xref: /openbmc/linux/mm/filemap.c (revision f9a82c48)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
45 
46 /*
47  * FIXME: remove all knowledge of the buffer layer from the core VM
48  */
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50 
51 #include <asm/mman.h>
52 
53 /*
54  * Shared mappings implemented 30.11.1994. It's not fully working yet,
55  * though.
56  *
57  * Shared mappings now work. 15.8.1995  Bruno.
58  *
59  * finished 'unifying' the page and buffer cache and SMP-threaded the
60  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61  *
62  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63  */
64 
65 /*
66  * Lock ordering:
67  *
68  *  ->i_mmap_rwsem		(truncate_pagecache)
69  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
70  *      ->swap_lock		(exclusive_swap_page, others)
71  *        ->i_pages lock
72  *
73  *  ->i_mutex
74  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
75  *
76  *  ->mmap_sem
77  *    ->i_mmap_rwsem
78  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
79  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
80  *
81  *  ->mmap_sem
82  *    ->lock_page		(access_process_vm)
83  *
84  *  ->i_mutex			(generic_perform_write)
85  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
86  *
87  *  bdi->wb.list_lock
88  *    sb_lock			(fs/fs-writeback.c)
89  *    ->i_pages lock		(__sync_single_inode)
90  *
91  *  ->i_mmap_rwsem
92  *    ->anon_vma.lock		(vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock		(try_to_unmap_one)
99  *    ->private_lock		(try_to_unmap_one)
100  *    ->i_pages lock		(try_to_unmap_one)
101  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
102  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
103  *    ->private_lock		(page_remove_rmap->set_page_dirty)
104  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
105  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
106  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
107  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
108  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
109  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
110  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
111  *
112  * ->i_mmap_rwsem
113  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
114  */
115 
116 static void page_cache_delete(struct address_space *mapping,
117 				   struct page *page, void *shadow)
118 {
119 	XA_STATE(xas, &mapping->i_pages, page->index);
120 	unsigned int nr = 1;
121 
122 	mapping_set_update(&xas, mapping);
123 
124 	/* hugetlb pages are represented by a single entry in the xarray */
125 	if (!PageHuge(page)) {
126 		xas_set_order(&xas, page->index, compound_order(page));
127 		nr = 1U << compound_order(page);
128 	}
129 
130 	VM_BUG_ON_PAGE(!PageLocked(page), page);
131 	VM_BUG_ON_PAGE(PageTail(page), page);
132 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
133 
134 	xas_store(&xas, shadow);
135 	xas_init_marks(&xas);
136 
137 	page->mapping = NULL;
138 	/* Leave page->index set: truncation lookup relies upon it */
139 
140 	if (shadow) {
141 		mapping->nrexceptional += nr;
142 		/*
143 		 * Make sure the nrexceptional update is committed before
144 		 * the nrpages update so that final truncate racing
145 		 * with reclaim does not see both counters 0 at the
146 		 * same time and miss a shadow entry.
147 		 */
148 		smp_wmb();
149 	}
150 	mapping->nrpages -= nr;
151 }
152 
153 static void unaccount_page_cache_page(struct address_space *mapping,
154 				      struct page *page)
155 {
156 	int nr;
157 
158 	/*
159 	 * if we're uptodate, flush out into the cleancache, otherwise
160 	 * invalidate any existing cleancache entries.  We can't leave
161 	 * stale data around in the cleancache once our page is gone
162 	 */
163 	if (PageUptodate(page) && PageMappedToDisk(page))
164 		cleancache_put_page(page);
165 	else
166 		cleancache_invalidate_page(mapping, page);
167 
168 	VM_BUG_ON_PAGE(PageTail(page), page);
169 	VM_BUG_ON_PAGE(page_mapped(page), page);
170 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 		int mapcount;
172 
173 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
174 			 current->comm, page_to_pfn(page));
175 		dump_page(page, "still mapped when deleted");
176 		dump_stack();
177 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178 
179 		mapcount = page_mapcount(page);
180 		if (mapping_exiting(mapping) &&
181 		    page_count(page) >= mapcount + 2) {
182 			/*
183 			 * All vmas have already been torn down, so it's
184 			 * a good bet that actually the page is unmapped,
185 			 * and we'd prefer not to leak it: if we're wrong,
186 			 * some other bad page check should catch it later.
187 			 */
188 			page_mapcount_reset(page);
189 			page_ref_sub(page, mapcount);
190 		}
191 	}
192 
193 	/* hugetlb pages do not participate in page cache accounting. */
194 	if (PageHuge(page))
195 		return;
196 
197 	nr = hpage_nr_pages(page);
198 
199 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 	if (PageSwapBacked(page)) {
201 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 		if (PageTransHuge(page))
203 			__dec_node_page_state(page, NR_SHMEM_THPS);
204 	} else {
205 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
206 	}
207 
208 	/*
209 	 * At this point page must be either written or cleaned by
210 	 * truncate.  Dirty page here signals a bug and loss of
211 	 * unwritten data.
212 	 *
213 	 * This fixes dirty accounting after removing the page entirely
214 	 * but leaves PageDirty set: it has no effect for truncated
215 	 * page and anyway will be cleared before returning page into
216 	 * buddy allocator.
217 	 */
218 	if (WARN_ON_ONCE(PageDirty(page)))
219 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220 }
221 
222 /*
223  * Delete a page from the page cache and free it. Caller has to make
224  * sure the page is locked and that nobody else uses it - or that usage
225  * is safe.  The caller must hold the i_pages lock.
226  */
227 void __delete_from_page_cache(struct page *page, void *shadow)
228 {
229 	struct address_space *mapping = page->mapping;
230 
231 	trace_mm_filemap_delete_from_page_cache(page);
232 
233 	unaccount_page_cache_page(mapping, page);
234 	page_cache_delete(mapping, page, shadow);
235 }
236 
237 static void page_cache_free_page(struct address_space *mapping,
238 				struct page *page)
239 {
240 	void (*freepage)(struct page *);
241 
242 	freepage = mapping->a_ops->freepage;
243 	if (freepage)
244 		freepage(page);
245 
246 	if (PageTransHuge(page) && !PageHuge(page)) {
247 		page_ref_sub(page, HPAGE_PMD_NR);
248 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 	} else {
250 		put_page(page);
251 	}
252 }
253 
254 /**
255  * delete_from_page_cache - delete page from page cache
256  * @page: the page which the kernel is trying to remove from page cache
257  *
258  * This must be called only on pages that have been verified to be in the page
259  * cache and locked.  It will never put the page into the free list, the caller
260  * has a reference on the page.
261  */
262 void delete_from_page_cache(struct page *page)
263 {
264 	struct address_space *mapping = page_mapping(page);
265 	unsigned long flags;
266 
267 	BUG_ON(!PageLocked(page));
268 	xa_lock_irqsave(&mapping->i_pages, flags);
269 	__delete_from_page_cache(page, NULL);
270 	xa_unlock_irqrestore(&mapping->i_pages, flags);
271 
272 	page_cache_free_page(mapping, page);
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275 
276 /*
277  * page_cache_delete_batch - delete several pages from page cache
278  * @mapping: the mapping to which pages belong
279  * @pvec: pagevec with pages to delete
280  *
281  * The function walks over mapping->i_pages and removes pages passed in @pvec
282  * from the mapping. The function expects @pvec to be sorted by page index.
283  * It tolerates holes in @pvec (mapping entries at those indices are not
284  * modified). The function expects only THP head pages to be present in the
285  * @pvec and takes care to delete all corresponding tail pages from the
286  * mapping as well.
287  *
288  * The function expects the i_pages lock to be held.
289  */
290 static void page_cache_delete_batch(struct address_space *mapping,
291 			     struct pagevec *pvec)
292 {
293 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 	int total_pages = 0;
295 	int i = 0, tail_pages = 0;
296 	struct page *page;
297 
298 	mapping_set_update(&xas, mapping);
299 	xas_for_each(&xas, page, ULONG_MAX) {
300 		if (i >= pagevec_count(pvec) && !tail_pages)
301 			break;
302 		if (xa_is_value(page))
303 			continue;
304 		if (!tail_pages) {
305 			/*
306 			 * Some page got inserted in our range? Skip it. We
307 			 * have our pages locked so they are protected from
308 			 * being removed.
