1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 /** 33 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 34 * @pages: array of pages to be maybe marked dirty, and definitely released. 35 * @npages: number of pages in the @pages array. 36 * @make_dirty: whether to mark the pages dirty 37 * 38 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 39 * variants called on that page. 40 * 41 * For each page in the @pages array, make that page (or its head page, if a 42 * compound page) dirty, if @make_dirty is true, and if the page was previously 43 * listed as clean. In any case, releases all pages using put_user_page(), 44 * possibly via put_user_pages(), for the non-dirty case. 45 * 46 * Please see the put_user_page() documentation for details. 47 * 48 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 49 * required, then the caller should a) verify that this is really correct, 50 * because _lock() is usually required, and b) hand code it: 51 * set_page_dirty_lock(), put_user_page(). 52 * 53 */ 54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 55 bool make_dirty) 56 { 57 unsigned long index; 58 59 /* 60 * TODO: this can be optimized for huge pages: if a series of pages is 61 * physically contiguous and part of the same compound page, then a 62 * single operation to the head page should suffice. 63 */ 64 65 if (!make_dirty) { 66 put_user_pages(pages, npages); 67 return; 68 } 69 70 for (index = 0; index < npages; index++) { 71 struct page *page = compound_head(pages[index]); 72 /* 73 * Checking PageDirty at this point may race with 74 * clear_page_dirty_for_io(), but that's OK. Two key 75 * cases: 76 * 77 * 1) This code sees the page as already dirty, so it 78 * skips the call to set_page_dirty(). That could happen 79 * because clear_page_dirty_for_io() called 80 * page_mkclean(), followed by set_page_dirty(). 81 * However, now the page is going to get written back, 82 * which meets the original intention of setting it 83 * dirty, so all is well: clear_page_dirty_for_io() goes 84 * on to call TestClearPageDirty(), and write the page 85 * back. 86 * 87 * 2) This code sees the page as clean, so it calls 88 * set_page_dirty(). The page stays dirty, despite being 89 * written back, so it gets written back again in the 90 * next writeback cycle. This is harmless. 91 */ 92 if (!PageDirty(page)) 93 set_page_dirty_lock(page); 94 put_user_page(page); 95 } 96 } 97 EXPORT_SYMBOL(put_user_pages_dirty_lock); 98 99 /** 100 * put_user_pages() - release an array of gup-pinned pages. 101 * @pages: array of pages to be marked dirty and released. 102 * @npages: number of pages in the @pages array. 103 * 104 * For each page in the @pages array, release the page using put_user_page(). 105 * 106 * Please see the put_user_page() documentation for details. 107 */ 108 void put_user_pages(struct page **pages, unsigned long npages) 109 { 110 unsigned long index; 111 112 /* 113 * TODO: this can be optimized for huge pages: if a series of pages is 114 * physically contiguous and part of the same compound page, then a 115 * single operation to the head page should suffice. 116 */ 117 for (index = 0; index < npages; index++) 118 put_user_page(pages[index]); 119 } 120 EXPORT_SYMBOL(put_user_pages); 121 122 #ifdef CONFIG_MMU 123 static struct page *no_page_table(struct vm_area_struct *vma, 124 unsigned int flags) 125 { 126 /* 127 * When core dumping an enormous anonymous area that nobody 128 * has touched so far, we don't want to allocate unnecessary pages or 129 * page tables. Return error instead of NULL to skip handle_mm_fault, 130 * then get_dump_page() will return NULL to leave a hole in the dump. 131 * But we can only make this optimization where a hole would surely 132 * be zero-filled if handle_mm_fault() actually did handle it. 133 */ 134 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 135 return ERR_PTR(-EFAULT); 136 return NULL; 137 } 138 139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 140 pte_t *pte, unsigned int flags) 141 { 142 /* No page to get reference */ 143 if (flags & FOLL_GET) 144 return -EFAULT; 145 146 if (flags & FOLL_TOUCH) { 147 pte_t entry = *pte; 148 149 if (flags & FOLL_WRITE) 150 entry = pte_mkdirty(entry); 151 entry = pte_mkyoung(entry); 152 153 if (!pte_same(*pte, entry)) { 154 set_pte_at(vma->vm_mm, address, pte, entry); 155 update_mmu_cache(vma, address, pte); 156 } 157 } 158 159 /* Proper page table entry exists, but no corresponding struct page */ 160 return -EEXIST; 161 } 162 163 /* 164 * FOLL_FORCE can write to even unwritable pte's, but only 165 * after we've gone through a COW cycle and they are dirty. 166 */ 167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 168 { 169 return pte_write(pte) || 170 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 171 } 172 173 static struct page *follow_page_pte(struct vm_area_struct *vma, 174 unsigned long address, pmd_t *pmd, unsigned int flags, 175 struct dev_pagemap **pgmap) 176 { 177 struct mm_struct *mm = vma->vm_mm; 178 struct page *page; 179 spinlock_t *ptl; 180 pte_t *ptep, pte; 181 182 retry: 183 if (unlikely(pmd_bad(*pmd))) 184 return no_page_table(vma, flags); 185 186 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 187 pte = *ptep; 188 if (!pte_present(pte)) { 189 swp_entry_t entry; 190 /* 191 * KSM's break_ksm() relies upon recognizing a ksm page 192 * even while it is being migrated, so for that case we 193 * need migration_entry_wait(). 194 */ 195 if (likely(!(flags & FOLL_MIGRATION))) 196 goto no_page; 197 if (pte_none(pte)) 198 goto no_page; 199 entry = pte_to_swp_entry(pte); 200 if (!is_migration_entry(entry)) 201 goto no_page; 202 pte_unmap_unlock(ptep, ptl); 203 migration_entry_wait(mm, pmd, address); 204 goto retry; 205 } 206 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 207 goto no_page; 208 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 209 pte_unmap_unlock(ptep, ptl); 210 return NULL; 211 } 212 213 page = vm_normal_page(vma, address, pte); 214 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 215 /* 216 * Only return device mapping pages in the FOLL_GET case since 217 * they are only valid while holding the pgmap reference. 218 */ 219 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 220 if (*pgmap) 221 page = pte_page(pte); 222 else 223 goto no_page; 224 } else if (unlikely(!page)) { 225 if (flags & FOLL_DUMP) { 226 /* Avoid special (like zero) pages in core dumps */ 227 page = ERR_PTR(-EFAULT); 228 goto out; 229 } 230 231 if (is_zero_pfn(pte_pfn(pte))) { 232 page = pte_page(pte); 233 } else { 234 int ret; 235 236 ret = follow_pfn_pte(vma, address, ptep, flags); 237 page = ERR_PTR(ret); 238 goto out; 239 } 240 } 241 242 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 243 int ret; 244 get_page(page); 245 pte_unmap_unlock(ptep, ptl); 246 lock_page(page); 247 ret = split_huge_page(page); 248 unlock_page(page); 249 put_page(page); 250 if (ret) 251 return ERR_PTR(ret); 252 goto retry; 253 } 254 255 if (flags & FOLL_GET) { 256 if (unlikely(!try_get_page(page))) { 257 page = ERR_PTR(-ENOMEM); 258 goto out; 259 } 260 } 261 if (flags & FOLL_TOUCH) { 262 if ((flags & FOLL_WRITE) && 263 !pte_dirty(pte) && !PageDirty(page)) 264 set_page_dirty(page); 265 /* 266 * pte_mkyoung() would be more correct here, but atomic care 267 * is needed to avoid losing the dirty bit: it is easier to use 268 * mark_page_accessed(). 269 */ 270 mark_page_accessed(page); 271 } 272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 273 /* Do not mlock pte-mapped THP */ 274 if (PageTransCompound(page)) 275 goto out; 276 277 /* 278 * The preliminary mapping check is mainly to avoid the 279 * pointless overhead of lock_page on the ZERO_PAGE 280 * which might bounce very badly if there is contention. 281 * 282 * If the page is already locked, we don't need to 283 * handle it now - vmscan will handle it later if and 284 * when it attempts to reclaim the page. 285 */ 286 if (page->mapping && trylock_page(page)) { 287 lru_add_drain(); /* push cached pages to LRU */ 288 /* 289 * Because we lock page here, and migration is 290 * blocked by the pte's page reference, and we 291 * know the page is still mapped, we don't even 292 * need to check for file-cache page truncation. 293 */ 294 mlock_vma_page(page); 295 unlock_page(page); 296 } 297 } 298 out: 299 pte_unmap_unlock(ptep, ptl); 300 return page; 301 no_page: 302 pte_unmap_unlock(ptep, ptl); 303 if (!pte_none(pte)) 304 return NULL; 305 return no_page_table(vma, flags); 306 } 307 308 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 309 unsigned long address, pud_t *pudp, 310 unsigned int flags, 311 struct follow_page_context *ctx) 312 { 313 pmd_t *pmd, pmdval; 314 spinlock_t *ptl; 315 struct page *page; 316 struct mm_struct *mm = vma->vm_mm; 317 318 pmd = pmd_offset(pudp, address); 319 /* 320 * The READ_ONCE() will stabilize the pmdval in a register or 321 * on the stack so that it will stop changing under the code. 322 */ 323 pmdval = READ_ONCE(*pmd); 324 if (pmd_none(pmdval)) 325 return no_page_table(vma, flags); 326 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 327 page = follow_huge_pmd(mm, address, pmd, flags); 328 if (page) 329 return page; 330 return no_page_table(vma, flags); 331 } 332 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 333 page = follow_huge_pd(vma, address, 334 __hugepd(pmd_val(pmdval)), flags, 335 PMD_SHIFT); 336 if (page) 337 return page; 338 return no_page_table(vma, flags); 339 } 340 retry: 341 if (!pmd_present(pmdval)) { 342 if (likely(!