xref: /openbmc/linux/mm/gup.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/migrate.h>
17 #include <linux/mm_inline.h>
18 #include <linux/sched/mm.h>
19 
20 #include <asm/mmu_context.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static struct page *no_page_table(struct vm_area_struct *vma,
32 		unsigned int flags)
33 {
34 	/*
35 	 * When core dumping an enormous anonymous area that nobody
36 	 * has touched so far, we don't want to allocate unnecessary pages or
37 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
38 	 * then get_dump_page() will return NULL to leave a hole in the dump.
39 	 * But we can only make this optimization where a hole would surely
40 	 * be zero-filled if handle_mm_fault() actually did handle it.
41 	 */
42 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
43 		return ERR_PTR(-EFAULT);
44 	return NULL;
45 }
46 
47 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
48 		pte_t *pte, unsigned int flags)
49 {
50 	/* No page to get reference */
51 	if (flags & FOLL_GET)
52 		return -EFAULT;
53 
54 	if (flags & FOLL_TOUCH) {
55 		pte_t entry = *pte;
56 
57 		if (flags & FOLL_WRITE)
58 			entry = pte_mkdirty(entry);
59 		entry = pte_mkyoung(entry);
60 
61 		if (!pte_same(*pte, entry)) {
62 			set_pte_at(vma->vm_mm, address, pte, entry);
63 			update_mmu_cache(vma, address, pte);
64 		}
65 	}
66 
67 	/* Proper page table entry exists, but no corresponding struct page */
68 	return -EEXIST;
69 }
70 
71 /*
72  * FOLL_FORCE can write to even unwritable pte's, but only
73  * after we've gone through a COW cycle and they are dirty.
74  */
75 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
76 {
77 	return pte_write(pte) ||
78 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
79 }
80 
81 static struct page *follow_page_pte(struct vm_area_struct *vma,
82 		unsigned long address, pmd_t *pmd, unsigned int flags,
83 		struct dev_pagemap **pgmap)
84 {
85 	struct mm_struct *mm = vma->vm_mm;
86 	struct page *page;
87 	spinlock_t *ptl;
88 	pte_t *ptep, pte;
89 
90 retry:
91 	if (unlikely(pmd_bad(*pmd)))
92 		return no_page_table(vma, flags);
93 
94 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
95 	pte = *ptep;
96 	if (!pte_present(pte)) {
97 		swp_entry_t entry;
98 		/*
99 		 * KSM's break_ksm() relies upon recognizing a ksm page
100 		 * even while it is being migrated, so for that case we
101 		 * need migration_entry_wait().
102 		 */
103 		if (likely(!(flags & FOLL_MIGRATION)))
104 			goto no_page;
105 		if (pte_none(pte))
106 			goto no_page;
107 		entry = pte_to_swp_entry(pte);
108 		if (!is_migration_entry(entry))
109 			goto no_page;
110 		pte_unmap_unlock(ptep, ptl);
111 		migration_entry_wait(mm, pmd, address);
112 		goto retry;
113 	}
114 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
115 		goto no_page;
116 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
117 		pte_unmap_unlock(ptep, ptl);
118 		return NULL;
119 	}
120 
121 	page = vm_normal_page(vma, address, pte);
122 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
123 		/*
124 		 * Only return device mapping pages in the FOLL_GET case since
125 		 * they are only valid while holding the pgmap reference.
126 		 */
127 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
128 		if (*pgmap)
129 			page = pte_page(pte);
130 		else
131 			goto no_page;
132 	} else if (unlikely(!page)) {
133 		if (flags & FOLL_DUMP) {
134 			/* Avoid special (like zero) pages in core dumps */
135 			page = ERR_PTR(-EFAULT);
136 			goto out;
137 		}
138 
139 		if (is_zero_pfn(pte_pfn(pte))) {
140 			page = pte_page(pte);
141 		} else {
142 			int ret;
143 
144 			ret = follow_pfn_pte(vma, address, ptep, flags);
145 			page = ERR_PTR(ret);
146 			goto out;
147 		}
148 	}
149 
150 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
151 		int ret;
152 		get_page(page);
153 		pte_unmap_unlock(ptep, ptl);
154 		lock_page(page);
155 		ret = split_huge_page(page);
156 		unlock_page(page);
157 		put_page(page);
158 		if (ret)
159 			return ERR_PTR(ret);
160 		goto retry;
161 	}
162 
163 	if (flags & FOLL_GET)
164 		get_page(page);
165 	if (flags & FOLL_TOUCH) {
166 		if ((flags & FOLL_WRITE) &&
167 		    !pte_dirty(pte) && !PageDirty(page))
168 			set_page_dirty(page);
169 		/*
170 		 * pte_mkyoung() would be more correct here, but atomic care
171 		 * is needed to avoid losing the dirty bit: it is easier to use
172 		 * mark_page_accessed().
173 		 */
174 		mark_page_accessed(page);
175 	}
176 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
177 		/* Do not mlock pte-mapped THP */
178 		if (PageTransCompound(page))
179 			goto out;
180 
181 		/*
182 		 * The preliminary mapping check is mainly to avoid the
183 		 * pointless overhead of lock_page on the ZERO_PAGE
184 		 * which might bounce very badly if there is contention.
185 		 *
186 		 * If the page is already locked, we don't need to
187 		 * handle it now - vmscan will handle it later if and
188 		 * when it attempts to reclaim the page.
189 		 */
190 		if (page->mapping && trylock_page(page)) {
191 			lru_add_drain();  /* push cached pages to LRU */
192 			/*
193 			 * Because we lock page here, and migration is
194 			 * blocked by the pte's page reference, and we
195 			 * know the page is still mapped, we don't even
196 			 * need to check for file-cache page truncation.
197 			 */
198 			mlock_vma_page(page);
199 			unlock_page(page);
200 		}
201 	}
202 out:
203 	pte_unmap_unlock(ptep, ptl);
204 	return page;
205 no_page:
206 	pte_unmap_unlock(ptep, ptl);
207 	if (!pte_none(pte))
208 		return NULL;
209 	return no_page_table(vma, flags);
210 }
211 
212 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
213 				    unsigned long address, pud_t *pudp,
214 				    unsigned int flags,
215 				    struct follow_page_context *ctx)
216 {
217 	pmd_t *pmd, pmdval;
218 	spinlock_t *ptl;
219 	struct page *page;
220 	struct mm_struct *mm = vma->vm_mm;
221 
222 	pmd = pmd_offset(pudp, address);
223 	/*
224 	 * The READ_ONCE() will stabilize the pmdval in a register or
225 	 * on the stack so that it will stop changing under the code.