309 			 */
310 			if (page != pvec->pages[i]) {
311 				VM_BUG_ON_PAGE(page->index >
312 						pvec->pages[i]->index, page);
313 				continue;
314 			}
315 			WARN_ON_ONCE(!PageLocked(page));
316 			if (PageTransHuge(page) && !PageHuge(page))
317 				tail_pages = HPAGE_PMD_NR - 1;
318 			page->mapping = NULL;
319 			/*
320 			 * Leave page->index set: truncation lookup relies
321 			 * upon it
322 			 */
323 			i++;
324 		} else {
325 			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
326 					!= pvec->pages[i]->index, page);
327 			tail_pages--;
328 		}
329 		xas_store(&xas, NULL);
330 		total_pages++;
331 	}
332 	mapping->nrpages -= total_pages;
333 }
334 
335 void delete_from_page_cache_batch(struct address_space *mapping,
336 				  struct pagevec *pvec)
337 {
338 	int i;
339 	unsigned long flags;
340 
341 	if (!pagevec_count(pvec))
342 		return;
343 
344 	xa_lock_irqsave(&mapping->i_pages, flags);
345 	for (i = 0; i < pagevec_count(pvec); i++) {
346 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347 
348 		unaccount_page_cache_page(mapping, pvec->pages[i]);
349 	}
350 	page_cache_delete_batch(mapping, pvec);
351 	xa_unlock_irqrestore(&mapping->i_pages, flags);
352 
353 	for (i = 0; i < pagevec_count(pvec); i++)
354 		page_cache_free_page(mapping, pvec->pages[i]);
355 }
356 
357 int filemap_check_errors(struct address_space *mapping)
358 {
359 	int ret = 0;
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363 		ret = -ENOSPC;
364 	if (test_bit(AS_EIO, &mapping->flags) &&
365 	    test_and_clear_bit(AS_EIO, &mapping->flags))
366 		ret = -EIO;
367 	return ret;
368 }
369 EXPORT_SYMBOL(filemap_check_errors);
370 
371 static int filemap_check_and_keep_errors(struct address_space *mapping)
372 {
373 	/* Check for outstanding write errors */
374 	if (test_bit(AS_EIO, &mapping->flags))
375 		return -EIO;
376 	if (test_bit(AS_ENOSPC, &mapping->flags))
377 		return -ENOSPC;
378 	return 0;
379 }
380 
381 /**
382  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383  * @mapping:	address space structure to write
384  * @start:	offset in bytes where the range starts
385  * @end:	offset in bytes where the range ends (inclusive)
386  * @sync_mode:	enable synchronous operation
387  *
388  * Start writeback against all of a mapping's dirty pages that lie
389  * within the byte offsets <start, end> inclusive.
390  *
391  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392  * opposed to a regular memory cleansing writeback.  The difference between
393  * these two operations is that if a dirty page/buffer is encountered, it must
394  * be waited upon, and not just skipped over.
395  *
396  * Return: %0 on success, negative error code otherwise.
397  */
398 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
399 				loff_t end, int sync_mode)
400 {
401 	int ret;
402 	struct writeback_control wbc = {
403 		.sync_mode = sync_mode,
404 		.nr_to_write = LONG_MAX,
405 		.range_start = start,
406 		.range_end = end,
407 	};
408 
409 	if (!mapping_cap_writeback_dirty(mapping))
410 		return 0;
411 
412 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
413 	ret = do_writepages(mapping, &wbc);
414 	wbc_detach_inode(&wbc);
415 	return ret;
416 }
417 
418 static inline int __filemap_fdatawrite(struct address_space *mapping,
419 	int sync_mode)
420 {
421 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
422 }
423 
424 int filemap_fdatawrite(struct address_space *mapping)
425 {
426 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
427 }
428 EXPORT_SYMBOL(filemap_fdatawrite);
429 
430 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 				loff_t end)
432 {
433 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
434 }
435 EXPORT_SYMBOL(filemap_fdatawrite_range);
436 
437 /**
438  * filemap_flush - mostly a non-blocking flush
439  * @mapping:	target address_space
440  *
441  * This is a mostly non-blocking flush.  Not suitable for data-integrity
442  * purposes - I/O may not be started against all dirty pages.
443  *
444  * Return: %0 on success, negative error code otherwise.
445  */
446 int filemap_flush(struct address_space *mapping)
447 {
448 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
449 }
450 EXPORT_SYMBOL(filemap_flush);
451 
452 /**
453  * filemap_range_has_page - check if a page exists in range.
454  * @mapping:           address space within which to check
455  * @start_byte:        offset in bytes where the range starts
456  * @end_byte:          offset in bytes where the range ends (inclusive)
457  *
458  * Find at least one page in the range supplied, usually used to check if
459  * direct writing in this range will trigger a writeback.
460  *
461  * Return: %true if at least one page exists in the specified range,
462  * %false otherwise.
463  */
464 bool filemap_range_has_page(struct address_space *mapping,
465 			   loff_t start_byte, loff_t end_byte)
466 {
467 	struct page *page;
468 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
469 	pgoff_t max = end_byte >> PAGE_SHIFT;
470 
471 	if (end_byte < start_byte)
472 		return false;
473 
474 	rcu_read_lock();
475 	for (;;) {
476 		page = xas_find(&xas, max);
477 		if (xas_retry(&xas, page))
478 			continue;
479 		/* Shadow entries don't count */
480 		if (xa_is_value(page))
481 			continue;
482 		/*
483 		 * We don't need to try to pin this page; we're about to
484 		 * release the RCU lock anyway.  It is enough to know that
485 		 * there was a page here recently.
486 		 */
487 		break;
488 	}
489 	rcu_read_unlock();
490 
491 	return page != NULL;
492 }
493 EXPORT_SYMBOL(filemap_range_has_page);
494 
495 static void __filemap_fdatawait_range(struct address_space *mapping,
496 				     loff_t start_byte, loff_t end_byte)
497 {
498 	pgoff_t index = start_byte >> PAGE_SHIFT;
499 	pgoff_t end = end_byte >> PAGE_SHIFT;
500 	struct pagevec pvec;
501 	int nr_pages;
502 
503 	if (end_byte < start_byte)
504 		return;
505 
506 	pagevec_init(&pvec);
507 	while (index <= end) {
508 		unsigned i;
509 
510 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
511 				end, PAGECACHE_TAG_WRITEBACK);
512 		if (!nr_pages)
513 			break;
514 
515 		for (i = 0; i < nr_pages; i++) {
516 			struct page *page = pvec.pages[i];
517 
518 			wait_on_page_writeback(page);
519 			ClearPageError(page);
520 		}
521 		pagevec_release(&pvec);
522 		cond_resched();
523 	}
524 }
525 
526 /**
527  * filemap_fdatawait_range - wait for writeback to complete
528  * @mapping:		address space structure to wait for
529  * @start_byte:		offset in bytes where the range starts
530  * @end_byte:		offset in bytes where the range ends (inclusive)
531  *
532  * Walk the list of under-writeback pages of the given address space
533  * in the given range and wait for all of them.  Check error status of
534  * the address space and return it.
535  *
536  * Since the error status of the address space is cleared by this function,
537  * callers are responsible for checking the return value and handling and/or
538  * reporting the error.
539  *
540  * Return: error status of the address space.
541  */
542 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
543 			    loff_t end_byte)
544 {
545 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
546 	return filemap_check_errors(mapping);
547 }
548 EXPORT_SYMBOL(filemap_fdatawait_range);
549 
550 /**
551  * file_fdatawait_range - wait for writeback to complete
552  * @file:		file pointing to address space structure to wait for
553  * @start_byte:		offset in bytes where the range starts
554  * @end_byte:		offset in bytes where the range ends (inclusive)
555  *
556  * Walk the list of under-writeback pages of the address space that file
557  * refers to, in the given range and wait for all of them.  Check error
558  * status of the address space vs. the file->f_wb_err cursor and return it.
559  *
560  * Since the error status of the file is advanced by this function,
561  * callers are responsible for checking the return value and handling and/or
562  * reporting the error.
563  *
564  * Return: error status of the address space vs. the file->f_wb_err cursor.
565  */
566 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
567 {
568 	struct address_space *mapping = file->f_mapping;
569 
570 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
571 	return file_check_and_advance_wb_err(file);
572 }
573 EXPORT_SYMBOL(file_fdatawait_range);
574 
575 /**
576  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
577  * @mapping: address space structure to wait for
578  *
579  * Walk the list of under-writeback pages of the given address space
580  * and wait for all of them.  Unlike filemap_fdatawait(), this function
581  * does not clear error status of the address space.
582  *
583  * Use this function if callers don't handle errors themselves.  Expected
584  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
585  * fsfreeze(8)
586  *
587  * Return: error status of the address space.
588  */
589 int filemap_fdatawait_keep_errors(struct address_space *mapping)
590 {
591 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
592 	return filemap_check_and_keep_errors(mapping);
593 }
594 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
595 
596 static bool mapping_needs_writeback(struct address_space *mapping)
597 {
598 	return (!dax_mapping(mapping) && mapping->nrpages) ||
599 	    (dax_mapping(mapping) && mapping->nrexceptional);
600 }
601 
602 int filemap_write_and_wait(struct address_space *mapping)
603 {
604 	int err = 0;
605 
606 	if (mapping_needs_writeback(mapping)) {
607 		err = filemap_fdatawrite(mapping);
608 		/*
609 		 * Even if the above returned error, the pages may be
610 		 * written partially (e.g. -ENOSPC), so we wait for it.
