355 goto retry; 356 } 357 if (pmd_devmap(pmdval)) { 358 ptl = pmd_lock(mm, pmd); 359 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 360 spin_unlock(ptl); 361 if (page) 362 return page; 363 } 364 if (likely(!pmd_trans_huge(pmdval))) 365 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 366 367 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 368 return no_page_table(vma, flags); 369 370 retry_locked: 371 ptl = pmd_lock(mm, pmd); 372 if (unlikely(pmd_none(*pmd))) { 373 spin_unlock(ptl); 374 return no_page_table(vma, flags); 375 } 376 if (unlikely(!pmd_present(*pmd))) { 377 spin_unlock(ptl); 378 if (likely(!(flags & FOLL_MIGRATION))) 379 return no_page_table(vma, flags); 380 pmd_migration_entry_wait(mm, pmd); 381 goto retry_locked; 382 } 383 if (unlikely(!pmd_trans_huge(*pmd))) { 384 spin_unlock(ptl); 385 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 386 } 387 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 388 int ret; 389 page = pmd_page(*pmd); 390 if (is_huge_zero_page(page)) { 391 spin_unlock(ptl); 392 ret = 0; 393 split_huge_pmd(vma, pmd, address); 394 if (pmd_trans_unstable(pmd)) 395 ret = -EBUSY; 396 } else if (flags & FOLL_SPLIT) { 397 if (unlikely(!try_get_page(page))) { 398 spin_unlock(ptl); 399 return ERR_PTR(-ENOMEM); 400 } 401 spin_unlock(ptl); 402 lock_page(page); 403 ret = split_huge_page(page); 404 unlock_page(page); 405 put_page(page); 406 if (pmd_none(*pmd)) 407 return no_page_table(vma, flags); 408 } else { /* flags & FOLL_SPLIT_PMD */ 409 spin_unlock(ptl); 410 split_huge_pmd(vma, pmd, address); 411 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 412 } 413 414 return ret ? ERR_PTR(ret) : 415 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 416 } 417 page = follow_trans_huge_pmd(vma, address, pmd, flags); 418 spin_unlock(ptl); 419 ctx->page_mask = HPAGE_PMD_NR - 1; 420 return page; 421 } 422 423 static struct page *follow_pud_mask(struct vm_area_struct *vma, 424 unsigned long address, p4d_t *p4dp, 425 unsigned int flags, 426 struct follow_page_context *ctx) 427 { 428 pud_t *pud; 429 spinlock_t *ptl; 430 struct page *page; 431 struct mm_struct *mm = vma->vm_mm; 432 433 pud = pud_offset(p4dp, address); 434 if (pud_none(*pud)) 435 return no_page_table(vma, flags); 436 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 437 page = follow_huge_pud(mm, address, pud, flags); 438 if (page) 439 return page; 440 return no_page_table(vma, flags); 441 } 442 if (is_hugepd(__hugepd(pud_val(*pud)))) { 443 page = follow_huge_pd(vma, address, 444 __hugepd(pud_val(*pud)), flags, 445 PUD_SHIFT); 446 if (page) 447 return page; 448 return no_page_table(vma, flags); 449 } 450 if (pud_devmap(*pud)) { 451 ptl = pud_lock(mm, pud); 452 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 453 spin_unlock(ptl); 454 if (page) 455 return page; 456 } 457 if (unlikely(pud_bad(*pud))) 458 return no_page_table(vma, flags); 459 460 return follow_pmd_mask(vma, address, pud, flags, ctx); 461 } 462 463 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 464 unsigned long address, pgd_t *pgdp, 465 unsigned int flags, 466 struct follow_page_context *ctx) 467 { 468 p4d_t *p4d; 469 struct page *page; 470 471 p4d = p4d_offset(pgdp, address); 472 if (p4d_none(*p4d)) 473 return no_page_table(vma, flags); 474 BUILD_BUG_ON(p4d_huge(*p4d)); 475 if (unlikely(p4d_bad(*p4d))) 476 return no_page_table(vma, flags); 477 478 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 479 page = follow_huge_pd(vma, address, 480 __hugepd(p4d_val(*p4d)), flags, 481 P4D_SHIFT); 482 if (page) 483 return page; 484 return no_page_table(vma, flags); 485 } 486 return follow_pud_mask(vma, address, p4d, flags, ctx); 487 } 488 489 /** 490 * follow_page_mask - look up a page descriptor from a user-virtual address 491 * @vma: vm_area_struct mapping @address 492 * @address: virtual address to look up 493 * @flags: flags modifying lookup behaviour 494 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 495 * pointer to output page_mask 496 * 497 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 498 * 499 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 500 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 501 * 502 * On output, the @ctx->page_mask is set according to the size of the page. 503 * 504 * Return: the mapped (struct page *), %NULL if no mapping exists, or 505 * an error pointer if there is a mapping to something not represented 506 * by a page descriptor (see also vm_normal_page()). 507 */ 508 static struct page *follow_page_mask(struct vm_area_struct *vma, 509 unsigned long address, unsigned int flags, 510 struct follow_page_context *ctx) 511 { 512 pgd_t *pgd; 513 struct page *page; 514 struct mm_struct *mm = vma->vm_mm; 515 516 ctx->page_mask = 0; 517 518 /* make this handle hugepd */ 519 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 520 if (!IS_ERR(page)) { 521 BUG_ON(flags & FOLL_GET); 522 return page; 523 } 524 525 pgd = pgd_offset(mm, address); 526 527 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 528 return no_page_table(vma, flags); 529 530 if (pgd_huge(*pgd)) { 531 page = follow_huge_pgd(mm, address, pgd, flags); 532 if (page) 533 return page; 534 return no_page_table(vma, flags); 535 } 536 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 537 page = follow_huge_pd(vma, address, 538 __hugepd(pgd_val(*pgd)), flags, 539 PGDIR_SHIFT); 540 if (page) 541 return page; 542 return no_page_table(vma, flags); 543 } 544 545 return follow_p4d_mask(vma, address, pgd, flags, ctx); 546 } 547 548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 549 unsigned int foll_flags) 550 { 551 struct follow_page_context ctx = { NULL }; 552 struct page *page; 553 554 page = follow_page_mask(vma, address, foll_flags, &ctx); 555 if (ctx.pgmap) 556 put_dev_pagemap(ctx.pgmap); 557 return page; 558 } 559 560 static int get_gate_page(struct mm_struct *mm, unsigned long address, 561 unsigned int gup_flags, struct vm_area_struct **vma, 562 struct page **page) 563 { 564 pgd_t *pgd; 565 p4d_t *p4d; 566 pud_t *pud; 567 pmd_t *pmd; 568 pte_t *pte; 569 int ret = -EFAULT; 570 571 /* user gate pages are read-only */ 572 if (gup_flags & FOLL_WRITE) 573 return -EFAULT; 574 if (address > TASK_SIZE) 575 pgd = pgd_offset_k(address); 576 else 577 pgd = pgd_offset_gate(mm, address); 578 if (pgd_none(*pgd)) 579 return -EFAULT; 580 p4d = p4d_offset(pgd, address); 581 if (p4d_none(*p4d)) 582 return -EFAULT; 583 pud = pud_offset(p4d, address); 584 if (pud_none(*pud)) 585 return -EFAULT; 586 pmd = pmd_offset(pud, address); 587 if (!pmd_present(*pmd)) 588 return -EFAULT; 589 VM_BUG_ON(pmd_trans_huge(*pmd)); 590 pte = pte_offset_map(pmd, address); 591 if (pte_none(*pte)) 592 goto unmap; 593 *vma = get_gate_vma(mm); 594 if (!page) 595 goto out; 596 *page = vm_normal_page(*vma, address, *pte); 597 if (!