226 	 */
227 	pmdval = READ_ONCE(*pmd);
228 	if (pmd_none(pmdval))
229 		return no_page_table(vma, flags);
230 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
231 		page = follow_huge_pmd(mm, address, pmd, flags);
232 		if (page)
233 			return page;
234 		return no_page_table(vma, flags);
235 	}
236 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
237 		page = follow_huge_pd(vma, address,
238 				      __hugepd(pmd_val(pmdval)), flags,
239 				      PMD_SHIFT);
240 		if (page)
241 			return page;
242 		return no_page_table(vma, flags);
243 	}
244 retry:
245 	if (!pmd_present(pmdval)) {
246 		if (likely(!(flags & FOLL_MIGRATION)))
247 			return no_page_table(vma, flags);
248 		VM_BUG_ON(thp_migration_supported() &&
249 				  !is_pmd_migration_entry(pmdval));
250 		if (is_pmd_migration_entry(pmdval))
251 			pmd_migration_entry_wait(mm, pmd);
252 		pmdval = READ_ONCE(*pmd);
253 		/*
254 		 * MADV_DONTNEED may convert the pmd to null because
255 		 * mmap_sem is held in read mode
256 		 */
257 		if (pmd_none(pmdval))
258 			return no_page_table(vma, flags);
259 		goto retry;
260 	}
261 	if (pmd_devmap(pmdval)) {
262 		ptl = pmd_lock(mm, pmd);
263 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
264 		spin_unlock(ptl);
265 		if (page)
266 			return page;
267 	}
268 	if (likely(!pmd_trans_huge(pmdval)))
269 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
270 
271 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
272 		return no_page_table(vma, flags);
273 
274 retry_locked:
275 	ptl = pmd_lock(mm, pmd);
276 	if (unlikely(pmd_none(*pmd))) {
277 		spin_unlock(ptl);
278 		return no_page_table(vma, flags);
279 	}
280 	if (unlikely(!pmd_present(*pmd))) {
281 		spin_unlock(ptl);
282 		if (likely(!(flags & FOLL_MIGRATION)))
283 			return no_page_table(vma, flags);
284 		pmd_migration_entry_wait(mm, pmd);
285 		goto retry_locked;
286 	}
287 	if (unlikely(!pmd_trans_huge(*pmd))) {
288 		spin_unlock(ptl);
289 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
290 	}
291 	if (flags & FOLL_SPLIT) {
292 		int ret;
293 		page = pmd_page(*pmd);
294 		if (is_huge_zero_page(page)) {
295 			spin_unlock(ptl);
296 			ret = 0;
297 			split_huge_pmd(vma, pmd, address);
298 			if (pmd_trans_unstable(pmd))
299 				ret = -EBUSY;
300 		} else {
301 			get_page(page);
302 			spin_unlock(ptl);
303 			lock_page(page);
304 			ret = split_huge_page(page);
305 			unlock_page(page);
306 			put_page(page);
307 			if (pmd_none(*pmd))
308 				return no_page_table(vma, flags);
309 		}
310 
311 		return ret ? ERR_PTR(ret) :
312 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
313 	}
314 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
315 	spin_unlock(ptl);
316 	ctx->page_mask = HPAGE_PMD_NR - 1;
317 	return page;
318 }
319 
320 static struct page *follow_pud_mask(struct vm_area_struct *vma,
321 				    unsigned long address, p4d_t *p4dp,
322 				    unsigned int flags,
323 				    struct follow_page_context *ctx)
324 {
325 	pud_t *pud;
326 	spinlock_t *ptl;
327 	struct page *page;
328 	struct mm_struct *mm = vma->vm_mm;
329 
330 	pud = pud_offset(p4dp, address);
331 	if (pud_none(*pud))
332 		return no_page_table(vma, flags);
333 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
334 		page = follow_huge_pud(mm, address, pud, flags);
335 		if (page)
336 			return page;
337 		return no_page_table(vma, flags);
338 	}
339 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
340 		page = follow_huge_pd(vma, address,
341 				      __hugepd(pud_val(*pud)), flags,
342 				      PUD_SHIFT);
343 		if (page)
344 			return page;
345 		return no_page_table(vma, flags);
346 	}
347 	if (pud_devmap(*pud)) {
348 		ptl = pud_lock(mm, pud);
349 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
350 		spin_unlock(ptl);
351 		if (page)
352 			return page;
353 	}
354 	if (unlikely(pud_bad(*pud)))
355 		return no_page_table(vma, flags);
356 
357 	return follow_pmd_mask(vma, address, pud, flags, ctx);
358 }
359 
360 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
361 				    unsigned long address, pgd_t *pgdp,
362 				    unsigned int flags,
363 				    struct follow_page_context *ctx)
364 {
365 	p4d_t *p4d;
366 	struct page *page;
367 
368 	p4d = p4d_offset(pgdp, address);
369 	if (p4d_none(*p4d))
370 		return no_page_table(vma, flags);
371 	BUILD_BUG_ON(p4d_huge(*p4d));
372 	if (unlikely(p4d_bad(*p4d)))
373 		return no_page_table(vma, flags);
374 
375 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
376 		page = follow_huge_pd(vma, address,
377 				      __hugepd(p4d_val(*p4d)), flags,
378 				      P4D_SHIFT);
379 		if (page)
380 			return page;
381 		return no_page_table(vma, flags);
382 	}
383 	return follow_pud_mask(vma, address, p4d, flags, ctx);
384 }
385 
386 /**
387  * follow_page_mask - look up a page descriptor from a user-virtual address
388  * @vma: vm_area_struct mapping @address
389  * @address: virtual address to look up
390  * @flags: flags modifying lookup behaviour
391  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
392  *       pointer to output page_mask
393  *
394  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
395  *
396  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
397  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
398  *
399  * On output, the @ctx->page_mask is set according to the size of the page.
400  *
401  * Return: the mapped (struct page *), %NULL if no mapping exists, or
402  * an error pointer if there is a mapping to something not represented
403  * by a page descriptor (see also vm_normal_page()).
404  */
405 struct page *follow_page_mask(struct vm_area_struct *vma,
406 			      unsigned long address, unsigned int flags,
407 			      struct follow_page_context *ctx)
408 {
409 	pgd_t *pgd;
410 	struct page *page;
411 	struct mm_struct *mm = vma->vm_mm;
412 
413 	ctx->page_mask = 0;
414 
415 	/* make this handle hugepd */
416 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
417 	if (!IS_ERR(page)) {
418 		BUG_ON(flags & FOLL_GET);
419 		return page;
420 	}
421 
422 	pgd = pgd_offset(mm, address);
423 
424 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
425 		return no_page_table(vma, flags);
426 
427 	if (pgd_huge(*pgd)) {
428 		page = follow_huge_pgd(mm, address, pgd, flags);
429 		if (page)
430 			return page;
431 		return no_page_table(vma, flags);
432 	}
433 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
434 		page = follow_huge_pd(vma, address,
435 				      __hugepd(pgd_val(*pgd)), flags,
436 				      PGDIR_SHIFT);
437 		if (page)
438 			return page;
439 		return no_page_table(vma, flags);
440 	}
441 
442 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
443 }
444 
445 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
446 			 unsigned int foll_flags)
447 {
448 	struct follow_page_context ctx = { NULL };
449 	struct page *page;
450 
451 	page = follow_page_mask(vma, address, foll_flags, &ctx);
452 	if (ctx.pgmap)
453 		put_dev_pagemap(ctx.pgmap);
454 	return page;
455 }
456 
457 static int get_gate_page(struct mm_struct *mm, unsigned long address,
458 		unsigned int gup_flags, struct vm_area_struct **vma,
459 		struct page **page)
460 {
461 	pgd_t *pgd;
462 	p4d_t *p4d;
463 	pud_t *pud;
464 	pmd_t *pmd;
465 	pte_t *pte;
466 	int ret = -EFAULT;
467 
468 	/* user gate pages are read-only */
469 	if (gup_flags & FOLL_WRITE)
470 		return -EFAULT;
471 	if (address > TASK_SIZE)
472 		pgd = pgd_offset_k(address);
473 	else
474 		pgd = pgd_offset_gate(mm, address);
475 	BUG_ON(pgd_none(*pgd));
476 	p4d = p4d_offset(pgd, address);
477 	BUG_ON(p4d_none(*p4d));
478 	pud = pud_offset(p4d, address);
479 	BUG_ON(pud_none(*pud));
480 	pmd = pmd_offset(pud, address);
481 	if (!pmd_present(*pmd))
482 		return -EFAULT;
483 	VM_BUG_ON(pmd_trans_huge(*pmd));
484 	pte = pte_offset_map(pmd, address);
485 	if (pte_none(*pte))
486 		goto unmap;
487 	*vma = get_gate_vma(mm);
488 	if (!page)
489 		goto out;
490 	*page = vm_normal_page(*vma, address, *pte);
491 	if (!*page) {
492 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
493 			goto unmap;
494 		*page = pte_page(*pte);
495 
496 		/*
497 		 * This should never happen (a device public page in the gate
498 		 * area).
