1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <linux/pipe_fs_i.h> 46 #include <linux/splice.h> 47 #include <asm/pgalloc.h> 48 #include <asm/tlbflush.h> 49 #include "internal.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/filemap.h> 53 54 /* 55 * FIXME: remove all knowledge of the buffer layer from the core VM 56 */ 57 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 58 59 #include <asm/mman.h> 60 61 /* 62 * Shared mappings implemented 30.11.1994. It's not fully working yet, 63 * though. 64 * 65 * Shared mappings now work. 15.8.1995 Bruno. 66 * 67 * finished 'unifying' the page and buffer cache and SMP-threaded the 68 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 69 * 70 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 71 */ 72 73 /* 74 * Lock ordering: 75 * 76 * ->i_mmap_rwsem (truncate_pagecache) 77 * ->private_lock (__free_pte->block_dirty_folio) 78 * ->swap_lock (exclusive_swap_page, others) 79 * ->i_pages lock 80 * 81 * ->i_rwsem 82 * ->invalidate_lock (acquired by fs in truncate path) 83 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 84 * 85 * ->mmap_lock 86 * ->i_mmap_rwsem 87 * ->page_table_lock or pte_lock (various, mainly in memory.c) 88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 89 * 90 * ->mmap_lock 91 * ->invalidate_lock (filemap_fault) 92 * ->lock_page (filemap_fault, access_process_vm) 93 * 94 * ->i_rwsem (generic_perform_write) 95 * ->mmap_lock (fault_in_readable->do_page_fault) 96 * 97 * bdi->wb.list_lock 98 * sb_lock (fs/fs-writeback.c) 99 * ->i_pages lock (__sync_single_inode) 100 * 101 * ->i_mmap_rwsem 102 * ->anon_vma.lock (vma_merge) 103 * 104 * ->anon_vma.lock 105 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 106 * 107 * ->page_table_lock or pte_lock 108 * ->swap_lock (try_to_unmap_one) 109 * ->private_lock (try_to_unmap_one) 110 * ->i_pages lock (try_to_unmap_one) 111 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 112 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 113 * ->private_lock (page_remove_rmap->set_page_dirty) 114 * ->i_pages lock (page_remove_rmap->set_page_dirty) 115 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 116 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 117 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 118 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 119 * ->inode->i_lock (zap_pte_range->set_page_dirty) 120 * ->private_lock (zap_pte_range->block_dirty_folio) 121 * 122 * ->i_mmap_rwsem 123 * ->tasklist_lock (memory_failure, collect_procs_ao) 124 */ 125 126 static void page_cache_delete(struct address_space *mapping, 127 struct folio *folio, void *shadow) 128 { 129 XA_STATE(xas, &mapping->i_pages, folio->index); 130 long nr = 1; 131 132 mapping_set_update(&xas, mapping); 133 134 /* hugetlb pages are represented by a single entry in the xarray */ 135 if (!folio_test_hugetlb(folio)) { 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 } 139 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 141 142 xas_store(&xas, shadow); 143 xas_init_marks(&xas); 144 145 folio->mapping = NULL; 146 /* Leave page->index set: truncation lookup relies upon it */ 147 mapping->nrpages -= nr; 148 } 149 150 static void filemap_unaccount_folio(struct address_space *mapping, 151 struct folio *folio) 152 { 153 long nr; 154 155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 158 current->comm, folio_pfn(folio)); 159 dump_page(&folio->page, "still mapped when deleted"); 160 dump_stack(); 161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 162 163 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 164 int mapcount = page_mapcount(&folio->page); 165 166 if (folio_ref_count(folio) >= mapcount + 2) { 167 /* 168 * All vmas have already been torn down, so it's 169 * a good bet that actually the page is unmapped 170 * and we'd rather not leak it: if we're wrong, 171 * another bad page check should catch it later. 172 */ 173 page_mapcount_reset(&folio->page); 174 folio_ref_sub(folio, mapcount); 175 } 176 } 177 } 178 179 /* hugetlb folios do not participate in page cache accounting. */ 180 if (folio_test_hugetlb(folio)) 181 return; 182 183 nr = folio_nr_pages(folio); 184 185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 186 if (folio_test_swapbacked(folio)) { 187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 188 if (folio_test_pmd_mappable(folio)) 189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 190 } else if (folio_test_pmd_mappable(folio)) { 191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 192 filemap_nr_thps_dec(mapping); 193 } 194 195 /* 196 * At this point folio must be either written or cleaned by 197 * truncate. Dirty folio here signals a bug and loss of 198 * unwritten data - on ordinary filesystems. 199 * 200 * But it's harmless on in-memory filesystems like tmpfs; and can 201 * occur when a driver which did get_user_pages() sets page dirty 202 * before putting it, while the inode is being finally evicted. 203 * 204 * Below fixes dirty accounting after removing the folio entirely 205 * but leaves the dirty flag set: it has no effect for truncated 206 * folio and anyway will be cleared before returning folio to 207 * buddy allocator. 208 */ 209 if (WARN_ON_ONCE(folio_test_dirty(folio) && 210 mapping_can_writeback(mapping))) 211 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 212 } 213 214 /* 215 * Delete a page from the page cache and free it. Caller has to make 216 * sure the page is locked and that nobody else uses it - or that usage 217 * is safe. The caller must hold the i_pages lock. 218 */ 219 void __filemap_remove_folio(struct folio *folio, void *shadow) 220 { 221 struct address_space *mapping = folio->mapping; 222 223 trace_mm_filemap_delete_from_page_cache(folio); 224 filemap_unaccount_folio(mapping, folio); 225 page_cache_delete(mapping, folio, shadow); 226 } 227 228 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 229 { 230 void (*free_folio)(struct folio *); 231 int refs = 1; 232 233 free_folio = mapping->a_ops->free_folio; 234 if (free_folio) 235 free_folio(folio); 236 237 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 238 refs = folio_nr_pages(folio); 239 folio_put_refs(folio, refs); 240 } 241 242 /** 243 * filemap_remove_folio - Remove folio from page cache. 244 * @folio: The folio. 245 * 246 * This must be called only on folios that are locked and have been 247 * verified to be in the page cache. It will never put the folio into 248 * the free list because the caller has a reference on the page. 249 */ 250 void filemap_remove_folio(struct folio *folio) 251 { 252 struct address_space *mapping = folio->mapping; 253 254 BUG_ON(!folio_test_locked(folio)); 255 spin_lock(&mapping->host->i_lock); 256 xa_lock_irq(&mapping->i_pages); 257 __filemap_remove_folio(folio, NULL); 258 xa_unlock_irq(&mapping->i_pages); 259 if (mapping_shrinkable(mapping)) 260 inode_add_lru(mapping->host); 261 spin_unlock(&mapping->host->i_lock); 262 263 filemap_free_folio(mapping, folio); 264 } 265 266 /* 267 * page_cache_delete_batch - delete several folios from page cache 268 * @mapping: the mapping to which folios belong 269 * @fbatch: batch of folios to delete 270 * 271 * The function walks over mapping->i_pages and removes folios passed in 272 * @fbatch from the mapping. The function expects @fbatch to be sorted 273 * by page index and is optimised for it to be dense. 274 * It tolerates holes in @fbatch (mapping entries at those indices are not 275 * modified). 276 * 277 * The function expects the i_pages lock to be held. 278 */ 279 static void page_cache_delete_batch(struct address_space *mapping, 280 struct folio_batch *fbatch) 281 { 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 283 long total_pages = 0; 284 int i = 0; 285 struct folio *folio; 286 287 mapping_set_update(&xas, mapping); 288 xas_for_each(&xas, folio, ULONG_MAX) { 289 if (i >= folio_batch_count(fbatch)) 290 break; 291 292 /* A swap/dax/shadow entry got inserted? Skip it. */ 293 if (xa_is_value(folio)) 294 continue; 295 /* 296 * A page got inserted in our range? Skip it. We have our 297 * pages locked so they are protected from being removed. 298 * If we see a page whose index is higher than ours, it 299 * means our page has been removed, which shouldn't be 300 * possible because we're holding the PageLock. 301 */ 302 if (folio != fbatch->folios[i]) { 303 VM_BUG_ON_FOLIO(folio->index > 304 fbatch->folios[i]->index, folio); 305 continue; 306 } 307 308 WARN_ON_ONCE(!folio_test_locked(folio)); 309 310 folio->mapping = NULL; 311 /* Leave folio->index set: truncation lookup relies on it */ 312 313 i++; 314 xas_store(&xas, NULL); 315 total_pages += folio_nr_pages(folio); 316 } 317 mapping->nrpages -= total_pages; 318 } 319 320 void delete_from_page_cache_batch(struct address_space *mapping, 321 struct folio_batch *fbatch) 322 { 323 int i; 324 325 if (!folio_batch_count(fbatch)) 326 return; 327 328 spin_lock(&mapping->host->i_lock); 329 xa_lock_irq(&mapping->i_pages); 330 for (i = 0; i < folio_batch_count(fbatch); i++) { 331 struct folio *folio = fbatch->folios[i]; 332 333 trace_mm_filemap_delete_from_page_cache(folio); 334 filemap_unaccount_folio(mapping, folio); 335 } 336 page_cache_delete_batch(mapping, fbatch); 337 xa_unlock_irq(&mapping->i_pages); 338 if (mapping_shrinkable(mapping)) 339 inode_add_lru(mapping->host); 340 spin_unlock(&mapping->host->i_lock); 341 342 for (i = 0; i < folio_batch_count(fbatch); i++) 343 filemap_free_folio(mapping, fbatch->folios[i]); 344 } 345 346 int filemap_check_errors(struct address_space *mapping) 347 { 348 int ret = 0; 349 /* Check for outstanding write errors */ 350 if (test_bit(AS_ENOSPC, &mapping->flags) && 351 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 352 ret = -ENOSPC; 353 if (test_bit(AS_EIO, &mapping->flags) && 354 test_and_clear_bit(AS_EIO, &mapping->flags)) 355 ret = -EIO; 356 return ret; 357 } 358 EXPORT_SYMBOL(filemap_check_errors); 359 360 static int filemap_check_and_keep_errors(struct address_space *mapping) 361 { 362 /* Check for outstanding write errors */ 363 if (test_bit(AS_EIO, &mapping->flags)) 364 return -EIO; 365 if (test_bit(AS_ENOSPC, &mapping->flags)) 366 return -ENOSPC; 367 return 0; 368 } 369 370 /** 371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 372 * @mapping: address space structure to write 373 * @wbc: the writeback_control controlling the writeout 374 * 375 * Call writepages on the mapping using the provided wbc to control the 376 * writeout. 377 * 378 * Return: %0 on success, negative error code otherwise. 379 */ 380 int filemap_fdatawrite_wbc(struct address_space *mapping, 381 struct writeback_control *wbc) 382 { 383 int ret; 384 385 if (!mapping_can_writeback(mapping) || 386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 387 return 0; 388 389 wbc_attach_fdatawrite_inode(wbc, mapping->host); 390 ret = do_writepages(mapping, wbc); 391 wbc_detach_inode(wbc); 392 return ret; 393 } 394 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 395 396 /** 397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 398 * @mapping: address space structure to write 399 * @start: offset in bytes where the range starts 400 * @end: offset in bytes where the range ends (inclusive) 401 * @sync_mode: enable synchronous operation 402 * 403 * Start writeback against all of a mapping's dirty pages that lie 404 * within the byte offsets <start, end> inclusive. 405 * 406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 407 * opposed to a regular memory cleansing writeback. The difference between 408 * these two operations is that if a dirty page/buffer is encountered, it must 409 * be waited upon, and not just skipped over. 410 * 411 * Return: %0 on success, negative error code otherwise. 412 */ 413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 414 loff_t end, int sync_mode) 415 { 416 struct writeback_control wbc = { 417 .sync_mode = sync_mode, 418 .nr_to_write = LONG_MAX, 419 .range_start = start, 420 .range_end = end, 421 }; 422 423 return filemap_fdatawrite_wbc(mapping, &wbc); 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct folio *folio; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 folio = xas_find(&xas, max); 485 if (xas_retry(&xas, folio)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(folio)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return folio != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct folio_batch fbatch; 509 unsigned nr_folios; 510 511 folio_batch_init(&fbatch); 512 513 while (index <= end) { 514 unsigned i; 515 516 nr_folios = filemap_get_folios_tag(mapping, &index, end, 517 PAGECACHE_TAG_WRITEBACK, &fbatch); 518 519 if (!nr_folios) 520 break; 521 522 for (i = 0; i < nr_folios; i++) { 523 struct folio *folio = fbatch.folios[i]; 524 525 folio_wait_writeback(folio); 526 folio_clear_error(folio); 527 } 528 folio_batch_release(&fbatch); 529 cond_resched(); 530 } 531 } 532 533 /** 534 * filemap_fdatawait_range - wait for writeback to complete 535 * @mapping: address space structure to wait for 536 * @start_byte: offset in bytes where the range starts 537 * @end_byte: offset in bytes where the range ends (inclusive) 538 * 539 * Walk the list of under-writeback pages of the given address space 540 * in the given range and wait for all of them. Check error status of 541 * the address space and return it. 542 * 543 * Since the error status of the address space is cleared by this function, 544 * callers are responsible for checking the return value and handling and/or 545 * reporting the error. 546 * 547 * Return: error status of the address space. 548 */ 549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 550 loff_t end_byte) 551 { 552 __filemap_fdatawait_range(mapping, start_byte, end_byte); 553 return filemap_check_errors(mapping); 554 } 555 EXPORT_SYMBOL(filemap_fdatawait_range); 556 557 /** 558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 559 * @mapping: address space structure to wait for 560 * @start_byte: offset in bytes where the range starts 561 * @end_byte: offset in bytes where the range ends (inclusive) 562 * 563 * Walk the list of under-writeback pages of the given address space in the 564 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 565 * this function does not clear error status of the address space. 566 * 567 * Use this function if callers don't handle errors themselves. Expected 568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 569 * fsfreeze(8) 570 */ 571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 572 loff_t start_byte, loff_t end_byte) 573 { 574 __filemap_fdatawait_range(mapping, start_byte, end_byte); 575 return filemap_check_and_keep_errors(mapping); 576 } 577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 578 579 /** 580 * file_fdatawait_range - wait for writeback to complete 581 * @file: file pointing to address space structure to wait for 582 * @start_byte: offset in bytes where the range starts 583 * @end_byte: offset in bytes where the range ends (inclusive) 584 * 585 * Walk the list of under-writeback pages of the address space that file 586 * refers to, in the given range and wait for all of them. Check error 587 * status of the address space vs. the file->f_wb_err cursor and return it. 588 * 589 * Since the error status of the file is advanced by this function, 590 * callers are responsible for checking the return value and handling and/or 591 * reporting the error. 592 * 593 * Return: error status of the address space vs. the file->f_wb_err cursor. 