(flags & FOLL_MIGRATION))) 343 return no_page_table(vma, flags); 344 VM_BUG_ON(thp_migration_supported() && 345 !is_pmd_migration_entry(pmdval)); 346 if (is_pmd_migration_entry(pmdval)) 347 pmd_migration_entry_wait(mm, pmd); 348 pmdval = READ_ONCE(*pmd); 349 /* 350 * MADV_DONTNEED may convert the pmd to null because 351 * mmap_sem is held in read mode 352 */ 353 if (pmd_none(pmdval)) 354 return no_page_table(vma, flags); 355 goto retry; 356 } 357 if (pmd_devmap(pmdval)) { 358 ptl = pmd_lock(mm, pmd); 359 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 360 spin_unlock(ptl); 361 if (page) 362 return page; 363 } 364 if (likely(!pmd_trans_huge(pmdval))) 365 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 366 367 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 368 return no_page_table(vma, flags); 369 370 retry_locked: 371 ptl = pmd_lock(mm, pmd); 372 if (unlikely(pmd_none(*pmd))) { 373 spin_unlock(ptl); 374 return no_page_table(vma, flags); 375 } 376 if (unlikely(!pmd_present(*pmd))) { 377 spin_unlock(ptl); 378 if (likely(!(flags & FOLL_MIGRATION))) 379 return no_page_table(vma, flags); 380 pmd_migration_entry_wait(mm, pmd); 381 goto retry_locked; 382 } 383 if (unlikely(!pmd_trans_huge(*pmd))) { 384 spin_unlock(ptl); 385 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 386 } 387 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 388 int ret; 389 page = pmd_page(*pmd); 390 if (is_huge_zero_page(page)) { 391 spin_unlock(ptl); 392 ret = 0; 393 split_huge_pmd(vma, pmd, address); 394 if (pmd_trans_unstable(pmd)) 395 ret = -EBUSY; 396 } else if (flags & FOLL_SPLIT) { 397 if (unlikely(!try_get_page(page))) { 398 spin_unlock(ptl); 399 return ERR_PTR(-ENOMEM); 400 } 401 spin_unlock(ptl); 402 lock_page(page); 403 ret = split_huge_page(page); 404 unlock_page(page); 405 put_page(page); 406 if (pmd_none(*pmd)) 407 return no_page_table(vma, flags); 408 } else { /* flags & FOLL_SPLIT_PMD */ 409 spin_unlock(ptl); 410 split_huge_pmd(vma, pmd, address); 411 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 412 } 413 414 return ret ? ERR_PTR(ret) : 415 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 416 } 417 page = follow_trans_huge_pmd(vma, address, pmd, flags); 418 spin_unlock(ptl); 419 ctx->page_mask = HPAGE_PMD_NR - 1; 420 return page; 421 } 422 423 static struct page *follow_pud_mask(struct vm_area_struct *vma, 424 unsigned long address, p4d_t *p4dp, 425 unsigned int flags, 426 struct follow_page_context *ctx) 427 { 428 pud_t *pud; 429 spinlock_t *ptl; 430 struct page *page; 431 struct mm_struct *mm = vma->vm_mm; 432 433 pud = pud_offset(p4dp, address); 434 if (pud_none(*pud)) 435 return no_page_table(vma, flags); 436 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 437 page = follow_huge_pud(mm, address, pud, flags); 438 if (page) 439 return page; 440 return no_page_table(vma, flags); 441 } 442 if (is_hugepd(__hugepd(pud_val(*pud)))) { 443 page = follow_huge_pd(vma, address, 444 __hugepd(pud_val(*pud)), flags, 445 PUD_SHIFT); 446 if (page) 447 return page; 448 return no_page_table(vma, flags); 449 } 450 if (pud_devmap(*pud)) { 451 ptl = pud_lock(mm, pud); 452 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 453 spin_unlock(ptl); 454 if (page) 455 return page; 456 } 457 if (unlikely(pud_bad(*pud))) 458 return no_page_table(vma, flags); 459 460 return follow_pmd_mask(vma, address, pud, flags, ctx); 461 } 462 463 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 464 unsigned long address, pgd_t *pgdp, 465 unsigned int flags, 466 struct follow_page_context *ctx) 467 { 468 p4d_t *p4d; 469 struct page *page; 470 471 p4d = p4d_offset(pgdp, address); 472 if (p4d_none(*p4d)) 473 return no_page_table(vma, flags); 474 BUILD_BUG_ON(p4d_huge(*p4d)); 475 if (unlikely(p4d_bad(*p4d))) 476 return no_page_table(vma, flags); 477 478 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 479 page = follow_huge_pd(vma, address, 480 __hugepd(p4d_val(*p4d)), flags, 481 P4D_SHIFT); 482 if (page) 483 return page; 484 return no_page_table(vma, flags); 485 } 486 return follow_pud_mask(vma, address, p4d, flags, ctx); 487 } 488 489 /** 490 * follow_page_mask - look up a page descriptor from a user-virtual address 491 * @vma: vm_area_struct mapping @address 492 * @address: virtual address to look up 493 * @flags: flags modifying lookup behaviour 494 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 495 * pointer to output page_mask 496 * 497 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 498 * 499 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 500 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 501 * 502 * On output, the @ctx->page_mask is set according to the size of the page. 503 * 504 * Return: the mapped (struct page *), %NULL if no mapping exists, or 505 * an error pointer if there is a mapping to something not represented 506 * by a page descriptor (see also vm_normal_page()). 507 */ 508 static struct page *follow_page_mask(struct vm_area_struct *vma, 509 unsigned long address, unsigned int flags, 510 struct follow_page_context *ctx) 511 { 512 pgd_t *pgd; 513 struct page *page; 514 struct mm_struct *mm = vma->vm_mm; 515 516 ctx->page_mask = 0; 517 518 /* make this handle hugepd */ 519 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 520 if (!IS_ERR(page)) { 521 BUG_ON(flags & FOLL_GET); 522 return page; 523 } 524 525 pgd = pgd_offset(mm, address); 526 527 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 528 return no_page_table(vma, flags); 529 530 if (pgd_huge(*pgd)) { 531 page = follow_huge_pgd(mm, address, pgd, flags); 532 if (page) 533 return page; 534 return no_page_table(vma, flags); 535 } 536 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 537 page = follow_huge_pd(vma, address, 538 __hugepd(pgd_val(*pgd)), flags, 539 PGDIR_SHIFT); 540 if (page) 541 return page; 542 return no_page_table(vma, flags); 543 } 544 545 return follow_p4d_mask(vma, address, pgd, flags, ctx); 546 } 547 548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 549 unsigned int foll_flags) 550 { 551 struct follow_page_context ctx = { NULL }; 552 struct page *page; 553 554 page = follow_page_mask(vma, address, foll_flags, &ctx); 555 if (ctx.pgmap) 556 put_dev_pagemap(ctx.pgmap); 557 return page; 558 } 559 560 static int get_gate_page(struct mm_struct *mm, unsigned long address, 561 unsigned int gup_flags, struct vm_area_struct **vma, 562 struct page **page) 563 { 564 pgd_t *pgd; 565 p4d_t *p4d; 566 pud_t *pud; 567 pmd_t *pmd; 568 pte_t *pte; 569 int ret = -EFAULT; 570 571 /* user gate pages are read-only */ 572 if (gup_flags & FOLL_WRITE) 573 return -EFAULT; 574 if (address > TASK_SIZE) 575 pgd = pgd_offset_k(address); 576 else 577 pgd = pgd_offset_gate(mm, address); 578 if (pgd_none(*pgd)) 579 return -EFAULT; 580 p4d = p4d_offset(pgd, address); 581 if (p4d_none(*p4d)) 582 return -EFAULT; 583 pud = pud_offset(p4d, address); 584 if (pud_none(*pud)) 585 return -EFAULT; 586 pmd = pmd_offset(pud, address); 587 if (!pmd_present(*pmd)) 588 return -EFAULT; 589 VM_BUG_ON(pmd_trans_huge(*pmd)); 590 pte = pte_offset_map(pmd, address); 591 if (pte_none(*pte)) 592 goto unmap; 593 *vma = get_gate_vma(mm); 594 if (!page) 595 goto out; 596 *page = vm_normal_page(*vma, address, *pte); 597 if (!*page) { 598 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 599 goto unmap; 600 *page = pte_page(*pte); 601 } 602 if (unlikely(!try_get_page(*page))) { 603 ret = -ENOMEM; 604 goto unmap; 605 } 606 out: 607 ret = 0; 608 unmap: 609 pte_unmap(pte); 610 return ret; 611 } 612 613 /* 614 * mmap_sem must be held on entry. If @nonblocking != NULL and 615 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 616 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 617 */ 618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 619 unsigned long address, unsigned int *flags, int *nonblocking) 620 { 621 unsigned int fault_flags = 0; 622 vm_fault_t ret; 623 624 /* mlock all present pages, but do not fault in new pages */ 625 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 626 return -ENOENT; 627 if (*flags & FOLL_WRITE) 628 fault_flags |= FAULT_FLAG_WRITE; 629 if (*flags & FOLL_REMOTE) 630 fault_flags |= FAULT_FLAG_REMOTE; 631 if (nonblocking) 632 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 633 if (*flags & FOLL_NOWAIT) 634 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 635 if (*flags & FOLL_TRIED) { 636 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 637 fault_flags |= FAULT_FLAG_TRIED; 638 } 639 640 ret = handle_mm_fault(vma, address, fault_flags); 641 if (ret & VM_FAULT_ERROR) { 642 int err = vm_fault_to_errno(ret, *flags); 643 644 if (err) 645 return err; 646 BUG(); 647 } 648 649 if (tsk) { 650 if (ret & VM_FAULT_MAJOR) 651 tsk->maj_flt++; 652 else 653 tsk->min_flt++; 654 } 655 656 if (ret & VM_FAULT_RETRY) { 657 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 658 *nonblocking = 0; 659 return -EBUSY; 660 } 661 662 /* 663 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 664 * necessary, even if maybe_mkwrite decided not to set pte_write. We 665 * can thus safely do subsequent page lookups as if they were reads. 