499 		 */
500 		if (is_device_public_page(*page))
501 			goto unmap;
502 	}
503 	get_page(*page);
504 out:
505 	ret = 0;
506 unmap:
507 	pte_unmap(pte);
508 	return ret;
509 }
510 
511 /*
512  * mmap_sem must be held on entry.  If @nonblocking != NULL and
513  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
514  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
515  */
516 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
517 		unsigned long address, unsigned int *flags, int *nonblocking)
518 {
519 	unsigned int fault_flags = 0;
520 	vm_fault_t ret;
521 
522 	/* mlock all present pages, but do not fault in new pages */
523 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
524 		return -ENOENT;
525 	if (*flags & FOLL_WRITE)
526 		fault_flags |= FAULT_FLAG_WRITE;
527 	if (*flags & FOLL_REMOTE)
528 		fault_flags |= FAULT_FLAG_REMOTE;
529 	if (nonblocking)
530 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
531 	if (*flags & FOLL_NOWAIT)
532 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
533 	if (*flags & FOLL_TRIED) {
534 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
535 		fault_flags |= FAULT_FLAG_TRIED;
536 	}
537 
538 	ret = handle_mm_fault(vma, address, fault_flags);
539 	if (ret & VM_FAULT_ERROR) {
540 		int err = vm_fault_to_errno(ret, *flags);
541 
542 		if (err)
543 			return err;
544 		BUG();
545 	}
546 
547 	if (tsk) {
548 		if (ret & VM_FAULT_MAJOR)
549 			tsk->maj_flt++;
550 		else
551 			tsk->min_flt++;
552 	}
553 
554 	if (ret & VM_FAULT_RETRY) {
555 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
556 			*nonblocking = 0;
557 		return -EBUSY;
558 	}
559 
560 	/*
561 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
562 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
563 	 * can thus safely do subsequent page lookups as if they were reads.
564 	 * But only do so when looping for pte_write is futile: in some cases
565 	 * userspace may also be wanting to write to the gotten user page,
566 	 * which a read fault here might prevent (a readonly page might get
567 	 * reCOWed by userspace write).
568 	 */
569 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
570 		*flags |= FOLL_COW;
571 	return 0;
572 }
573 
574 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
575 {
576 	vm_flags_t vm_flags = vma->vm_flags;
577 	int write = (gup_flags & FOLL_WRITE);
578 	int foreign = (gup_flags & FOLL_REMOTE);
579 
580 	if (vm_flags & (VM_IO | VM_PFNMAP))
581 		return -EFAULT;
582 
583 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
584 		return -EFAULT;
585 
586 	if (write) {
587 		if (!(vm_flags & VM_WRITE)) {
588 			if (!(gup_flags & FOLL_FORCE))
589 				return -EFAULT;
590 			/*
591 			 * We used to let the write,force case do COW in a
592 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
593 			 * set a breakpoint in a read-only mapping of an
594 			 * executable, without corrupting the file (yet only
595 			 * when that file had been opened for writing!).
596 			 * Anon pages in shared mappings are surprising: now
597 			 * just reject it.
598 			 */
599 			if (!is_cow_mapping(vm_flags))
600 				return -EFAULT;
601 		}
602 	} else if (!(vm_flags & VM_READ)) {
603 		if (!(gup_flags & FOLL_FORCE))
604 			return -EFAULT;
605 		/*
606 		 * Is there actually any vma we can reach here which does not
607 		 * have VM_MAYREAD set?
608 		 */
609 		if (!(vm_flags & VM_MAYREAD))
610 			return -EFAULT;
611 	}
612 	/*
613 	 * gups are always data accesses, not instruction
614 	 * fetches, so execute=false here
615 	 */
616 	if (!arch_vma_access_permitted(vma, write, false, foreign))
617 		return -EFAULT;
618 	return 0;
619 }
620 
621 /**
622  * __get_user_pages() - pin user pages in memory
623  * @tsk:	task_struct of target task
624  * @mm:		mm_struct of target mm
625  * @start:	starting user address
626  * @nr_pages:	number of pages from start to pin
627  * @gup_flags:	flags modifying pin behaviour
628  * @pages:	array that receives pointers to the pages pinned.
629  *		Should be at least nr_pages long. Or NULL, if caller
630  *		only intends to ensure the pages are faulted in.
631  * @vmas:	array of pointers to vmas corresponding to each page.
632  *		Or NULL if the caller does not require them.
633  * @nonblocking: whether waiting for disk IO or mmap_sem contention
634  *
635  * Returns number of pages pinned. This may be fewer than the number
636  * requested. If nr_pages is 0 or negative, returns 0. If no pages
637  * were pinned, returns -errno. Each page returned must be released
638  * with a put_page() call when it is finished with. vmas will only
639  * remain valid while mmap_sem is held.
640  *
641  * Must be called with mmap_sem held.  It may be released.  See below.
642  *
643  * __get_user_pages walks a process's page tables and takes a reference to
644  * each struct page that each user address corresponds to at a given
645  * instant. That is, it takes the page that would be accessed if a user
646  * thread accesses the given user virtual address at that instant.
647  *
648  * This does not guarantee that the page exists in the user mappings when
649  * __get_user_pages returns, and there may even be a completely different
650  * page there in some cases (eg. if mmapped pagecache has been invalidated
651  * and subsequently re faulted). However it does guarantee that the page
652  * won't be freed completely. And mostly callers simply care that the page
653  * contains data that was valid *at some point in time*. Typically, an IO
654  * or similar operation cannot guarantee anything stronger anyway because
655  * locks can't be held over the syscall boundary.
656  *
657  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
658  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
659  * appropriate) must be called after the page is finished with, and
660  * before put_page is called.
661  *
662  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
663  * or mmap_sem contention, and if waiting is needed to pin all pages,
664  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
665  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
666  * this case.
667  *
668  * A caller using such a combination of @nonblocking and @gup_flags
669  * must therefore hold the mmap_sem for reading only, and recognize
670  * when it's been released.  Otherwise, it must be held for either
671  * reading or writing and will not be released.
672  *
673  * In most cases, get_user_pages or get_user_pages_fast should be used
674  * instead of __get_user_pages. __get_user_pages should be used only if
675  * you need some special @gup_flags.
676  */
677 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
678 		unsigned long start, unsigned long nr_pages,
679 		unsigned int gup_flags, struct page **pages,
680 		struct vm_area_struct **vmas, int *nonblocking)
681 {
682 	long ret = 0, i = 0;
683 	struct vm_area_struct *vma = NULL;
684 	struct follow_page_context ctx = { NULL };
685 
686 	if (!nr_pages)
687 		return 0;
688 
689 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
690 
691 	/*
692 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
693 	 * fault information is unrelated to the reference behaviour of a task
694 	 * using the address space
695 	 */
696 	if (!(gup_flags & FOLL_FORCE))
697 		gup_flags |= FOLL_NUMA;
698 
699 	do {
700 		struct page *page;
701 		unsigned int foll_flags = gup_flags;
702 		unsigned int page_increm;
703 
704 		/* first iteration or cross vma bound */
705 		if (!vma || start >= vma->vm_end) {
706 			vma = find_extend_vma(mm, start);
707 			if (!vma && in_gate_area(mm, start)) {
708 				ret = get_gate_page(mm, start & PAGE_MASK,
709 						gup_flags, &vma,
710 						pages ? &pages[i] : NULL);
711 				if (ret)
712 					goto out;
713 				ctx.page_mask = 0;
714 				goto next_page;
715 			}
716 
717 			if (!vma || check_vma_flags(vma, gup_flags)) {
718 				ret = -EFAULT;
719 				goto out;
720 			}
721 			if (is_vm_hugetlb_page(vma)) {
722 				i = follow_hugetlb_page(mm, vma, pages, vmas,
723 						&start, &nr_pages, i,
724 						gup_flags, nonblocking);
725 				continue;
726 			}
727 		}
728 retry:
729 		/*
730 		 * If we have a pending SIGKILL, don't keep faulting pages and
731 		 * potentially allocating memory.
732 		 */
733 		if (fatal_signal_pending(current)) {
734 			ret = -ERESTARTSYS;
735 			goto out;
736 		}
737 		cond_resched();
738 
739 		page = follow_page_mask(vma, start, foll_flags, &ctx);
740 		if (!page) {
741 			ret = faultin_page(tsk, vma, start, &foll_flags,
742 					nonblocking);
743 			switch (ret) {
744 			case 0:
745 				goto retry;
746 			case -EBUSY:
747 				ret = 0;
748 				/* FALLTHRU */
749 			case -EFAULT:
750 			case -ENOMEM:
751 			case -EHWPOISON:
752 				goto out;
753 			case -ENOENT:
754 				goto next_page;
755 			}
756 			BUG();
757 		} else if (PTR_ERR(page) == -EEXIST) {
758 			/*
759 			 * Proper page table entry exists, but no corresponding
760 			 * struct page.