594 */ 595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 596 { 597 struct address_space *mapping = file->f_mapping; 598 599 __filemap_fdatawait_range(mapping, start_byte, end_byte); 600 return file_check_and_advance_wb_err(file); 601 } 602 EXPORT_SYMBOL(file_fdatawait_range); 603 604 /** 605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 606 * @mapping: address space structure to wait for 607 * 608 * Walk the list of under-writeback pages of the given address space 609 * and wait for all of them. Unlike filemap_fdatawait(), this function 610 * does not clear error status of the address space. 611 * 612 * Use this function if callers don't handle errors themselves. Expected 613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 614 * fsfreeze(8) 615 * 616 * Return: error status of the address space. 617 */ 618 int filemap_fdatawait_keep_errors(struct address_space *mapping) 619 { 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 621 return filemap_check_and_keep_errors(mapping); 622 } 623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 624 625 /* Returns true if writeback might be needed or already in progress. */ 626 static bool mapping_needs_writeback(struct address_space *mapping) 627 { 628 return mapping->nrpages; 629 } 630 631 bool filemap_range_has_writeback(struct address_space *mapping, 632 loff_t start_byte, loff_t end_byte) 633 { 634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 635 pgoff_t max = end_byte >> PAGE_SHIFT; 636 struct folio *folio; 637 638 if (end_byte < start_byte) 639 return false; 640 641 rcu_read_lock(); 642 xas_for_each(&xas, folio, max) { 643 if (xas_retry(&xas, folio)) 644 continue; 645 if (xa_is_value(folio)) 646 continue; 647 if (folio_test_dirty(folio) || folio_test_locked(folio) || 648 folio_test_writeback(folio)) 649 break; 650 } 651 rcu_read_unlock(); 652 return folio != NULL; 653 } 654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 655 656 /** 657 * filemap_write_and_wait_range - write out & wait on a file range 658 * @mapping: the address_space for the pages 659 * @lstart: offset in bytes where the range starts 660 * @lend: offset in bytes where the range ends (inclusive) 661 * 662 * Write out and wait upon file offsets lstart->lend, inclusive. 663 * 664 * Note that @lend is inclusive (describes the last byte to be written) so 665 * that this function can be used to write to the very end-of-file (end = -1). 666 * 667 * Return: error status of the address space. 668 */ 669 int filemap_write_and_wait_range(struct address_space *mapping, 670 loff_t lstart, loff_t lend) 671 { 672 int err = 0, err2; 673 674 if (lend < lstart) 675 return 0; 676 677 if (mapping_needs_writeback(mapping)) { 678 err = __filemap_fdatawrite_range(mapping, lstart, lend, 679 WB_SYNC_ALL); 680 /* 681 * Even if the above returned error, the pages may be 682 * written partially (e.g. -ENOSPC), so we wait for it. 683 * But the -EIO is special case, it may indicate the worst 684 * thing (e.g. bug) happened, so we avoid waiting for it. 685 */ 686 if (err != -EIO) 687 __filemap_fdatawait_range(mapping, lstart, lend); 688 } 689 err2 = filemap_check_errors(mapping); 690 if (!err) 691 err = err2; 692 return err; 693 } 694 EXPORT_SYMBOL(filemap_write_and_wait_range); 695 696 void __filemap_set_wb_err(struct address_space *mapping, int err) 697 { 698 errseq_t eseq = errseq_set(&mapping->wb_err, err); 699 700 trace_filemap_set_wb_err(mapping, eseq); 701 } 702 EXPORT_SYMBOL(__filemap_set_wb_err); 703 704 /** 705 * file_check_and_advance_wb_err - report wb error (if any) that was previously 706 * and advance wb_err to current one 707 * @file: struct file on which the error is being reported 708 * 709 * When userland calls fsync (or something like nfsd does the equivalent), we 710 * want to report any writeback errors that occurred since the last fsync (or 711 * since the file was opened if there haven't been any). 712 * 713 * Grab the wb_err from the mapping. If it matches what we have in the file, 714 * then just quickly return 0. The file is all caught up. 715 * 716 * If it doesn't match, then take the mapping value, set the "seen" flag in 717 * it and try to swap it into place. If it works, or another task beat us 718 * to it with the new value, then update the f_wb_err and return the error 719 * portion. The error at this point must be reported via proper channels 720 * (a'la fsync, or NFS COMMIT operation, etc.). 721 * 722 * While we handle mapping->wb_err with atomic operations, the f_wb_err 723 * value is protected by the f_lock since we must ensure that it reflects 724 * the latest value swapped in for this file descriptor. 725 * 726 * Return: %0 on success, negative error code otherwise. 727 */ 728 int file_check_and_advance_wb_err(struct file *file) 729 { 730 int err = 0; 731 errseq_t old = READ_ONCE(file->f_wb_err); 732 struct address_space *mapping = file->f_mapping; 733 734 /* Locklessly handle the common case where nothing has changed */ 735 if (errseq_check(&mapping->wb_err, old)) { 736 /* Something changed, must use slow path */ 737 spin_lock(&file->f_lock); 738 old = file->f_wb_err; 739 err = errseq_check_and_advance(&mapping->wb_err, 740 &file->f_wb_err); 741 trace_file_check_and_advance_wb_err(file, old); 742 spin_unlock(&file->f_lock); 743 } 744 745 /* 746 * We're mostly using this function as a drop in replacement for 747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 748 * that the legacy code would have had on these flags. 749 */ 750 clear_bit(AS_EIO, &mapping->flags); 751 clear_bit(AS_ENOSPC, &mapping->flags); 752 return err; 753 } 754 EXPORT_SYMBOL(file_check_and_advance_wb_err); 755 756 /** 757 * file_write_and_wait_range - write out & wait on a file range 758 * @file: file pointing to address_space with pages 759 * @lstart: offset in bytes where the range starts 760 * @lend: offset in bytes where the range ends (inclusive) 761 * 762 * Write out and wait upon file offsets lstart->lend, inclusive. 763 * 764 * Note that @lend is inclusive (describes the last byte to be written) so 765 * that this function can be used to write to the very end-of-file (end = -1). 766 * 767 * After writing out and waiting on the data, we check and advance the 768 * f_wb_err cursor to the latest value, and return any errors detected there. 769 * 770 * Return: %0 on success, negative error code otherwise. 771 */ 772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 773 { 774 int err = 0, err2; 775 struct address_space *mapping = file->f_mapping; 776 777 if (lend < lstart) 778 return 0; 779 780 if (mapping_needs_writeback(mapping)) { 781 err = __filemap_fdatawrite_range(mapping, lstart, lend, 782 WB_SYNC_ALL); 783 /* See comment of filemap_write_and_wait() */ 784 if (err != -EIO) 785 __filemap_fdatawait_range(mapping, lstart, lend); 786 } 787 err2 = file_check_and_advance_wb_err(file); 788 if (!err) 789 err = err2; 790 return err; 791 } 792 EXPORT_SYMBOL(file_write_and_wait_range); 793 794 /** 795 * replace_page_cache_folio - replace a pagecache folio with a new one 796 * @old: folio to be replaced 797 * @new: folio to replace with 798 * 799 * This function replaces a folio in the pagecache with a new one. On 800 * success it acquires the pagecache reference for the new folio and 801 * drops it for the old folio. Both the old and new folios must be 802 * locked. This function does not add the new folio to the LRU, the 803 * caller must do that. 804 * 805 * The remove + add is atomic. This function cannot fail. 806 */ 807 void replace_page_cache_folio(struct folio *old, struct folio *new) 808 { 809 struct address_space *mapping = old->mapping; 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 811 pgoff_t offset = old->index; 812 XA_STATE(xas, &mapping->i_pages, offset); 813 814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 816 VM_BUG_ON_FOLIO(new->mapping, new); 817 818 folio_get(new); 819 new->mapping = mapping; 820 new->index = offset; 821 822 mem_cgroup_migrate(old, new); 823 824 xas_lock_irq(&xas); 825 xas_store(&xas, new); 826 827 old->mapping = NULL; 828 /* hugetlb pages do not participate in page cache accounting. */ 829 if (!folio_test_hugetlb(old)) 830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 831 if (!folio_test_hugetlb(new)) 832 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 833 if (folio_test_swapbacked(old)) 834 __lruvec_stat_sub_folio(old, NR_SHMEM); 835 if (folio_test_swapbacked(new)) 836 __lruvec_stat_add_folio(new, NR_SHMEM); 837 xas_unlock_irq(&xas); 838 if (free_folio) 839 free_folio(old); 840 folio_put(old); 841 } 842 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 843 844 noinline int __filemap_add_folio(struct address_space *mapping, 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 846 { 847 XA_STATE(xas, &mapping->i_pages, index); 848 int huge = folio_test_hugetlb(folio); 849 bool charged = false; 850 long nr = 1; 851 852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 854 mapping_set_update(&xas, mapping); 855 856 if (!huge) { 857 int error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 return error; 861 charged = true; 862 xas_set_order(&xas, index, folio_order(folio)); 863 nr = folio_nr_pages(folio); 864 } 865 866 gfp &= GFP_RECLAIM_MASK; 867 folio_ref_add(folio, nr); 868 folio->mapping = mapping; 869 folio->index = xas.xa_index; 870 871 do { 872 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 873 void *entry, *old = NULL; 874 875 if (order > folio_order(folio)) 876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 877 order, gfp); 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 } 886 887 if (old) { 888 if (shadowp) 889 *shadowp = old; 890 /* entry may have been split before we acquired lock */ 891 order = xa_get_order(xas.xa, xas.xa_index); 892 if (order > folio_order(folio)) { 893 /* How to handle large swap entries? */ 894 BUG_ON(shmem_mapping(mapping)); 895 xas_split(&xas, old, order); 896 xas_reset(&xas); 897 } 898 } 899 900 xas_store(&xas, folio); 901 if (xas_error(&xas)) 902 goto unlock; 903 904 mapping->nrpages += nr; 905 906 /* hugetlb pages do not participate in page cache accounting */ 907 if (!huge) { 908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 909 if (folio_test_pmd_mappable(folio)) 910 __lruvec_stat_mod_folio(folio, 911 NR_FILE_THPS, nr); 912 } 913 unlock: 914 xas_unlock_irq(&xas); 915 } while (xas_nomem(&xas, gfp)); 916 917 if (xas_error(&xas)) 918 goto error; 919 920 trace_mm_filemap_add_to_page_cache(folio); 921 return 0; 922 error: 923 if (charged) 924 mem_cgroup_uncharge(folio); 925 folio->mapping = NULL; 926 /* Leave page->index set: truncation relies upon it */ 927 folio_put_refs(folio, nr); 928 return xas_error(&xas); 929 } 930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 931 932 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 933 pgoff_t index, gfp_t gfp) 934 { 935 void *shadow = NULL; 936 int ret; 937 938 __folio_set_locked(folio); 939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 940 if (unlikely(ret)) 941 __folio_clear_locked(folio); 942 else { 943 /* 944 * The folio might have been evicted from cache only 945 * recently, in which case it should be activated like 946 * any other repeatedly accessed folio. 947 * The exception is folios getting rewritten; evicting other 948 * data from the working set, only to cache data that will 949 * get overwritten with something else, is a waste of memory. 950 */ 951 WARN_ON_ONCE(folio_test_active(folio)); 952 if (!(gfp & __GFP_WRITE) && shadow) 953 workingset_refault(folio, shadow); 954 folio_add_lru(folio); 955 } 956 return ret; 957 } 958 EXPORT_SYMBOL_GPL(filemap_add_folio); 959 960 #ifdef CONFIG_NUMA 961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 962 { 963 int n; 964 struct folio *folio; 965 966 if (cpuset_do_page_mem_spread()) { 967 unsigned int cpuset_mems_cookie; 968 do { 969 cpuset_mems_cookie = read_mems_allowed_begin(); 970 n = cpuset_mem_spread_node(); 971 folio = __folio_alloc_node(gfp, order, n); 972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 973 974 return folio; 975 } 976 return folio_alloc(gfp, order); 977 } 978 EXPORT_SYMBOL(filemap_alloc_folio); 979 #endif 980 981 /* 982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 983 * 984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 985 * 986 * @mapping1: the first mapping to lock 987 * @mapping2: the second mapping to lock 988 */ 989 void filemap_invalidate_lock_two(struct address_space *mapping1, 990 struct address_space *mapping2) 991 { 992 if (mapping1 > mapping2) 993 swap(mapping1, mapping2); 994 if (mapping1) 995 down_write(&mapping1->invalidate_lock); 996 if (mapping2 && mapping1 != mapping2) 997 down_write_nested(&mapping2->invalidate_lock, 1); 998 } 999 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1000 1001 /* 1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1003 * 1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1005 * 1006 * @mapping1: the first mapping to unlock 1007 * @mapping2: the second mapping to unlock 1008 */ 1009 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1010 struct address_space *mapping2) 1011 { 1012 if (mapping1) 1013 up_write(&mapping1->invalidate_lock); 1014 if (mapping2 && mapping1 != mapping2) 1015 up_write(&mapping2->invalidate_lock); 1016 } 1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1018 1019 /* 1020 * In order to wait for pages to become available there must be 1021 * waitqueues associated with pages. By using a hash table of 1022 * waitqueues where the bucket discipline is to maintain all 1023 * waiters on the same queue and wake all when any of the pages 1024 * become available, and for the woken contexts to check to be 1025 * sure the appropriate page became available, this saves space 1026 * at a cost of "thundering herd" phenomena during rare hash 1027 * collisions. 1028 */ 1029 #define PAGE_WAIT_TABLE_BITS 8 1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1032 1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1034 { 1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1036 } 1037 1038 void __init pagecache_init(void) 1039 { 1040 int i; 1041 1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1043 init_waitqueue_head(&folio_wait_table[i]); 1044 1045 page_writeback_init(); 1046 } 1047 1048 /* 1049 * The page wait code treats the "wait->flags" somewhat unusually, because 1050 * we have multiple different kinds of waits, not just the usual "exclusive" 1051 * one. 1052 * 1053 * We have: 1054 * 1055 * (a) no special bits set: 1056 * 1057 * We're just waiting for the bit to be released, and when a waker 1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1059 * and remove it from the wait queue. 1060 * 1061 * Simple and straightforward. 1062 * 1063 * (b) WQ_FLAG_EXCLUSIVE: 1064 * 1065 * The waiter is waiting to get the lock, and only one waiter should 1066 * be woken up to avoid any thundering herd behavior. We'll set the 1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1068 * 1069 * This is the traditional exclusive wait. 1070 * 1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1072 * 1073 * The waiter is waiting to get the bit, and additionally wants the 1074 * lock to be transferred to it for fair lock behavior. If the lock 1075 * cannot be taken, we stop walking the wait queue without waking 1076 * the waiter. 