1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 106 * ->inode->i_lock (zap_pte_range->set_page_dirty) 107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 108 * 109 * ->i_mmap_rwsem 110 * ->tasklist_lock (memory_failure, collect_procs_ao) 111 */ 112 113 static int page_cache_tree_insert(struct address_space *mapping, 114 struct page *page, void **shadowp) 115 { 116 struct radix_tree_node *node; 117 void **slot; 118 int error; 119 120 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 121 &node, &slot); 122 if (error) 123 return error; 124 if (*slot) { 125 void *p; 126 127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 128 if (!radix_tree_exceptional_entry(p)) 129 return -EEXIST; 130 131 mapping->nrexceptional--; 132 if (!dax_mapping(mapping)) { 133 if (shadowp) 134 *shadowp = p; 135 } else { 136 /* DAX can replace empty locked entry with a hole */ 137 WARN_ON_ONCE(p != 138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); 139 /* Wakeup waiters for exceptional entry lock */ 140 dax_wake_mapping_entry_waiter(mapping, page->index, p, 141 true); 142 } 143 } 144 __radix_tree_replace(&mapping->page_tree, node, slot, page, 145 workingset_update_node, mapping); 146 mapping->nrpages++; 147 return 0; 148 } 149 150 static void page_cache_tree_delete(struct address_space *mapping, 151 struct page *page, void *shadow) 152 { 153 int i, nr; 154 155 /* hugetlb pages are represented by one entry in the radix tree */ 156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 157 158 VM_BUG_ON_PAGE(!PageLocked(page), page); 159 VM_BUG_ON_PAGE(PageTail(page), page); 160 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 161 162 for (i = 0; i < nr; i++) { 163 struct radix_tree_node *node; 164 void **slot; 165 166 __radix_tree_lookup(&mapping->page_tree, page->index + i, 167 &node, &slot); 168 169 VM_BUG_ON_PAGE(!node && nr != 1, page); 170 171 radix_tree_clear_tags(&mapping->page_tree, node, slot); 172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 173 workingset_update_node, mapping); 174 } 175 176 if (shadow) { 177 mapping->nrexceptional += nr; 178 /* 179 * Make sure the nrexceptional update is committed before 180 * the nrpages update so that final truncate racing 181 * with reclaim does not see both counters 0 at the 182 * same time and miss a shadow entry. 183 */ 184 smp_wmb(); 185 } 186 mapping->nrpages -= nr; 187 } 188 189 /* 190 * Delete a page from the page cache and free it. Caller has to make 191 * sure the page is locked and that nobody else uses it - or that usage 192 * is safe. The caller must hold the mapping's tree_lock. 193 */ 194 void __delete_from_page_cache(struct page *page, void *shadow) 195 { 196 struct address_space *mapping = page->mapping; 197 int nr = hpage_nr_pages(page); 198 199 trace_mm_filemap_delete_from_page_cache(page); 200 /* 201 * if we're uptodate, flush out into the cleancache, otherwise 202 * invalidate any existing cleancache entries. We can't leave 203 * stale data around in the cleancache once our page is gone 204 */ 205 if (PageUptodate(page) && PageMappedToDisk(page)) 206 cleancache_put_page(page); 207 else 208 cleancache_invalidate_page(mapping, page); 209 210 VM_BUG_ON_PAGE(PageTail(page), page); 211 VM_BUG_ON_PAGE(page_mapped(page), page); 212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 213 int mapcount; 214 215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 216 current->comm, page_to_pfn(page)); 217 dump_page(page, "still mapped when deleted"); 218 dump_stack(); 219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 220 221 mapcount = page_mapcount(page); 222 if (mapping_exiting(mapping) && 223 page_count(page) >= mapcount + 2) { 224 /* 225 * All vmas have already been torn down, so it's 226 * a good bet that actually the page is unmapped, 227 * and we'd prefer not to leak it: if we're wrong, 228 * some other bad page check should catch it later. 229 */ 230 page_mapcount_reset(page); 231 page_ref_sub(page, mapcount); 232 } 233 } 234 235 page_cache_tree_delete(mapping, page, shadow); 236 237 page->mapping = NULL; 238 /* Leave page->index set: truncation lookup relies upon it */ 239 240 /* hugetlb pages do not participate in page cache accounting. */ 241 if (!PageHuge(page)) 242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 243 if (PageSwapBacked(page)) { 244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 245 if (PageTransHuge(page)) 246 __dec_node_page_state(page, NR_SHMEM_THPS); 247 } else { 248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 249 } 250 251 /* 252 * At this point page must be either written or cleaned by truncate. 253 * Dirty page here signals a bug and loss of unwritten data. 254 * 255 * This fixes dirty accounting after removing the page entirely but 256 * leaves PageDirty set: it has no effect for truncated page and 257 * anyway will be cleared before returning page into buddy allocator. 258 */ 259 if (WARN_ON_ONCE(PageDirty(page))) 260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 261 } 262 263 /** 264 * delete_from_page_cache - delete page from page cache 265 * @page: the page which the kernel is trying to remove from page cache 266 * 267 * This must be called only on pages that have been verified to be in the page 268 * cache and locked. It will never put the page into the free list, the caller 269 * has a reference on the page. 270 */ 271 void delete_from_page_cache(struct page *page) 272 { 273 struct address_space *mapping = page_mapping(page); 274 unsigned long flags; 275 void (*freepage)(struct page *); 276 277 BUG_ON(!PageLocked(page)); 278 279 freepage = mapping->a_ops->freepage; 280 281 spin_lock_irqsave(&mapping->tree_lock, flags); 282 __delete_from_page_cache(page, NULL); 283 spin_unlock_irqrestore(&mapping->tree_lock, flags); 284 285 if (freepage) 286 freepage(page); 287 288 if (PageTransHuge(page) && !PageHuge(page)) { 289 page_ref_sub(page, HPAGE_PMD_NR); 290 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 291 } else { 292 put_page(page); 293 } 294 } 295 EXPORT_SYMBOL(delete_from_page_cache); 296 297 int filemap_check_errors(struct address_space *mapping) 298 { 299 int ret = 0; 300 /* Check for outstanding write errors */ 301 if (test_bit(AS_ENOSPC, &mapping->flags) && 302 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 303 ret = -ENOSPC; 304 if (test_bit(AS_EIO, &mapping->flags) && 305 test_and_clear_bit(AS_EIO, &mapping->flags)) 306 ret = -EIO; 307 return ret; 308 } 309 EXPORT_SYMBOL(filemap_check_errors); 310 311 /** 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 313 * @mapping: address space structure to write 314 * @start: offset in bytes where the range starts 315 * @end: offset in bytes where the range ends (inclusive) 316 * @sync_mode: enable synchronous operation 317 * 318 * Start writeback against all of a mapping's dirty pages that lie 319 * within the byte offsets <start, end> inclusive. 320 * 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 322 * opposed to a regular memory cleansing writeback. The difference between 323 * these two operations is that if a dirty page/buffer is encountered, it must 324 * be waited upon, and not just skipped over. 325 */ 326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 327 loff_t end, int sync_mode) 328 { 329 int ret; 330 struct writeback_control wbc = { 331 .sync_mode = sync_mode, 332 .nr_to_write = LONG_MAX, 333 .range_start = start, 334 .range_end = end, 335 }; 336 337 if (!mapping_cap_writeback_dirty(mapping)) 338 return 0; 339 340 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 341 ret = do_writepages(mapping, &wbc); 342 wbc_detach_inode(&wbc); 343 return ret; 344 } 345 346 static inline int __filemap_fdatawrite(struct address_space *mapping, 347 int sync_mode) 348 { 349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 350 } 351 352 int filemap_fdatawrite(struct address_space *mapping) 353 { 354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 355 } 356 EXPORT_SYMBOL(filemap_fdatawrite); 357 358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 359 loff_t end) 360 { 361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 362 } 363 EXPORT_SYMBOL(filemap_fdatawrite_range); 364 365 /** 366 * filemap_flush - mostly a non-blocking flush 367 * @mapping: target address_space 368 * 369 * This is a mostly non-blocking flush. Not suitable for data-integrity 370 * purposes - I/O may not be started against all dirty pages. 371 */ 372 int filemap_flush(struct address_space *mapping) 373 { 374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 375 } 376 EXPORT_SYMBOL(filemap_flush); 377 378 static int __filemap_fdatawait_range(struct address_space *mapping, 379 loff_t start_byte, loff_t end_byte) 380 { 381 pgoff_t index = start_byte >> PAGE_SHIFT; 382 pgoff_t end = end_byte >> PAGE_SHIFT; 383 struct pagevec pvec; 384 int nr_pages; 385 int ret = 0; 386 387 if (end_byte < start_byte) 388 goto out; 389 390 pagevec_init(&pvec, 0); 391 while ((index <= end) && 392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 393 PAGECACHE_TAG_WRITEBACK, 394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 395 unsigned i; 396 397 for (i = 0; i < nr_pages; i++) { 398 struct page *page = pvec.pages[i]; 399 400 /* until radix tree lookup accepts end_index */ 401 if (page->index > end) 402 continue; 403 404 wait_on_page_writeback(page); 405 if (TestClearPageError(page)) 406 ret = -EIO; 407 } 408 pagevec_release(&pvec); 409 cond_resched(); 410 } 411 out: 412 return ret; 413 } 414 415 /** 416 * filemap_fdatawait_range - wait for writeback to complete 417 * @mapping: address space structure to wait for 418 * @start_byte: offset in bytes where the range starts 419 * @end_byte: offset in bytes where the range ends (inclusive) 420 * 421 * Walk the list of under-writeback pages of the given address space 422 * in the given range and wait for all of them. Check error status of 423 * the address space and return it. 424 * 425 * Since the error status of the address space is cleared by this function, 426 * callers are responsible for checking the return value and handling and/or 427 * reporting the error. 428 */ 429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 430 loff_t end_byte) 431 { 432 int ret, ret2; 433 434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 435 ret2 = filemap_check_errors(mapping); 436 if (!ret) 437 ret = ret2; 438 439 return ret; 440 } 441 EXPORT_SYMBOL(filemap_fdatawait_range); 442 443 /** 444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 445 * @mapping: address space structure to wait for 446 * 447 * Walk the list of under-writeback pages of the given address space 448 * and wait for all of them. Unlike filemap_fdatawait(), this function 449 * does not clear error status of the address space. 