761 			 */
762 			goto next_page;
763 		} else if (IS_ERR(page)) {
764 			ret = PTR_ERR(page);
765 			goto out;
766 		}
767 		if (pages) {
768 			pages[i] = page;
769 			flush_anon_page(vma, page, start);
770 			flush_dcache_page(page);
771 			ctx.page_mask = 0;
772 		}
773 next_page:
774 		if (vmas) {
775 			vmas[i] = vma;
776 			ctx.page_mask = 0;
777 		}
778 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
779 		if (page_increm > nr_pages)
780 			page_increm = nr_pages;
781 		i += page_increm;
782 		start += page_increm * PAGE_SIZE;
783 		nr_pages -= page_increm;
784 	} while (nr_pages);
785 out:
786 	if (ctx.pgmap)
787 		put_dev_pagemap(ctx.pgmap);
788 	return i ? i : ret;
789 }
790 
791 static bool vma_permits_fault(struct vm_area_struct *vma,
792 			      unsigned int fault_flags)
793 {
794 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
795 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
796 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
797 
798 	if (!(vm_flags & vma->vm_flags))
799 		return false;
800 
801 	/*
802 	 * The architecture might have a hardware protection
803 	 * mechanism other than read/write that can deny access.
804 	 *
805 	 * gup always represents data access, not instruction
806 	 * fetches, so execute=false here:
807 	 */
808 	if (!arch_vma_access_permitted(vma, write, false, foreign))
809 		return false;
810 
811 	return true;
812 }
813 
814 /*
815  * fixup_user_fault() - manually resolve a user page fault
816  * @tsk:	the task_struct to use for page fault accounting, or
817  *		NULL if faults are not to be recorded.
818  * @mm:		mm_struct of target mm
819  * @address:	user address
820  * @fault_flags:flags to pass down to handle_mm_fault()
821  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
822  *		does not allow retry
823  *
824  * This is meant to be called in the specific scenario where for locking reasons
825  * we try to access user memory in atomic context (within a pagefault_disable()
826  * section), this returns -EFAULT, and we want to resolve the user fault before
827  * trying again.
828  *
829  * Typically this is meant to be used by the futex code.
830  *
831  * The main difference with get_user_pages() is that this function will
832  * unconditionally call handle_mm_fault() which will in turn perform all the
833  * necessary SW fixup of the dirty and young bits in the PTE, while
834  * get_user_pages() only guarantees to update these in the struct page.
835  *
836  * This is important for some architectures where those bits also gate the
837  * access permission to the page because they are maintained in software.  On
838  * such architectures, gup() will not be enough to make a subsequent access
839  * succeed.
840  *
841  * This function will not return with an unlocked mmap_sem. So it has not the
842  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
843  */
844 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
845 		     unsigned long address, unsigned int fault_flags,
846 		     bool *unlocked)
847 {
848 	struct vm_area_struct *vma;
849 	vm_fault_t ret, major = 0;
850 
851 	if (unlocked)
852 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
853 
854 retry:
855 	vma = find_extend_vma(mm, address);
856 	if (!vma || address < vma->vm_start)
857 		return -EFAULT;
858 
859 	if (!vma_permits_fault(vma, fault_flags))
860 		return -EFAULT;
861 
862 	ret = handle_mm_fault(vma, address, fault_flags);
863 	major |= ret & VM_FAULT_MAJOR;
864 	if (ret & VM_FAULT_ERROR) {
865 		int err = vm_fault_to_errno(ret, 0);
866 
867 		if (err)
868 			return err;
869 		BUG();
870 	}
871 
872 	if (ret & VM_FAULT_RETRY) {
873 		down_read(&mm->mmap_sem);
874 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
875 			*unlocked = true;
876 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
877 			fault_flags |= FAULT_FLAG_TRIED;
878 			goto retry;
879 		}
880 	}
881 
882 	if (tsk) {
883 		if (major)
884 			tsk->maj_flt++;
885 		else
886 			tsk->min_flt++;
887 	}
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(fixup_user_fault);
891 
892 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
893 						struct mm_struct *mm,
894 						unsigned long start,
895 						unsigned long nr_pages,
896 						struct page **pages,
897 						struct vm_area_struct **vmas,
898 						int *locked,
899 						unsigned int flags)
900 {
901 	long ret, pages_done;
902 	bool lock_dropped;
903 
904 	if (locked) {
905 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
906 		BUG_ON(vmas);
907 		/* check caller initialized locked */
908 		BUG_ON(*locked != 1);
909 	}
910 
911 	if (pages)
912 		flags |= FOLL_GET;
913 
914 	pages_done = 0;
915 	lock_dropped = false;
916 	for (;;) {
917 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
918 				       vmas, locked);
919 		if (!locked)
920 			/* VM_FAULT_RETRY couldn't trigger, bypass */
921 			return ret;
922 
923 		/* VM_FAULT_RETRY cannot return errors */
924 		if (!*locked) {
925 			BUG_ON(ret < 0);
926 			BUG_ON(ret >= nr_pages);
927 		}
928 
929 		if (!pages)
930 			/* If it's a prefault don't insist harder */
931 			return ret;
932 
933 		if (ret > 0) {
934 			nr_pages -= ret;
935 			pages_done += ret;
936 			if (!nr_pages)
937 				break;
938 		}
939 		if (*locked) {
940 			/*
941 			 * VM_FAULT_RETRY didn't trigger or it was a
942 			 * FOLL_NOWAIT.
943 			 */
944 			if (!pages_done)
945 				pages_done = ret;
946 			break;
947 		}
948 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
949 		pages += ret;
950 		start += ret << PAGE_SHIFT;
951 
952 		/*
953 		 * Repeat on the address that fired VM_FAULT_RETRY
954 		 * without FAULT_FLAG_ALLOW_RETRY but with
955 		 * FAULT_FLAG_TRIED.
956 		 */
957 		*locked = 1;
958 		lock_dropped = true;
959 		down_read(&mm->mmap_sem);
960 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
961 				       pages, NULL, NULL);
962 		if (ret != 1) {
963 			BUG_ON(ret > 1);
964 			if (!pages_done)
965 				pages_done = ret;
966 			break;
967 		}
968 		nr_pages--;
969 		pages_done++;
970 		if (!nr_pages)
971 			break;
972 		pages++;
973 		start += PAGE_SIZE;
974 	}
975 	if (lock_dropped && *locked) {
976 		/*
977 		 * We must let the caller know we temporarily dropped the lock
978 		 * and so the critical section protected by it was lost.
979 		 */
980 		up_read(&mm->mmap_sem);
981 		*locked = 0;
982 	}
983 	return pages_done;
984 }
985 
986 /*
987  * We can leverage the VM_FAULT_RETRY functionality in the page fault
988  * paths better by using either get_user_pages_locked() or
989  * get_user_pages_unlocked().
990  *
991  * get_user_pages_locked() is suitable to replace the form:
992  *
993  *      down_read(&mm->mmap_sem);
994  *      do_something()
995  *      get_user_pages(tsk, mm, ..., pages, NULL);
996  *      up_read(&mm->mmap_sem);
997  *
998  *  to:
999  *
1000  *      int locked = 1;
1001  *      down_read(&mm->mmap_sem);
1002  *      do_something()
1003  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1004  *      if (locked)
1005  *          up_read(&mm->mmap_sem);
1006  */
1007 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1008 			   unsigned int gup_flags, struct page **pages,
1009 			   int *locked)
1010 {
1011 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1012 				       pages, NULL, locked,
1013 				       gup_flags | FOLL_TOUCH);
1014 }
1015 EXPORT_SYMBOL(get_user_pages_locked);
1016 
1017 /*
1018  * get_user_pages_unlocked() is suitable to replace the form:
1019  *
1020  *      down_read(&mm->mmap_sem);
1021  *      get_user_pages(tsk, mm, ..., pages, NULL);
1022  *      up_read(&mm->mmap_sem);
1023  *
1024  *  with:
1025  *
1026  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1027  *
1028  * It is functionally equivalent to get_user_pages_fast so
1029  * get_user_pages_fast should be used instead if specific gup_flags
1030  * (e.g. FOLL_FORCE) are not required.