611 		 * But the -EIO is special case, it may indicate the worst
612 		 * thing (e.g. bug) happened, so we avoid waiting for it.
613 		 */
614 		if (err != -EIO) {
615 			int err2 = filemap_fdatawait(mapping);
616 			if (!err)
617 				err = err2;
618 		} else {
619 			/* Clear any previously stored errors */
620 			filemap_check_errors(mapping);
621 		}
622 	} else {
623 		err = filemap_check_errors(mapping);
624 	}
625 	return err;
626 }
627 EXPORT_SYMBOL(filemap_write_and_wait);
628 
629 /**
630  * filemap_write_and_wait_range - write out & wait on a file range
631  * @mapping:	the address_space for the pages
632  * @lstart:	offset in bytes where the range starts
633  * @lend:	offset in bytes where the range ends (inclusive)
634  *
635  * Write out and wait upon file offsets lstart->lend, inclusive.
636  *
637  * Note that @lend is inclusive (describes the last byte to be written) so
638  * that this function can be used to write to the very end-of-file (end = -1).
639  *
640  * Return: error status of the address space.
641  */
642 int filemap_write_and_wait_range(struct address_space *mapping,
643 				 loff_t lstart, loff_t lend)
644 {
645 	int err = 0;
646 
647 	if (mapping_needs_writeback(mapping)) {
648 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
649 						 WB_SYNC_ALL);
650 		/* See comment of filemap_write_and_wait() */
651 		if (err != -EIO) {
652 			int err2 = filemap_fdatawait_range(mapping,
653 						lstart, lend);
654 			if (!err)
655 				err = err2;
656 		} else {
657 			/* Clear any previously stored errors */
658 			filemap_check_errors(mapping);
659 		}
660 	} else {
661 		err = filemap_check_errors(mapping);
662 	}
663 	return err;
664 }
665 EXPORT_SYMBOL(filemap_write_and_wait_range);
666 
667 void __filemap_set_wb_err(struct address_space *mapping, int err)
668 {
669 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
670 
671 	trace_filemap_set_wb_err(mapping, eseq);
672 }
673 EXPORT_SYMBOL(__filemap_set_wb_err);
674 
675 /**
676  * file_check_and_advance_wb_err - report wb error (if any) that was previously
677  * 				   and advance wb_err to current one
678  * @file: struct file on which the error is being reported
679  *
680  * When userland calls fsync (or something like nfsd does the equivalent), we
681  * want to report any writeback errors that occurred since the last fsync (or
682  * since the file was opened if there haven't been any).
683  *
684  * Grab the wb_err from the mapping. If it matches what we have in the file,
685  * then just quickly return 0. The file is all caught up.
686  *
687  * If it doesn't match, then take the mapping value, set the "seen" flag in
688  * it and try to swap it into place. If it works, or another task beat us
689  * to it with the new value, then update the f_wb_err and return the error
690  * portion. The error at this point must be reported via proper channels
691  * (a'la fsync, or NFS COMMIT operation, etc.).
692  *
693  * While we handle mapping->wb_err with atomic operations, the f_wb_err
694  * value is protected by the f_lock since we must ensure that it reflects
695  * the latest value swapped in for this file descriptor.
696  *
697  * Return: %0 on success, negative error code otherwise.
698  */
699 int file_check_and_advance_wb_err(struct file *file)
700 {
701 	int err = 0;
702 	errseq_t old = READ_ONCE(file->f_wb_err);
703 	struct address_space *mapping = file->f_mapping;
704 
705 	/* Locklessly handle the common case where nothing has changed */
706 	if (errseq_check(&mapping->wb_err, old)) {
707 		/* Something changed, must use slow path */
708 		spin_lock(&file->f_lock);
709 		old = file->f_wb_err;
710 		err = errseq_check_and_advance(&mapping->wb_err,
711 						&file->f_wb_err);
712 		trace_file_check_and_advance_wb_err(file, old);
713 		spin_unlock(&file->f_lock);
714 	}
715 
716 	/*
717 	 * We're mostly using this function as a drop in replacement for
718 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
719 	 * that the legacy code would have had on these flags.
720 	 */
721 	clear_bit(AS_EIO, &mapping->flags);
722 	clear_bit(AS_ENOSPC, &mapping->flags);
723 	return err;
724 }
725 EXPORT_SYMBOL(file_check_and_advance_wb_err);
726 
727 /**
728  * file_write_and_wait_range - write out & wait on a file range
729  * @file:	file pointing to address_space with pages
730  * @lstart:	offset in bytes where the range starts
731  * @lend:	offset in bytes where the range ends (inclusive)
732  *
733  * Write out and wait upon file offsets lstart->lend, inclusive.
734  *
735  * Note that @lend is inclusive (describes the last byte to be written) so
736  * that this function can be used to write to the very end-of-file (end = -1).
737  *
738  * After writing out and waiting on the data, we check and advance the
739  * f_wb_err cursor to the latest value, and return any errors detected there.
740  *
741  * Return: %0 on success, negative error code otherwise.
742  */
743 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
744 {
745 	int err = 0, err2;
746 	struct address_space *mapping = file->f_mapping;
747 
748 	if (mapping_needs_writeback(mapping)) {
749 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
750 						 WB_SYNC_ALL);
751 		/* See comment of filemap_write_and_wait() */
752 		if (err != -EIO)
753 			__filemap_fdatawait_range(mapping, lstart, lend);
754 	}
755 	err2 = file_check_and_advance_wb_err(file);
756 	if (!err)
757 		err = err2;
758 	return err;
759 }
760 EXPORT_SYMBOL(file_write_and_wait_range);
761 
762 /**
763  * replace_page_cache_page - replace a pagecache page with a new one
764  * @old:	page to be replaced
765  * @new:	page to replace with
766  * @gfp_mask:	allocation mode
767  *
768  * This function replaces a page in the pagecache with a new one.  On
769  * success it acquires the pagecache reference for the new page and
770  * drops it for the old page.  Both the old and new pages must be
771  * locked.  This function does not add the new page to the LRU, the
772  * caller must do that.
773  *
774  * The remove + add is atomic.  This function cannot fail.
775  *
776  * Return: %0
777  */
778 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
779 {
780 	struct address_space *mapping = old->mapping;
781 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
782 	pgoff_t offset = old->index;
783 	XA_STATE(xas, &mapping->i_pages, offset);
784 	unsigned long flags;
785 
786 	VM_BUG_ON_PAGE(!PageLocked(old), old);
787 	VM_BUG_ON_PAGE(!PageLocked(new), new);
788 	VM_BUG_ON_PAGE(new->mapping, new);
789 
790 	get_page(new);
791 	new->mapping = mapping;
792 	new->index = offset;
793 
794 	xas_lock_irqsave(&xas, flags);
795 	xas_store(&xas, new);
796 
797 	old->mapping = NULL;
798 	/* hugetlb pages do not participate in page cache accounting. */
799 	if (!PageHuge(old))
800 		__dec_node_page_state(new, NR_FILE_PAGES);
801 	if (!PageHuge(new))
802 		__inc_node_page_state(new, NR_FILE_PAGES);
803 	if (PageSwapBacked(old))
804 		__dec_node_page_state(new, NR_SHMEM);
805 	if (PageSwapBacked(new))
806 		__inc_node_page_state(new, NR_SHMEM);
807 	xas_unlock_irqrestore(&xas, flags);
808 	mem_cgroup_migrate(old, new);
809 	if (freepage)
810 		freepage(old);
811 	put_page(old);
812 
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(replace_page_cache_page);
816 
817 static int __add_to_page_cache_locked(struct page *page,
818 				      struct address_space *mapping,
819 				      pgoff_t offset, gfp_t gfp_mask,
820 				      void **shadowp)
821 {
822 	XA_STATE(xas, &mapping->i_pages, offset);
823 	int huge = PageHuge(page);
824 	struct mem_cgroup *memcg;
825 	int error;
826 	void *old;
827 
828 	VM_BUG_ON_PAGE(!PageLocked(page), page);
829 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
830 	mapping_set_update(&xas, mapping);
831 
832 	if (!huge) {
833 		error = mem_cgroup_try_charge(page, current->mm,
834 					      gfp_mask, &memcg, false);
835 		if (error)
836 			return error;
837 	}
838 
839 	get_page(page);
840 	page->mapping = mapping;
841 	page->index = offset;
842 
843 	do {
844 		xas_lock_irq(&xas);
845 		old = xas_load(&xas);
846 		if (old && !xa_is_value(old))
847 			xas_set_err(&xas, -EEXIST);
848 		xas_store(&xas, page);
849 		if (xas_error(&xas))
850 			goto unlock;
851 
852 		if (xa_is_value(old)) {
853 			mapping->nrexceptional--;
854 			if (shadowp)
855 				*shadowp = old;
856 		}
857 		mapping->nrpages++;
858 
859 		/* hugetlb pages do not participate in page cache accounting */
860 		if (!huge)
861 			__inc_node_page_state(page, NR_FILE_PAGES);
862 unlock:
863 		xas_unlock_irq(&xas);
864 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
865 
866 	if (xas_error(&xas))
867 		goto error;
868 
869 	if (!huge)
870 		mem_cgroup_commit_charge(page, memcg, false, false);
871 	trace_mm_filemap_add_to_page_cache(page);
872 	return 0;
873 error:
874 	page->mapping = NULL;
875 	/* Leave page->index set: truncation relies upon it */
876 	if (!huge)
877 		mem_cgroup_cancel_charge(page, memcg, false);
878 	put_page(page);
879 	return xas_error(&xas);
880 }
881 
882 /**
883  * add_to_page_cache_locked - add a locked page to the pagecache
884  * @page:	page to add
885  * @mapping:	the page's address_space
886  * @offset:	page index
887  * @gfp_mask:	page allocation mode
888  *
889  * This function is used to add a page to the pagecache. It must be locked.