450 * 451 * Use this function if callers don't handle errors themselves. Expected 452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 453 * fsfreeze(8) 454 */ 455 void filemap_fdatawait_keep_errors(struct address_space *mapping) 456 { 457 loff_t i_size = i_size_read(mapping->host); 458 459 if (i_size == 0) 460 return; 461 462 __filemap_fdatawait_range(mapping, 0, i_size - 1); 463 } 464 465 /** 466 * filemap_fdatawait - wait for all under-writeback pages to complete 467 * @mapping: address space structure to wait for 468 * 469 * Walk the list of under-writeback pages of the given address space 470 * and wait for all of them. Check error status of the address space 471 * and return it. 472 * 473 * Since the error status of the address space is cleared by this function, 474 * callers are responsible for checking the return value and handling and/or 475 * reporting the error. 476 */ 477 int filemap_fdatawait(struct address_space *mapping) 478 { 479 loff_t i_size = i_size_read(mapping->host); 480 481 if (i_size == 0) 482 return 0; 483 484 return filemap_fdatawait_range(mapping, 0, i_size - 1); 485 } 486 EXPORT_SYMBOL(filemap_fdatawait); 487 488 int filemap_write_and_wait(struct address_space *mapping) 489 { 490 int err = 0; 491 492 if ((!dax_mapping(mapping) && mapping->nrpages) || 493 (dax_mapping(mapping) && mapping->nrexceptional)) { 494 err = filemap_fdatawrite(mapping); 495 /* 496 * Even if the above returned error, the pages may be 497 * written partially (e.g. -ENOSPC), so we wait for it. 498 * But the -EIO is special case, it may indicate the worst 499 * thing (e.g. bug) happened, so we avoid waiting for it. 500 */ 501 if (err != -EIO) { 502 int err2 = filemap_fdatawait(mapping); 503 if (!err) 504 err = err2; 505 } 506 } else { 507 err = filemap_check_errors(mapping); 508 } 509 return err; 510 } 511 EXPORT_SYMBOL(filemap_write_and_wait); 512 513 /** 514 * filemap_write_and_wait_range - write out & wait on a file range 515 * @mapping: the address_space for the pages 516 * @lstart: offset in bytes where the range starts 517 * @lend: offset in bytes where the range ends (inclusive) 518 * 519 * Write out and wait upon file offsets lstart->lend, inclusive. 520 * 521 * Note that `lend' is inclusive (describes the last byte to be written) so 522 * that this function can be used to write to the very end-of-file (end = -1). 523 */ 524 int filemap_write_and_wait_range(struct address_space *mapping, 525 loff_t lstart, loff_t lend) 526 { 527 int err = 0; 528 529 if ((!dax_mapping(mapping) && mapping->nrpages) || 530 (dax_mapping(mapping) && mapping->nrexceptional)) { 531 err = __filemap_fdatawrite_range(mapping, lstart, lend, 532 WB_SYNC_ALL); 533 /* See comment of filemap_write_and_wait() */ 534 if (err != -EIO) { 535 int err2 = filemap_fdatawait_range(mapping, 536 lstart, lend); 537 if (!err) 538 err = err2; 539 } 540 } else { 541 err = filemap_check_errors(mapping); 542 } 543 return err; 544 } 545 EXPORT_SYMBOL(filemap_write_and_wait_range); 546 547 /** 548 * replace_page_cache_page - replace a pagecache page with a new one 549 * @old: page to be replaced 550 * @new: page to replace with 551 * @gfp_mask: allocation mode 552 * 553 * This function replaces a page in the pagecache with a new one. On 554 * success it acquires the pagecache reference for the new page and 555 * drops it for the old page. Both the old and new pages must be 556 * locked. This function does not add the new page to the LRU, the 557 * caller must do that. 558 * 559 * The remove + add is atomic. The only way this function can fail is 560 * memory allocation failure. 561 */ 562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 563 { 564 int error; 565 566 VM_BUG_ON_PAGE(!PageLocked(old), old); 567 VM_BUG_ON_PAGE(!PageLocked(new), new); 568 VM_BUG_ON_PAGE(new->mapping, new); 569 570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 571 if (!error) { 572 struct address_space *mapping = old->mapping; 573 void (*freepage)(struct page *); 574 unsigned long flags; 575 576 pgoff_t offset = old->index; 577 freepage = mapping->a_ops->freepage; 578 579 get_page(new); 580 new->mapping = mapping; 581 new->index = offset; 582 583 spin_lock_irqsave(&mapping->tree_lock, flags); 584 __delete_from_page_cache(old, NULL); 585 error = page_cache_tree_insert(mapping, new, NULL); 586 BUG_ON(error); 587 588 /* 589 * hugetlb pages do not participate in page cache accounting. 590 */ 591 if (!PageHuge(new)) 592 __inc_node_page_state(new, NR_FILE_PAGES); 593 if (PageSwapBacked(new)) 594 __inc_node_page_state(new, NR_SHMEM); 595 spin_unlock_irqrestore(&mapping->tree_lock, flags); 596 mem_cgroup_migrate(old, new); 597 radix_tree_preload_end(); 598 if (freepage) 599 freepage(old); 600 put_page(old); 601 } 602 603 return error; 604 } 605 EXPORT_SYMBOL_GPL(replace_page_cache_page); 606 607 static int __add_to_page_cache_locked(struct page *page, 608 struct address_space *mapping, 609 pgoff_t offset, gfp_t gfp_mask, 610 void **shadowp) 611 { 612 int huge = PageHuge(page); 613 struct mem_cgroup *memcg; 614 int error; 615 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 618 619 if (!huge) { 620 error = mem_cgroup_try_charge(page, current->mm, 621 gfp_mask, &memcg, false); 622 if (error) 623 return error; 624 } 625 626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 627 if (error) { 628 if (!huge) 629 mem_cgroup_cancel_charge(page, memcg, false); 630 return error; 631 } 632 633 get_page(page); 634 page->mapping = mapping; 635 page->index = offset; 636 637 spin_lock_irq(&mapping->tree_lock); 638 error = page_cache_tree_insert(mapping, page, shadowp); 639 radix_tree_preload_end(); 640 if (unlikely(error)) 641 goto err_insert; 642 643 /* hugetlb pages do not participate in page cache accounting. */ 644 if (!huge) 645 __inc_node_page_state(page, NR_FILE_PAGES); 646 spin_unlock_irq(&mapping->tree_lock); 647 if (!huge) 648 mem_cgroup_commit_charge(page, memcg, false, false); 649 trace_mm_filemap_add_to_page_cache(page); 650 return 0; 651 err_insert: 652 page->mapping = NULL; 653 /* Leave page->index set: truncation relies upon it */ 654 spin_unlock_irq(&mapping->tree_lock); 655 if (!huge) 656 mem_cgroup_cancel_charge(page, memcg, false); 657 put_page(page); 658 return error; 659 } 660 661 /** 662 * add_to_page_cache_locked - add a locked page to the pagecache 663 * @page: page to add 664 * @mapping: the page's address_space 665 * @offset: page index 666 * @gfp_mask: page allocation mode 667 * 668 * This function is used to add a page to the pagecache. It must be locked. 669 * This function does not add the page to the LRU. The caller must do that. 670 */ 671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 672 pgoff_t offset, gfp_t gfp_mask) 673 { 674 return __add_to_page_cache_locked(page, mapping, offset, 675 gfp_mask, NULL); 676 } 677 EXPORT_SYMBOL(add_to_page_cache_locked); 678 679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 680 pgoff_t offset, gfp_t gfp_mask) 681 { 682 void *shadow = NULL; 683 int ret; 684 685 __SetPageLocked(page); 686 ret = __add_to_page_cache_locked(page, mapping, offset, 687 gfp_mask, &shadow); 688 if (unlikely(ret)) 689 __ClearPageLocked(page); 690 else { 691 /* 692 * The page might have been evicted from cache only 693 * recently, in which case it should be activated like 694 * any other repeatedly accessed page. 695 * The exception is pages getting rewritten; evicting other 696 * data from the working set, only to cache data that will 697 * get overwritten with something else, is a waste of memory. 698 */ 699 if (!(gfp_mask & __GFP_WRITE) && 700 shadow && workingset_refault(shadow)) { 701 SetPageActive(page); 702 workingset_activation(page); 703 } else 704 ClearPageActive(page); 705 lru_cache_add(page); 706 } 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 710 711 #ifdef CONFIG_NUMA 712 struct page *__page_cache_alloc(gfp_t gfp) 713 { 714 int n; 715 struct page *page; 716 717 if (cpuset_do_page_mem_spread()) { 718 unsigned int cpuset_mems_cookie; 719 do { 720 cpuset_mems_cookie = read_mems_allowed_begin(); 721 n = cpuset_mem_spread_node(); 722 page = __alloc_pages_node(n, gfp, 0); 723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 724 725 return page; 726 } 727 return alloc_pages(gfp, 0); 728 } 729 EXPORT_SYMBOL(__page_cache_alloc); 730 #endif 731 732 /* 733 * In order to wait for pages to become available there must be 734 * waitqueues associated with pages. By using a hash table of 735 * waitqueues where the bucket discipline is to maintain all 736 * waiters on the same queue and wake all when any of the pages 737 * become available, and for the woken contexts to check to be 738 * sure the appropriate page became available, this saves space 739 * at a cost of "thundering herd" phenomena during rare hash 740 * collisions. 741 */ 742 #define PAGE_WAIT_TABLE_BITS 8 743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 745 746 static wait_queue_head_t *page_waitqueue(struct page *page) 747 { 748 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 749 } 750 751 void __init pagecache_init(void) 752 { 753 int i; 754 755 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 756 init_waitqueue_head(&page_wait_table[i]); 757 758 page_writeback_init(); 759 } 760 761 struct wait_page_key { 762 struct page *page; 763 int bit_nr; 764 int page_match; 765 }; 766 767 struct wait_page_queue { 768 struct page *page; 769 int bit_nr; 770 wait_queue_t wait; 771 }; 772 773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 774 { 775 struct wait_page_key *key = arg; 776 struct wait_page_queue *wait_page 777 = container_of(wait, struct wait_page_queue, wait); 778 779 if (wait_page->page != key->page) 780 return 0; 781 key->page_match = 1; 782 783 if (wait_page->bit_nr != key->bit_nr) 784 return 0; 785 if (test_bit(key->bit_nr, &key->page->flags)) 786 return 0; 787 788 return autoremove_wake_function(wait, mode, sync, key); 789 } 790 791 void wake_up_page_bit(struct page *page, int bit_nr) 792 { 793 wait_queue_head_t *q = page_waitqueue(page); 794 struct wait_page_key key; 795 unsigned long flags; 796 797 key.page = page; 798 key.bit_nr = bit_nr; 799 key.page_match = 0; 800 801 spin_lock_irqsave(&q->lock, flags); 802 __wake_up_locked_key(q, TASK_NORMAL, &key); 803 /* 804 * It is possible for other pages to have collided on the waitqueue 805 * hash, so in that case check for a page match. That prevents a long- 806 * term waiter 807 * 808 * It is still possible to miss a case here, when we woke page waiters 809 * and removed them from the waitqueue, but there are still other 810 * page waiters. 