1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* Equivalent to calling put_page() @refs times. */ 48 static void put_page_refs(struct page *page, int refs) 49 { 50 #ifdef CONFIG_DEBUG_VM 51 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) 52 return; 53 #endif 54 55 /* 56 * Calling put_page() for each ref is unnecessarily slow. Only the last 57 * ref needs a put_page(). 58 */ 59 if (refs > 1) 60 page_ref_sub(page, refs - 1); 61 put_page(page); 62 } 63 64 /* 65 * Return the compound head page with ref appropriately incremented, 66 * or NULL if that failed. 67 */ 68 static inline struct page *try_get_compound_head(struct page *page, int refs) 69 { 70 struct page *head = compound_head(page); 71 72 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 73 return NULL; 74 if (unlikely(!page_cache_add_speculative(head, refs))) 75 return NULL; 76 77 /* 78 * At this point we have a stable reference to the head page; but it 79 * could be that between the compound_head() lookup and the refcount 80 * increment, the compound page was split, in which case we'd end up 81 * holding a reference on a page that has nothing to do with the page 82 * we were given anymore. 83 * So now that the head page is stable, recheck that the pages still 84 * belong together. 85 */ 86 if (unlikely(compound_head(page) != head)) { 87 put_page_refs(head, refs); 88 return NULL; 89 } 90 91 return head; 92 } 93 94 /* 95 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 96 * flags-dependent amount. 97 * 98 * "grab" names in this file mean, "look at flags to decide whether to use 99 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 100 * 101 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 102 * same time. (That's true throughout the get_user_pages*() and 103 * pin_user_pages*() APIs.) Cases: 104 * 105 * FOLL_GET: page's refcount will be incremented by 1. 106 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 107 * 108 * Return: head page (with refcount appropriately incremented) for success, or 109 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 110 * considered failure, and furthermore, a likely bug in the caller, so a warning 111 * is also emitted. 112 */ 113 __maybe_unused struct page *try_grab_compound_head(struct page *page, 114 int refs, unsigned int flags) 115 { 116 if (flags & FOLL_GET) 117 return try_get_compound_head(page, refs); 118 else if (flags & FOLL_PIN) { 119 int orig_refs = refs; 120 121 /* 122 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 123 * right zone, so fail and let the caller fall back to the slow 124 * path. 125 */ 126 if (unlikely((flags & FOLL_LONGTERM) && 127 !is_pinnable_page(page))) 128 return NULL; 129 130 /* 131 * CAUTION: Don't use compound_head() on the page before this 132 * point, the result won't be stable. 133 */ 134 page = try_get_compound_head(page, refs); 135 if (!page) 136 return NULL; 137 138 /* 139 * When pinning a compound page of order > 1 (which is what 140 * hpage_pincount_available() checks for), use an exact count to 141 * track it, via hpage_pincount_add/_sub(). 142 * 143 * However, be sure to *also* increment the normal page refcount 144 * field at least once, so that the page really is pinned. 145 */ 146 if (hpage_pincount_available(page)) 147 hpage_pincount_add(page, refs); 148 else 149 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); 150 151 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 152 orig_refs); 153 154 return page; 155 } 156 157 WARN_ON_ONCE(1); 158 return NULL; 159 } 160 161 static void put_compound_head(struct page *page, int refs, unsigned int flags) 162 { 163 if (flags & FOLL_PIN) { 164 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 165 refs); 166 167 if (hpage_pincount_available(page)) 168 hpage_pincount_sub(page, refs); 169 else 170 refs *= GUP_PIN_COUNTING_BIAS; 171 } 172 173 put_page_refs(page, refs); 174 } 175 176 /** 177 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 178 * 179 * This might not do anything at all, depending on the flags argument. 180 * 181 * "grab" names in this file mean, "look at flags to decide whether to use 182 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 183 * 184 * @page: pointer to page to be grabbed 185 * @flags: gup flags: these are the FOLL_* flag values. 186 * 187 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 188 * time. Cases: 189 * 190 * FOLL_GET: page's refcount will be incremented by 1. 191 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 192 * 193 * Return: true for success, or if no action was required (if neither FOLL_PIN 194 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 195 * FOLL_PIN was set, but the page could not be grabbed. 196 */ 197 bool __must_check try_grab_page(struct page *page, unsigned int flags) 198 { 199 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 200 201 if (flags & FOLL_GET) 202 return try_get_page(page); 203 else if (flags & FOLL_PIN) { 204 int refs = 1; 205 206 page = compound_head(page); 207 208 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 209 return false; 210 211 if (hpage_pincount_available(page)) 212 hpage_pincount_add(page, 1); 213 else 214 refs = GUP_PIN_COUNTING_BIAS; 215 216 /* 217 * Similar to try_grab_compound_head(): even if using the 218 * hpage_pincount_add/_sub() routines, be sure to 219 * *also* increment the normal page refcount field at least 220 * once, so that the page really is pinned. 221 */ 222 page_ref_add(page, refs); 223 224 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 225 } 226 227 return true; 228 } 229 230 /** 231 * unpin_user_page() - release a dma-pinned page 232 * @page: pointer to page to be released 233 * 234 * Pages that were pinned via pin_user_pages*() must be released via either 235 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 236 * that such pages can be separately tracked and uniquely handled. In 237 * particular, interactions with RDMA and filesystems need special handling. 238 */ 239 void unpin_user_page(struct page *page) 240 { 241 put_compound_head(compound_head(page), 1, FOLL_PIN); 242 } 243 EXPORT_SYMBOL(unpin_user_page); 244 245 static inline void compound_range_next(unsigned long i, unsigned long npages, 246 struct page **list, struct page **head, 247 unsigned int *ntails) 248 { 249 struct page *next, *page; 250 unsigned int nr = 1; 251 252 if (i >= npages) 253 return; 254 255 next = *list + i; 256 page = compound_head(next); 257 if (PageCompound(page) && compound_order(page) >= 1) 258 nr = min_t(unsigned int, 259 page + compound_nr(page) - next, npages - i); 260 261 *head = page; 262 *ntails = nr; 263 } 264 265 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 266 for (__i = 0, \ 267 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 268 __i < __npages; __i += __ntails, \ 269 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 270 271 static inline void compound_next(unsigned long i, unsigned long npages, 272 struct page **list, struct page **head, 273 unsigned int *ntails) 274 { 275 struct page *page; 276 unsigned int nr; 277 278 if (i >= npages) 279 return; 280 281 page = compound_head(list[i]); 282 for (nr = i + 1; nr < npages; nr++) { 283 if (compound_head(list[nr]) != page) 284 break; 285 } 286 287 *head = page; 288 *ntails = nr - i; 289 } 290 291 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 292 for (__i = 0, \ 293 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 294 __i < __npages; __i += __ntails, \ 295 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 296 297 /** 298 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 299 * @pages: array of pages to be maybe marked dirty, and definitely released. 300 * @npages: number of pages in the @pages array. 301 * @make_dirty: whether to mark the pages dirty 302 * 303 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 304 * variants called on that page. 305 * 306 * For each page in the @pages array, make that page (or its head page, if a 307 * compound page) dirty, if @make_dirty is true, and if the page was previously 308 * listed as clean. In any case, releases all pages using unpin_user_page(), 309 * possibly via unpin_user_pages(), for the non-dirty case. 310 * 311 * Please see the unpin_user_page() documentation for details. 312 * 313 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 314 * required, then the caller should a) verify that this is really correct, 315 * because _lock() is usually required, and b) hand code it: 316 * set_page_dirty_lock(), unpin_user_page(). 317 * 318 */ 319 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 320 bool make_dirty) 321 { 322 unsigned long index; 323 struct page *head; 324 unsigned int ntails; 325 326 if (!make_dirty) { 327 unpin_user_pages(pages, npages); 328 return; 329 } 330 331 for_each_compound_head(index, pages, npages, head, ntails) { 332 /* 333 * Checking PageDirty at this point may race with 334 * clear_page_dirty_for_io(), but that's OK. Two key 335 * cases: 336 * 337 * 1) This code sees the page as already dirty, so it 338 * skips the call to set_page_dirty(). That could happen 339 * because clear_page_dirty_for_io() called 340 * page_mkclean(), followed by set_page_dirty(). 341 * However, now the page is going to get written back, 342 * which meets the original intention of setting it 343 * dirty, so all is well: clear_page_dirty_for_io() goes 344 * on to call TestClearPageDirty(), and write the page 345 * back. 346 * 347 * 2) This code sees the page as clean, so it calls 348 * set_page_dirty(). The page stays dirty, despite being 349 * written back, so it gets written back again in the 350 * next writeback cycle. This is harmless. 351 */ 352 if (!PageDirty(head)) 353 set_page_dirty_lock(head); 354 put_compound_head(head, ntails, FOLL_PIN); 355 } 356 } 357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 358 359 /** 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty 361 * gup-pinned page range 362 * 363 * @page: the starting page of a range maybe marked dirty, and definitely released. 364 * @npages: number of consecutive pages to release. 365 * @make_dirty: whether to mark the pages dirty 366 * 367 * "gup-pinned page range" refers to a range of pages that has had one of the 368 * pin_user_pages() variants called on that page. 369 * 370 * For the page ranges defined by [page .. page+npages], make that range (or 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 372 * page range was previously listed as clean. 373 * 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 375 * required, then the caller should a) verify that this is really correct, 376 * because _lock() is usually required, and b) hand code it: 377 * set_page_dirty_lock(), unpin_user_page(). 378 * 379 */ 380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 381 bool make_dirty) 382 { 383 unsigned long index; 384 struct page *head; 385 unsigned int ntails; 386 387 for_each_compound_range(index, &page, npages, head, ntails) { 388 if (make_dirty && !PageDirty(head)) 389 set_page_dirty_lock(head); 390 put_compound_head(head, ntails, FOLL_PIN); 391 } 392 } 393 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 394 395 /** 396 * unpin_user_pages() - release an array of gup-pinned pages. 397 * @pages: array of pages to be marked dirty and released. 398 * @npages: number of pages in the @pages array. 399 * 400 * For each page in the @pages array, release the page using unpin_user_page(). 401 * 402 * Please see the unpin_user_page() documentation for details. 