*page) { 598 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 599 goto unmap; 600 *page = pte_page(*pte); 601 } 602 if (unlikely(!try_get_page(*page))) { 603 ret = -ENOMEM; 604 goto unmap; 605 } 606 out: 607 ret = 0; 608 unmap: 609 pte_unmap(pte); 610 return ret; 611 } 612 613 /* 614 * mmap_sem must be held on entry. If @nonblocking != NULL and 615 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 616 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 617 */ 618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 619 unsigned long address, unsigned int *flags, int *nonblocking) 620 { 621 unsigned int fault_flags = 0; 622 vm_fault_t ret; 623 624 /* mlock all present pages, but do not fault in new pages */ 625 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 626 return -ENOENT; 627 if (*flags & FOLL_WRITE) 628 fault_flags |= FAULT_FLAG_WRITE; 629 if (*flags & FOLL_REMOTE) 630 fault_flags |= FAULT_FLAG_REMOTE; 631 if (nonblocking) 632 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 633 if (*flags & FOLL_NOWAIT) 634 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 635 if (*flags & FOLL_TRIED) { 636 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 637 fault_flags |= FAULT_FLAG_TRIED; 638 } 639 640 ret = handle_mm_fault(vma, address, fault_flags); 641 if (ret & VM_FAULT_ERROR) { 642 int err = vm_fault_to_errno(ret, *flags); 643 644 if (err) 645 return err; 646 BUG(); 647 } 648 649 if (tsk) { 650 if (ret & VM_FAULT_MAJOR) 651 tsk->maj_flt++; 652 else 653 tsk->min_flt++; 654 } 655 656 if (ret & VM_FAULT_RETRY) { 657 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 658 *nonblocking = 0; 659 return -EBUSY; 660 } 661 662 /* 663 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 664 * necessary, even if maybe_mkwrite decided not to set pte_write. We 665 * can thus safely do subsequent page lookups as if they were reads. 666 * But only do so when looping for pte_write is futile: in some cases 667 * userspace may also be wanting to write to the gotten user page, 668 * which a read fault here might prevent (a readonly page might get 669 * reCOWed by userspace write). 670 */ 671 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 672 *flags |= FOLL_COW; 673 return 0; 674 } 675 676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 677 { 678 vm_flags_t vm_flags = vma->vm_flags; 679 int write = (gup_flags & FOLL_WRITE); 680 int foreign = (gup_flags & FOLL_REMOTE); 681 682 if (vm_flags & (VM_IO | VM_PFNMAP)) 683 return -EFAULT; 684 685 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 686 return -EFAULT; 687 688 if (write) { 689 if (!(vm_flags & VM_WRITE)) { 690 if (!(gup_flags & FOLL_FORCE)) 691 return -EFAULT; 692 /* 693 * We used to let the write,force case do COW in a 694 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 695 * set a breakpoint in a read-only mapping of an 696 * executable, without corrupting the file (yet only 697 * when that file had been opened for writing!). 698 * Anon pages in shared mappings are surprising: now 699 * just reject it. 700 */ 701 if (!is_cow_mapping(vm_flags)) 702 return -EFAULT; 703 } 704 } else if (!(vm_flags & VM_READ)) { 705 if (!(gup_flags & FOLL_FORCE)) 706 return -EFAULT; 707 /* 708 * Is there actually any vma we can reach here which does not 709 * have VM_MAYREAD set? 710 */ 711 if (!(vm_flags & VM_MAYREAD)) 712 return -EFAULT; 713 } 714 /* 715 * gups are always data accesses, not instruction 716 * fetches, so execute=false here 717 */ 718 if (!arch_vma_access_permitted(vma, write, false, foreign)) 719 return -EFAULT; 720 return 0; 721 } 722 723 /** 724 * __get_user_pages() - pin user pages in memory 725 * @tsk: task_struct of target task 726 * @mm: mm_struct of target mm 727 * @start: starting user address 728 * @nr_pages: number of pages from start to pin 729 * @gup_flags: flags modifying pin behaviour 730 * @pages: array that receives pointers to the pages pinned. 731 * Should be at least nr_pages long. Or NULL, if caller 732 * only intends to ensure the pages are faulted in. 733 * @vmas: array of pointers to vmas corresponding to each page. 734 * Or NULL if the caller does not require them. 735 * @nonblocking: whether waiting for disk IO or mmap_sem contention 736 * 737 * Returns number of pages pinned. This may be fewer than the number 738 * requested. If nr_pages is 0 or negative, returns 0. If no pages 739 * were pinned, returns -errno. Each page returned must be released 740 * with a put_page() call when it is finished with. vmas will only 741 * remain valid while mmap_sem is held. 742 * 743 * Must be called with mmap_sem held. It may be released. See below. 744 * 745 * __get_user_pages walks a process's page tables and takes a reference to 746 * each struct page that each user address corresponds to at a given 747 * instant. That is, it takes the page that would be accessed if a user 748 * thread accesses the given user virtual address at that instant. 749 * 750 * This does not guarantee that the page exists in the user mappings when 751 * __get_user_pages returns, and there may even be a completely different 752 * page there in some cases (eg. if mmapped pagecache has been invalidated 753 * and subsequently re faulted). However it does guarantee that the page 754 * won't be freed completely. And mostly callers simply care that the page 755 * contains data that was valid *at some point in time*. Typically, an IO 756 * or similar operation cannot guarantee anything stronger anyway because 757 * locks can't be held over the syscall boundary. 758 * 759 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 760 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 761 * appropriate) must be called after the page is finished with, and 762 * before put_page is called. 763 * 764 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 765 * or mmap_sem contention, and if waiting is needed to pin all pages, 766 * *@nonblocking will be set to 0. Further, if @gup_flags does not 767 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 768 * this case. 769 * 770 * A caller using such a combination of @nonblocking and @gup_flags 771 * must therefore hold the mmap_sem for reading only, and recognize 772 * when it's been released. Otherwise, it must be held for either 773 * reading or writing and will not be released. 774 * 775 * In most cases, get_user_pages or get_user_pages_fast should be used 776 * instead of __get_user_pages. __get_user_pages should be used only if 777 * you need some special @gup_flags. 778 */ 779 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 780 unsigned long start, unsigned long nr_pages, 781 unsigned int gup_flags, struct page **pages, 782 struct vm_area_struct **vmas, int *nonblocking) 783 { 784 long ret = 0, i = 0; 785 struct vm_area_struct *vma = NULL; 786 struct follow_page_context ctx = { NULL }; 787 788 if (!nr_pages) 789 return 0; 790 791 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 792 793 /* 794 * If FOLL_FORCE is set then do not force a full fault as the hinting 795 * fault information is unrelated to the reference behaviour of a task 796 * using the address space 797 */ 798 if (!(gup_flags & FOLL_FORCE)) 799 gup_flags |= FOLL_NUMA; 800 801 do { 802 struct page *page; 803 unsigned int foll_flags = gup_flags; 804 unsigned int page_increm; 805 806 /* first iteration or cross vma bound */ 807 if (!vma || start >= vma->vm_end) { 808 vma = find_extend_vma(mm, start); 809 if (!vma && in_gate_area(mm, start)) { 810 ret = get_gate_page(mm, start & PAGE_MASK, 811 gup_flags, &vma, 812 pages ? &pages[i] : NULL); 813 if (ret) 814 goto out; 815 ctx.page_mask = 0; 816 goto next_page; 817 } 818 819 if (!vma || check_vma_flags(vma, gup_flags)) { 820 ret = -EFAULT; 821 goto out; 822 } 823 if (is_vm_hugetlb_page(vma)) { 824 i = follow_hugetlb_page(mm, vma, pages, vmas, 825 &start, &nr_pages, i, 826 gup_flags, nonblocking); 827 continue; 828 } 829 } 830 retry: 831 /* 832 * If we have a pending SIGKILL, don't keep faulting pages and 833 * potentially allocating memory. 