890  * This function does not add the page to the LRU.  The caller must do that.
891  *
892  * Return: %0 on success, negative error code otherwise.
893  */
894 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
895 		pgoff_t offset, gfp_t gfp_mask)
896 {
897 	return __add_to_page_cache_locked(page, mapping, offset,
898 					  gfp_mask, NULL);
899 }
900 EXPORT_SYMBOL(add_to_page_cache_locked);
901 
902 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
903 				pgoff_t offset, gfp_t gfp_mask)
904 {
905 	void *shadow = NULL;
906 	int ret;
907 
908 	__SetPageLocked(page);
909 	ret = __add_to_page_cache_locked(page, mapping, offset,
910 					 gfp_mask, &shadow);
911 	if (unlikely(ret))
912 		__ClearPageLocked(page);
913 	else {
914 		/*
915 		 * The page might have been evicted from cache only
916 		 * recently, in which case it should be activated like
917 		 * any other repeatedly accessed page.
918 		 * The exception is pages getting rewritten; evicting other
919 		 * data from the working set, only to cache data that will
920 		 * get overwritten with something else, is a waste of memory.
921 		 */
922 		WARN_ON_ONCE(PageActive(page));
923 		if (!(gfp_mask & __GFP_WRITE) && shadow)
924 			workingset_refault(page, shadow);
925 		lru_cache_add(page);
926 	}
927 	return ret;
928 }
929 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
930 
931 #ifdef CONFIG_NUMA
932 struct page *__page_cache_alloc(gfp_t gfp)
933 {
934 	int n;
935 	struct page *page;
936 
937 	if (cpuset_do_page_mem_spread()) {
938 		unsigned int cpuset_mems_cookie;
939 		do {
940 			cpuset_mems_cookie = read_mems_allowed_begin();
941 			n = cpuset_mem_spread_node();
942 			page = __alloc_pages_node(n, gfp, 0);
943 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
944 
945 		return page;
946 	}
947 	return alloc_pages(gfp, 0);
948 }
949 EXPORT_SYMBOL(__page_cache_alloc);
950 #endif
951 
952 /*
953  * In order to wait for pages to become available there must be
954  * waitqueues associated with pages. By using a hash table of
955  * waitqueues where the bucket discipline is to maintain all
956  * waiters on the same queue and wake all when any of the pages
957  * become available, and for the woken contexts to check to be
958  * sure the appropriate page became available, this saves space
959  * at a cost of "thundering herd" phenomena during rare hash
960  * collisions.
961  */
962 #define PAGE_WAIT_TABLE_BITS 8
963 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
964 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
965 
966 static wait_queue_head_t *page_waitqueue(struct page *page)
967 {
968 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
969 }
970 
971 void __init pagecache_init(void)
972 {
973 	int i;
974 
975 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
976 		init_waitqueue_head(&page_wait_table[i]);
977 
978 	page_writeback_init();
979 }
980 
981 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
982 struct wait_page_key {
983 	struct page *page;
984 	int bit_nr;
985 	int page_match;
986 };
987 
988 struct wait_page_queue {
989 	struct page *page;
990 	int bit_nr;
991 	wait_queue_entry_t wait;
992 };
993 
994 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
995 {
996 	struct wait_page_key *key = arg;
997 	struct wait_page_queue *wait_page
998 		= container_of(wait, struct wait_page_queue, wait);
999 
1000 	if (wait_page->page != key->page)
1001 	       return 0;
1002 	key->page_match = 1;
1003 
1004 	if (wait_page->bit_nr != key->bit_nr)
1005 		return 0;
1006 
1007 	/*
1008 	 * Stop walking if it's locked.
1009 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1010 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1011 	 * has now already been set by another task, that task must also hold
1012 	 * a reference to the *same usage* of this page; so there is no need
1013 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1014 	 */
1015 	if (test_bit(key->bit_nr, &key->page->flags))
1016 		return -1;
1017 
1018 	return autoremove_wake_function(wait, mode, sync, key);
1019 }
1020 
1021 static void wake_up_page_bit(struct page *page, int bit_nr)
1022 {
1023 	wait_queue_head_t *q = page_waitqueue(page);
1024 	struct wait_page_key key;
1025 	unsigned long flags;
1026 	wait_queue_entry_t bookmark;
1027 
1028 	key.page = page;
1029 	key.bit_nr = bit_nr;
1030 	key.page_match = 0;
1031 
1032 	bookmark.flags = 0;
1033 	bookmark.private = NULL;
1034 	bookmark.func = NULL;
1035 	INIT_LIST_HEAD(&bookmark.entry);
1036 
1037 	spin_lock_irqsave(&q->lock, flags);
1038 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1039 
1040 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1041 		/*
1042 		 * Take a breather from holding the lock,
1043 		 * allow pages that finish wake up asynchronously
1044 		 * to acquire the lock and remove themselves
1045 		 * from wait queue
1046 		 */
1047 		spin_unlock_irqrestore(&q->lock, flags);
1048 		cpu_relax();
1049 		spin_lock_irqsave(&q->lock, flags);
1050 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051 	}
1052 
1053 	/*
1054 	 * It is possible for other pages to have collided on the waitqueue
1055 	 * hash, so in that case check for a page match. That prevents a long-
1056 	 * term waiter
1057 	 *
1058 	 * It is still possible to miss a case here, when we woke page waiters
1059 	 * and removed them from the waitqueue, but there are still other
1060 	 * page waiters.
1061 	 */
1062 	if (!waitqueue_active(q) || !key.page_match) {
1063 		ClearPageWaiters(page);
1064 		/*
1065 		 * It's possible to miss clearing Waiters here, when we woke
1066 		 * our page waiters, but the hashed waitqueue has waiters for
1067 		 * other pages on it.
1068 		 *
1069 		 * That's okay, it's a rare case. The next waker will clear it.
1070 		 */
1071 	}
1072 	spin_unlock_irqrestore(&q->lock, flags);
1073 }
1074 
1075 static void wake_up_page(struct page *page, int bit)
1076 {
1077 	if (!PageWaiters(page))
1078 		return;
1079 	wake_up_page_bit(page, bit);
1080 }
1081 
1082 /*
1083  * A choice of three behaviors for wait_on_page_bit_common():
1084  */
1085 enum behavior {
1086 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1087 			 * __lock_page() waiting on then setting PG_locked.
1088 			 */
1089 	SHARED,		/* Hold ref to page and check the bit when woken, like
1090 			 * wait_on_page_writeback() waiting on PG_writeback.
1091 			 */
1092 	DROP,		/* Drop ref to page before wait, no check when woken,
1093 			 * like put_and_wait_on_page_locked() on PG_locked.