403 */ 404 void unpin_user_pages(struct page **pages, unsigned long npages) 405 { 406 unsigned long index; 407 struct page *head; 408 unsigned int ntails; 409 410 /* 411 * If this WARN_ON() fires, then the system *might* be leaking pages (by 412 * leaving them pinned), but probably not. More likely, gup/pup returned 413 * a hard -ERRNO error to the caller, who erroneously passed it here. 414 */ 415 if (WARN_ON(IS_ERR_VALUE(npages))) 416 return; 417 418 for_each_compound_head(index, pages, npages, head, ntails) 419 put_compound_head(head, ntails, FOLL_PIN); 420 } 421 EXPORT_SYMBOL(unpin_user_pages); 422 423 /* 424 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 425 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 426 * cache bouncing on large SMP machines for concurrent pinned gups. 427 */ 428 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 429 { 430 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 431 set_bit(MMF_HAS_PINNED, mm_flags); 432 } 433 434 #ifdef CONFIG_MMU 435 static struct page *no_page_table(struct vm_area_struct *vma, 436 unsigned int flags) 437 { 438 /* 439 * When core dumping an enormous anonymous area that nobody 440 * has touched so far, we don't want to allocate unnecessary pages or 441 * page tables. Return error instead of NULL to skip handle_mm_fault, 442 * then get_dump_page() will return NULL to leave a hole in the dump. 443 * But we can only make this optimization where a hole would surely 444 * be zero-filled if handle_mm_fault() actually did handle it. 445 */ 446 if ((flags & FOLL_DUMP) && 447 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 448 return ERR_PTR(-EFAULT); 449 return NULL; 450 } 451 452 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 453 pte_t *pte, unsigned int flags) 454 { 455 /* No page to get reference */ 456 if (flags & FOLL_GET) 457 return -EFAULT; 458 459 if (flags & FOLL_TOUCH) { 460 pte_t entry = *pte; 461 462 if (flags & FOLL_WRITE) 463 entry = pte_mkdirty(entry); 464 entry = pte_mkyoung(entry); 465 466 if (!pte_same(*pte, entry)) { 467 set_pte_at(vma->vm_mm, address, pte, entry); 468 update_mmu_cache(vma, address, pte); 469 } 470 } 471 472 /* Proper page table entry exists, but no corresponding struct page */ 473 return -EEXIST; 474 } 475 476 /* 477 * FOLL_FORCE can write to even unwritable pte's, but only 478 * after we've gone through a COW cycle and they are dirty. 479 */ 480 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 481 { 482 return pte_write(pte) || 483 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 484 } 485 486 static struct page *follow_page_pte(struct vm_area_struct *vma, 487 unsigned long address, pmd_t *pmd, unsigned int flags, 488 struct dev_pagemap **pgmap) 489 { 490 struct mm_struct *mm = vma->vm_mm; 491 struct page *page; 492 spinlock_t *ptl; 493 pte_t *ptep, pte; 494 int ret; 495 496 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 497 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 498 (FOLL_PIN | FOLL_GET))) 499 return ERR_PTR(-EINVAL); 500 retry: 501 if (unlikely(pmd_bad(*pmd))) 502 return no_page_table(vma, flags); 503 504 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 505 pte = *ptep; 506 if (!pte_present(pte)) { 507 swp_entry_t entry; 508 /* 509 * KSM's break_ksm() relies upon recognizing a ksm page 510 * even while it is being migrated, so for that case we 511 * need migration_entry_wait(). 512 */ 513 if (likely(!(flags & FOLL_MIGRATION))) 514 goto no_page; 515 if (pte_none(pte)) 516 goto no_page; 517 entry = pte_to_swp_entry(pte); 518 if (!is_migration_entry(entry)) 519 goto no_page; 520 pte_unmap_unlock(ptep, ptl); 521 migration_entry_wait(mm, pmd, address); 522 goto retry; 523 } 524 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 525 goto no_page; 526 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 527 pte_unmap_unlock(ptep, ptl); 528 return NULL; 529 } 530 531 page = vm_normal_page(vma, address, pte); 532 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 533 /* 534 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 535 * case since they are only valid while holding the pgmap 536 * reference. 537 */ 538 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 539 if (*pgmap) 540 page = pte_page(pte); 541 else 542 goto no_page; 543 } else if (unlikely(!page)) { 544 if (flags & FOLL_DUMP) { 545 /* Avoid special (like zero) pages in core dumps */ 546 page = ERR_PTR(-EFAULT); 547 goto out; 548 } 549 550 if (is_zero_pfn(pte_pfn(pte))) { 551 page = pte_page(pte); 552 } else { 553 ret = follow_pfn_pte(vma, address, ptep, flags); 554 page = ERR_PTR(ret); 555 goto out; 556 } 557 } 558 559 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 560 if (unlikely(!try_grab_page(page, flags))) { 561 page = ERR_PTR(-ENOMEM); 562 goto out; 563 } 564 /* 565 * We need to make the page accessible if and only if we are going 566 * to access its content (the FOLL_PIN case). Please see 567 * Documentation/core-api/pin_user_pages.rst for details. 568 */ 569 if (flags & FOLL_PIN) { 570 ret = arch_make_page_accessible(page); 571 if (ret) { 572 unpin_user_page(page); 573 page = ERR_PTR(ret); 574 goto out; 575 } 576 } 577 if (flags & FOLL_TOUCH) { 578 if ((flags & FOLL_WRITE) && 579 !pte_dirty(pte) && !PageDirty(page)) 580 set_page_dirty(page); 581 /* 582 * pte_mkyoung() would be more correct here, but atomic care 583 * is needed to avoid losing the dirty bit: it is easier to use 584 * mark_page_accessed(). 585 */ 586 mark_page_accessed(page); 587 } 588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 589 /* Do not mlock pte-mapped THP */ 590 if (PageTransCompound(page)) 591 goto out; 592 593 /* 594 * The preliminary mapping check is mainly to avoid the 595 * pointless overhead of lock_page on the ZERO_PAGE 596 * which might bounce very badly if there is contention. 597 * 598 * If the page is already locked, we don't need to 599 * handle it now - vmscan will handle it later if and 600 * when it attempts to reclaim the page. 601 */ 602 if (page->mapping && trylock_page(page)) { 603 lru_add_drain(); /* push cached pages to LRU */ 604 /* 605 * Because we lock page here, and migration is 606 * blocked by the pte's page reference, and we 607 * know the page is still mapped, we don't even 608 * need to check for file-cache page truncation. 609 */ 610 mlock_vma_page(page); 611 unlock_page(page); 612 } 613 } 614 out: 615 pte_unmap_unlock(ptep, ptl); 616 return page; 617 no_page: 618 pte_unmap_unlock(ptep, ptl); 619 if (!pte_none(pte)) 620 return NULL; 621 return no_page_table(vma, flags); 622 } 623 624 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 625 unsigned long address, pud_t *pudp, 626 unsigned int flags, 627 struct follow_page_context *ctx) 628 { 629 pmd_t *pmd, pmdval; 630 spinlock_t *ptl; 631 struct page *page; 632 struct mm_struct *mm = vma->vm_mm; 633 634 pmd = pmd_offset(pudp, address); 635 /* 636 * The READ_ONCE() will stabilize the pmdval in a register or 637 * on the stack so that it will stop changing under the code. 638 */ 639 pmdval = READ_ONCE(*pmd); 640 if (pmd_none(pmdval)) 641 return no_page_table(vma, flags); 642 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 643 page = follow_huge_pmd(mm, address, pmd, flags); 644 if (page) 645 return page; 646 return no_page_table(vma, flags); 647 } 648 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 649 page = follow_huge_pd(vma, address, 650 __hugepd(pmd_val(pmdval)), flags, 651 PMD_SHIFT); 652 if (page) 653 return page; 654 return no_page_table(vma, flags); 655 } 656 retry: 657 if (!pmd_present(pmdval)) { 658 if (likely(!(flags & FOLL_MIGRATION))) 659 return no_page_table(vma, flags); 660 VM_BUG_ON(thp_migration_supported() && 661 !is_pmd_migration_entry(pmdval)); 662 if (is_pmd_migration_entry(pmdval)) 663 pmd_migration_entry_wait(mm, pmd); 664 pmdval = READ_ONCE(*pmd); 665 /* 666 * MADV_DONTNEED may convert the pmd to null because 667 * mmap_lock is held in read mode 668 */ 669 if (pmd_none(pmdval)) 670 return no_page_table(vma, flags); 671 goto retry; 672 } 673 if (pmd_devmap(pmdval)) { 674 ptl = pmd_lock(mm, pmd); 675 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 676 spin_unlock(ptl); 677 if (page) 678 return page; 679 } 680 if (likely(!pmd_trans_huge(pmdval))) 681 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 682 683 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 684 return no_page_table(vma, flags); 685 686 retry_locked: 687 ptl = pmd_lock(mm, pmd); 688 if (unlikely(pmd_none(*pmd))) { 689 spin_unlock(ptl); 690 return no_page_table(vma, flags); 691 } 692 if (unlikely(!pmd_present(*pmd))) { 693 spin_unlock(ptl); 694 if (likely(!(flags & FOLL_MIGRATION))) 695 return no_page_table(vma, flags); 696 pmd_migration_entry_wait(mm, pmd); 697 goto retry_locked; 698 } 699 if (unlikely(!pmd_trans_huge(*pmd))) { 700 spin_unlock(ptl); 701 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 702 } 703 if (flags & FOLL_SPLIT_PMD) { 704 int ret; 705 page = pmd_page(*pmd); 706 if (is_huge_zero_page(page)) { 707 spin_unlock(ptl); 708 ret = 0; 709 split_huge_pmd(vma, pmd, address); 710 if (pmd_trans_unstable(pmd)) 711 ret = -EBUSY; 712 } else { 713 spin_unlock(ptl); 714 split_huge_pmd(vma, pmd, address); 715 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 716 } 717 718 return ret ? ERR_PTR(ret) : 719 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 720 } 721 page = follow_trans_huge_pmd(vma, address, pmd, flags); 722 spin_unlock(ptl); 723 ctx->page_mask = HPAGE_PMD_NR - 1; 724 return page; 725 } 726 727 static struct page *follow_pud_mask(struct vm_area_struct *vma, 728 unsigned long address, p4d_t *p4dp, 729 unsigned int flags, 730 struct follow_page_context *ctx) 731 { 732 pud_t *pud; 733 spinlock_t *ptl; 734 struct page *page; 735 struct mm_struct *mm = vma->vm_mm; 736 737 pud = pud_offset(p4dp, address); 738 if (pud_none(*pud)) 739 return no_page_table(vma, flags); 740 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 741 page = follow_huge_pud(mm, address, pud, flags); 742 if (page) 743 return page; 744 return no_page_table(vma, flags); 745 } 746 if (is_hugepd(__hugepd(pud_val(*pud)))) { 747 page = follow_huge_pd(vma, address, 748 __hugepd(pud_val(*pud)), flags, 749 PUD_SHIFT); 750 if (page) 751 return page; 752 return no_page_table(vma, flags); 753 } 754 if (pud_devmap(*pud)) { 755 ptl = pud_lock(mm, pud); 756 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 757 spin_unlock(ptl); 758 if (page) 759 return page; 760 } 761 if (unlikely(pud_bad(*pud))) 762 return no_page_table(vma, flags); 763 764 return follow_pmd_mask(vma, address, pud, flags, ctx); 765 } 766 767 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 768 unsigned long address, pgd_t *pgdp, 769 unsigned int flags, 770 struct follow_page_context *ctx) 771 { 772 p4d_t *p4d; 773 struct page *page; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 783 page = follow_huge_pd(vma, address, 784 __hugepd(p4d_val(*p4d)), flags, 785 P4D_SHIFT); 786 if (page) 787 return page; 788 return no_page_table(vma, flags); 789 } 790 return follow_pud_mask(vma, address, p4d, flags, ctx); 791 } 792 793 /** 794 * follow_page_mask - look up a page descriptor from a user-virtual address 795 * @vma: vm_area_struct mapping @address 796 * @address: virtual address to look up 797 * @flags: flags modifying lookup behaviour 798 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 799 * pointer to output page_mask 800 * 801 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 802 * 803 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 804 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 805 * 806 * On output, the @ctx->page_mask is set according to the size of the page. 807 * 808 * Return: the mapped (struct page *), %NULL if no mapping exists, or 809 * an error pointer if there is a mapping to something not represented 810 * by a page descriptor (see also vm_normal_page()). 