834 */ 835 if (fatal_signal_pending(current)) { 836 ret = -ERESTARTSYS; 837 goto out; 838 } 839 cond_resched(); 840 841 page = follow_page_mask(vma, start, foll_flags, &ctx); 842 if (!page) { 843 ret = faultin_page(tsk, vma, start, &foll_flags, 844 nonblocking); 845 switch (ret) { 846 case 0: 847 goto retry; 848 case -EBUSY: 849 ret = 0; 850 /* FALLTHRU */ 851 case -EFAULT: 852 case -ENOMEM: 853 case -EHWPOISON: 854 goto out; 855 case -ENOENT: 856 goto next_page; 857 } 858 BUG(); 859 } else if (PTR_ERR(page) == -EEXIST) { 860 /* 861 * Proper page table entry exists, but no corresponding 862 * struct page. 863 */ 864 goto next_page; 865 } else if (IS_ERR(page)) { 866 ret = PTR_ERR(page); 867 goto out; 868 } 869 if (pages) { 870 pages[i] = page; 871 flush_anon_page(vma, page, start); 872 flush_dcache_page(page); 873 ctx.page_mask = 0; 874 } 875 next_page: 876 if (vmas) { 877 vmas[i] = vma; 878 ctx.page_mask = 0; 879 } 880 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 881 if (page_increm > nr_pages) 882 page_increm = nr_pages; 883 i += page_increm; 884 start += page_increm * PAGE_SIZE; 885 nr_pages -= page_increm; 886 } while (nr_pages); 887 out: 888 if (ctx.pgmap) 889 put_dev_pagemap(ctx.pgmap); 890 return i ? i : ret; 891 } 892 893 static bool vma_permits_fault(struct vm_area_struct *vma, 894 unsigned int fault_flags) 895 { 896 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 897 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 898 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 899 900 if (!(vm_flags & vma->vm_flags)) 901 return false; 902 903 /* 904 * The architecture might have a hardware protection 905 * mechanism other than read/write that can deny access. 906 * 907 * gup always represents data access, not instruction 908 * fetches, so execute=false here: 909 */ 910 if (!arch_vma_access_permitted(vma, write, false, foreign)) 911 return false; 912 913 return true; 914 } 915 916 /* 917 * fixup_user_fault() - manually resolve a user page fault 918 * @tsk: the task_struct to use for page fault accounting, or 919 * NULL if faults are not to be recorded. 920 * @mm: mm_struct of target mm 921 * @address: user address 922 * @fault_flags:flags to pass down to handle_mm_fault() 923 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 924 * does not allow retry 925 * 926 * This is meant to be called in the specific scenario where for locking reasons 927 * we try to access user memory in atomic context (within a pagefault_disable() 928 * section), this returns -EFAULT, and we want to resolve the user fault before 929 * trying again. 930 * 931 * Typically this is meant to be used by the futex code. 932 * 933 * The main difference with get_user_pages() is that this function will 934 * unconditionally call handle_mm_fault() which will in turn perform all the 935 * necessary SW fixup of the dirty and young bits in the PTE, while 936 * get_user_pages() only guarantees to update these in the struct page. 937 * 938 * This is important for some architectures where those bits also gate the 939 * access permission to the page because they are maintained in software. On 940 * such architectures, gup() will not be enough to make a subsequent access 941 * succeed. 942 * 943 * This function will not return with an unlocked mmap_sem. So it has not the 944 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 945 */ 946 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 947 unsigned long address, unsigned int fault_flags, 948 bool *unlocked) 949 { 950 struct vm_area_struct *vma; 951 vm_fault_t ret, major = 0; 952 953 if (unlocked) 954 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 955 956 retry: 957 vma = find_extend_vma(mm, address); 958 if (!vma || address < vma->vm_start) 959 return -EFAULT; 960 961 if (!vma_permits_fault(vma, fault_flags)) 962 return -EFAULT; 963 964 ret = handle_mm_fault(vma, address, fault_flags); 965 major |= ret & VM_FAULT_MAJOR; 966 if (ret & VM_FAULT_ERROR) { 967 int err = vm_fault_to_errno(ret, 0); 968 969 if (err) 970 return err; 971 BUG(); 972 } 973 974 if (ret & VM_FAULT_RETRY) { 975 down_read(&mm->mmap_sem); 976 if (!(fault_flags & FAULT_FLAG_TRIED)) { 977 *unlocked = true; 978 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 979 fault_flags |= FAULT_FLAG_TRIED; 980 goto retry; 981 } 982 } 983 984 if (tsk) { 985 if (major) 986 tsk->maj_flt++; 987 else 988 tsk->min_flt++; 989 } 990 return 0; 991 } 992 EXPORT_SYMBOL_GPL(fixup_user_fault); 993 994 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 995 struct mm_struct *mm, 996 unsigned long start, 997 unsigned long nr_pages, 998 struct page **pages, 999 struct vm_area_struct **vmas, 1000 int *locked, 1001 unsigned int flags) 1002 { 1003 long ret, pages_done; 1004 bool lock_dropped; 1005 1006 if (locked) { 1007 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1008 BUG_ON(vmas); 1009 /* check caller initialized locked */ 1010 BUG_ON(*locked != 1); 1011 } 1012 1013 if (pages) 1014 flags |= FOLL_GET; 1015 1016 pages_done = 0; 1017 lock_dropped = false; 1018 for (;;) { 1019 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1020 vmas, locked); 1021 if (!locked) 1022 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1023 return ret; 1024 1025 /* VM_FAULT_RETRY cannot return errors */ 1026 if (!*locked) { 1027 BUG_ON(ret < 0); 1028 BUG_ON(ret >= nr_pages); 1029 } 1030 1031 if (ret > 0) { 1032 nr_pages -= ret; 1033 pages_done += ret; 1034 if (!nr_pages) 1035 break; 1036 } 1037 if (*locked) { 1038 /* 1039 * VM_FAULT_RETRY didn't trigger or it was a 1040 * FOLL_NOWAIT. 1041 */ 1042 if (!pages_done) 1043 pages_done = ret; 1044 break; 1045 } 1046 /* 1047 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1048 * For the prefault case (!pages) we only update counts. 1049 */ 1050 if (likely(pages)) 1051 pages += ret; 1052 start += ret << PAGE_SHIFT; 1053 1054 /* 1055 * Repeat on the address that fired VM_FAULT_RETRY 1056 * without FAULT_FLAG_ALLOW_RETRY but with 1057 * FAULT_FLAG_TRIED. 1058 */ 1059 *locked = 1; 1060 lock_dropped = true; 1061 down_read(&mm->mmap_sem); 1062 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1063 pages, NULL, NULL); 1064 if (ret != 1) { 1065 BUG_ON(ret > 1); 1066 if (!pages_done) 1067 pages_done = ret; 1068 break; 1069 } 1070 nr_pages--; 1071 pages_done++; 1072 if (!nr_pages) 1073 break; 1074 if (likely(pages)) 1075 pages++; 1076 start += PAGE_SIZE; 1077 } 1078 if (lock_dropped && *locked) { 1079 /* 1080 * We must let the caller know we temporarily dropped the lock 1081 * and so the critical section protected by it was lost. 1082 */ 1083 up_read(&mm->mmap_sem); 1084 *locked = 0; 1085 } 1086 return pages_done; 1087 } 1088 1089 /* 1090 * get_user_pages_remote() - pin user pages in memory 1091 * @tsk: the task_struct to use for page fault accounting, or 1092 * NULL if faults are not to be recorded. 1093 * @mm: mm_struct of target mm 1094 * @start: starting user address 1095 * @nr_pages: number of pages from start to pin 1096 * @gup_flags: flags modifying lookup behaviour 1097 * @pages: array that receives pointers to the pages pinned. 1098 * Should be at least nr_pages long. Or NULL, if caller 1099 * only intends to ensure the pages are faulted in. 1100 * @vmas: array of pointers to vmas corresponding to each page. 1101 * Or NULL if the caller does not require them. 1102 * @locked: pointer to lock flag indicating whether lock is held and 1103 * subsequently whether VM_FAULT_RETRY functionality can be 1104 * utilised. Lock must initially be held. 1105 * 1106 * Returns number of pages pinned. This may be fewer than the number 1107 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1108 * were pinned, returns -errno. Each page returned must be released 1109 * with a put_page() call when it is finished with. vmas will only 1110 * remain valid while mmap_sem is held. 1111 * 1112 * Must be called with mmap_sem held for read or write. 1113 * 1114 * get_user_pages walks a process's page tables and takes a reference to 1115 * each struct page that each user address corresponds to at a given 1116 * instant. That is, it takes the page that would be accessed if a user 1117 * thread accesses the given user virtual address at that instant. 