1094 			 */
1095 };
1096 
1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1098 	struct page *page, int bit_nr, int state, enum behavior behavior)
1099 {
1100 	struct wait_page_queue wait_page;
1101 	wait_queue_entry_t *wait = &wait_page.wait;
1102 	bool bit_is_set;
1103 	bool thrashing = false;
1104 	bool delayacct = false;
1105 	unsigned long pflags;
1106 	int ret = 0;
1107 
1108 	if (bit_nr == PG_locked &&
1109 	    !PageUptodate(page) && PageWorkingset(page)) {
1110 		if (!PageSwapBacked(page)) {
1111 			delayacct_thrashing_start();
1112 			delayacct = true;
1113 		}
1114 		psi_memstall_enter(&pflags);
1115 		thrashing = true;
1116 	}
1117 
1118 	init_wait(wait);
1119 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1120 	wait->func = wake_page_function;
1121 	wait_page.page = page;
1122 	wait_page.bit_nr = bit_nr;
1123 
1124 	for (;;) {
1125 		spin_lock_irq(&q->lock);
1126 
1127 		if (likely(list_empty(&wait->entry))) {
1128 			__add_wait_queue_entry_tail(q, wait);
1129 			SetPageWaiters(page);
1130 		}
1131 
1132 		set_current_state(state);
1133 
1134 		spin_unlock_irq(&q->lock);
1135 
1136 		bit_is_set = test_bit(bit_nr, &page->flags);
1137 		if (behavior == DROP)
1138 			put_page(page);
1139 
1140 		if (likely(bit_is_set))
1141 			io_schedule();
1142 
1143 		if (behavior == EXCLUSIVE) {
1144 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1145 				break;
1146 		} else if (behavior == SHARED) {
1147 			if (!test_bit(bit_nr, &page->flags))
1148 				break;
1149 		}
1150 
1151 		if (signal_pending_state(state, current)) {
1152 			ret = -EINTR;
1153 			break;
1154 		}
1155 
1156 		if (behavior == DROP) {
1157 			/*
1158 			 * We can no longer safely access page->flags:
1159 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1160 			 * there is a risk of waiting forever on a page reused
1161 			 * for something that keeps it locked indefinitely.
1162 			 * But best check for -EINTR above before breaking.
1163 			 */
1164 			break;
1165 		}
1166 	}
1167 
1168 	finish_wait(q, wait);
1169 
1170 	if (thrashing) {
1171 		if (delayacct)
1172 			delayacct_thrashing_end();
1173 		psi_memstall_leave(&pflags);
1174 	}
1175 
1176 	/*
1177 	 * A signal could leave PageWaiters set. Clearing it here if
1178 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1179 	 * but still fail to catch it in the case of wait hash collision. We
1180 	 * already can fail to clear wait hash collision cases, so don't
1181 	 * bother with signals either.
1182 	 */
1183 
1184 	return ret;
1185 }
1186 
1187 void wait_on_page_bit(struct page *page, int bit_nr)
1188 {
1189 	wait_queue_head_t *q = page_waitqueue(page);
1190 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1191 }
1192 EXPORT_SYMBOL(wait_on_page_bit);
1193 
1194 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1195 {
1196 	wait_queue_head_t *q = page_waitqueue(page);
1197 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1198 }
1199 EXPORT_SYMBOL(wait_on_page_bit_killable);
1200 
1201 /**
1202  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1203  * @page: The page to wait for.
1204  *
1205  * The caller should hold a reference on @page.  They expect the page to
1206  * become unlocked relatively soon, but do not wish to hold up migration
1207  * (for example) by holding the reference while waiting for the page to
1208  * come unlocked.  After this function returns, the caller should not
1209  * dereference @page.
1210  */
1211 void put_and_wait_on_page_locked(struct page *page)
1212 {
1213 	wait_queue_head_t *q;
1214 
1215 	page = compound_head(page);
1216 	q = page_waitqueue(page);
1217 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1218 }
1219 
1220 /**
1221  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1222  * @page: Page defining the wait queue of interest
1223  * @waiter: Waiter to add to the queue
1224  *
1225  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1226  */
1227 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1228 {
1229 	wait_queue_head_t *q = page_waitqueue(page);
1230 	unsigned long flags;
1231 
1232 	spin_lock_irqsave(&q->lock, flags);
1233 	__add_wait_queue_entry_tail(q, waiter);
1234 	SetPageWaiters(page);
1235 	spin_unlock_irqrestore(&q->lock, flags);
1236 }
1237 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1238 
1239 #ifndef clear_bit_unlock_is_negative_byte
1240 
1241 /*
1242  * PG_waiters is the high bit in the same byte as PG_lock.
1243  *
1244  * On x86 (and on many other architectures), we can clear PG_lock and
1245  * test the sign bit at the same time. But if the architecture does
1246  * not support that special operation, we just do this all by hand
1247  * instead.
1248  *
1249  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1250  * being cleared, but a memory barrier should be unneccssary since it is
1251  * in the same byte as PG_locked.
1252  */
1253 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1254 {
1255 	clear_bit_unlock(nr, mem);
1256 	/* smp_mb__after_atomic(); */
1257 	return test_bit(PG_waiters, mem);
1258 }
1259 
1260 #endif
1261 
1262 /**
1263  * unlock_page - unlock a locked page
1264  * @page: the page
1265  *
1266  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1267  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1268  * mechanism between PageLocked pages and PageWriteback pages is shared.
1269  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1270  *
1271  * Note that this depends on PG_waiters being the sign bit in the byte
1272  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1273  * clear the PG_locked bit and test PG_waiters at the same time fairly
1274  * portably (architectures that do LL/SC can test any bit, while x86 can
1275  * test the sign bit).
1276  */
1277 void unlock_page(struct page *page)
1278 {
1279 	BUILD_BUG_ON(PG_waiters != 7);
1280 	page = compound_head(page);
1281 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1282 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1283 		wake_up_page_bit(page, PG_locked);
1284 }
1285 EXPORT_SYMBOL(unlock_page);
1286 
1287 /**
1288  * end_page_writeback - end writeback against a page
1289  * @page: the page
1290  */
1291 void end_page_writeback(struct page *page)
1292 {
1293 	/*
1294 	 * TestClearPageReclaim could be used here but it is an atomic
1295 	 * operation and overkill in this particular case. Failing to
1296 	 * shuffle a page marked for immediate reclaim is too mild to
1297 	 * justify taking an atomic operation penalty at the end of
1298 	 * ever page writeback.
1299 	 */
1300 	if (PageReclaim(page)) {
1301 		ClearPageReclaim(page);
1302 		rotate_reclaimable_page(page);
1303 	}
1304 
1305 	if (!test_clear_page_writeback(page))
1306 		BUG();
1307 
1308 	smp_mb__after_atomic();
1309 	wake_up_page(page, PG_writeback);
1310 }
1311 EXPORT_SYMBOL(end_page_writeback);
1312 
1313 /*
1314  * After completing I/O on a page, call this routine to update the page
1315  * flags appropriately
1316  */
1317 void page_endio(struct page *page, bool is_write, int err)
1318 {
1319 	if (!is_write) {
1320 		if (!err) {
1321 			SetPageUptodate(page);
1322 		} else {
1323 			ClearPageUptodate(page);
1324 			SetPageError(page);
1325 		}
1326 		unlock_page(page);
1327 	} else {
1328 		if (err) {
1329 			struct address_space *mapping;
1330 
1331 			SetPageError(page);
1332 			mapping = page_mapping(page);
1333 			if (mapping)
1334 				mapping_set_error(mapping, err);
1335 		}
1336 		end_page_writeback(page);
1337 	}
1338 }
1339 EXPORT_SYMBOL_GPL(page_endio);
1340 
1341 /**
1342  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1343  * @__page: the page to lock
1344  */
1345 void __lock_page(struct page *__page)
1346 {
1347 	struct page *page = compound_head(__page);
1348 	wait_queue_head_t *q = page_waitqueue(page);
1349 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1350 				EXCLUSIVE);
1351 }
1352 EXPORT_SYMBOL(__lock_page);
1353 
1354 int __lock_page_killable(struct page *__page)
1355 {
1356 	struct page *page = compound_head(__page);
1357 	wait_queue_head_t *q = page_waitqueue(page);
1358 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1359 					EXCLUSIVE);
1360 }
1361 EXPORT_SYMBOL_GPL(__lock_page_killable);
1362 
1363 /*
1364  * Return values:
1365  * 1 - page is locked; mmap_sem is still held.
1366  * 0 - page is not locked.
1367  *     mmap_sem has been released (up_read()), unless flags had both
1368  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1369  *     which case mmap_sem is still held.
1370  *
1371  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1372  * with the page locked and the mmap_sem unperturbed.
1373  */
1374 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1375 			 unsigned int flags)
1376 {
1377 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1378 		/*
1379 		 * CAUTION! In this case, mmap_sem is not released
1380 		 * even though return 0.