811 */ 812 static struct page *follow_page_mask(struct vm_area_struct *vma, 813 unsigned long address, unsigned int flags, 814 struct follow_page_context *ctx) 815 { 816 pgd_t *pgd; 817 struct page *page; 818 struct mm_struct *mm = vma->vm_mm; 819 820 ctx->page_mask = 0; 821 822 /* make this handle hugepd */ 823 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 824 if (!IS_ERR(page)) { 825 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 826 return page; 827 } 828 829 pgd = pgd_offset(mm, address); 830 831 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 832 return no_page_table(vma, flags); 833 834 if (pgd_huge(*pgd)) { 835 page = follow_huge_pgd(mm, address, pgd, flags); 836 if (page) 837 return page; 838 return no_page_table(vma, flags); 839 } 840 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 841 page = follow_huge_pd(vma, address, 842 __hugepd(pgd_val(*pgd)), flags, 843 PGDIR_SHIFT); 844 if (page) 845 return page; 846 return no_page_table(vma, flags); 847 } 848 849 return follow_p4d_mask(vma, address, pgd, flags, ctx); 850 } 851 852 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 853 unsigned int foll_flags) 854 { 855 struct follow_page_context ctx = { NULL }; 856 struct page *page; 857 858 page = follow_page_mask(vma, address, foll_flags, &ctx); 859 if (ctx.pgmap) 860 put_dev_pagemap(ctx.pgmap); 861 return page; 862 } 863 864 static int get_gate_page(struct mm_struct *mm, unsigned long address, 865 unsigned int gup_flags, struct vm_area_struct **vma, 866 struct page **page) 867 { 868 pgd_t *pgd; 869 p4d_t *p4d; 870 pud_t *pud; 871 pmd_t *pmd; 872 pte_t *pte; 873 int ret = -EFAULT; 874 875 /* user gate pages are read-only */ 876 if (gup_flags & FOLL_WRITE) 877 return -EFAULT; 878 if (address > TASK_SIZE) 879 pgd = pgd_offset_k(address); 880 else 881 pgd = pgd_offset_gate(mm, address); 882 if (pgd_none(*pgd)) 883 return -EFAULT; 884 p4d = p4d_offset(pgd, address); 885 if (p4d_none(*p4d)) 886 return -EFAULT; 887 pud = pud_offset(p4d, address); 888 if (pud_none(*pud)) 889 return -EFAULT; 890 pmd = pmd_offset(pud, address); 891 if (!pmd_present(*pmd)) 892 return -EFAULT; 893 VM_BUG_ON(pmd_trans_huge(*pmd)); 894 pte = pte_offset_map(pmd, address); 895 if (pte_none(*pte)) 896 goto unmap; 897 *vma = get_gate_vma(mm); 898 if (!page) 899 goto out; 900 *page = vm_normal_page(*vma, address, *pte); 901 if (!*page) { 902 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 903 goto unmap; 904 *page = pte_page(*pte); 905 } 906 if (unlikely(!try_grab_page(*page, gup_flags))) { 907 ret = -ENOMEM; 908 goto unmap; 909 } 910 out: 911 ret = 0; 912 unmap: 913 pte_unmap(pte); 914 return ret; 915 } 916 917 /* 918 * mmap_lock must be held on entry. If @locked != NULL and *@flags 919 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 920 * is, *@locked will be set to 0 and -EBUSY returned. 921 */ 922 static int faultin_page(struct vm_area_struct *vma, 923 unsigned long address, unsigned int *flags, int *locked) 924 { 925 unsigned int fault_flags = 0; 926 vm_fault_t ret; 927 928 /* mlock all present pages, but do not fault in new pages */ 929 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 930 return -ENOENT; 931 if (*flags & FOLL_WRITE) 932 fault_flags |= FAULT_FLAG_WRITE; 933 if (*flags & FOLL_REMOTE) 934 fault_flags |= FAULT_FLAG_REMOTE; 935 if (locked) 936 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 937 if (*flags & FOLL_NOWAIT) 938 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 939 if (*flags & FOLL_TRIED) { 940 /* 941 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 942 * can co-exist 943 */ 944 fault_flags |= FAULT_FLAG_TRIED; 945 } 946 947 ret = handle_mm_fault(vma, address, fault_flags, NULL); 948 if (ret & VM_FAULT_ERROR) { 949 int err = vm_fault_to_errno(ret, *flags); 950 951 if (err) 952 return err; 953 BUG(); 954 } 955 956 if (ret & VM_FAULT_RETRY) { 957 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 958 *locked = 0; 959 return -EBUSY; 960 } 961 962 /* 963 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 964 * necessary, even if maybe_mkwrite decided not to set pte_write. We 965 * can thus safely do subsequent page lookups as if they were reads. 966 * But only do so when looping for pte_write is futile: in some cases 967 * userspace may also be wanting to write to the gotten user page, 968 * which a read fault here might prevent (a readonly page might get 969 * reCOWed by userspace write). 970 */ 971 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 972 *flags |= FOLL_COW; 973 return 0; 974 } 975 976 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 977 { 978 vm_flags_t vm_flags = vma->vm_flags; 979 int write = (gup_flags & FOLL_WRITE); 980 int foreign = (gup_flags & FOLL_REMOTE); 981 982 if (vm_flags & (VM_IO | VM_PFNMAP)) 983 return -EFAULT; 984 985 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 986 return -EFAULT; 987 988 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 989 return -EOPNOTSUPP; 990 991 if (write) { 992 if (!(vm_flags & VM_WRITE)) { 993 if (!(gup_flags & FOLL_FORCE)) 994 return -EFAULT; 995 /* 996 * We used to let the write,force case do COW in a 997 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 998 * set a breakpoint in a read-only mapping of an 999 * executable, without corrupting the file (yet only 1000 * when that file had been opened for writing!). 1001 * Anon pages in shared mappings are surprising: now 1002 * just reject it. 1003 */ 1004 if (!is_cow_mapping(vm_flags)) 1005 return -EFAULT; 1006 } 1007 } else if (!(vm_flags & VM_READ)) { 1008 if (!(gup_flags & FOLL_FORCE)) 1009 return -EFAULT; 1010 /* 1011 * Is there actually any vma we can reach here which does not 1012 * have VM_MAYREAD set? 1013 */ 1014 if (!(vm_flags & VM_MAYREAD)) 1015 return -EFAULT; 1016 } 1017 /* 1018 * gups are always data accesses, not instruction 1019 * fetches, so execute=false here 1020 */ 1021 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1022 return -EFAULT; 1023 return 0; 1024 } 1025 1026 /** 1027 * __get_user_pages() - pin user pages in memory 1028 * @mm: mm_struct of target mm 1029 * @start: starting user address 1030 * @nr_pages: number of pages from start to pin 1031 * @gup_flags: flags modifying pin behaviour 1032 * @pages: array that receives pointers to the pages pinned. 1033 * Should be at least nr_pages long. Or NULL, if caller 1034 * only intends to ensure the pages are faulted in. 1035 * @vmas: array of pointers to vmas corresponding to each page. 1036 * Or NULL if the caller does not require them. 1037 * @locked: whether we're still with the mmap_lock held 1038 * 1039 * Returns either number of pages pinned (which may be less than the 1040 * number requested), or an error. Details about the return value: 1041 * 1042 * -- If nr_pages is 0, returns 0. 1043 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1044 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1045 * pages pinned. Again, this may be less than nr_pages. 1046 * -- 0 return value is possible when the fault would need to be retried. 1047 * 1048 * The caller is responsible for releasing returned @pages, via put_page(). 1049 * 1050 * @vmas are valid only as long as mmap_lock is held. 1051 * 1052 * Must be called with mmap_lock held. It may be released. See below. 1053 * 1054 * __get_user_pages walks a process's page tables and takes a reference to 1055 * each struct page that each user address corresponds to at a given 1056 * instant. That is, it takes the page that would be accessed if a user 1057 * thread accesses the given user virtual address at that instant. 1058 * 1059 * This does not guarantee that the page exists in the user mappings when 1060 * __get_user_pages returns, and there may even be a completely different 1061 * page there in some cases (eg. if mmapped pagecache has been invalidated 1062 * and subsequently re faulted). However it does guarantee that the page 1063 * won't be freed completely. And mostly callers simply care that the page 1064 * contains data that was valid *at some point in time*. Typically, an IO 1065 * or similar operation cannot guarantee anything stronger anyway because 1066 * locks can't be held over the syscall boundary. 1067 * 1068 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1069 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1070 * appropriate) must be called after the page is finished with, and 1071 * before put_page is called. 1072 * 1073 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1074 * released by an up_read(). That can happen if @gup_flags does not 1075 * have FOLL_NOWAIT. 1076 * 1077 * A caller using such a combination of @locked and @gup_flags 1078 * must therefore hold the mmap_lock for reading only, and recognize 1079 * when it's been released. Otherwise, it must be held for either 1080 * reading or writing and will not be released. 1081 * 1082 * In most cases, get_user_pages or get_user_pages_fast should be used 1083 * instead of __get_user_pages. __get_user_pages should be used only if 1084 * you need some special @gup_flags. 1085 */ 1086 static long __get_user_pages(struct mm_struct *mm, 1087 unsigned long start, unsigned long nr_pages, 1088 unsigned int gup_flags, struct page **pages, 1089 struct vm_area_struct **vmas, int *locked) 1090 { 1091 long ret = 0, i = 0; 1092 struct vm_area_struct *vma = NULL; 1093 struct follow_page_context ctx = { NULL }; 1094 1095 if (!nr_pages) 1096 return 0; 1097 1098 start = untagged_addr(start); 1099 1100 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1101 1102 /* 1103 * If FOLL_FORCE is set then do not force a full fault as the hinting 1104 * fault information is unrelated to the reference behaviour of a task 1105 * using the address space 1106 */ 1107 if (!(gup_flags & FOLL_FORCE)) 1108 gup_flags |= FOLL_NUMA; 1109 1110 do { 1111 struct page *page; 1112 unsigned int foll_flags = gup_flags; 1113 unsigned int page_increm; 1114 1115 /* first iteration or cross vma bound */ 1116 if (!vma || start >= vma->vm_end) { 1117 vma = find_extend_vma(mm, start); 1118 if (!vma && in_gate_area(mm, start)) { 1119 ret = get_gate_page(mm, start & PAGE_MASK, 1120 gup_flags, &vma, 1121 pages ? &pages[i] : NULL); 1122 if (ret) 1123 goto out; 1124 ctx.page_mask = 0; 1125 goto next_page; 1126 } 1127 1128 if (!vma) { 1129 ret = -EFAULT; 1130 goto out; 1131 } 1132 ret = check_vma_flags(vma, gup_flags); 1133 if (ret) 1134 goto out; 1135 1136 if (is_vm_hugetlb_page(vma)) { 1137 i = follow_hugetlb_page(mm, vma, pages, vmas, 1138 &start, &nr_pages, i, 1139 gup_flags, locked); 1140 if (locked && *locked == 0) { 1141 /* 1142 * We've got a VM_FAULT_RETRY 1143 * and we've lost mmap_lock. 1144 * We must stop here. 1145 */ 1146 BUG_ON(gup_flags & FOLL_NOWAIT); 1147 BUG_ON(ret != 0); 1148 goto out; 1149 } 1150 continue; 1151 } 1152 } 1153 retry: 1154 /* 1155 * If we have a pending SIGKILL, don't keep faulting pages and 1156 * potentially allocating memory. 