1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/rmap.h> 39 #include <linux/delayacct.h> 40 #include <linux/psi.h> 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/filemap.h> 45 46 /* 47 * FIXME: remove all knowledge of the buffer layer from the core VM 48 */ 49 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 50 51 #include <asm/mman.h> 52 53 /* 54 * Shared mappings implemented 30.11.1994. It's not fully working yet, 55 * though. 56 * 57 * Shared mappings now work. 15.8.1995 Bruno. 58 * 59 * finished 'unifying' the page and buffer cache and SMP-threaded the 60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 61 * 62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 63 */ 64 65 /* 66 * Lock ordering: 67 * 68 * ->i_mmap_rwsem (truncate_pagecache) 69 * ->private_lock (__free_pte->__set_page_dirty_buffers) 70 * ->swap_lock (exclusive_swap_page, others) 71 * ->i_pages lock 72 * 73 * ->i_mutex 74 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 75 * 76 * ->mmap_sem 77 * ->i_mmap_rwsem 78 * ->page_table_lock or pte_lock (various, mainly in memory.c) 79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 80 * 81 * ->mmap_sem 82 * ->lock_page (access_process_vm) 83 * 84 * ->i_mutex (generic_perform_write) 85 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 86 * 87 * bdi->wb.list_lock 88 * sb_lock (fs/fs-writeback.c) 89 * ->i_pages lock (__sync_single_inode) 90 * 91 * ->i_mmap_rwsem 92 * ->anon_vma.lock (vma_adjust) 93 * 94 * ->anon_vma.lock 95 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 96 * 97 * ->page_table_lock or pte_lock 98 * ->swap_lock (try_to_unmap_one) 99 * ->private_lock (try_to_unmap_one) 100 * ->i_pages lock (try_to_unmap_one) 101 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 102 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 103 * ->private_lock (page_remove_rmap->set_page_dirty) 104 * ->i_pages lock (page_remove_rmap->set_page_dirty) 105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 106 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 109 * ->inode->i_lock (zap_pte_range->set_page_dirty) 110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 111 * 112 * ->i_mmap_rwsem 113 * ->tasklist_lock (memory_failure, collect_procs_ao) 114 */ 115 116 static void page_cache_delete(struct address_space *mapping, 117 struct page *page, void *shadow) 118 { 119 XA_STATE(xas, &mapping->i_pages, page->index); 120 unsigned int nr = 1; 121 122 mapping_set_update(&xas, mapping); 123 124 /* hugetlb pages are represented by a single entry in the xarray */ 125 if (!PageHuge(page)) { 126 xas_set_order(&xas, page->index, compound_order(page)); 127 nr = 1U << compound_order(page); 128 } 129 130 VM_BUG_ON_PAGE(!PageLocked(page), page); 131 VM_BUG_ON_PAGE(PageTail(page), page); 132 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 133 134 xas_store(&xas, shadow); 135 xas_init_marks(&xas); 136 137 page->mapping = NULL; 138 /* Leave page->index set: truncation lookup relies upon it */ 139 140 if (shadow) { 141 mapping->nrexceptional += nr; 142 /* 143 * Make sure the nrexceptional update is committed before 144 * the nrpages update so that final truncate racing 145 * with reclaim does not see both counters 0 at the 146 * same time and miss a shadow entry. 147 */ 148 smp_wmb(); 149 } 150 mapping->nrpages -= nr; 151 } 152 153 static void unaccount_page_cache_page(struct address_space *mapping, 154 struct page *page) 155 { 156 int nr; 157 158 /* 159 * if we're uptodate, flush out into the cleancache, otherwise 160 * invalidate any existing cleancache entries. We can't leave 161 * stale data around in the cleancache once our page is gone 162 */ 163 if (PageUptodate(page) && PageMappedToDisk(page)) 164 cleancache_put_page(page); 165 else 166 cleancache_invalidate_page(mapping, page); 167 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_mapped(page), page); 170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 171 int mapcount; 172 173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 174 current->comm, page_to_pfn(page)); 175 dump_page(page, "still mapped when deleted"); 176 dump_stack(); 177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 178 179 mapcount = page_mapcount(page); 180 if (mapping_exiting(mapping) && 181 page_count(page) >= mapcount + 2) { 182 /* 183 * All vmas have already been torn down, so it's 184 * a good bet that actually the page is unmapped, 185 * and we'd prefer not to leak it: if we're wrong, 186 * some other bad page check should catch it later. 187 */ 188 page_mapcount_reset(page); 189 page_ref_sub(page, mapcount); 190 } 191 } 192 193 /* hugetlb pages do not participate in page cache accounting. */ 194 if (PageHuge(page)) 195 return; 196 197 nr = hpage_nr_pages(page); 198 199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 200 if (PageSwapBacked(page)) { 201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 202 if (PageTransHuge(page)) 203 __dec_node_page_state(page, NR_SHMEM_THPS); 204 } else { 205 VM_BUG_ON_PAGE(PageTransHuge(page), page); 206 } 207 208 /* 209 * At this point page must be either written or cleaned by 210 * truncate. Dirty page here signals a bug and loss of 211 * unwritten data. 212 * 213 * This fixes dirty accounting after removing the page entirely 214 * but leaves PageDirty set: it has no effect for truncated 215 * page and anyway will be cleared before returning page into 216 * buddy allocator. 217 */ 218 if (WARN_ON_ONCE(PageDirty(page))) 219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 220 } 221 222 /* 223 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages lock. 226 */ 227 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 229 struct address_space *mapping = page->mapping; 230 231 trace_mm_filemap_delete_from_page_cache(page); 232 233 unaccount_page_cache_page(mapping, page); 234 page_cache_delete(mapping, page, shadow); 235 } 236 237 static void page_cache_free_page(struct address_space *mapping, 238 struct page *page) 239 { 240 void (*freepage)(struct page *); 241 242 freepage = mapping->a_ops->freepage; 243 if (freepage) 244 freepage(page); 245 246 if (PageTransHuge(page) && !PageHuge(page)) { 247 page_ref_sub(page, HPAGE_PMD_NR); 248 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 249 } else { 250 put_page(page); 251 } 252 } 253 254 /** 255 * delete_from_page_cache - delete page from page cache 256 * @page: the page which the kernel is trying to remove from page cache 257 * 258 * This must be called only on pages that have been verified to be in the page 259 * cache and locked. It will never put the page into the free list, the caller 260 * has a reference on the page. 261 */ 262 void delete_from_page_cache(struct page *page) 263 { 264 struct address_space *mapping = page_mapping(page); 265 unsigned long flags; 266 267 BUG_ON(!PageLocked(page)); 268 xa_lock_irqsave(&mapping->i_pages, flags); 269 __delete_from_page_cache(page, NULL); 270 xa_unlock_irqrestore(&mapping->i_pages, flags); 271 272 page_cache_free_page(mapping, page); 273 } 274 EXPORT_SYMBOL(delete_from_page_cache); 275 276 /* 277 * page_cache_delete_batch - delete several pages from page cache 278 * @mapping: the mapping to which pages belong 279 * @pvec: pagevec with pages to delete 280 * 281 * The function walks over mapping->i_pages and removes pages passed in @pvec 282 * from the mapping. The function expects @pvec to be sorted by page index. 283 * It tolerates holes in @pvec (mapping entries at those indices are not 284 * modified). The function expects only THP head pages to be present in the 285 * @pvec and takes care to delete all corresponding tail pages from the 286 * mapping as well. 287 * 288 * The function expects the i_pages lock to be held. 289 */ 290 static void page_cache_delete_batch(struct address_space *mapping, 291 struct pagevec *pvec) 292 { 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 294 int total_pages = 0; 295 int i = 0, tail_pages = 0; 296 struct page *page; 297 298 mapping_set_update(&xas, mapping); 299 xas_for_each(&xas, page, ULONG_MAX) { 300 if (i >= pagevec_count(pvec) && !tail_pages) 301 break; 302 if (xa_is_value(page)) 303 continue; 304 if (!tail_pages) { 305 /* 306 * Some page got inserted in our range? Skip it. We 307 * have our pages locked so they are protected from 308 * being removed. 309 */ 310 if (page != pvec->pages[i]) { 311 VM_BUG_ON_PAGE(page->index > 312 pvec->pages[i]->index, page); 313 continue; 314 } 315 WARN_ON_ONCE(!PageLocked(page)); 316 if (PageTransHuge(page) && !PageHuge(page)) 317 tail_pages = HPAGE_PMD_NR - 1; 318 page->mapping = NULL; 319 /* 320 * Leave page->index set: truncation lookup relies 321 * upon it 322 */ 323 i++; 324 } else { 325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages 326 != pvec->pages[i]->index, page); 327 tail_pages--; 328 } 329 xas_store(&xas, NULL); 330 total_pages++; 331 } 332 mapping->nrpages -= total_pages; 333 } 334 335 void delete_from_page_cache_batch(struct address_space *mapping, 336 struct pagevec *pvec) 337 { 338 int i; 339 unsigned long flags; 340 341 if (!pagevec_count(pvec)) 342 return; 343 344 xa_lock_irqsave(&mapping->i_pages, flags); 345 for (i = 0; i < pagevec_count(pvec); i++) { 346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 347 348 unaccount_page_cache_page(mapping, pvec->pages[i]); 349 } 350 page_cache_delete_batch(mapping, pvec); 351 xa_unlock_irqrestore(&mapping->i_pages, flags); 352 353 for (i = 0; i < pagevec_count(pvec); i++) 354 page_cache_free_page(mapping, pvec->pages[i]); 355 } 356 357 int filemap_check_errors(struct address_space *mapping) 358 { 359 int ret = 0; 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_ENOSPC, &mapping->flags) && 362 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 363 ret = -ENOSPC; 364 if (test_bit(AS_EIO, &mapping->flags) && 365 test_and_clear_bit(AS_EIO, &mapping->flags)) 366 ret = -EIO; 367 return ret; 368 } 369 EXPORT_SYMBOL(filemap_check_errors); 370 371 static int filemap_check_and_keep_errors(struct address_space *mapping) 372 { 373 /* Check for outstanding write errors */ 374 if (test_bit(AS_EIO, &mapping->flags)) 375 return -EIO; 376 if (test_bit(AS_ENOSPC, &mapping->flags)) 377 return -ENOSPC; 378 return 0; 379 } 380 381 /** 382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 383 * @mapping: address space structure to write 384 * @start: offset in bytes where the range starts 385 * @end: offset in bytes where the range ends (inclusive) 386 * @sync_mode: enable synchronous operation 387 * 388 * Start writeback against all of a mapping's dirty pages that lie 389 * within the byte offsets <start, end> inclusive. 390 * 391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 392 * opposed to a regular memory cleansing writeback. The difference between 393 * these two operations is that if a dirty page/buffer is encountered, it must 394 * be waited upon, and not just skipped over. 395 * 396 * Return: %0 on success, negative error code otherwise. 397 */ 398 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 399 loff_t end, int sync_mode) 400 { 401 int ret; 402 struct writeback_control wbc = { 403 .sync_mode = sync_mode, 404 .nr_to_write = LONG_MAX, 405 .range_start = start, 406 .range_end = end, 407 }; 408 409 if (!mapping_cap_writeback_dirty(mapping)) 410 return 0; 411 412 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 413 ret = do_writepages(mapping, &wbc); 414 wbc_detach_inode(&wbc); 415 return ret; 416 } 417 418 static inline int __filemap_fdatawrite(struct address_space *mapping, 419 int sync_mode) 420 { 421 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 422 } 423 424 int filemap_fdatawrite(struct address_space *mapping) 425 { 426 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 427 } 428 EXPORT_SYMBOL(filemap_fdatawrite); 429 430 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 431 loff_t end) 432 { 433 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite_range); 436 437 /** 438 * filemap_flush - mostly a non-blocking flush 439 * @mapping: target address_space 440 * 441 * This is a mostly non-blocking flush. Not suitable for data-integrity 442 * purposes - I/O may not be started against all dirty pages. 443 * 444 * Return: %0 on success, negative error code otherwise. 445 */ 446 int filemap_flush(struct address_space *mapping) 447 { 448 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 449 } 450 EXPORT_SYMBOL(filemap_flush); 451 452 /** 453 * filemap_range_has_page - check if a page exists in range. 454 * @mapping: address space within which to check 455 * @start_byte: offset in bytes where the range starts 456 * @end_byte: offset in bytes where the range ends (inclusive) 457 * 458 * Find at least one page in the range supplied, usually used to check if 459 * direct writing in this range will trigger a writeback. 460 * 461 * Return: %true if at least one page exists in the specified range, 462 * %false otherwise. 