1118 * 1119 * This does not guarantee that the page exists in the user mappings when 1120 * get_user_pages returns, and there may even be a completely different 1121 * page there in some cases (eg. if mmapped pagecache has been invalidated 1122 * and subsequently re faulted). However it does guarantee that the page 1123 * won't be freed completely. And mostly callers simply care that the page 1124 * contains data that was valid *at some point in time*. Typically, an IO 1125 * or similar operation cannot guarantee anything stronger anyway because 1126 * locks can't be held over the syscall boundary. 1127 * 1128 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1129 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1130 * be called after the page is finished with, and before put_page is called. 1131 * 1132 * get_user_pages is typically used for fewer-copy IO operations, to get a 1133 * handle on the memory by some means other than accesses via the user virtual 1134 * addresses. The pages may be submitted for DMA to devices or accessed via 1135 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1136 * use the correct cache flushing APIs. 1137 * 1138 * See also get_user_pages_fast, for performance critical applications. 1139 * 1140 * get_user_pages should be phased out in favor of 1141 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1142 * should use get_user_pages because it cannot pass 1143 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1144 */ 1145 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1146 unsigned long start, unsigned long nr_pages, 1147 unsigned int gup_flags, struct page **pages, 1148 struct vm_area_struct **vmas, int *locked) 1149 { 1150 /* 1151 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1152 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1153 * vmas. As there are no users of this flag in this call we simply 1154 * disallow this option for now. 1155 */ 1156 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1157 return -EINVAL; 1158 1159 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1160 locked, 1161 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1162 } 1163 EXPORT_SYMBOL(get_user_pages_remote); 1164 1165 /** 1166 * populate_vma_page_range() - populate a range of pages in the vma. 1167 * @vma: target vma 1168 * @start: start address 1169 * @end: end address 1170 * @nonblocking: 1171 * 1172 * This takes care of mlocking the pages too if VM_LOCKED is set. 1173 * 1174 * return 0 on success, negative error code on error. 1175 * 1176 * vma->vm_mm->mmap_sem must be held. 1177 * 1178 * If @nonblocking is NULL, it may be held for read or write and will 1179 * be unperturbed. 1180 * 1181 * If @nonblocking is non-NULL, it must held for read only and may be 1182 * released. If it's released, *@nonblocking will be set to 0. 1183 */ 1184 long populate_vma_page_range(struct vm_area_struct *vma, 1185 unsigned long start, unsigned long end, int *nonblocking) 1186 { 1187 struct mm_struct *mm = vma->vm_mm; 1188 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1189 int gup_flags; 1190 1191 VM_BUG_ON(start & ~PAGE_MASK); 1192 VM_BUG_ON(end & ~PAGE_MASK); 1193 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1194 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1195 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1196 1197 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1198 if (vma->vm_flags & VM_LOCKONFAULT) 1199 gup_flags &= ~FOLL_POPULATE; 1200 /* 1201 * We want to touch writable mappings with a write fault in order 1202 * to break COW, except for shared mappings because these don't COW 1203 * and we would not want to dirty them for nothing. 1204 */ 1205 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1206 gup_flags |= FOLL_WRITE; 1207 1208 /* 1209 * We want mlock to succeed for regions that have any permissions 1210 * other than PROT_NONE. 1211 */ 1212 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1213 gup_flags |= FOLL_FORCE; 1214 1215 /* 1216 * We made sure addr is within a VMA, so the following will 1217 * not result in a stack expansion that recurses back here. 1218 */ 1219 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1220 NULL, NULL, nonblocking); 1221 } 1222 1223 /* 1224 * __mm_populate - populate and/or mlock pages within a range of address space. 1225 * 1226 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1227 * flags. VMAs must be already marked with the desired vm_flags, and 1228 * mmap_sem must not be held. 1229 */ 1230 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1231 { 1232 struct mm_struct *mm = current->mm; 1233 unsigned long end, nstart, nend; 1234 struct vm_area_struct *vma = NULL; 1235 int locked = 0; 1236 long ret = 0; 1237 1238 end = start + len; 1239 1240 for (nstart = start; nstart < end; nstart = nend) { 1241 /* 1242 * We want to fault in pages for [nstart; end) address range. 1243 * Find first corresponding VMA. 1244 */ 1245 if (!locked) { 1246 locked = 1; 1247 down_read(&mm->mmap_sem); 1248 vma = find_vma(mm, nstart); 1249 } else if (nstart >= vma->vm_end) 1250 vma = vma->vm_next; 1251 if (!vma || vma->vm_start >= end) 1252 break; 1253 /* 1254 * Set [nstart; nend) to intersection of desired address 1255 * range with the first VMA. Also, skip undesirable VMA types. 1256 */ 1257 nend = min(end, vma->vm_end); 1258 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1259 continue; 1260 if (nstart < vma->vm_start) 1261 nstart = vma->vm_start; 1262 /* 1263 * Now fault in a range of pages. populate_vma_page_range() 1264 * double checks the vma flags, so that it won't mlock pages 1265 * if the vma was already munlocked. 1266 */ 1267 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1268 if (ret < 0) { 1269 if (ignore_errors) { 1270 ret = 0; 1271 continue; /* continue at next VMA */ 1272 } 1273 break; 1274 } 1275 nend = nstart + ret * PAGE_SIZE; 1276 ret = 0; 1277 } 1278 if (locked) 1279 up_read(&mm->mmap_sem); 1280 return ret; /* 0 or negative error code */ 1281 } 1282 1283 /** 1284 * get_dump_page() - pin user page in memory while writing it to core dump 1285 * @addr: user address 1286 * 1287 * Returns struct page pointer of user page pinned for dump, 1288 * to be freed afterwards by put_page(). 1289 * 1290 * Returns NULL on any kind of failure - a hole must then be inserted into 1291 * the corefile, to preserve alignment with its headers; and also returns 1292 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1293 * allowing a hole to be left in the corefile to save diskspace. 1294 * 1295 * Called without mmap_sem, but after all other threads have been killed. 1296 */ 1297 #ifdef CONFIG_ELF_CORE 1298 struct page *get_dump_page(unsigned long addr) 1299 { 1300 struct vm_area_struct *vma; 1301 struct page *page; 1302 1303 if (__get_user_pages(current, current->mm, addr, 1, 1304 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1305 NULL) < 1) 1306 return NULL; 1307 flush_cache_page(vma, addr, page_to_pfn(page)); 1308 return page; 1309 } 1310 #endif /* CONFIG_ELF_CORE */ 1311 #else /* CONFIG_MMU */ 1312 static long __get_user_pages_locked(struct task_struct *tsk, 1313 struct mm_struct *mm, unsigned long start, 1314 unsigned long nr_pages, struct page **pages, 1315 struct vm_area_struct **vmas, int *locked, 1316 unsigned int foll_flags) 1317 { 1318 struct vm_area_struct *vma; 1319 unsigned long vm_flags; 1320 int i; 1321 1322 /* calculate required read or write permissions. 1323 * If FOLL_FORCE is set, we only require the "MAY" flags. 1324 */ 1325 vm_flags = (foll_flags & FOLL_WRITE) ? 1326 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1327 vm_flags &= (foll_flags & FOLL_FORCE) ? 1328 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1329 1330 for (i = 0; i < nr_pages; i++) { 1331 vma = find_vma(mm, start); 1332 if (!vma) 1333 goto finish_or_fault; 1334 1335 /* protect what we can, including chardevs */ 1336 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1337 !