1157 */ 1158 if (fatal_signal_pending(current)) { 1159 ret = -EINTR; 1160 goto out; 1161 } 1162 cond_resched(); 1163 1164 page = follow_page_mask(vma, start, foll_flags, &ctx); 1165 if (!page) { 1166 ret = faultin_page(vma, start, &foll_flags, locked); 1167 switch (ret) { 1168 case 0: 1169 goto retry; 1170 case -EBUSY: 1171 ret = 0; 1172 fallthrough; 1173 case -EFAULT: 1174 case -ENOMEM: 1175 case -EHWPOISON: 1176 goto out; 1177 case -ENOENT: 1178 goto next_page; 1179 } 1180 BUG(); 1181 } else if (PTR_ERR(page) == -EEXIST) { 1182 /* 1183 * Proper page table entry exists, but no corresponding 1184 * struct page. 1185 */ 1186 goto next_page; 1187 } else if (IS_ERR(page)) { 1188 ret = PTR_ERR(page); 1189 goto out; 1190 } 1191 if (pages) { 1192 pages[i] = page; 1193 flush_anon_page(vma, page, start); 1194 flush_dcache_page(page); 1195 ctx.page_mask = 0; 1196 } 1197 next_page: 1198 if (vmas) { 1199 vmas[i] = vma; 1200 ctx.page_mask = 0; 1201 } 1202 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1203 if (page_increm > nr_pages) 1204 page_increm = nr_pages; 1205 i += page_increm; 1206 start += page_increm * PAGE_SIZE; 1207 nr_pages -= page_increm; 1208 } while (nr_pages); 1209 out: 1210 if (ctx.pgmap) 1211 put_dev_pagemap(ctx.pgmap); 1212 return i ? i : ret; 1213 } 1214 1215 static bool vma_permits_fault(struct vm_area_struct *vma, 1216 unsigned int fault_flags) 1217 { 1218 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1219 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1220 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1221 1222 if (!(vm_flags & vma->vm_flags)) 1223 return false; 1224 1225 /* 1226 * The architecture might have a hardware protection 1227 * mechanism other than read/write that can deny access. 1228 * 1229 * gup always represents data access, not instruction 1230 * fetches, so execute=false here: 1231 */ 1232 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1233 return false; 1234 1235 return true; 1236 } 1237 1238 /** 1239 * fixup_user_fault() - manually resolve a user page fault 1240 * @mm: mm_struct of target mm 1241 * @address: user address 1242 * @fault_flags:flags to pass down to handle_mm_fault() 1243 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1244 * does not allow retry. If NULL, the caller must guarantee 1245 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1246 * 1247 * This is meant to be called in the specific scenario where for locking reasons 1248 * we try to access user memory in atomic context (within a pagefault_disable() 1249 * section), this returns -EFAULT, and we want to resolve the user fault before 1250 * trying again. 1251 * 1252 * Typically this is meant to be used by the futex code. 1253 * 1254 * The main difference with get_user_pages() is that this function will 1255 * unconditionally call handle_mm_fault() which will in turn perform all the 1256 * necessary SW fixup of the dirty and young bits in the PTE, while 1257 * get_user_pages() only guarantees to update these in the struct page. 1258 * 1259 * This is important for some architectures where those bits also gate the 1260 * access permission to the page because they are maintained in software. On 1261 * such architectures, gup() will not be enough to make a subsequent access 1262 * succeed. 1263 * 1264 * This function will not return with an unlocked mmap_lock. So it has not the 1265 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1266 */ 1267 int fixup_user_fault(struct mm_struct *mm, 1268 unsigned long address, unsigned int fault_flags, 1269 bool *unlocked) 1270 { 1271 struct vm_area_struct *vma; 1272 vm_fault_t ret, major = 0; 1273 1274 address = untagged_addr(address); 1275 1276 if (unlocked) 1277 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1278 1279 retry: 1280 vma = find_extend_vma(mm, address); 1281 if (!vma || address < vma->vm_start) 1282 return -EFAULT; 1283 1284 if (!vma_permits_fault(vma, fault_flags)) 1285 return -EFAULT; 1286 1287 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1288 fatal_signal_pending(current)) 1289 return -EINTR; 1290 1291 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1292 major |= ret & VM_FAULT_MAJOR; 1293 if (ret & VM_FAULT_ERROR) { 1294 int err = vm_fault_to_errno(ret, 0); 1295 1296 if (err) 1297 return err; 1298 BUG(); 1299 } 1300 1301 if (ret & VM_FAULT_RETRY) { 1302 mmap_read_lock(mm); 1303 *unlocked = true; 1304 fault_flags |= FAULT_FLAG_TRIED; 1305 goto retry; 1306 } 1307 1308 return 0; 1309 } 1310 EXPORT_SYMBOL_GPL(fixup_user_fault); 1311 1312 /* 1313 * Please note that this function, unlike __get_user_pages will not 1314 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1315 */ 1316 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1317 unsigned long start, 1318 unsigned long nr_pages, 1319 struct page **pages, 1320 struct vm_area_struct **vmas, 1321 int *locked, 1322 unsigned int flags) 1323 { 1324 long ret, pages_done; 1325 bool lock_dropped; 1326 1327 if (locked) { 1328 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1329 BUG_ON(vmas); 1330 /* check caller initialized locked */ 1331 BUG_ON(*locked != 1); 1332 } 1333 1334 if (flags & FOLL_PIN) 1335 mm_set_has_pinned_flag(&mm->flags); 1336 1337 /* 1338 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1339 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1340 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1341 * for FOLL_GET, not for the newer FOLL_PIN. 1342 * 1343 * FOLL_PIN always expects pages to be non-null, but no need to assert 1344 * that here, as any failures will be obvious enough. 1345 */ 1346 if (pages && !(flags & FOLL_PIN)) 1347 flags |= FOLL_GET; 1348 1349 pages_done = 0; 1350 lock_dropped = false; 1351 for (;;) { 1352 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1353 vmas, locked); 1354 if (!locked) 1355 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1356 return ret; 1357 1358 /* VM_FAULT_RETRY cannot return errors */ 1359 if (!*locked) { 1360 BUG_ON(ret < 0); 1361 BUG_ON(ret >= nr_pages); 1362 } 1363 1364 if (ret > 0) { 1365 nr_pages -= ret; 1366 pages_done += ret; 1367 if (!nr_pages) 1368 break; 1369 } 1370 if (*locked) { 1371 /* 1372 * VM_FAULT_RETRY didn't trigger or it was a 1373 * FOLL_NOWAIT. 1374 */ 1375 if (!pages_done) 1376 pages_done = ret; 1377 break; 1378 } 1379 /* 1380 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1381 * For the prefault case (!pages) we only update counts. 1382 */ 1383 if (likely(pages)) 1384 pages += ret; 1385 start += ret << PAGE_SHIFT; 1386 lock_dropped = true; 1387 1388 retry: 1389 /* 1390 * Repeat on the address that fired VM_FAULT_RETRY 1391 * with both FAULT_FLAG_ALLOW_RETRY and 1392 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1393 * by fatal signals, so we need to check it before we 1394 * start trying again otherwise it can loop forever. 1395 */ 1396 1397 if (fatal_signal_pending(current)) { 1398 if (!pages_done) 1399 pages_done = -EINTR; 1400 break; 1401 } 1402 1403 ret = mmap_read_lock_killable(mm); 1404 if (ret) { 1405 BUG_ON(ret > 0); 1406 if (!pages_done) 1407 pages_done = ret; 1408 break; 1409 } 1410 1411 *locked = 1; 1412 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1413 pages, NULL, locked); 1414 if (!*locked) { 1415 /* Continue to retry until we succeeded */ 1416 BUG_ON(ret != 0); 1417 goto retry; 1418 } 1419 if (ret != 1) { 1420 BUG_ON(ret > 1); 1421 if (!pages_done) 1422 pages_done = ret; 1423 break; 1424 } 1425 nr_pages--; 1426 pages_done++; 1427 if (!nr_pages) 1428 break; 1429 if (likely(pages)) 1430 pages++; 1431 start += PAGE_SIZE; 1432 } 1433 if (lock_dropped && *locked) { 1434 /* 1435 * We must let the caller know we temporarily dropped the lock 1436 * and so the critical section protected by it was lost. 1437 */ 1438 mmap_read_unlock(mm); 1439 *locked = 0; 1440 } 1441 return pages_done; 1442 } 1443 1444 /** 1445 * populate_vma_page_range() - populate a range of pages in the vma. 1446 * @vma: target vma 1447 * @start: start address 1448 * @end: end address 1449 * @locked: whether the mmap_lock is still held 1450 * 1451 * This takes care of mlocking the pages too if VM_LOCKED is set. 1452 * 1453 * Return either number of pages pinned in the vma, or a negative error 1454 * code on error. 1455 * 1456 * vma->vm_mm->mmap_lock must be held. 1457 * 1458 * If @locked is NULL, it may be held for read or write and will 1459 * be unperturbed. 1460 * 1461 * If @locked is non-NULL, it must held for read only and may be 1462 * released. If it's released, *@locked will be set to 0. 1463 */ 1464 long populate_vma_page_range(struct vm_area_struct *vma, 1465 unsigned long start, unsigned long end, int *locked) 1466 { 1467 struct mm_struct *mm = vma->vm_mm; 1468 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1469 int gup_flags; 1470 1471 VM_BUG_ON(start & ~PAGE_MASK); 1472 VM_BUG_ON(end & ~PAGE_MASK); 1473 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1474 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1475 mmap_assert_locked(mm); 1476 1477 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1478 if (vma->vm_flags & VM_LOCKONFAULT) 1479 gup_flags &= ~FOLL_POPULATE; 1480 /* 1481 * We want to touch writable mappings with a write fault in order 1482 * to break COW, except for shared mappings because these don't COW 1483 * and we would not want to dirty them for nothing. 1484 */ 1485 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1486 gup_flags |= FOLL_WRITE; 1487 1488 /* 1489 * We want mlock to succeed for regions that have any permissions 1490 * other than PROT_NONE. 1491 */ 1492 if (vma_is_accessible(vma)) 1493 gup_flags |= FOLL_FORCE; 1494 1495 /* 1496 * We made sure addr is within a VMA, so the following will 1497 * not result in a stack expansion that recurses back here. 1498 */ 1499 return __get_user_pages(mm, start, nr_pages, gup_flags, 1500 NULL, NULL, locked); 1501 } 1502 1503 /* 1504 * faultin_vma_page_range() - populate (prefault) page tables inside the 1505 * given VMA range readable/writable 1506 * 1507 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1508 * 1509 * @vma: target vma 1510 * @start: start address 1511 * @end: end address 1512 * @write: whether to prefault readable or writable 1513 * @locked: whether the mmap_lock is still held 1514 * 1515 * Returns either number of processed pages in the vma, or a negative error 1516 * code on error (see __get_user_pages()). 1517 * 1518 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1519 * covered by the VMA. 1520 * 1521 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1522 * 1523 * If @locked is non-NULL, it must held for read only and may be released. If 1524 * it's released, *@locked will be set to 0. 1525 */ 1526 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1527 unsigned long end, bool write, int *locked) 1528 { 1529 struct mm_struct *mm = vma->vm_mm; 1530 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1531 int gup_flags; 1532 1533 VM_BUG_ON(!PAGE_ALIGNED(start)); 1534 VM_BUG_ON(!PAGE_ALIGNED(end)); 1535 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1536 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1537 mmap_assert_locked(mm); 1538 1539 /* 1540 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1541 * the page dirty with FOLL_WRITE -- which doesn't make a 1542 * difference with !FOLL_FORCE, because the page is writable 1543 * in the page table. 1544 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1545 * a poisoned page. 1546 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. 1547 * !FOLL_FORCE: Require proper access permissions. 1548 */ 1549 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; 1550 if (write) 1551 gup_flags |= FOLL_WRITE; 1552 1553 /* 1554 * See check_vma_flags(): Will return -EFAULT on incompatible mappings 1555 * or with insufficient permissions. 