1381 		 */
1382 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1383 			return 0;
1384 
1385 		up_read(&mm->mmap_sem);
1386 		if (flags & FAULT_FLAG_KILLABLE)
1387 			wait_on_page_locked_killable(page);
1388 		else
1389 			wait_on_page_locked(page);
1390 		return 0;
1391 	} else {
1392 		if (flags & FAULT_FLAG_KILLABLE) {
1393 			int ret;
1394 
1395 			ret = __lock_page_killable(page);
1396 			if (ret) {
1397 				up_read(&mm->mmap_sem);
1398 				return 0;
1399 			}
1400 		} else
1401 			__lock_page(page);
1402 		return 1;
1403 	}
1404 }
1405 
1406 /**
1407  * page_cache_next_miss() - Find the next gap in the page cache.
1408  * @mapping: Mapping.
1409  * @index: Index.
1410  * @max_scan: Maximum range to search.
1411  *
1412  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1413  * gap with the lowest index.
1414  *
1415  * This function may be called under the rcu_read_lock.  However, this will
1416  * not atomically search a snapshot of the cache at a single point in time.
1417  * For example, if a gap is created at index 5, then subsequently a gap is
1418  * created at index 10, page_cache_next_miss covering both indices may
1419  * return 10 if called under the rcu_read_lock.
1420  *
1421  * Return: The index of the gap if found, otherwise an index outside the
1422  * range specified (in which case 'return - index >= max_scan' will be true).
1423  * In the rare case of index wrap-around, 0 will be returned.
1424  */
1425 pgoff_t page_cache_next_miss(struct address_space *mapping,
1426 			     pgoff_t index, unsigned long max_scan)
1427 {
1428 	XA_STATE(xas, &mapping->i_pages, index);
1429 
1430 	while (max_scan--) {
1431 		void *entry = xas_next(&xas);
1432 		if (!entry || xa_is_value(entry))
1433 			break;
1434 		if (xas.xa_index == 0)
1435 			break;
1436 	}
1437 
1438 	return xas.xa_index;
1439 }
1440 EXPORT_SYMBOL(page_cache_next_miss);
1441 
1442 /**
1443  * page_cache_prev_miss() - Find the next gap in the page cache.
1444  * @mapping: Mapping.
1445  * @index: Index.
1446  * @max_scan: Maximum range to search.
1447  *
1448  * Search the range [max(index - max_scan + 1, 0), index] for the
1449  * gap with the highest index.
1450  *
1451  * This function may be called under the rcu_read_lock.  However, this will
1452  * not atomically search a snapshot of the cache at a single point in time.
1453  * For example, if a gap is created at index 10, then subsequently a gap is
1454  * created at index 5, page_cache_prev_miss() covering both indices may
1455  * return 5 if called under the rcu_read_lock.
1456  *
1457  * Return: The index of the gap if found, otherwise an index outside the
1458  * range specified (in which case 'index - return >= max_scan' will be true).
1459  * In the rare case of wrap-around, ULONG_MAX will be returned.
1460  */
1461 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1462 			     pgoff_t index, unsigned long max_scan)
1463 {
1464 	XA_STATE(xas, &mapping->i_pages, index);
1465 
1466 	while (max_scan--) {
1467 		void *entry = xas_prev(&xas);
1468 		if (!entry || xa_is_value(entry))
1469 			break;
1470 		if (xas.xa_index == ULONG_MAX)
1471 			break;
1472 	}
1473 
1474 	return xas.xa_index;
1475 }
1476 EXPORT_SYMBOL(page_cache_prev_miss);
1477 
1478 /**
1479  * find_get_entry - find and get a page cache entry
1480  * @mapping: the address_space to search
1481  * @offset: the page cache index
1482  *
1483  * Looks up the page cache slot at @mapping & @offset.  If there is a
1484  * page cache page, it is returned with an increased refcount.
1485  *
1486  * If the slot holds a shadow entry of a previously evicted page, or a
1487  * swap entry from shmem/tmpfs, it is returned.
1488  *
1489  * Return: the found page or shadow entry, %NULL if nothing is found.
1490  */
1491 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1492 {
1493 	XA_STATE(xas, &mapping->i_pages, offset);
1494 	struct page *head, *page;
1495 
1496 	rcu_read_lock();
1497 repeat:
1498 	xas_reset(&xas);
1499 	page = xas_load(&xas);
1500 	if (xas_retry(&xas, page))
1501 		goto repeat;
1502 	/*
1503 	 * A shadow entry of a recently evicted page, or a swap entry from
1504 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1505 	 */
1506 	if (!page || xa_is_value(page))
1507 		goto out;
1508 
1509 	head = compound_head(page);
1510 	if (!page_cache_get_speculative(head))
1511 		goto repeat;
1512 
1513 	/* The page was split under us? */
1514 	if (compound_head(page) != head) {
1515 		put_page(head);
1516 		goto repeat;
1517 	}
1518 
1519 	/*
1520 	 * Has the page moved?
1521 	 * This is part of the lockless pagecache protocol. See
1522 	 * include/linux/pagemap.h for details.
1523 	 */
1524 	if (unlikely(page != xas_reload(&xas))) {
1525 		put_page(head);
1526 		goto repeat;
1527 	}
1528 out:
1529 	rcu_read_unlock();
1530 
1531 	return page;
1532 }
1533 EXPORT_SYMBOL(find_get_entry);
1534 
1535 /**
1536  * find_lock_entry - locate, pin and lock a page cache entry
1537  * @mapping: the address_space to search
1538  * @offset: the page cache index
1539  *
1540  * Looks up the page cache slot at @mapping & @offset.  If there is a
1541  * page cache page, it is returned locked and with an increased
1542  * refcount.
1543  *
1544  * If the slot holds a shadow entry of a previously evicted page, or a
1545  * swap entry from shmem/tmpfs, it is returned.
1546  *
1547  * find_lock_entry() may sleep.
1548  *
1549  * Return: the found page or shadow entry, %NULL if nothing is found.
1550  */
1551 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1552 {
1553 	struct page *page;
1554 
1555 repeat:
1556 	page = find_get_entry(mapping, offset);
1557 	if (page && !xa_is_value(page)) {
1558 		lock_page(page);
1559 		/* Has the page been truncated? */
1560 		if (unlikely(page_mapping(page) != mapping)) {
1561 			unlock_page(page);
1562 			put_page(page);
1563 			goto repeat;
1564 		}
1565 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1566 	}
1567 	return page;
1568 }
1569 EXPORT_SYMBOL(find_lock_entry);
1570 
1571 /**
1572  * pagecache_get_page - find and get a page reference
1573  * @mapping: the address_space to search
1574  * @offset: the page index
1575  * @fgp_flags: PCG flags
1576  * @gfp_mask: gfp mask to use for the page cache data page allocation
1577  *
1578  * Looks up the page cache slot at @mapping & @offset.
1579  *
1580  * PCG flags modify how the page is returned.
1581  *
1582  * @fgp_flags can be:
1583  *
1584  * - FGP_ACCESSED: the page will be marked accessed
1585  * - FGP_LOCK: Page is return locked
1586  * - FGP_CREAT: If page is not present then a new page is allocated using
1587  *   @gfp_mask and added to the page cache and the VM's LRU
1588  *   list. The page is returned locked and with an increased
1589  *   refcount.
1590  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1591  *   its own locking dance if the page is already in cache, or unlock the page
1592  *   before returning if we had to add the page to pagecache.
1593  *
1594  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1595  * if the GFP flags specified for FGP_CREAT are atomic.
1596  *
1597  * If there is a page cache page, it is returned with an increased refcount.
1598  *
1599  * Return: the found page or %NULL otherwise.
1600  */
1601 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1602 	int fgp_flags, gfp_t gfp_mask)
1603 {
1604 	struct page *page;
1605 
1606 repeat:
1607 	page = find_get_entry(mapping, offset);
1608 	if (xa_is_value(page))
1609 		page = NULL;
1610 	if (!page)
1611 		goto no_page;
1612 
1613 	if (fgp_flags & FGP_LOCK) {
1614 		if (fgp_flags & FGP_NOWAIT) {
1615 			if (!trylock_page(page)) {
1616 				put_page(page);
1617 				return NULL;
1618 			}
1619 		} else {
1620 			lock_page(page);
1621 		}
1622 
1623 		/* Has the page been truncated? */
1624 		if (unlikely(page->mapping != mapping)) {
1625 			unlock_page(page);
1626 			put_page(page);
1627 			goto repeat;
1628 		}
1629 		VM_BUG_ON_PAGE(page->index != offset, page);
1630 	}
1631 
1632 	if (fgp_flags & FGP_ACCESSED)
1633 		mark_page_accessed(page);
1634 
1635 no_page:
1636 	if (!page && (fgp_flags & FGP_CREAT)) {
1637 		int err;
1638 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1639 			gfp_mask |= __GFP_WRITE;
1640 		if (fgp_flags & FGP_NOFS)
1641 			gfp_mask &= ~__GFP_FS;
1642 
1643 		page = __page_cache_alloc(gfp_mask);
1644 		if (!page)
1645 			return NULL;
1646 
1647 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1648 			fgp_flags |= FGP_LOCK;
1649 
1650 		/* Init accessed so avoid atomic mark_page_accessed later */
1651 		if (fgp_flags & FGP_ACCESSED)
1652 			__SetPageReferenced(page);
1653 
1654 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1655 		if (unlikely(err)) {
1656 			put_page(page);
1657 			page = NULL;
1658 			if (err == -EEXIST)
1659 				goto repeat;
1660 		}
1661 
1662 		/*
1663 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1664 		 * an unlocked page.