(vm_flags & vma->vm_flags)) 1338 goto finish_or_fault; 1339 1340 if (pages) { 1341 pages[i] = virt_to_page(start); 1342 if (pages[i]) 1343 get_page(pages[i]); 1344 } 1345 if (vmas) 1346 vmas[i] = vma; 1347 start = (start + PAGE_SIZE) & PAGE_MASK; 1348 } 1349 1350 return i; 1351 1352 finish_or_fault: 1353 return i ? : -EFAULT; 1354 } 1355 #endif /* !CONFIG_MMU */ 1356 1357 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1358 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1359 { 1360 long i; 1361 struct vm_area_struct *vma_prev = NULL; 1362 1363 for (i = 0; i < nr_pages; i++) { 1364 struct vm_area_struct *vma = vmas[i]; 1365 1366 if (vma == vma_prev) 1367 continue; 1368 1369 vma_prev = vma; 1370 1371 if (vma_is_fsdax(vma)) 1372 return true; 1373 } 1374 return false; 1375 } 1376 1377 #ifdef CONFIG_CMA 1378 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1379 { 1380 /* 1381 * We want to make sure we allocate the new page from the same node 1382 * as the source page. 1383 */ 1384 int nid = page_to_nid(page); 1385 /* 1386 * Trying to allocate a page for migration. Ignore allocation 1387 * failure warnings. We don't force __GFP_THISNODE here because 1388 * this node here is the node where we have CMA reservation and 1389 * in some case these nodes will have really less non movable 1390 * allocation memory. 1391 */ 1392 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1393 1394 if (PageHighMem(page)) 1395 gfp_mask |= __GFP_HIGHMEM; 1396 1397 #ifdef CONFIG_HUGETLB_PAGE 1398 if (PageHuge(page)) { 1399 struct hstate *h = page_hstate(page); 1400 /* 1401 * We don't want to dequeue from the pool because pool pages will 1402 * mostly be from the CMA region. 1403 */ 1404 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1405 } 1406 #endif 1407 if (PageTransHuge(page)) { 1408 struct page *thp; 1409 /* 1410 * ignore allocation failure warnings 1411 */ 1412 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1413 1414 /* 1415 * Remove the movable mask so that we don't allocate from 1416 * CMA area again. 1417 */ 1418 thp_gfpmask &= ~__GFP_MOVABLE; 1419 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1420 if (!thp) 1421 return NULL; 1422 prep_transhuge_page(thp); 1423 return thp; 1424 } 1425 1426 return __alloc_pages_node(nid, gfp_mask, 0); 1427 } 1428 1429 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1430 struct mm_struct *mm, 1431 unsigned long start, 1432 unsigned long nr_pages, 1433 struct page **pages, 1434 struct vm_area_struct **vmas, 1435 unsigned int gup_flags) 1436 { 1437 unsigned long i; 1438 unsigned long step; 1439 bool drain_allow = true; 1440 bool migrate_allow = true; 1441 LIST_HEAD(cma_page_list); 1442 1443 check_again: 1444 for (i = 0; i < nr_pages;) { 1445 1446 struct page *head = compound_head(pages[i]); 1447 1448 /* 1449 * gup may start from a tail page. Advance step by the left 1450 * part. 1451 */ 1452 step = compound_nr(head) - (pages[i] - head); 1453 /* 1454 * If we get a page from the CMA zone, since we are going to 1455 * be pinning these entries, we might as well move them out 1456 * of the CMA zone if possible. 1457 */ 1458 if (is_migrate_cma_page(head)) { 1459 if (PageHuge(head)) 1460 isolate_huge_page(head, &cma_page_list); 1461 else { 1462 if (!PageLRU(head) && drain_allow) { 1463 lru_add_drain_all(); 1464 drain_allow = false; 1465 } 1466 1467 if (!isolate_lru_page(head)) { 1468 list_add_tail(&head->lru, &cma_page_list); 1469 mod_node_page_state(page_pgdat(head), 1470 NR_ISOLATED_ANON + 1471 page_is_file_cache(head), 1472 hpage_nr_pages(head)); 1473 } 1474 } 1475 } 1476 1477 i += step; 1478 } 1479 1480 if (!list_empty(&cma_page_list)) { 1481 /* 1482 * drop the above get_user_pages reference. 1483 */ 1484 for (i = 0; i < nr_pages; i++) 1485 put_page(pages[i]); 1486 1487 if (migrate_pages(&cma_page_list, new_non_cma_page, 1488 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1489 /* 1490 * some of the pages failed migration. Do get_user_pages 1491 * without migration. 1492 */ 1493 migrate_allow = false; 1494 1495 if (!list_empty(&cma_page_list)) 1496 putback_movable_pages(&cma_page_list); 1497 } 1498 /* 1499 * We did migrate all the pages, Try to get the page references 1500 * again migrating any new CMA pages which we failed to isolate 1501 * earlier. 1502 */ 1503 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages, 1504 pages, vmas, NULL, 1505 gup_flags); 1506 1507 if ((nr_pages > 0) && migrate_allow) { 1508 drain_allow = true; 1509 goto check_again; 1510 } 1511 } 1512 1513 return nr_pages; 1514 } 1515 #else 1516 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1517 struct mm_struct *mm, 1518 unsigned long start, 1519 unsigned long nr_pages, 1520 struct page **pages, 1521 struct vm_area_struct **vmas, 1522 unsigned int gup_flags) 1523 { 1524 return nr_pages; 1525 } 1526 #endif /* CONFIG_CMA */ 1527 1528 /* 1529 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1530 * allows us to process the FOLL_LONGTERM flag. 1531 */ 1532 static long __gup_longterm_locked(struct task_struct *tsk, 1533 struct mm_struct *mm, 1534 unsigned long start, 1535 unsigned long nr_pages, 1536 struct page **pages, 1537 struct vm_area_struct **vmas, 1538 unsigned int gup_flags) 1539 { 1540 struct vm_area_struct **vmas_tmp = vmas; 1541 unsigned long flags = 0; 1542 long rc, i; 1543 1544 if (gup_flags & FOLL_LONGTERM) { 1545 if (!pages) 1546 return -EINVAL; 1547 1548 if (!vmas_tmp) { 1549 vmas_tmp = kcalloc(nr_pages, 1550 sizeof(struct vm_area_struct *), 1551 GFP_KERNEL); 1552 if (!vmas_tmp) 1553 return -ENOMEM; 1554 } 1555 flags = memalloc_nocma_save(); 1556 } 1557 1558 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1559 vmas_tmp, NULL, gup_flags); 1560 1561 if (gup_flags & FOLL_LONGTERM) { 1562 memalloc_nocma_restore(flags); 1563 if (rc < 0) 1564 goto out; 1565 1566 if (check_dax_vmas(vmas_tmp, rc)) { 1567 for (i = 0; i < rc; i++) 1568 put_page(pages[i]); 1569 rc = -EOPNOTSUPP; 1570 goto out; 1571 } 1572 1573 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1574 vmas_tmp, gup_flags); 1575 } 1576 1577 out: 1578 if (vmas_tmp != vmas) 1579 kfree(vmas_tmp); 1580 return rc; 1581 } 1582 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1583 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1584 struct mm_struct *mm, 1585 unsigned long start, 1586 unsigned long nr_pages, 1587 struct page **pages, 1588 struct vm_area_struct **vmas, 1589 unsigned int flags) 1590 { 1591 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1592 NULL, flags); 1593 } 1594 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1595 1596 /* 1597 * This is the same as get_user_pages_remote(), just with a 1598 * less-flexible calling convention where we assume that the task 1599 * and mm being operated on are the current task's and don't allow 1600 * passing of a locked parameter. We also obviously don't pass 1601 * FOLL_REMOTE in here. 1602 */ 1603 long get_user_pages(unsigned long start, unsigned long nr_pages, 1604 unsigned int gup_flags, struct page **pages, 1605 struct vm_area_struct **vmas) 1606 { 1607 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1608 pages, vmas, gup_flags | FOLL_TOUCH); 1609 } 1610 EXPORT_SYMBOL(get_user_pages); 1611 1612 /* 1613 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1614 * paths better by using either get_user_pages_locked() or 1615 * get_user_pages_unlocked(). 