1031  */
1032 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1033 			     struct page **pages, unsigned int gup_flags)
1034 {
1035 	struct mm_struct *mm = current->mm;
1036 	int locked = 1;
1037 	long ret;
1038 
1039 	down_read(&mm->mmap_sem);
1040 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1041 				      &locked, gup_flags | FOLL_TOUCH);
1042 	if (locked)
1043 		up_read(&mm->mmap_sem);
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(get_user_pages_unlocked);
1047 
1048 /*
1049  * get_user_pages_remote() - pin user pages in memory
1050  * @tsk:	the task_struct to use for page fault accounting, or
1051  *		NULL if faults are not to be recorded.
1052  * @mm:		mm_struct of target mm
1053  * @start:	starting user address
1054  * @nr_pages:	number of pages from start to pin
1055  * @gup_flags:	flags modifying lookup behaviour
1056  * @pages:	array that receives pointers to the pages pinned.
1057  *		Should be at least nr_pages long. Or NULL, if caller
1058  *		only intends to ensure the pages are faulted in.
1059  * @vmas:	array of pointers to vmas corresponding to each page.
1060  *		Or NULL if the caller does not require them.
1061  * @locked:	pointer to lock flag indicating whether lock is held and
1062  *		subsequently whether VM_FAULT_RETRY functionality can be
1063  *		utilised. Lock must initially be held.
1064  *
1065  * Returns number of pages pinned. This may be fewer than the number
1066  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1067  * were pinned, returns -errno. Each page returned must be released
1068  * with a put_page() call when it is finished with. vmas will only
1069  * remain valid while mmap_sem is held.
1070  *
1071  * Must be called with mmap_sem held for read or write.
1072  *
1073  * get_user_pages walks a process's page tables and takes a reference to
1074  * each struct page that each user address corresponds to at a given
1075  * instant. That is, it takes the page that would be accessed if a user
1076  * thread accesses the given user virtual address at that instant.
1077  *
1078  * This does not guarantee that the page exists in the user mappings when
1079  * get_user_pages returns, and there may even be a completely different
1080  * page there in some cases (eg. if mmapped pagecache has been invalidated
1081  * and subsequently re faulted). However it does guarantee that the page
1082  * won't be freed completely. And mostly callers simply care that the page
1083  * contains data that was valid *at some point in time*. Typically, an IO
1084  * or similar operation cannot guarantee anything stronger anyway because
1085  * locks can't be held over the syscall boundary.
1086  *
1087  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1088  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1089  * be called after the page is finished with, and before put_page is called.
1090  *
1091  * get_user_pages is typically used for fewer-copy IO operations, to get a
1092  * handle on the memory by some means other than accesses via the user virtual
1093  * addresses. The pages may be submitted for DMA to devices or accessed via
1094  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1095  * use the correct cache flushing APIs.
1096  *
1097  * See also get_user_pages_fast, for performance critical applications.
1098  *
1099  * get_user_pages should be phased out in favor of
1100  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1101  * should use get_user_pages because it cannot pass
1102  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1103  */
1104 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1105 		unsigned long start, unsigned long nr_pages,
1106 		unsigned int gup_flags, struct page **pages,
1107 		struct vm_area_struct **vmas, int *locked)
1108 {
1109 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1110 				       locked,
1111 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1112 }
1113 EXPORT_SYMBOL(get_user_pages_remote);
1114 
1115 /*
1116  * This is the same as get_user_pages_remote(), just with a
1117  * less-flexible calling convention where we assume that the task
1118  * and mm being operated on are the current task's and don't allow
1119  * passing of a locked parameter.  We also obviously don't pass
1120  * FOLL_REMOTE in here.
1121  */
1122 long get_user_pages(unsigned long start, unsigned long nr_pages,
1123 		unsigned int gup_flags, struct page **pages,
1124 		struct vm_area_struct **vmas)
1125 {
1126 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1127 				       pages, vmas, NULL,
1128 				       gup_flags | FOLL_TOUCH);
1129 }
1130 EXPORT_SYMBOL(get_user_pages);
1131 
1132 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1133 
1134 #ifdef CONFIG_FS_DAX
1135 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1136 {
1137 	long i;
1138 	struct vm_area_struct *vma_prev = NULL;
1139 
1140 	for (i = 0; i < nr_pages; i++) {
1141 		struct vm_area_struct *vma = vmas[i];
1142 
1143 		if (vma == vma_prev)
1144 			continue;
1145 
1146 		vma_prev = vma;
1147 
1148 		if (vma_is_fsdax(vma))
1149 			return true;
1150 	}
1151 	return false;
1152 }
1153 #else
1154 static inline bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1155 {
1156 	return false;
1157 }
1158 #endif
1159 
1160 #ifdef CONFIG_CMA
1161 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1162 {
1163 	/*
1164 	 * We want to make sure we allocate the new page from the same node
1165 	 * as the source page.
1166 	 */
1167 	int nid = page_to_nid(page);
1168 	/*
1169 	 * Trying to allocate a page for migration. Ignore allocation
1170 	 * failure warnings. We don't force __GFP_THISNODE here because
1171 	 * this node here is the node where we have CMA reservation and
1172 	 * in some case these nodes will have really less non movable
1173 	 * allocation memory.
1174 	 */
1175 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1176 
1177 	if (PageHighMem(page))
1178 		gfp_mask |= __GFP_HIGHMEM;
1179 
1180 #ifdef CONFIG_HUGETLB_PAGE
1181 	if (PageHuge(page)) {
1182 		struct hstate *h = page_hstate(page);
1183 		/*
1184 		 * We don't want to dequeue from the pool because pool pages will
1185 		 * mostly be from the CMA region.
1186 		 */
1187 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1188 	}
1189 #endif
1190 	if (PageTransHuge(page)) {
1191 		struct page *thp;
1192 		/*
1193 		 * ignore allocation failure warnings
1194 		 */
1195 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1196 
1197 		/*
1198 		 * Remove the movable mask so that we don't allocate from
1199 		 * CMA area again.
1200 		 */
1201 		thp_gfpmask &= ~__GFP_MOVABLE;
1202 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1203 		if (!thp)
1204 			return NULL;
1205 		prep_transhuge_page(thp);
1206 		return thp;
1207 	}
1208 
1209 	return __alloc_pages_node(nid, gfp_mask, 0);
1210 }
1211 
1212 static long check_and_migrate_cma_pages(unsigned long start, long nr_pages,
1213 					unsigned int gup_flags,
1214 					struct page **pages,
1215 					struct vm_area_struct **vmas)
1216 {
1217 	long i;
1218 	bool drain_allow = true;
1219 	bool migrate_allow = true;
1220 	LIST_HEAD(cma_page_list);
1221 
1222 check_again:
1223 	for (i = 0; i < nr_pages; i++) {
1224 		/*
1225 		 * If we get a page from the CMA zone, since we are going to
1226 		 * be pinning these entries, we might as well move them out
1227 		 * of the CMA zone if possible.
1228 		 */
1229 		if (is_migrate_cma_page(pages[i])) {
1230 
1231 			struct page *head = compound_head(pages[i]);
1232 
1233 			if (PageHuge(head)) {
1234 				isolate_huge_page(head, &cma_page_list);
1235 			} else {
1236 				if (!PageLRU(head) && drain_allow) {
1237 					lru_add_drain_all();
1238 					drain_allow = false;
1239 				}
1240 
1241 				if (!isolate_lru_page(head)) {
1242 					list_add_tail(&head->lru, &cma_page_list);
1243 					mod_node_page_state(page_pgdat(head),
1244 							    NR_ISOLATED_ANON +
1245 							    page_is_file_cache(head),
1246 							    hpage_nr_pages(head));
1247 				}
1248 			}
1249 		}
1250 	}
1251 
1252 	if (!list_empty(&cma_page_list)) {
1253 		/*
1254 		 * drop the above get_user_pages reference.