666 * But only do so when looping for pte_write is futile: in some cases 667 * userspace may also be wanting to write to the gotten user page, 668 * which a read fault here might prevent (a readonly page might get 669 * reCOWed by userspace write). 670 */ 671 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 672 *flags |= FOLL_COW; 673 return 0; 674 } 675 676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 677 { 678 vm_flags_t vm_flags = vma->vm_flags; 679 int write = (gup_flags & FOLL_WRITE); 680 int foreign = (gup_flags & FOLL_REMOTE); 681 682 if (vm_flags & (VM_IO | VM_PFNMAP)) 683 return -EFAULT; 684 685 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 686 return -EFAULT; 687 688 if (write) { 689 if (!(vm_flags & VM_WRITE)) { 690 if (!(gup_flags & FOLL_FORCE)) 691 return -EFAULT; 692 /* 693 * We used to let the write,force case do COW in a 694 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 695 * set a breakpoint in a read-only mapping of an 696 * executable, without corrupting the file (yet only 697 * when that file had been opened for writing!). 698 * Anon pages in shared mappings are surprising: now 699 * just reject it. 700 */ 701 if (!is_cow_mapping(vm_flags)) 702 return -EFAULT; 703 } 704 } else if (!(vm_flags & VM_READ)) { 705 if (!(gup_flags & FOLL_FORCE)) 706 return -EFAULT; 707 /* 708 * Is there actually any vma we can reach here which does not 709 * have VM_MAYREAD set? 710 */ 711 if (!(vm_flags & VM_MAYREAD)) 712 return -EFAULT; 713 } 714 /* 715 * gups are always data accesses, not instruction 716 * fetches, so execute=false here 717 */ 718 if (!arch_vma_access_permitted(vma, write, false, foreign)) 719 return -EFAULT; 720 return 0; 721 } 722 723 /** 724 * __get_user_pages() - pin user pages in memory 725 * @tsk: task_struct of target task 726 * @mm: mm_struct of target mm 727 * @start: starting user address 728 * @nr_pages: number of pages from start to pin 729 * @gup_flags: flags modifying pin behaviour 730 * @pages: array that receives pointers to the pages pinned. 731 * Should be at least nr_pages long. Or NULL, if caller 732 * only intends to ensure the pages are faulted in. 733 * @vmas: array of pointers to vmas corresponding to each page. 734 * Or NULL if the caller does not require them. 735 * @nonblocking: whether waiting for disk IO or mmap_sem contention 736 * 737 * Returns number of pages pinned. This may be fewer than the number 738 * requested. If nr_pages is 0 or negative, returns 0. If no pages 739 * were pinned, returns -errno. Each page returned must be released 740 * with a put_page() call when it is finished with. vmas will only 741 * remain valid while mmap_sem is held. 742 * 743 * Must be called with mmap_sem held. It may be released. See below. 744 * 745 * __get_user_pages walks a process's page tables and takes a reference to 746 * each struct page that each user address corresponds to at a given 747 * instant. That is, it takes the page that would be accessed if a user 748 * thread accesses the given user virtual address at that instant. 749 * 750 * This does not guarantee that the page exists in the user mappings when 751 * __get_user_pages returns, and there may even be a completely different 752 * page there in some cases (eg. if mmapped pagecache has been invalidated 753 * and subsequently re faulted). However it does guarantee that the page 754 * won't be freed completely. And mostly callers simply care that the page 755 * contains data that was valid *at some point in time*. Typically, an IO 756 * or similar operation cannot guarantee anything stronger anyway because 757 * locks can't be held over the syscall boundary. 758 * 759 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 760 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 761 * appropriate) must be called after the page is finished with, and 762 * before put_page is called. 763 * 764 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 765 * or mmap_sem contention, and if waiting is needed to pin all pages, 766 * *@nonblocking will be set to 0. Further, if @gup_flags does not 767 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 768 * this case. 769 * 770 * A caller using such a combination of @nonblocking and @gup_flags 771 * must therefore hold the mmap_sem for reading only, and recognize 772 * when it's been released. Otherwise, it must be held for either 773 * reading or writing and will not be released. 774 * 775 * In most cases, get_user_pages or get_user_pages_fast should be used 776 * instead of __get_user_pages. __get_user_pages should be used only if 777 * you need some special @gup_flags. 778 */ 779 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 780 unsigned long start, unsigned long nr_pages, 781 unsigned int gup_flags, struct page **pages, 782 struct vm_area_struct **vmas, int *nonblocking) 783 { 784 long ret = 0, i = 0; 785 struct vm_area_struct *vma = NULL; 786 struct follow_page_context ctx = { NULL }; 787 788 if (!nr_pages) 789 return 0; 790 791 start = untagged_addr(start); 792 793 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 794 795 /* 796 * If FOLL_FORCE is set then do not force a full fault as the hinting 797 * fault information is unrelated to the reference behaviour of a task 798 * using the address space 799 */ 800 if (!(gup_flags & FOLL_FORCE)) 801 gup_flags |= FOLL_NUMA; 802 803 do { 804 struct page *page; 805 unsigned int foll_flags = gup_flags; 806 unsigned int page_increm; 807 808 /* first iteration or cross vma bound */ 809 if (!vma || start >= vma->vm_end) { 810 vma = find_extend_vma(mm, start); 811 if (!vma && in_gate_area(mm, start)) { 812 ret = get_gate_page(mm, start & PAGE_MASK, 813 gup_flags, &vma, 814 pages ? &pages[i] : NULL); 815 if (ret) 816 goto out; 817 ctx.page_mask = 0; 818 goto next_page; 819 } 820 821 if (!vma || check_vma_flags(vma, gup_flags)) { 822 ret = -EFAULT; 823 goto out; 824 } 825 if (is_vm_hugetlb_page(vma)) { 826 i = follow_hugetlb_page(mm, vma, pages, vmas, 827 &start, &nr_pages, i, 828 gup_flags, nonblocking); 829 continue; 830 } 831 } 832 retry: 833 /* 834 * If we have a pending SIGKILL, don't keep faulting pages and 835 * potentially allocating memory. 836 */ 837 if (fatal_signal_pending(current)) { 838 ret = -ERESTARTSYS; 839 goto out; 840 } 841 cond_resched(); 842 843 page = follow_page_mask(vma, start, foll_flags, &ctx); 844 if (!page) { 845 ret = faultin_page(tsk, vma, start, &foll_flags, 846 nonblocking); 847 switch (ret) { 848 case 0: 849 goto retry; 850 case -EBUSY: 851 ret = 0; 852 /* FALLTHRU */ 853 case -EFAULT: 854 case -ENOMEM: 855 case -EHWPOISON: 856 goto out; 857 case -ENOENT: 858 goto next_page; 859 } 860 BUG(); 861 } else if (PTR_ERR(page) == -EEXIST) { 862 /* 863 * Proper page table entry exists, but no corresponding 864 * struct page. 865 */ 866 goto next_page; 867 } else if (IS_ERR(page)) { 868 ret = PTR_ERR(page); 869 goto out; 870 } 871 if (pages) { 872 pages[i] = page; 873 flush_anon_page(vma, page, start); 874 flush_dcache_page(page); 875 ctx.page_mask = 0; 876 } 877 next_page: 878 if (vmas) { 879 vmas[i] = vma; 880 ctx.page_mask = 0; 881 } 882 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 883 if (page_increm > nr_pages) 884 page_increm = nr_pages; 885 i += page_increm; 886 start += page_increm * PAGE_SIZE; 887 nr_pages -= page_increm; 888 } while (nr_pages); 889 out: 890 if (ctx.pgmap) 891 put_dev_pagemap(ctx.pgmap); 892 return i ? i : ret; 893 } 894 895 static bool vma_permits_fault(struct vm_area_struct *vma, 896 unsigned int fault_flags) 897 { 898 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 899 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 900 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 901 902 if (!(vm_flags & vma->vm_flags)) 903 return false; 904 905 /* 906 * The architecture might have a hardware protection 907 * mechanism other than read/write that can deny access. 908 * 909 * gup always represents data access, not instruction 910 * fetches, so execute=false here: 911 */ 912 if (!arch_vma_access_permitted(vma, write, false, foreign)) 913 return false; 914 915 return true; 916 } 917 918 /* 919 * fixup_user_fault() - manually resolve a user page fault 920 * @tsk: the task_struct to use for page fault accounting, or 921 * NULL if faults are not to be recorded. 