1077 * 1078 * This is the "fair lock handoff" case, and in addition to setting 1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1080 * that it now has the lock. 1081 */ 1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1083 { 1084 unsigned int flags; 1085 struct wait_page_key *key = arg; 1086 struct wait_page_queue *wait_page 1087 = container_of(wait, struct wait_page_queue, wait); 1088 1089 if (!wake_page_match(wait_page, key)) 1090 return 0; 1091 1092 /* 1093 * If it's a lock handoff wait, we get the bit for it, and 1094 * stop walking (and do not wake it up) if we can't. 1095 */ 1096 flags = wait->flags; 1097 if (flags & WQ_FLAG_EXCLUSIVE) { 1098 if (test_bit(key->bit_nr, &key->folio->flags)) 1099 return -1; 1100 if (flags & WQ_FLAG_CUSTOM) { 1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1102 return -1; 1103 flags |= WQ_FLAG_DONE; 1104 } 1105 } 1106 1107 /* 1108 * We are holding the wait-queue lock, but the waiter that 1109 * is waiting for this will be checking the flags without 1110 * any locking. 1111 * 1112 * So update the flags atomically, and wake up the waiter 1113 * afterwards to avoid any races. This store-release pairs 1114 * with the load-acquire in folio_wait_bit_common(). 1115 */ 1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1117 wake_up_state(wait->private, mode); 1118 1119 /* 1120 * Ok, we have successfully done what we're waiting for, 1121 * and we can unconditionally remove the wait entry. 1122 * 1123 * Note that this pairs with the "finish_wait()" in the 1124 * waiter, and has to be the absolute last thing we do. 1125 * After this list_del_init(&wait->entry) the wait entry 1126 * might be de-allocated and the process might even have 1127 * exited. 1128 */ 1129 list_del_init_careful(&wait->entry); 1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1131 } 1132 1133 static void folio_wake_bit(struct folio *folio, int bit_nr) 1134 { 1135 wait_queue_head_t *q = folio_waitqueue(folio); 1136 struct wait_page_key key; 1137 unsigned long flags; 1138 wait_queue_entry_t bookmark; 1139 1140 key.folio = folio; 1141 key.bit_nr = bit_nr; 1142 key.page_match = 0; 1143 1144 bookmark.flags = 0; 1145 bookmark.private = NULL; 1146 bookmark.func = NULL; 1147 INIT_LIST_HEAD(&bookmark.entry); 1148 1149 spin_lock_irqsave(&q->lock, flags); 1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1151 1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1153 /* 1154 * Take a breather from holding the lock, 1155 * allow pages that finish wake up asynchronously 1156 * to acquire the lock and remove themselves 1157 * from wait queue 1158 */ 1159 spin_unlock_irqrestore(&q->lock, flags); 1160 cpu_relax(); 1161 spin_lock_irqsave(&q->lock, flags); 1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1163 } 1164 1165 /* 1166 * It's possible to miss clearing waiters here, when we woke our page 1167 * waiters, but the hashed waitqueue has waiters for other pages on it. 1168 * That's okay, it's a rare case. The next waker will clear it. 1169 * 1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1171 * other), the flag may be cleared in the course of freeing the page; 1172 * but that is not required for correctness. 1173 */ 1174 if (!waitqueue_active(q) || !key.page_match) 1175 folio_clear_waiters(folio); 1176 1177 spin_unlock_irqrestore(&q->lock, flags); 1178 } 1179 1180 static void folio_wake(struct folio *folio, int bit) 1181 { 1182 if (!folio_test_waiters(folio)) 1183 return; 1184 folio_wake_bit(folio, bit); 1185 } 1186 1187 /* 1188 * A choice of three behaviors for folio_wait_bit_common(): 1189 */ 1190 enum behavior { 1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1192 * __folio_lock() waiting on then setting PG_locked. 1193 */ 1194 SHARED, /* Hold ref to page and check the bit when woken, like 1195 * folio_wait_writeback() waiting on PG_writeback. 1196 */ 1197 DROP, /* Drop ref to page before wait, no check when woken, 1198 * like folio_put_wait_locked() on PG_locked. 1199 */ 1200 }; 1201 1202 /* 1203 * Attempt to check (or get) the folio flag, and mark us done 1204 * if successful. 1205 */ 1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1207 struct wait_queue_entry *wait) 1208 { 1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1210 if (test_and_set_bit(bit_nr, &folio->flags)) 1211 return false; 1212 } else if (test_bit(bit_nr, &folio->flags)) 1213 return false; 1214 1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1216 return true; 1217 } 1218 1219 /* How many times do we accept lock stealing from under a waiter? */ 1220 int sysctl_page_lock_unfairness = 5; 1221 1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1223 int state, enum behavior behavior) 1224 { 1225 wait_queue_head_t *q = folio_waitqueue(folio); 1226 int unfairness = sysctl_page_lock_unfairness; 1227 struct wait_page_queue wait_page; 1228 wait_queue_entry_t *wait = &wait_page.wait; 1229 bool thrashing = false; 1230 unsigned long pflags; 1231 bool in_thrashing; 1232 1233 if (bit_nr == PG_locked && 1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1235 delayacct_thrashing_start(&in_thrashing); 1236 psi_memstall_enter(&pflags); 1237 thrashing = true; 1238 } 1239 1240 init_wait(wait); 1241 wait->func = wake_page_function; 1242 wait_page.folio = folio; 1243 wait_page.bit_nr = bit_nr; 1244 1245 repeat: 1246 wait->flags = 0; 1247 if (behavior == EXCLUSIVE) { 1248 wait->flags = WQ_FLAG_EXCLUSIVE; 1249 if (--unfairness < 0) 1250 wait->flags |= WQ_FLAG_CUSTOM; 1251 } 1252 1253 /* 1254 * Do one last check whether we can get the 1255 * page bit synchronously. 1256 * 1257 * Do the folio_set_waiters() marking before that 1258 * to let any waker we _just_ missed know they 1259 * need to wake us up (otherwise they'll never 1260 * even go to the slow case that looks at the 1261 * page queue), and add ourselves to the wait 1262 * queue if we need to sleep. 1263 * 1264 * This part needs to be done under the queue 1265 * lock to avoid races. 1266 */ 1267 spin_lock_irq(&q->lock); 1268 folio_set_waiters(folio); 1269 if (!folio_trylock_flag(folio, bit_nr, wait)) 1270 __add_wait_queue_entry_tail(q, wait); 1271 spin_unlock_irq(&q->lock); 1272 1273 /* 1274 * From now on, all the logic will be based on 1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1276 * see whether the page bit testing has already 1277 * been done by the wake function. 1278 * 1279 * We can drop our reference to the folio. 1280 */ 1281 if (behavior == DROP) 1282 folio_put(folio); 1283 1284 /* 1285 * Note that until the "finish_wait()", or until 1286 * we see the WQ_FLAG_WOKEN flag, we need to 1287 * be very careful with the 'wait->flags', because 1288 * we may race with a waker that sets them. 1289 */ 1290 for (;;) { 1291 unsigned int flags; 1292 1293 set_current_state(state); 1294 1295 /* Loop until we've been woken or interrupted */ 1296 flags = smp_load_acquire(&wait->flags); 1297 if (!(flags & WQ_FLAG_WOKEN)) { 1298 if (signal_pending_state(state, current)) 1299 break; 1300 1301 io_schedule(); 1302 continue; 1303 } 1304 1305 /* If we were non-exclusive, we're done */ 1306 if (behavior != EXCLUSIVE) 1307 break; 1308 1309 /* If the waker got the lock for us, we're done */ 1310 if (flags & WQ_FLAG_DONE) 1311 break; 1312 1313 /* 1314 * Otherwise, if we're getting the lock, we need to 1315 * try to get it ourselves. 1316 * 1317 * And if that fails, we'll have to retry this all. 1318 */ 1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1320 goto repeat; 1321 1322 wait->flags |= WQ_FLAG_DONE; 1323 break; 1324 } 1325 1326 /* 1327 * If a signal happened, this 'finish_wait()' may remove the last 1328 * waiter from the wait-queues, but the folio waiters bit will remain 1329 * set. That's ok. The next wakeup will take care of it, and trying 1330 * to do it here would be difficult and prone to races. 1331 */ 1332 finish_wait(q, wait); 1333 1334 if (thrashing) { 1335 delayacct_thrashing_end(&in_thrashing); 1336 psi_memstall_leave(&pflags); 1337 } 1338 1339 /* 1340 * NOTE! The wait->flags weren't stable until we've done the 1341 * 'finish_wait()', and we could have exited the loop above due 1342 * to a signal, and had a wakeup event happen after the signal 1343 * test but before the 'finish_wait()'. 1344 * 1345 * So only after the finish_wait() can we reliably determine 1346 * if we got woken up or not, so we can now figure out the final 1347 * return value based on that state without races. 1348 * 1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1350 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1351 */ 1352 if (behavior == EXCLUSIVE) 1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1354 1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1356 } 1357 1358 #ifdef CONFIG_MIGRATION 1359 /** 1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1361 * @entry: migration swap entry. 1362 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1363 * for pte entries, pass NULL for pmd entries. 1364 * @ptl: already locked ptl. This function will drop the lock. 1365 * 1366 * Wait for a migration entry referencing the given page to be removed. This is 1367 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1368 * this can be called without taking a reference on the page. Instead this 1369 * should be called while holding the ptl for the migration entry referencing 1370 * the page. 1371 * 1372 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1373 * 1374 * This follows the same logic as folio_wait_bit_common() so see the comments 1375 * there. 1376 */ 1377 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1378 spinlock_t *ptl) 1379 { 1380 struct wait_page_queue wait_page; 1381 wait_queue_entry_t *wait = &wait_page.wait; 1382 bool thrashing = false; 1383 unsigned long pflags; 1384 bool in_thrashing; 1385 wait_queue_head_t *q; 1386 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1387 1388 q = folio_waitqueue(folio); 1389 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1390 delayacct_thrashing_start(&in_thrashing); 1391 psi_memstall_enter(&pflags); 1392 thrashing = true; 1393 } 1394 1395 init_wait(wait); 1396 wait->func = wake_page_function; 1397 wait_page.folio = folio; 1398 wait_page.bit_nr = PG_locked; 1399 wait->flags = 0; 1400 1401 spin_lock_irq(&q->lock); 1402 folio_set_waiters(folio); 1403 if (!folio_trylock_flag(folio, PG_locked, wait)) 1404 __add_wait_queue_entry_tail(q, wait); 1405 spin_unlock_irq(&q->lock); 1406 1407 /* 1408 * If a migration entry exists for the page the migration path must hold 1409 * a valid reference to the page, and it must take the ptl to remove the 1410 * migration entry. So the page is valid until the ptl is dropped. 1411 */ 1412 if (ptep) 1413 pte_unmap_unlock(ptep, ptl); 1414 else 1415 spin_unlock(ptl); 1416 1417 for (;;) { 1418 unsigned int flags; 1419 1420 set_current_state(TASK_UNINTERRUPTIBLE); 1421 1422 /* Loop until we've been woken or interrupted */ 1423 flags = smp_load_acquire(&wait->flags); 1424 if (!(flags & WQ_FLAG_WOKEN)) { 1425 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1426 break; 1427 1428 io_schedule(); 1429 continue; 1430 } 1431 break; 1432 } 1433 1434 finish_wait(q, wait); 1435 1436 if (thrashing) { 1437 delayacct_thrashing_end(&in_thrashing); 1438 psi_memstall_leave(&pflags); 1439 } 1440 } 1441 #endif 1442 1443 void folio_wait_bit(struct folio *folio, int bit_nr) 1444 { 1445 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1446 } 1447 EXPORT_SYMBOL(folio_wait_bit); 1448 1449 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1450 { 1451 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1452 } 1453 EXPORT_SYMBOL(folio_wait_bit_killable); 1454 1455 /** 1456 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1457 * @folio: The folio to wait for. 1458 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1459 * 1460 * The caller should hold a reference on @folio. They expect the page to 1461 * become unlocked relatively soon, but do not wish to hold up migration 1462 * (for example) by holding the reference while waiting for the folio to 1463 * come unlocked. After this function returns, the caller should not 1464 * dereference @folio. 1465 * 1466 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1467 */ 1468 static int folio_put_wait_locked(struct folio *folio, int state) 1469 { 1470 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1471 } 1472 1473 /** 1474 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1475 * @folio: Folio defining the wait queue of interest 1476 * @waiter: Waiter to add to the queue 1477 * 1478 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1479 */ 1480 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1481 { 1482 wait_queue_head_t *q = folio_waitqueue(folio); 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&q->lock, flags); 1486 __add_wait_queue_entry_tail(q, waiter); 1487 folio_set_waiters(folio); 1488 spin_unlock_irqrestore(&q->lock, flags); 1489 } 1490 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1491 1492 #ifndef clear_bit_unlock_is_negative_byte 1493 1494 /* 1495 * PG_waiters is the high bit in the same byte as PG_lock. 1496 * 1497 * On x86 (and on many other architectures), we can clear PG_lock and 1498 * test the sign bit at the same time. But if the architecture does 1499 * not support that special operation, we just do this all by hand 1500 * instead. 1501 * 1502 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1503 * being cleared, but a memory barrier should be unnecessary since it is 1504 * in the same byte as PG_locked. 1505 */ 1506 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1507 { 1508 clear_bit_unlock(nr, mem); 1509 /* smp_mb__after_atomic(); */ 1510 return test_bit(PG_waiters, mem); 1511 } 1512 1513 #endif 1514 1515 /** 1516 * folio_unlock - Unlock a locked folio. 1517 * @folio: The folio. 1518 * 1519 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1520 * 1521 * Context: May be called from interrupt or process context. May not be 1522 * called from NMI context. 1523 */ 1524 void folio_unlock(struct folio *folio) 1525 { 1526 /* Bit 7 allows x86 to check the byte's sign bit */ 1527 BUILD_BUG_ON(PG_waiters != 7); 1528 BUILD_BUG_ON(PG_locked > 7); 1529 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1530 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1531 folio_wake_bit(folio, PG_locked); 1532 } 1533 EXPORT_SYMBOL(folio_unlock); 1534 1535 /** 1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1537 * @folio: The folio. 1538 * 1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1540 * it. The folio reference held for PG_private_2 being set is released. 1541 * 1542 * This is, for example, used when a netfs folio is being written to a local 1543 * disk cache, thereby allowing writes to the cache for the same folio to be 1544 * serialised. 1545 */ 1546 void folio_end_private_2(struct folio *folio) 1547 { 1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1550 folio_wake_bit(folio, PG_private_2); 1551 folio_put(folio); 1552 } 1553 EXPORT_SYMBOL(folio_end_private_2); 1554 1555 /** 1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1557 * @folio: The folio to wait on. 1558 * 1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1560 */ 1561 void folio_wait_private_2(struct folio *folio) 1562 { 1563 while (folio_test_private_2(folio)) 1564 folio_wait_bit(folio, PG_private_2); 1565 } 1566 EXPORT_SYMBOL(folio_wait_private_2); 1567 1568 /** 1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1570 * @folio: The folio to wait on. 1571 * 1572 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1573 * fatal signal is received by the calling task. 1574 * 1575 * Return: 1576 * - 0 if successful. 1577 * - -EINTR if a fatal signal was encountered. 1578 */ 1579 int folio_wait_private_2_killable(struct folio *folio) 1580 { 1581 int ret = 0; 1582 1583 while (folio_test_private_2(folio)) { 1584 ret = folio_wait_bit_killable(folio, PG_private_2); 1585 if (ret < 0) 1586 break; 1587 } 1588 1589 return ret; 1590 } 1591 EXPORT_SYMBOL(folio_wait_private_2_killable); 1592 1593 /** 1594 * folio_end_writeback - End writeback against a folio. 1595 * @folio: The folio. 