463 */ 464 bool filemap_range_has_page(struct address_space *mapping, 465 loff_t start_byte, loff_t end_byte) 466 { 467 struct page *page; 468 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 469 pgoff_t max = end_byte >> PAGE_SHIFT; 470 471 if (end_byte < start_byte) 472 return false; 473 474 rcu_read_lock(); 475 for (;;) { 476 page = xas_find(&xas, max); 477 if (xas_retry(&xas, page)) 478 continue; 479 /* Shadow entries don't count */ 480 if (xa_is_value(page)) 481 continue; 482 /* 483 * We don't need to try to pin this page; we're about to 484 * release the RCU lock anyway. It is enough to know that 485 * there was a page here recently. 486 */ 487 break; 488 } 489 rcu_read_unlock(); 490 491 return page != NULL; 492 } 493 EXPORT_SYMBOL(filemap_range_has_page); 494 495 static void __filemap_fdatawait_range(struct address_space *mapping, 496 loff_t start_byte, loff_t end_byte) 497 { 498 pgoff_t index = start_byte >> PAGE_SHIFT; 499 pgoff_t end = end_byte >> PAGE_SHIFT; 500 struct pagevec pvec; 501 int nr_pages; 502 503 if (end_byte < start_byte) 504 return; 505 506 pagevec_init(&pvec); 507 while (index <= end) { 508 unsigned i; 509 510 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 511 end, PAGECACHE_TAG_WRITEBACK); 512 if (!nr_pages) 513 break; 514 515 for (i = 0; i < nr_pages; i++) { 516 struct page *page = pvec.pages[i]; 517 518 wait_on_page_writeback(page); 519 ClearPageError(page); 520 } 521 pagevec_release(&pvec); 522 cond_resched(); 523 } 524 } 525 526 /** 527 * filemap_fdatawait_range - wait for writeback to complete 528 * @mapping: address space structure to wait for 529 * @start_byte: offset in bytes where the range starts 530 * @end_byte: offset in bytes where the range ends (inclusive) 531 * 532 * Walk the list of under-writeback pages of the given address space 533 * in the given range and wait for all of them. Check error status of 534 * the address space and return it. 535 * 536 * Since the error status of the address space is cleared by this function, 537 * callers are responsible for checking the return value and handling and/or 538 * reporting the error. 539 * 540 * Return: error status of the address space. 541 */ 542 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 543 loff_t end_byte) 544 { 545 __filemap_fdatawait_range(mapping, start_byte, end_byte); 546 return filemap_check_errors(mapping); 547 } 548 EXPORT_SYMBOL(filemap_fdatawait_range); 549 550 /** 551 * file_fdatawait_range - wait for writeback to complete 552 * @file: file pointing to address space structure to wait for 553 * @start_byte: offset in bytes where the range starts 554 * @end_byte: offset in bytes where the range ends (inclusive) 555 * 556 * Walk the list of under-writeback pages of the address space that file 557 * refers to, in the given range and wait for all of them. Check error 558 * status of the address space vs. the file->f_wb_err cursor and return it. 559 * 560 * Since the error status of the file is advanced by this function, 561 * callers are responsible for checking the return value and handling and/or 562 * reporting the error. 563 * 564 * Return: error status of the address space vs. the file->f_wb_err cursor. 565 */ 566 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 567 { 568 struct address_space *mapping = file->f_mapping; 569 570 __filemap_fdatawait_range(mapping, start_byte, end_byte); 571 return file_check_and_advance_wb_err(file); 572 } 573 EXPORT_SYMBOL(file_fdatawait_range); 574 575 /** 576 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 577 * @mapping: address space structure to wait for 578 * 579 * Walk the list of under-writeback pages of the given address space 580 * and wait for all of them. Unlike filemap_fdatawait(), this function 581 * does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 * 587 * Return: error status of the address space. 588 */ 589 int filemap_fdatawait_keep_errors(struct address_space *mapping) 590 { 591 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 592 return filemap_check_and_keep_errors(mapping); 593 } 594 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 595 596 static bool mapping_needs_writeback(struct address_space *mapping) 597 { 598 return (!dax_mapping(mapping) && mapping->nrpages) || 599 (dax_mapping(mapping) && mapping->nrexceptional); 600 } 601 602 int filemap_write_and_wait(struct address_space *mapping) 603 { 604 int err = 0; 605 606 if (mapping_needs_writeback(mapping)) { 607 err = filemap_fdatawrite(mapping); 608 /* 609 * Even if the above returned error, the pages may be 610 * written partially (e.g. -ENOSPC), so we wait for it. 611 * But the -EIO is special case, it may indicate the worst 612 * thing (e.g. bug) happened, so we avoid waiting for it. 613 */ 614 if (err != -EIO) { 615 int err2 = filemap_fdatawait(mapping); 616 if (!err) 617 err = err2; 618 } else { 619 /* Clear any previously stored errors */ 620 filemap_check_errors(mapping); 621 } 622 } else { 623 err = filemap_check_errors(mapping); 624 } 625 return err; 626 } 627 EXPORT_SYMBOL(filemap_write_and_wait); 628 629 /** 630 * filemap_write_and_wait_range - write out & wait on a file range 631 * @mapping: the address_space for the pages 632 * @lstart: offset in bytes where the range starts 633 * @lend: offset in bytes where the range ends (inclusive) 634 * 635 * Write out and wait upon file offsets lstart->lend, inclusive. 636 * 637 * Note that @lend is inclusive (describes the last byte to be written) so 638 * that this function can be used to write to the very end-of-file (end = -1). 639 * 640 * Return: error status of the address space. 641 */ 642 int filemap_write_and_wait_range(struct address_space *mapping, 643 loff_t lstart, loff_t lend) 644 { 645 int err = 0; 646 647 if (mapping_needs_writeback(mapping)) { 648 err = __filemap_fdatawrite_range(mapping, lstart, lend, 649 WB_SYNC_ALL); 650 /* See comment of filemap_write_and_wait() */ 651 if (err != -EIO) { 652 int err2 = filemap_fdatawait_range(mapping, 653 lstart, lend); 654 if (!err) 655 err = err2; 656 } else { 657 /* Clear any previously stored errors */ 658 filemap_check_errors(mapping); 659 } 660 } else { 661 err = filemap_check_errors(mapping); 662 } 663 return err; 664 } 665 EXPORT_SYMBOL(filemap_write_and_wait_range); 666 667 void __filemap_set_wb_err(struct address_space *mapping, int err) 668 { 669 errseq_t eseq = errseq_set(&mapping->wb_err, err); 670 671 trace_filemap_set_wb_err(mapping, eseq); 672 } 673 EXPORT_SYMBOL(__filemap_set_wb_err); 674 675 /** 676 * file_check_and_advance_wb_err - report wb error (if any) that was previously 677 * and advance wb_err to current one 678 * @file: struct file on which the error is being reported 679 * 680 * When userland calls fsync (or something like nfsd does the equivalent), we 681 * want to report any writeback errors that occurred since the last fsync (or 682 * since the file was opened if there haven't been any). 683 * 684 * Grab the wb_err from the mapping. If it matches what we have in the file, 685 * then just quickly return 0. The file is all caught up. 686 * 687 * If it doesn't match, then take the mapping value, set the "seen" flag in 688 * it and try to swap it into place. If it works, or another task beat us 689 * to it with the new value, then update the f_wb_err and return the error 690 * portion. The error at this point must be reported via proper channels 691 * (a'la fsync, or NFS COMMIT operation, etc.). 692 * 693 * While we handle mapping->wb_err with atomic operations, the f_wb_err 694 * value is protected by the f_lock since we must ensure that it reflects 695 * the latest value swapped in for this file descriptor. 696 * 697 * Return: %0 on success, negative error code otherwise. 698 */ 699 int file_check_and_advance_wb_err(struct file *file) 700 { 701 int err = 0; 702 errseq_t old = READ_ONCE(file->f_wb_err); 703 struct address_space *mapping = file->f_mapping; 704 705 /* Locklessly handle the common case where nothing has changed */ 706 if (errseq_check(&mapping->wb_err, old)) { 707 /* Something changed, must use slow path */ 708 spin_lock(&file->f_lock); 709 old = file->f_wb_err; 710 err = errseq_check_and_advance(&mapping->wb_err, 711 &file->f_wb_err); 712 trace_file_check_and_advance_wb_err(file, old); 713 spin_unlock(&file->f_lock); 714 } 715 716 /* 717 * We're mostly using this function as a drop in replacement for 718 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 719 * that the legacy code would have had on these flags. 720 */ 721 clear_bit(AS_EIO, &mapping->flags); 722 clear_bit(AS_ENOSPC, &mapping->flags); 723 return err; 724 } 725 EXPORT_SYMBOL(file_check_and_advance_wb_err); 726 727 /** 728 * file_write_and_wait_range - write out & wait on a file range 729 * @file: file pointing to address_space with pages 730 * @lstart: offset in bytes where the range starts 731 * @lend: offset in bytes where the range ends (inclusive) 732 * 733 * Write out and wait upon file offsets lstart->lend, inclusive. 734 * 735 * Note that @lend is inclusive (describes the last byte to be written) so 736 * that this function can be used to write to the very end-of-file (end = -1). 737 * 738 * After writing out and waiting on the data, we check and advance the 739 * f_wb_err cursor to the latest value, and return any errors detected there. 740 * 741 * Return: %0 on success, negative error code otherwise. 742 */ 743 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 744 { 745 int err = 0, err2; 746 struct address_space *mapping = file->f_mapping; 747 748 if (mapping_needs_writeback(mapping)) { 749 err = __filemap_fdatawrite_range(mapping, lstart, lend, 750 WB_SYNC_ALL); 751 /* See comment of filemap_write_and_wait() */ 752 if (err != -EIO) 753 __filemap_fdatawait_range(mapping, lstart, lend); 754 } 755 err2 = file_check_and_advance_wb_err(file); 756 if (!err) 757 err = err2; 758 return err; 759 } 760 EXPORT_SYMBOL(file_write_and_wait_range); 761 762 /** 763 * replace_page_cache_page - replace a pagecache page with a new one 764 * @old: page to be replaced 765 * @new: page to replace with 766 * @gfp_mask: allocation mode 767 * 768 * This function replaces a page in the pagecache with a new one. On 769 * success it acquires the pagecache reference for the new page and 770 * drops it for the old page. Both the old and new pages must be 771 * locked. This function does not add the new page to the LRU, the 772 * caller must do that. 773 * 774 * The remove + add is atomic. This function cannot fail. 775 * 776 * Return: %0 777 */ 778 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 779 { 780 struct address_space *mapping = old->mapping; 781 void (*freepage)(struct page *) = mapping->a_ops->freepage; 782 pgoff_t offset = old->index; 783 XA_STATE(xas, &mapping->i_pages, offset); 784 unsigned long flags; 785 786 VM_BUG_ON_PAGE(!PageLocked(old), old); 787 VM_BUG_ON_PAGE(!PageLocked(new), new); 788 VM_BUG_ON_PAGE(new->mapping, new); 789 790 get_page(new); 791 new->mapping = mapping; 792 new->index = offset; 793 794 xas_lock_irqsave(&xas, flags); 795 xas_store(&xas, new); 796 797 old->mapping = NULL; 798 /* hugetlb pages do not participate in page cache accounting. */ 799 if (!PageHuge(old)) 800 __dec_node_page_state(new, NR_FILE_PAGES); 801 if (!PageHuge(new)) 802 __inc_node_page_state(new, NR_FILE_PAGES); 803 if (PageSwapBacked(old)) 804 __dec_node_page_state(new, NR_SHMEM); 805 if (PageSwapBacked(new)) 806 __inc_node_page_state(new, NR_SHMEM); 807 xas_unlock_irqrestore(&xas, flags); 808 mem_cgroup_migrate(old, new); 809 if (freepage) 810 freepage(old); 811 put_page(old); 812 813 return 0; 814 } 815 EXPORT_SYMBOL_GPL(replace_page_cache_page); 816 817 static int __add_to_page_cache_locked(struct page *page, 818 struct address_space *mapping, 819 pgoff_t offset, gfp_t gfp_mask, 820 void **shadowp) 821 { 822 XA_STATE(xas, &mapping->i_pages, offset); 823 int huge = PageHuge(page); 824 struct mem_cgroup *memcg; 825 int error; 826 void *old; 827 828 VM_BUG_ON_PAGE(!PageLocked(page), page); 829 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 830 mapping_set_update(&xas, mapping); 831 832 if (!huge) { 833 error = mem_cgroup_try_charge(page, current->mm, 834 gfp_mask, &memcg, false); 835 if (error) 836 return error; 837 } 838 839 get_page(page); 840 page->mapping = mapping; 841 page->index = offset; 842 843 do { 844 xas_lock_irq(&xas); 845 old = xas_load(&xas); 846 if (old && !xa_is_value(old)) 847 xas_set_err(&xas, -EEXIST); 848 xas_store(&xas, page); 849 if (xas_error(&xas)) 850 goto unlock; 851 852 if (xa_is_value(old)) { 853 mapping->nrexceptional--; 854 if (shadowp) 855 *shadowp = old; 856 } 857 mapping->nrpages++; 858 859 /* hugetlb pages do not participate in page cache accounting */ 860 if (!huge) 861 __inc_node_page_state(page, NR_FILE_PAGES); 862 unlock: 863 xas_unlock_irq(&xas); 864 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 865 866 if (xas_error(&xas)) 867 goto error; 868 869 if (!huge) 870 mem_cgroup_commit_charge(page, memcg, false, false); 871 trace_mm_filemap_add_to_page_cache(page); 872 return 0; 873 error: 874 page->mapping = NULL; 875 /* Leave page->index set: truncation relies upon it */ 876 if (!huge) 877 mem_cgroup_cancel_charge(page, memcg, false); 878 put_page(page); 879 return xas_error(&xas); 880 } 881 882 /** 883 * add_to_page_cache_locked - add a locked page to the pagecache 884 * @page: page to add 885 * @mapping: the page's address_space 886 * @offset: page index 887 * @gfp_mask: page allocation mode 888 * 889 * This function is used to add a page to the pagecache. It must be locked. 