922 * @mm: mm_struct of target mm 923 * @address: user address 924 * @fault_flags:flags to pass down to handle_mm_fault() 925 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 926 * does not allow retry 927 * 928 * This is meant to be called in the specific scenario where for locking reasons 929 * we try to access user memory in atomic context (within a pagefault_disable() 930 * section), this returns -EFAULT, and we want to resolve the user fault before 931 * trying again. 932 * 933 * Typically this is meant to be used by the futex code. 934 * 935 * The main difference with get_user_pages() is that this function will 936 * unconditionally call handle_mm_fault() which will in turn perform all the 937 * necessary SW fixup of the dirty and young bits in the PTE, while 938 * get_user_pages() only guarantees to update these in the struct page. 939 * 940 * This is important for some architectures where those bits also gate the 941 * access permission to the page because they are maintained in software. On 942 * such architectures, gup() will not be enough to make a subsequent access 943 * succeed. 944 * 945 * This function will not return with an unlocked mmap_sem. So it has not the 946 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 947 */ 948 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 949 unsigned long address, unsigned int fault_flags, 950 bool *unlocked) 951 { 952 struct vm_area_struct *vma; 953 vm_fault_t ret, major = 0; 954 955 address = untagged_addr(address); 956 957 if (unlocked) 958 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 959 960 retry: 961 vma = find_extend_vma(mm, address); 962 if (!vma || address < vma->vm_start) 963 return -EFAULT; 964 965 if (!vma_permits_fault(vma, fault_flags)) 966 return -EFAULT; 967 968 ret = handle_mm_fault(vma, address, fault_flags); 969 major |= ret & VM_FAULT_MAJOR; 970 if (ret & VM_FAULT_ERROR) { 971 int err = vm_fault_to_errno(ret, 0); 972 973 if (err) 974 return err; 975 BUG(); 976 } 977 978 if (ret & VM_FAULT_RETRY) { 979 down_read(&mm->mmap_sem); 980 if (!(fault_flags & FAULT_FLAG_TRIED)) { 981 *unlocked = true; 982 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 983 fault_flags |= FAULT_FLAG_TRIED; 984 goto retry; 985 } 986 } 987 988 if (tsk) { 989 if (major) 990 tsk->maj_flt++; 991 else 992 tsk->min_flt++; 993 } 994 return 0; 995 } 996 EXPORT_SYMBOL_GPL(fixup_user_fault); 997 998 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 999 struct mm_struct *mm, 1000 unsigned long start, 1001 unsigned long nr_pages, 1002 struct page **pages, 1003 struct vm_area_struct **vmas, 1004 int *locked, 1005 unsigned int flags) 1006 { 1007 long ret, pages_done; 1008 bool lock_dropped; 1009 1010 if (locked) { 1011 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1012 BUG_ON(vmas); 1013 /* check caller initialized locked */ 1014 BUG_ON(*locked != 1); 1015 } 1016 1017 if (pages) 1018 flags |= FOLL_GET; 1019 1020 pages_done = 0; 1021 lock_dropped = false; 1022 for (;;) { 1023 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1024 vmas, locked); 1025 if (!locked) 1026 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1027 return ret; 1028 1029 /* VM_FAULT_RETRY cannot return errors */ 1030 if (!*locked) { 1031 BUG_ON(ret < 0); 1032 BUG_ON(ret >= nr_pages); 1033 } 1034 1035 if (ret > 0) { 1036 nr_pages -= ret; 1037 pages_done += ret; 1038 if (!nr_pages) 1039 break; 1040 } 1041 if (*locked) { 1042 /* 1043 * VM_FAULT_RETRY didn't trigger or it was a 1044 * FOLL_NOWAIT. 1045 */ 1046 if (!pages_done) 1047 pages_done = ret; 1048 break; 1049 } 1050 /* 1051 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1052 * For the prefault case (!pages) we only update counts. 1053 */ 1054 if (likely(pages)) 1055 pages += ret; 1056 start += ret << PAGE_SHIFT; 1057 1058 /* 1059 * Repeat on the address that fired VM_FAULT_RETRY 1060 * without FAULT_FLAG_ALLOW_RETRY but with 1061 * FAULT_FLAG_TRIED. 1062 */ 1063 *locked = 1; 1064 lock_dropped = true; 1065 down_read(&mm->mmap_sem); 1066 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1067 pages, NULL, NULL); 1068 if (ret != 1) { 1069 BUG_ON(ret > 1); 1070 if (!pages_done) 1071 pages_done = ret; 1072 break; 1073 } 1074 nr_pages--; 1075 pages_done++; 1076 if (!nr_pages) 1077 break; 1078 if (likely(pages)) 1079 pages++; 1080 start += PAGE_SIZE; 1081 } 1082 if (lock_dropped && *locked) { 1083 /* 1084 * We must let the caller know we temporarily dropped the lock 1085 * and so the critical section protected by it was lost. 1086 */ 1087 up_read(&mm->mmap_sem); 1088 *locked = 0; 1089 } 1090 return pages_done; 1091 } 1092 1093 /* 1094 * get_user_pages_remote() - pin user pages in memory 1095 * @tsk: the task_struct to use for page fault accounting, or 1096 * NULL if faults are not to be recorded. 1097 * @mm: mm_struct of target mm 1098 * @start: starting user address 1099 * @nr_pages: number of pages from start to pin 1100 * @gup_flags: flags modifying lookup behaviour 1101 * @pages: array that receives pointers to the pages pinned. 1102 * Should be at least nr_pages long. Or NULL, if caller 1103 * only intends to ensure the pages are faulted in. 1104 * @vmas: array of pointers to vmas corresponding to each page. 1105 * Or NULL if the caller does not require them. 1106 * @locked: pointer to lock flag indicating whether lock is held and 1107 * subsequently whether VM_FAULT_RETRY functionality can be 1108 * utilised. Lock must initially be held. 1109 * 1110 * Returns number of pages pinned. This may be fewer than the number 1111 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1112 * were pinned, returns -errno. Each page returned must be released 1113 * with a put_page() call when it is finished with. vmas will only 1114 * remain valid while mmap_sem is held. 1115 * 1116 * Must be called with mmap_sem held for read or write. 1117 * 1118 * get_user_pages walks a process's page tables and takes a reference to 1119 * each struct page that each user address corresponds to at a given 1120 * instant. That is, it takes the page that would be accessed if a user 1121 * thread accesses the given user virtual address at that instant. 1122 * 1123 * This does not guarantee that the page exists in the user mappings when 1124 * get_user_pages returns, and there may even be a completely different 1125 * page there in some cases (eg. if mmapped pagecache has been invalidated 1126 * and subsequently re faulted). However it does guarantee that the page 1127 * won't be freed completely. And mostly callers simply care that the page 1128 * contains data that was valid *at some point in time*. Typically, an IO 1129 * or similar operation cannot guarantee anything stronger anyway because 1130 * locks can't be held over the syscall boundary. 1131 * 1132 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1133 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1134 * be called after the page is finished with, and before put_page is called. 1135 * 1136 * get_user_pages is typically used for fewer-copy IO operations, to get a 1137 * handle on the memory by some means other than accesses via the user virtual 1138 * addresses. The pages may be submitted for DMA to devices or accessed via 1139 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1140 * use the correct cache flushing APIs. 1141 * 1142 * See also get_user_pages_fast, for performance critical applications. 1143 * 1144 * get_user_pages should be phased out in favor of 1145 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1146 * should use get_user_pages because it cannot pass 1147 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1148 */ 1149 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1150 unsigned long start, unsigned long nr_pages, 1151 unsigned int gup_flags, struct page **pages, 1152 struct vm_area_struct **vmas, int *locked) 1153 { 1154 /* 1155 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1156 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1157 * vmas. As there are no users of this flag in this call we simply 1158 * disallow this option for now. 1159 */ 1160 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1161 return -EINVAL; 1162 1163 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1164 locked, 1165 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1166 } 1167 EXPORT_SYMBOL(get_user_pages_remote); 1168 1169 /** 1170 * populate_vma_page_range() - populate a range of pages in the vma. 1171 * @vma: target vma 1172 * @start: start address 1173 * @end: end address 1174 * @nonblocking: 1175 * 1176 * This takes care of mlocking the pages too if VM_LOCKED is set. 1177 * 1178 * return 0 on success, negative error code on error. 1179 * 1180 * vma->vm_mm->mmap_sem must be held. 1181 * 1182 * If @nonblocking is NULL, it may be held for read or write and will 1183 * be unperturbed. 1184 * 1185 * If @nonblocking is non-NULL, it must held for read only and may be 1186 * released. If it's released, *@nonblocking will be set to 0. 