1596 */ 1597 void folio_end_writeback(struct folio *folio) 1598 { 1599 /* 1600 * folio_test_clear_reclaim() could be used here but it is an 1601 * atomic operation and overkill in this particular case. Failing 1602 * to shuffle a folio marked for immediate reclaim is too mild 1603 * a gain to justify taking an atomic operation penalty at the 1604 * end of every folio writeback. 1605 */ 1606 if (folio_test_reclaim(folio)) { 1607 folio_clear_reclaim(folio); 1608 folio_rotate_reclaimable(folio); 1609 } 1610 1611 /* 1612 * Writeback does not hold a folio reference of its own, relying 1613 * on truncation to wait for the clearing of PG_writeback. 1614 * But here we must make sure that the folio is not freed and 1615 * reused before the folio_wake(). 1616 */ 1617 folio_get(folio); 1618 if (!__folio_end_writeback(folio)) 1619 BUG(); 1620 1621 smp_mb__after_atomic(); 1622 folio_wake(folio, PG_writeback); 1623 acct_reclaim_writeback(folio); 1624 folio_put(folio); 1625 } 1626 EXPORT_SYMBOL(folio_end_writeback); 1627 1628 /* 1629 * After completing I/O on a page, call this routine to update the page 1630 * flags appropriately 1631 */ 1632 void page_endio(struct page *page, bool is_write, int err) 1633 { 1634 struct folio *folio = page_folio(page); 1635 1636 if (!is_write) { 1637 if (!err) { 1638 folio_mark_uptodate(folio); 1639 } else { 1640 folio_clear_uptodate(folio); 1641 folio_set_error(folio); 1642 } 1643 folio_unlock(folio); 1644 } else { 1645 if (err) { 1646 struct address_space *mapping; 1647 1648 folio_set_error(folio); 1649 mapping = folio_mapping(folio); 1650 if (mapping) 1651 mapping_set_error(mapping, err); 1652 } 1653 folio_end_writeback(folio); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(page_endio); 1657 1658 /** 1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1660 * @folio: The folio to lock 1661 */ 1662 void __folio_lock(struct folio *folio) 1663 { 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL(__folio_lock); 1668 1669 int __folio_lock_killable(struct folio *folio) 1670 { 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1672 EXCLUSIVE); 1673 } 1674 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1675 1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1677 { 1678 struct wait_queue_head *q = folio_waitqueue(folio); 1679 int ret = 0; 1680 1681 wait->folio = folio; 1682 wait->bit_nr = PG_locked; 1683 1684 spin_lock_irq(&q->lock); 1685 __add_wait_queue_entry_tail(q, &wait->wait); 1686 folio_set_waiters(folio); 1687 ret = !folio_trylock(folio); 1688 /* 1689 * If we were successful now, we know we're still on the 1690 * waitqueue as we're still under the lock. This means it's 1691 * safe to remove and return success, we know the callback 1692 * isn't going to trigger. 1693 */ 1694 if (!ret) 1695 __remove_wait_queue(q, &wait->wait); 1696 else 1697 ret = -EIOCBQUEUED; 1698 spin_unlock_irq(&q->lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Return values: 1704 * true - folio is locked; mmap_lock is still held. 1705 * false - folio is not locked. 1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1708 * which case mmap_lock is still held. 1709 * 1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1711 * with the folio locked and the mmap_lock unperturbed. 1712 */ 1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1714 unsigned int flags) 1715 { 1716 if (fault_flag_allow_retry_first(flags)) { 1717 /* 1718 * CAUTION! In this case, mmap_lock is not released 1719 * even though return 0. 1720 */ 1721 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1722 return false; 1723 1724 mmap_read_unlock(mm); 1725 if (flags & FAULT_FLAG_KILLABLE) 1726 folio_wait_locked_killable(folio); 1727 else 1728 folio_wait_locked(folio); 1729 return false; 1730 } 1731 if (flags & FAULT_FLAG_KILLABLE) { 1732 bool ret; 1733 1734 ret = __folio_lock_killable(folio); 1735 if (ret) { 1736 mmap_read_unlock(mm); 1737 return false; 1738 } 1739 } else { 1740 __folio_lock(folio); 1741 } 1742 1743 return true; 1744 } 1745 1746 /** 1747 * page_cache_next_miss() - Find the next gap in the page cache. 1748 * @mapping: Mapping. 1749 * @index: Index. 1750 * @max_scan: Maximum range to search. 1751 * 1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1753 * gap with the lowest index. 1754 * 1755 * This function may be called under the rcu_read_lock. However, this will 1756 * not atomically search a snapshot of the cache at a single point in time. 1757 * For example, if a gap is created at index 5, then subsequently a gap is 1758 * created at index 10, page_cache_next_miss covering both indices may 1759 * return 10 if called under the rcu_read_lock. 1760 * 1761 * Return: The index of the gap if found, otherwise an index outside the 1762 * range specified (in which case 'return - index >= max_scan' will be true). 1763 * In the rare case of index wrap-around, 0 will be returned. 0 will also 1764 * be returned if index == 0 and there is a gap at the index. We can not 1765 * wrap-around if passed index == 0. 1766 */ 1767 pgoff_t page_cache_next_miss(struct address_space *mapping, 1768 pgoff_t index, unsigned long max_scan) 1769 { 1770 XA_STATE(xas, &mapping->i_pages, index); 1771 1772 while (max_scan--) { 1773 void *entry = xas_next(&xas); 1774 if (!entry || xa_is_value(entry)) 1775 return xas.xa_index; 1776 if (xas.xa_index == 0 && index != 0) 1777 return xas.xa_index; 1778 } 1779 1780 /* No gaps in range and no wrap-around, return index beyond range */ 1781 return xas.xa_index + 1; 1782 } 1783 EXPORT_SYMBOL(page_cache_next_miss); 1784 1785 /** 1786 * page_cache_prev_miss() - Find the previous gap in the page cache. 1787 * @mapping: Mapping. 1788 * @index: Index. 1789 * @max_scan: Maximum range to search. 1790 * 1791 * Search the range [max(index - max_scan + 1, 0), index] for the 1792 * gap with the highest index. 1793 * 1794 * This function may be called under the rcu_read_lock. However, this will 1795 * not atomically search a snapshot of the cache at a single point in time. 1796 * For example, if a gap is created at index 10, then subsequently a gap is 1797 * created at index 5, page_cache_prev_miss() covering both indices may 1798 * return 5 if called under the rcu_read_lock. 1799 * 1800 * Return: The index of the gap if found, otherwise an index outside the 1801 * range specified (in which case 'index - return >= max_scan' will be true). 1802 * In the rare case of wrap-around, ULONG_MAX will be returned. ULONG_MAX 1803 * will also be returned if index == ULONG_MAX and there is a gap at the 1804 * index. We can not wrap-around if passed index == ULONG_MAX. 1805 */ 1806 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1807 pgoff_t index, unsigned long max_scan) 1808 { 1809 XA_STATE(xas, &mapping->i_pages, index); 1810 1811 while (max_scan--) { 1812 void *entry = xas_prev(&xas); 1813 if (!entry || xa_is_value(entry)) 1814 return xas.xa_index; 1815 if (xas.xa_index == ULONG_MAX && index != ULONG_MAX) 1816 return xas.xa_index; 1817 } 1818 1819 /* No gaps in range and no wrap-around, return index beyond range */ 1820 return xas.xa_index - 1; 1821 } 1822 EXPORT_SYMBOL(page_cache_prev_miss); 1823 1824 /* 1825 * Lockless page cache protocol: 1826 * On the lookup side: 1827 * 1. Load the folio from i_pages 1828 * 2. Increment the refcount if it's not zero 1829 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1830 * 1831 * On the removal side: 1832 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1833 * B. Remove the page from i_pages 1834 * C. Return the page to the page allocator 1835 * 1836 * This means that any page may have its reference count temporarily 1837 * increased by a speculative page cache (or fast GUP) lookup as it can 1838 * be allocated by another user before the RCU grace period expires. 1839 * Because the refcount temporarily acquired here may end up being the 1840 * last refcount on the page, any page allocation must be freeable by 1841 * folio_put(). 1842 */ 1843 1844 /* 1845 * filemap_get_entry - Get a page cache entry. 1846 * @mapping: the address_space to search 1847 * @index: The page cache index. 1848 * 1849 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1850 * it is returned with an increased refcount. If it is a shadow entry 1851 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1852 * it is returned without further action. 1853 * 1854 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1855 */ 1856 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1857 { 1858 XA_STATE(xas, &mapping->i_pages, index); 1859 struct folio *folio; 1860 1861 rcu_read_lock(); 1862 repeat: 1863 xas_reset(&xas); 1864 folio = xas_load(&xas); 1865 if (xas_retry(&xas, folio)) 1866 goto repeat; 1867 /* 1868 * A shadow entry of a recently evicted page, or a swap entry from 1869 * shmem/tmpfs. Return it without attempting to raise page count. 1870 */ 1871 if (!folio || xa_is_value(folio)) 1872 goto out; 1873 1874 if (!folio_try_get_rcu(folio)) 1875 goto repeat; 1876 1877 if (unlikely(folio != xas_reload(&xas))) { 1878 folio_put(folio); 1879 goto repeat; 1880 } 1881 out: 1882 rcu_read_unlock(); 1883 1884 return folio; 1885 } 1886 1887 /** 1888 * __filemap_get_folio - Find and get a reference to a folio. 1889 * @mapping: The address_space to search. 1890 * @index: The page index. 1891 * @fgp_flags: %FGP flags modify how the folio is returned. 1892 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1893 * 1894 * Looks up the page cache entry at @mapping & @index. 1895 * 1896 * @fgp_flags can be zero or more of these flags: 1897 * 1898 * * %FGP_ACCESSED - The folio will be marked accessed. 1899 * * %FGP_LOCK - The folio is returned locked. 1900 * * %FGP_CREAT - If no page is present then a new page is allocated using 1901 * @gfp and added to the page cache and the VM's LRU list. 1902 * The page is returned locked and with an increased refcount. 1903 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1904 * page is already in cache. If the page was allocated, unlock it before 1905 * returning so the caller can do the same dance. 1906 * * %FGP_WRITE - The page will be written to by the caller. 1907 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1908 * * %FGP_NOWAIT - Don't get blocked by page lock. 1909 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1910 * 1911 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1912 * if the %GFP flags specified for %FGP_CREAT are atomic. 1913 * 1914 * If there is a page cache page, it is returned with an increased refcount. 1915 * 1916 * Return: The found folio or an ERR_PTR() otherwise. 1917 */ 1918 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1919 int fgp_flags, gfp_t gfp) 1920 { 1921 struct folio *folio; 1922 1923 repeat: 1924 folio = filemap_get_entry(mapping, index); 1925 if (xa_is_value(folio)) 1926 folio = NULL; 1927 if (!folio) 1928 goto no_page; 1929 1930 if (fgp_flags & FGP_LOCK) { 1931 if (fgp_flags & FGP_NOWAIT) { 1932 if (!folio_trylock(folio)) { 1933 folio_put(folio); 1934 return ERR_PTR(-EAGAIN); 1935 } 1936 } else { 1937 folio_lock(folio); 1938 } 1939 1940 /* Has the page been truncated? */ 1941 if (unlikely(folio->mapping != mapping)) { 1942 folio_unlock(folio); 1943 folio_put(folio); 1944 goto repeat; 1945 } 1946 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1947 } 1948 1949 if (fgp_flags & FGP_ACCESSED) 1950 folio_mark_accessed(folio); 1951 else if (fgp_flags & FGP_WRITE) { 1952 /* Clear idle flag for buffer write */ 1953 if (folio_test_idle(folio)) 1954 folio_clear_idle(folio); 1955 } 1956 1957 if (fgp_flags & FGP_STABLE) 1958 folio_wait_stable(folio); 1959 no_page: 1960 if (!folio && (fgp_flags & FGP_CREAT)) { 1961 int err; 1962 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1963 gfp |= __GFP_WRITE; 1964 if (fgp_flags & FGP_NOFS) 1965 gfp &= ~__GFP_FS; 1966 if (fgp_flags & FGP_NOWAIT) { 1967 gfp &= ~GFP_KERNEL; 1968 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1969 } 1970 1971 folio = filemap_alloc_folio(gfp, 0); 1972 if (!folio) 1973 return ERR_PTR(-ENOMEM); 1974 1975 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1976 fgp_flags |= FGP_LOCK; 1977 1978 /* Init accessed so avoid atomic mark_page_accessed later */ 1979 if (fgp_flags & FGP_ACCESSED) 1980 __folio_set_referenced(folio); 1981 1982 err = filemap_add_folio(mapping, folio, index, gfp); 1983 if (unlikely(err)) { 1984 folio_put(folio); 1985 folio = NULL; 1986 if (err == -EEXIST) 1987 goto repeat; 1988 } 1989 1990 /* 1991 * filemap_add_folio locks the page, and for mmap 1992 * we expect an unlocked page. 1993 */ 1994 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1995 folio_unlock(folio); 1996 } 1997 1998 if (!folio) 1999 return ERR_PTR(-ENOENT); 2000 return folio; 2001 } 2002 EXPORT_SYMBOL(__filemap_get_folio); 2003 2004 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2005 xa_mark_t mark) 2006 { 2007 struct folio *folio; 2008 2009 retry: 2010 if (mark == XA_PRESENT) 2011 folio = xas_find(xas, max); 2012 else 2013 folio = xas_find_marked(xas, max, mark); 2014 2015 if (xas_retry(xas, folio)) 2016 goto retry; 2017 /* 2018 * A shadow entry of a recently evicted page, a swap 2019 * entry from shmem/tmpfs or a DAX entry. Return it 2020 * without attempting to raise page count. 2021 */ 2022 if (!folio || xa_is_value(folio)) 2023 return folio; 2024 2025 if (!folio_try_get_rcu(folio)) 2026 goto reset; 2027 2028 if (unlikely(folio != xas_reload(xas))) { 2029 folio_put(folio); 2030 goto reset; 2031 } 2032 2033 return folio; 2034 reset: 2035 xas_reset(xas); 2036 goto retry; 2037 } 2038 2039 /** 2040 * find_get_entries - gang pagecache lookup 2041 * @mapping: The address_space to search 2042 * @start: The starting page cache index 2043 * @end: The final page index (inclusive). 2044 * @fbatch: Where the resulting entries are placed. 2045 * @indices: The cache indices corresponding to the entries in @entries 2046 * 2047 * find_get_entries() will search for and return a batch of entries in 2048 * the mapping. The entries are placed in @fbatch. find_get_entries() 2049 * takes a reference on any actual folios it returns. 2050 * 2051 * The entries have ascending indexes. The indices may not be consecutive 2052 * due to not-present entries or large folios. 2053 * 2054 * Any shadow entries of evicted folios, or swap entries from 2055 * shmem/tmpfs, are included in the returned array. 2056 * 2057 * Return: The number of entries which were found. 2058 */ 2059 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2060 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2061 { 2062 XA_STATE(xas, &mapping->i_pages, *start); 2063 struct folio *folio; 2064 2065 rcu_read_lock(); 2066 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2067 indices[fbatch->nr] = xas.xa_index; 2068 if (!folio_batch_add(fbatch, folio)) 2069 break; 2070 } 2071 rcu_read_unlock(); 2072 2073 if (folio_batch_count(fbatch)) { 2074 unsigned long nr = 1; 2075 int idx = folio_batch_count(fbatch) - 1; 2076 2077 folio = fbatch->folios[idx]; 2078 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2079 nr = folio_nr_pages(folio); 2080 *start = indices[idx] + nr; 2081 } 2082 return folio_batch_count(fbatch); 2083 } 2084 2085 /** 2086 * find_lock_entries - Find a batch of pagecache entries. 2087 * @mapping: The address_space to search. 2088 * @start: The starting page cache index. 2089 * @end: The final page index (inclusive). 2090 * @fbatch: Where the resulting entries are placed. 2091 * @indices: The cache indices of the entries in @fbatch. 2092 * 2093 * find_lock_entries() will return a batch of entries from @mapping. 