811 */ 812 if (!waitqueue_active(q) || !key.page_match) { 813 ClearPageWaiters(page); 814 /* 815 * It's possible to miss clearing Waiters here, when we woke 816 * our page waiters, but the hashed waitqueue has waiters for 817 * other pages on it. 818 * 819 * That's okay, it's a rare case. The next waker will clear it. 820 */ 821 } 822 spin_unlock_irqrestore(&q->lock, flags); 823 } 824 EXPORT_SYMBOL(wake_up_page_bit); 825 826 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 827 struct page *page, int bit_nr, int state, bool lock) 828 { 829 struct wait_page_queue wait_page; 830 wait_queue_t *wait = &wait_page.wait; 831 int ret = 0; 832 833 init_wait(wait); 834 wait->func = wake_page_function; 835 wait_page.page = page; 836 wait_page.bit_nr = bit_nr; 837 838 for (;;) { 839 spin_lock_irq(&q->lock); 840 841 if (likely(list_empty(&wait->task_list))) { 842 if (lock) 843 __add_wait_queue_tail_exclusive(q, wait); 844 else 845 __add_wait_queue(q, wait); 846 SetPageWaiters(page); 847 } 848 849 set_current_state(state); 850 851 spin_unlock_irq(&q->lock); 852 853 if (likely(test_bit(bit_nr, &page->flags))) { 854 io_schedule(); 855 if (unlikely(signal_pending_state(state, current))) { 856 ret = -EINTR; 857 break; 858 } 859 } 860 861 if (lock) { 862 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 863 break; 864 } else { 865 if (!test_bit(bit_nr, &page->flags)) 866 break; 867 } 868 } 869 870 finish_wait(q, wait); 871 872 /* 873 * A signal could leave PageWaiters set. Clearing it here if 874 * !waitqueue_active would be possible (by open-coding finish_wait), 875 * but still fail to catch it in the case of wait hash collision. We 876 * already can fail to clear wait hash collision cases, so don't 877 * bother with signals either. 878 */ 879 880 return ret; 881 } 882 883 void wait_on_page_bit(struct page *page, int bit_nr) 884 { 885 wait_queue_head_t *q = page_waitqueue(page); 886 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 887 } 888 EXPORT_SYMBOL(wait_on_page_bit); 889 890 int wait_on_page_bit_killable(struct page *page, int bit_nr) 891 { 892 wait_queue_head_t *q = page_waitqueue(page); 893 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 894 } 895 896 /** 897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 898 * @page: Page defining the wait queue of interest 899 * @waiter: Waiter to add to the queue 900 * 901 * Add an arbitrary @waiter to the wait queue for the nominated @page. 902 */ 903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 904 { 905 wait_queue_head_t *q = page_waitqueue(page); 906 unsigned long flags; 907 908 spin_lock_irqsave(&q->lock, flags); 909 __add_wait_queue(q, waiter); 910 SetPageWaiters(page); 911 spin_unlock_irqrestore(&q->lock, flags); 912 } 913 EXPORT_SYMBOL_GPL(add_page_wait_queue); 914 915 #ifndef clear_bit_unlock_is_negative_byte 916 917 /* 918 * PG_waiters is the high bit in the same byte as PG_lock. 919 * 920 * On x86 (and on many other architectures), we can clear PG_lock and 921 * test the sign bit at the same time. But if the architecture does 922 * not support that special operation, we just do this all by hand 923 * instead. 924 * 925 * The read of PG_waiters has to be after (or concurrently with) PG_locked 926 * being cleared, but a memory barrier should be unneccssary since it is 927 * in the same byte as PG_locked. 928 */ 929 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 930 { 931 clear_bit_unlock(nr, mem); 932 /* smp_mb__after_atomic(); */ 933 return test_bit(PG_waiters, mem); 934 } 935 936 #endif 937 938 /** 939 * unlock_page - unlock a locked page 940 * @page: the page 941 * 942 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 943 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 944 * mechanism between PageLocked pages and PageWriteback pages is shared. 945 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 946 * 947 * Note that this depends on PG_waiters being the sign bit in the byte 948 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 949 * clear the PG_locked bit and test PG_waiters at the same time fairly 950 * portably (architectures that do LL/SC can test any bit, while x86 can 951 * test the sign bit). 952 */ 953 void unlock_page(struct page *page) 954 { 955 BUILD_BUG_ON(PG_waiters != 7); 956 page = compound_head(page); 957 VM_BUG_ON_PAGE(!PageLocked(page), page); 958 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 959 wake_up_page_bit(page, PG_locked); 960 } 961 EXPORT_SYMBOL(unlock_page); 962 963 /** 964 * end_page_writeback - end writeback against a page 965 * @page: the page 966 */ 967 void end_page_writeback(struct page *page) 968 { 969 /* 970 * TestClearPageReclaim could be used here but it is an atomic 971 * operation and overkill in this particular case. Failing to 972 * shuffle a page marked for immediate reclaim is too mild to 973 * justify taking an atomic operation penalty at the end of 974 * ever page writeback. 975 */ 976 if (PageReclaim(page)) { 977 ClearPageReclaim(page); 978 rotate_reclaimable_page(page); 979 } 980 981 if (!test_clear_page_writeback(page)) 982 BUG(); 983 984 smp_mb__after_atomic(); 985 wake_up_page(page, PG_writeback); 986 } 987 EXPORT_SYMBOL(end_page_writeback); 988 989 /* 990 * After completing I/O on a page, call this routine to update the page 991 * flags appropriately 992 */ 993 void page_endio(struct page *page, bool is_write, int err) 994 { 995 if (!is_write) { 996 if (!err) { 997 SetPageUptodate(page); 998 } else { 999 ClearPageUptodate(page); 1000 SetPageError(page); 1001 } 1002 unlock_page(page); 1003 } else { 1004 if (err) { 1005 SetPageError(page); 1006 if (page->mapping) 1007 mapping_set_error(page->mapping, err); 1008 } 1009 end_page_writeback(page); 1010 } 1011 } 1012 EXPORT_SYMBOL_GPL(page_endio); 1013 1014 /** 1015 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1016 * @page: the page to lock 1017 */ 1018 void __lock_page(struct page *__page) 1019 { 1020 struct page *page = compound_head(__page); 1021 wait_queue_head_t *q = page_waitqueue(page); 1022 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1023 } 1024 EXPORT_SYMBOL(__lock_page); 1025 1026 int __lock_page_killable(struct page *__page) 1027 { 1028 struct page *page = compound_head(__page); 1029 wait_queue_head_t *q = page_waitqueue(page); 1030 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1031 } 1032 EXPORT_SYMBOL_GPL(__lock_page_killable); 1033 1034 /* 1035 * Return values: 1036 * 1 - page is locked; mmap_sem is still held. 1037 * 0 - page is not locked. 1038 * mmap_sem has been released (up_read()), unless flags had both 1039 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1040 * which case mmap_sem is still held. 1041 * 1042 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1043 * with the page locked and the mmap_sem unperturbed. 1044 */ 1045 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1046 unsigned int flags) 1047 { 1048 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1049 /* 1050 * CAUTION! In this case, mmap_sem is not released 1051 * even though return 0. 1052 */ 1053 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1054 return 0; 1055 1056 up_read(&mm->mmap_sem); 1057 if (flags & FAULT_FLAG_KILLABLE) 1058 wait_on_page_locked_killable(page); 1059 else 1060 wait_on_page_locked(page); 1061 return 0; 1062 } else { 1063 if (flags & FAULT_FLAG_KILLABLE) { 1064 int ret; 1065 1066 ret = __lock_page_killable(page); 1067 if (ret) { 1068 up_read(&mm->mmap_sem); 1069 return 0; 1070 } 1071 } else 1072 __lock_page(page); 1073 return 1; 1074 } 1075 } 1076 1077 /** 1078 * page_cache_next_hole - find the next hole (not-present entry) 1079 * @mapping: mapping 1080 * @index: index 1081 * @max_scan: maximum range to search 1082 * 1083 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1084 * lowest indexed hole. 1085 * 1086 * Returns: the index of the hole if found, otherwise returns an index 1087 * outside of the set specified (in which case 'return - index >= 1088 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1089 * be returned. 1090 * 1091 * page_cache_next_hole may be called under rcu_read_lock. However, 1092 * like radix_tree_gang_lookup, this will not atomically search a 1093 * snapshot of the tree at a single point in time. For example, if a 1094 * hole is created at index 5, then subsequently a hole is created at 1095 * index 10, page_cache_next_hole covering both indexes may return 10 1096 * if called under rcu_read_lock. 1097 */ 1098 pgoff_t page_cache_next_hole(struct address_space *mapping, 1099 pgoff_t index, unsigned long max_scan) 1100 { 1101 unsigned long i; 1102 1103 for (i = 0; i < max_scan; i++) { 1104 struct page *page; 1105 1106 page = radix_tree_lookup(&mapping->page_tree, index); 1107 if (!page || radix_tree_exceptional_entry(page)) 1108 break; 1109 index++; 1110 if (index == 0) 1111 break; 1112 } 1113 1114 return index; 1115 } 1116 EXPORT_SYMBOL(page_cache_next_hole); 1117 1118 /** 1119 * page_cache_prev_hole - find the prev hole (not-present entry) 1120 * @mapping: mapping 1121 * @index: index 1122 * @max_scan: maximum range to search 1123 * 1124 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1125 * the first hole. 1126 * 1127 * Returns: the index of the hole if found, otherwise returns an index 1128 * outside of the set specified (in which case 'index - return >= 1129 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1130 * will be returned. 1131 * 1132 * page_cache_prev_hole may be called under rcu_read_lock. However, 1133 * like radix_tree_gang_lookup, this will not atomically search a 1134 * snapshot of the tree at a single point in time. For example, if a 1135 * hole is created at index 10, then subsequently a hole is created at 1136 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1137 * called under rcu_read_lock. 1138 */ 1139 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1140 pgoff_t index, unsigned long max_scan) 1141 { 1142 unsigned long i; 1143 1144 for (i = 0; i < max_scan; i++) { 1145 struct page *page; 1146 1147 page = radix_tree_lookup(&mapping->page_tree, index); 1148 if (!page || radix_tree_exceptional_entry(page)) 1149 break; 1150 index--; 1151 if (index == ULONG_MAX) 1152 break; 1153 } 1154 1155 return index; 1156 } 1157 EXPORT_SYMBOL(page_cache_prev_hole); 1158 1159 /** 1160 * find_get_entry - find and get a page cache entry 1161 * @mapping: the address_space to search 1162 * @offset: the page cache index 1163 * 1164 * Looks up the page cache slot at @mapping & @offset. If there is a 1165 * page cache page, it is returned with an increased refcount. 1166 * 1167 * If the slot holds a shadow entry of a previously evicted page, or a 1168 * swap entry from shmem/tmpfs, it is returned. 1169 * 1170 * Otherwise, %NULL is returned. 