1616 * 1617 * get_user_pages_locked() is suitable to replace the form: 1618 * 1619 * down_read(&mm->mmap_sem); 1620 * do_something() 1621 * get_user_pages(tsk, mm, ..., pages, NULL); 1622 * up_read(&mm->mmap_sem); 1623 * 1624 * to: 1625 * 1626 * int locked = 1; 1627 * down_read(&mm->mmap_sem); 1628 * do_something() 1629 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1630 * if (locked) 1631 * up_read(&mm->mmap_sem); 1632 */ 1633 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1634 unsigned int gup_flags, struct page **pages, 1635 int *locked) 1636 { 1637 /* 1638 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1639 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1640 * vmas. As there are no users of this flag in this call we simply 1641 * disallow this option for now. 1642 */ 1643 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1644 return -EINVAL; 1645 1646 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1647 pages, NULL, locked, 1648 gup_flags | FOLL_TOUCH); 1649 } 1650 EXPORT_SYMBOL(get_user_pages_locked); 1651 1652 /* 1653 * get_user_pages_unlocked() is suitable to replace the form: 1654 * 1655 * down_read(&mm->mmap_sem); 1656 * get_user_pages(tsk, mm, ..., pages, NULL); 1657 * up_read(&mm->mmap_sem); 1658 * 1659 * with: 1660 * 1661 * get_user_pages_unlocked(tsk, mm, ..., pages); 1662 * 1663 * It is functionally equivalent to get_user_pages_fast so 1664 * get_user_pages_fast should be used instead if specific gup_flags 1665 * (e.g. FOLL_FORCE) are not required. 1666 */ 1667 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1668 struct page **pages, unsigned int gup_flags) 1669 { 1670 struct mm_struct *mm = current->mm; 1671 int locked = 1; 1672 long ret; 1673 1674 /* 1675 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1676 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1677 * vmas. As there are no users of this flag in this call we simply 1678 * disallow this option for now. 1679 */ 1680 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1681 return -EINVAL; 1682 1683 down_read(&mm->mmap_sem); 1684 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1685 &locked, gup_flags | FOLL_TOUCH); 1686 if (locked) 1687 up_read(&mm->mmap_sem); 1688 return ret; 1689 } 1690 EXPORT_SYMBOL(get_user_pages_unlocked); 1691 1692 /* 1693 * Fast GUP 1694 * 1695 * get_user_pages_fast attempts to pin user pages by walking the page 1696 * tables directly and avoids taking locks. Thus the walker needs to be 1697 * protected from page table pages being freed from under it, and should 1698 * block any THP splits. 1699 * 1700 * One way to achieve this is to have the walker disable interrupts, and 1701 * rely on IPIs from the TLB flushing code blocking before the page table 1702 * pages are freed. This is unsuitable for architectures that do not need 1703 * to broadcast an IPI when invalidating TLBs. 1704 * 1705 * Another way to achieve this is to batch up page table containing pages 1706 * belonging to more than one mm_user, then rcu_sched a callback to free those 1707 * pages. Disabling interrupts will allow the fast_gup walker to both block 1708 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1709 * (which is a relatively rare event). The code below adopts this strategy. 1710 * 1711 * Before activating this code, please be aware that the following assumptions 1712 * are currently made: 1713 * 1714 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1715 * free pages containing page tables or TLB flushing requires IPI broadcast. 1716 * 1717 * *) ptes can be read atomically by the architecture. 1718 * 1719 * *) access_ok is sufficient to validate userspace address ranges. 1720 * 1721 * The last two assumptions can be relaxed by the addition of helper functions. 1722 * 1723 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1724 */ 1725 #ifdef CONFIG_HAVE_FAST_GUP 1726 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 1727 /* 1728 * WARNING: only to be used in the get_user_pages_fast() implementation. 1729 * 1730 * With get_user_pages_fast(), we walk down the pagetables without taking any 1731 * locks. For this we would like to load the pointers atomically, but sometimes 1732 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 1733 * we do have is the guarantee that a PTE will only either go from not present 1734 * to present, or present to not present or both -- it will not switch to a 1735 * completely different present page without a TLB flush in between; something 1736 * that we are blocking by holding interrupts off. 1737 * 1738 * Setting ptes from not present to present goes: 1739 * 1740 * ptep->pte_high = h; 1741 * smp_wmb(); 1742 * ptep->pte_low = l; 1743 * 1744 * And present to not present goes: 1745 * 1746 * ptep->pte_low = 0; 1747 * smp_wmb(); 1748 * ptep->pte_high = 0; 1749 * 1750 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 1751 * We load pte_high *after* loading pte_low, which ensures we don't see an older 1752 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 1753 * picked up a changed pte high. We might have gotten rubbish values from 1754 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 1755 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 1756 * operates on present ptes we're safe. 1757 */ 1758 static inline pte_t gup_get_pte(pte_t *ptep) 1759 { 1760 pte_t pte; 1761 1762 do { 1763 pte.pte_low = ptep->pte_low; 1764 smp_rmb(); 1765 pte.pte_high = ptep->pte_high; 1766 smp_rmb(); 1767 } while (unlikely(pte.pte_low != ptep->pte_low)); 1768 1769 return pte; 1770 } 1771 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 1772 /* 1773 * We require that the PTE can be read atomically. 1774 */ 1775 static inline pte_t gup_get_pte(pte_t *ptep) 1776 { 1777 return READ_ONCE(*ptep); 1778 } 1779 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 1780 1781 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 1782 struct page **pages) 1783 { 1784 while ((*nr) - nr_start) { 1785 struct page *page = pages[--(*nr)]; 1786 1787 ClearPageReferenced(page); 1788 put_page(page); 1789 } 1790 } 1791 1792 /* 1793 * Return the compund head page with ref appropriately incremented, 1794 * or NULL if that failed. 1795 */ 1796 static inline struct page *try_get_compound_head(struct page *page, int refs) 1797 { 1798 struct page *head = compound_head(page); 1799 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 1800 return NULL; 1801 if (unlikely(!page_cache_add_speculative(head, refs))) 1802 return NULL; 1803 return head; 1804 } 1805 1806 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1807 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1808 unsigned int flags, struct page **pages, int *nr) 1809 { 1810 struct dev_pagemap *pgmap = NULL; 1811 int nr_start = *nr, ret = 0; 1812 pte_t *ptep, *ptem; 1813 1814 ptem = ptep = pte_offset_map(&pmd, addr); 1815 do { 1816 pte_t pte = gup_get_pte(ptep); 1817 struct page *head, *page; 1818 1819 /* 1820 * Similar to the PMD case below, NUMA hinting must take slow 1821 * path using the pte_protnone check. 1822 */ 1823 if (pte_protnone(pte)) 1824 goto pte_unmap; 1825 1826 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 1827 goto pte_unmap; 1828 1829 if (pte_devmap(pte)) { 1830 if (unlikely(flags & FOLL_LONGTERM)) 1831 goto pte_unmap; 1832 1833 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1834 if (unlikely(!pgmap)) { 1835 undo_dev_pagemap(nr, nr_start, pages); 1836 goto pte_unmap; 1837 } 1838 } else if (pte_special(pte)) 1839 goto pte_unmap; 1840 1841 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1842 page = pte_page(pte); 1843 1844 head = try_get_compound_head(page, 1); 1845 if (!head) 1846 goto pte_unmap; 1847 1848 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1849 put_page(head); 1850 goto pte_unmap; 1851 } 1852 1853 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1854 1855 SetPageReferenced(page); 1856 pages[*nr] = page; 1857 (*nr)++; 1858 1859 } while (ptep++, addr += PAGE_SIZE, addr != end); 1860 1861 ret = 1; 1862 1863 pte_unmap: 1864 if (pgmap) 1865 put_dev_pagemap(pgmap); 1866 pte_unmap(ptem); 1867 return ret; 1868 } 1869 #else 1870 1871 /* 1872 * If we can't determine whether or not a pte is special, then fail immediately 1873 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1874 * to be special. 