2094 * Swap, shadow and DAX entries are included. Folios are returned 2095 * locked and with an incremented refcount. Folios which are locked 2096 * by somebody else or under writeback are skipped. Folios which are 2097 * partially outside the range are not returned. 2098 * 2099 * The entries have ascending indexes. The indices may not be consecutive 2100 * due to not-present entries, large folios, folios which could not be 2101 * locked or folios under writeback. 2102 * 2103 * Return: The number of entries which were found. 2104 */ 2105 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2106 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2107 { 2108 XA_STATE(xas, &mapping->i_pages, *start); 2109 struct folio *folio; 2110 2111 rcu_read_lock(); 2112 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2113 if (!xa_is_value(folio)) { 2114 if (folio->index < *start) 2115 goto put; 2116 if (folio->index + folio_nr_pages(folio) - 1 > end) 2117 goto put; 2118 if (!folio_trylock(folio)) 2119 goto put; 2120 if (folio->mapping != mapping || 2121 folio_test_writeback(folio)) 2122 goto unlock; 2123 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2124 folio); 2125 } 2126 indices[fbatch->nr] = xas.xa_index; 2127 if (!folio_batch_add(fbatch, folio)) 2128 break; 2129 continue; 2130 unlock: 2131 folio_unlock(folio); 2132 put: 2133 folio_put(folio); 2134 } 2135 rcu_read_unlock(); 2136 2137 if (folio_batch_count(fbatch)) { 2138 unsigned long nr = 1; 2139 int idx = folio_batch_count(fbatch) - 1; 2140 2141 folio = fbatch->folios[idx]; 2142 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2143 nr = folio_nr_pages(folio); 2144 *start = indices[idx] + nr; 2145 } 2146 return folio_batch_count(fbatch); 2147 } 2148 2149 /** 2150 * filemap_get_folios - Get a batch of folios 2151 * @mapping: The address_space to search 2152 * @start: The starting page index 2153 * @end: The final page index (inclusive) 2154 * @fbatch: The batch to fill. 2155 * 2156 * Search for and return a batch of folios in the mapping starting at 2157 * index @start and up to index @end (inclusive). The folios are returned 2158 * in @fbatch with an elevated reference count. 2159 * 2160 * The first folio may start before @start; if it does, it will contain 2161 * @start. The final folio may extend beyond @end; if it does, it will 2162 * contain @end. The folios have ascending indices. There may be gaps 2163 * between the folios if there are indices which have no folio in the 2164 * page cache. If folios are added to or removed from the page cache 2165 * while this is running, they may or may not be found by this call. 2166 * 2167 * Return: The number of folios which were found. 2168 * We also update @start to index the next folio for the traversal. 2169 */ 2170 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2171 pgoff_t end, struct folio_batch *fbatch) 2172 { 2173 XA_STATE(xas, &mapping->i_pages, *start); 2174 struct folio *folio; 2175 2176 rcu_read_lock(); 2177 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2178 /* Skip over shadow, swap and DAX entries */ 2179 if (xa_is_value(folio)) 2180 continue; 2181 if (!folio_batch_add(fbatch, folio)) { 2182 unsigned long nr = folio_nr_pages(folio); 2183 2184 if (folio_test_hugetlb(folio)) 2185 nr = 1; 2186 *start = folio->index + nr; 2187 goto out; 2188 } 2189 } 2190 2191 /* 2192 * We come here when there is no page beyond @end. We take care to not 2193 * overflow the index @start as it confuses some of the callers. This 2194 * breaks the iteration when there is a page at index -1 but that is 2195 * already broken anyway. 2196 */ 2197 if (end == (pgoff_t)-1) 2198 *start = (pgoff_t)-1; 2199 else 2200 *start = end + 1; 2201 out: 2202 rcu_read_unlock(); 2203 2204 return folio_batch_count(fbatch); 2205 } 2206 EXPORT_SYMBOL(filemap_get_folios); 2207 2208 static inline 2209 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2210 { 2211 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2212 return false; 2213 if (index >= max) 2214 return false; 2215 return index < folio->index + folio_nr_pages(folio) - 1; 2216 } 2217 2218 /** 2219 * filemap_get_folios_contig - Get a batch of contiguous folios 2220 * @mapping: The address_space to search 2221 * @start: The starting page index 2222 * @end: The final page index (inclusive) 2223 * @fbatch: The batch to fill 2224 * 2225 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2226 * except the returned folios are guaranteed to be contiguous. This may 2227 * not return all contiguous folios if the batch gets filled up. 2228 * 2229 * Return: The number of folios found. 2230 * Also update @start to be positioned for traversal of the next folio. 2231 */ 2232 2233 unsigned filemap_get_folios_contig(struct address_space *mapping, 2234 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2235 { 2236 XA_STATE(xas, &mapping->i_pages, *start); 2237 unsigned long nr; 2238 struct folio *folio; 2239 2240 rcu_read_lock(); 2241 2242 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2243 folio = xas_next(&xas)) { 2244 if (xas_retry(&xas, folio)) 2245 continue; 2246 /* 2247 * If the entry has been swapped out, we can stop looking. 2248 * No current caller is looking for DAX entries. 2249 */ 2250 if (xa_is_value(folio)) 2251 goto update_start; 2252 2253 if (!folio_try_get_rcu(folio)) 2254 goto retry; 2255 2256 if (unlikely(folio != xas_reload(&xas))) 2257 goto put_folio; 2258 2259 if (!folio_batch_add(fbatch, folio)) { 2260 nr = folio_nr_pages(folio); 2261 2262 if (folio_test_hugetlb(folio)) 2263 nr = 1; 2264 *start = folio->index + nr; 2265 goto out; 2266 } 2267 continue; 2268 put_folio: 2269 folio_put(folio); 2270 2271 retry: 2272 xas_reset(&xas); 2273 } 2274 2275 update_start: 2276 nr = folio_batch_count(fbatch); 2277 2278 if (nr) { 2279 folio = fbatch->folios[nr - 1]; 2280 if (folio_test_hugetlb(folio)) 2281 *start = folio->index + 1; 2282 else 2283 *start = folio->index + folio_nr_pages(folio); 2284 } 2285 out: 2286 rcu_read_unlock(); 2287 return folio_batch_count(fbatch); 2288 } 2289 EXPORT_SYMBOL(filemap_get_folios_contig); 2290 2291 /** 2292 * filemap_get_folios_tag - Get a batch of folios matching @tag 2293 * @mapping: The address_space to search 2294 * @start: The starting page index 2295 * @end: The final page index (inclusive) 2296 * @tag: The tag index 2297 * @fbatch: The batch to fill 2298 * 2299 * Same as filemap_get_folios(), but only returning folios tagged with @tag. 2300 * 2301 * Return: The number of folios found. 2302 * Also update @start to index the next folio for traversal. 2303 */ 2304 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2305 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2306 { 2307 XA_STATE(xas, &mapping->i_pages, *start); 2308 struct folio *folio; 2309 2310 rcu_read_lock(); 2311 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2312 /* 2313 * Shadow entries should never be tagged, but this iteration 2314 * is lockless so there is a window for page reclaim to evict 2315 * a page we saw tagged. Skip over it. 2316 */ 2317 if (xa_is_value(folio)) 2318 continue; 2319 if (!folio_batch_add(fbatch, folio)) { 2320 unsigned long nr = folio_nr_pages(folio); 2321 2322 if (folio_test_hugetlb(folio)) 2323 nr = 1; 2324 *start = folio->index + nr; 2325 goto out; 2326 } 2327 } 2328 /* 2329 * We come here when there is no page beyond @end. We take care to not 2330 * overflow the index @start as it confuses some of the callers. This 2331 * breaks the iteration when there is a page at index -1 but that is 2332 * already broke anyway. 2333 */ 2334 if (end == (pgoff_t)-1) 2335 *start = (pgoff_t)-1; 2336 else 2337 *start = end + 1; 2338 out: 2339 rcu_read_unlock(); 2340 2341 return folio_batch_count(fbatch); 2342 } 2343 EXPORT_SYMBOL(filemap_get_folios_tag); 2344 2345 /* 2346 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2347 * a _large_ part of the i/o request. Imagine the worst scenario: 2348 * 2349 * ---R__________________________________________B__________ 2350 * ^ reading here ^ bad block(assume 4k) 2351 * 2352 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2353 * => failing the whole request => read(R) => read(R+1) => 2354 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2355 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2356 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2357 * 2358 * It is going insane. Fix it by quickly scaling down the readahead size. 2359 */ 2360 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2361 { 2362 ra->ra_pages /= 4; 2363 } 2364 2365 /* 2366 * filemap_get_read_batch - Get a batch of folios for read 2367 * 2368 * Get a batch of folios which represent a contiguous range of bytes in 2369 * the file. No exceptional entries will be returned. If @index is in 2370 * the middle of a folio, the entire folio will be returned. The last 2371 * folio in the batch may have the readahead flag set or the uptodate flag 2372 * clear so that the caller can take the appropriate action. 2373 */ 2374 static void filemap_get_read_batch(struct address_space *mapping, 2375 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2376 { 2377 XA_STATE(xas, &mapping->i_pages, index); 2378 struct folio *folio; 2379 2380 rcu_read_lock(); 2381 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2382 if (xas_retry(&xas, folio)) 2383 continue; 2384 if (xas.xa_index > max || xa_is_value(folio)) 2385 break; 2386 if (xa_is_sibling(folio)) 2387 break; 2388 if (!folio_try_get_rcu(folio)) 2389 goto retry; 2390 2391 if (unlikely(folio != xas_reload(&xas))) 2392 goto put_folio; 2393 2394 if (!folio_batch_add(fbatch, folio)) 2395 break; 2396 if (!folio_test_uptodate(folio)) 2397 break; 2398 if (folio_test_readahead(folio)) 2399 break; 2400 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2401 continue; 2402 put_folio: 2403 folio_put(folio); 2404 retry: 2405 xas_reset(&xas); 2406 } 2407 rcu_read_unlock(); 2408 } 2409 2410 static int filemap_read_folio(struct file *file, filler_t filler, 2411 struct folio *folio) 2412 { 2413 bool workingset = folio_test_workingset(folio); 2414 unsigned long pflags; 2415 int error; 2416 2417 /* 2418 * A previous I/O error may have been due to temporary failures, 2419 * eg. multipath errors. PG_error will be set again if read_folio 2420 * fails. 2421 */ 2422 folio_clear_error(folio); 2423 2424 /* Start the actual read. The read will unlock the page. */ 2425 if (unlikely(workingset)) 2426 psi_memstall_enter(&pflags); 2427 error = filler(file, folio); 2428 if (unlikely(workingset)) 2429 psi_memstall_leave(&pflags); 2430 if (error) 2431 return error; 2432 2433 error = folio_wait_locked_killable(folio); 2434 if (error) 2435 return error; 2436 if (folio_test_uptodate(folio)) 2437 return 0; 2438 if (file) 2439 shrink_readahead_size_eio(&file->f_ra); 2440 return -EIO; 2441 } 2442 2443 static bool filemap_range_uptodate(struct address_space *mapping, 2444 loff_t pos, size_t count, struct folio *folio, 2445 bool need_uptodate) 2446 { 2447 if (folio_test_uptodate(folio)) 2448 return true; 2449 /* pipes can't handle partially uptodate pages */ 2450 if (need_uptodate) 2451 return false; 2452 if (!mapping->a_ops->is_partially_uptodate) 2453 return false; 2454 if (mapping->host->i_blkbits >= folio_shift(folio)) 2455 return false; 2456 2457 if (folio_pos(folio) > pos) { 2458 count -= folio_pos(folio) - pos; 2459 pos = 0; 2460 } else { 2461 pos -= folio_pos(folio); 2462 } 2463 2464 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2465 } 2466 2467 static int filemap_update_page(struct kiocb *iocb, 2468 struct address_space *mapping, size_t count, 2469 struct folio *folio, bool need_uptodate) 2470 { 2471 int error; 2472 2473 if (iocb->ki_flags & IOCB_NOWAIT) { 2474 if (!filemap_invalidate_trylock_shared(mapping)) 2475 return -EAGAIN; 2476 } else { 2477 filemap_invalidate_lock_shared(mapping); 2478 } 2479 2480 if (!folio_trylock(folio)) { 2481 error = -EAGAIN; 2482 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2483 goto unlock_mapping; 2484 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2485 filemap_invalidate_unlock_shared(mapping); 2486 /* 2487 * This is where we usually end up waiting for a 2488 * previously submitted readahead to finish. 2489 */ 2490 folio_put_wait_locked(folio, TASK_KILLABLE); 2491 return AOP_TRUNCATED_PAGE; 2492 } 2493 error = __folio_lock_async(folio, iocb->ki_waitq); 2494 if (error) 2495 goto unlock_mapping; 2496 } 2497 2498 error = AOP_TRUNCATED_PAGE; 2499 if (!folio->mapping) 2500 goto unlock; 2501 2502 error = 0; 2503 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2504 need_uptodate)) 2505 goto unlock; 2506 2507 error = -EAGAIN; 2508 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2509 goto unlock; 2510 2511 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2512 folio); 2513 goto unlock_mapping; 2514 unlock: 2515 folio_unlock(folio); 2516 unlock_mapping: 2517 filemap_invalidate_unlock_shared(mapping); 2518 if (error == AOP_TRUNCATED_PAGE) 2519 folio_put(folio); 2520 return error; 2521 } 2522 2523 static int filemap_create_folio(struct file *file, 2524 struct address_space *mapping, pgoff_t index, 2525 struct folio_batch *fbatch) 2526 { 2527 struct folio *folio; 2528 int error; 2529 2530 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2531 if (!folio) 2532 return -ENOMEM; 2533 2534 /* 2535 * Protect against truncate / hole punch. Grabbing invalidate_lock 2536 * here assures we cannot instantiate and bring uptodate new 2537 * pagecache folios after evicting page cache during truncate 2538 * and before actually freeing blocks. Note that we could 2539 * release invalidate_lock after inserting the folio into 2540 * the page cache as the locked folio would then be enough to 2541 * synchronize with hole punching. But there are code paths 2542 * such as filemap_update_page() filling in partially uptodate 2543 * pages or ->readahead() that need to hold invalidate_lock 2544 * while mapping blocks for IO so let's hold the lock here as 2545 * well to keep locking rules simple. 2546 */ 2547 filemap_invalidate_lock_shared(mapping); 2548 error = filemap_add_folio(mapping, folio, index, 2549 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2550 if (error == -EEXIST) 2551 error = AOP_TRUNCATED_PAGE; 2552 if (error) 2553 goto error; 2554 2555 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2556 if (error) 2557 goto error; 2558 2559 filemap_invalidate_unlock_shared(mapping); 2560 folio_batch_add(fbatch, folio); 2561 return 0; 2562 error: 2563 filemap_invalidate_unlock_shared(mapping); 2564 folio_put(folio); 2565 return error; 2566 } 2567 2568 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2569 struct address_space *mapping, struct folio *folio, 2570 pgoff_t last_index) 2571 { 2572 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2573 2574 if (iocb->ki_flags & IOCB_NOIO) 2575 return -EAGAIN; 2576 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2577 return 0; 2578 } 2579 2580 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2581 struct folio_batch *fbatch, bool need_uptodate) 2582 { 2583 struct file *filp = iocb->ki_filp; 2584 struct address_space *mapping = filp->f_mapping; 2585 struct file_ra_state *ra = &filp->f_ra; 2586 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2587 pgoff_t last_index; 2588 struct folio *folio; 2589 int err = 0; 2590 2591 /* "last_index" is the index of the page beyond the end of the read */ 2592 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2593 retry: 2594 if (fatal_signal_pending(current)) 2595 return -EINTR; 2596 2597 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2598 if (!folio_batch_count(fbatch)) { 2599 if (iocb->ki_flags & IOCB_NOIO) 2600 return -EAGAIN; 2601 page_cache_sync_readahead(mapping, ra, filp, index, 2602 last_index - index); 2603 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2604 } 2605 if (!folio_batch_count(fbatch)) { 2606 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2607 return -EAGAIN; 2608 err = filemap_create_folio(filp, mapping, 2609 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2610 if (err == AOP_TRUNCATED_PAGE) 2611 goto retry; 2612 return err; 2613 } 2614 2615 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2616 if (folio_test_readahead(folio)) { 2617 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2618 if (err) 2619 goto err; 2620 } 2621 if (!folio_test_uptodate(folio)) { 2622 if ((iocb->ki_flags & IOCB_WAITQ) && 2623 folio_batch_count(fbatch) > 1) 2624 iocb->ki_flags |= IOCB_NOWAIT; 2625 err = filemap_update_page(iocb, mapping, count, folio, 2626 need_uptodate); 2627 if (err) 2628 goto err; 2629 } 2630 2631 return 0; 2632 err: 2633 if (err < 0) 2634 folio_put(folio); 2635 if (likely(--fbatch->nr)) 2636 return 0; 2637 if (err == AOP_TRUNCATED_PAGE) 2638 goto retry; 2639 return err; 2640 } 2641 2642 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2643 { 2644 unsigned int shift = folio_shift(folio); 2645 2646 return (pos1 >> shift == pos2 >> shift); 2647 } 2648 2649 /** 2650 * filemap_read - Read data from the page cache. 