1171 */ 1172 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1173 { 1174 void **pagep; 1175 struct page *head, *page; 1176 1177 rcu_read_lock(); 1178 repeat: 1179 page = NULL; 1180 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1181 if (pagep) { 1182 page = radix_tree_deref_slot(pagep); 1183 if (unlikely(!page)) 1184 goto out; 1185 if (radix_tree_exception(page)) { 1186 if (radix_tree_deref_retry(page)) 1187 goto repeat; 1188 /* 1189 * A shadow entry of a recently evicted page, 1190 * or a swap entry from shmem/tmpfs. Return 1191 * it without attempting to raise page count. 1192 */ 1193 goto out; 1194 } 1195 1196 head = compound_head(page); 1197 if (!page_cache_get_speculative(head)) 1198 goto repeat; 1199 1200 /* The page was split under us? */ 1201 if (compound_head(page) != head) { 1202 put_page(head); 1203 goto repeat; 1204 } 1205 1206 /* 1207 * Has the page moved? 1208 * This is part of the lockless pagecache protocol. See 1209 * include/linux/pagemap.h for details. 1210 */ 1211 if (unlikely(page != *pagep)) { 1212 put_page(head); 1213 goto repeat; 1214 } 1215 } 1216 out: 1217 rcu_read_unlock(); 1218 1219 return page; 1220 } 1221 EXPORT_SYMBOL(find_get_entry); 1222 1223 /** 1224 * find_lock_entry - locate, pin and lock a page cache entry 1225 * @mapping: the address_space to search 1226 * @offset: the page cache index 1227 * 1228 * Looks up the page cache slot at @mapping & @offset. If there is a 1229 * page cache page, it is returned locked and with an increased 1230 * refcount. 1231 * 1232 * If the slot holds a shadow entry of a previously evicted page, or a 1233 * swap entry from shmem/tmpfs, it is returned. 1234 * 1235 * Otherwise, %NULL is returned. 1236 * 1237 * find_lock_entry() may sleep. 1238 */ 1239 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1240 { 1241 struct page *page; 1242 1243 repeat: 1244 page = find_get_entry(mapping, offset); 1245 if (page && !radix_tree_exception(page)) { 1246 lock_page(page); 1247 /* Has the page been truncated? */ 1248 if (unlikely(page_mapping(page) != mapping)) { 1249 unlock_page(page); 1250 put_page(page); 1251 goto repeat; 1252 } 1253 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1254 } 1255 return page; 1256 } 1257 EXPORT_SYMBOL(find_lock_entry); 1258 1259 /** 1260 * pagecache_get_page - find and get a page reference 1261 * @mapping: the address_space to search 1262 * @offset: the page index 1263 * @fgp_flags: PCG flags 1264 * @gfp_mask: gfp mask to use for the page cache data page allocation 1265 * 1266 * Looks up the page cache slot at @mapping & @offset. 1267 * 1268 * PCG flags modify how the page is returned. 1269 * 1270 * FGP_ACCESSED: the page will be marked accessed 1271 * FGP_LOCK: Page is return locked 1272 * FGP_CREAT: If page is not present then a new page is allocated using 1273 * @gfp_mask and added to the page cache and the VM's LRU 1274 * list. The page is returned locked and with an increased 1275 * refcount. Otherwise, %NULL is returned. 1276 * 1277 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1278 * if the GFP flags specified for FGP_CREAT are atomic. 1279 * 1280 * If there is a page cache page, it is returned with an increased refcount. 1281 */ 1282 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1283 int fgp_flags, gfp_t gfp_mask) 1284 { 1285 struct page *page; 1286 1287 repeat: 1288 page = find_get_entry(mapping, offset); 1289 if (radix_tree_exceptional_entry(page)) 1290 page = NULL; 1291 if (!page) 1292 goto no_page; 1293 1294 if (fgp_flags & FGP_LOCK) { 1295 if (fgp_flags & FGP_NOWAIT) { 1296 if (!trylock_page(page)) { 1297 put_page(page); 1298 return NULL; 1299 } 1300 } else { 1301 lock_page(page); 1302 } 1303 1304 /* Has the page been truncated? */ 1305 if (unlikely(page->mapping != mapping)) { 1306 unlock_page(page); 1307 put_page(page); 1308 goto repeat; 1309 } 1310 VM_BUG_ON_PAGE(page->index != offset, page); 1311 } 1312 1313 if (page && (fgp_flags & FGP_ACCESSED)) 1314 mark_page_accessed(page); 1315 1316 no_page: 1317 if (!page && (fgp_flags & FGP_CREAT)) { 1318 int err; 1319 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1320 gfp_mask |= __GFP_WRITE; 1321 if (fgp_flags & FGP_NOFS) 1322 gfp_mask &= ~__GFP_FS; 1323 1324 page = __page_cache_alloc(gfp_mask); 1325 if (!page) 1326 return NULL; 1327 1328 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1329 fgp_flags |= FGP_LOCK; 1330 1331 /* Init accessed so avoid atomic mark_page_accessed later */ 1332 if (fgp_flags & FGP_ACCESSED) 1333 __SetPageReferenced(page); 1334 1335 err = add_to_page_cache_lru(page, mapping, offset, 1336 gfp_mask & GFP_RECLAIM_MASK); 1337 if (unlikely(err)) { 1338 put_page(page); 1339 page = NULL; 1340 if (err == -EEXIST) 1341 goto repeat; 1342 } 1343 } 1344 1345 return page; 1346 } 1347 EXPORT_SYMBOL(pagecache_get_page); 1348 1349 /** 1350 * find_get_entries - gang pagecache lookup 1351 * @mapping: The address_space to search 1352 * @start: The starting page cache index 1353 * @nr_entries: The maximum number of entries 1354 * @entries: Where the resulting entries are placed 1355 * @indices: The cache indices corresponding to the entries in @entries 1356 * 1357 * find_get_entries() will search for and return a group of up to 1358 * @nr_entries entries in the mapping. The entries are placed at 1359 * @entries. find_get_entries() takes a reference against any actual 1360 * pages it returns. 1361 * 1362 * The search returns a group of mapping-contiguous page cache entries 1363 * with ascending indexes. There may be holes in the indices due to 1364 * not-present pages. 1365 * 1366 * Any shadow entries of evicted pages, or swap entries from 1367 * shmem/tmpfs, are included in the returned array. 1368 * 1369 * find_get_entries() returns the number of pages and shadow entries 1370 * which were found. 1371 */ 1372 unsigned find_get_entries(struct address_space *mapping, 1373 pgoff_t start, unsigned int nr_entries, 1374 struct page **entries, pgoff_t *indices) 1375 { 1376 void **slot; 1377 unsigned int ret = 0; 1378 struct radix_tree_iter iter; 1379 1380 if (!nr_entries) 1381 return 0; 1382 1383 rcu_read_lock(); 1384 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1385 struct page *head, *page; 1386 repeat: 1387 page = radix_tree_deref_slot(slot); 1388 if (unlikely(!page)) 1389 continue; 1390 if (radix_tree_exception(page)) { 1391 if (radix_tree_deref_retry(page)) { 1392 slot = radix_tree_iter_retry(&iter); 1393 continue; 1394 } 1395 /* 1396 * A shadow entry of a recently evicted page, a swap 1397 * entry from shmem/tmpfs or a DAX entry. Return it 1398 * without attempting to raise page count. 1399 */ 1400 goto export; 1401 } 1402 1403 head = compound_head(page); 1404 if (!page_cache_get_speculative(head)) 1405 goto repeat; 1406 1407 /* The page was split under us? */ 1408 if (compound_head(page) != head) { 1409 put_page(head); 1410 goto repeat; 1411 } 1412 1413 /* Has the page moved? */ 1414 if (unlikely(page != *slot)) { 1415 put_page(head); 1416 goto repeat; 1417 } 1418 export: 1419 indices[ret] = iter.index; 1420 entries[ret] = page; 1421 if (++ret == nr_entries) 1422 break; 1423 } 1424 rcu_read_unlock(); 1425 return ret; 1426 } 1427 1428 /** 1429 * find_get_pages - gang pagecache lookup 1430 * @mapping: The address_space to search 1431 * @start: The starting page index 1432 * @nr_pages: The maximum number of pages 1433 * @pages: Where the resulting pages are placed 1434 * 1435 * find_get_pages() will search for and return a group of up to 1436 * @nr_pages pages in the mapping. The pages are placed at @pages. 1437 * find_get_pages() takes a reference against the returned pages. 1438 * 1439 * The search returns a group of mapping-contiguous pages with ascending 1440 * indexes. There may be holes in the indices due to not-present pages. 1441 * 1442 * find_get_pages() returns the number of pages which were found. 1443 */ 1444 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1445 unsigned int nr_pages, struct page **pages) 1446 { 1447 struct radix_tree_iter iter; 1448 void **slot; 1449 unsigned ret = 0; 1450 1451 if (unlikely(!nr_pages)) 1452 return 0; 1453 1454 rcu_read_lock(); 1455 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1456 struct page *head, *page; 1457 repeat: 1458 page = radix_tree_deref_slot(slot); 1459 if (unlikely(!page)) 1460 continue; 1461 1462 if (radix_tree_exception(page)) { 1463 if (radix_tree_deref_retry(page)) { 1464 slot = radix_tree_iter_retry(&iter); 1465 continue; 1466 } 1467 /* 1468 * A shadow entry of a recently evicted page, 1469 * or a swap entry from shmem/tmpfs. Skip 1470 * over it. 1471 */ 1472 continue; 1473 } 1474 1475 head = compound_head(page); 1476 if (!page_cache_get_speculative(head)) 1477 goto repeat; 1478 1479 /* The page was split under us? */ 1480 if (compound_head(page) != head) { 1481 put_page(head); 1482 goto repeat; 1483 } 1484 1485 /* Has the page moved? */ 1486 if (unlikely(page != *slot)) { 1487 put_page(head); 1488 goto repeat; 1489 } 1490 1491 pages[ret] = page; 1492 if (++ret == nr_pages) 1493 break; 1494 } 1495 1496 rcu_read_unlock(); 1497 return ret; 1498 } 1499 1500 /** 1501 * find_get_pages_contig - gang contiguous pagecache lookup 1502 * @mapping: The address_space to search 1503 * @index: The starting page index 1504 * @nr_pages: The maximum number of pages 1505 * @pages: Where the resulting pages are placed 1506 * 1507 * find_get_pages_contig() works exactly like find_get_pages(), except 1508 * that the returned number of pages are guaranteed to be contiguous. 1509 * 1510 * find_get_pages_contig() returns the number of pages which were found. 1511 */ 1512 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1513 unsigned int nr_pages, struct page **pages) 1514 { 1515 struct radix_tree_iter iter; 1516 void **slot; 1517 unsigned int ret = 0; 1518 1519 if (unlikely(!nr_pages)) 1520 return 0; 1521 1522 rcu_read_lock(); 1523 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1524 struct page *head, *page; 1525 repeat: 1526 page = radix_tree_deref_slot(slot); 1527 /* The hole, there no reason to continue */ 1528 if (unlikely(!page)) 1529 break; 1530 1531 if (radix_tree_exception(page)) { 1532 if (radix_tree_deref_retry(page)) { 1533 slot = radix_tree_iter_retry(&iter); 1534 continue; 1535 } 1536 /* 1537 * A shadow entry of a recently evicted page, 1538 * or a swap entry from shmem/tmpfs. Stop 1539 * looking for contiguous pages. 1540 */ 1541 break; 1542 } 1543 1544 head = compound_head(page); 1545 if (!page_cache_get_speculative(head)) 1546 goto repeat; 1547 1548 /* The page was split under us? */ 1549 if (compound_head(page) != head) { 1550 put_page(head); 1551 goto repeat; 1552 } 1553 1554 /* Has the page moved? */ 1555 if (unlikely(page != *slot)) { 1556 put_page(head); 1557 goto repeat; 1558 } 1559 1560 /* 1561 * must check mapping and index after taking the ref. 1562 * otherwise we can get both false positives and false 1563 * negatives, which is just confusing to the caller. 