1187 */ 1188 long populate_vma_page_range(struct vm_area_struct *vma, 1189 unsigned long start, unsigned long end, int *nonblocking) 1190 { 1191 struct mm_struct *mm = vma->vm_mm; 1192 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1193 int gup_flags; 1194 1195 VM_BUG_ON(start & ~PAGE_MASK); 1196 VM_BUG_ON(end & ~PAGE_MASK); 1197 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1198 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1199 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1200 1201 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1202 if (vma->vm_flags & VM_LOCKONFAULT) 1203 gup_flags &= ~FOLL_POPULATE; 1204 /* 1205 * We want to touch writable mappings with a write fault in order 1206 * to break COW, except for shared mappings because these don't COW 1207 * and we would not want to dirty them for nothing. 1208 */ 1209 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1210 gup_flags |= FOLL_WRITE; 1211 1212 /* 1213 * We want mlock to succeed for regions that have any permissions 1214 * other than PROT_NONE. 1215 */ 1216 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1217 gup_flags |= FOLL_FORCE; 1218 1219 /* 1220 * We made sure addr is within a VMA, so the following will 1221 * not result in a stack expansion that recurses back here. 1222 */ 1223 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1224 NULL, NULL, nonblocking); 1225 } 1226 1227 /* 1228 * __mm_populate - populate and/or mlock pages within a range of address space. 1229 * 1230 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1231 * flags. VMAs must be already marked with the desired vm_flags, and 1232 * mmap_sem must not be held. 1233 */ 1234 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1235 { 1236 struct mm_struct *mm = current->mm; 1237 unsigned long end, nstart, nend; 1238 struct vm_area_struct *vma = NULL; 1239 int locked = 0; 1240 long ret = 0; 1241 1242 end = start + len; 1243 1244 for (nstart = start; nstart < end; nstart = nend) { 1245 /* 1246 * We want to fault in pages for [nstart; end) address range. 1247 * Find first corresponding VMA. 1248 */ 1249 if (!locked) { 1250 locked = 1; 1251 down_read(&mm->mmap_sem); 1252 vma = find_vma(mm, nstart); 1253 } else if (nstart >= vma->vm_end) 1254 vma = vma->vm_next; 1255 if (!vma || vma->vm_start >= end) 1256 break; 1257 /* 1258 * Set [nstart; nend) to intersection of desired address 1259 * range with the first VMA. Also, skip undesirable VMA types. 1260 */ 1261 nend = min(end, vma->vm_end); 1262 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1263 continue; 1264 if (nstart < vma->vm_start) 1265 nstart = vma->vm_start; 1266 /* 1267 * Now fault in a range of pages. populate_vma_page_range() 1268 * double checks the vma flags, so that it won't mlock pages 1269 * if the vma was already munlocked. 1270 */ 1271 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1272 if (ret < 0) { 1273 if (ignore_errors) { 1274 ret = 0; 1275 continue; /* continue at next VMA */ 1276 } 1277 break; 1278 } 1279 nend = nstart + ret * PAGE_SIZE; 1280 ret = 0; 1281 } 1282 if (locked) 1283 up_read(&mm->mmap_sem); 1284 return ret; /* 0 or negative error code */ 1285 } 1286 1287 /** 1288 * get_dump_page() - pin user page in memory while writing it to core dump 1289 * @addr: user address 1290 * 1291 * Returns struct page pointer of user page pinned for dump, 1292 * to be freed afterwards by put_page(). 1293 * 1294 * Returns NULL on any kind of failure - a hole must then be inserted into 1295 * the corefile, to preserve alignment with its headers; and also returns 1296 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1297 * allowing a hole to be left in the corefile to save diskspace. 1298 * 1299 * Called without mmap_sem, but after all other threads have been killed. 1300 */ 1301 #ifdef CONFIG_ELF_CORE 1302 struct page *get_dump_page(unsigned long addr) 1303 { 1304 struct vm_area_struct *vma; 1305 struct page *page; 1306 1307 if (__get_user_pages(current, current->mm, addr, 1, 1308 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1309 NULL) < 1) 1310 return NULL; 1311 flush_cache_page(vma, addr, page_to_pfn(page)); 1312 return page; 1313 } 1314 #endif /* CONFIG_ELF_CORE */ 1315 #else /* CONFIG_MMU */ 1316 static long __get_user_pages_locked(struct task_struct *tsk, 1317 struct mm_struct *mm, unsigned long start, 1318 unsigned long nr_pages, struct page **pages, 1319 struct vm_area_struct **vmas, int *locked, 1320 unsigned int foll_flags) 1321 { 1322 struct vm_area_struct *vma; 1323 unsigned long vm_flags; 1324 int i; 1325 1326 /* calculate required read or write permissions. 1327 * If FOLL_FORCE is set, we only require the "MAY" flags. 1328 */ 1329 vm_flags = (foll_flags & FOLL_WRITE) ? 1330 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1331 vm_flags &= (foll_flags & FOLL_FORCE) ? 1332 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1333 1334 for (i = 0; i < nr_pages; i++) { 1335 vma = find_vma(mm, start); 1336 if (!vma) 1337 goto finish_or_fault; 1338 1339 /* protect what we can, including chardevs */ 1340 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1341 !(vm_flags & vma->vm_flags)) 1342 goto finish_or_fault; 1343 1344 if (pages) { 1345 pages[i] = virt_to_page(start); 1346 if (pages[i]) 1347 get_page(pages[i]); 1348 } 1349 if (vmas) 1350 vmas[i] = vma; 1351 start = (start + PAGE_SIZE) & PAGE_MASK; 1352 } 1353 1354 return i; 1355 1356 finish_or_fault: 1357 return i ? : -EFAULT; 1358 } 1359 #endif /* !CONFIG_MMU */ 1360 1361 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1362 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1363 { 1364 long i; 1365 struct vm_area_struct *vma_prev = NULL; 1366 1367 for (i = 0; i < nr_pages; i++) { 1368 struct vm_area_struct *vma = vmas[i]; 1369 1370 if (vma == vma_prev) 1371 continue; 1372 1373 vma_prev = vma; 1374 1375 if (vma_is_fsdax(vma)) 1376 return true; 1377 } 1378 return false; 1379 } 1380 1381 #ifdef CONFIG_CMA 1382 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1383 { 1384 /* 1385 * We want to make sure we allocate the new page from the same node 1386 * as the source page. 1387 */ 1388 int nid = page_to_nid(page); 1389 /* 1390 * Trying to allocate a page for migration. Ignore allocation 1391 * failure warnings. We don't force __GFP_THISNODE here because 1392 * this node here is the node where we have CMA reservation and 1393 * in some case these nodes will have really less non movable 1394 * allocation memory. 1395 */ 1396 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1397 1398 if (PageHighMem(page)) 1399 gfp_mask |= __GFP_HIGHMEM; 1400 1401 #ifdef CONFIG_HUGETLB_PAGE 1402 if (PageHuge(page)) { 1403 struct hstate *h = page_hstate(page); 1404 /* 1405 * We don't want to dequeue from the pool because pool pages will 1406 * mostly be from the CMA region. 1407 */ 1408 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1409 } 1410 #endif 1411 if (PageTransHuge(page)) { 1412 struct page *thp; 1413 /* 1414 * ignore allocation failure warnings 1415 */ 1416 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1417 1418 /* 1419 * Remove the movable mask so that we don't allocate from 1420 * CMA area again. 1421 */ 1422 thp_gfpmask &= ~__GFP_MOVABLE; 1423 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1424 if (!thp) 1425 return NULL; 1426 prep_transhuge_page(thp); 1427 return thp; 1428 } 1429 1430 return __alloc_pages_node(nid, gfp_mask, 0); 1431 } 1432 1433 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1434 struct mm_struct *mm, 1435 unsigned long start, 1436 unsigned long nr_pages, 1437 struct page **pages, 1438 struct vm_area_struct **vmas, 1439 unsigned int gup_flags) 1440 { 1441 unsigned long i; 1442 unsigned long step; 1443 bool drain_allow = true; 1444 bool migrate_allow = true; 1445 LIST_HEAD(cma_page_list); 1446 1447 check_again: 1448 for (i = 0; i < nr_pages;) { 1449 1450 struct page *head = compound_head(pages[i]); 1451 1452 /* 1453 * gup may start from a tail page. Advance step by the left 1454 * part. 1455 */ 1456 step = compound_nr(head) - (pages[i] - head); 1457 /* 1458 * If we get a page from the CMA zone, since we are going to 1459 * be pinning these entries, we might as well move them out 1460 * of the CMA zone if possible. 1461 */ 1462 if (is_migrate_cma_page(head)) { 1463 if (PageHuge(head)) 1464 isolate_huge_page(head, &cma_page_list); 1465 else { 1466 if (!PageLRU(head) && drain_allow) { 1467 lru_add_drain_all(); 1468 drain_allow = false; 1469 } 1470 1471 if (!isolate_lru_page(head)) { 1472 list_add_tail(&head->lru, &cma_page_list); 1473 mod_node_page_state(page_pgdat(head), 1474 NR_ISOLATED_ANON + 1475 page_is_file_cache(head), 1476 hpage_nr_pages(head)); 1477 } 1478 } 1479 } 1480 1481 i += step; 1482 } 1483 1484 if (!list_empty(&cma_page_list)) { 1485 /* 1486 * drop the above get_user_pages reference. 1487 */ 1488 for (i = 0; i < nr_pages; i++) 1489 put_page(pages[i]); 1490 1491 if (migrate_pages(&cma_page_list, new_non_cma_page, 1492 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1493 /* 1494 * some of the pages failed migration. Do get_user_pages 1495 * without migration. 