2651 * @iocb: The iocb to read. 2652 * @iter: Destination for the data. 2653 * @already_read: Number of bytes already read by the caller. 2654 * 2655 * Copies data from the page cache. If the data is not currently present, 2656 * uses the readahead and read_folio address_space operations to fetch it. 2657 * 2658 * Return: Total number of bytes copied, including those already read by 2659 * the caller. If an error happens before any bytes are copied, returns 2660 * a negative error number. 2661 */ 2662 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2663 ssize_t already_read) 2664 { 2665 struct file *filp = iocb->ki_filp; 2666 struct file_ra_state *ra = &filp->f_ra; 2667 struct address_space *mapping = filp->f_mapping; 2668 struct inode *inode = mapping->host; 2669 struct folio_batch fbatch; 2670 int i, error = 0; 2671 bool writably_mapped; 2672 loff_t isize, end_offset; 2673 2674 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2675 return 0; 2676 if (unlikely(!iov_iter_count(iter))) 2677 return 0; 2678 2679 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2680 folio_batch_init(&fbatch); 2681 2682 do { 2683 cond_resched(); 2684 2685 /* 2686 * If we've already successfully copied some data, then we 2687 * can no longer safely return -EIOCBQUEUED. Hence mark 2688 * an async read NOWAIT at that point. 2689 */ 2690 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2691 iocb->ki_flags |= IOCB_NOWAIT; 2692 2693 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2694 break; 2695 2696 error = filemap_get_pages(iocb, iter->count, &fbatch, 2697 iov_iter_is_pipe(iter)); 2698 if (error < 0) 2699 break; 2700 2701 /* 2702 * i_size must be checked after we know the pages are Uptodate. 2703 * 2704 * Checking i_size after the check allows us to calculate 2705 * the correct value for "nr", which means the zero-filled 2706 * part of the page is not copied back to userspace (unless 2707 * another truncate extends the file - this is desired though). 2708 */ 2709 isize = i_size_read(inode); 2710 if (unlikely(iocb->ki_pos >= isize)) 2711 goto put_folios; 2712 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2713 2714 /* 2715 * Once we start copying data, we don't want to be touching any 2716 * cachelines that might be contended: 2717 */ 2718 writably_mapped = mapping_writably_mapped(mapping); 2719 2720 /* 2721 * When a read accesses the same folio several times, only 2722 * mark it as accessed the first time. 2723 */ 2724 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2725 fbatch.folios[0])) 2726 folio_mark_accessed(fbatch.folios[0]); 2727 2728 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2729 struct folio *folio = fbatch.folios[i]; 2730 size_t fsize = folio_size(folio); 2731 size_t offset = iocb->ki_pos & (fsize - 1); 2732 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2733 fsize - offset); 2734 size_t copied; 2735 2736 if (end_offset < folio_pos(folio)) 2737 break; 2738 if (i > 0) 2739 folio_mark_accessed(folio); 2740 /* 2741 * If users can be writing to this folio using arbitrary 2742 * virtual addresses, take care of potential aliasing 2743 * before reading the folio on the kernel side. 2744 */ 2745 if (writably_mapped) 2746 flush_dcache_folio(folio); 2747 2748 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2749 2750 already_read += copied; 2751 iocb->ki_pos += copied; 2752 ra->prev_pos = iocb->ki_pos; 2753 2754 if (copied < bytes) { 2755 error = -EFAULT; 2756 break; 2757 } 2758 } 2759 put_folios: 2760 for (i = 0; i < folio_batch_count(&fbatch); i++) 2761 folio_put(fbatch.folios[i]); 2762 folio_batch_init(&fbatch); 2763 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2764 2765 file_accessed(filp); 2766 2767 return already_read ? already_read : error; 2768 } 2769 EXPORT_SYMBOL_GPL(filemap_read); 2770 2771 /** 2772 * generic_file_read_iter - generic filesystem read routine 2773 * @iocb: kernel I/O control block 2774 * @iter: destination for the data read 2775 * 2776 * This is the "read_iter()" routine for all filesystems 2777 * that can use the page cache directly. 2778 * 2779 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2780 * be returned when no data can be read without waiting for I/O requests 2781 * to complete; it doesn't prevent readahead. 2782 * 2783 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2784 * requests shall be made for the read or for readahead. When no data 2785 * can be read, -EAGAIN shall be returned. When readahead would be 2786 * triggered, a partial, possibly empty read shall be returned. 2787 * 2788 * Return: 2789 * * number of bytes copied, even for partial reads 2790 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2791 */ 2792 ssize_t 2793 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2794 { 2795 size_t count = iov_iter_count(iter); 2796 ssize_t retval = 0; 2797 2798 if (!count) 2799 return 0; /* skip atime */ 2800 2801 if (iocb->ki_flags & IOCB_DIRECT) { 2802 struct file *file = iocb->ki_filp; 2803 struct address_space *mapping = file->f_mapping; 2804 struct inode *inode = mapping->host; 2805 2806 if (iocb->ki_flags & IOCB_NOWAIT) { 2807 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2808 iocb->ki_pos + count - 1)) 2809 return -EAGAIN; 2810 } else { 2811 retval = filemap_write_and_wait_range(mapping, 2812 iocb->ki_pos, 2813 iocb->ki_pos + count - 1); 2814 if (retval < 0) 2815 return retval; 2816 } 2817 2818 file_accessed(file); 2819 2820 retval = mapping->a_ops->direct_IO(iocb, iter); 2821 if (retval >= 0) { 2822 iocb->ki_pos += retval; 2823 count -= retval; 2824 } 2825 if (retval != -EIOCBQUEUED) 2826 iov_iter_revert(iter, count - iov_iter_count(iter)); 2827 2828 /* 2829 * Btrfs can have a short DIO read if we encounter 2830 * compressed extents, so if there was an error, or if 2831 * we've already read everything we wanted to, or if 2832 * there was a short read because we hit EOF, go ahead 2833 * and return. Otherwise fallthrough to buffered io for 2834 * the rest of the read. Buffered reads will not work for 2835 * DAX files, so don't bother trying. 2836 */ 2837 if (retval < 0 || !count || IS_DAX(inode)) 2838 return retval; 2839 if (iocb->ki_pos >= i_size_read(inode)) 2840 return retval; 2841 } 2842 2843 return filemap_read(iocb, iter, retval); 2844 } 2845 EXPORT_SYMBOL(generic_file_read_iter); 2846 2847 /* 2848 * Splice subpages from a folio into a pipe. 2849 */ 2850 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2851 struct folio *folio, loff_t fpos, size_t size) 2852 { 2853 struct page *page; 2854 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2855 2856 page = folio_page(folio, offset / PAGE_SIZE); 2857 size = min(size, folio_size(folio) - offset); 2858 offset %= PAGE_SIZE; 2859 2860 while (spliced < size && 2861 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2862 struct pipe_buffer *buf = pipe_head_buf(pipe); 2863 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2864 2865 *buf = (struct pipe_buffer) { 2866 .ops = &page_cache_pipe_buf_ops, 2867 .page = page, 2868 .offset = offset, 2869 .len = part, 2870 }; 2871 folio_get(folio); 2872 pipe->head++; 2873 page++; 2874 spliced += part; 2875 offset = 0; 2876 } 2877 2878 return spliced; 2879 } 2880 2881 /* 2882 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into 2883 * a pipe. 2884 */ 2885 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2886 struct pipe_inode_info *pipe, 2887 size_t len, unsigned int flags) 2888 { 2889 struct folio_batch fbatch; 2890 struct kiocb iocb; 2891 size_t total_spliced = 0, used, npages; 2892 loff_t isize, end_offset; 2893 bool writably_mapped; 2894 int i, error = 0; 2895 2896 init_sync_kiocb(&iocb, in); 2897 iocb.ki_pos = *ppos; 2898 2899 /* Work out how much data we can actually add into the pipe */ 2900 used = pipe_occupancy(pipe->head, pipe->tail); 2901 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2902 len = min_t(size_t, len, npages * PAGE_SIZE); 2903 2904 folio_batch_init(&fbatch); 2905 2906 do { 2907 cond_resched(); 2908 2909 if (*ppos >= i_size_read(file_inode(in))) 2910 break; 2911 2912 iocb.ki_pos = *ppos; 2913 error = filemap_get_pages(&iocb, len, &fbatch, true); 2914 if (error < 0) 2915 break; 2916 2917 /* 2918 * i_size must be checked after we know the pages are Uptodate. 2919 * 2920 * Checking i_size after the check allows us to calculate 2921 * the correct value for "nr", which means the zero-filled 2922 * part of the page is not copied back to userspace (unless 2923 * another truncate extends the file - this is desired though). 2924 */ 2925 isize = i_size_read(file_inode(in)); 2926 if (unlikely(*ppos >= isize)) 2927 break; 2928 end_offset = min_t(loff_t, isize, *ppos + len); 2929 2930 /* 2931 * Once we start copying data, we don't want to be touching any 2932 * cachelines that might be contended: 2933 */ 2934 writably_mapped = mapping_writably_mapped(in->f_mapping); 2935 2936 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2937 struct folio *folio = fbatch.folios[i]; 2938 size_t n; 2939 2940 if (folio_pos(folio) >= end_offset) 2941 goto out; 2942 folio_mark_accessed(folio); 2943 2944 /* 2945 * If users can be writing to this folio using arbitrary 2946 * virtual addresses, take care of potential aliasing 2947 * before reading the folio on the kernel side. 2948 */ 2949 if (writably_mapped) 2950 flush_dcache_folio(folio); 2951 2952 n = min_t(loff_t, len, isize - *ppos); 2953 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2954 if (!n) 2955 goto out; 2956 len -= n; 2957 total_spliced += n; 2958 *ppos += n; 2959 in->f_ra.prev_pos = *ppos; 2960 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2961 goto out; 2962 } 2963 2964 folio_batch_release(&fbatch); 2965 } while (len); 2966 2967 out: 2968 folio_batch_release(&fbatch); 2969 file_accessed(in); 2970 2971 return total_spliced ? total_spliced : error; 2972 } 2973 EXPORT_SYMBOL(filemap_splice_read); 2974 2975 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2976 struct address_space *mapping, struct folio *folio, 2977 loff_t start, loff_t end, bool seek_data) 2978 { 2979 const struct address_space_operations *ops = mapping->a_ops; 2980 size_t offset, bsz = i_blocksize(mapping->host); 2981 2982 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2983 return seek_data ? start : end; 2984 if (!ops->is_partially_uptodate) 2985 return seek_data ? end : start; 2986 2987 xas_pause(xas); 2988 rcu_read_unlock(); 2989 folio_lock(folio); 2990 if (unlikely(folio->mapping != mapping)) 2991 goto unlock; 2992 2993 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2994 2995 do { 2996 if (ops->is_partially_uptodate(folio, offset, bsz) == 2997 seek_data) 2998 break; 2999 start = (start + bsz) & ~(bsz - 1); 3000 offset += bsz; 3001 } while (offset < folio_size(folio)); 3002 unlock: 3003 folio_unlock(folio); 3004 rcu_read_lock(); 3005 return start; 3006 } 3007 3008 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3009 { 3010 if (xa_is_value(folio)) 3011 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 3012 return folio_size(folio); 3013 } 3014 3015 /** 3016 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3017 * @mapping: Address space to search. 3018 * @start: First byte to consider. 3019 * @end: Limit of search (exclusive). 3020 * @whence: Either SEEK_HOLE or SEEK_DATA. 3021 * 3022 * If the page cache knows which blocks contain holes and which blocks 3023 * contain data, your filesystem can use this function to implement 3024 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3025 * entirely memory-based such as tmpfs, and filesystems which support 3026 * unwritten extents. 3027 * 3028 * Return: The requested offset on success, or -ENXIO if @whence specifies 3029 * SEEK_DATA and there is no data after @start. There is an implicit hole 3030 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3031 * and @end contain data. 3032 */ 3033 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3034 loff_t end, int whence) 3035 { 3036 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3037 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3038 bool seek_data = (whence == SEEK_DATA); 3039 struct folio *folio; 3040 3041 if (end <= start) 3042 return -ENXIO; 3043 3044 rcu_read_lock(); 3045 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3046 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3047 size_t seek_size; 3048 3049 if (start < pos) { 3050 if (!seek_data) 3051 goto unlock; 3052 start = pos; 3053 } 3054 3055 seek_size = seek_folio_size(&xas, folio); 3056 pos = round_up((u64)pos + 1, seek_size); 3057 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3058 seek_data); 3059 if (start < pos) 3060 goto unlock; 3061 if (start >= end) 3062 break; 3063 if (seek_size > PAGE_SIZE) 3064 xas_set(&xas, pos >> PAGE_SHIFT); 3065 if (!xa_is_value(folio)) 3066 folio_put(folio); 3067 } 3068 if (seek_data) 3069 start = -ENXIO; 3070 unlock: 3071 rcu_read_unlock(); 3072 if (folio && !xa_is_value(folio)) 3073 folio_put(folio); 3074 if (start > end) 3075 return end; 3076 return start; 3077 } 3078 3079 #ifdef CONFIG_MMU 3080 #define MMAP_LOTSAMISS (100) 3081 /* 3082 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3083 * @vmf - the vm_fault for this fault. 3084 * @folio - the folio to lock. 3085 * @fpin - the pointer to the file we may pin (or is already pinned). 3086 * 3087 * This works similar to lock_folio_or_retry in that it can drop the 3088 * mmap_lock. It differs in that it actually returns the folio locked 3089 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3090 * to drop the mmap_lock then fpin will point to the pinned file and 3091 * needs to be fput()'ed at a later point. 3092 */ 3093 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3094 struct file **fpin) 3095 { 3096 if (folio_trylock(folio)) 3097 return 1; 3098 3099 /* 3100 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3101 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3102 * is supposed to work. We have way too many special cases.. 