1665 		 */
1666 		if (page && (fgp_flags & FGP_FOR_MMAP))
1667 			unlock_page(page);
1668 	}
1669 
1670 	return page;
1671 }
1672 EXPORT_SYMBOL(pagecache_get_page);
1673 
1674 /**
1675  * find_get_entries - gang pagecache lookup
1676  * @mapping:	The address_space to search
1677  * @start:	The starting page cache index
1678  * @nr_entries:	The maximum number of entries
1679  * @entries:	Where the resulting entries are placed
1680  * @indices:	The cache indices corresponding to the entries in @entries
1681  *
1682  * find_get_entries() will search for and return a group of up to
1683  * @nr_entries entries in the mapping.  The entries are placed at
1684  * @entries.  find_get_entries() takes a reference against any actual
1685  * pages it returns.
1686  *
1687  * The search returns a group of mapping-contiguous page cache entries
1688  * with ascending indexes.  There may be holes in the indices due to
1689  * not-present pages.
1690  *
1691  * Any shadow entries of evicted pages, or swap entries from
1692  * shmem/tmpfs, are included in the returned array.
1693  *
1694  * Return: the number of pages and shadow entries which were found.
1695  */
1696 unsigned find_get_entries(struct address_space *mapping,
1697 			  pgoff_t start, unsigned int nr_entries,
1698 			  struct page **entries, pgoff_t *indices)
1699 {
1700 	XA_STATE(xas, &mapping->i_pages, start);
1701 	struct page *page;
1702 	unsigned int ret = 0;
1703 
1704 	if (!nr_entries)
1705 		return 0;
1706 
1707 	rcu_read_lock();
1708 	xas_for_each(&xas, page, ULONG_MAX) {
1709 		struct page *head;
1710 		if (xas_retry(&xas, page))
1711 			continue;
1712 		/*
1713 		 * A shadow entry of a recently evicted page, a swap
1714 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1715 		 * without attempting to raise page count.
1716 		 */
1717 		if (xa_is_value(page))
1718 			goto export;
1719 
1720 		head = compound_head(page);
1721 		if (!page_cache_get_speculative(head))
1722 			goto retry;
1723 
1724 		/* The page was split under us? */
1725 		if (compound_head(page) != head)
1726 			goto put_page;
1727 
1728 		/* Has the page moved? */
1729 		if (unlikely(page != xas_reload(&xas)))
1730 			goto put_page;
1731 
1732 export:
1733 		indices[ret] = xas.xa_index;
1734 		entries[ret] = page;
1735 		if (++ret == nr_entries)
1736 			break;
1737 		continue;
1738 put_page:
1739 		put_page(head);
1740 retry:
1741 		xas_reset(&xas);
1742 	}
1743 	rcu_read_unlock();
1744 	return ret;
1745 }
1746 
1747 /**
1748  * find_get_pages_range - gang pagecache lookup
1749  * @mapping:	The address_space to search
1750  * @start:	The starting page index
1751  * @end:	The final page index (inclusive)
1752  * @nr_pages:	The maximum number of pages
1753  * @pages:	Where the resulting pages are placed
1754  *
1755  * find_get_pages_range() will search for and return a group of up to @nr_pages
1756  * pages in the mapping starting at index @start and up to index @end
1757  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1758  * a reference against the returned pages.
1759  *
1760  * The search returns a group of mapping-contiguous pages with ascending
1761  * indexes.  There may be holes in the indices due to not-present pages.
1762  * We also update @start to index the next page for the traversal.
1763  *
1764  * Return: the number of pages which were found. If this number is
1765  * smaller than @nr_pages, the end of specified range has been
1766  * reached.
1767  */
1768 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1769 			      pgoff_t end, unsigned int nr_pages,
1770 			      struct page **pages)
1771 {
1772 	XA_STATE(xas, &mapping->i_pages, *start);
1773 	struct page *page;
1774 	unsigned ret = 0;
1775 
1776 	if (unlikely(!nr_pages))
1777 		return 0;
1778 
1779 	rcu_read_lock();
1780 	xas_for_each(&xas, page, end) {
1781 		struct page *head;
1782 		if (xas_retry(&xas, page))
1783 			continue;
1784 		/* Skip over shadow, swap and DAX entries */
1785 		if (xa_is_value(page))
1786 			continue;
1787 
1788 		head = compound_head(page);
1789 		if (!page_cache_get_speculative(head))
1790 			goto retry;
1791 
1792 		/* The page was split under us? */
1793 		if (compound_head(page) != head)
1794 			goto put_page;
1795 
1796 		/* Has the page moved? */
1797 		if (unlikely(page != xas_reload(&xas)))
1798 			goto put_page;
1799 
1800 		pages[ret] = page;
1801 		if (++ret == nr_pages) {
1802 			*start = xas.xa_index + 1;
1803 			goto out;
1804 		}
1805 		continue;
1806 put_page:
1807 		put_page(head);
1808 retry:
1809 		xas_reset(&xas);
1810 	}
1811 
1812 	/*
1813 	 * We come here when there is no page beyond @end. We take care to not
1814 	 * overflow the index @start as it confuses some of the callers. This
1815 	 * breaks the iteration when there is a page at index -1 but that is
1816 	 * already broken anyway.
1817 	 */
1818 	if (end == (pgoff_t)-1)
1819 		*start = (pgoff_t)-1;
1820 	else
1821 		*start = end + 1;
1822 out:
1823 	rcu_read_unlock();
1824 
1825 	return ret;
1826 }
1827 
1828 /**
1829  * find_get_pages_contig - gang contiguous pagecache lookup
1830  * @mapping:	The address_space to search
1831  * @index:	The starting page index
1832  * @nr_pages:	The maximum number of pages
1833  * @pages:	Where the resulting pages are placed
1834  *
1835  * find_get_pages_contig() works exactly like find_get_pages(), except
1836  * that the returned number of pages are guaranteed to be contiguous.
1837  *
1838  * Return: the number of pages which were found.
1839  */
1840 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1841 			       unsigned int nr_pages, struct page **pages)
1842 {
1843 	XA_STATE(xas, &mapping->i_pages, index);
1844 	struct page *page;
1845 	unsigned int ret = 0;
1846 
1847 	if (unlikely(!nr_pages))
1848 		return 0;
1849 
1850 	rcu_read_lock();
1851 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1852 		struct page *head;
1853 		if (xas_retry(&xas, page))
1854 			continue;
1855 		/*
1856 		 * If the entry has been swapped out, we can stop looking.
1857 		 * No current caller is looking for DAX entries.
1858 		 */
1859 		if (xa_is_value(page))
1860 			break;
1861 
1862 		head = compound_head(page);
1863 		if (!page_cache_get_speculative(head))
1864 			goto retry;
1865 
1866 		/* The page was split under us? */
1867 		if (compound_head(page) != head)
1868 			goto put_page;
1869 
1870 		/* Has the page moved? */
1871 		if (unlikely(page != xas_reload(&xas)))
1872 			goto put_page;
1873 
1874 		pages[ret] = page;
1875 		if (++ret == nr_pages)
1876 			break;
1877 		continue;
1878 put_page:
1879 		put_page(head);
1880 retry:
1881 		xas_reset(&xas);
1882 	}
1883 	rcu_read_unlock();
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL(find_get_pages_contig);
1887 
1888 /**
1889  * find_get_pages_range_tag - find and return pages in given range matching @tag
1890  * @mapping:	the address_space to search
1891  * @index:	the starting page index
1892  * @end:	The final page index (inclusive)
1893  * @tag:	the tag index
1894  * @nr_pages:	the maximum number of pages
1895  * @pages:	where the resulting pages are placed
1896  *
1897  * Like find_get_pages, except we only return pages which are tagged with
1898  * @tag.   We update @index to index the next page for the traversal.
1899  *
1900  * Return: the number of pages which were found.