1564 */ 1565 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1566 put_page(page); 1567 break; 1568 } 1569 1570 pages[ret] = page; 1571 if (++ret == nr_pages) 1572 break; 1573 } 1574 rcu_read_unlock(); 1575 return ret; 1576 } 1577 EXPORT_SYMBOL(find_get_pages_contig); 1578 1579 /** 1580 * find_get_pages_tag - find and return pages that match @tag 1581 * @mapping: the address_space to search 1582 * @index: the starting page index 1583 * @tag: the tag index 1584 * @nr_pages: the maximum number of pages 1585 * @pages: where the resulting pages are placed 1586 * 1587 * Like find_get_pages, except we only return pages which are tagged with 1588 * @tag. We update @index to index the next page for the traversal. 1589 */ 1590 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1591 int tag, unsigned int nr_pages, struct page **pages) 1592 { 1593 struct radix_tree_iter iter; 1594 void **slot; 1595 unsigned ret = 0; 1596 1597 if (unlikely(!nr_pages)) 1598 return 0; 1599 1600 rcu_read_lock(); 1601 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1602 &iter, *index, tag) { 1603 struct page *head, *page; 1604 repeat: 1605 page = radix_tree_deref_slot(slot); 1606 if (unlikely(!page)) 1607 continue; 1608 1609 if (radix_tree_exception(page)) { 1610 if (radix_tree_deref_retry(page)) { 1611 slot = radix_tree_iter_retry(&iter); 1612 continue; 1613 } 1614 /* 1615 * A shadow entry of a recently evicted page. 1616 * 1617 * Those entries should never be tagged, but 1618 * this tree walk is lockless and the tags are 1619 * looked up in bulk, one radix tree node at a 1620 * time, so there is a sizable window for page 1621 * reclaim to evict a page we saw tagged. 1622 * 1623 * Skip over it. 1624 */ 1625 continue; 1626 } 1627 1628 head = compound_head(page); 1629 if (!page_cache_get_speculative(head)) 1630 goto repeat; 1631 1632 /* The page was split under us? */ 1633 if (compound_head(page) != head) { 1634 put_page(head); 1635 goto repeat; 1636 } 1637 1638 /* Has the page moved? */ 1639 if (unlikely(page != *slot)) { 1640 put_page(head); 1641 goto repeat; 1642 } 1643 1644 pages[ret] = page; 1645 if (++ret == nr_pages) 1646 break; 1647 } 1648 1649 rcu_read_unlock(); 1650 1651 if (ret) 1652 *index = pages[ret - 1]->index + 1; 1653 1654 return ret; 1655 } 1656 EXPORT_SYMBOL(find_get_pages_tag); 1657 1658 /** 1659 * find_get_entries_tag - find and return entries that match @tag 1660 * @mapping: the address_space to search 1661 * @start: the starting page cache index 1662 * @tag: the tag index 1663 * @nr_entries: the maximum number of entries 1664 * @entries: where the resulting entries are placed 1665 * @indices: the cache indices corresponding to the entries in @entries 1666 * 1667 * Like find_get_entries, except we only return entries which are tagged with 1668 * @tag. 1669 */ 1670 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1671 int tag, unsigned int nr_entries, 1672 struct page **entries, pgoff_t *indices) 1673 { 1674 void **slot; 1675 unsigned int ret = 0; 1676 struct radix_tree_iter iter; 1677 1678 if (!nr_entries) 1679 return 0; 1680 1681 rcu_read_lock(); 1682 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1683 &iter, start, tag) { 1684 struct page *head, *page; 1685 repeat: 1686 page = radix_tree_deref_slot(slot); 1687 if (unlikely(!page)) 1688 continue; 1689 if (radix_tree_exception(page)) { 1690 if (radix_tree_deref_retry(page)) { 1691 slot = radix_tree_iter_retry(&iter); 1692 continue; 1693 } 1694 1695 /* 1696 * A shadow entry of a recently evicted page, a swap 1697 * entry from shmem/tmpfs or a DAX entry. Return it 1698 * without attempting to raise page count. 1699 */ 1700 goto export; 1701 } 1702 1703 head = compound_head(page); 1704 if (!page_cache_get_speculative(head)) 1705 goto repeat; 1706 1707 /* The page was split under us? */ 1708 if (compound_head(page) != head) { 1709 put_page(head); 1710 goto repeat; 1711 } 1712 1713 /* Has the page moved? */ 1714 if (unlikely(page != *slot)) { 1715 put_page(head); 1716 goto repeat; 1717 } 1718 export: 1719 indices[ret] = iter.index; 1720 entries[ret] = page; 1721 if (++ret == nr_entries) 1722 break; 1723 } 1724 rcu_read_unlock(); 1725 return ret; 1726 } 1727 EXPORT_SYMBOL(find_get_entries_tag); 1728 1729 /* 1730 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1731 * a _large_ part of the i/o request. Imagine the worst scenario: 1732 * 1733 * ---R__________________________________________B__________ 1734 * ^ reading here ^ bad block(assume 4k) 1735 * 1736 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1737 * => failing the whole request => read(R) => read(R+1) => 1738 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1739 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1740 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1741 * 1742 * It is going insane. Fix it by quickly scaling down the readahead size. 1743 */ 1744 static void shrink_readahead_size_eio(struct file *filp, 1745 struct file_ra_state *ra) 1746 { 1747 ra->ra_pages /= 4; 1748 } 1749 1750 /** 1751 * do_generic_file_read - generic file read routine 1752 * @filp: the file to read 1753 * @ppos: current file position 1754 * @iter: data destination 1755 * @written: already copied 1756 * 1757 * This is a generic file read routine, and uses the 1758 * mapping->a_ops->readpage() function for the actual low-level stuff. 1759 * 1760 * This is really ugly. But the goto's actually try to clarify some 1761 * of the logic when it comes to error handling etc. 1762 */ 1763 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1764 struct iov_iter *iter, ssize_t written) 1765 { 1766 struct address_space *mapping = filp->f_mapping; 1767 struct inode *inode = mapping->host; 1768 struct file_ra_state *ra = &filp->f_ra; 1769 pgoff_t index; 1770 pgoff_t last_index; 1771 pgoff_t prev_index; 1772 unsigned long offset; /* offset into pagecache page */ 1773 unsigned int prev_offset; 1774 int error = 0; 1775 1776 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1777 return 0; 1778 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1779 1780 index = *ppos >> PAGE_SHIFT; 1781 prev_index = ra->prev_pos >> PAGE_SHIFT; 1782 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1783 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1784 offset = *ppos & ~PAGE_MASK; 1785 1786 for (;;) { 1787 struct page *page; 1788 pgoff_t end_index; 1789 loff_t isize; 1790 unsigned long nr, ret; 1791 1792 cond_resched(); 1793 find_page: 1794 page = find_get_page(mapping, index); 1795 if (!page) { 1796 page_cache_sync_readahead(mapping, 1797 ra, filp, 1798 index, last_index - index); 1799 page = find_get_page(mapping, index); 1800 if (unlikely(page == NULL)) 1801 goto no_cached_page; 1802 } 1803 if (PageReadahead(page)) { 1804 page_cache_async_readahead(mapping, 1805 ra, filp, page, 1806 index, last_index - index); 1807 } 1808 if (!PageUptodate(page)) { 1809 /* 1810 * See comment in do_read_cache_page on why 1811 * wait_on_page_locked is used to avoid unnecessarily 1812 * serialisations and why it's safe. 1813 */ 1814 error = wait_on_page_locked_killable(page); 1815 if (unlikely(error)) 1816 goto readpage_error; 1817 if (PageUptodate(page)) 1818 goto page_ok; 1819 1820 if (inode->i_blkbits == PAGE_SHIFT || 1821 !mapping->a_ops->is_partially_uptodate) 1822 goto page_not_up_to_date; 1823 /* pipes can't handle partially uptodate pages */ 1824 if (unlikely(iter->type & ITER_PIPE)) 1825 goto page_not_up_to_date; 1826 if (!trylock_page(page)) 1827 goto page_not_up_to_date; 1828 /* Did it get truncated before we got the lock? */ 1829 if (!page->mapping) 1830 goto page_not_up_to_date_locked; 1831 if (!mapping->a_ops->is_partially_uptodate(page, 1832 offset, iter->count)) 1833 goto page_not_up_to_date_locked; 1834 unlock_page(page); 1835 } 1836 page_ok: 1837 /* 1838 * i_size must be checked after we know the page is Uptodate. 1839 * 1840 * Checking i_size after the check allows us to calculate 1841 * the correct value for "nr", which means the zero-filled 1842 * part of the page is not copied back to userspace (unless 1843 * another truncate extends the file - this is desired though). 1844 */ 1845 1846 isize = i_size_read(inode); 1847 end_index = (isize - 1) >> PAGE_SHIFT; 1848 if (unlikely(!isize || index > end_index)) { 1849 put_page(page); 1850 goto out; 1851 } 1852 1853 /* nr is the maximum number of bytes to copy from this page */ 1854 nr = PAGE_SIZE; 1855 if (index == end_index) { 1856 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1857 if (nr <= offset) { 1858 put_page(page); 1859 goto out; 1860 } 1861 } 1862 nr = nr - offset; 1863 1864 /* If users can be writing to this page using arbitrary 1865 * virtual addresses, take care about potential aliasing 1866 * before reading the page on the kernel side. 1867 */ 1868 if (mapping_writably_mapped(mapping)) 1869 flush_dcache_page(page); 1870 1871 /* 1872 * When a sequential read accesses a page several times, 1873 * only mark it as accessed the first time. 1874 */ 1875 if (prev_index != index || offset != prev_offset) 1876 mark_page_accessed(page); 1877 prev_index = index; 1878 1879 /* 1880 * Ok, we have the page, and it's up-to-date, so 1881 * now we can copy it to user space... 1882 */ 1883 1884 ret = copy_page_to_iter(page, offset, nr, iter); 1885 offset += ret; 1886 index += offset >> PAGE_SHIFT; 1887 offset &= ~PAGE_MASK; 1888 prev_offset = offset; 1889 1890 put_page(page); 1891 written += ret; 1892 if (!iov_iter_count(iter)) 1893 goto out; 1894 if (ret < nr) { 1895 error = -EFAULT; 1896 goto out; 1897 } 1898 continue; 1899 1900 page_not_up_to_date: 1901 /* Get exclusive access to the page ... */ 1902 error = lock_page_killable(page); 1903 if (unlikely(error)) 1904 goto readpage_error; 1905 1906 page_not_up_to_date_locked: 1907 /* Did it get truncated before we got the lock? */ 1908 if (!page->mapping) { 1909 unlock_page(page); 1910 put_page(page); 1911 continue; 1912 } 1913 1914 /* Did somebody else fill it already? */ 1915 if (PageUptodate(page)) { 1916 unlock_page(page); 1917 goto page_ok; 1918 } 1919 1920 readpage: 1921 /* 1922 * A previous I/O error may have been due to temporary 1923 * failures, eg. multipath errors. 1924 * PG_error will be set again if readpage fails. 