3103 */ 3104 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3105 return 0; 3106 3107 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3108 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3109 if (__folio_lock_killable(folio)) { 3110 /* 3111 * We didn't have the right flags to drop the mmap_lock, 3112 * but all fault_handlers only check for fatal signals 3113 * if we return VM_FAULT_RETRY, so we need to drop the 3114 * mmap_lock here and return 0 if we don't have a fpin. 3115 */ 3116 if (*fpin == NULL) 3117 mmap_read_unlock(vmf->vma->vm_mm); 3118 return 0; 3119 } 3120 } else 3121 __folio_lock(folio); 3122 3123 return 1; 3124 } 3125 3126 /* 3127 * Synchronous readahead happens when we don't even find a page in the page 3128 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3129 * to drop the mmap sem we return the file that was pinned in order for us to do 3130 * that. If we didn't pin a file then we return NULL. The file that is 3131 * returned needs to be fput()'ed when we're done with it. 3132 */ 3133 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3134 { 3135 struct file *file = vmf->vma->vm_file; 3136 struct file_ra_state *ra = &file->f_ra; 3137 struct address_space *mapping = file->f_mapping; 3138 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3139 struct file *fpin = NULL; 3140 unsigned long vm_flags = vmf->vma->vm_flags; 3141 unsigned int mmap_miss; 3142 3143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3144 /* Use the readahead code, even if readahead is disabled */ 3145 if (vm_flags & VM_HUGEPAGE) { 3146 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3147 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3148 ra->size = HPAGE_PMD_NR; 3149 /* 3150 * Fetch two PMD folios, so we get the chance to actually 3151 * readahead, unless we've been told not to. 3152 */ 3153 if (!(vm_flags & VM_RAND_READ)) 3154 ra->size *= 2; 3155 ra->async_size = HPAGE_PMD_NR; 3156 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3157 return fpin; 3158 } 3159 #endif 3160 3161 /* If we don't want any read-ahead, don't bother */ 3162 if (vm_flags & VM_RAND_READ) 3163 return fpin; 3164 if (!ra->ra_pages) 3165 return fpin; 3166 3167 if (vm_flags & VM_SEQ_READ) { 3168 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3169 page_cache_sync_ra(&ractl, ra->ra_pages); 3170 return fpin; 3171 } 3172 3173 /* Avoid banging the cache line if not needed */ 3174 mmap_miss = READ_ONCE(ra->mmap_miss); 3175 if (mmap_miss < MMAP_LOTSAMISS * 10) 3176 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3177 3178 /* 3179 * Do we miss much more than hit in this file? If so, 3180 * stop bothering with read-ahead. It will only hurt. 3181 */ 3182 if (mmap_miss > MMAP_LOTSAMISS) 3183 return fpin; 3184 3185 /* 3186 * mmap read-around 3187 */ 3188 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3189 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3190 ra->size = ra->ra_pages; 3191 ra->async_size = ra->ra_pages / 4; 3192 ractl._index = ra->start; 3193 page_cache_ra_order(&ractl, ra, 0); 3194 return fpin; 3195 } 3196 3197 /* 3198 * Asynchronous readahead happens when we find the page and PG_readahead, 3199 * so we want to possibly extend the readahead further. We return the file that 3200 * was pinned if we have to drop the mmap_lock in order to do IO. 3201 */ 3202 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3203 struct folio *folio) 3204 { 3205 struct file *file = vmf->vma->vm_file; 3206 struct file_ra_state *ra = &file->f_ra; 3207 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3208 struct file *fpin = NULL; 3209 unsigned int mmap_miss; 3210 3211 /* If we don't want any read-ahead, don't bother */ 3212 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3213 return fpin; 3214 3215 mmap_miss = READ_ONCE(ra->mmap_miss); 3216 if (mmap_miss) 3217 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3218 3219 if (folio_test_readahead(folio)) { 3220 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3221 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3222 } 3223 return fpin; 3224 } 3225 3226 /** 3227 * filemap_fault - read in file data for page fault handling 3228 * @vmf: struct vm_fault containing details of the fault 3229 * 3230 * filemap_fault() is invoked via the vma operations vector for a 3231 * mapped memory region to read in file data during a page fault. 3232 * 3233 * The goto's are kind of ugly, but this streamlines the normal case of having 3234 * it in the page cache, and handles the special cases reasonably without 3235 * having a lot of duplicated code. 3236 * 3237 * vma->vm_mm->mmap_lock must be held on entry. 3238 * 3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3241 * 3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3243 * has not been released. 3244 * 3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3246 * 3247 * Return: bitwise-OR of %VM_FAULT_ codes. 3248 */ 3249 vm_fault_t filemap_fault(struct vm_fault *vmf) 3250 { 3251 int error; 3252 struct file *file = vmf->vma->vm_file; 3253 struct file *fpin = NULL; 3254 struct address_space *mapping = file->f_mapping; 3255 struct inode *inode = mapping->host; 3256 pgoff_t max_idx, index = vmf->pgoff; 3257 struct folio *folio; 3258 vm_fault_t ret = 0; 3259 bool mapping_locked = false; 3260 3261 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3262 if (unlikely(index >= max_idx)) 3263 return VM_FAULT_SIGBUS; 3264 3265 /* 3266 * Do we have something in the page cache already? 3267 */ 3268 folio = filemap_get_folio(mapping, index); 3269 if (likely(!IS_ERR(folio))) { 3270 /* 3271 * We found the page, so try async readahead before waiting for 3272 * the lock. 3273 */ 3274 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3275 fpin = do_async_mmap_readahead(vmf, folio); 3276 if (unlikely(!folio_test_uptodate(folio))) { 3277 filemap_invalidate_lock_shared(mapping); 3278 mapping_locked = true; 3279 } 3280 } else { 3281 /* No page in the page cache at all */ 3282 count_vm_event(PGMAJFAULT); 3283 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3284 ret = VM_FAULT_MAJOR; 3285 fpin = do_sync_mmap_readahead(vmf); 3286 retry_find: 3287 /* 3288 * See comment in filemap_create_folio() why we need 3289 * invalidate_lock 3290 */ 3291 if (!mapping_locked) { 3292 filemap_invalidate_lock_shared(mapping); 3293 mapping_locked = true; 3294 } 3295 folio = __filemap_get_folio(mapping, index, 3296 FGP_CREAT|FGP_FOR_MMAP, 3297 vmf->gfp_mask); 3298 if (IS_ERR(folio)) { 3299 if (fpin) 3300 goto out_retry; 3301 filemap_invalidate_unlock_shared(mapping); 3302 return VM_FAULT_OOM; 3303 } 3304 } 3305 3306 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3307 goto out_retry; 3308 3309 /* Did it get truncated? */ 3310 if (unlikely(folio->mapping != mapping)) { 3311 folio_unlock(folio); 3312 folio_put(folio); 3313 goto retry_find; 3314 } 3315 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3316 3317 /* 3318 * We have a locked page in the page cache, now we need to check 3319 * that it's up-to-date. If not, it is going to be due to an error. 3320 */ 3321 if (unlikely(!folio_test_uptodate(folio))) { 3322 /* 3323 * The page was in cache and uptodate and now it is not. 3324 * Strange but possible since we didn't hold the page lock all 3325 * the time. Let's drop everything get the invalidate lock and 3326 * try again. 3327 */ 3328 if (!mapping_locked) { 3329 folio_unlock(folio); 3330 folio_put(folio); 3331 goto retry_find; 3332 } 3333 goto page_not_uptodate; 3334 } 3335 3336 /* 3337 * We've made it this far and we had to drop our mmap_lock, now is the 3338 * time to return to the upper layer and have it re-find the vma and 3339 * redo the fault. 3340 */ 3341 if (fpin) { 3342 folio_unlock(folio); 3343 goto out_retry; 3344 } 3345 if (mapping_locked) 3346 filemap_invalidate_unlock_shared(mapping); 3347 3348 /* 3349 * Found the page and have a reference on it. 3350 * We must recheck i_size under page lock. 3351 */ 3352 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3353 if (unlikely(index >= max_idx)) { 3354 folio_unlock(folio); 3355 folio_put(folio); 3356 return VM_FAULT_SIGBUS; 3357 } 3358 3359 vmf->page = folio_file_page(folio, index); 3360 return ret | VM_FAULT_LOCKED; 3361 3362 page_not_uptodate: 3363 /* 3364 * Umm, take care of errors if the page isn't up-to-date. 3365 * Try to re-read it _once_. We do this synchronously, 3366 * because there really aren't any performance issues here 3367 * and we need to check for errors. 3368 */ 3369 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3370 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3371 if (fpin) 3372 goto out_retry; 3373 folio_put(folio); 3374 3375 if (!error || error == AOP_TRUNCATED_PAGE) 3376 goto retry_find; 3377 filemap_invalidate_unlock_shared(mapping); 3378 3379 return VM_FAULT_SIGBUS; 3380 3381 out_retry: 3382 /* 3383 * We dropped the mmap_lock, we need to return to the fault handler to 3384 * re-find the vma and come back and find our hopefully still populated 3385 * page. 3386 */ 3387 if (!IS_ERR(folio)) 3388 folio_put(folio); 3389 if (mapping_locked) 3390 filemap_invalidate_unlock_shared(mapping); 3391 if (fpin) 3392 fput(fpin); 3393 return ret | VM_FAULT_RETRY; 3394 } 3395 EXPORT_SYMBOL(filemap_fault); 3396 3397 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3398 pgoff_t start) 3399 { 3400 struct mm_struct *mm = vmf->vma->vm_mm; 3401 3402 /* Huge page is mapped? No need to proceed. */ 3403 if (pmd_trans_huge(*vmf->pmd)) { 3404 folio_unlock(folio); 3405 folio_put(folio); 3406 return true; 3407 } 3408 3409 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3410 struct page *page = folio_file_page(folio, start); 3411 vm_fault_t ret = do_set_pmd(vmf, page); 3412 if (!ret) { 3413 /* The page is mapped successfully, reference consumed. */ 3414 folio_unlock(folio); 3415 return true; 3416 } 3417 } 3418 3419 if (pmd_none(*vmf->pmd)) 3420 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3421 3422 /* See comment in handle_pte_fault() */ 3423 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3424 folio_unlock(folio); 3425 folio_put(folio); 3426 return true; 3427 } 3428 3429 return false; 3430 } 3431 3432 static struct folio *next_uptodate_page(struct folio *folio, 3433 struct address_space *mapping, 3434 struct xa_state *xas, pgoff_t end_pgoff) 3435 { 3436 unsigned long max_idx; 3437 3438 do { 3439 if (!folio) 3440 return NULL; 3441 if (xas_retry(xas, folio)) 3442 continue; 3443 if (xa_is_value(folio)) 3444 continue; 3445 if (folio_test_locked(folio)) 3446 continue; 3447 if (!folio_try_get_rcu(folio)) 3448 continue; 3449 /* Has the page moved or been split? */ 3450 if (unlikely(folio != xas_reload(xas))) 3451 goto skip; 3452 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3453 goto skip; 3454 if (!folio_trylock(folio)) 3455 goto skip; 3456 if (folio->mapping != mapping) 3457 goto unlock; 3458 if (!folio_test_uptodate(folio)) 3459 goto unlock; 3460 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3461 if (xas->xa_index >= max_idx) 3462 goto unlock; 3463 return folio; 3464 unlock: 3465 folio_unlock(folio); 3466 skip: 3467 folio_put(folio); 3468 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3469 3470 return NULL; 3471 } 3472 3473 static inline struct folio *first_map_page(struct address_space *mapping, 3474 struct xa_state *xas, 3475 pgoff_t end_pgoff) 3476 { 3477 return next_uptodate_page(xas_find(xas, end_pgoff), 3478 mapping, xas, end_pgoff); 3479 } 3480 3481 static inline struct folio *next_map_page(struct address_space *mapping, 3482 struct xa_state *xas, 3483 pgoff_t end_pgoff) 3484 { 3485 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3486 mapping, xas, end_pgoff); 3487 } 3488 3489 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3490 pgoff_t start_pgoff, pgoff_t end_pgoff) 3491 { 3492 struct vm_area_struct *vma = vmf->vma; 3493 struct file *file = vma->vm_file; 3494 struct address_space *mapping = file->f_mapping; 3495 pgoff_t last_pgoff = start_pgoff; 3496 unsigned long addr; 3497 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3498 struct folio *folio; 3499 struct page *page; 3500 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3501 vm_fault_t ret = 0; 3502 3503 rcu_read_lock(); 3504 folio = first_map_page(mapping, &xas, end_pgoff); 3505 if (!folio) 3506 goto out; 3507 3508 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3509 ret = VM_FAULT_NOPAGE; 3510 goto out; 3511 } 3512 3513 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3514 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3515 do { 3516 again: 3517 page = folio_file_page(folio, xas.xa_index); 3518 if (PageHWPoison(page)) 3519 goto unlock; 3520 3521 if (mmap_miss > 0) 3522 mmap_miss--; 3523 3524 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3525 vmf->pte += xas.xa_index - last_pgoff; 3526 last_pgoff = xas.xa_index; 3527 3528 /* 3529 * NOTE: If there're PTE markers, we'll leave them to be 3530 * handled in the specific fault path, and it'll prohibit the 3531 * fault-around logic. 3532 */ 3533 if (!pte_none(*vmf->pte)) 3534 goto unlock; 3535 3536 /* We're about to handle the fault */ 3537 if (vmf->address == addr) 3538 ret = VM_FAULT_NOPAGE; 3539 3540 do_set_pte(vmf, page, addr); 3541 /* no need to invalidate: a not-present page won't be cached */ 3542 update_mmu_cache(vma, addr, vmf->pte); 3543 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3544 xas.xa_index++; 3545 folio_ref_inc(folio); 3546 goto again; 3547 } 3548 folio_unlock(folio); 3549 continue; 3550 unlock: 3551 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3552 xas.xa_index++; 3553 goto again; 3554 } 3555 folio_unlock(folio); 3556 folio_put(folio); 3557 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3558 pte_unmap_unlock(vmf->pte, vmf->ptl); 3559 out: 3560 rcu_read_unlock(); 3561 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3562 return ret; 3563 } 3564 EXPORT_SYMBOL(filemap_map_pages); 3565 3566 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3567 { 3568 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3569 struct folio *folio = page_folio(vmf->page); 3570 vm_fault_t ret = VM_FAULT_LOCKED; 3571 3572 sb_start_pagefault(mapping->host->i_sb); 3573 file_update_time(vmf->vma->vm_file); 3574 folio_lock(folio); 3575 if (folio->mapping != mapping) { 3576 folio_unlock(folio); 3577 ret = VM_FAULT_NOPAGE; 3578 goto out; 3579 } 3580 /* 3581 * We mark the folio dirty already here so that when freeze is in 3582 * progress, we are guaranteed that writeback during freezing will 3583 * see the dirty folio and writeprotect it again. 3584 */ 3585 folio_mark_dirty(folio); 3586 folio_wait_stable(folio); 3587 out: 3588 sb_end_pagefault(mapping->host->i_sb); 3589 return ret; 3590 } 3591 3592 const struct vm_operations_struct generic_file_vm_ops = { 3593 .fault = filemap_fault, 3594 .map_pages = filemap_map_pages, 3595 .page_mkwrite = filemap_page_mkwrite, 3596 }; 3597 3598 /* This is used for a general mmap of a disk file */ 3599 3600 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3601 { 3602 struct address_space *mapping = file->f_mapping; 3603 3604 if (!mapping->a_ops->read_folio) 3605 return -ENOEXEC; 3606 file_accessed(file); 3607 vma->vm_ops = &generic_file_vm_ops; 3608 return 0; 3609 } 3610 3611 /* 3612 * This is for filesystems which do not implement ->writepage. 