1556 */ 1557 return __get_user_pages(mm, start, nr_pages, gup_flags, 1558 NULL, NULL, locked); 1559 } 1560 1561 /* 1562 * __mm_populate - populate and/or mlock pages within a range of address space. 1563 * 1564 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1565 * flags. VMAs must be already marked with the desired vm_flags, and 1566 * mmap_lock must not be held. 1567 */ 1568 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1569 { 1570 struct mm_struct *mm = current->mm; 1571 unsigned long end, nstart, nend; 1572 struct vm_area_struct *vma = NULL; 1573 int locked = 0; 1574 long ret = 0; 1575 1576 end = start + len; 1577 1578 for (nstart = start; nstart < end; nstart = nend) { 1579 /* 1580 * We want to fault in pages for [nstart; end) address range. 1581 * Find first corresponding VMA. 1582 */ 1583 if (!locked) { 1584 locked = 1; 1585 mmap_read_lock(mm); 1586 vma = find_vma(mm, nstart); 1587 } else if (nstart >= vma->vm_end) 1588 vma = vma->vm_next; 1589 if (!vma || vma->vm_start >= end) 1590 break; 1591 /* 1592 * Set [nstart; nend) to intersection of desired address 1593 * range with the first VMA. Also, skip undesirable VMA types. 1594 */ 1595 nend = min(end, vma->vm_end); 1596 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1597 continue; 1598 if (nstart < vma->vm_start) 1599 nstart = vma->vm_start; 1600 /* 1601 * Now fault in a range of pages. populate_vma_page_range() 1602 * double checks the vma flags, so that it won't mlock pages 1603 * if the vma was already munlocked. 1604 */ 1605 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1606 if (ret < 0) { 1607 if (ignore_errors) { 1608 ret = 0; 1609 continue; /* continue at next VMA */ 1610 } 1611 break; 1612 } 1613 nend = nstart + ret * PAGE_SIZE; 1614 ret = 0; 1615 } 1616 if (locked) 1617 mmap_read_unlock(mm); 1618 return ret; /* 0 or negative error code */ 1619 } 1620 #else /* CONFIG_MMU */ 1621 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1622 unsigned long nr_pages, struct page **pages, 1623 struct vm_area_struct **vmas, int *locked, 1624 unsigned int foll_flags) 1625 { 1626 struct vm_area_struct *vma; 1627 unsigned long vm_flags; 1628 long i; 1629 1630 /* calculate required read or write permissions. 1631 * If FOLL_FORCE is set, we only require the "MAY" flags. 1632 */ 1633 vm_flags = (foll_flags & FOLL_WRITE) ? 1634 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1635 vm_flags &= (foll_flags & FOLL_FORCE) ? 1636 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1637 1638 for (i = 0; i < nr_pages; i++) { 1639 vma = find_vma(mm, start); 1640 if (!vma) 1641 goto finish_or_fault; 1642 1643 /* protect what we can, including chardevs */ 1644 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1645 !(vm_flags & vma->vm_flags)) 1646 goto finish_or_fault; 1647 1648 if (pages) { 1649 pages[i] = virt_to_page(start); 1650 if (pages[i]) 1651 get_page(pages[i]); 1652 } 1653 if (vmas) 1654 vmas[i] = vma; 1655 start = (start + PAGE_SIZE) & PAGE_MASK; 1656 } 1657 1658 return i; 1659 1660 finish_or_fault: 1661 return i ? : -EFAULT; 1662 } 1663 #endif /* !CONFIG_MMU */ 1664 1665 /** 1666 * get_dump_page() - pin user page in memory while writing it to core dump 1667 * @addr: user address 1668 * 1669 * Returns struct page pointer of user page pinned for dump, 1670 * to be freed afterwards by put_page(). 1671 * 1672 * Returns NULL on any kind of failure - a hole must then be inserted into 1673 * the corefile, to preserve alignment with its headers; and also returns 1674 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1675 * allowing a hole to be left in the corefile to save disk space. 1676 * 1677 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1678 */ 1679 #ifdef CONFIG_ELF_CORE 1680 struct page *get_dump_page(unsigned long addr) 1681 { 1682 struct mm_struct *mm = current->mm; 1683 struct page *page; 1684 int locked = 1; 1685 int ret; 1686 1687 if (mmap_read_lock_killable(mm)) 1688 return NULL; 1689 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1690 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1691 if (locked) 1692 mmap_read_unlock(mm); 1693 return (ret == 1) ? page : NULL; 1694 } 1695 #endif /* CONFIG_ELF_CORE */ 1696 1697 #ifdef CONFIG_MIGRATION 1698 /* 1699 * Check whether all pages are pinnable, if so return number of pages. If some 1700 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1701 * pages were migrated, or if some pages were not successfully isolated. 1702 * Return negative error if migration fails. 1703 */ 1704 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1705 struct page **pages, 1706 unsigned int gup_flags) 1707 { 1708 unsigned long i; 1709 unsigned long isolation_error_count = 0; 1710 bool drain_allow = true; 1711 LIST_HEAD(movable_page_list); 1712 long ret = 0; 1713 struct page *prev_head = NULL; 1714 struct page *head; 1715 struct migration_target_control mtc = { 1716 .nid = NUMA_NO_NODE, 1717 .gfp_mask = GFP_USER | __GFP_NOWARN, 1718 }; 1719 1720 for (i = 0; i < nr_pages; i++) { 1721 head = compound_head(pages[i]); 1722 if (head == prev_head) 1723 continue; 1724 prev_head = head; 1725 /* 1726 * If we get a movable page, since we are going to be pinning 1727 * these entries, try to move them out if possible. 1728 */ 1729 if (!is_pinnable_page(head)) { 1730 if (PageHuge(head)) { 1731 if (!isolate_huge_page(head, &movable_page_list)) 1732 isolation_error_count++; 1733 } else { 1734 if (!PageLRU(head) && drain_allow) { 1735 lru_add_drain_all(); 1736 drain_allow = false; 1737 } 1738 1739 if (isolate_lru_page(head)) { 1740 isolation_error_count++; 1741 continue; 1742 } 1743 list_add_tail(&head->lru, &movable_page_list); 1744 mod_node_page_state(page_pgdat(head), 1745 NR_ISOLATED_ANON + 1746 page_is_file_lru(head), 1747 thp_nr_pages(head)); 1748 } 1749 } 1750 } 1751 1752 /* 1753 * If list is empty, and no isolation errors, means that all pages are 1754 * in the correct zone. 1755 */ 1756 if (list_empty(&movable_page_list) && !isolation_error_count) 1757 return nr_pages; 1758 1759 if (gup_flags & FOLL_PIN) { 1760 unpin_user_pages(pages, nr_pages); 1761 } else { 1762 for (i = 0; i < nr_pages; i++) 1763 put_page(pages[i]); 1764 } 1765 if (!list_empty(&movable_page_list)) { 1766 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1767 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1768 MR_LONGTERM_PIN); 1769 if (ret && !list_empty(&movable_page_list)) 1770 putback_movable_pages(&movable_page_list); 1771 } 1772 1773 return ret > 0 ? -ENOMEM : ret; 1774 } 1775 #else 1776 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1777 struct page **pages, 1778 unsigned int gup_flags) 1779 { 1780 return nr_pages; 1781 } 1782 #endif /* CONFIG_MIGRATION */ 1783 1784 /* 1785 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1786 * allows us to process the FOLL_LONGTERM flag. 1787 */ 1788 static long __gup_longterm_locked(struct mm_struct *mm, 1789 unsigned long start, 1790 unsigned long nr_pages, 1791 struct page **pages, 1792 struct vm_area_struct **vmas, 1793 unsigned int gup_flags) 1794 { 1795 unsigned int flags; 1796 long rc; 1797 1798 if (!(gup_flags & FOLL_LONGTERM)) 1799 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1800 NULL, gup_flags); 1801 flags = memalloc_pin_save(); 1802 do { 1803 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1804 NULL, gup_flags); 1805 if (rc <= 0) 1806 break; 1807 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1808 } while (!rc); 1809 memalloc_pin_restore(flags); 1810 1811 return rc; 1812 } 1813 1814 static bool is_valid_gup_flags(unsigned int gup_flags) 1815 { 1816 /* 1817 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1818 * never directly by the caller, so enforce that with an assertion: 1819 */ 1820 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1821 return false; 1822 /* 1823 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1824 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1825 * FOLL_PIN. 1826 */ 1827 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1828 return false; 1829 1830 return true; 1831 } 1832 1833 #ifdef CONFIG_MMU 1834 static long __get_user_pages_remote(struct mm_struct *mm, 1835 unsigned long start, unsigned long nr_pages, 1836 unsigned int gup_flags, struct page **pages, 1837 struct vm_area_struct **vmas, int *locked) 1838 { 1839 /* 1840 * Parts of FOLL_LONGTERM behavior are incompatible with 1841 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1842 * vmas. However, this only comes up if locked is set, and there are 1843 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1844 * allow what we can. 1845 */ 1846 if (gup_flags & FOLL_LONGTERM) { 1847 if (WARN_ON_ONCE(locked)) 1848 return -EINVAL; 1849 /* 1850 * This will check the vmas (even if our vmas arg is NULL) 1851 * and return -ENOTSUPP if DAX isn't allowed in this case: 1852 */ 1853 return __gup_longterm_locked(mm, start, nr_pages, pages, 1854 vmas, gup_flags | FOLL_TOUCH | 1855 FOLL_REMOTE); 1856 } 1857 1858 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1859 locked, 1860 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1861 } 1862 1863 /** 1864 * get_user_pages_remote() - pin user pages in memory 1865 * @mm: mm_struct of target mm 1866 * @start: starting user address 1867 * @nr_pages: number of pages from start to pin 1868 * @gup_flags: flags modifying lookup behaviour 1869 * @pages: array that receives pointers to the pages pinned. 1870 * Should be at least nr_pages long. Or NULL, if caller 1871 * only intends to ensure the pages are faulted in. 1872 * @vmas: array of pointers to vmas corresponding to each page. 1873 * Or NULL if the caller does not require them. 1874 * @locked: pointer to lock flag indicating whether lock is held and 1875 * subsequently whether VM_FAULT_RETRY functionality can be 1876 * utilised. Lock must initially be held. 1877 * 1878 * Returns either number of pages pinned (which may be less than the 1879 * number requested), or an error. Details about the return value: 1880 * 1881 * -- If nr_pages is 0, returns 0. 1882 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1883 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1884 * pages pinned. Again, this may be less than nr_pages. 1885 * 1886 * The caller is responsible for releasing returned @pages, via put_page(). 1887 * 1888 * @vmas are valid only as long as mmap_lock is held. 1889 * 1890 * Must be called with mmap_lock held for read or write. 1891 * 1892 * get_user_pages_remote walks a process's page tables and takes a reference 1893 * to each struct page that each user address corresponds to at a given 1894 * instant. That is, it takes the page that would be accessed if a user 1895 * thread accesses the given user virtual address at that instant. 1896 * 1897 * This does not guarantee that the page exists in the user mappings when 1898 * get_user_pages_remote returns, and there may even be a completely different 1899 * page there in some cases (eg. if mmapped pagecache has been invalidated 1900 * and subsequently re faulted). However it does guarantee that the page 1901 * won't be freed completely. And mostly callers simply care that the page 1902 * contains data that was valid *at some point in time*. Typically, an IO 1903 * or similar operation cannot guarantee anything stronger anyway because 1904 * locks can't be held over the syscall boundary. 1905 * 1906 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1907 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1908 * be called after the page is finished with, and before put_page is called. 