1875 * 1876 * For a futex to be placed on a THP tail page, get_futex_key requires a 1877 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1878 * useful to have gup_huge_pmd even if we can't operate on ptes. 1879 */ 1880 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1881 unsigned int flags, struct page **pages, int *nr) 1882 { 1883 return 0; 1884 } 1885 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1886 1887 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1888 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1889 unsigned long end, struct page **pages, int *nr) 1890 { 1891 int nr_start = *nr; 1892 struct dev_pagemap *pgmap = NULL; 1893 1894 do { 1895 struct page *page = pfn_to_page(pfn); 1896 1897 pgmap = get_dev_pagemap(pfn, pgmap); 1898 if (unlikely(!pgmap)) { 1899 undo_dev_pagemap(nr, nr_start, pages); 1900 return 0; 1901 } 1902 SetPageReferenced(page); 1903 pages[*nr] = page; 1904 get_page(page); 1905 (*nr)++; 1906 pfn++; 1907 } while (addr += PAGE_SIZE, addr != end); 1908 1909 if (pgmap) 1910 put_dev_pagemap(pgmap); 1911 return 1; 1912 } 1913 1914 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1915 unsigned long end, struct page **pages, int *nr) 1916 { 1917 unsigned long fault_pfn; 1918 int nr_start = *nr; 1919 1920 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1921 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1922 return 0; 1923 1924 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1925 undo_dev_pagemap(nr, nr_start, pages); 1926 return 0; 1927 } 1928 return 1; 1929 } 1930 1931 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1932 unsigned long end, struct page **pages, int *nr) 1933 { 1934 unsigned long fault_pfn; 1935 int nr_start = *nr; 1936 1937 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1938 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1939 return 0; 1940 1941 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1942 undo_dev_pagemap(nr, nr_start, pages); 1943 return 0; 1944 } 1945 return 1; 1946 } 1947 #else 1948 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1949 unsigned long end, struct page **pages, int *nr) 1950 { 1951 BUILD_BUG(); 1952 return 0; 1953 } 1954 1955 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1956 unsigned long end, struct page **pages, int *nr) 1957 { 1958 BUILD_BUG(); 1959 return 0; 1960 } 1961 #endif 1962 1963 #ifdef CONFIG_ARCH_HAS_HUGEPD 1964 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 1965 unsigned long sz) 1966 { 1967 unsigned long __boundary = (addr + sz) & ~(sz-1); 1968 return (__boundary - 1 < end - 1) ? __boundary : end; 1969 } 1970 1971 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1972 unsigned long end, int write, struct page **pages, int *nr) 1973 { 1974 unsigned long pte_end; 1975 struct page *head, *page; 1976 pte_t pte; 1977 int refs; 1978 1979 pte_end = (addr + sz) & ~(sz-1); 1980 if (pte_end < end) 1981 end = pte_end; 1982 1983 pte = READ_ONCE(*ptep); 1984 1985 if (!pte_access_permitted(pte, write)) 1986 return 0; 1987 1988 /* hugepages are never "special" */ 1989 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1990 1991 refs = 0; 1992 head = pte_page(pte); 1993 1994 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 1995 do { 1996 VM_BUG_ON(compound_head(page) != head); 1997 pages[*nr] = page; 1998 (*nr)++; 1999 page++; 2000 refs++; 2001 } while (addr += PAGE_SIZE, addr != end); 2002 2003 head = try_get_compound_head(head, refs); 2004 if (!head) { 2005 *nr -= refs; 2006 return 0; 2007 } 2008 2009 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2010 /* Could be optimized better */ 2011 *nr -= refs; 2012 while (refs--) 2013 put_page(head); 2014 return 0; 2015 } 2016 2017 SetPageReferenced(head); 2018 return 1; 2019 } 2020 2021 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2022 unsigned int pdshift, unsigned long end, int write, 2023 struct page **pages, int *nr) 2024 { 2025 pte_t *ptep; 2026 unsigned long sz = 1UL << hugepd_shift(hugepd); 2027 unsigned long next; 2028 2029 ptep = hugepte_offset(hugepd, addr, pdshift); 2030 do { 2031 next = hugepte_addr_end(addr, end, sz); 2032 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 2033 return 0; 2034 } while (ptep++, addr = next, addr != end); 2035 2036 return 1; 2037 } 2038 #else 2039 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2040 unsigned pdshift, unsigned long end, int write, 2041 struct page **pages, int *nr) 2042 { 2043 return 0; 2044 } 2045 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2046 2047 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2048 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2049 { 2050 struct page *head, *page; 2051 int refs; 2052 2053 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2054 return 0; 2055 2056 if (pmd_devmap(orig)) { 2057 if (unlikely(flags & FOLL_LONGTERM)) 2058 return 0; 2059 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 2060 } 2061 2062 refs = 0; 2063 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2064 do { 2065 pages[*nr] = page; 2066 (*nr)++; 2067 page++; 2068 refs++; 2069 } while (addr += PAGE_SIZE, addr != end); 2070 2071 head = try_get_compound_head(pmd_page(orig), refs); 2072 if (!head) { 2073 *nr -= refs; 2074 return 0; 2075 } 2076 2077 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2078 *nr -= refs; 2079 while (refs--) 2080 put_page(head); 2081 return 0; 2082 } 2083 2084 SetPageReferenced(head); 2085 return 1; 2086 } 2087 2088 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2089 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2090 { 2091 struct page *head, *page; 2092 int refs; 2093 2094 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2095 return 0; 2096 2097 if (pud_devmap(orig)) { 2098 if (unlikely(flags & FOLL_LONGTERM)) 2099 return 0; 2100 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 2101 } 2102 2103 refs = 0; 2104 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2105 do { 2106 pages[*nr] = page; 2107 (*nr)++; 2108 page++; 2109 refs++; 2110 } while (addr += PAGE_SIZE, addr != end); 2111 2112 head = try_get_compound_head(pud_page(orig), refs); 2113 if (!head) { 2114 *nr -= refs; 2115 return 0; 2116 } 2117 2118 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2119 *nr -= refs; 2120 while (refs--) 2121 put_page(head); 2122 return 0; 2123 } 2124 2125 SetPageReferenced(head); 2126 return 1; 2127 } 2128 2129 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2130 unsigned long end, unsigned int flags, 2131 struct page **pages, int *nr) 2132 { 2133 int refs; 2134 struct page *head, *page; 2135 2136 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2137 return 0; 2138 2139 BUILD_BUG_ON(pgd_devmap(orig)); 2140 refs = 0; 2141 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2142 do { 2143 pages[*nr] = page; 2144 (*nr)++; 2145 page++; 2146 refs++; 2147 } while (addr += PAGE_SIZE, addr != end); 2148 2149 head = try_get_compound_head(pgd_page(orig), refs); 2150 if (!head) { 2151 *nr -= refs; 2152 return 0; 2153 } 2154 2155 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2156 *nr -= refs; 2157 while (refs--) 2158 put_page(head); 2159 return 0; 2160 } 2161 2162 SetPageReferenced(head); 2163 return 1; 2164 } 2165 2166 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2167 unsigned int flags, struct page **pages, int *nr) 2168 { 2169 unsigned long next; 2170 pmd_t *pmdp; 2171 2172 pmdp = pmd_offset(&pud, addr); 2173 do { 2174 pmd_t pmd = READ_ONCE(*pmdp); 2175 2176 next = pmd_addr_end(addr, end); 2177 if (!pmd_present(pmd)) 2178 return 0; 2179 2180 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2181 pmd_devmap(pmd))) { 2182 /* 2183 * NUMA hinting faults need to be handled in the GUP 2184 * slowpath for accounting purposes and so that they 2185 * can be serialised against THP migration. 