890 * This function does not add the page to the LRU. The caller must do that. 891 * 892 * Return: %0 on success, negative error code otherwise. 893 */ 894 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 895 pgoff_t offset, gfp_t gfp_mask) 896 { 897 return __add_to_page_cache_locked(page, mapping, offset, 898 gfp_mask, NULL); 899 } 900 EXPORT_SYMBOL(add_to_page_cache_locked); 901 902 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 903 pgoff_t offset, gfp_t gfp_mask) 904 { 905 void *shadow = NULL; 906 int ret; 907 908 __SetPageLocked(page); 909 ret = __add_to_page_cache_locked(page, mapping, offset, 910 gfp_mask, &shadow); 911 if (unlikely(ret)) 912 __ClearPageLocked(page); 913 else { 914 /* 915 * The page might have been evicted from cache only 916 * recently, in which case it should be activated like 917 * any other repeatedly accessed page. 918 * The exception is pages getting rewritten; evicting other 919 * data from the working set, only to cache data that will 920 * get overwritten with something else, is a waste of memory. 921 */ 922 WARN_ON_ONCE(PageActive(page)); 923 if (!(gfp_mask & __GFP_WRITE) && shadow) 924 workingset_refault(page, shadow); 925 lru_cache_add(page); 926 } 927 return ret; 928 } 929 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 930 931 #ifdef CONFIG_NUMA 932 struct page *__page_cache_alloc(gfp_t gfp) 933 { 934 int n; 935 struct page *page; 936 937 if (cpuset_do_page_mem_spread()) { 938 unsigned int cpuset_mems_cookie; 939 do { 940 cpuset_mems_cookie = read_mems_allowed_begin(); 941 n = cpuset_mem_spread_node(); 942 page = __alloc_pages_node(n, gfp, 0); 943 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 944 945 return page; 946 } 947 return alloc_pages(gfp, 0); 948 } 949 EXPORT_SYMBOL(__page_cache_alloc); 950 #endif 951 952 /* 953 * In order to wait for pages to become available there must be 954 * waitqueues associated with pages. By using a hash table of 955 * waitqueues where the bucket discipline is to maintain all 956 * waiters on the same queue and wake all when any of the pages 957 * become available, and for the woken contexts to check to be 958 * sure the appropriate page became available, this saves space 959 * at a cost of "thundering herd" phenomena during rare hash 960 * collisions. 961 */ 962 #define PAGE_WAIT_TABLE_BITS 8 963 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 964 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 965 966 static wait_queue_head_t *page_waitqueue(struct page *page) 967 { 968 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 969 } 970 971 void __init pagecache_init(void) 972 { 973 int i; 974 975 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 976 init_waitqueue_head(&page_wait_table[i]); 977 978 page_writeback_init(); 979 } 980 981 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 982 struct wait_page_key { 983 struct page *page; 984 int bit_nr; 985 int page_match; 986 }; 987 988 struct wait_page_queue { 989 struct page *page; 990 int bit_nr; 991 wait_queue_entry_t wait; 992 }; 993 994 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 995 { 996 struct wait_page_key *key = arg; 997 struct wait_page_queue *wait_page 998 = container_of(wait, struct wait_page_queue, wait); 999 1000 if (wait_page->page != key->page) 1001 return 0; 1002 key->page_match = 1; 1003 1004 if (wait_page->bit_nr != key->bit_nr) 1005 return 0; 1006 1007 /* 1008 * Stop walking if it's locked. 1009 * Is this safe if put_and_wait_on_page_locked() is in use? 1010 * Yes: the waker must hold a reference to this page, and if PG_locked 1011 * has now already been set by another task, that task must also hold 1012 * a reference to the *same usage* of this page; so there is no need 1013 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1014 */ 1015 if (test_bit(key->bit_nr, &key->page->flags)) 1016 return -1; 1017 1018 return autoremove_wake_function(wait, mode, sync, key); 1019 } 1020 1021 static void wake_up_page_bit(struct page *page, int bit_nr) 1022 { 1023 wait_queue_head_t *q = page_waitqueue(page); 1024 struct wait_page_key key; 1025 unsigned long flags; 1026 wait_queue_entry_t bookmark; 1027 1028 key.page = page; 1029 key.bit_nr = bit_nr; 1030 key.page_match = 0; 1031 1032 bookmark.flags = 0; 1033 bookmark.private = NULL; 1034 bookmark.func = NULL; 1035 INIT_LIST_HEAD(&bookmark.entry); 1036 1037 spin_lock_irqsave(&q->lock, flags); 1038 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1039 1040 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1041 /* 1042 * Take a breather from holding the lock, 1043 * allow pages that finish wake up asynchronously 1044 * to acquire the lock and remove themselves 1045 * from wait queue 1046 */ 1047 spin_unlock_irqrestore(&q->lock, flags); 1048 cpu_relax(); 1049 spin_lock_irqsave(&q->lock, flags); 1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1051 } 1052 1053 /* 1054 * It is possible for other pages to have collided on the waitqueue 1055 * hash, so in that case check for a page match. That prevents a long- 1056 * term waiter 1057 * 1058 * It is still possible to miss a case here, when we woke page waiters 1059 * and removed them from the waitqueue, but there are still other 1060 * page waiters. 1061 */ 1062 if (!waitqueue_active(q) || !key.page_match) { 1063 ClearPageWaiters(page); 1064 /* 1065 * It's possible to miss clearing Waiters here, when we woke 1066 * our page waiters, but the hashed waitqueue has waiters for 1067 * other pages on it. 1068 * 1069 * That's okay, it's a rare case. The next waker will clear it. 1070 */ 1071 } 1072 spin_unlock_irqrestore(&q->lock, flags); 1073 } 1074 1075 static void wake_up_page(struct page *page, int bit) 1076 { 1077 if (!PageWaiters(page)) 1078 return; 1079 wake_up_page_bit(page, bit); 1080 } 1081 1082 /* 1083 * A choice of three behaviors for wait_on_page_bit_common(): 1084 */ 1085 enum behavior { 1086 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1087 * __lock_page() waiting on then setting PG_locked. 1088 */ 1089 SHARED, /* Hold ref to page and check the bit when woken, like 1090 * wait_on_page_writeback() waiting on PG_writeback. 1091 */ 1092 DROP, /* Drop ref to page before wait, no check when woken, 1093 * like put_and_wait_on_page_locked() on PG_locked. 1094 */ 1095 }; 1096 1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1098 struct page *page, int bit_nr, int state, enum behavior behavior) 1099 { 1100 struct wait_page_queue wait_page; 1101 wait_queue_entry_t *wait = &wait_page.wait; 1102 bool bit_is_set; 1103 bool thrashing = false; 1104 bool delayacct = false; 1105 unsigned long pflags; 1106 int ret = 0; 1107 1108 if (bit_nr == PG_locked && 1109 !PageUptodate(page) && PageWorkingset(page)) { 1110 if (!PageSwapBacked(page)) { 1111 delayacct_thrashing_start(); 1112 delayacct = true; 1113 } 1114 psi_memstall_enter(&pflags); 1115 thrashing = true; 1116 } 1117 1118 init_wait(wait); 1119 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1120 wait->func = wake_page_function; 1121 wait_page.page = page; 1122 wait_page.bit_nr = bit_nr; 1123 1124 for (;;) { 1125 spin_lock_irq(&q->lock); 1126 1127 if (likely(list_empty(&wait->entry))) { 1128 __add_wait_queue_entry_tail(q, wait); 1129 SetPageWaiters(page); 1130 } 1131 1132 set_current_state(state); 1133 1134 spin_unlock_irq(&q->lock); 1135 1136 bit_is_set = test_bit(bit_nr, &page->flags); 1137 if (behavior == DROP) 1138 put_page(page); 1139 1140 if (likely(bit_is_set)) 1141 io_schedule(); 1142 1143 if (behavior == EXCLUSIVE) { 1144 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1145 break; 1146 } else if (behavior == SHARED) { 1147 if (!test_bit(bit_nr, &page->flags)) 1148 break; 1149 } 1150 1151 if (signal_pending_state(state, current)) { 1152 ret = -EINTR; 1153 break; 1154 } 1155 1156 if (behavior == DROP) { 1157 /* 1158 * We can no longer safely access page->flags: 1159 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1160 * there is a risk of waiting forever on a page reused 1161 * for something that keeps it locked indefinitely. 1162 * But best check for -EINTR above before breaking. 1163 */ 1164 break; 1165 } 1166 } 1167 1168 finish_wait(q, wait); 1169 1170 if (thrashing) { 1171 if (delayacct) 1172 delayacct_thrashing_end(); 1173 psi_memstall_leave(&pflags); 1174 } 1175 1176 /* 1177 * A signal could leave PageWaiters set. Clearing it here if 1178 * !waitqueue_active would be possible (by open-coding finish_wait), 1179 * but still fail to catch it in the case of wait hash collision. We 1180 * already can fail to clear wait hash collision cases, so don't 1181 * bother with signals either. 1182 */ 1183 1184 return ret; 1185 } 1186 1187 void wait_on_page_bit(struct page *page, int bit_nr) 1188 { 1189 wait_queue_head_t *q = page_waitqueue(page); 1190 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1191 } 1192 EXPORT_SYMBOL(wait_on_page_bit); 1193 1194 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1195 { 1196 wait_queue_head_t *q = page_waitqueue(page); 1197 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1198 } 1199 EXPORT_SYMBOL(wait_on_page_bit_killable); 1200 1201 /** 1202 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1203 * @page: The page to wait for. 1204 * 1205 * The caller should hold a reference on @page. They expect the page to 1206 * become unlocked relatively soon, but do not wish to hold up migration 1207 * (for example) by holding the reference while waiting for the page to 1208 * come unlocked. After this function returns, the caller should not 1209 * dereference @page. 1210 */ 1211 void put_and_wait_on_page_locked(struct page *page) 1212 { 1213 wait_queue_head_t *q; 1214 1215 page = compound_head(page); 1216 q = page_waitqueue(page); 1217 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1218 } 1219 1220 /** 1221 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1222 * @page: Page defining the wait queue of interest 1223 * @waiter: Waiter to add to the queue 1224 * 1225 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1226 */ 1227 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1228 { 1229 wait_queue_head_t *q = page_waitqueue(page); 1230 unsigned long flags; 1231 1232 spin_lock_irqsave(&q->lock, flags); 1233 __add_wait_queue_entry_tail(q, waiter); 1234 SetPageWaiters(page); 1235 spin_unlock_irqrestore(&q->lock, flags); 1236 } 1237 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1238 1239 #ifndef clear_bit_unlock_is_negative_byte 1240 1241 /* 1242 * PG_waiters is the high bit in the same byte as PG_lock. 1243 * 1244 * On x86 (and on many other architectures), we can clear PG_lock and 1245 * test the sign bit at the same time. But if the architecture does 1246 * not support that special operation, we just do this all by hand 1247 * instead. 1248 * 1249 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1250 * being cleared, but a memory barrier should be unneccssary since it is 1251 * in the same byte as PG_locked. 1252 */ 1253 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1254 { 1255 clear_bit_unlock(nr, mem); 1256 /* smp_mb__after_atomic(); */ 1257 return test_bit(PG_waiters, mem); 1258 } 1259 1260 #endif 1261 1262 /** 1263 * unlock_page - unlock a locked page 1264 * @page: the page 1265 * 1266 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1267 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1268 * mechanism between PageLocked pages and PageWriteback pages is shared. 1269 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1270 * 1271 * Note that this depends on PG_waiters being the sign bit in the byte 1272 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1273 * clear the PG_locked bit and test PG_waiters at the same time fairly 1274 * portably (architectures that do LL/SC can test any bit, while x86 can 1275 * test the sign bit). 1276 */ 1277 void unlock_page(struct page *page) 1278 { 1279 BUILD_BUG_ON(PG_waiters != 7); 1280 page = compound_head(page); 1281 VM_BUG_ON_PAGE(!PageLocked(page), page); 1282 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1283 wake_up_page_bit(page, PG_locked); 1284 } 1285 EXPORT_SYMBOL(unlock_page); 1286 1287 /** 1288 * end_page_writeback - end writeback against a page 1289 * @page: the page 1290 */ 1291 void end_page_writeback(struct page *page) 1292 { 1293 /* 1294 * TestClearPageReclaim could be used here but it is an atomic 1295 * operation and overkill in this particular case. Failing to 1296 * shuffle a page marked for immediate reclaim is too mild to 1297 * justify taking an atomic operation penalty at the end of 1298 * ever page writeback. 