1909 * 1910 * get_user_pages_remote is typically used for fewer-copy IO operations, 1911 * to get a handle on the memory by some means other than accesses 1912 * via the user virtual addresses. The pages may be submitted for 1913 * DMA to devices or accessed via their kernel linear mapping (via the 1914 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1915 * 1916 * See also get_user_pages_fast, for performance critical applications. 1917 * 1918 * get_user_pages_remote should be phased out in favor of 1919 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1920 * should use get_user_pages_remote because it cannot pass 1921 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1922 */ 1923 long get_user_pages_remote(struct mm_struct *mm, 1924 unsigned long start, unsigned long nr_pages, 1925 unsigned int gup_flags, struct page **pages, 1926 struct vm_area_struct **vmas, int *locked) 1927 { 1928 if (!is_valid_gup_flags(gup_flags)) 1929 return -EINVAL; 1930 1931 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1932 pages, vmas, locked); 1933 } 1934 EXPORT_SYMBOL(get_user_pages_remote); 1935 1936 #else /* CONFIG_MMU */ 1937 long get_user_pages_remote(struct mm_struct *mm, 1938 unsigned long start, unsigned long nr_pages, 1939 unsigned int gup_flags, struct page **pages, 1940 struct vm_area_struct **vmas, int *locked) 1941 { 1942 return 0; 1943 } 1944 1945 static long __get_user_pages_remote(struct mm_struct *mm, 1946 unsigned long start, unsigned long nr_pages, 1947 unsigned int gup_flags, struct page **pages, 1948 struct vm_area_struct **vmas, int *locked) 1949 { 1950 return 0; 1951 } 1952 #endif /* !CONFIG_MMU */ 1953 1954 /** 1955 * get_user_pages() - pin user pages in memory 1956 * @start: starting user address 1957 * @nr_pages: number of pages from start to pin 1958 * @gup_flags: flags modifying lookup behaviour 1959 * @pages: array that receives pointers to the pages pinned. 1960 * Should be at least nr_pages long. Or NULL, if caller 1961 * only intends to ensure the pages are faulted in. 1962 * @vmas: array of pointers to vmas corresponding to each page. 1963 * Or NULL if the caller does not require them. 1964 * 1965 * This is the same as get_user_pages_remote(), just with a less-flexible 1966 * calling convention where we assume that the mm being operated on belongs to 1967 * the current task, and doesn't allow passing of a locked parameter. We also 1968 * obviously don't pass FOLL_REMOTE in here. 1969 */ 1970 long get_user_pages(unsigned long start, unsigned long nr_pages, 1971 unsigned int gup_flags, struct page **pages, 1972 struct vm_area_struct **vmas) 1973 { 1974 if (!is_valid_gup_flags(gup_flags)) 1975 return -EINVAL; 1976 1977 return __gup_longterm_locked(current->mm, start, nr_pages, 1978 pages, vmas, gup_flags | FOLL_TOUCH); 1979 } 1980 EXPORT_SYMBOL(get_user_pages); 1981 1982 /** 1983 * get_user_pages_locked() - variant of get_user_pages() 1984 * 1985 * @start: starting user address 1986 * @nr_pages: number of pages from start to pin 1987 * @gup_flags: flags modifying lookup behaviour 1988 * @pages: array that receives pointers to the pages pinned. 1989 * Should be at least nr_pages long. Or NULL, if caller 1990 * only intends to ensure the pages are faulted in. 1991 * @locked: pointer to lock flag indicating whether lock is held and 1992 * subsequently whether VM_FAULT_RETRY functionality can be 1993 * utilised. Lock must initially be held. 1994 * 1995 * It is suitable to replace the form: 1996 * 1997 * mmap_read_lock(mm); 1998 * do_something() 1999 * get_user_pages(mm, ..., pages, NULL); 2000 * mmap_read_unlock(mm); 2001 * 2002 * to: 2003 * 2004 * int locked = 1; 2005 * mmap_read_lock(mm); 2006 * do_something() 2007 * get_user_pages_locked(mm, ..., pages, &locked); 2008 * if (locked) 2009 * mmap_read_unlock(mm); 2010 * 2011 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2012 * paths better by using either get_user_pages_locked() or 2013 * get_user_pages_unlocked(). 2014 * 2015 */ 2016 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2017 unsigned int gup_flags, struct page **pages, 2018 int *locked) 2019 { 2020 /* 2021 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2022 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2023 * vmas. As there are no users of this flag in this call we simply 2024 * disallow this option for now. 2025 */ 2026 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2027 return -EINVAL; 2028 /* 2029 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2030 * never directly by the caller, so enforce that: 2031 */ 2032 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2033 return -EINVAL; 2034 2035 return __get_user_pages_locked(current->mm, start, nr_pages, 2036 pages, NULL, locked, 2037 gup_flags | FOLL_TOUCH); 2038 } 2039 EXPORT_SYMBOL(get_user_pages_locked); 2040 2041 /* 2042 * get_user_pages_unlocked() is suitable to replace the form: 2043 * 2044 * mmap_read_lock(mm); 2045 * get_user_pages(mm, ..., pages, NULL); 2046 * mmap_read_unlock(mm); 2047 * 2048 * with: 2049 * 2050 * get_user_pages_unlocked(mm, ..., pages); 2051 * 2052 * It is functionally equivalent to get_user_pages_fast so 2053 * get_user_pages_fast should be used instead if specific gup_flags 2054 * (e.g. FOLL_FORCE) are not required. 2055 */ 2056 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2057 struct page **pages, unsigned int gup_flags) 2058 { 2059 struct mm_struct *mm = current->mm; 2060 int locked = 1; 2061 long ret; 2062 2063 /* 2064 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2065 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2066 * vmas. As there are no users of this flag in this call we simply 2067 * disallow this option for now. 2068 */ 2069 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2070 return -EINVAL; 2071 2072 mmap_read_lock(mm); 2073 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2074 &locked, gup_flags | FOLL_TOUCH); 2075 if (locked) 2076 mmap_read_unlock(mm); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL(get_user_pages_unlocked); 2080 2081 /* 2082 * Fast GUP 2083 * 2084 * get_user_pages_fast attempts to pin user pages by walking the page 2085 * tables directly and avoids taking locks. Thus the walker needs to be 2086 * protected from page table pages being freed from under it, and should 2087 * block any THP splits. 2088 * 2089 * One way to achieve this is to have the walker disable interrupts, and 2090 * rely on IPIs from the TLB flushing code blocking before the page table 2091 * pages are freed. This is unsuitable for architectures that do not need 2092 * to broadcast an IPI when invalidating TLBs. 2093 * 2094 * Another way to achieve this is to batch up page table containing pages 2095 * belonging to more than one mm_user, then rcu_sched a callback to free those 2096 * pages. Disabling interrupts will allow the fast_gup walker to both block 2097 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2098 * (which is a relatively rare event). The code below adopts this strategy. 2099 * 2100 * Before activating this code, please be aware that the following assumptions 2101 * are currently made: 2102 * 2103 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2104 * free pages containing page tables or TLB flushing requires IPI broadcast. 2105 * 2106 * *) ptes can be read atomically by the architecture. 2107 * 2108 * *) access_ok is sufficient to validate userspace address ranges. 2109 * 2110 * The last two assumptions can be relaxed by the addition of helper functions. 2111 * 2112 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2113 */ 2114 #ifdef CONFIG_HAVE_FAST_GUP 2115 2116 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2117 unsigned int flags, 2118 struct page **pages) 2119 { 2120 while ((*nr) - nr_start) { 2121 struct page *page = pages[--(*nr)]; 2122 2123 ClearPageReferenced(page); 2124 if (flags & FOLL_PIN) 2125 unpin_user_page(page); 2126 else 2127 put_page(page); 2128 } 2129 } 2130 2131 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2132 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2133 unsigned int flags, struct page **pages, int *nr) 2134 { 2135 struct dev_pagemap *pgmap = NULL; 2136 int nr_start = *nr, ret = 0; 2137 pte_t *ptep, *ptem; 2138 2139 ptem = ptep = pte_offset_map(&pmd, addr); 2140 do { 2141 pte_t pte = ptep_get_lockless(ptep); 2142 struct page *head, *page; 2143 2144 /* 2145 * Similar to the PMD case below, NUMA hinting must take slow 2146 * path using the pte_protnone check. 2147 */ 2148 if (pte_protnone(pte)) 2149 goto pte_unmap; 2150 2151 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2152 goto pte_unmap; 2153 2154 if (pte_devmap(pte)) { 2155 if (unlikely(flags & FOLL_LONGTERM)) 2156 goto pte_unmap; 2157 2158 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2159 if (unlikely(!pgmap)) { 2160 undo_dev_pagemap(nr, nr_start, flags, pages); 2161 goto pte_unmap; 2162 } 2163 } else if (pte_special(pte)) 2164 goto pte_unmap; 2165 2166 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2167 page = pte_page(pte); 2168 2169 head = try_grab_compound_head(page, 1, flags); 2170 if (!head) 2171 goto pte_unmap; 2172 2173 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2174 put_compound_head(head, 1, flags); 2175 goto pte_unmap; 2176 } 2177 2178 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2179 2180 /* 2181 * We need to make the page accessible if and only if we are 2182 * going to access its content (the FOLL_PIN case). Please 2183 * see Documentation/core-api/pin_user_pages.rst for 2184 * details. 2185 */ 2186 if (flags & FOLL_PIN) { 2187 ret = arch_make_page_accessible(page); 2188 if (ret) { 2189 unpin_user_page(page); 2190 goto pte_unmap; 2191 } 2192 } 2193 SetPageReferenced(page); 2194 pages[*nr] = page; 2195 (*nr)++; 2196 2197 } while (ptep++, addr += PAGE_SIZE, addr != end); 2198 2199 ret = 1; 2200 2201 pte_unmap: 2202 if (pgmap) 2203 put_dev_pagemap(pgmap); 2204 pte_unmap(ptem); 2205 return ret; 2206 } 2207 #else 2208 2209 /* 2210 * If we can't determine whether or not a pte is special, then fail immediately 2211 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2212 * to be special. 