2186 */ 2187 if (pmd_protnone(pmd)) 2188 return 0; 2189 2190 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2191 pages, nr)) 2192 return 0; 2193 2194 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2195 /* 2196 * architecture have different format for hugetlbfs 2197 * pmd format and THP pmd format 2198 */ 2199 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2200 PMD_SHIFT, next, flags, pages, nr)) 2201 return 0; 2202 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2203 return 0; 2204 } while (pmdp++, addr = next, addr != end); 2205 2206 return 1; 2207 } 2208 2209 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2210 unsigned int flags, struct page **pages, int *nr) 2211 { 2212 unsigned long next; 2213 pud_t *pudp; 2214 2215 pudp = pud_offset(&p4d, addr); 2216 do { 2217 pud_t pud = READ_ONCE(*pudp); 2218 2219 next = pud_addr_end(addr, end); 2220 if (pud_none(pud)) 2221 return 0; 2222 if (unlikely(pud_huge(pud))) { 2223 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2224 pages, nr)) 2225 return 0; 2226 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2227 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2228 PUD_SHIFT, next, flags, pages, nr)) 2229 return 0; 2230 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2231 return 0; 2232 } while (pudp++, addr = next, addr != end); 2233 2234 return 1; 2235 } 2236 2237 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2238 unsigned int flags, struct page **pages, int *nr) 2239 { 2240 unsigned long next; 2241 p4d_t *p4dp; 2242 2243 p4dp = p4d_offset(&pgd, addr); 2244 do { 2245 p4d_t p4d = READ_ONCE(*p4dp); 2246 2247 next = p4d_addr_end(addr, end); 2248 if (p4d_none(p4d)) 2249 return 0; 2250 BUILD_BUG_ON(p4d_huge(p4d)); 2251 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2252 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2253 P4D_SHIFT, next, flags, pages, nr)) 2254 return 0; 2255 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2256 return 0; 2257 } while (p4dp++, addr = next, addr != end); 2258 2259 return 1; 2260 } 2261 2262 static void gup_pgd_range(unsigned long addr, unsigned long end, 2263 unsigned int flags, struct page **pages, int *nr) 2264 { 2265 unsigned long next; 2266 pgd_t *pgdp; 2267 2268 pgdp = pgd_offset(current->mm, addr); 2269 do { 2270 pgd_t pgd = READ_ONCE(*pgdp); 2271 2272 next = pgd_addr_end(addr, end); 2273 if (pgd_none(pgd)) 2274 return; 2275 if (unlikely(pgd_huge(pgd))) { 2276 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2277 pages, nr)) 2278 return; 2279 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2280 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2281 PGDIR_SHIFT, next, flags, pages, nr)) 2282 return; 2283 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2284 return; 2285 } while (pgdp++, addr = next, addr != end); 2286 } 2287 #else 2288 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2289 unsigned int flags, struct page **pages, int *nr) 2290 { 2291 } 2292 #endif /* CONFIG_HAVE_FAST_GUP */ 2293 2294 #ifndef gup_fast_permitted 2295 /* 2296 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2297 * we need to fall back to the slow version: 2298 */ 2299 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2300 { 2301 return true; 2302 } 2303 #endif 2304 2305 /* 2306 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2307 * the regular GUP. 2308 * Note a difference with get_user_pages_fast: this always returns the 2309 * number of pages pinned, 0 if no pages were pinned. 2310 * 2311 * If the architecture does not support this function, simply return with no 2312 * pages pinned. 2313 */ 2314 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2315 struct page **pages) 2316 { 2317 unsigned long len, end; 2318 unsigned long flags; 2319 int nr = 0; 2320 2321 start = untagged_addr(start) & PAGE_MASK; 2322 len = (unsigned long) nr_pages << PAGE_SHIFT; 2323 end = start + len; 2324 2325 if (end <= start) 2326 return 0; 2327 if (unlikely(!access_ok((void __user *)start, len))) 2328 return 0; 2329 2330 /* 2331 * Disable interrupts. We use the nested form as we can already have 2332 * interrupts disabled by get_futex_key. 2333 * 2334 * With interrupts disabled, we block page table pages from being 2335 * freed from under us. See struct mmu_table_batch comments in 2336 * include/asm-generic/tlb.h for more details. 2337 * 2338 * We do not adopt an rcu_read_lock(.) here as we also want to 2339 * block IPIs that come from THPs splitting. 2340 */ 2341 2342 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2343 gup_fast_permitted(start, end)) { 2344 local_irq_save(flags); 2345 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); 2346 local_irq_restore(flags); 2347 } 2348 2349 return nr; 2350 } 2351 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2352 2353 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2354 unsigned int gup_flags, struct page **pages) 2355 { 2356 int ret; 2357 2358 /* 2359 * FIXME: FOLL_LONGTERM does not work with 2360 * get_user_pages_unlocked() (see comments in that function) 2361 */ 2362 if (gup_flags & FOLL_LONGTERM) { 2363 down_read(¤t->mm->mmap_sem); 2364 ret = __gup_longterm_locked(current, current->mm, 2365 start, nr_pages, 2366 pages, NULL, gup_flags); 2367 up_read(¤t->mm->mmap_sem); 2368 } else { 2369 ret = get_user_pages_unlocked(start, nr_pages, 2370 pages, gup_flags); 2371 } 2372 2373 return ret; 2374 } 2375 2376 /** 2377 * get_user_pages_fast() - pin user pages in memory 2378 * @start: starting user address 2379 * @nr_pages: number of pages from start to pin 2380 * @gup_flags: flags modifying pin behaviour 2381 * @pages: array that receives pointers to the pages pinned. 2382 * Should be at least nr_pages long. 2383 * 2384 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2385 * If not successful, it will fall back to taking the lock and 2386 * calling get_user_pages(). 2387 * 2388 * Returns number of pages pinned. This may be fewer than the number 2389 * requested. If nr_pages is 0 or negative, returns 0. If no pages 2390 * were pinned, returns -errno. 2391 */ 2392 int get_user_pages_fast(unsigned long start, int nr_pages, 2393 unsigned int gup_flags, struct page **pages) 2394 { 2395 unsigned long addr, len, end; 2396 int nr = 0, ret = 0; 2397 2398 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM))) 2399 return -EINVAL; 2400 2401 start = untagged_addr(start) & PAGE_MASK; 2402 addr = start; 2403 len = (unsigned long) nr_pages << PAGE_SHIFT; 2404 end = start + len; 2405 2406 if (end <= start) 2407 return 0; 2408 if (unlikely(!access_ok((void __user *)start, len))) 2409 return -EFAULT; 2410 2411 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2412 gup_fast_permitted(start, end)) { 2413 local_irq_disable(); 2414 gup_pgd_range(addr, end, gup_flags, pages, &nr); 2415 local_irq_enable(); 2416 ret = nr; 2417 } 2418 2419 if (nr < nr_pages) { 2420 /* Try to get the remaining pages with get_user_pages */ 2421 start += nr << PAGE_SHIFT; 2422 pages += nr; 2423 2424 ret = __gup_longterm_unlocked(start, nr_pages - nr, 2425 gup_flags, pages); 2426 2427 /* Have to be a bit careful with return values */ 2428 if (nr > 0) { 2429 if (ret < 0) 2430 ret = nr; 2431 else 2432 ret += nr; 2433 } 2434 } 2435 2436 return ret; 2437 } 2438 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2439