1299 */ 1300 if (PageReclaim(page)) { 1301 ClearPageReclaim(page); 1302 rotate_reclaimable_page(page); 1303 } 1304 1305 if (!test_clear_page_writeback(page)) 1306 BUG(); 1307 1308 smp_mb__after_atomic(); 1309 wake_up_page(page, PG_writeback); 1310 } 1311 EXPORT_SYMBOL(end_page_writeback); 1312 1313 /* 1314 * After completing I/O on a page, call this routine to update the page 1315 * flags appropriately 1316 */ 1317 void page_endio(struct page *page, bool is_write, int err) 1318 { 1319 if (!is_write) { 1320 if (!err) { 1321 SetPageUptodate(page); 1322 } else { 1323 ClearPageUptodate(page); 1324 SetPageError(page); 1325 } 1326 unlock_page(page); 1327 } else { 1328 if (err) { 1329 struct address_space *mapping; 1330 1331 SetPageError(page); 1332 mapping = page_mapping(page); 1333 if (mapping) 1334 mapping_set_error(mapping, err); 1335 } 1336 end_page_writeback(page); 1337 } 1338 } 1339 EXPORT_SYMBOL_GPL(page_endio); 1340 1341 /** 1342 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1343 * @__page: the page to lock 1344 */ 1345 void __lock_page(struct page *__page) 1346 { 1347 struct page *page = compound_head(__page); 1348 wait_queue_head_t *q = page_waitqueue(page); 1349 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1350 EXCLUSIVE); 1351 } 1352 EXPORT_SYMBOL(__lock_page); 1353 1354 int __lock_page_killable(struct page *__page) 1355 { 1356 struct page *page = compound_head(__page); 1357 wait_queue_head_t *q = page_waitqueue(page); 1358 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1359 EXCLUSIVE); 1360 } 1361 EXPORT_SYMBOL_GPL(__lock_page_killable); 1362 1363 /* 1364 * Return values: 1365 * 1 - page is locked; mmap_sem is still held. 1366 * 0 - page is not locked. 1367 * mmap_sem has been released (up_read()), unless flags had both 1368 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1369 * which case mmap_sem is still held. 1370 * 1371 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1372 * with the page locked and the mmap_sem unperturbed. 1373 */ 1374 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1375 unsigned int flags) 1376 { 1377 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1378 /* 1379 * CAUTION! In this case, mmap_sem is not released 1380 * even though return 0. 1381 */ 1382 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1383 return 0; 1384 1385 up_read(&mm->mmap_sem); 1386 if (flags & FAULT_FLAG_KILLABLE) 1387 wait_on_page_locked_killable(page); 1388 else 1389 wait_on_page_locked(page); 1390 return 0; 1391 } else { 1392 if (flags & FAULT_FLAG_KILLABLE) { 1393 int ret; 1394 1395 ret = __lock_page_killable(page); 1396 if (ret) { 1397 up_read(&mm->mmap_sem); 1398 return 0; 1399 } 1400 } else 1401 __lock_page(page); 1402 return 1; 1403 } 1404 } 1405 1406 /** 1407 * page_cache_next_miss() - Find the next gap in the page cache. 1408 * @mapping: Mapping. 1409 * @index: Index. 1410 * @max_scan: Maximum range to search. 1411 * 1412 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1413 * gap with the lowest index. 1414 * 1415 * This function may be called under the rcu_read_lock. However, this will 1416 * not atomically search a snapshot of the cache at a single point in time. 1417 * For example, if a gap is created at index 5, then subsequently a gap is 1418 * created at index 10, page_cache_next_miss covering both indices may 1419 * return 10 if called under the rcu_read_lock. 1420 * 1421 * Return: The index of the gap if found, otherwise an index outside the 1422 * range specified (in which case 'return - index >= max_scan' will be true). 1423 * In the rare case of index wrap-around, 0 will be returned. 1424 */ 1425 pgoff_t page_cache_next_miss(struct address_space *mapping, 1426 pgoff_t index, unsigned long max_scan) 1427 { 1428 XA_STATE(xas, &mapping->i_pages, index); 1429 1430 while (max_scan--) { 1431 void *entry = xas_next(&xas); 1432 if (!entry || xa_is_value(entry)) 1433 break; 1434 if (xas.xa_index == 0) 1435 break; 1436 } 1437 1438 return xas.xa_index; 1439 } 1440 EXPORT_SYMBOL(page_cache_next_miss); 1441 1442 /** 1443 * page_cache_prev_miss() - Find the next gap in the page cache. 1444 * @mapping: Mapping. 1445 * @index: Index. 1446 * @max_scan: Maximum range to search. 1447 * 1448 * Search the range [max(index - max_scan + 1, 0), index] for the 1449 * gap with the highest index. 1450 * 1451 * This function may be called under the rcu_read_lock. However, this will 1452 * not atomically search a snapshot of the cache at a single point in time. 1453 * For example, if a gap is created at index 10, then subsequently a gap is 1454 * created at index 5, page_cache_prev_miss() covering both indices may 1455 * return 5 if called under the rcu_read_lock. 1456 * 1457 * Return: The index of the gap if found, otherwise an index outside the 1458 * range specified (in which case 'index - return >= max_scan' will be true). 1459 * In the rare case of wrap-around, ULONG_MAX will be returned. 1460 */ 1461 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1462 pgoff_t index, unsigned long max_scan) 1463 { 1464 XA_STATE(xas, &mapping->i_pages, index); 1465 1466 while (max_scan--) { 1467 void *entry = xas_prev(&xas); 1468 if (!entry || xa_is_value(entry)) 1469 break; 1470 if (xas.xa_index == ULONG_MAX) 1471 break; 1472 } 1473 1474 return xas.xa_index; 1475 } 1476 EXPORT_SYMBOL(page_cache_prev_miss); 1477 1478 /** 1479 * find_get_entry - find and get a page cache entry 1480 * @mapping: the address_space to search 1481 * @offset: the page cache index 1482 * 1483 * Looks up the page cache slot at @mapping & @offset. If there is a 1484 * page cache page, it is returned with an increased refcount. 1485 * 1486 * If the slot holds a shadow entry of a previously evicted page, or a 1487 * swap entry from shmem/tmpfs, it is returned. 1488 * 1489 * Return: the found page or shadow entry, %NULL if nothing is found. 1490 */ 1491 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1492 { 1493 XA_STATE(xas, &mapping->i_pages, offset); 1494 struct page *head, *page; 1495 1496 rcu_read_lock(); 1497 repeat: 1498 xas_reset(&xas); 1499 page = xas_load(&xas); 1500 if (xas_retry(&xas, page)) 1501 goto repeat; 1502 /* 1503 * A shadow entry of a recently evicted page, or a swap entry from 1504 * shmem/tmpfs. Return it without attempting to raise page count. 1505 */ 1506 if (!page || xa_is_value(page)) 1507 goto out; 1508 1509 head = compound_head(page); 1510 if (!page_cache_get_speculative(head)) 1511 goto repeat; 1512 1513 /* The page was split under us? */ 1514 if (compound_head(page) != head) { 1515 put_page(head); 1516 goto repeat; 1517 } 1518 1519 /* 1520 * Has the page moved? 1521 * This is part of the lockless pagecache protocol. See 1522 * include/linux/pagemap.h for details. 1523 */ 1524 if (unlikely(page != xas_reload(&xas))) { 1525 put_page(head); 1526 goto repeat; 1527 } 1528 out: 1529 rcu_read_unlock(); 1530 1531 return page; 1532 } 1533 EXPORT_SYMBOL(find_get_entry); 1534 1535 /** 1536 * find_lock_entry - locate, pin and lock a page cache entry 1537 * @mapping: the address_space to search 1538 * @offset: the page cache index 1539 * 1540 * Looks up the page cache slot at @mapping & @offset. If there is a 1541 * page cache page, it is returned locked and with an increased 1542 * refcount. 1543 * 1544 * If the slot holds a shadow entry of a previously evicted page, or a 1545 * swap entry from shmem/tmpfs, it is returned. 1546 * 1547 * find_lock_entry() may sleep. 1548 * 1549 * Return: the found page or shadow entry, %NULL if nothing is found. 1550 */ 1551 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1552 { 1553 struct page *page; 1554 1555 repeat: 1556 page = find_get_entry(mapping, offset); 1557 if (page && !xa_is_value(page)) { 1558 lock_page(page); 1559 /* Has the page been truncated? */ 1560 if (unlikely(page_mapping(page) != mapping)) { 1561 unlock_page(page); 1562 put_page(page); 1563 goto repeat; 1564 } 1565 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1566 } 1567 return page; 1568 } 1569 EXPORT_SYMBOL(find_lock_entry); 1570 1571 /** 1572 * pagecache_get_page - find and get a page reference 1573 * @mapping: the address_space to search 1574 * @offset: the page index 1575 * @fgp_flags: PCG flags 1576 * @gfp_mask: gfp mask to use for the page cache data page allocation 1577 * 1578 * Looks up the page cache slot at @mapping & @offset. 1579 * 1580 * PCG flags modify how the page is returned. 1581 * 1582 * @fgp_flags can be: 1583 * 1584 * - FGP_ACCESSED: the page will be marked accessed 1585 * - FGP_LOCK: Page is return locked 1586 * - FGP_CREAT: If page is not present then a new page is allocated using 1587 * @gfp_mask and added to the page cache and the VM's LRU 1588 * list. The page is returned locked and with an increased 1589 * refcount. 1590 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do 1591 * its own locking dance if the page is already in cache, or unlock the page 1592 * before returning if we had to add the page to pagecache. 1593 * 1594 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1595 * if the GFP flags specified for FGP_CREAT are atomic. 1596 * 1597 * If there is a page cache page, it is returned with an increased refcount. 1598 * 1599 * Return: the found page or %NULL otherwise. 1600 */ 1601 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1602 int fgp_flags, gfp_t gfp_mask) 1603 { 1604 struct page *page; 1605 1606 repeat: 1607 page = find_get_entry(mapping, offset); 1608 if (xa_is_value(page)) 1609 page = NULL; 1610 if (!page) 1611 goto no_page; 1612 1613 if (fgp_flags & FGP_LOCK) { 1614 if (fgp_flags & FGP_NOWAIT) { 1615 if (!trylock_page(page)) { 1616 put_page(page); 1617 return NULL; 1618 } 1619 } else { 1620 lock_page(page); 1621 } 1622 1623 /* Has the page been truncated? */ 1624 if (unlikely(page->mapping != mapping)) { 1625 unlock_page(page); 1626 put_page(page); 1627 goto repeat; 1628 } 1629 VM_BUG_ON_PAGE(page->index != offset, page); 1630 } 1631 1632 if (fgp_flags & FGP_ACCESSED) 1633 mark_page_accessed(page); 1634 1635 no_page: 1636 if (!page && (fgp_flags & FGP_CREAT)) { 1637 int err; 1638 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1639 gfp_mask |= __GFP_WRITE; 1640 if (fgp_flags & FGP_NOFS) 1641 gfp_mask &= ~__GFP_FS; 1642 1643 page = __page_cache_alloc(gfp_mask); 1644 if (!page) 1645 return NULL; 1646 1647 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1648 fgp_flags |= FGP_LOCK; 1649 1650 /* Init accessed so avoid atomic mark_page_accessed later */ 1651 if (fgp_flags & FGP_ACCESSED) 1652 __SetPageReferenced(page); 1653 1654 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1655 if (unlikely(err)) { 1656 put_page(page); 1657 page = NULL; 1658 if (err == -EEXIST) 1659 goto repeat; 1660 } 1661 1662 /* 1663 * add_to_page_cache_lru locks the page, and for mmap we expect 1664 * an unlocked page. 1665 */ 1666 if (page && (fgp_flags & FGP_FOR_MMAP)) 1667 unlock_page(page); 1668 } 1669 1670 return page; 1671 } 1672 EXPORT_SYMBOL(pagecache_get_page); 1673 1674 /** 1675 * find_get_entries - gang pagecache lookup 1676 * @mapping: The address_space to search 1677 * @start: The starting page cache index 1678 * @nr_entries: The maximum number of entries 1679 * @entries: Where the resulting entries are placed 1680 * @indices: The cache indices corresponding to the entries in @entries 1681 * 1682 * find_get_entries() will search for and return a group of up to 1683 * @nr_entries entries in the mapping. The entries are placed at 1684 * @entries. find_get_entries() takes a reference against any actual 1685 * pages it returns. 1686 * 1687 * The search returns a group of mapping-contiguous page cache entries 1688 * with ascending indexes. There may be holes in the indices due to 1689 * not-present pages. 1690 * 1691 * Any shadow entries of evicted pages, or swap entries from 1692 * shmem/tmpfs, are included in the returned array. 1693 * 1694 * Return: the number of pages and shadow entries which were found. 1695 */ 1696 unsigned find_get_entries(struct address_space *mapping, 1697 pgoff_t start, unsigned int nr_entries, 1698 struct page **entries, pgoff_t *indices) 1699 { 1700 XA_STATE(xas, &mapping->i_pages, start); 1701 struct page *page; 1702 unsigned int ret = 0; 1703 1704 if (!nr_entries) 1705 return 0; 1706 1707 rcu_read_lock(); 1708 xas_for_each(&xas, page, ULONG_MAX) { 1709 struct page *head; 1710 if (xas_retry(&xas, page)) 1711 continue; 1712 /* 1713 * A shadow entry of a recently evicted page, a swap 1714 * entry from shmem/tmpfs or a DAX entry. Return it 1715 * without attempting to raise page count. 1716 */ 1717 if (xa_is_value(page)) 1718 goto export; 1719 1720 head = compound_head(page); 1721 if (!page_cache_get_speculative(head)) 1722 goto retry; 1723 1724 /* The page was split under us? */ 1725 if (compound_head(page) != head) 1726 goto put_page; 1727 1728 /* Has the page moved? */ 1729 if (unlikely(page != xas_reload(&xas))) 1730 goto put_page; 1731 1732 export: 1733 indices[ret] = xas.xa_index; 1734 entries[ret] = page; 1735 if (++ret == nr_entries) 1736 break; 1737 continue; 1738 put_page: 1739 put_page(head); 1740 retry: 1741 xas_reset(&xas); 1742 } 1743 rcu_read_unlock(); 1744 return ret; 1745 } 1746 1747 /** 1748 * find_get_pages_range - gang pagecache lookup 1749 * @mapping: The address_space to search 1750 * @start: The starting page index 1751 * @end: The final page index (inclusive) 1752 * @nr_pages: The maximum number of pages 1753 * @pages: Where the resulting pages are placed 1754 * 1755 * find_get_pages_range() will search for and return a group of up to @nr_pages 1756 * pages in the mapping starting at index @start and up to index @end 1757 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1758 * a reference against the returned pages. 