2213 * 2214 * For a futex to be placed on a THP tail page, get_futex_key requires a 2215 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2216 * useful to have gup_huge_pmd even if we can't operate on ptes. 2217 */ 2218 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2219 unsigned int flags, struct page **pages, int *nr) 2220 { 2221 return 0; 2222 } 2223 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2224 2225 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2226 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2227 unsigned long end, unsigned int flags, 2228 struct page **pages, int *nr) 2229 { 2230 int nr_start = *nr; 2231 struct dev_pagemap *pgmap = NULL; 2232 2233 do { 2234 struct page *page = pfn_to_page(pfn); 2235 2236 pgmap = get_dev_pagemap(pfn, pgmap); 2237 if (unlikely(!pgmap)) { 2238 undo_dev_pagemap(nr, nr_start, flags, pages); 2239 return 0; 2240 } 2241 SetPageReferenced(page); 2242 pages[*nr] = page; 2243 if (unlikely(!try_grab_page(page, flags))) { 2244 undo_dev_pagemap(nr, nr_start, flags, pages); 2245 return 0; 2246 } 2247 (*nr)++; 2248 pfn++; 2249 } while (addr += PAGE_SIZE, addr != end); 2250 2251 if (pgmap) 2252 put_dev_pagemap(pgmap); 2253 return 1; 2254 } 2255 2256 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2257 unsigned long end, unsigned int flags, 2258 struct page **pages, int *nr) 2259 { 2260 unsigned long fault_pfn; 2261 int nr_start = *nr; 2262 2263 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2264 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2265 return 0; 2266 2267 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2268 undo_dev_pagemap(nr, nr_start, flags, pages); 2269 return 0; 2270 } 2271 return 1; 2272 } 2273 2274 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2275 unsigned long end, unsigned int flags, 2276 struct page **pages, int *nr) 2277 { 2278 unsigned long fault_pfn; 2279 int nr_start = *nr; 2280 2281 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2282 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2283 return 0; 2284 2285 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2286 undo_dev_pagemap(nr, nr_start, flags, pages); 2287 return 0; 2288 } 2289 return 1; 2290 } 2291 #else 2292 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2293 unsigned long end, unsigned int flags, 2294 struct page **pages, int *nr) 2295 { 2296 BUILD_BUG(); 2297 return 0; 2298 } 2299 2300 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2301 unsigned long end, unsigned int flags, 2302 struct page **pages, int *nr) 2303 { 2304 BUILD_BUG(); 2305 return 0; 2306 } 2307 #endif 2308 2309 static int record_subpages(struct page *page, unsigned long addr, 2310 unsigned long end, struct page **pages) 2311 { 2312 int nr; 2313 2314 for (nr = 0; addr != end; addr += PAGE_SIZE) 2315 pages[nr++] = page++; 2316 2317 return nr; 2318 } 2319 2320 #ifdef CONFIG_ARCH_HAS_HUGEPD 2321 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2322 unsigned long sz) 2323 { 2324 unsigned long __boundary = (addr + sz) & ~(sz-1); 2325 return (__boundary - 1 < end - 1) ? __boundary : end; 2326 } 2327 2328 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2329 unsigned long end, unsigned int flags, 2330 struct page **pages, int *nr) 2331 { 2332 unsigned long pte_end; 2333 struct page *head, *page; 2334 pte_t pte; 2335 int refs; 2336 2337 pte_end = (addr + sz) & ~(sz-1); 2338 if (pte_end < end) 2339 end = pte_end; 2340 2341 pte = huge_ptep_get(ptep); 2342 2343 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2344 return 0; 2345 2346 /* hugepages are never "special" */ 2347 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2348 2349 head = pte_page(pte); 2350 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2351 refs = record_subpages(page, addr, end, pages + *nr); 2352 2353 head = try_grab_compound_head(head, refs, flags); 2354 if (!head) 2355 return 0; 2356 2357 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2358 put_compound_head(head, refs, flags); 2359 return 0; 2360 } 2361 2362 *nr += refs; 2363 SetPageReferenced(head); 2364 return 1; 2365 } 2366 2367 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2368 unsigned int pdshift, unsigned long end, unsigned int flags, 2369 struct page **pages, int *nr) 2370 { 2371 pte_t *ptep; 2372 unsigned long sz = 1UL << hugepd_shift(hugepd); 2373 unsigned long next; 2374 2375 ptep = hugepte_offset(hugepd, addr, pdshift); 2376 do { 2377 next = hugepte_addr_end(addr, end, sz); 2378 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2379 return 0; 2380 } while (ptep++, addr = next, addr != end); 2381 2382 return 1; 2383 } 2384 #else 2385 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2386 unsigned int pdshift, unsigned long end, unsigned int flags, 2387 struct page **pages, int *nr) 2388 { 2389 return 0; 2390 } 2391 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2392 2393 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2394 unsigned long end, unsigned int flags, 2395 struct page **pages, int *nr) 2396 { 2397 struct page *head, *page; 2398 int refs; 2399 2400 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2401 return 0; 2402 2403 if (pmd_devmap(orig)) { 2404 if (unlikely(flags & FOLL_LONGTERM)) 2405 return 0; 2406 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2407 pages, nr); 2408 } 2409 2410 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2411 refs = record_subpages(page, addr, end, pages + *nr); 2412 2413 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2414 if (!head) 2415 return 0; 2416 2417 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2418 put_compound_head(head, refs, flags); 2419 return 0; 2420 } 2421 2422 *nr += refs; 2423 SetPageReferenced(head); 2424 return 1; 2425 } 2426 2427 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2428 unsigned long end, unsigned int flags, 2429 struct page **pages, int *nr) 2430 { 2431 struct page *head, *page; 2432 int refs; 2433 2434 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2435 return 0; 2436 2437 if (pud_devmap(orig)) { 2438 if (unlikely(flags & FOLL_LONGTERM)) 2439 return 0; 2440 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2441 pages, nr); 2442 } 2443 2444 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2445 refs = record_subpages(page, addr, end, pages + *nr); 2446 2447 head = try_grab_compound_head(pud_page(orig), refs, flags); 2448 if (!head) 2449 return 0; 2450 2451 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2452 put_compound_head(head, refs, flags); 2453 return 0; 2454 } 2455 2456 *nr += refs; 2457 SetPageReferenced(head); 2458 return 1; 2459 } 2460 2461 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2462 unsigned long end, unsigned int flags, 2463 struct page **pages, int *nr) 2464 { 2465 int refs; 2466 struct page *head, *page; 2467 2468 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2469 return 0; 2470 2471 BUILD_BUG_ON(pgd_devmap(orig)); 2472 2473 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2474 refs = record_subpages(page, addr, end, pages + *nr); 2475 2476 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2477 if (!head) 2478 return 0; 2479 2480 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2481 put_compound_head(head, refs, flags); 2482 return 0; 2483 } 2484 2485 *nr += refs; 2486 SetPageReferenced(head); 2487 return 1; 2488 } 2489 2490 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2491 unsigned int flags, struct page **pages, int *nr) 2492 { 2493 unsigned long next; 2494 pmd_t *pmdp; 2495 2496 pmdp = pmd_offset_lockless(pudp, pud, addr); 2497 do { 2498 pmd_t pmd = READ_ONCE(*pmdp); 2499 2500 next = pmd_addr_end(addr, end); 2501 if (!pmd_present(pmd)) 2502 return 0; 2503 2504 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2505 pmd_devmap(pmd))) { 2506 /* 2507 * NUMA hinting faults need to be handled in the GUP 2508 * slowpath for accounting purposes and so that they 2509 * can be serialised against THP migration. 2510 */ 2511 if (pmd_protnone(pmd)) 2512 return 0; 2513 2514 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2515 pages, nr)) 2516 return 0; 2517 2518 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2519 /* 2520 * architecture have different format for hugetlbfs 2521 * pmd format and THP pmd format 2522 */ 2523 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2524 PMD_SHIFT, next, flags, pages, nr)) 2525 return 0; 2526 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2527 return 0; 2528 } while (pmdp++, addr = next, addr != end); 2529 2530 return 1; 2531 } 2532 2533 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2534 unsigned int flags, struct page **pages, int *nr) 2535 { 2536 unsigned long next; 2537 pud_t *pudp; 2538 2539 pudp = pud_offset_lockless(p4dp, p4d, addr); 2540 do { 2541 pud_t pud = READ_ONCE(*pudp); 2542 2543 next = pud_addr_end(addr, end); 2544 if (unlikely(!pud_present(pud))) 2545 return 0; 2546 if (unlikely(pud_huge(pud))) { 2547 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2548 pages, nr)) 2549 return 0; 2550 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2551 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2552 PUD_SHIFT, next, flags, pages, nr)) 2553 return 0; 2554 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2555 return 0; 2556 } while (pudp++, addr = next, addr != end); 2557 2558 return 1; 2559 } 2560 2561 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2562 unsigned int flags, struct page **pages, int *nr) 2563 { 2564 unsigned long next; 2565 p4d_t *p4dp; 2566 2567 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2568 do { 2569 p4d_t p4d = READ_ONCE(*p4dp); 2570 2571 next = p4d_addr_end(addr, end); 2572 if (p4d_none(p4d)) 2573 return 0; 2574 BUILD_BUG_ON(p4d_huge(p4d)); 2575 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2576 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2577 P4D_SHIFT, next, flags, pages, nr)) 2578 return 0; 2579 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2580 return 0; 2581 } while (p4dp++, addr = next, addr != end); 2582 2583 return 1; 2584 } 2585 2586 static void gup_pgd_range(unsigned long addr, unsigned long end, 2587 unsigned int flags, struct page **pages, int *nr) 2588 { 2589 unsigned long next; 2590 pgd_t *pgdp; 2591 2592 pgdp = pgd_offset(current->mm, addr); 2593 do { 2594 pgd_t pgd = READ_ONCE(*pgdp); 2595 2596 next = pgd_addr_end(addr, end); 2597 if (pgd_none(pgd)) 2598 return; 2599 if (unlikely(pgd_huge(pgd))) { 2600 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2601 pages, nr)) 2602 return; 2603 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2604 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2605 PGDIR_SHIFT, next, flags, pages, nr)) 2606 return; 2607 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2608 return; 2609 } while (pgdp++, addr = next, addr != end); 2610 } 2611 #else 2612 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2613 unsigned int flags, struct page **pages, int *nr) 2614 { 2615 } 2616 #endif /* CONFIG_HAVE_FAST_GUP */ 2617 2618 #ifndef gup_fast_permitted 2619 /* 2620 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2621 * we need to fall back to the slow version: 2622 */ 2623 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2624 { 2625 return true; 2626 } 2627 #endif 2628 2629 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2630 unsigned int gup_flags, struct page **pages) 2631 { 2632 int ret; 2633 2634 /* 2635 * FIXME: FOLL_LONGTERM does not work with 2636 * get_user_pages_unlocked() (see comments in that function) 2637 */ 2638 if (gup_flags & FOLL_LONGTERM) { 2639 mmap_read_lock(current->mm); 2640 ret = __gup_longterm_locked(current->mm, 2641 start, nr_pages, 2642 pages, NULL, gup_flags); 2643 mmap_read_unlock(current->mm); 2644 } else { 2645 ret = get_user_pages_unlocked(start, nr_pages, 2646 pages, gup_flags); 2647 } 2648 2649 return ret; 2650 } 2651 2652 static unsigned long lockless_pages_from_mm(unsigned long start, 2653 unsigned long end, 2654 unsigned int gup_flags, 2655 struct page **pages) 2656 { 2657 unsigned long flags; 2658 int nr_pinned = 0; 2659 unsigned seq; 2660 2661 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2662 !gup_fast_permitted(start, end)) 2663 return 0; 2664 2665 if (gup_flags & FOLL_PIN) { 2666 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2667 if (seq & 1) 2668 return 0; 2669 } 2670 2671 /* 2672 * Disable interrupts. The nested form is used, in order to allow full, 2673 * general purpose use of this routine. 2674 * 2675 * With interrupts disabled, we block page table pages from being freed 2676 * from under us. See struct mmu_table_batch comments in 2677 * include/asm-generic/tlb.h for more details. 2678 * 2679 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2680 * that come from THPs splitting. 