1255 		 */
1256 		for (i = 0; i < nr_pages; i++)
1257 			put_page(pages[i]);
1258 
1259 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1260 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1261 			/*
1262 			 * some of the pages failed migration. Do get_user_pages
1263 			 * without migration.
1264 			 */
1265 			migrate_allow = false;
1266 
1267 			if (!list_empty(&cma_page_list))
1268 				putback_movable_pages(&cma_page_list);
1269 		}
1270 		/*
1271 		 * We did migrate all the pages, Try to get the page references again
1272 		 * migrating any new CMA pages which we failed to isolate earlier.
1273 		 */
1274 		nr_pages = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1275 		if ((nr_pages > 0) && migrate_allow) {
1276 			drain_allow = true;
1277 			goto check_again;
1278 		}
1279 	}
1280 
1281 	return nr_pages;
1282 }
1283 #else
1284 static inline long check_and_migrate_cma_pages(unsigned long start, long nr_pages,
1285 					       unsigned int gup_flags,
1286 					       struct page **pages,
1287 					       struct vm_area_struct **vmas)
1288 {
1289 	return nr_pages;
1290 }
1291 #endif
1292 
1293 /*
1294  * This is the same as get_user_pages() in that it assumes we are
1295  * operating on the current task's mm, but it goes further to validate
1296  * that the vmas associated with the address range are suitable for
1297  * longterm elevated page reference counts. For example, filesystem-dax
1298  * mappings are subject to the lifetime enforced by the filesystem and
1299  * we need guarantees that longterm users like RDMA and V4L2 only
1300  * establish mappings that have a kernel enforced revocation mechanism.
1301  *
1302  * "longterm" == userspace controlled elevated page count lifetime.
1303  * Contrast this to iov_iter_get_pages() usages which are transient.
1304  */
1305 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1306 			     unsigned int gup_flags, struct page **pages,
1307 			     struct vm_area_struct **vmas_arg)
1308 {
1309 	struct vm_area_struct **vmas = vmas_arg;
1310 	unsigned long flags;
1311 	long rc, i;
1312 
1313 	if (!pages)
1314 		return -EINVAL;
1315 
1316 	if (!vmas) {
1317 		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1318 			       GFP_KERNEL);
1319 		if (!vmas)
1320 			return -ENOMEM;
1321 	}
1322 
1323 	flags = memalloc_nocma_save();
1324 	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1325 	memalloc_nocma_restore(flags);
1326 	if (rc < 0)
1327 		goto out;
1328 
1329 	if (check_dax_vmas(vmas, rc)) {
1330 		for (i = 0; i < rc; i++)
1331 			put_page(pages[i]);
1332 		rc = -EOPNOTSUPP;
1333 		goto out;
1334 	}
1335 
1336 	rc = check_and_migrate_cma_pages(start, rc, gup_flags, pages, vmas);
1337 out:
1338 	if (vmas != vmas_arg)
1339 		kfree(vmas);
1340 	return rc;
1341 }
1342 EXPORT_SYMBOL(get_user_pages_longterm);
1343 #endif /* CONFIG_FS_DAX */
1344 
1345 /**
1346  * populate_vma_page_range() -  populate a range of pages in the vma.
1347  * @vma:   target vma
1348  * @start: start address
1349  * @end:   end address
1350  * @nonblocking:
1351  *
1352  * This takes care of mlocking the pages too if VM_LOCKED is set.
1353  *
1354  * return 0 on success, negative error code on error.
1355  *
1356  * vma->vm_mm->mmap_sem must be held.
1357  *
1358  * If @nonblocking is NULL, it may be held for read or write and will
1359  * be unperturbed.
1360  *
1361  * If @nonblocking is non-NULL, it must held for read only and may be
1362  * released.  If it's released, *@nonblocking will be set to 0.
1363  */
1364 long populate_vma_page_range(struct vm_area_struct *vma,
1365 		unsigned long start, unsigned long end, int *nonblocking)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1369 	int gup_flags;
1370 
1371 	VM_BUG_ON(start & ~PAGE_MASK);
1372 	VM_BUG_ON(end   & ~PAGE_MASK);
1373 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1374 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1375 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1376 
1377 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1378 	if (vma->vm_flags & VM_LOCKONFAULT)
1379 		gup_flags &= ~FOLL_POPULATE;
1380 	/*
1381 	 * We want to touch writable mappings with a write fault in order
1382 	 * to break COW, except for shared mappings because these don't COW
1383 	 * and we would not want to dirty them for nothing.
1384 	 */
1385 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1386 		gup_flags |= FOLL_WRITE;
1387 
1388 	/*
1389 	 * We want mlock to succeed for regions that have any permissions
1390 	 * other than PROT_NONE.
1391 	 */
1392 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1393 		gup_flags |= FOLL_FORCE;
1394 
1395 	/*
1396 	 * We made sure addr is within a VMA, so the following will
1397 	 * not result in a stack expansion that recurses back here.
1398 	 */
1399 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1400 				NULL, NULL, nonblocking);
1401 }
1402 
1403 /*
1404  * __mm_populate - populate and/or mlock pages within a range of address space.
1405  *
1406  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1407  * flags. VMAs must be already marked with the desired vm_flags, and
1408  * mmap_sem must not be held.
1409  */
1410 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1411 {
1412 	struct mm_struct *mm = current->mm;
1413 	unsigned long end, nstart, nend;
1414 	struct vm_area_struct *vma = NULL;
1415 	int locked = 0;
1416 	long ret = 0;
1417 
1418 	end = start + len;
1419 
1420 	for (nstart = start; nstart < end; nstart = nend) {
1421 		/*
1422 		 * We want to fault in pages for [nstart; end) address range.
1423 		 * Find first corresponding VMA.
1424 		 */
1425 		if (!locked) {
1426 			locked = 1;
1427 			down_read(&mm->mmap_sem);
1428 			vma = find_vma(mm, nstart);
1429 		} else if (nstart >= vma->vm_end)
1430 			vma = vma->vm_next;
1431 		if (!vma || vma->vm_start >= end)
1432 			break;
1433 		/*
1434 		 * Set [nstart; nend) to intersection of desired address
1435 		 * range with the first VMA. Also, skip undesirable VMA types.
1436 		 */
1437 		nend = min(end, vma->vm_end);
1438 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1439 			continue;
1440 		if (nstart < vma->vm_start)
1441 			nstart = vma->vm_start;
1442 		/*
1443 		 * Now fault in a range of pages. populate_vma_page_range()
1444 		 * double checks the vma flags, so that it won't mlock pages
1445 		 * if the vma was already munlocked.
1446 		 */
1447 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1448 		if (ret < 0) {
1449 			if (ignore_errors) {
1450 				ret = 0;
1451 				continue;	/* continue at next VMA */
1452 			}
1453 			break;
1454 		}
1455 		nend = nstart + ret * PAGE_SIZE;
1456 		ret = 0;
1457 	}
1458 	if (locked)
1459 		up_read(&mm->mmap_sem);
1460 	return ret;	/* 0 or negative error code */
1461 }
1462 
1463 /**
1464  * get_dump_page() - pin user page in memory while writing it to core dump
1465  * @addr: user address
1466  *
1467  * Returns struct page pointer of user page pinned for dump,
1468  * to be freed afterwards by put_page().
1469  *
1470  * Returns NULL on any kind of failure - a hole must then be inserted into
1471  * the corefile, to preserve alignment with its headers; and also returns
1472  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1473  * allowing a hole to be left in the corefile to save diskspace.
1474  *
1475  * Called without mmap_sem, but after all other threads have been killed.
1476  */
1477 #ifdef CONFIG_ELF_CORE
1478 struct page *get_dump_page(unsigned long addr)
1479 {
1480 	struct vm_area_struct *vma;
1481 	struct page *page;
1482 
1483 	if (__get_user_pages(current, current->mm, addr, 1,
1484 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1485 			     NULL) < 1)
1486 		return NULL;
1487 	flush_cache_page(vma, addr, page_to_pfn(page));
1488 	return page;
1489 }
1490 #endif /* CONFIG_ELF_CORE */
1491 
1492 /*
1493  * Generic Fast GUP
1494  *
1495  * get_user_pages_fast attempts to pin user pages by walking the page
1496  * tables directly and avoids taking locks. Thus the walker needs to be
1497  * protected from page table pages being freed from under it, and should
1498  * block any THP splits.