1759 * 1760 * The search returns a group of mapping-contiguous pages with ascending 1761 * indexes. There may be holes in the indices due to not-present pages. 1762 * We also update @start to index the next page for the traversal. 1763 * 1764 * Return: the number of pages which were found. If this number is 1765 * smaller than @nr_pages, the end of specified range has been 1766 * reached. 1767 */ 1768 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1769 pgoff_t end, unsigned int nr_pages, 1770 struct page **pages) 1771 { 1772 XA_STATE(xas, &mapping->i_pages, *start); 1773 struct page *page; 1774 unsigned ret = 0; 1775 1776 if (unlikely(!nr_pages)) 1777 return 0; 1778 1779 rcu_read_lock(); 1780 xas_for_each(&xas, page, end) { 1781 struct page *head; 1782 if (xas_retry(&xas, page)) 1783 continue; 1784 /* Skip over shadow, swap and DAX entries */ 1785 if (xa_is_value(page)) 1786 continue; 1787 1788 head = compound_head(page); 1789 if (!page_cache_get_speculative(head)) 1790 goto retry; 1791 1792 /* The page was split under us? */ 1793 if (compound_head(page) != head) 1794 goto put_page; 1795 1796 /* Has the page moved? */ 1797 if (unlikely(page != xas_reload(&xas))) 1798 goto put_page; 1799 1800 pages[ret] = page; 1801 if (++ret == nr_pages) { 1802 *start = xas.xa_index + 1; 1803 goto out; 1804 } 1805 continue; 1806 put_page: 1807 put_page(head); 1808 retry: 1809 xas_reset(&xas); 1810 } 1811 1812 /* 1813 * We come here when there is no page beyond @end. We take care to not 1814 * overflow the index @start as it confuses some of the callers. This 1815 * breaks the iteration when there is a page at index -1 but that is 1816 * already broken anyway. 1817 */ 1818 if (end == (pgoff_t)-1) 1819 *start = (pgoff_t)-1; 1820 else 1821 *start = end + 1; 1822 out: 1823 rcu_read_unlock(); 1824 1825 return ret; 1826 } 1827 1828 /** 1829 * find_get_pages_contig - gang contiguous pagecache lookup 1830 * @mapping: The address_space to search 1831 * @index: The starting page index 1832 * @nr_pages: The maximum number of pages 1833 * @pages: Where the resulting pages are placed 1834 * 1835 * find_get_pages_contig() works exactly like find_get_pages(), except 1836 * that the returned number of pages are guaranteed to be contiguous. 1837 * 1838 * Return: the number of pages which were found. 1839 */ 1840 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1841 unsigned int nr_pages, struct page **pages) 1842 { 1843 XA_STATE(xas, &mapping->i_pages, index); 1844 struct page *page; 1845 unsigned int ret = 0; 1846 1847 if (unlikely(!nr_pages)) 1848 return 0; 1849 1850 rcu_read_lock(); 1851 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1852 struct page *head; 1853 if (xas_retry(&xas, page)) 1854 continue; 1855 /* 1856 * If the entry has been swapped out, we can stop looking. 1857 * No current caller is looking for DAX entries. 1858 */ 1859 if (xa_is_value(page)) 1860 break; 1861 1862 head = compound_head(page); 1863 if (!page_cache_get_speculative(head)) 1864 goto retry; 1865 1866 /* The page was split under us? */ 1867 if (compound_head(page) != head) 1868 goto put_page; 1869 1870 /* Has the page moved? */ 1871 if (unlikely(page != xas_reload(&xas))) 1872 goto put_page; 1873 1874 pages[ret] = page; 1875 if (++ret == nr_pages) 1876 break; 1877 continue; 1878 put_page: 1879 put_page(head); 1880 retry: 1881 xas_reset(&xas); 1882 } 1883 rcu_read_unlock(); 1884 return ret; 1885 } 1886 EXPORT_SYMBOL(find_get_pages_contig); 1887 1888 /** 1889 * find_get_pages_range_tag - find and return pages in given range matching @tag 1890 * @mapping: the address_space to search 1891 * @index: the starting page index 1892 * @end: The final page index (inclusive) 1893 * @tag: the tag index 1894 * @nr_pages: the maximum number of pages 1895 * @pages: where the resulting pages are placed 1896 * 1897 * Like find_get_pages, except we only return pages which are tagged with 1898 * @tag. We update @index to index the next page for the traversal. 1899 * 1900 * Return: the number of pages which were found. 1901 */ 1902 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1903 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1904 struct page **pages) 1905 { 1906 XA_STATE(xas, &mapping->i_pages, *index); 1907 struct page *page; 1908 unsigned ret = 0; 1909 1910 if (unlikely(!nr_pages)) 1911 return 0; 1912 1913 rcu_read_lock(); 1914 xas_for_each_marked(&xas, page, end, tag) { 1915 struct page *head; 1916 if (xas_retry(&xas, page)) 1917 continue; 1918 /* 1919 * Shadow entries should never be tagged, but this iteration 1920 * is lockless so there is a window for page reclaim to evict 1921 * a page we saw tagged. Skip over it. 1922 */ 1923 if (xa_is_value(page)) 1924 continue; 1925 1926 head = compound_head(page); 1927 if (!page_cache_get_speculative(head)) 1928 goto retry; 1929 1930 /* The page was split under us? */ 1931 if (compound_head(page) != head) 1932 goto put_page; 1933 1934 /* Has the page moved? */ 1935 if (unlikely(page != xas_reload(&xas))) 1936 goto put_page; 1937 1938 pages[ret] = page; 1939 if (++ret == nr_pages) { 1940 *index = xas.xa_index + 1; 1941 goto out; 1942 } 1943 continue; 1944 put_page: 1945 put_page(head); 1946 retry: 1947 xas_reset(&xas); 1948 } 1949 1950 /* 1951 * We come here when we got to @end. We take care to not overflow the 1952 * index @index as it confuses some of the callers. This breaks the 1953 * iteration when there is a page at index -1 but that is already 1954 * broken anyway. 1955 */ 1956 if (end == (pgoff_t)-1) 1957 *index = (pgoff_t)-1; 1958 else 1959 *index = end + 1; 1960 out: 1961 rcu_read_unlock(); 1962 1963 return ret; 1964 } 1965 EXPORT_SYMBOL(find_get_pages_range_tag); 1966 1967 /** 1968 * find_get_entries_tag - find and return entries that match @tag 1969 * @mapping: the address_space to search 1970 * @start: the starting page cache index 1971 * @tag: the tag index 1972 * @nr_entries: the maximum number of entries 1973 * @entries: where the resulting entries are placed 1974 * @indices: the cache indices corresponding to the entries in @entries 1975 * 1976 * Like find_get_entries, except we only return entries which are tagged with 1977 * @tag. 1978 * 1979 * Return: the number of entries which were found. 1980 */ 1981 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1982 xa_mark_t tag, unsigned int nr_entries, 1983 struct page **entries, pgoff_t *indices) 1984 { 1985 XA_STATE(xas, &mapping->i_pages, start); 1986 struct page *page; 1987 unsigned int ret = 0; 1988 1989 if (!nr_entries) 1990 return 0; 1991 1992 rcu_read_lock(); 1993 xas_for_each_marked(&xas, page, ULONG_MAX, tag) { 1994 struct page *head; 1995 if (xas_retry(&xas, page)) 1996 continue; 1997 /* 1998 * A shadow entry of a recently evicted page, a swap 1999 * entry from shmem/tmpfs or a DAX entry. Return it 2000 * without attempting to raise page count. 2001 */ 2002 if (xa_is_value(page)) 2003 goto export; 2004 2005 head = compound_head(page); 2006 if (!page_cache_get_speculative(head)) 2007 goto retry; 2008 2009 /* The page was split under us? */ 2010 if (compound_head(page) != head) 2011 goto put_page; 2012 2013 /* Has the page moved? */ 2014 if (unlikely(page != xas_reload(&xas))) 2015 goto put_page; 2016 2017 export: 2018 indices[ret] = xas.xa_index; 2019 entries[ret] = page; 2020 if (++ret == nr_entries) 2021 break; 2022 continue; 2023 put_page: 2024 put_page(head); 2025 retry: 2026 xas_reset(&xas); 2027 } 2028 rcu_read_unlock(); 2029 return ret; 2030 } 2031 EXPORT_SYMBOL(find_get_entries_tag); 2032 2033 /* 2034 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2035 * a _large_ part of the i/o request. Imagine the worst scenario: 2036 * 2037 * ---R__________________________________________B__________ 2038 * ^ reading here ^ bad block(assume 4k) 2039 * 2040 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2041 * => failing the whole request => read(R) => read(R+1) => 2042 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2043 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2044 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2045 * 2046 * It is going insane. Fix it by quickly scaling down the readahead size. 2047 */ 2048 static void shrink_readahead_size_eio(struct file *filp, 2049 struct file_ra_state *ra) 2050 { 2051 ra->ra_pages /= 4; 2052 } 2053 2054 /** 2055 * generic_file_buffered_read - generic file read routine 2056 * @iocb: the iocb to read 2057 * @iter: data destination 2058 * @written: already copied 2059 * 2060 * This is a generic file read routine, and uses the 2061 * mapping->a_ops->readpage() function for the actual low-level stuff. 2062 * 2063 * This is really ugly. But the goto's actually try to clarify some 2064 * of the logic when it comes to error handling etc. 2065 * 2066 * Return: 2067 * * total number of bytes copied, including those the were already @written 2068 * * negative error code if nothing was copied 2069 */ 2070 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2071 struct iov_iter *iter, ssize_t written) 2072 { 2073 struct file *filp = iocb->ki_filp; 2074 struct address_space *mapping = filp->f_mapping; 2075 struct inode *inode = mapping->host; 2076 struct file_ra_state *ra = &filp->f_ra; 2077 loff_t *ppos = &iocb->ki_pos; 2078 pgoff_t index; 2079 pgoff_t last_index; 2080 pgoff_t prev_index; 2081 unsigned long offset; /* offset into pagecache page */ 2082 unsigned int prev_offset; 2083 int error = 0; 2084 2085 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2086 return 0; 2087 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2088 2089 index = *ppos >> PAGE_SHIFT; 2090 prev_index = ra->prev_pos >> PAGE_SHIFT; 2091 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2092 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2093 offset = *ppos & ~PAGE_MASK; 2094 2095 for (;;) { 2096 struct page *page; 2097 pgoff_t end_index; 2098 loff_t isize; 2099 unsigned long nr, ret; 2100 2101 cond_resched(); 2102 find_page: 2103 if (fatal_signal_pending(current)) { 2104 error = -EINTR; 2105 goto out; 2106 } 2107 2108 page = find_get_page(mapping, index); 2109 if (!page) { 2110 if (iocb->ki_flags & IOCB_NOWAIT) 2111 goto would_block; 2112 page_cache_sync_readahead(mapping, 2113 ra, filp, 2114 index, last_index - index); 2115 page = find_get_page(mapping, index); 2116 if (unlikely(page == NULL)) 2117 goto no_cached_page; 2118 } 2119 if (PageReadahead(page)) { 2120 page_cache_async_readahead(mapping, 2121 ra, filp, page, 2122 index, last_index - index); 2123 } 2124 if (!PageUptodate(page)) { 2125 if (iocb->ki_flags & IOCB_NOWAIT) { 2126 put_page(page); 2127 goto would_block; 2128 } 2129 2130 /* 2131 * See comment in do_read_cache_page on why 2132 * wait_on_page_locked is used to avoid unnecessarily 2133 * serialisations and why it's safe. 2134 */ 2135 error = wait_on_page_locked_killable(page); 2136 if (unlikely(error)) 2137 goto readpage_error; 2138 if (PageUptodate(page)) 2139 goto page_ok; 2140 2141 if (inode->i_blkbits == PAGE_SHIFT || 2142 !mapping->a_ops->is_partially_uptodate) 2143 goto page_not_up_to_date; 2144 /* pipes can't handle partially uptodate pages */ 2145 if (unlikely(iov_iter_is_pipe(iter))) 2146 goto page_not_up_to_date; 2147 if (!trylock_page(page)) 2148 goto page_not_up_to_date; 2149 /* Did it get truncated before we got the lock? */ 2150 if (!page->mapping) 2151 goto page_not_up_to_date_locked; 2152 if (!mapping->a_ops->is_partially_uptodate(page, 2153 offset, iter->count)) 2154 goto page_not_up_to_date_locked; 2155 unlock_page(page); 2156 } 2157 page_ok: 2158 /* 2159 * i_size must be checked after we know the page is Uptodate. 2160 * 2161 * Checking i_size after the check allows us to calculate 2162 * the correct value for "nr", which means the zero-filled 2163 * part of the page is not copied back to userspace (unless 2164 * another truncate extends the file - this is desired though). 2165 */ 2166 2167 isize = i_size_read(inode); 2168 end_index = (isize - 1) >> PAGE_SHIFT; 2169 if (unlikely(!isize || index > end_index)) { 2170 put_page(page); 2171 goto out; 2172 } 2173 2174 /* nr is the maximum number of bytes to copy from this page */ 2175 nr = PAGE_SIZE; 2176 if (index == end_index) { 2177 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2178 if (nr <= offset) { 2179 put_page(page); 2180 goto out; 2181 } 2182 } 2183 nr = nr - offset; 2184 2185 /* If users can be writing to this page using arbitrary 2186 * virtual addresses, take care about potential aliasing 2187 * before reading the page on the kernel side. 2188 */ 2189 if (mapping_writably_mapped(mapping)) 2190 flush_dcache_page(page); 2191 2192 /* 2193 * When a sequential read accesses a page several times, 2194 * only mark it as accessed the first time. 2195 */ 2196 if (prev_index != index || offset != prev_offset) 2197 mark_page_accessed(page); 2198 prev_index = index; 2199 2200 /* 2201 * Ok, we have the page, and it's up-to-date, so 2202 * now we can copy it to user space... 