1496 */ 1497 migrate_allow = false; 1498 1499 if (!list_empty(&cma_page_list)) 1500 putback_movable_pages(&cma_page_list); 1501 } 1502 /* 1503 * We did migrate all the pages, Try to get the page references 1504 * again migrating any new CMA pages which we failed to isolate 1505 * earlier. 1506 */ 1507 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages, 1508 pages, vmas, NULL, 1509 gup_flags); 1510 1511 if ((nr_pages > 0) && migrate_allow) { 1512 drain_allow = true; 1513 goto check_again; 1514 } 1515 } 1516 1517 return nr_pages; 1518 } 1519 #else 1520 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1521 struct mm_struct *mm, 1522 unsigned long start, 1523 unsigned long nr_pages, 1524 struct page **pages, 1525 struct vm_area_struct **vmas, 1526 unsigned int gup_flags) 1527 { 1528 return nr_pages; 1529 } 1530 #endif /* CONFIG_CMA */ 1531 1532 /* 1533 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1534 * allows us to process the FOLL_LONGTERM flag. 1535 */ 1536 static long __gup_longterm_locked(struct task_struct *tsk, 1537 struct mm_struct *mm, 1538 unsigned long start, 1539 unsigned long nr_pages, 1540 struct page **pages, 1541 struct vm_area_struct **vmas, 1542 unsigned int gup_flags) 1543 { 1544 struct vm_area_struct **vmas_tmp = vmas; 1545 unsigned long flags = 0; 1546 long rc, i; 1547 1548 if (gup_flags & FOLL_LONGTERM) { 1549 if (!pages) 1550 return -EINVAL; 1551 1552 if (!vmas_tmp) { 1553 vmas_tmp = kcalloc(nr_pages, 1554 sizeof(struct vm_area_struct *), 1555 GFP_KERNEL); 1556 if (!vmas_tmp) 1557 return -ENOMEM; 1558 } 1559 flags = memalloc_nocma_save(); 1560 } 1561 1562 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1563 vmas_tmp, NULL, gup_flags); 1564 1565 if (gup_flags & FOLL_LONGTERM) { 1566 memalloc_nocma_restore(flags); 1567 if (rc < 0) 1568 goto out; 1569 1570 if (check_dax_vmas(vmas_tmp, rc)) { 1571 for (i = 0; i < rc; i++) 1572 put_page(pages[i]); 1573 rc = -EOPNOTSUPP; 1574 goto out; 1575 } 1576 1577 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1578 vmas_tmp, gup_flags); 1579 } 1580 1581 out: 1582 if (vmas_tmp != vmas) 1583 kfree(vmas_tmp); 1584 return rc; 1585 } 1586 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1587 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1588 struct mm_struct *mm, 1589 unsigned long start, 1590 unsigned long nr_pages, 1591 struct page **pages, 1592 struct vm_area_struct **vmas, 1593 unsigned int flags) 1594 { 1595 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1596 NULL, flags); 1597 } 1598 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1599 1600 /* 1601 * This is the same as get_user_pages_remote(), just with a 1602 * less-flexible calling convention where we assume that the task 1603 * and mm being operated on are the current task's and don't allow 1604 * passing of a locked parameter. We also obviously don't pass 1605 * FOLL_REMOTE in here. 1606 */ 1607 long get_user_pages(unsigned long start, unsigned long nr_pages, 1608 unsigned int gup_flags, struct page **pages, 1609 struct vm_area_struct **vmas) 1610 { 1611 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1612 pages, vmas, gup_flags | FOLL_TOUCH); 1613 } 1614 EXPORT_SYMBOL(get_user_pages); 1615 1616 /* 1617 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1618 * paths better by using either get_user_pages_locked() or 1619 * get_user_pages_unlocked(). 1620 * 1621 * get_user_pages_locked() is suitable to replace the form: 1622 * 1623 * down_read(&mm->mmap_sem); 1624 * do_something() 1625 * get_user_pages(tsk, mm, ..., pages, NULL); 1626 * up_read(&mm->mmap_sem); 1627 * 1628 * to: 1629 * 1630 * int locked = 1; 1631 * down_read(&mm->mmap_sem); 1632 * do_something() 1633 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1634 * if (locked) 1635 * up_read(&mm->mmap_sem); 1636 */ 1637 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1638 unsigned int gup_flags, struct page **pages, 1639 int *locked) 1640 { 1641 /* 1642 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1643 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1644 * vmas. As there are no users of this flag in this call we simply 1645 * disallow this option for now. 1646 */ 1647 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1648 return -EINVAL; 1649 1650 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1651 pages, NULL, locked, 1652 gup_flags | FOLL_TOUCH); 1653 } 1654 EXPORT_SYMBOL(get_user_pages_locked); 1655 1656 /* 1657 * get_user_pages_unlocked() is suitable to replace the form: 1658 * 1659 * down_read(&mm->mmap_sem); 1660 * get_user_pages(tsk, mm, ..., pages, NULL); 1661 * up_read(&mm->mmap_sem); 1662 * 1663 * with: 1664 * 1665 * get_user_pages_unlocked(tsk, mm, ..., pages); 1666 * 1667 * It is functionally equivalent to get_user_pages_fast so 1668 * get_user_pages_fast should be used instead if specific gup_flags 1669 * (e.g. FOLL_FORCE) are not required. 1670 */ 1671 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1672 struct page **pages, unsigned int gup_flags) 1673 { 1674 struct mm_struct *mm = current->mm; 1675 int locked = 1; 1676 long ret; 1677 1678 /* 1679 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1680 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1681 * vmas. As there are no users of this flag in this call we simply 1682 * disallow this option for now. 1683 */ 1684 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1685 return -EINVAL; 1686 1687 down_read(&mm->mmap_sem); 1688 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1689 &locked, gup_flags | FOLL_TOUCH); 1690 if (locked) 1691 up_read(&mm->mmap_sem); 1692 return ret; 1693 } 1694 EXPORT_SYMBOL(get_user_pages_unlocked); 1695 1696 /* 1697 * Fast GUP 1698 * 1699 * get_user_pages_fast attempts to pin user pages by walking the page 1700 * tables directly and avoids taking locks. Thus the walker needs to be 1701 * protected from page table pages being freed from under it, and should 1702 * block any THP splits. 1703 * 1704 * One way to achieve this is to have the walker disable interrupts, and 1705 * rely on IPIs from the TLB flushing code blocking before the page table 1706 * pages are freed. This is unsuitable for architectures that do not need 1707 * to broadcast an IPI when invalidating TLBs. 1708 * 1709 * Another way to achieve this is to batch up page table containing pages 1710 * belonging to more than one mm_user, then rcu_sched a callback to free those 1711 * pages. Disabling interrupts will allow the fast_gup walker to both block 1712 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1713 * (which is a relatively rare event). The code below adopts this strategy. 1714 * 1715 * Before activating this code, please be aware that the following assumptions 1716 * are currently made: 1717 * 1718 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1719 * free pages containing page tables or TLB flushing requires IPI broadcast. 1720 * 1721 * *) ptes can be read atomically by the architecture. 1722 * 1723 * *) access_ok is sufficient to validate userspace address ranges. 1724 * 1725 * The last two assumptions can be relaxed by the addition of helper functions. 1726 * 1727 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1728 */ 1729 #ifdef CONFIG_HAVE_FAST_GUP 1730 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 1731 /* 1732 * WARNING: only to be used in the get_user_pages_fast() implementation. 1733 * 1734 * With get_user_pages_fast(), we walk down the pagetables without taking any 1735 * locks. For this we would like to load the pointers atomically, but sometimes 1736 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 1737 * we do have is the guarantee that a PTE will only either go from not present 1738 * to present, or present to not present or both -- it will not switch to a 1739 * completely different present page without a TLB flush in between; something 1740 * that we are blocking by holding interrupts off. 1741 * 1742 * Setting ptes from not present to present goes: 1743 * 1744 * ptep->pte_high = h; 1745 * smp_wmb(); 1746 * ptep->pte_low = l; 1747 * 1748 * And present to not present goes: 1749 * 1750 * ptep->pte_low = 0; 1751 * smp_wmb(); 1752 * ptep->pte_high = 0; 1753 * 1754 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 1755 * We load pte_high *after* loading pte_low, which ensures we don't see an older 1756 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 1757 * picked up a changed pte high. We might have gotten rubbish values from 1758 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 1759 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 1760 * operates on present ptes we're safe. 1761 */ 1762 static inline pte_t gup_get_pte(pte_t *ptep) 1763 { 1764 pte_t pte; 1765 1766 do { 1767 pte.pte_low = ptep->pte_low; 1768 smp_rmb(); 1769 pte.pte_high = ptep->pte_high; 1770 smp_rmb(); 1771 } while (unlikely(pte.pte_low != ptep->pte_low)); 1772 1773 return pte; 1774 } 1775 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 1776 /* 1777 * We require that the PTE can be read atomically. 