1499  *
1500  * One way to achieve this is to have the walker disable interrupts, and
1501  * rely on IPIs from the TLB flushing code blocking before the page table
1502  * pages are freed. This is unsuitable for architectures that do not need
1503  * to broadcast an IPI when invalidating TLBs.
1504  *
1505  * Another way to achieve this is to batch up page table containing pages
1506  * belonging to more than one mm_user, then rcu_sched a callback to free those
1507  * pages. Disabling interrupts will allow the fast_gup walker to both block
1508  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1509  * (which is a relatively rare event). The code below adopts this strategy.
1510  *
1511  * Before activating this code, please be aware that the following assumptions
1512  * are currently made:
1513  *
1514  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1515  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1516  *
1517  *  *) ptes can be read atomically by the architecture.
1518  *
1519  *  *) access_ok is sufficient to validate userspace address ranges.
1520  *
1521  * The last two assumptions can be relaxed by the addition of helper functions.
1522  *
1523  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1524  */
1525 #ifdef CONFIG_HAVE_GENERIC_GUP
1526 
1527 #ifndef gup_get_pte
1528 /*
1529  * We assume that the PTE can be read atomically. If this is not the case for
1530  * your architecture, please provide the helper.
1531  */
1532 static inline pte_t gup_get_pte(pte_t *ptep)
1533 {
1534 	return READ_ONCE(*ptep);
1535 }
1536 #endif
1537 
1538 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1539 {
1540 	while ((*nr) - nr_start) {
1541 		struct page *page = pages[--(*nr)];
1542 
1543 		ClearPageReferenced(page);
1544 		put_page(page);
1545 	}
1546 }
1547 
1548 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1549 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1550 			 int write, struct page **pages, int *nr)
1551 {
1552 	struct dev_pagemap *pgmap = NULL;
1553 	int nr_start = *nr, ret = 0;
1554 	pte_t *ptep, *ptem;
1555 
1556 	ptem = ptep = pte_offset_map(&pmd, addr);
1557 	do {
1558 		pte_t pte = gup_get_pte(ptep);
1559 		struct page *head, *page;
1560 
1561 		/*
1562 		 * Similar to the PMD case below, NUMA hinting must take slow
1563 		 * path using the pte_protnone check.
1564 		 */
1565 		if (pte_protnone(pte))
1566 			goto pte_unmap;
1567 
1568 		if (!pte_access_permitted(pte, write))
1569 			goto pte_unmap;
1570 
1571 		if (pte_devmap(pte)) {
1572 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1573 			if (unlikely(!pgmap)) {
1574 				undo_dev_pagemap(nr, nr_start, pages);
1575 				goto pte_unmap;
1576 			}
1577 		} else if (pte_special(pte))
1578 			goto pte_unmap;
1579 
1580 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1581 		page = pte_page(pte);
1582 		head = compound_head(page);
1583 
1584 		if (!page_cache_get_speculative(head))
1585 			goto pte_unmap;
1586 
1587 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1588 			put_page(head);
1589 			goto pte_unmap;
1590 		}
1591 
1592 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1593 
1594 		SetPageReferenced(page);
1595 		pages[*nr] = page;
1596 		(*nr)++;
1597 
1598 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1599 
1600 	ret = 1;
1601 
1602 pte_unmap:
1603 	if (pgmap)
1604 		put_dev_pagemap(pgmap);
1605 	pte_unmap(ptem);
1606 	return ret;
1607 }
1608 #else
1609 
1610 /*
1611  * If we can't determine whether or not a pte is special, then fail immediately
1612  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1613  * to be special.
1614  *
1615  * For a futex to be placed on a THP tail page, get_futex_key requires a
1616  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1617  * useful to have gup_huge_pmd even if we can't operate on ptes.
1618  */
1619 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1620 			 int write, struct page **pages, int *nr)
1621 {
1622 	return 0;
1623 }
1624 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1625 
1626 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1627 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1628 		unsigned long end, struct page **pages, int *nr)
1629 {
1630 	int nr_start = *nr;
1631 	struct dev_pagemap *pgmap = NULL;
1632 
1633 	do {
1634 		struct page *page = pfn_to_page(pfn);
1635 
1636 		pgmap = get_dev_pagemap(pfn, pgmap);
1637 		if (unlikely(!pgmap)) {
1638 			undo_dev_pagemap(nr, nr_start, pages);
1639 			return 0;
1640 		}
1641 		SetPageReferenced(page);
1642 		pages[*nr] = page;
1643 		get_page(page);
1644 		(*nr)++;
1645 		pfn++;
1646 	} while (addr += PAGE_SIZE, addr != end);
1647 
1648 	if (pgmap)
1649 		put_dev_pagemap(pgmap);
1650 	return 1;
1651 }
1652 
1653 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1654 		unsigned long end, struct page **pages, int *nr)
1655 {
1656 	unsigned long fault_pfn;
1657 	int nr_start = *nr;
1658 
1659 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1660 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1661 		return 0;
1662 
1663 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1664 		undo_dev_pagemap(nr, nr_start, pages);
1665 		return 0;
1666 	}
1667 	return 1;
1668 }
1669 
1670 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1671 		unsigned long end, struct page **pages, int *nr)
1672 {
1673 	unsigned long fault_pfn;
1674 	int nr_start = *nr;
1675 
1676 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1677 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1678 		return 0;
1679 
1680 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1681 		undo_dev_pagemap(nr, nr_start, pages);
1682 		return 0;
1683 	}
1684 	return 1;
1685 }
1686 #else
1687 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1688 		unsigned long end, struct page **pages, int *nr)
1689 {
1690 	BUILD_BUG();
1691 	return 0;
1692 }
1693 
1694 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1695 		unsigned long end, struct page **pages, int *nr)
1696 {
1697 	BUILD_BUG();
1698 	return 0;
1699 }
1700 #endif
1701 
1702 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1703 		unsigned long end, int write, struct page **pages, int *nr)
1704 {
1705 	struct page *head, *page;
1706 	int refs;
1707 
1708 	if (!pmd_access_permitted(orig, write))
1709 		return 0;
1710 
1711 	if (pmd_devmap(orig))
1712 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1713 
1714 	refs = 0;
1715 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1716 	do {
1717 		pages[*nr] = page;
1718 		(*nr)++;
1719 		page++;
1720 		refs++;
1721 	} while (addr += PAGE_SIZE, addr != end);
1722 
1723 	head = compound_head(pmd_page(orig));
1724 	if (!page_cache_add_speculative(head, refs)) {
1725 		*nr -= refs;
1726 		return 0;
1727 	}
1728 
1729 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1730 		*nr -= refs;
1731 		while (refs--)
1732 			put_page(head);
1733 		return 0;
1734 	}
1735 
1736 	SetPageReferenced(head);
1737 	return 1;
1738 }
1739 
1740 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1741 		unsigned long end, int write, struct page **pages, int *nr)
1742 {
1743 	struct page *head, *page;
1744 	int refs;
1745 
1746 	if (!pud_access_permitted(orig, write))
1747 		return 0;
1748 
1749 	if (pud_devmap(orig))
1750 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1751 
1752 	refs = 0;
1753 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1754 	do {
1755 		pages[*nr] = page;
1756 		(*nr)++;
1757 		page++;
1758 		refs++;
1759 	} while (addr += PAGE_SIZE, addr != end);
1760 
1761 	head = compound_head(pud_page(orig));
1762 	if (!page_cache_add_speculative(head, refs)) {
1763 		*nr -= refs;
1764 		return 0;
1765 	}
1766 
1767 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1768 		*nr -= refs;
1769 		while (refs--)
1770 			put_page(head);
1771 		return 0;
1772 	}
1773 
1774 	SetPageReferenced(head);
1775 	return 1;
1776 }
1777 
1778 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1779 			unsigned long end, int write,
1780 			struct page **pages, int *nr)
1781 {
1782 	int refs;
1783 	struct page *head, *page;
1784 
1785 	if (!pgd_access_permitted(orig, write))
1786 		return 0;
1787 
1788 	BUILD_BUG_ON(pgd_devmap(orig));
1789 	refs = 0;
1790 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1791 	do {
1792 		pages[*nr] = page;
1793 		(*nr)++;
1794 		page++;
1795 		refs++;
1796 	} while (addr += PAGE_SIZE, addr != end);
1797 
1798 	head = compound_head(pgd_page(orig));
1799 	if (!page_cache_add_speculative(head, refs)) {
1800 		*nr -= refs;
1801 		return 0;
1802 	}
1803 
1804 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1805 		*nr -= refs;
1806 		while (refs--)
1807 			put_page(head);
1808 		return 0;
1809 	}
1810 
1811 	SetPageReferenced(head);
1812 	return 1;
1813 }
1814 
1815 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1816 		int write, struct page **pages, int *nr)
1817 {
1818 	unsigned long next;
1819 	pmd_t *pmdp;
1820 
1821 	pmdp = pmd_offset(&pud, addr);
1822 	do {
1823 		pmd_t pmd = READ_ONCE(*pmdp);
1824 
1825 		next = pmd_addr_end(addr, end);
1826 		if (!pmd_present(pmd))
1827 			return 0;
1828 
1829 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1830 			     pmd_devmap(pmd))) {
1831 			/*
1832 			 * NUMA hinting faults need to be handled in the GUP
1833 			 * slowpath for accounting purposes and so that they
1834 			 * can be serialised against THP migration.