2203 */ 2204 2205 ret = copy_page_to_iter(page, offset, nr, iter); 2206 offset += ret; 2207 index += offset >> PAGE_SHIFT; 2208 offset &= ~PAGE_MASK; 2209 prev_offset = offset; 2210 2211 put_page(page); 2212 written += ret; 2213 if (!iov_iter_count(iter)) 2214 goto out; 2215 if (ret < nr) { 2216 error = -EFAULT; 2217 goto out; 2218 } 2219 continue; 2220 2221 page_not_up_to_date: 2222 /* Get exclusive access to the page ... */ 2223 error = lock_page_killable(page); 2224 if (unlikely(error)) 2225 goto readpage_error; 2226 2227 page_not_up_to_date_locked: 2228 /* Did it get truncated before we got the lock? */ 2229 if (!page->mapping) { 2230 unlock_page(page); 2231 put_page(page); 2232 continue; 2233 } 2234 2235 /* Did somebody else fill it already? */ 2236 if (PageUptodate(page)) { 2237 unlock_page(page); 2238 goto page_ok; 2239 } 2240 2241 readpage: 2242 /* 2243 * A previous I/O error may have been due to temporary 2244 * failures, eg. multipath errors. 2245 * PG_error will be set again if readpage fails. 2246 */ 2247 ClearPageError(page); 2248 /* Start the actual read. The read will unlock the page. */ 2249 error = mapping->a_ops->readpage(filp, page); 2250 2251 if (unlikely(error)) { 2252 if (error == AOP_TRUNCATED_PAGE) { 2253 put_page(page); 2254 error = 0; 2255 goto find_page; 2256 } 2257 goto readpage_error; 2258 } 2259 2260 if (!PageUptodate(page)) { 2261 error = lock_page_killable(page); 2262 if (unlikely(error)) 2263 goto readpage_error; 2264 if (!PageUptodate(page)) { 2265 if (page->mapping == NULL) { 2266 /* 2267 * invalidate_mapping_pages got it 2268 */ 2269 unlock_page(page); 2270 put_page(page); 2271 goto find_page; 2272 } 2273 unlock_page(page); 2274 shrink_readahead_size_eio(filp, ra); 2275 error = -EIO; 2276 goto readpage_error; 2277 } 2278 unlock_page(page); 2279 } 2280 2281 goto page_ok; 2282 2283 readpage_error: 2284 /* UHHUH! A synchronous read error occurred. Report it */ 2285 put_page(page); 2286 goto out; 2287 2288 no_cached_page: 2289 /* 2290 * Ok, it wasn't cached, so we need to create a new 2291 * page.. 2292 */ 2293 page = page_cache_alloc(mapping); 2294 if (!page) { 2295 error = -ENOMEM; 2296 goto out; 2297 } 2298 error = add_to_page_cache_lru(page, mapping, index, 2299 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2300 if (error) { 2301 put_page(page); 2302 if (error == -EEXIST) { 2303 error = 0; 2304 goto find_page; 2305 } 2306 goto out; 2307 } 2308 goto readpage; 2309 } 2310 2311 would_block: 2312 error = -EAGAIN; 2313 out: 2314 ra->prev_pos = prev_index; 2315 ra->prev_pos <<= PAGE_SHIFT; 2316 ra->prev_pos |= prev_offset; 2317 2318 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2319 file_accessed(filp); 2320 return written ? written : error; 2321 } 2322 2323 /** 2324 * generic_file_read_iter - generic filesystem read routine 2325 * @iocb: kernel I/O control block 2326 * @iter: destination for the data read 2327 * 2328 * This is the "read_iter()" routine for all filesystems 2329 * that can use the page cache directly. 2330 * Return: 2331 * * number of bytes copied, even for partial reads 2332 * * negative error code if nothing was read 2333 */ 2334 ssize_t 2335 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2336 { 2337 size_t count = iov_iter_count(iter); 2338 ssize_t retval = 0; 2339 2340 if (!count) 2341 goto out; /* skip atime */ 2342 2343 if (iocb->ki_flags & IOCB_DIRECT) { 2344 struct file *file = iocb->ki_filp; 2345 struct address_space *mapping = file->f_mapping; 2346 struct inode *inode = mapping->host; 2347 loff_t size; 2348 2349 size = i_size_read(inode); 2350 if (iocb->ki_flags & IOCB_NOWAIT) { 2351 if (filemap_range_has_page(mapping, iocb->ki_pos, 2352 iocb->ki_pos + count - 1)) 2353 return -EAGAIN; 2354 } else { 2355 retval = filemap_write_and_wait_range(mapping, 2356 iocb->ki_pos, 2357 iocb->ki_pos + count - 1); 2358 if (retval < 0) 2359 goto out; 2360 } 2361 2362 file_accessed(file); 2363 2364 retval = mapping->a_ops->direct_IO(iocb, iter); 2365 if (retval >= 0) { 2366 iocb->ki_pos += retval; 2367 count -= retval; 2368 } 2369 iov_iter_revert(iter, count - iov_iter_count(iter)); 2370 2371 /* 2372 * Btrfs can have a short DIO read if we encounter 2373 * compressed extents, so if there was an error, or if 2374 * we've already read everything we wanted to, or if 2375 * there was a short read because we hit EOF, go ahead 2376 * and return. Otherwise fallthrough to buffered io for 2377 * the rest of the read. Buffered reads will not work for 2378 * DAX files, so don't bother trying. 2379 */ 2380 if (retval < 0 || !count || iocb->ki_pos >= size || 2381 IS_DAX(inode)) 2382 goto out; 2383 } 2384 2385 retval = generic_file_buffered_read(iocb, iter, retval); 2386 out: 2387 return retval; 2388 } 2389 EXPORT_SYMBOL(generic_file_read_iter); 2390 2391 #ifdef CONFIG_MMU 2392 #define MMAP_LOTSAMISS (100) 2393 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 2394 struct file *fpin) 2395 { 2396 int flags = vmf->flags; 2397 2398 if (fpin) 2399 return fpin; 2400 2401 /* 2402 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 2403 * anything, so we only pin the file and drop the mmap_sem if only 2404 * FAULT_FLAG_ALLOW_RETRY is set. 2405 */ 2406 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == 2407 FAULT_FLAG_ALLOW_RETRY) { 2408 fpin = get_file(vmf->vma->vm_file); 2409 up_read(&vmf->vma->vm_mm->mmap_sem); 2410 } 2411 return fpin; 2412 } 2413 2414 /* 2415 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 2416 * @vmf - the vm_fault for this fault. 2417 * @page - the page to lock. 2418 * @fpin - the pointer to the file we may pin (or is already pinned). 2419 * 2420 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 2421 * It differs in that it actually returns the page locked if it returns 1 and 0 2422 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 2423 * will point to the pinned file and needs to be fput()'ed at a later point. 2424 */ 2425 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2426 struct file **fpin) 2427 { 2428 if (trylock_page(page)) 2429 return 1; 2430 2431 /* 2432 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2433 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 2434 * is supposed to work. We have way too many special cases.. 2435 */ 2436 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2437 return 0; 2438 2439 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2440 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2441 if (__lock_page_killable(page)) { 2442 /* 2443 * We didn't have the right flags to drop the mmap_sem, 2444 * but all fault_handlers only check for fatal signals 2445 * if we return VM_FAULT_RETRY, so we need to drop the 2446 * mmap_sem here and return 0 if we don't have a fpin. 2447 */ 2448 if (*fpin == NULL) 2449 up_read(&vmf->vma->vm_mm->mmap_sem); 2450 return 0; 2451 } 2452 } else 2453 __lock_page(page); 2454 return 1; 2455 } 2456 2457 2458 /* 2459 * Synchronous readahead happens when we don't even find a page in the page 2460 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2461 * to drop the mmap sem we return the file that was pinned in order for us to do 2462 * that. If we didn't pin a file then we return NULL. The file that is 2463 * returned needs to be fput()'ed when we're done with it. 2464 */ 2465 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2466 { 2467 struct file *file = vmf->vma->vm_file; 2468 struct file_ra_state *ra = &file->f_ra; 2469 struct address_space *mapping = file->f_mapping; 2470 struct file *fpin = NULL; 2471 pgoff_t offset = vmf->pgoff; 2472 2473 /* If we don't want any read-ahead, don't bother */ 2474 if (vmf->vma->vm_flags & VM_RAND_READ) 2475 return fpin; 2476 if (!ra->ra_pages) 2477 return fpin; 2478 2479 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2480 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2481 page_cache_sync_readahead(mapping, ra, file, offset, 2482 ra->ra_pages); 2483 return fpin; 2484 } 2485 2486 /* Avoid banging the cache line if not needed */ 2487 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2488 ra->mmap_miss++; 2489 2490 /* 2491 * Do we miss much more than hit in this file? If so, 2492 * stop bothering with read-ahead. It will only hurt. 2493 */ 2494 if (ra->mmap_miss > MMAP_LOTSAMISS) 2495 return fpin; 2496 2497 /* 2498 * mmap read-around 2499 */ 2500 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2501 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2502 ra->size = ra->ra_pages; 2503 ra->async_size = ra->ra_pages / 4; 2504 ra_submit(ra, mapping, file); 2505 return fpin; 2506 } 2507 2508 /* 2509 * Asynchronous readahead happens when we find the page and PG_readahead, 2510 * so we want to possibly extend the readahead further. We return the file that 2511 * was pinned if we have to drop the mmap_sem in order to do IO. 2512 */ 2513 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2514 struct page *page) 2515 { 2516 struct file *file = vmf->vma->vm_file; 2517 struct file_ra_state *ra = &file->f_ra; 2518 struct address_space *mapping = file->f_mapping; 2519 struct file *fpin = NULL; 2520 pgoff_t offset = vmf->pgoff; 2521 2522 /* If we don't want any read-ahead, don't bother */ 2523 if (vmf->vma->vm_flags & VM_RAND_READ) 2524 return fpin; 2525 if (ra->mmap_miss > 0) 2526 ra->mmap_miss--; 2527 if (PageReadahead(page)) { 2528 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2529 page_cache_async_readahead(mapping, ra, file, 2530 page, offset, ra->ra_pages); 2531 } 2532 return fpin; 2533 } 2534 2535 /** 2536 * filemap_fault - read in file data for page fault handling 2537 * @vmf: struct vm_fault containing details of the fault 2538 * 2539 * filemap_fault() is invoked via the vma operations vector for a 2540 * mapped memory region to read in file data during a page fault. 2541 * 2542 * The goto's are kind of ugly, but this streamlines the normal case of having 2543 * it in the page cache, and handles the special cases reasonably without 2544 * having a lot of duplicated code. 2545 * 2546 * vma->vm_mm->mmap_sem must be held on entry. 2547 * 2548 * If our return value has VM_FAULT_RETRY set, it's because 2549 * lock_page_or_retry() returned 0. 2550 * The mmap_sem has usually been released in this case. 2551 * See __lock_page_or_retry() for the exception. 2552 * 2553 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2554 * has not been released. 2555 * 2556 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2557 * 2558 * Return: bitwise-OR of %VM_FAULT_ codes. 2559 */ 2560 vm_fault_t filemap_fault(struct vm_fault *vmf) 2561 { 2562 int error; 2563 struct file *file = vmf->vma->vm_file; 2564 struct file *fpin = NULL; 2565 struct address_space *mapping = file->f_mapping; 2566 struct file_ra_state *ra = &file->f_ra; 2567 struct inode *inode = mapping->host; 2568 pgoff_t offset = vmf->pgoff; 2569 pgoff_t max_off; 2570 struct page *page; 2571 vm_fault_t ret = 0; 2572 2573 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2574 if (unlikely(offset >= max_off)) 2575 return VM_FAULT_SIGBUS; 2576 2577 /* 2578 * Do we have something in the page cache already? 2579 */ 2580 page = find_get_page(mapping, offset); 2581 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2582 /* 2583 * We found the page, so try async readahead before 2584 * waiting for the lock. 2585 */ 2586 fpin = do_async_mmap_readahead(vmf, page); 2587 } else if (!page) { 2588 /* No page in the page cache at all */ 2589 count_vm_event(PGMAJFAULT); 2590 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2591 ret = VM_FAULT_MAJOR; 2592 fpin = do_sync_mmap_readahead(vmf); 2593 retry_find: 2594 page = pagecache_get_page(mapping, offset, 2595 FGP_CREAT|FGP_FOR_MMAP, 2596 vmf->gfp_mask); 2597 if (!page) { 2598 if (fpin) 2599 goto out_retry; 2600 return vmf_error(-ENOMEM); 2601 } 2602 } 2603 2604 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2605 goto out_retry; 2606 2607 /* Did it get truncated? */ 2608 if (unlikely(page->mapping != mapping)) { 2609 unlock_page(page); 2610 put_page(page); 2611 goto retry_find; 2612 } 2613 VM_BUG_ON_PAGE(page->index != offset, page); 2614 2615 /* 2616 * We have a locked page in the page cache, now we need to check 2617 * that it's up-to-date. If not, it is going to be due to an error. 2618 */ 2619 if (unlikely(!PageUptodate(page))) 2620 goto page_not_uptodate; 2621 2622 /* 2623 * We've made it this far and we had to drop our mmap_sem, now is the 2624 * time to return to the upper layer and have it re-find the vma and 2625 * redo the fault. 2626 */ 2627 if (fpin) { 2628 unlock_page(page); 2629 goto out_retry; 2630 } 2631 2632 /* 2633 * Found the page and have a reference on it. 2634 * We must recheck i_size under page lock. 2635 */ 2636 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2637 if (unlikely(offset >= max_off)) { 2638 unlock_page(page); 2639 put_page(page); 2640 return VM_FAULT_SIGBUS; 2641 } 2642 2643 vmf->page = page; 2644 return ret | VM_FAULT_LOCKED; 2645 2646 page_not_uptodate: 2647 /* 2648 * Umm, take care of errors if the page isn't up-to-date. 2649 * Try to re-read it _once_. We do this synchronously, 2650 * because there really aren't any performance issues here 2651 * and we need to check for errors. 