1778 */ 1779 static inline pte_t gup_get_pte(pte_t *ptep) 1780 { 1781 return READ_ONCE(*ptep); 1782 } 1783 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 1784 1785 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 1786 struct page **pages) 1787 { 1788 while ((*nr) - nr_start) { 1789 struct page *page = pages[--(*nr)]; 1790 1791 ClearPageReferenced(page); 1792 put_page(page); 1793 } 1794 } 1795 1796 /* 1797 * Return the compund head page with ref appropriately incremented, 1798 * or NULL if that failed. 1799 */ 1800 static inline struct page *try_get_compound_head(struct page *page, int refs) 1801 { 1802 struct page *head = compound_head(page); 1803 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 1804 return NULL; 1805 if (unlikely(!page_cache_add_speculative(head, refs))) 1806 return NULL; 1807 return head; 1808 } 1809 1810 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1811 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1812 unsigned int flags, struct page **pages, int *nr) 1813 { 1814 struct dev_pagemap *pgmap = NULL; 1815 int nr_start = *nr, ret = 0; 1816 pte_t *ptep, *ptem; 1817 1818 ptem = ptep = pte_offset_map(&pmd, addr); 1819 do { 1820 pte_t pte = gup_get_pte(ptep); 1821 struct page *head, *page; 1822 1823 /* 1824 * Similar to the PMD case below, NUMA hinting must take slow 1825 * path using the pte_protnone check. 1826 */ 1827 if (pte_protnone(pte)) 1828 goto pte_unmap; 1829 1830 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 1831 goto pte_unmap; 1832 1833 if (pte_devmap(pte)) { 1834 if (unlikely(flags & FOLL_LONGTERM)) 1835 goto pte_unmap; 1836 1837 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1838 if (unlikely(!pgmap)) { 1839 undo_dev_pagemap(nr, nr_start, pages); 1840 goto pte_unmap; 1841 } 1842 } else if (pte_special(pte)) 1843 goto pte_unmap; 1844 1845 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1846 page = pte_page(pte); 1847 1848 head = try_get_compound_head(page, 1); 1849 if (!head) 1850 goto pte_unmap; 1851 1852 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1853 put_page(head); 1854 goto pte_unmap; 1855 } 1856 1857 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1858 1859 SetPageReferenced(page); 1860 pages[*nr] = page; 1861 (*nr)++; 1862 1863 } while (ptep++, addr += PAGE_SIZE, addr != end); 1864 1865 ret = 1; 1866 1867 pte_unmap: 1868 if (pgmap) 1869 put_dev_pagemap(pgmap); 1870 pte_unmap(ptem); 1871 return ret; 1872 } 1873 #else 1874 1875 /* 1876 * If we can't determine whether or not a pte is special, then fail immediately 1877 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1878 * to be special. 1879 * 1880 * For a futex to be placed on a THP tail page, get_futex_key requires a 1881 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1882 * useful to have gup_huge_pmd even if we can't operate on ptes. 1883 */ 1884 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1885 unsigned int flags, struct page **pages, int *nr) 1886 { 1887 return 0; 1888 } 1889 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1890 1891 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1892 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1893 unsigned long end, struct page **pages, int *nr) 1894 { 1895 int nr_start = *nr; 1896 struct dev_pagemap *pgmap = NULL; 1897 1898 do { 1899 struct page *page = pfn_to_page(pfn); 1900 1901 pgmap = get_dev_pagemap(pfn, pgmap); 1902 if (unlikely(!pgmap)) { 1903 undo_dev_pagemap(nr, nr_start, pages); 1904 return 0; 1905 } 1906 SetPageReferenced(page); 1907 pages[*nr] = page; 1908 get_page(page); 1909 (*nr)++; 1910 pfn++; 1911 } while (addr += PAGE_SIZE, addr != end); 1912 1913 if (pgmap) 1914 put_dev_pagemap(pgmap); 1915 return 1; 1916 } 1917 1918 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1919 unsigned long end, struct page **pages, int *nr) 1920 { 1921 unsigned long fault_pfn; 1922 int nr_start = *nr; 1923 1924 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1925 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1926 return 0; 1927 1928 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1929 undo_dev_pagemap(nr, nr_start, pages); 1930 return 0; 1931 } 1932 return 1; 1933 } 1934 1935 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1936 unsigned long end, struct page **pages, int *nr) 1937 { 1938 unsigned long fault_pfn; 1939 int nr_start = *nr; 1940 1941 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1942 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1943 return 0; 1944 1945 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1946 undo_dev_pagemap(nr, nr_start, pages); 1947 return 0; 1948 } 1949 return 1; 1950 } 1951 #else 1952 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1953 unsigned long end, struct page **pages, int *nr) 1954 { 1955 BUILD_BUG(); 1956 return 0; 1957 } 1958 1959 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1960 unsigned long end, struct page **pages, int *nr) 1961 { 1962 BUILD_BUG(); 1963 return 0; 1964 } 1965 #endif 1966 1967 #ifdef CONFIG_ARCH_HAS_HUGEPD 1968 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 1969 unsigned long sz) 1970 { 1971 unsigned long __boundary = (addr + sz) & ~(sz-1); 1972 return (__boundary - 1 < end - 1) ? __boundary : end; 1973 } 1974 1975 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1976 unsigned long end, unsigned int flags, 1977 struct page **pages, int *nr) 1978 { 1979 unsigned long pte_end; 1980 struct page *head, *page; 1981 pte_t pte; 1982 int refs; 1983 1984 pte_end = (addr + sz) & ~(sz-1); 1985 if (pte_end < end) 1986 end = pte_end; 1987 1988 pte = READ_ONCE(*ptep); 1989 1990 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 1991 return 0; 1992 1993 /* hugepages are never "special" */ 1994 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1995 1996 refs = 0; 1997 head = pte_page(pte); 1998 1999 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2000 do { 2001 VM_BUG_ON(compound_head(page) != head); 2002 pages[*nr] = page; 2003 (*nr)++; 2004 page++; 2005 refs++; 2006 } while (addr += PAGE_SIZE, addr != end); 2007 2008 head = try_get_compound_head(head, refs); 2009 if (!head) { 2010 *nr -= refs; 2011 return 0; 2012 } 2013 2014 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2015 /* Could be optimized better */ 2016 *nr -= refs; 2017 while (refs--) 2018 put_page(head); 2019 return 0; 2020 } 2021 2022 SetPageReferenced(head); 2023 return 1; 2024 } 2025 2026 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2027 unsigned int pdshift, unsigned long end, unsigned int flags, 2028 struct page **pages, int *nr) 2029 { 2030 pte_t *ptep; 2031 unsigned long sz = 1UL << hugepd_shift(hugepd); 2032 unsigned long next; 2033 2034 ptep = hugepte_offset(hugepd, addr, pdshift); 2035 do { 2036 next = hugepte_addr_end(addr, end, sz); 2037 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2038 return 0; 2039 } while (ptep++, addr = next, addr != end); 2040 2041 return 1; 2042 } 2043 #else 2044 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2045 unsigned int pdshift, unsigned long end, unsigned int flags, 2046 struct page **pages, int *nr) 2047 { 2048 return 0; 2049 } 2050 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2051 2052 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2053 unsigned long end, unsigned int flags, 2054 struct page **pages, int *nr) 2055 { 2056 struct page *head, *page; 2057 int refs; 2058 2059 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2060 return 0; 2061 2062 if (pmd_devmap(orig)) { 2063 if (unlikely(flags & FOLL_LONGTERM)) 2064 return 0; 2065 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 2066 } 2067 2068 refs = 0; 2069 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2070 do { 2071 pages[*nr] = page; 2072 (*nr)++; 2073 page++; 2074 refs++; 2075 } while (addr += PAGE_SIZE, addr != end); 2076 2077 head = try_get_compound_head(pmd_page(orig), refs); 2078 if (!head) { 2079 *nr -= refs; 2080 return 0; 2081 } 2082 2083 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2084 *nr -= refs; 2085 while (refs--) 2086 put_page(head); 2087 return 0; 2088 } 2089 2090 SetPageReferenced(head); 2091 return 1; 2092 } 2093 2094 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2095 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2096 { 2097 struct page *head, *page; 2098 int refs; 2099 2100 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2101 return 0; 2102 2103 if (pud_devmap(orig)) { 2104 if (unlikely(flags & FOLL_LONGTERM)) 2105 return 0; 2106 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 2107 } 2108 2109 refs = 0; 2110 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2111 do { 2112 pages[*nr] = page; 2113 (*nr)++; 2114 page++; 2115 refs++; 2116 } while (addr += PAGE_SIZE, addr != end); 2117 2118 head = try_get_compound_head(pud_page(orig), refs); 2119 if (!head) { 2120 *nr -= refs; 2121 return 0; 2122 } 2123 2124 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2125 *nr -= refs; 2126 while (refs--) 2127 put_page(head); 2128 return 0; 2129 } 2130 2131 SetPageReferenced(head); 2132 return 1; 2133 } 2134 2135 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2136 unsigned long end, unsigned int flags, 2137 struct page **pages, int *nr) 2138 { 2139 int refs; 2140 struct page *head, *page; 2141 2142 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2143 return 0; 2144 2145 BUILD_BUG_ON(pgd_devmap(orig)); 2146 refs = 0; 2147 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2148 do { 2149 pages[*nr] = page; 2150 (*nr)++; 2151 page++; 2152 refs++; 2153 } while (addr += PAGE_SIZE, addr != end); 2154 2155 head = try_get_compound_head(pgd_page(orig), refs); 2156 if (!head) { 2157 *nr -= refs; 2158 return 0; 2159 } 2160 2161 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2162 *nr -= refs; 2163 while (refs--) 2164 put_page(head); 2165 return 0; 2166 } 2167 2168 SetPageReferenced(head); 2169 return 1; 2170 } 2171 2172 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2173 unsigned int flags, struct page **pages, int *nr) 2174 { 2175 unsigned long next; 2176 pmd_t *pmdp; 2177 2178 pmdp = pmd_offset(&pud, addr); 2179 do { 2180 pmd_t pmd = READ_ONCE(*pmdp); 2181 2182 next = pmd_addr_end(addr, end); 2183 if (!pmd_present(pmd)) 2184 return 0; 2185 2186 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2187 pmd_devmap(pmd))) { 2188 /* 2189 * NUMA hinting faults need to be handled in the GUP 2190 * slowpath for accounting purposes and so that they 2191 * can be serialised against THP migration. 2192 */ 2193 if (pmd_protnone(pmd)) 2194 return 0; 2195 2196 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2197 pages, nr)) 2198 return 0; 2199 2200 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2201 /* 2202 * architecture have different format for hugetlbfs 2203 * pmd format and THP pmd format 2204 */ 2205 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2206 PMD_SHIFT, next, flags, pages, nr)) 2207 return 0; 2208 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2209 return 0; 2210 } while (pmdp++, addr = next, addr != end); 2211 2212 return 1; 2213 } 2214 2215 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2216 unsigned int flags, struct page **pages, int *nr) 2217 { 2218 unsigned long next; 2219 pud_t *pudp; 2220 2221 pudp = pud_offset(&p4d, addr); 2222 do { 2223 pud_t pud = READ_ONCE(*pudp); 2224 2225 next = pud_addr_end(addr, end); 2226 if (pud_none(pud)) 2227 return 0; 2228 if (unlikely(pud_huge(pud))) { 2229 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2230 pages, nr)) 2231 return 0; 2232 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2233 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2234 PUD_SHIFT, next, flags, pages, nr)) 2235 return 0; 2236 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2237 return 0; 2238 } while (pudp++, addr = next, addr != end); 2239 2240 return 1; 2241 } 2242 2243 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2244 unsigned int flags, struct page **pages, int *nr) 2245 { 2246 unsigned long next; 2247 p4d_t *p4dp; 2248 2249 p4dp = p4d_offset(&pgd, addr); 2250 do { 2251 p4d_t p4d = READ_ONCE(*p4dp); 2252 2253 next = p4d_addr_end(addr, end); 2254 if (p4d_none(p4d)) 2255 return 0; 2256 BUILD_BUG_ON(p4d_huge(p4d)); 2257 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2258 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2259 P4D_SHIFT, next, flags, pages, nr)) 2260 return 0; 2261 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2262 return 0; 2263 } while (p4dp++, addr = next, addr != end); 2264 2265 return 1; 2266 } 2267 2268 static void gup_pgd_range(unsigned long addr, unsigned long end, 2269 unsigned int flags, struct page **pages, int *nr) 2270 { 2271 unsigned long next; 2272 pgd_t *pgdp; 2273 2274 pgdp = pgd_offset(current->mm, addr); 2275 do { 2276 pgd_t pgd = READ_ONCE(*pgdp); 2277 2278 next = pgd_addr_end(addr, end); 2279 if (pgd_none(pgd)) 2280 return; 2281 if (unlikely(pgd_huge(pgd))) { 2282 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2283 pages, nr)) 2284 return; 2285 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2286 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2287 PGDIR_SHIFT, next, flags, pages, nr)) 2288 return; 2289 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2290 return; 2291 } while (pgdp++, addr = next, addr != end); 2292 } 2293 #else 2294 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2295 unsigned int flags, struct page **pages, int *nr) 2296 { 2297 } 2298 #endif /* CONFIG_HAVE_FAST_GUP */ 2299 2300 #ifndef gup_fast_permitted 2301 /* 2302 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2303 * we need to fall back to the slow version: 2304 */ 2305 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2306 { 2307 return true; 2308 } 2309 #endif 2310 2311 /* 2312 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2313 * the regular GUP. 2314 * Note a difference with get_user_pages_fast: this always returns the 2315 * number of pages pinned, 0 if no pages were pinned. 2316 * 2317 * If the architecture does not support this function, simply return with no 2318 * pages pinned. 2319 */ 2320 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2321 struct page **pages) 2322 { 2323 unsigned long len, end; 2324 unsigned long flags; 2325 int nr = 0; 2326 2327 start = untagged_addr(start) & PAGE_MASK; 2328 len = (unsigned long) nr_pages << PAGE_SHIFT; 2329 end = start + len; 2330 2331 if (end <= start) 2332 return 0; 2333 if (unlikely(!access_ok((void __user *)start, len))) 2334 return 0; 2335 2336 /* 2337 * Disable interrupts. We use the nested form as we can already have 2338 * interrupts disabled by get_futex_key. 2339 * 2340 * With interrupts disabled, we block page table pages from being 2341 * freed from under us. See struct mmu_table_batch comments in 2342 * include/asm-generic/tlb.h for more details. 2343 * 2344 * We do not adopt an rcu_read_lock(.) here as we also want to 2345 * block IPIs that come from THPs splitting. 2346 */ 2347 2348 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2349 gup_fast_permitted(start, end)) { 2350 local_irq_save(flags); 2351 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); 2352 local_irq_restore(flags); 2353 } 2354 2355 return nr; 2356 } 2357 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2358 2359 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2360 unsigned int gup_flags, struct page **pages) 2361 { 2362 int ret; 2363 2364 /* 2365 * FIXME: FOLL_LONGTERM does not work with 2366 * get_user_pages_unlocked() (see comments in that function) 2367 */ 2368 if (gup_flags & FOLL_LONGTERM) { 2369 down_read(¤t->mm->mmap_sem); 2370 ret = __gup_longterm_locked(current, current->mm, 2371 start, nr_pages, 2372 pages, NULL, gup_flags); 2373 up_read(¤t->mm->mmap_sem); 2374 } else { 2375 ret = get_user_pages_unlocked(start, nr_pages, 2376 pages, gup_flags); 2377 } 2378 2379 return ret; 2380 } 2381 2382 /** 2383 * get_user_pages_fast() - pin user pages in memory 2384 * @start: starting user address 2385 * @nr_pages: number of pages from start to pin 2386 * @gup_flags: flags modifying pin behaviour 2387 * @pages: array that receives pointers to the pages pinned. 2388 * Should be at least nr_pages long. 2389 * 2390 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2391 * If not successful, it will fall back to taking the lock and 2392 * calling get_user_pages(). 2393 * 2394 * Returns number of pages pinned. This may be fewer than the number 2395 * requested. If nr_pages is 0 or negative, returns 0. If no pages 2396 * were pinned, returns -errno. 2397 */ 2398 int get_user_pages_fast(unsigned long start, int nr_pages, 2399 unsigned int gup_flags, struct page **pages) 2400 { 2401 unsigned long addr, len, end; 2402 int nr = 0, ret = 0; 2403 2404 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM))) 2405 return -EINVAL; 2406 2407 start = untagged_addr(start) & PAGE_MASK; 2408 addr = start; 2409 len = (unsigned long) nr_pages << PAGE_SHIFT; 2410 end = start + len; 2411 2412 if (end <= start) 2413 return 0; 2414 if (unlikely(!access_ok((void __user *)start, len))) 2415 return -EFAULT; 2416 2417 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2418 gup_fast_permitted(start, end)) { 2419 local_irq_disable(); 2420 gup_pgd_range(addr, end, gup_flags, pages, &nr); 2421 local_irq_enable(); 2422 ret = nr; 2423 } 2424 2425 if (nr < nr_pages) { 2426 /* Try to get the remaining pages with get_user_pages */ 2427 start += nr << PAGE_SHIFT; 2428 pages += nr; 2429 2430 ret = __gup_longterm_unlocked(start, nr_pages - nr, 2431 gup_flags, pages); 2432 2433 /* Have to be a bit careful with return values */ 2434 if (nr > 0) { 2435 if (ret < 0) 2436 ret = nr; 2437 else 2438 ret += nr; 2439 } 2440 } 2441 2442 return ret; 2443 } 2444 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2445