3613 */ 3614 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3615 { 3616 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3617 return -EINVAL; 3618 return generic_file_mmap(file, vma); 3619 } 3620 #else 3621 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3622 { 3623 return VM_FAULT_SIGBUS; 3624 } 3625 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3626 { 3627 return -ENOSYS; 3628 } 3629 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3630 { 3631 return -ENOSYS; 3632 } 3633 #endif /* CONFIG_MMU */ 3634 3635 EXPORT_SYMBOL(filemap_page_mkwrite); 3636 EXPORT_SYMBOL(generic_file_mmap); 3637 EXPORT_SYMBOL(generic_file_readonly_mmap); 3638 3639 static struct folio *do_read_cache_folio(struct address_space *mapping, 3640 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3641 { 3642 struct folio *folio; 3643 int err; 3644 3645 if (!filler) 3646 filler = mapping->a_ops->read_folio; 3647 repeat: 3648 folio = filemap_get_folio(mapping, index); 3649 if (IS_ERR(folio)) { 3650 folio = filemap_alloc_folio(gfp, 0); 3651 if (!folio) 3652 return ERR_PTR(-ENOMEM); 3653 err = filemap_add_folio(mapping, folio, index, gfp); 3654 if (unlikely(err)) { 3655 folio_put(folio); 3656 if (err == -EEXIST) 3657 goto repeat; 3658 /* Presumably ENOMEM for xarray node */ 3659 return ERR_PTR(err); 3660 } 3661 3662 goto filler; 3663 } 3664 if (folio_test_uptodate(folio)) 3665 goto out; 3666 3667 if (!folio_trylock(folio)) { 3668 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3669 goto repeat; 3670 } 3671 3672 /* Folio was truncated from mapping */ 3673 if (!folio->mapping) { 3674 folio_unlock(folio); 3675 folio_put(folio); 3676 goto repeat; 3677 } 3678 3679 /* Someone else locked and filled the page in a very small window */ 3680 if (folio_test_uptodate(folio)) { 3681 folio_unlock(folio); 3682 goto out; 3683 } 3684 3685 filler: 3686 err = filemap_read_folio(file, filler, folio); 3687 if (err) { 3688 folio_put(folio); 3689 if (err == AOP_TRUNCATED_PAGE) 3690 goto repeat; 3691 return ERR_PTR(err); 3692 } 3693 3694 out: 3695 folio_mark_accessed(folio); 3696 return folio; 3697 } 3698 3699 /** 3700 * read_cache_folio - Read into page cache, fill it if needed. 3701 * @mapping: The address_space to read from. 3702 * @index: The index to read. 3703 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3704 * @file: Passed to filler function, may be NULL if not required. 3705 * 3706 * Read one page into the page cache. If it succeeds, the folio returned 3707 * will contain @index, but it may not be the first page of the folio. 3708 * 3709 * If the filler function returns an error, it will be returned to the 3710 * caller. 3711 * 3712 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3713 * Return: An uptodate folio on success, ERR_PTR() on failure. 3714 */ 3715 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3716 filler_t filler, struct file *file) 3717 { 3718 return do_read_cache_folio(mapping, index, filler, file, 3719 mapping_gfp_mask(mapping)); 3720 } 3721 EXPORT_SYMBOL(read_cache_folio); 3722 3723 /** 3724 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3725 * @mapping: The address_space for the folio. 3726 * @index: The index that the allocated folio will contain. 3727 * @gfp: The page allocator flags to use if allocating. 3728 * 3729 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3730 * any new memory allocations done using the specified allocation flags. 3731 * 3732 * The most likely error from this function is EIO, but ENOMEM is 3733 * possible and so is EINTR. If ->read_folio returns another error, 3734 * that will be returned to the caller. 3735 * 3736 * The function expects mapping->invalidate_lock to be already held. 3737 * 3738 * Return: Uptodate folio on success, ERR_PTR() on failure. 3739 */ 3740 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3741 pgoff_t index, gfp_t gfp) 3742 { 3743 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3744 } 3745 EXPORT_SYMBOL(mapping_read_folio_gfp); 3746 3747 static struct page *do_read_cache_page(struct address_space *mapping, 3748 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3749 { 3750 struct folio *folio; 3751 3752 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3753 if (IS_ERR(folio)) 3754 return &folio->page; 3755 return folio_file_page(folio, index); 3756 } 3757 3758 struct page *read_cache_page(struct address_space *mapping, 3759 pgoff_t index, filler_t *filler, struct file *file) 3760 { 3761 return do_read_cache_page(mapping, index, filler, file, 3762 mapping_gfp_mask(mapping)); 3763 } 3764 EXPORT_SYMBOL(read_cache_page); 3765 3766 /** 3767 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3768 * @mapping: the page's address_space 3769 * @index: the page index 3770 * @gfp: the page allocator flags to use if allocating 3771 * 3772 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3773 * any new page allocations done using the specified allocation flags. 3774 * 3775 * If the page does not get brought uptodate, return -EIO. 3776 * 3777 * The function expects mapping->invalidate_lock to be already held. 3778 * 3779 * Return: up to date page on success, ERR_PTR() on failure. 3780 */ 3781 struct page *read_cache_page_gfp(struct address_space *mapping, 3782 pgoff_t index, 3783 gfp_t gfp) 3784 { 3785 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3786 } 3787 EXPORT_SYMBOL(read_cache_page_gfp); 3788 3789 /* 3790 * Warn about a page cache invalidation failure during a direct I/O write. 3791 */ 3792 void dio_warn_stale_pagecache(struct file *filp) 3793 { 3794 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3795 char pathname[128]; 3796 char *path; 3797 3798 errseq_set(&filp->f_mapping->wb_err, -EIO); 3799 if (__ratelimit(&_rs)) { 3800 path = file_path(filp, pathname, sizeof(pathname)); 3801 if (IS_ERR(path)) 3802 path = "(unknown)"; 3803 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3804 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3805 current->comm); 3806 } 3807 } 3808 3809 ssize_t 3810 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3811 { 3812 struct file *file = iocb->ki_filp; 3813 struct address_space *mapping = file->f_mapping; 3814 struct inode *inode = mapping->host; 3815 loff_t pos = iocb->ki_pos; 3816 ssize_t written; 3817 size_t write_len; 3818 pgoff_t end; 3819 3820 write_len = iov_iter_count(from); 3821 end = (pos + write_len - 1) >> PAGE_SHIFT; 3822 3823 if (iocb->ki_flags & IOCB_NOWAIT) { 3824 /* If there are pages to writeback, return */ 3825 if (filemap_range_has_page(file->f_mapping, pos, 3826 pos + write_len - 1)) 3827 return -EAGAIN; 3828 } else { 3829 written = filemap_write_and_wait_range(mapping, pos, 3830 pos + write_len - 1); 3831 if (written) 3832 goto out; 3833 } 3834 3835 /* 3836 * After a write we want buffered reads to be sure to go to disk to get 3837 * the new data. We invalidate clean cached page from the region we're 3838 * about to write. We do this *before* the write so that we can return 3839 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3840 */ 3841 written = invalidate_inode_pages2_range(mapping, 3842 pos >> PAGE_SHIFT, end); 3843 /* 3844 * If a page can not be invalidated, return 0 to fall back 3845 * to buffered write. 3846 */ 3847 if (written) { 3848 if (written == -EBUSY) 3849 return 0; 3850 goto out; 3851 } 3852 3853 written = mapping->a_ops->direct_IO(iocb, from); 3854 3855 /* 3856 * Finally, try again to invalidate clean pages which might have been 3857 * cached by non-direct readahead, or faulted in by get_user_pages() 3858 * if the source of the write was an mmap'ed region of the file 3859 * we're writing. Either one is a pretty crazy thing to do, 3860 * so we don't support it 100%. If this invalidation 3861 * fails, tough, the write still worked... 3862 * 3863 * Most of the time we do not need this since dio_complete() will do 3864 * the invalidation for us. However there are some file systems that 3865 * do not end up with dio_complete() being called, so let's not break 3866 * them by removing it completely. 3867 * 3868 * Noticeable example is a blkdev_direct_IO(). 3869 * 3870 * Skip invalidation for async writes or if mapping has no pages. 3871 */ 3872 if (written > 0 && mapping->nrpages && 3873 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3874 dio_warn_stale_pagecache(file); 3875 3876 if (written > 0) { 3877 pos += written; 3878 write_len -= written; 3879 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3880 i_size_write(inode, pos); 3881 mark_inode_dirty(inode); 3882 } 3883 iocb->ki_pos = pos; 3884 } 3885 if (written != -EIOCBQUEUED) 3886 iov_iter_revert(from, write_len - iov_iter_count(from)); 3887 out: 3888 return written; 3889 } 3890 EXPORT_SYMBOL(generic_file_direct_write); 3891 3892 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3893 { 3894 struct file *file = iocb->ki_filp; 3895 loff_t pos = iocb->ki_pos; 3896 struct address_space *mapping = file->f_mapping; 3897 const struct address_space_operations *a_ops = mapping->a_ops; 3898 long status = 0; 3899 ssize_t written = 0; 3900 3901 do { 3902 struct page *page; 3903 unsigned long offset; /* Offset into pagecache page */ 3904 unsigned long bytes; /* Bytes to write to page */ 3905 size_t copied; /* Bytes copied from user */ 3906 void *fsdata = NULL; 3907 3908 offset = (pos & (PAGE_SIZE - 1)); 3909 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3910 iov_iter_count(i)); 3911 3912 again: 3913 /* 3914 * Bring in the user page that we will copy from _first_. 3915 * Otherwise there's a nasty deadlock on copying from the 3916 * same page as we're writing to, without it being marked 3917 * up-to-date. 3918 */ 3919 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3920 status = -EFAULT; 3921 break; 3922 } 3923 3924 if (fatal_signal_pending(current)) { 3925 status = -EINTR; 3926 break; 3927 } 3928 3929 status = a_ops->write_begin(file, mapping, pos, bytes, 3930 &page, &fsdata); 3931 if (unlikely(status < 0)) 3932 break; 3933 3934 if (mapping_writably_mapped(mapping)) 3935 flush_dcache_page(page); 3936 3937 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3938 flush_dcache_page(page); 3939 3940 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3941 page, fsdata); 3942 if (unlikely(status != copied)) { 3943 iov_iter_revert(i, copied - max(status, 0L)); 3944 if (unlikely(status < 0)) 3945 break; 3946 } 3947 cond_resched(); 3948 3949 if (unlikely(status == 0)) { 3950 /* 3951 * A short copy made ->write_end() reject the 3952 * thing entirely. Might be memory poisoning 3953 * halfway through, might be a race with munmap, 3954 * might be severe memory pressure. 3955 */ 3956 if (copied) 3957 bytes = copied; 3958 goto again; 3959 } 3960 pos += status; 3961 written += status; 3962 3963 balance_dirty_pages_ratelimited(mapping); 3964 } while (iov_iter_count(i)); 3965 3966 return written ? written : status; 3967 } 3968 EXPORT_SYMBOL(generic_perform_write); 3969 3970 /** 3971 * __generic_file_write_iter - write data to a file 3972 * @iocb: IO state structure (file, offset, etc.) 3973 * @from: iov_iter with data to write 3974 * 3975 * This function does all the work needed for actually writing data to a 3976 * file. It does all basic checks, removes SUID from the file, updates 3977 * modification times and calls proper subroutines depending on whether we 3978 * do direct IO or a standard buffered write. 3979 * 3980 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3981 * object which does not need locking at all. 3982 * 3983 * This function does *not* take care of syncing data in case of O_SYNC write. 3984 * A caller has to handle it. This is mainly due to the fact that we want to 3985 * avoid syncing under i_rwsem. 3986 * 3987 * Return: 3988 * * number of bytes written, even for truncated writes 3989 * * negative error code if no data has been written at all 3990 */ 3991 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3992 { 3993 struct file *file = iocb->ki_filp; 3994 struct address_space *mapping = file->f_mapping; 3995 struct inode *inode = mapping->host; 3996 ssize_t written = 0; 3997 ssize_t err; 3998 ssize_t status; 3999 4000 /* We can write back this queue in page reclaim */ 4001 current->backing_dev_info = inode_to_bdi(inode); 4002 err = file_remove_privs(file); 4003 if (err) 4004 goto out; 4005 4006 err = file_update_time(file); 4007 if (err) 4008 goto out; 4009 4010 if (iocb->ki_flags & IOCB_DIRECT) { 4011 loff_t pos, endbyte; 4012 4013 written = generic_file_direct_write(iocb, from); 4014 /* 4015 * If the write stopped short of completing, fall back to 4016 * buffered writes. Some filesystems do this for writes to 4017 * holes, for example. For DAX files, a buffered write will 4018 * not succeed (even if it did, DAX does not handle dirty 4019 * page-cache pages correctly). 4020 */ 4021 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4022 goto out; 4023 4024 pos = iocb->ki_pos; 4025 status = generic_perform_write(iocb, from); 4026 /* 4027 * If generic_perform_write() returned a synchronous error 4028 * then we want to return the number of bytes which were 4029 * direct-written, or the error code if that was zero. Note 4030 * that this differs from normal direct-io semantics, which 4031 * will return -EFOO even if some bytes were written. 4032 */ 4033 if (unlikely(status < 0)) { 4034 err = status; 4035 goto out; 4036 } 4037 /* 4038 * We need to ensure that the page cache pages are written to 4039 * disk and invalidated to preserve the expected O_DIRECT 4040 * semantics. 4041 */ 4042 endbyte = pos + status - 1; 4043 err = filemap_write_and_wait_range(mapping, pos, endbyte); 4044 if (err == 0) { 4045 iocb->ki_pos = endbyte + 1; 4046 written += status; 4047 invalidate_mapping_pages(mapping, 4048 pos >> PAGE_SHIFT, 4049 endbyte >> PAGE_SHIFT); 4050 } else { 4051 /* 4052 * We don't know how much we wrote, so just return 4053 * the number of bytes which were direct-written 4054 */ 4055 } 4056 } else { 4057 written = generic_perform_write(iocb, from); 4058 if (likely(written > 0)) 4059 iocb->ki_pos += written; 4060 } 4061 out: 4062 current->backing_dev_info = NULL; 4063 return written ? written : err; 4064 } 4065 EXPORT_SYMBOL(__generic_file_write_iter); 4066 4067 /** 4068 * generic_file_write_iter - write data to a file 4069 * @iocb: IO state structure 4070 * @from: iov_iter with data to write 4071 * 4072 * This is a wrapper around __generic_file_write_iter() to be used by most 4073 * filesystems. It takes care of syncing the file in case of O_SYNC file 4074 * and acquires i_rwsem as needed. 4075 * Return: 4076 * * negative error code if no data has been written at all of 4077 * vfs_fsync_range() failed for a synchronous write 4078 * * number of bytes written, even for truncated writes 4079 */ 4080 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4081 { 4082 struct file *file = iocb->ki_filp; 4083 struct inode *inode = file->f_mapping->host; 4084 ssize_t ret; 4085 4086 inode_lock(inode); 4087 ret = generic_write_checks(iocb, from); 4088 if (ret > 0) 4089 ret = __generic_file_write_iter(iocb, from); 4090 inode_unlock(inode); 4091 4092 if (ret > 0) 4093 ret = generic_write_sync(iocb, ret); 4094 return ret; 4095 } 4096 EXPORT_SYMBOL(generic_file_write_iter); 4097 4098 /** 4099 * filemap_release_folio() - Release fs-specific metadata on a folio. 4100 * @folio: The folio which the kernel is trying to free. 4101 * @gfp: Memory allocation flags (and I/O mode). 4102 * 4103 * The address_space is trying to release any data attached to a folio 4104 * (presumably at folio->private). 4105 * 4106 * This will also be called if the private_2 flag is set on a page, 4107 * indicating that the folio has other metadata associated with it. 4108 * 4109 * The @gfp argument specifies whether I/O may be performed to release 4110 * this page (__GFP_IO), and whether the call may block 4111 * (__GFP_RECLAIM & __GFP_FS). 4112 * 4113 * Return: %true if the release was successful, otherwise %false. 4114 */ 4115 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4116 { 4117 struct address_space * const mapping = folio->mapping; 4118 4119 BUG_ON(!folio_test_locked(folio)); 4120 if (folio_test_writeback(folio)) 4121 return false; 4122 4123 if (mapping && mapping->a_ops->release_folio) 4124 return mapping->a_ops->release_folio(folio, gfp); 4125 return try_to_free_buffers(folio); 4126 } 4127 EXPORT_SYMBOL(filemap_release_folio); 4128