2652 */ 2653 ClearPageError(page); 2654 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2655 error = mapping->a_ops->readpage(file, page); 2656 if (!error) { 2657 wait_on_page_locked(page); 2658 if (!PageUptodate(page)) 2659 error = -EIO; 2660 } 2661 if (fpin) 2662 goto out_retry; 2663 put_page(page); 2664 2665 if (!error || error == AOP_TRUNCATED_PAGE) 2666 goto retry_find; 2667 2668 /* Things didn't work out. Return zero to tell the mm layer so. */ 2669 shrink_readahead_size_eio(file, ra); 2670 return VM_FAULT_SIGBUS; 2671 2672 out_retry: 2673 /* 2674 * We dropped the mmap_sem, we need to return to the fault handler to 2675 * re-find the vma and come back and find our hopefully still populated 2676 * page. 2677 */ 2678 if (page) 2679 put_page(page); 2680 if (fpin) 2681 fput(fpin); 2682 return ret | VM_FAULT_RETRY; 2683 } 2684 EXPORT_SYMBOL(filemap_fault); 2685 2686 void filemap_map_pages(struct vm_fault *vmf, 2687 pgoff_t start_pgoff, pgoff_t end_pgoff) 2688 { 2689 struct file *file = vmf->vma->vm_file; 2690 struct address_space *mapping = file->f_mapping; 2691 pgoff_t last_pgoff = start_pgoff; 2692 unsigned long max_idx; 2693 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2694 struct page *head, *page; 2695 2696 rcu_read_lock(); 2697 xas_for_each(&xas, page, end_pgoff) { 2698 if (xas_retry(&xas, page)) 2699 continue; 2700 if (xa_is_value(page)) 2701 goto next; 2702 2703 head = compound_head(page); 2704 2705 /* 2706 * Check for a locked page first, as a speculative 2707 * reference may adversely influence page migration. 2708 */ 2709 if (PageLocked(head)) 2710 goto next; 2711 if (!page_cache_get_speculative(head)) 2712 goto next; 2713 2714 /* The page was split under us? */ 2715 if (compound_head(page) != head) 2716 goto skip; 2717 2718 /* Has the page moved? */ 2719 if (unlikely(page != xas_reload(&xas))) 2720 goto skip; 2721 2722 if (!PageUptodate(page) || 2723 PageReadahead(page) || 2724 PageHWPoison(page)) 2725 goto skip; 2726 if (!trylock_page(page)) 2727 goto skip; 2728 2729 if (page->mapping != mapping || !PageUptodate(page)) 2730 goto unlock; 2731 2732 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2733 if (page->index >= max_idx) 2734 goto unlock; 2735 2736 if (file->f_ra.mmap_miss > 0) 2737 file->f_ra.mmap_miss--; 2738 2739 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2740 if (vmf->pte) 2741 vmf->pte += xas.xa_index - last_pgoff; 2742 last_pgoff = xas.xa_index; 2743 if (alloc_set_pte(vmf, NULL, page)) 2744 goto unlock; 2745 unlock_page(page); 2746 goto next; 2747 unlock: 2748 unlock_page(page); 2749 skip: 2750 put_page(page); 2751 next: 2752 /* Huge page is mapped? No need to proceed. */ 2753 if (pmd_trans_huge(*vmf->pmd)) 2754 break; 2755 } 2756 rcu_read_unlock(); 2757 } 2758 EXPORT_SYMBOL(filemap_map_pages); 2759 2760 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2761 { 2762 struct page *page = vmf->page; 2763 struct inode *inode = file_inode(vmf->vma->vm_file); 2764 vm_fault_t ret = VM_FAULT_LOCKED; 2765 2766 sb_start_pagefault(inode->i_sb); 2767 file_update_time(vmf->vma->vm_file); 2768 lock_page(page); 2769 if (page->mapping != inode->i_mapping) { 2770 unlock_page(page); 2771 ret = VM_FAULT_NOPAGE; 2772 goto out; 2773 } 2774 /* 2775 * We mark the page dirty already here so that when freeze is in 2776 * progress, we are guaranteed that writeback during freezing will 2777 * see the dirty page and writeprotect it again. 2778 */ 2779 set_page_dirty(page); 2780 wait_for_stable_page(page); 2781 out: 2782 sb_end_pagefault(inode->i_sb); 2783 return ret; 2784 } 2785 2786 const struct vm_operations_struct generic_file_vm_ops = { 2787 .fault = filemap_fault, 2788 .map_pages = filemap_map_pages, 2789 .page_mkwrite = filemap_page_mkwrite, 2790 }; 2791 2792 /* This is used for a general mmap of a disk file */ 2793 2794 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2795 { 2796 struct address_space *mapping = file->f_mapping; 2797 2798 if (!mapping->a_ops->readpage) 2799 return -ENOEXEC; 2800 file_accessed(file); 2801 vma->vm_ops = &generic_file_vm_ops; 2802 return 0; 2803 } 2804 2805 /* 2806 * This is for filesystems which do not implement ->writepage. 2807 */ 2808 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2809 { 2810 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2811 return -EINVAL; 2812 return generic_file_mmap(file, vma); 2813 } 2814 #else 2815 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2816 { 2817 return VM_FAULT_SIGBUS; 2818 } 2819 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2820 { 2821 return -ENOSYS; 2822 } 2823 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2824 { 2825 return -ENOSYS; 2826 } 2827 #endif /* CONFIG_MMU */ 2828 2829 EXPORT_SYMBOL(filemap_page_mkwrite); 2830 EXPORT_SYMBOL(generic_file_mmap); 2831 EXPORT_SYMBOL(generic_file_readonly_mmap); 2832 2833 static struct page *wait_on_page_read(struct page *page) 2834 { 2835 if (!IS_ERR(page)) { 2836 wait_on_page_locked(page); 2837 if (!PageUptodate(page)) { 2838 put_page(page); 2839 page = ERR_PTR(-EIO); 2840 } 2841 } 2842 return page; 2843 } 2844 2845 static struct page *do_read_cache_page(struct address_space *mapping, 2846 pgoff_t index, 2847 int (*filler)(void *, struct page *), 2848 void *data, 2849 gfp_t gfp) 2850 { 2851 struct page *page; 2852 int err; 2853 repeat: 2854 page = find_get_page(mapping, index); 2855 if (!page) { 2856 page = __page_cache_alloc(gfp); 2857 if (!page) 2858 return ERR_PTR(-ENOMEM); 2859 err = add_to_page_cache_lru(page, mapping, index, gfp); 2860 if (unlikely(err)) { 2861 put_page(page); 2862 if (err == -EEXIST) 2863 goto repeat; 2864 /* Presumably ENOMEM for xarray node */ 2865 return ERR_PTR(err); 2866 } 2867 2868 filler: 2869 err = filler(data, page); 2870 if (err < 0) { 2871 put_page(page); 2872 return ERR_PTR(err); 2873 } 2874 2875 page = wait_on_page_read(page); 2876 if (IS_ERR(page)) 2877 return page; 2878 goto out; 2879 } 2880 if (PageUptodate(page)) 2881 goto out; 2882 2883 /* 2884 * Page is not up to date and may be locked due one of the following 2885 * case a: Page is being filled and the page lock is held 2886 * case b: Read/write error clearing the page uptodate status 2887 * case c: Truncation in progress (page locked) 2888 * case d: Reclaim in progress 2889 * 2890 * Case a, the page will be up to date when the page is unlocked. 2891 * There is no need to serialise on the page lock here as the page 2892 * is pinned so the lock gives no additional protection. Even if the 2893 * the page is truncated, the data is still valid if PageUptodate as 2894 * it's a race vs truncate race. 2895 * Case b, the page will not be up to date 2896 * Case c, the page may be truncated but in itself, the data may still 2897 * be valid after IO completes as it's a read vs truncate race. The 2898 * operation must restart if the page is not uptodate on unlock but 2899 * otherwise serialising on page lock to stabilise the mapping gives 2900 * no additional guarantees to the caller as the page lock is 2901 * released before return. 2902 * Case d, similar to truncation. If reclaim holds the page lock, it 2903 * will be a race with remove_mapping that determines if the mapping 2904 * is valid on unlock but otherwise the data is valid and there is 2905 * no need to serialise with page lock. 2906 * 2907 * As the page lock gives no additional guarantee, we optimistically 2908 * wait on the page to be unlocked and check if it's up to date and 2909 * use the page if it is. Otherwise, the page lock is required to 2910 * distinguish between the different cases. The motivation is that we 2911 * avoid spurious serialisations and wakeups when multiple processes 2912 * wait on the same page for IO to complete. 2913 */ 2914 wait_on_page_locked(page); 2915 if (PageUptodate(page)) 2916 goto out; 2917 2918 /* Distinguish between all the cases under the safety of the lock */ 2919 lock_page(page); 2920 2921 /* Case c or d, restart the operation */ 2922 if (!page->mapping) { 2923 unlock_page(page); 2924 put_page(page); 2925 goto repeat; 2926 } 2927 2928 /* Someone else locked and filled the page in a very small window */ 2929 if (PageUptodate(page)) { 2930 unlock_page(page); 2931 goto out; 2932 } 2933 goto filler; 2934 2935 out: 2936 mark_page_accessed(page); 2937 return page; 2938 } 2939 2940 /** 2941 * read_cache_page - read into page cache, fill it if needed 2942 * @mapping: the page's address_space 2943 * @index: the page index 2944 * @filler: function to perform the read 2945 * @data: first arg to filler(data, page) function, often left as NULL 2946 * 2947 * Read into the page cache. If a page already exists, and PageUptodate() is 2948 * not set, try to fill the page and wait for it to become unlocked. 2949 * 2950 * If the page does not get brought uptodate, return -EIO. 2951 * 2952 * Return: up to date page on success, ERR_PTR() on failure. 2953 */ 2954 struct page *read_cache_page(struct address_space *mapping, 2955 pgoff_t index, 2956 int (*filler)(void *, struct page *), 2957 void *data) 2958 { 2959 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2960 } 2961 EXPORT_SYMBOL(read_cache_page); 2962 2963 /** 2964 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2965 * @mapping: the page's address_space 2966 * @index: the page index 2967 * @gfp: the page allocator flags to use if allocating 2968 * 2969 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2970 * any new page allocations done using the specified allocation flags. 2971 * 2972 * If the page does not get brought uptodate, return -EIO. 2973 * 2974 * Return: up to date page on success, ERR_PTR() on failure. 2975 */ 2976 struct page *read_cache_page_gfp(struct address_space *mapping, 2977 pgoff_t index, 2978 gfp_t gfp) 2979 { 2980 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2981 2982 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2983 } 2984 EXPORT_SYMBOL(read_cache_page_gfp); 2985 2986 /* 2987 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2988 * LFS limits. If pos is under the limit it becomes a short access. If it 2989 * exceeds the limit we return -EFBIG. 2990 */ 2991 static int generic_access_check_limits(struct file *file, loff_t pos, 2992 loff_t *count) 2993 { 2994 struct inode *inode = file->f_mapping->host; 2995 loff_t max_size = inode->i_sb->s_maxbytes; 2996 2997 if (!(file->f_flags & O_LARGEFILE)) 2998 max_size = MAX_NON_LFS; 2999 3000 if (unlikely(pos >= max_size)) 3001 return -EFBIG; 3002 *count = min(*count, max_size - pos); 3003 return 0; 3004 } 3005 3006 static int generic_write_check_limits(struct file *file, loff_t pos, 3007 loff_t *count) 3008 { 3009 loff_t limit = rlimit(RLIMIT_FSIZE); 3010 3011 if (limit != RLIM_INFINITY) { 3012 if (pos >= limit) { 3013 send_sig(SIGXFSZ, current, 0); 3014 return -EFBIG; 3015 } 3016 *count = min(*count, limit - pos); 3017 } 3018 3019 return generic_access_check_limits(file, pos, count); 3020 } 3021 3022 /* 3023 * Performs necessary checks before doing a write 3024 * 3025 * Can adjust writing position or amount of bytes to write. 3026 * Returns appropriate error code that caller should return or 3027 * zero in case that write should be allowed. 3028 */ 3029 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 3030 { 3031 struct file *file = iocb->ki_filp; 3032 struct inode *inode = file->f_mapping->host; 3033 loff_t count; 3034 int ret; 3035 3036 if (!iov_iter_count(from)) 3037 return 0; 3038 3039 /* FIXME: this is for backwards compatibility with 2.4 */ 3040 if (iocb->ki_flags & IOCB_APPEND) 3041 iocb->ki_pos = i_size_read(inode); 3042 3043 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 3044 return -EINVAL; 3045 3046 count = iov_iter_count(from); 3047 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 3048 if (ret) 3049 return ret; 3050 3051 iov_iter_truncate(from, count); 3052 return iov_iter_count(from); 3053 } 3054 EXPORT_SYMBOL(generic_write_checks); 3055 3056 /* 3057 * Performs necessary checks before doing a clone. 3058 * 3059 * Can adjust amount of bytes to clone. 3060 * Returns appropriate error code that caller should return or 3061 * zero in case the clone should be allowed. 3062 */ 3063 int generic_remap_checks(struct file *file_in, loff_t pos_in, 3064 struct file *file_out, loff_t pos_out, 3065 loff_t *req_count, unsigned int remap_flags) 3066 { 3067 struct inode *inode_in = file_in->f_mapping->host; 3068 struct inode *inode_out = file_out->f_mapping->host; 3069 uint64_t count = *req_count; 3070 uint64_t bcount; 3071 loff_t size_in, size_out; 3072 loff_t bs = inode_out->i_sb->s_blocksize; 3073 int ret; 3074 3075 /* The start of both ranges must be aligned to an fs block. */ 3076 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3077 return -EINVAL; 3078 3079 /* Ensure offsets don't wrap. */ 3080 if (pos_in + count < pos_in || pos_out + count < pos_out) 3081 return -EINVAL; 3082 3083 size_in = i_size_read(inode_in); 3084 size_out = i_size_read(inode_out); 3085 3086 /* Dedupe requires both ranges to be within EOF. */ 3087 if ((remap_flags & REMAP_FILE_DEDUP) && 3088 (pos_in >= size_in || pos_in + count > size_in || 3089 pos_out >= size_out || pos_out + count > size_out)) 3090 return -EINVAL; 3091 3092 /* Ensure the infile range is within the infile. */ 3093 if (pos_in >= size_in) 3094 return -EINVAL; 3095 count = min(count, size_in - (uint64_t)pos_in); 3096 3097 ret = generic_access_check_limits(file_in, pos_in, &count); 3098 if (ret) 3099 return ret; 3100 3101 ret = generic_write_check_limits(file_out, pos_out, &count); 3102 if (ret) 3103 return ret; 3104 3105 /* 3106 * If the user wanted us to link to the infile's EOF, round up to the 3107 * next block boundary for this check. 