1925 */ 1926 ClearPageError(page); 1927 /* Start the actual read. The read will unlock the page. */ 1928 error = mapping->a_ops->readpage(filp, page); 1929 1930 if (unlikely(error)) { 1931 if (error == AOP_TRUNCATED_PAGE) { 1932 put_page(page); 1933 error = 0; 1934 goto find_page; 1935 } 1936 goto readpage_error; 1937 } 1938 1939 if (!PageUptodate(page)) { 1940 error = lock_page_killable(page); 1941 if (unlikely(error)) 1942 goto readpage_error; 1943 if (!PageUptodate(page)) { 1944 if (page->mapping == NULL) { 1945 /* 1946 * invalidate_mapping_pages got it 1947 */ 1948 unlock_page(page); 1949 put_page(page); 1950 goto find_page; 1951 } 1952 unlock_page(page); 1953 shrink_readahead_size_eio(filp, ra); 1954 error = -EIO; 1955 goto readpage_error; 1956 } 1957 unlock_page(page); 1958 } 1959 1960 goto page_ok; 1961 1962 readpage_error: 1963 /* UHHUH! A synchronous read error occurred. Report it */ 1964 put_page(page); 1965 goto out; 1966 1967 no_cached_page: 1968 /* 1969 * Ok, it wasn't cached, so we need to create a new 1970 * page.. 1971 */ 1972 page = page_cache_alloc_cold(mapping); 1973 if (!page) { 1974 error = -ENOMEM; 1975 goto out; 1976 } 1977 error = add_to_page_cache_lru(page, mapping, index, 1978 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1979 if (error) { 1980 put_page(page); 1981 if (error == -EEXIST) { 1982 error = 0; 1983 goto find_page; 1984 } 1985 goto out; 1986 } 1987 goto readpage; 1988 } 1989 1990 out: 1991 ra->prev_pos = prev_index; 1992 ra->prev_pos <<= PAGE_SHIFT; 1993 ra->prev_pos |= prev_offset; 1994 1995 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 1996 file_accessed(filp); 1997 return written ? written : error; 1998 } 1999 2000 /** 2001 * generic_file_read_iter - generic filesystem read routine 2002 * @iocb: kernel I/O control block 2003 * @iter: destination for the data read 2004 * 2005 * This is the "read_iter()" routine for all filesystems 2006 * that can use the page cache directly. 2007 */ 2008 ssize_t 2009 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2010 { 2011 struct file *file = iocb->ki_filp; 2012 ssize_t retval = 0; 2013 size_t count = iov_iter_count(iter); 2014 2015 if (!count) 2016 goto out; /* skip atime */ 2017 2018 if (iocb->ki_flags & IOCB_DIRECT) { 2019 struct address_space *mapping = file->f_mapping; 2020 struct inode *inode = mapping->host; 2021 struct iov_iter data = *iter; 2022 loff_t size; 2023 2024 size = i_size_read(inode); 2025 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, 2026 iocb->ki_pos + count - 1); 2027 if (retval < 0) 2028 goto out; 2029 2030 file_accessed(file); 2031 2032 retval = mapping->a_ops->direct_IO(iocb, &data); 2033 if (retval >= 0) { 2034 iocb->ki_pos += retval; 2035 iov_iter_advance(iter, retval); 2036 } 2037 2038 /* 2039 * Btrfs can have a short DIO read if we encounter 2040 * compressed extents, so if there was an error, or if 2041 * we've already read everything we wanted to, or if 2042 * there was a short read because we hit EOF, go ahead 2043 * and return. Otherwise fallthrough to buffered io for 2044 * the rest of the read. Buffered reads will not work for 2045 * DAX files, so don't bother trying. 2046 */ 2047 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || 2048 IS_DAX(inode)) 2049 goto out; 2050 } 2051 2052 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2053 out: 2054 return retval; 2055 } 2056 EXPORT_SYMBOL(generic_file_read_iter); 2057 2058 #ifdef CONFIG_MMU 2059 /** 2060 * page_cache_read - adds requested page to the page cache if not already there 2061 * @file: file to read 2062 * @offset: page index 2063 * @gfp_mask: memory allocation flags 2064 * 2065 * This adds the requested page to the page cache if it isn't already there, 2066 * and schedules an I/O to read in its contents from disk. 2067 */ 2068 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2069 { 2070 struct address_space *mapping = file->f_mapping; 2071 struct page *page; 2072 int ret; 2073 2074 do { 2075 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2076 if (!page) 2077 return -ENOMEM; 2078 2079 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2080 if (ret == 0) 2081 ret = mapping->a_ops->readpage(file, page); 2082 else if (ret == -EEXIST) 2083 ret = 0; /* losing race to add is OK */ 2084 2085 put_page(page); 2086 2087 } while (ret == AOP_TRUNCATED_PAGE); 2088 2089 return ret; 2090 } 2091 2092 #define MMAP_LOTSAMISS (100) 2093 2094 /* 2095 * Synchronous readahead happens when we don't even find 2096 * a page in the page cache at all. 2097 */ 2098 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2099 struct file_ra_state *ra, 2100 struct file *file, 2101 pgoff_t offset) 2102 { 2103 struct address_space *mapping = file->f_mapping; 2104 2105 /* If we don't want any read-ahead, don't bother */ 2106 if (vma->vm_flags & VM_RAND_READ) 2107 return; 2108 if (!ra->ra_pages) 2109 return; 2110 2111 if (vma->vm_flags & VM_SEQ_READ) { 2112 page_cache_sync_readahead(mapping, ra, file, offset, 2113 ra->ra_pages); 2114 return; 2115 } 2116 2117 /* Avoid banging the cache line if not needed */ 2118 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2119 ra->mmap_miss++; 2120 2121 /* 2122 * Do we miss much more than hit in this file? If so, 2123 * stop bothering with read-ahead. It will only hurt. 2124 */ 2125 if (ra->mmap_miss > MMAP_LOTSAMISS) 2126 return; 2127 2128 /* 2129 * mmap read-around 2130 */ 2131 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2132 ra->size = ra->ra_pages; 2133 ra->async_size = ra->ra_pages / 4; 2134 ra_submit(ra, mapping, file); 2135 } 2136 2137 /* 2138 * Asynchronous readahead happens when we find the page and PG_readahead, 2139 * so we want to possibly extend the readahead further.. 2140 */ 2141 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2142 struct file_ra_state *ra, 2143 struct file *file, 2144 struct page *page, 2145 pgoff_t offset) 2146 { 2147 struct address_space *mapping = file->f_mapping; 2148 2149 /* If we don't want any read-ahead, don't bother */ 2150 if (vma->vm_flags & VM_RAND_READ) 2151 return; 2152 if (ra->mmap_miss > 0) 2153 ra->mmap_miss--; 2154 if (PageReadahead(page)) 2155 page_cache_async_readahead(mapping, ra, file, 2156 page, offset, ra->ra_pages); 2157 } 2158 2159 /** 2160 * filemap_fault - read in file data for page fault handling 2161 * @vma: vma in which the fault was taken 2162 * @vmf: struct vm_fault containing details of the fault 2163 * 2164 * filemap_fault() is invoked via the vma operations vector for a 2165 * mapped memory region to read in file data during a page fault. 2166 * 2167 * The goto's are kind of ugly, but this streamlines the normal case of having 2168 * it in the page cache, and handles the special cases reasonably without 2169 * having a lot of duplicated code. 2170 * 2171 * vma->vm_mm->mmap_sem must be held on entry. 2172 * 2173 * If our return value has VM_FAULT_RETRY set, it's because 2174 * lock_page_or_retry() returned 0. 2175 * The mmap_sem has usually been released in this case. 2176 * See __lock_page_or_retry() for the exception. 2177 * 2178 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2179 * has not been released. 2180 * 2181 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2182 */ 2183 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2184 { 2185 int error; 2186 struct file *file = vma->vm_file; 2187 struct address_space *mapping = file->f_mapping; 2188 struct file_ra_state *ra = &file->f_ra; 2189 struct inode *inode = mapping->host; 2190 pgoff_t offset = vmf->pgoff; 2191 struct page *page; 2192 loff_t size; 2193 int ret = 0; 2194 2195 size = round_up(i_size_read(inode), PAGE_SIZE); 2196 if (offset >= size >> PAGE_SHIFT) 2197 return VM_FAULT_SIGBUS; 2198 2199 /* 2200 * Do we have something in the page cache already? 2201 */ 2202 page = find_get_page(mapping, offset); 2203 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2204 /* 2205 * We found the page, so try async readahead before 2206 * waiting for the lock. 2207 */ 2208 do_async_mmap_readahead(vma, ra, file, page, offset); 2209 } else if (!page) { 2210 /* No page in the page cache at all */ 2211 do_sync_mmap_readahead(vma, ra, file, offset); 2212 count_vm_event(PGMAJFAULT); 2213 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2214 ret = VM_FAULT_MAJOR; 2215 retry_find: 2216 page = find_get_page(mapping, offset); 2217 if (!page) 2218 goto no_cached_page; 2219 } 2220 2221 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 2222 put_page(page); 2223 return ret | VM_FAULT_RETRY; 2224 } 2225 2226 /* Did it get truncated? */ 2227 if (unlikely(page->mapping != mapping)) { 2228 unlock_page(page); 2229 put_page(page); 2230 goto retry_find; 2231 } 2232 VM_BUG_ON_PAGE(page->index != offset, page); 2233 2234 /* 2235 * We have a locked page in the page cache, now we need to check 2236 * that it's up-to-date. If not, it is going to be due to an error. 2237 */ 2238 if (unlikely(!PageUptodate(page))) 2239 goto page_not_uptodate; 2240 2241 /* 2242 * Found the page and have a reference on it. 2243 * We must recheck i_size under page lock. 2244 */ 2245 size = round_up(i_size_read(inode), PAGE_SIZE); 2246 if (unlikely(offset >= size >> PAGE_SHIFT)) { 2247 unlock_page(page); 2248 put_page(page); 2249 return VM_FAULT_SIGBUS; 2250 } 2251 2252 vmf->page = page; 2253 return ret | VM_FAULT_LOCKED; 2254 2255 no_cached_page: 2256 /* 2257 * We're only likely to ever get here if MADV_RANDOM is in 2258 * effect. 2259 */ 2260 error = page_cache_read(file, offset, vmf->gfp_mask); 2261 2262 /* 2263 * The page we want has now been added to the page cache. 2264 * In the unlikely event that someone removed it in the 2265 * meantime, we'll just come back here and read it again. 2266 */ 2267 if (error >= 0) 2268 goto retry_find; 2269 2270 /* 2271 * An error return from page_cache_read can result if the 2272 * system is low on memory, or a problem occurs while trying 2273 * to schedule I/O. 2274 */ 2275 if (error == -ENOMEM) 2276 return VM_FAULT_OOM; 2277 return VM_FAULT_SIGBUS; 2278 2279 page_not_uptodate: 2280 /* 2281 * Umm, take care of errors if the page isn't up-to-date. 2282 * Try to re-read it _once_. We do this synchronously, 2283 * because there really aren't any performance issues here 2284 * and we need to check for errors. 