1835 			 */
1836 			if (pmd_protnone(pmd))
1837 				return 0;
1838 
1839 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1840 				pages, nr))
1841 				return 0;
1842 
1843 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1844 			/*
1845 			 * architecture have different format for hugetlbfs
1846 			 * pmd format and THP pmd format
1847 			 */
1848 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1849 					 PMD_SHIFT, next, write, pages, nr))
1850 				return 0;
1851 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1852 			return 0;
1853 	} while (pmdp++, addr = next, addr != end);
1854 
1855 	return 1;
1856 }
1857 
1858 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1859 			 int write, struct page **pages, int *nr)
1860 {
1861 	unsigned long next;
1862 	pud_t *pudp;
1863 
1864 	pudp = pud_offset(&p4d, addr);
1865 	do {
1866 		pud_t pud = READ_ONCE(*pudp);
1867 
1868 		next = pud_addr_end(addr, end);
1869 		if (pud_none(pud))
1870 			return 0;
1871 		if (unlikely(pud_huge(pud))) {
1872 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1873 					  pages, nr))
1874 				return 0;
1875 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1876 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1877 					 PUD_SHIFT, next, write, pages, nr))
1878 				return 0;
1879 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1880 			return 0;
1881 	} while (pudp++, addr = next, addr != end);
1882 
1883 	return 1;
1884 }
1885 
1886 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1887 			 int write, struct page **pages, int *nr)
1888 {
1889 	unsigned long next;
1890 	p4d_t *p4dp;
1891 
1892 	p4dp = p4d_offset(&pgd, addr);
1893 	do {
1894 		p4d_t p4d = READ_ONCE(*p4dp);
1895 
1896 		next = p4d_addr_end(addr, end);
1897 		if (p4d_none(p4d))
1898 			return 0;
1899 		BUILD_BUG_ON(p4d_huge(p4d));
1900 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1901 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1902 					 P4D_SHIFT, next, write, pages, nr))
1903 				return 0;
1904 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1905 			return 0;
1906 	} while (p4dp++, addr = next, addr != end);
1907 
1908 	return 1;
1909 }
1910 
1911 static void gup_pgd_range(unsigned long addr, unsigned long end,
1912 		int write, struct page **pages, int *nr)
1913 {
1914 	unsigned long next;
1915 	pgd_t *pgdp;
1916 
1917 	pgdp = pgd_offset(current->mm, addr);
1918 	do {
1919 		pgd_t pgd = READ_ONCE(*pgdp);
1920 
1921 		next = pgd_addr_end(addr, end);
1922 		if (pgd_none(pgd))
1923 			return;
1924 		if (unlikely(pgd_huge(pgd))) {
1925 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1926 					  pages, nr))
1927 				return;
1928 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1929 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1930 					 PGDIR_SHIFT, next, write, pages, nr))
1931 				return;
1932 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1933 			return;
1934 	} while (pgdp++, addr = next, addr != end);
1935 }
1936 
1937 #ifndef gup_fast_permitted
1938 /*
1939  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1940  * we need to fall back to the slow version:
1941  */
1942 bool gup_fast_permitted(unsigned long start, int nr_pages)
1943 {
1944 	unsigned long len, end;
1945 
1946 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1947 	end = start + len;
1948 	return end >= start;
1949 }
1950 #endif
1951 
1952 /*
1953  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1954  * the regular GUP.
1955  * Note a difference with get_user_pages_fast: this always returns the
1956  * number of pages pinned, 0 if no pages were pinned.
1957  */
1958 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1959 			  struct page **pages)
1960 {
1961 	unsigned long len, end;
1962 	unsigned long flags;
1963 	int nr = 0;
1964 
1965 	start &= PAGE_MASK;
1966 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1967 	end = start + len;
1968 
1969 	if (unlikely(!access_ok((void __user *)start, len)))
1970 		return 0;
1971 
1972 	/*
1973 	 * Disable interrupts.  We use the nested form as we can already have
1974 	 * interrupts disabled by get_futex_key.
1975 	 *
1976 	 * With interrupts disabled, we block page table pages from being
1977 	 * freed from under us. See struct mmu_table_batch comments in
1978 	 * include/asm-generic/tlb.h for more details.
1979 	 *
1980 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1981 	 * block IPIs that come from THPs splitting.
1982 	 */
1983 
1984 	if (gup_fast_permitted(start, nr_pages)) {
1985 		local_irq_save(flags);
1986 		gup_pgd_range(start, end, write, pages, &nr);
1987 		local_irq_restore(flags);
1988 	}
1989 
1990 	return nr;
1991 }
1992 
1993 /**
1994  * get_user_pages_fast() - pin user pages in memory
1995  * @start:	starting user address
1996  * @nr_pages:	number of pages from start to pin
1997  * @write:	whether pages will be written to
1998  * @pages:	array that receives pointers to the pages pinned.
1999  *		Should be at least nr_pages long.
2000  *
2001  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2002  * If not successful, it will fall back to taking the lock and
2003  * calling get_user_pages().
2004  *
2005  * Returns number of pages pinned. This may be fewer than the number
2006  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2007  * were pinned, returns -errno.
2008  */
2009 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
2010 			struct page **pages)
2011 {
2012 	unsigned long addr, len, end;
2013 	int nr = 0, ret = 0;
2014 
2015 	start &= PAGE_MASK;
2016 	addr = start;
2017 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2018 	end = start + len;
2019 
2020 	if (nr_pages <= 0)
2021 		return 0;
2022 
2023 	if (unlikely(!access_ok((void __user *)start, len)))
2024 		return -EFAULT;
2025 
2026 	if (gup_fast_permitted(start, nr_pages)) {
2027 		local_irq_disable();
2028 		gup_pgd_range(addr, end, write, pages, &nr);
2029 		local_irq_enable();
2030 		ret = nr;
2031 	}
2032 
2033 	if (nr < nr_pages) {
2034 		/* Try to get the remaining pages with get_user_pages */
2035 		start += nr << PAGE_SHIFT;
2036 		pages += nr;
2037 
2038 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
2039 				write ? FOLL_WRITE : 0);
2040 
2041 		/* Have to be a bit careful with return values */
2042 		if (nr > 0) {
2043 			if (ret < 0)
2044 				ret = nr;
2045 			else
2046 				ret += nr;
2047 		}
2048 	}
2049 
2050 	return ret;
2051 }
2052 
2053 #endif /* CONFIG_HAVE_GENERIC_GUP */
2054