3108 * 3109 * Otherwise, make sure the count is also block-aligned, having 3110 * already confirmed the starting offsets' block alignment. 3111 */ 3112 if (pos_in + count == size_in) { 3113 bcount = ALIGN(size_in, bs) - pos_in; 3114 } else { 3115 if (!IS_ALIGNED(count, bs)) 3116 count = ALIGN_DOWN(count, bs); 3117 bcount = count; 3118 } 3119 3120 /* Don't allow overlapped cloning within the same file. */ 3121 if (inode_in == inode_out && 3122 pos_out + bcount > pos_in && 3123 pos_out < pos_in + bcount) 3124 return -EINVAL; 3125 3126 /* 3127 * We shortened the request but the caller can't deal with that, so 3128 * bounce the request back to userspace. 3129 */ 3130 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3131 return -EINVAL; 3132 3133 *req_count = count; 3134 return 0; 3135 } 3136 3137 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3138 loff_t pos, unsigned len, unsigned flags, 3139 struct page **pagep, void **fsdata) 3140 { 3141 const struct address_space_operations *aops = mapping->a_ops; 3142 3143 return aops->write_begin(file, mapping, pos, len, flags, 3144 pagep, fsdata); 3145 } 3146 EXPORT_SYMBOL(pagecache_write_begin); 3147 3148 int pagecache_write_end(struct file *file, struct address_space *mapping, 3149 loff_t pos, unsigned len, unsigned copied, 3150 struct page *page, void *fsdata) 3151 { 3152 const struct address_space_operations *aops = mapping->a_ops; 3153 3154 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3155 } 3156 EXPORT_SYMBOL(pagecache_write_end); 3157 3158 ssize_t 3159 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3160 { 3161 struct file *file = iocb->ki_filp; 3162 struct address_space *mapping = file->f_mapping; 3163 struct inode *inode = mapping->host; 3164 loff_t pos = iocb->ki_pos; 3165 ssize_t written; 3166 size_t write_len; 3167 pgoff_t end; 3168 3169 write_len = iov_iter_count(from); 3170 end = (pos + write_len - 1) >> PAGE_SHIFT; 3171 3172 if (iocb->ki_flags & IOCB_NOWAIT) { 3173 /* If there are pages to writeback, return */ 3174 if (filemap_range_has_page(inode->i_mapping, pos, 3175 pos + write_len - 1)) 3176 return -EAGAIN; 3177 } else { 3178 written = filemap_write_and_wait_range(mapping, pos, 3179 pos + write_len - 1); 3180 if (written) 3181 goto out; 3182 } 3183 3184 /* 3185 * After a write we want buffered reads to be sure to go to disk to get 3186 * the new data. We invalidate clean cached page from the region we're 3187 * about to write. We do this *before* the write so that we can return 3188 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3189 */ 3190 written = invalidate_inode_pages2_range(mapping, 3191 pos >> PAGE_SHIFT, end); 3192 /* 3193 * If a page can not be invalidated, return 0 to fall back 3194 * to buffered write. 3195 */ 3196 if (written) { 3197 if (written == -EBUSY) 3198 return 0; 3199 goto out; 3200 } 3201 3202 written = mapping->a_ops->direct_IO(iocb, from); 3203 3204 /* 3205 * Finally, try again to invalidate clean pages which might have been 3206 * cached by non-direct readahead, or faulted in by get_user_pages() 3207 * if the source of the write was an mmap'ed region of the file 3208 * we're writing. Either one is a pretty crazy thing to do, 3209 * so we don't support it 100%. If this invalidation 3210 * fails, tough, the write still worked... 3211 * 3212 * Most of the time we do not need this since dio_complete() will do 3213 * the invalidation for us. However there are some file systems that 3214 * do not end up with dio_complete() being called, so let's not break 3215 * them by removing it completely 3216 */ 3217 if (mapping->nrpages) 3218 invalidate_inode_pages2_range(mapping, 3219 pos >> PAGE_SHIFT, end); 3220 3221 if (written > 0) { 3222 pos += written; 3223 write_len -= written; 3224 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3225 i_size_write(inode, pos); 3226 mark_inode_dirty(inode); 3227 } 3228 iocb->ki_pos = pos; 3229 } 3230 iov_iter_revert(from, write_len - iov_iter_count(from)); 3231 out: 3232 return written; 3233 } 3234 EXPORT_SYMBOL(generic_file_direct_write); 3235 3236 /* 3237 * Find or create a page at the given pagecache position. Return the locked 3238 * page. This function is specifically for buffered writes. 3239 */ 3240 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3241 pgoff_t index, unsigned flags) 3242 { 3243 struct page *page; 3244 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3245 3246 if (flags & AOP_FLAG_NOFS) 3247 fgp_flags |= FGP_NOFS; 3248 3249 page = pagecache_get_page(mapping, index, fgp_flags, 3250 mapping_gfp_mask(mapping)); 3251 if (page) 3252 wait_for_stable_page(page); 3253 3254 return page; 3255 } 3256 EXPORT_SYMBOL(grab_cache_page_write_begin); 3257 3258 ssize_t generic_perform_write(struct file *file, 3259 struct iov_iter *i, loff_t pos) 3260 { 3261 struct address_space *mapping = file->f_mapping; 3262 const struct address_space_operations *a_ops = mapping->a_ops; 3263 long status = 0; 3264 ssize_t written = 0; 3265 unsigned int flags = 0; 3266 3267 do { 3268 struct page *page; 3269 unsigned long offset; /* Offset into pagecache page */ 3270 unsigned long bytes; /* Bytes to write to page */ 3271 size_t copied; /* Bytes copied from user */ 3272 void *fsdata; 3273 3274 offset = (pos & (PAGE_SIZE - 1)); 3275 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3276 iov_iter_count(i)); 3277 3278 again: 3279 /* 3280 * Bring in the user page that we will copy from _first_. 3281 * Otherwise there's a nasty deadlock on copying from the 3282 * same page as we're writing to, without it being marked 3283 * up-to-date. 3284 * 3285 * Not only is this an optimisation, but it is also required 3286 * to check that the address is actually valid, when atomic 3287 * usercopies are used, below. 3288 */ 3289 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3290 status = -EFAULT; 3291 break; 3292 } 3293 3294 if (fatal_signal_pending(current)) { 3295 status = -EINTR; 3296 break; 3297 } 3298 3299 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3300 &page, &fsdata); 3301 if (unlikely(status < 0)) 3302 break; 3303 3304 if (mapping_writably_mapped(mapping)) 3305 flush_dcache_page(page); 3306 3307 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3308 flush_dcache_page(page); 3309 3310 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3311 page, fsdata); 3312 if (unlikely(status < 0)) 3313 break; 3314 copied = status; 3315 3316 cond_resched(); 3317 3318 iov_iter_advance(i, copied); 3319 if (unlikely(copied == 0)) { 3320 /* 3321 * If we were unable to copy any data at all, we must 3322 * fall back to a single segment length write. 3323 * 3324 * If we didn't fallback here, we could livelock 3325 * because not all segments in the iov can be copied at 3326 * once without a pagefault. 3327 */ 3328 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3329 iov_iter_single_seg_count(i)); 3330 goto again; 3331 } 3332 pos += copied; 3333 written += copied; 3334 3335 balance_dirty_pages_ratelimited(mapping); 3336 } while (iov_iter_count(i)); 3337 3338 return written ? written : status; 3339 } 3340 EXPORT_SYMBOL(generic_perform_write); 3341 3342 /** 3343 * __generic_file_write_iter - write data to a file 3344 * @iocb: IO state structure (file, offset, etc.) 3345 * @from: iov_iter with data to write 3346 * 3347 * This function does all the work needed for actually writing data to a 3348 * file. It does all basic checks, removes SUID from the file, updates 3349 * modification times and calls proper subroutines depending on whether we 3350 * do direct IO or a standard buffered write. 3351 * 3352 * It expects i_mutex to be grabbed unless we work on a block device or similar 3353 * object which does not need locking at all. 3354 * 3355 * This function does *not* take care of syncing data in case of O_SYNC write. 3356 * A caller has to handle it. This is mainly due to the fact that we want to 3357 * avoid syncing under i_mutex. 3358 * 3359 * Return: 3360 * * number of bytes written, even for truncated writes 3361 * * negative error code if no data has been written at all 3362 */ 3363 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3364 { 3365 struct file *file = iocb->ki_filp; 3366 struct address_space * mapping = file->f_mapping; 3367 struct inode *inode = mapping->host; 3368 ssize_t written = 0; 3369 ssize_t err; 3370 ssize_t status; 3371 3372 /* We can write back this queue in page reclaim */ 3373 current->backing_dev_info = inode_to_bdi(inode); 3374 err = file_remove_privs(file); 3375 if (err) 3376 goto out; 3377 3378 err = file_update_time(file); 3379 if (err) 3380 goto out; 3381 3382 if (iocb->ki_flags & IOCB_DIRECT) { 3383 loff_t pos, endbyte; 3384 3385 written = generic_file_direct_write(iocb, from); 3386 /* 3387 * If the write stopped short of completing, fall back to 3388 * buffered writes. Some filesystems do this for writes to 3389 * holes, for example. For DAX files, a buffered write will 3390 * not succeed (even if it did, DAX does not handle dirty 3391 * page-cache pages correctly). 3392 */ 3393 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3394 goto out; 3395 3396 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3397 /* 3398 * If generic_perform_write() returned a synchronous error 3399 * then we want to return the number of bytes which were 3400 * direct-written, or the error code if that was zero. Note 3401 * that this differs from normal direct-io semantics, which 3402 * will return -EFOO even if some bytes were written. 3403 */ 3404 if (unlikely(status < 0)) { 3405 err = status; 3406 goto out; 3407 } 3408 /* 3409 * We need to ensure that the page cache pages are written to 3410 * disk and invalidated to preserve the expected O_DIRECT 3411 * semantics. 3412 */ 3413 endbyte = pos + status - 1; 3414 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3415 if (err == 0) { 3416 iocb->ki_pos = endbyte + 1; 3417 written += status; 3418 invalidate_mapping_pages(mapping, 3419 pos >> PAGE_SHIFT, 3420 endbyte >> PAGE_SHIFT); 3421 } else { 3422 /* 3423 * We don't know how much we wrote, so just return 3424 * the number of bytes which were direct-written 3425 */ 3426 } 3427 } else { 3428 written = generic_perform_write(file, from, iocb->ki_pos); 3429 if (likely(written > 0)) 3430 iocb->ki_pos += written; 3431 } 3432 out: 3433 current->backing_dev_info = NULL; 3434 return written ? written : err; 3435 } 3436 EXPORT_SYMBOL(__generic_file_write_iter); 3437 3438 /** 3439 * generic_file_write_iter - write data to a file 3440 * @iocb: IO state structure 3441 * @from: iov_iter with data to write 3442 * 3443 * This is a wrapper around __generic_file_write_iter() to be used by most 3444 * filesystems. It takes care of syncing the file in case of O_SYNC file 3445 * and acquires i_mutex as needed. 3446 * Return: 3447 * * negative error code if no data has been written at all of 3448 * vfs_fsync_range() failed for a synchronous write 3449 * * number of bytes written, even for truncated writes 3450 */ 3451 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3452 { 3453 struct file *file = iocb->ki_filp; 3454 struct inode *inode = file->f_mapping->host; 3455 ssize_t ret; 3456 3457 inode_lock(inode); 3458 ret = generic_write_checks(iocb, from); 3459 if (ret > 0) 3460 ret = __generic_file_write_iter(iocb, from); 3461 inode_unlock(inode); 3462 3463 if (ret > 0) 3464 ret = generic_write_sync(iocb, ret); 3465 return ret; 3466 } 3467 EXPORT_SYMBOL(generic_file_write_iter); 3468 3469 /** 3470 * try_to_release_page() - release old fs-specific metadata on a page 3471 * 3472 * @page: the page which the kernel is trying to free 3473 * @gfp_mask: memory allocation flags (and I/O mode) 3474 * 3475 * The address_space is to try to release any data against the page 3476 * (presumably at page->private). 3477 * 3478 * This may also be called if PG_fscache is set on a page, indicating that the 3479 * page is known to the local caching routines. 3480 * 3481 * The @gfp_mask argument specifies whether I/O may be performed to release 3482 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3483 * 3484 * Return: %1 if the release was successful, otherwise return zero. 3485 */ 3486 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3487 { 3488 struct address_space * const mapping = page->mapping; 3489 3490 BUG_ON(!PageLocked(page)); 3491 if (PageWriteback(page)) 3492 return 0; 3493 3494 if (mapping && mapping->a_ops->releasepage) 3495 return mapping->a_ops->releasepage(page, gfp_mask); 3496 return try_to_free_buffers(page); 3497 } 3498 3499 EXPORT_SYMBOL(try_to_release_page); 3500