2285 */ 2286 ClearPageError(page); 2287 error = mapping->a_ops->readpage(file, page); 2288 if (!error) { 2289 wait_on_page_locked(page); 2290 if (!PageUptodate(page)) 2291 error = -EIO; 2292 } 2293 put_page(page); 2294 2295 if (!error || error == AOP_TRUNCATED_PAGE) 2296 goto retry_find; 2297 2298 /* Things didn't work out. Return zero to tell the mm layer so. */ 2299 shrink_readahead_size_eio(file, ra); 2300 return VM_FAULT_SIGBUS; 2301 } 2302 EXPORT_SYMBOL(filemap_fault); 2303 2304 void filemap_map_pages(struct vm_fault *vmf, 2305 pgoff_t start_pgoff, pgoff_t end_pgoff) 2306 { 2307 struct radix_tree_iter iter; 2308 void **slot; 2309 struct file *file = vmf->vma->vm_file; 2310 struct address_space *mapping = file->f_mapping; 2311 pgoff_t last_pgoff = start_pgoff; 2312 loff_t size; 2313 struct page *head, *page; 2314 2315 rcu_read_lock(); 2316 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2317 start_pgoff) { 2318 if (iter.index > end_pgoff) 2319 break; 2320 repeat: 2321 page = radix_tree_deref_slot(slot); 2322 if (unlikely(!page)) 2323 goto next; 2324 if (radix_tree_exception(page)) { 2325 if (radix_tree_deref_retry(page)) { 2326 slot = radix_tree_iter_retry(&iter); 2327 continue; 2328 } 2329 goto next; 2330 } 2331 2332 head = compound_head(page); 2333 if (!page_cache_get_speculative(head)) 2334 goto repeat; 2335 2336 /* The page was split under us? */ 2337 if (compound_head(page) != head) { 2338 put_page(head); 2339 goto repeat; 2340 } 2341 2342 /* Has the page moved? */ 2343 if (unlikely(page != *slot)) { 2344 put_page(head); 2345 goto repeat; 2346 } 2347 2348 if (!PageUptodate(page) || 2349 PageReadahead(page) || 2350 PageHWPoison(page)) 2351 goto skip; 2352 if (!trylock_page(page)) 2353 goto skip; 2354 2355 if (page->mapping != mapping || !PageUptodate(page)) 2356 goto unlock; 2357 2358 size = round_up(i_size_read(mapping->host), PAGE_SIZE); 2359 if (page->index >= size >> PAGE_SHIFT) 2360 goto unlock; 2361 2362 if (file->f_ra.mmap_miss > 0) 2363 file->f_ra.mmap_miss--; 2364 2365 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2366 if (vmf->pte) 2367 vmf->pte += iter.index - last_pgoff; 2368 last_pgoff = iter.index; 2369 if (alloc_set_pte(vmf, NULL, page)) 2370 goto unlock; 2371 unlock_page(page); 2372 goto next; 2373 unlock: 2374 unlock_page(page); 2375 skip: 2376 put_page(page); 2377 next: 2378 /* Huge page is mapped? No need to proceed. */ 2379 if (pmd_trans_huge(*vmf->pmd)) 2380 break; 2381 if (iter.index == end_pgoff) 2382 break; 2383 } 2384 rcu_read_unlock(); 2385 } 2386 EXPORT_SYMBOL(filemap_map_pages); 2387 2388 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2389 { 2390 struct page *page = vmf->page; 2391 struct inode *inode = file_inode(vma->vm_file); 2392 int ret = VM_FAULT_LOCKED; 2393 2394 sb_start_pagefault(inode->i_sb); 2395 file_update_time(vma->vm_file); 2396 lock_page(page); 2397 if (page->mapping != inode->i_mapping) { 2398 unlock_page(page); 2399 ret = VM_FAULT_NOPAGE; 2400 goto out; 2401 } 2402 /* 2403 * We mark the page dirty already here so that when freeze is in 2404 * progress, we are guaranteed that writeback during freezing will 2405 * see the dirty page and writeprotect it again. 2406 */ 2407 set_page_dirty(page); 2408 wait_for_stable_page(page); 2409 out: 2410 sb_end_pagefault(inode->i_sb); 2411 return ret; 2412 } 2413 EXPORT_SYMBOL(filemap_page_mkwrite); 2414 2415 const struct vm_operations_struct generic_file_vm_ops = { 2416 .fault = filemap_fault, 2417 .map_pages = filemap_map_pages, 2418 .page_mkwrite = filemap_page_mkwrite, 2419 }; 2420 2421 /* This is used for a general mmap of a disk file */ 2422 2423 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2424 { 2425 struct address_space *mapping = file->f_mapping; 2426 2427 if (!mapping->a_ops->readpage) 2428 return -ENOEXEC; 2429 file_accessed(file); 2430 vma->vm_ops = &generic_file_vm_ops; 2431 return 0; 2432 } 2433 2434 /* 2435 * This is for filesystems which do not implement ->writepage. 2436 */ 2437 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2438 { 2439 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2440 return -EINVAL; 2441 return generic_file_mmap(file, vma); 2442 } 2443 #else 2444 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2445 { 2446 return -ENOSYS; 2447 } 2448 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2449 { 2450 return -ENOSYS; 2451 } 2452 #endif /* CONFIG_MMU */ 2453 2454 EXPORT_SYMBOL(generic_file_mmap); 2455 EXPORT_SYMBOL(generic_file_readonly_mmap); 2456 2457 static struct page *wait_on_page_read(struct page *page) 2458 { 2459 if (!IS_ERR(page)) { 2460 wait_on_page_locked(page); 2461 if (!PageUptodate(page)) { 2462 put_page(page); 2463 page = ERR_PTR(-EIO); 2464 } 2465 } 2466 return page; 2467 } 2468 2469 static struct page *do_read_cache_page(struct address_space *mapping, 2470 pgoff_t index, 2471 int (*filler)(void *, struct page *), 2472 void *data, 2473 gfp_t gfp) 2474 { 2475 struct page *page; 2476 int err; 2477 repeat: 2478 page = find_get_page(mapping, index); 2479 if (!page) { 2480 page = __page_cache_alloc(gfp | __GFP_COLD); 2481 if (!page) 2482 return ERR_PTR(-ENOMEM); 2483 err = add_to_page_cache_lru(page, mapping, index, gfp); 2484 if (unlikely(err)) { 2485 put_page(page); 2486 if (err == -EEXIST) 2487 goto repeat; 2488 /* Presumably ENOMEM for radix tree node */ 2489 return ERR_PTR(err); 2490 } 2491 2492 filler: 2493 err = filler(data, page); 2494 if (err < 0) { 2495 put_page(page); 2496 return ERR_PTR(err); 2497 } 2498 2499 page = wait_on_page_read(page); 2500 if (IS_ERR(page)) 2501 return page; 2502 goto out; 2503 } 2504 if (PageUptodate(page)) 2505 goto out; 2506 2507 /* 2508 * Page is not up to date and may be locked due one of the following 2509 * case a: Page is being filled and the page lock is held 2510 * case b: Read/write error clearing the page uptodate status 2511 * case c: Truncation in progress (page locked) 2512 * case d: Reclaim in progress 2513 * 2514 * Case a, the page will be up to date when the page is unlocked. 2515 * There is no need to serialise on the page lock here as the page 2516 * is pinned so the lock gives no additional protection. Even if the 2517 * the page is truncated, the data is still valid if PageUptodate as 2518 * it's a race vs truncate race. 2519 * Case b, the page will not be up to date 2520 * Case c, the page may be truncated but in itself, the data may still 2521 * be valid after IO completes as it's a read vs truncate race. The 2522 * operation must restart if the page is not uptodate on unlock but 2523 * otherwise serialising on page lock to stabilise the mapping gives 2524 * no additional guarantees to the caller as the page lock is 2525 * released before return. 2526 * Case d, similar to truncation. If reclaim holds the page lock, it 2527 * will be a race with remove_mapping that determines if the mapping 2528 * is valid on unlock but otherwise the data is valid and there is 2529 * no need to serialise with page lock. 2530 * 2531 * As the page lock gives no additional guarantee, we optimistically 2532 * wait on the page to be unlocked and check if it's up to date and 2533 * use the page if it is. Otherwise, the page lock is required to 2534 * distinguish between the different cases. The motivation is that we 2535 * avoid spurious serialisations and wakeups when multiple processes 2536 * wait on the same page for IO to complete. 2537 */ 2538 wait_on_page_locked(page); 2539 if (PageUptodate(page)) 2540 goto out; 2541 2542 /* Distinguish between all the cases under the safety of the lock */ 2543 lock_page(page); 2544 2545 /* Case c or d, restart the operation */ 2546 if (!page->mapping) { 2547 unlock_page(page); 2548 put_page(page); 2549 goto repeat; 2550 } 2551 2552 /* Someone else locked and filled the page in a very small window */ 2553 if (PageUptodate(page)) { 2554 unlock_page(page); 2555 goto out; 2556 } 2557 goto filler; 2558 2559 out: 2560 mark_page_accessed(page); 2561 return page; 2562 } 2563 2564 /** 2565 * read_cache_page - read into page cache, fill it if needed 2566 * @mapping: the page's address_space 2567 * @index: the page index 2568 * @filler: function to perform the read 2569 * @data: first arg to filler(data, page) function, often left as NULL 2570 * 2571 * Read into the page cache. If a page already exists, and PageUptodate() is 2572 * not set, try to fill the page and wait for it to become unlocked. 2573 * 2574 * If the page does not get brought uptodate, return -EIO. 2575 */ 2576 struct page *read_cache_page(struct address_space *mapping, 2577 pgoff_t index, 2578 int (*filler)(void *, struct page *), 2579 void *data) 2580 { 2581 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2582 } 2583 EXPORT_SYMBOL(read_cache_page); 2584 2585 /** 2586 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2587 * @mapping: the page's address_space 2588 * @index: the page index 2589 * @gfp: the page allocator flags to use if allocating 2590 * 2591 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2592 * any new page allocations done using the specified allocation flags. 2593 * 2594 * If the page does not get brought uptodate, return -EIO. 2595 */ 2596 struct page *read_cache_page_gfp(struct address_space *mapping, 2597 pgoff_t index, 2598 gfp_t gfp) 2599 { 2600 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2601 2602 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2603 } 2604 EXPORT_SYMBOL(read_cache_page_gfp); 2605 2606 /* 2607 * Performs necessary checks before doing a write 2608 * 2609 * Can adjust writing position or amount of bytes to write. 2610 * Returns appropriate error code that caller should return or 2611 * zero in case that write should be allowed. 2612 */ 2613 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2614 { 2615 struct file *file = iocb->ki_filp; 2616 struct inode *inode = file->f_mapping->host; 2617 unsigned long limit = rlimit(RLIMIT_FSIZE); 2618 loff_t pos; 2619 2620 if (!iov_iter_count(from)) 2621 return 0; 2622 2623 /* FIXME: this is for backwards compatibility with 2.4 */ 2624 if (iocb->ki_flags & IOCB_APPEND) 2625 iocb->ki_pos = i_size_read(inode); 2626 2627 pos = iocb->ki_pos; 2628 2629 if (limit != RLIM_INFINITY) { 2630 if (iocb->ki_pos >= limit) { 2631 send_sig(SIGXFSZ, current, 0); 2632 return -EFBIG; 2633 } 2634 iov_iter_truncate(from, limit - (unsigned long)pos); 2635 } 2636 2637 /* 2638 * LFS rule 2639 */ 2640 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2641 !(file->f_flags & O_LARGEFILE))) { 2642 if (pos >= MAX_NON_LFS) 2643 return -EFBIG; 2644 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2645 } 2646 2647 /* 2648 * Are we about to exceed the fs block limit ? 2649 * 2650 * If we have written data it becomes a short write. If we have 2651 * exceeded without writing data we send a signal and return EFBIG. 2652 * Linus frestrict idea will clean these up nicely.. 