2681 */ 2682 local_irq_save(flags); 2683 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2684 local_irq_restore(flags); 2685 2686 /* 2687 * When pinning pages for DMA there could be a concurrent write protect 2688 * from fork() via copy_page_range(), in this case always fail fast GUP. 2689 */ 2690 if (gup_flags & FOLL_PIN) { 2691 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2692 unpin_user_pages(pages, nr_pinned); 2693 return 0; 2694 } 2695 } 2696 return nr_pinned; 2697 } 2698 2699 static int internal_get_user_pages_fast(unsigned long start, 2700 unsigned long nr_pages, 2701 unsigned int gup_flags, 2702 struct page **pages) 2703 { 2704 unsigned long len, end; 2705 unsigned long nr_pinned; 2706 int ret; 2707 2708 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2709 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2710 FOLL_FAST_ONLY))) 2711 return -EINVAL; 2712 2713 if (gup_flags & FOLL_PIN) 2714 mm_set_has_pinned_flag(¤t->mm->flags); 2715 2716 if (!(gup_flags & FOLL_FAST_ONLY)) 2717 might_lock_read(¤t->mm->mmap_lock); 2718 2719 start = untagged_addr(start) & PAGE_MASK; 2720 len = nr_pages << PAGE_SHIFT; 2721 if (check_add_overflow(start, len, &end)) 2722 return 0; 2723 if (unlikely(!access_ok((void __user *)start, len))) 2724 return -EFAULT; 2725 2726 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2727 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2728 return nr_pinned; 2729 2730 /* Slow path: try to get the remaining pages with get_user_pages */ 2731 start += nr_pinned << PAGE_SHIFT; 2732 pages += nr_pinned; 2733 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2734 pages); 2735 if (ret < 0) { 2736 /* 2737 * The caller has to unpin the pages we already pinned so 2738 * returning -errno is not an option 2739 */ 2740 if (nr_pinned) 2741 return nr_pinned; 2742 return ret; 2743 } 2744 return ret + nr_pinned; 2745 } 2746 2747 /** 2748 * get_user_pages_fast_only() - pin user pages in memory 2749 * @start: starting user address 2750 * @nr_pages: number of pages from start to pin 2751 * @gup_flags: flags modifying pin behaviour 2752 * @pages: array that receives pointers to the pages pinned. 2753 * Should be at least nr_pages long. 2754 * 2755 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2756 * the regular GUP. 2757 * Note a difference with get_user_pages_fast: this always returns the 2758 * number of pages pinned, 0 if no pages were pinned. 2759 * 2760 * If the architecture does not support this function, simply return with no 2761 * pages pinned. 2762 * 2763 * Careful, careful! COW breaking can go either way, so a non-write 2764 * access can get ambiguous page results. If you call this function without 2765 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2766 */ 2767 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2768 unsigned int gup_flags, struct page **pages) 2769 { 2770 int nr_pinned; 2771 /* 2772 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2773 * because gup fast is always a "pin with a +1 page refcount" request. 2774 * 2775 * FOLL_FAST_ONLY is required in order to match the API description of 2776 * this routine: no fall back to regular ("slow") GUP. 2777 */ 2778 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2779 2780 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2781 pages); 2782 2783 /* 2784 * As specified in the API description above, this routine is not 2785 * allowed to return negative values. However, the common core 2786 * routine internal_get_user_pages_fast() *can* return -errno. 2787 * Therefore, correct for that here: 2788 */ 2789 if (nr_pinned < 0) 2790 nr_pinned = 0; 2791 2792 return nr_pinned; 2793 } 2794 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2795 2796 /** 2797 * get_user_pages_fast() - pin user pages in memory 2798 * @start: starting user address 2799 * @nr_pages: number of pages from start to pin 2800 * @gup_flags: flags modifying pin behaviour 2801 * @pages: array that receives pointers to the pages pinned. 2802 * Should be at least nr_pages long. 2803 * 2804 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2805 * If not successful, it will fall back to taking the lock and 2806 * calling get_user_pages(). 2807 * 2808 * Returns number of pages pinned. This may be fewer than the number requested. 2809 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2810 * -errno. 2811 */ 2812 int get_user_pages_fast(unsigned long start, int nr_pages, 2813 unsigned int gup_flags, struct page **pages) 2814 { 2815 if (!is_valid_gup_flags(gup_flags)) 2816 return -EINVAL; 2817 2818 /* 2819 * The caller may or may not have explicitly set FOLL_GET; either way is 2820 * OK. However, internally (within mm/gup.c), gup fast variants must set 2821 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2822 * request. 2823 */ 2824 gup_flags |= FOLL_GET; 2825 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2826 } 2827 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2828 2829 /** 2830 * pin_user_pages_fast() - pin user pages in memory without taking locks 2831 * 2832 * @start: starting user address 2833 * @nr_pages: number of pages from start to pin 2834 * @gup_flags: flags modifying pin behaviour 2835 * @pages: array that receives pointers to the pages pinned. 2836 * Should be at least nr_pages long. 2837 * 2838 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2839 * get_user_pages_fast() for documentation on the function arguments, because 2840 * the arguments here are identical. 2841 * 2842 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2843 * see Documentation/core-api/pin_user_pages.rst for further details. 2844 */ 2845 int pin_user_pages_fast(unsigned long start, int nr_pages, 2846 unsigned int gup_flags, struct page **pages) 2847 { 2848 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2849 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2850 return -EINVAL; 2851 2852 gup_flags |= FOLL_PIN; 2853 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2854 } 2855 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2856 2857 /* 2858 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2859 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2860 * 2861 * The API rules are the same, too: no negative values may be returned. 2862 */ 2863 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2864 unsigned int gup_flags, struct page **pages) 2865 { 2866 int nr_pinned; 2867 2868 /* 2869 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2870 * rules require returning 0, rather than -errno: 2871 */ 2872 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2873 return 0; 2874 /* 2875 * FOLL_FAST_ONLY is required in order to match the API description of 2876 * this routine: no fall back to regular ("slow") GUP. 2877 */ 2878 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2879 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2880 pages); 2881 /* 2882 * This routine is not allowed to return negative values. However, 2883 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2884 * correct for that here: 2885 */ 2886 if (nr_pinned < 0) 2887 nr_pinned = 0; 2888 2889 return nr_pinned; 2890 } 2891 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2892 2893 /** 2894 * pin_user_pages_remote() - pin pages of a remote process 2895 * 2896 * @mm: mm_struct of target mm 2897 * @start: starting user address 2898 * @nr_pages: number of pages from start to pin 2899 * @gup_flags: flags modifying lookup behaviour 2900 * @pages: array that receives pointers to the pages pinned. 2901 * Should be at least nr_pages long. Or NULL, if caller 2902 * only intends to ensure the pages are faulted in. 2903 * @vmas: array of pointers to vmas corresponding to each page. 2904 * Or NULL if the caller does not require them. 2905 * @locked: pointer to lock flag indicating whether lock is held and 2906 * subsequently whether VM_FAULT_RETRY functionality can be 2907 * utilised. Lock must initially be held. 2908 * 2909 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2910 * get_user_pages_remote() for documentation on the function arguments, because 2911 * the arguments here are identical. 2912 * 2913 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2914 * see Documentation/core-api/pin_user_pages.rst for details. 2915 */ 2916 long pin_user_pages_remote(struct mm_struct *mm, 2917 unsigned long start, unsigned long nr_pages, 2918 unsigned int gup_flags, struct page **pages, 2919 struct vm_area_struct **vmas, int *locked) 2920 { 2921 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2922 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2923 return -EINVAL; 2924 2925 gup_flags |= FOLL_PIN; 2926 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2927 pages, vmas, locked); 2928 } 2929 EXPORT_SYMBOL(pin_user_pages_remote); 2930 2931 /** 2932 * pin_user_pages() - pin user pages in memory for use by other devices 2933 * 2934 * @start: starting user address 2935 * @nr_pages: number of pages from start to pin 2936 * @gup_flags: flags modifying lookup behaviour 2937 * @pages: array that receives pointers to the pages pinned. 2938 * Should be at least nr_pages long. Or NULL, if caller 2939 * only intends to ensure the pages are faulted in. 2940 * @vmas: array of pointers to vmas corresponding to each page. 2941 * Or NULL if the caller does not require them. 2942 * 2943 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2944 * FOLL_PIN is set. 2945 * 2946 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2947 * see Documentation/core-api/pin_user_pages.rst for details. 2948 */ 2949 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2950 unsigned int gup_flags, struct page **pages, 2951 struct vm_area_struct **vmas) 2952 { 2953 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2954 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2955 return -EINVAL; 2956 2957 gup_flags |= FOLL_PIN; 2958 return __gup_longterm_locked(current->mm, start, nr_pages, 2959 pages, vmas, gup_flags); 2960 } 2961 EXPORT_SYMBOL(pin_user_pages); 2962 2963 /* 2964 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2965 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2966 * FOLL_PIN and rejects FOLL_GET. 2967 */ 2968 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2969 struct page **pages, unsigned int gup_flags) 2970 { 2971 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2972 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2973 return -EINVAL; 2974 2975 gup_flags |= FOLL_PIN; 2976 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2977 } 2978 EXPORT_SYMBOL(pin_user_pages_unlocked); 2979 2980 /* 2981 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2982 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2983 * FOLL_GET. 2984 */ 2985 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2986 unsigned int gup_flags, struct page **pages, 2987 int *locked) 2988 { 2989 /* 2990 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2991 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2992 * vmas. As there are no users of this flag in this call we simply 2993 * disallow this option for now. 2994 */ 2995 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2996 return -EINVAL; 2997 2998 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2999 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3000 return -EINVAL; 3001 3002 gup_flags |= FOLL_PIN; 3003 return __get_user_pages_locked(current->mm, start, nr_pages, 3004 pages, NULL, locked, 3005 gup_flags | FOLL_TOUCH); 3006 } 3007 EXPORT_SYMBOL(pin_user_pages_locked); 3008