2653 */ 2654 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2655 return -EFBIG; 2656 2657 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2658 return iov_iter_count(from); 2659 } 2660 EXPORT_SYMBOL(generic_write_checks); 2661 2662 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2663 loff_t pos, unsigned len, unsigned flags, 2664 struct page **pagep, void **fsdata) 2665 { 2666 const struct address_space_operations *aops = mapping->a_ops; 2667 2668 return aops->write_begin(file, mapping, pos, len, flags, 2669 pagep, fsdata); 2670 } 2671 EXPORT_SYMBOL(pagecache_write_begin); 2672 2673 int pagecache_write_end(struct file *file, struct address_space *mapping, 2674 loff_t pos, unsigned len, unsigned copied, 2675 struct page *page, void *fsdata) 2676 { 2677 const struct address_space_operations *aops = mapping->a_ops; 2678 2679 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2680 } 2681 EXPORT_SYMBOL(pagecache_write_end); 2682 2683 ssize_t 2684 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2685 { 2686 struct file *file = iocb->ki_filp; 2687 struct address_space *mapping = file->f_mapping; 2688 struct inode *inode = mapping->host; 2689 loff_t pos = iocb->ki_pos; 2690 ssize_t written; 2691 size_t write_len; 2692 pgoff_t end; 2693 struct iov_iter data; 2694 2695 write_len = iov_iter_count(from); 2696 end = (pos + write_len - 1) >> PAGE_SHIFT; 2697 2698 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2699 if (written) 2700 goto out; 2701 2702 /* 2703 * After a write we want buffered reads to be sure to go to disk to get 2704 * the new data. We invalidate clean cached page from the region we're 2705 * about to write. We do this *before* the write so that we can return 2706 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2707 */ 2708 if (mapping->nrpages) { 2709 written = invalidate_inode_pages2_range(mapping, 2710 pos >> PAGE_SHIFT, end); 2711 /* 2712 * If a page can not be invalidated, return 0 to fall back 2713 * to buffered write. 2714 */ 2715 if (written) { 2716 if (written == -EBUSY) 2717 return 0; 2718 goto out; 2719 } 2720 } 2721 2722 data = *from; 2723 written = mapping->a_ops->direct_IO(iocb, &data); 2724 2725 /* 2726 * Finally, try again to invalidate clean pages which might have been 2727 * cached by non-direct readahead, or faulted in by get_user_pages() 2728 * if the source of the write was an mmap'ed region of the file 2729 * we're writing. Either one is a pretty crazy thing to do, 2730 * so we don't support it 100%. If this invalidation 2731 * fails, tough, the write still worked... 2732 */ 2733 if (mapping->nrpages) { 2734 invalidate_inode_pages2_range(mapping, 2735 pos >> PAGE_SHIFT, end); 2736 } 2737 2738 if (written > 0) { 2739 pos += written; 2740 iov_iter_advance(from, written); 2741 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2742 i_size_write(inode, pos); 2743 mark_inode_dirty(inode); 2744 } 2745 iocb->ki_pos = pos; 2746 } 2747 out: 2748 return written; 2749 } 2750 EXPORT_SYMBOL(generic_file_direct_write); 2751 2752 /* 2753 * Find or create a page at the given pagecache position. Return the locked 2754 * page. This function is specifically for buffered writes. 2755 */ 2756 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2757 pgoff_t index, unsigned flags) 2758 { 2759 struct page *page; 2760 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2761 2762 if (flags & AOP_FLAG_NOFS) 2763 fgp_flags |= FGP_NOFS; 2764 2765 page = pagecache_get_page(mapping, index, fgp_flags, 2766 mapping_gfp_mask(mapping)); 2767 if (page) 2768 wait_for_stable_page(page); 2769 2770 return page; 2771 } 2772 EXPORT_SYMBOL(grab_cache_page_write_begin); 2773 2774 ssize_t generic_perform_write(struct file *file, 2775 struct iov_iter *i, loff_t pos) 2776 { 2777 struct address_space *mapping = file->f_mapping; 2778 const struct address_space_operations *a_ops = mapping->a_ops; 2779 long status = 0; 2780 ssize_t written = 0; 2781 unsigned int flags = 0; 2782 2783 /* 2784 * Copies from kernel address space cannot fail (NFSD is a big user). 2785 */ 2786 if (!iter_is_iovec(i)) 2787 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2788 2789 do { 2790 struct page *page; 2791 unsigned long offset; /* Offset into pagecache page */ 2792 unsigned long bytes; /* Bytes to write to page */ 2793 size_t copied; /* Bytes copied from user */ 2794 void *fsdata; 2795 2796 offset = (pos & (PAGE_SIZE - 1)); 2797 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2798 iov_iter_count(i)); 2799 2800 again: 2801 /* 2802 * Bring in the user page that we will copy from _first_. 2803 * Otherwise there's a nasty deadlock on copying from the 2804 * same page as we're writing to, without it being marked 2805 * up-to-date. 2806 * 2807 * Not only is this an optimisation, but it is also required 2808 * to check that the address is actually valid, when atomic 2809 * usercopies are used, below. 2810 */ 2811 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2812 status = -EFAULT; 2813 break; 2814 } 2815 2816 if (fatal_signal_pending(current)) { 2817 status = -EINTR; 2818 break; 2819 } 2820 2821 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2822 &page, &fsdata); 2823 if (unlikely(status < 0)) 2824 break; 2825 2826 if (mapping_writably_mapped(mapping)) 2827 flush_dcache_page(page); 2828 2829 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2830 flush_dcache_page(page); 2831 2832 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2833 page, fsdata); 2834 if (unlikely(status < 0)) 2835 break; 2836 copied = status; 2837 2838 cond_resched(); 2839 2840 iov_iter_advance(i, copied); 2841 if (unlikely(copied == 0)) { 2842 /* 2843 * If we were unable to copy any data at all, we must 2844 * fall back to a single segment length write. 2845 * 2846 * If we didn't fallback here, we could livelock 2847 * because not all segments in the iov can be copied at 2848 * once without a pagefault. 2849 */ 2850 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2851 iov_iter_single_seg_count(i)); 2852 goto again; 2853 } 2854 pos += copied; 2855 written += copied; 2856 2857 balance_dirty_pages_ratelimited(mapping); 2858 } while (iov_iter_count(i)); 2859 2860 return written ? written : status; 2861 } 2862 EXPORT_SYMBOL(generic_perform_write); 2863 2864 /** 2865 * __generic_file_write_iter - write data to a file 2866 * @iocb: IO state structure (file, offset, etc.) 2867 * @from: iov_iter with data to write 2868 * 2869 * This function does all the work needed for actually writing data to a 2870 * file. It does all basic checks, removes SUID from the file, updates 2871 * modification times and calls proper subroutines depending on whether we 2872 * do direct IO or a standard buffered write. 2873 * 2874 * It expects i_mutex to be grabbed unless we work on a block device or similar 2875 * object which does not need locking at all. 2876 * 2877 * This function does *not* take care of syncing data in case of O_SYNC write. 2878 * A caller has to handle it. This is mainly due to the fact that we want to 2879 * avoid syncing under i_mutex. 2880 */ 2881 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2882 { 2883 struct file *file = iocb->ki_filp; 2884 struct address_space * mapping = file->f_mapping; 2885 struct inode *inode = mapping->host; 2886 ssize_t written = 0; 2887 ssize_t err; 2888 ssize_t status; 2889 2890 /* We can write back this queue in page reclaim */ 2891 current->backing_dev_info = inode_to_bdi(inode); 2892 err = file_remove_privs(file); 2893 if (err) 2894 goto out; 2895 2896 err = file_update_time(file); 2897 if (err) 2898 goto out; 2899 2900 if (iocb->ki_flags & IOCB_DIRECT) { 2901 loff_t pos, endbyte; 2902 2903 written = generic_file_direct_write(iocb, from); 2904 /* 2905 * If the write stopped short of completing, fall back to 2906 * buffered writes. Some filesystems do this for writes to 2907 * holes, for example. For DAX files, a buffered write will 2908 * not succeed (even if it did, DAX does not handle dirty 2909 * page-cache pages correctly). 2910 */ 2911 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2912 goto out; 2913 2914 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2915 /* 2916 * If generic_perform_write() returned a synchronous error 2917 * then we want to return the number of bytes which were 2918 * direct-written, or the error code if that was zero. Note 2919 * that this differs from normal direct-io semantics, which 2920 * will return -EFOO even if some bytes were written. 2921 */ 2922 if (unlikely(status < 0)) { 2923 err = status; 2924 goto out; 2925 } 2926 /* 2927 * We need to ensure that the page cache pages are written to 2928 * disk and invalidated to preserve the expected O_DIRECT 2929 * semantics. 2930 */ 2931 endbyte = pos + status - 1; 2932 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2933 if (err == 0) { 2934 iocb->ki_pos = endbyte + 1; 2935 written += status; 2936 invalidate_mapping_pages(mapping, 2937 pos >> PAGE_SHIFT, 2938 endbyte >> PAGE_SHIFT); 2939 } else { 2940 /* 2941 * We don't know how much we wrote, so just return 2942 * the number of bytes which were direct-written 2943 */ 2944 } 2945 } else { 2946 written = generic_perform_write(file, from, iocb->ki_pos); 2947 if (likely(written > 0)) 2948 iocb->ki_pos += written; 2949 } 2950 out: 2951 current->backing_dev_info = NULL; 2952 return written ? written : err; 2953 } 2954 EXPORT_SYMBOL(__generic_file_write_iter); 2955 2956 /** 2957 * generic_file_write_iter - write data to a file 2958 * @iocb: IO state structure 2959 * @from: iov_iter with data to write 2960 * 2961 * This is a wrapper around __generic_file_write_iter() to be used by most 2962 * filesystems. It takes care of syncing the file in case of O_SYNC file 2963 * and acquires i_mutex as needed. 2964 */ 2965 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2966 { 2967 struct file *file = iocb->ki_filp; 2968 struct inode *inode = file->f_mapping->host; 2969 ssize_t ret; 2970 2971 inode_lock(inode); 2972 ret = generic_write_checks(iocb, from); 2973 if (ret > 0) 2974 ret = __generic_file_write_iter(iocb, from); 2975 inode_unlock(inode); 2976 2977 if (ret > 0) 2978 ret = generic_write_sync(iocb, ret); 2979 return ret; 2980 } 2981 EXPORT_SYMBOL(generic_file_write_iter); 2982 2983 /** 2984 * try_to_release_page() - release old fs-specific metadata on a page 2985 * 2986 * @page: the page which the kernel is trying to free 2987 * @gfp_mask: memory allocation flags (and I/O mode) 2988 * 2989 * The address_space is to try to release any data against the page 2990 * (presumably at page->private). If the release was successful, return `1'. 2991 * Otherwise return zero. 2992 * 2993 * This may also be called if PG_fscache is set on a page, indicating that the 2994 * page is known to the local caching routines. 2995 * 2996 * The @gfp_mask argument specifies whether I/O may be performed to release 2997 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 2998 * 2999 */ 3000 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3001 { 3002 struct address_space * const mapping = page->mapping; 3003 3004 BUG_ON(!PageLocked(page)); 3005 if (PageWriteback(page)) 3006 return 0; 3007 3008 if (mapping && mapping->a_ops->releasepage) 3009 return mapping->a_ops->releasepage(page, gfp_mask); 3010 return try_to_free_buffers(page); 3011 } 3012 3013 EXPORT_SYMBOL(try_to_release_page); 3014