1901  */
1902 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1903 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1904 			struct page **pages)
1905 {
1906 	XA_STATE(xas, &mapping->i_pages, *index);
1907 	struct page *page;
1908 	unsigned ret = 0;
1909 
1910 	if (unlikely(!nr_pages))
1911 		return 0;
1912 
1913 	rcu_read_lock();
1914 	xas_for_each_marked(&xas, page, end, tag) {
1915 		struct page *head;
1916 		if (xas_retry(&xas, page))
1917 			continue;
1918 		/*
1919 		 * Shadow entries should never be tagged, but this iteration
1920 		 * is lockless so there is a window for page reclaim to evict
1921 		 * a page we saw tagged.  Skip over it.
1922 		 */
1923 		if (xa_is_value(page))
1924 			continue;
1925 
1926 		head = compound_head(page);
1927 		if (!page_cache_get_speculative(head))
1928 			goto retry;
1929 
1930 		/* The page was split under us? */
1931 		if (compound_head(page) != head)
1932 			goto put_page;
1933 
1934 		/* Has the page moved? */
1935 		if (unlikely(page != xas_reload(&xas)))
1936 			goto put_page;
1937 
1938 		pages[ret] = page;
1939 		if (++ret == nr_pages) {
1940 			*index = xas.xa_index + 1;
1941 			goto out;
1942 		}
1943 		continue;
1944 put_page:
1945 		put_page(head);
1946 retry:
1947 		xas_reset(&xas);
1948 	}
1949 
1950 	/*
1951 	 * We come here when we got to @end. We take care to not overflow the
1952 	 * index @index as it confuses some of the callers. This breaks the
1953 	 * iteration when there is a page at index -1 but that is already
1954 	 * broken anyway.
1955 	 */
1956 	if (end == (pgoff_t)-1)
1957 		*index = (pgoff_t)-1;
1958 	else
1959 		*index = end + 1;
1960 out:
1961 	rcu_read_unlock();
1962 
1963 	return ret;
1964 }
1965 EXPORT_SYMBOL(find_get_pages_range_tag);
1966 
1967 /**
1968  * find_get_entries_tag - find and return entries that match @tag
1969  * @mapping:	the address_space to search
1970  * @start:	the starting page cache index
1971  * @tag:	the tag index
1972  * @nr_entries:	the maximum number of entries
1973  * @entries:	where the resulting entries are placed
1974  * @indices:	the cache indices corresponding to the entries in @entries
1975  *
1976  * Like find_get_entries, except we only return entries which are tagged with
1977  * @tag.
1978  *
1979  * Return: the number of entries which were found.
1980  */
1981 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1982 			xa_mark_t tag, unsigned int nr_entries,
1983 			struct page **entries, pgoff_t *indices)
1984 {
1985 	XA_STATE(xas, &mapping->i_pages, start);
1986 	struct page *page;
1987 	unsigned int ret = 0;
1988 
1989 	if (!nr_entries)
1990 		return 0;
1991 
1992 	rcu_read_lock();
1993 	xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
1994 		struct page *head;
1995 		if (xas_retry(&xas, page))
1996 			continue;
1997 		/*
1998 		 * A shadow entry of a recently evicted page, a swap
1999 		 * entry from shmem/tmpfs or a DAX entry.  Return it
2000 		 * without attempting to raise page count.
2001 		 */
2002 		if (xa_is_value(page))
2003 			goto export;
2004 
2005 		head = compound_head(page);
2006 		if (!page_cache_get_speculative(head))
2007 			goto retry;
2008 
2009 		/* The page was split under us? */
2010 		if (compound_head(page) != head)
2011 			goto put_page;
2012 
2013 		/* Has the page moved? */
2014 		if (unlikely(page != xas_reload(&xas)))
2015 			goto put_page;
2016 
2017 export:
2018 		indices[ret] = xas.xa_index;
2019 		entries[ret] = page;
2020 		if (++ret == nr_entries)
2021 			break;
2022 		continue;
2023 put_page:
2024 		put_page(head);
2025 retry:
2026 		xas_reset(&xas);
2027 	}
2028 	rcu_read_unlock();
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL(find_get_entries_tag);
2032 
2033 /*
2034  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2035  * a _large_ part of the i/o request. Imagine the worst scenario:
2036  *
2037  *      ---R__________________________________________B__________
2038  *         ^ reading here                             ^ bad block(assume 4k)
2039  *
2040  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2041  * => failing the whole request => read(R) => read(R+1) =>
2042  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2043  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2044  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2045  *
2046  * It is going insane. Fix it by quickly scaling down the readahead size.
2047  */
2048 static void shrink_readahead_size_eio(struct file *filp,
2049 					struct file_ra_state *ra)
2050 {
2051 	ra->ra_pages /= 4;
2052 }
2053 
2054 /**
2055  * generic_file_buffered_read - generic file read routine
2056  * @iocb:	the iocb to read
2057  * @iter:	data destination
2058  * @written:	already copied
2059  *
2060  * This is a generic file read routine, and uses the
2061  * mapping->a_ops->readpage() function for the actual low-level stuff.
2062  *
2063  * This is really ugly. But the goto's actually try to clarify some
2064  * of the logic when it comes to error handling etc.
2065  *
2066  * Return:
2067  * * total number of bytes copied, including those the were already @written
2068  * * negative error code if nothing was copied
2069  */
2070 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2071 		struct iov_iter *iter, ssize_t written)
2072 {
2073 	struct file *filp = iocb->ki_filp;
2074 	struct address_space *mapping = filp->f_mapping;
2075 	struct inode *inode = mapping->host;
2076 	struct file_ra_state *ra = &filp->f_ra;
2077 	loff_t *ppos = &iocb->ki_pos;
2078 	pgoff_t index;
2079 	pgoff_t last_index;
2080 	pgoff_t prev_index;
2081 	unsigned long offset;      /* offset into pagecache page */
2082 	unsigned int prev_offset;
2083 	int error = 0;
2084 
2085 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2086 		return 0;
2087 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2088 
2089 	index = *ppos >> PAGE_SHIFT;
2090 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2091 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2092 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2093 	offset = *ppos & ~PAGE_MASK;
2094 
2095 	for (;;) {
2096 		struct page *page;
2097 		pgoff_t end_index;
2098 		loff_t isize;
2099 		unsigned long nr, ret;
2100 
2101 		cond_resched();
2102 find_page:
2103 		if (fatal_signal_pending(current)) {
2104 			error = -EINTR;
2105 			goto out;
2106 		}
2107 
2108 		page = find_get_page(mapping, index);
2109 		if (!page) {
2110 			if (iocb->ki_flags & IOCB_NOWAIT)
2111 				goto would_block;
2112 			page_cache_sync_readahead(mapping,
2113 					ra, filp,
2114 					index, last_index - index);
2115 			page = find_get_page(mapping, index);
2116 			if (unlikely(page == NULL))
2117 				goto no_cached_page;
2118 		}
2119 		if (PageReadahead(page)) {
2120 			page_cache_async_readahead(mapping,
2121 					ra, filp, page,
2122 					index, last_index - index);
2123 		}
2124 		if (!PageUptodate(page)) {
2125 			if (iocb->ki_flags & IOCB_NOWAIT) {
2126 				put_page(page);
2127 				goto would_block;
2128 			}
2129 
2130 			/*
2131 			 * See comment in do_read_cache_page on why
2132 			 * wait_on_page_locked is used to avoid unnecessarily
2133 			 * serialisations and why it's safe.
2134 			 */
2135 			error = wait_on_page_locked_killable(page);
2136 			if (unlikely(error))
2137 				goto readpage_error;
2138 			if (PageUptodate(page))
2139 				goto page_ok;
2140 
2141 			if (inode->i_blkbits == PAGE_SHIFT ||
2142 					!mapping->a_ops->is_partially_uptodate)
2143 				goto page_not_up_to_date;
2144 			/* pipes can't handle partially uptodate pages */
2145 			if (unlikely(iov_iter_is_pipe(iter)))
2146 				goto page_not_up_to_date;
2147 			if (!trylock_page(page))
2148 				goto page_not_up_to_date;
2149 			/* Did it get truncated before we got the lock? */
2150 			if (!page->mapping)
2151 				goto page_not_up_to_date_locked;
2152 			if (!mapping->a_ops->is_partially_uptodate(page,
2153 							offset, iter->count))
2154 				goto page_not_up_to_date_locked;
2155 			unlock_page(page);
2156 		}
2157 page_ok:
2158 		/*
2159 		 * i_size must be checked after we know the page is Uptodate.
2160 		 *
2161 		 * Checking i_size after the check allows us to calculate
2162 		 * the correct value for "nr", which means the zero-filled
2163 		 * part of the page is not copied back to userspace (unless
2164 		 * another truncate extends the file - this is desired though).
2165 		 */
2166 
2167 		isize = i_size_read(inode);
2168 		end_index = (isize - 1) >> PAGE_SHIFT;
2169 		if (unlikely(!isize || index > end_index)) {
2170 			put_page(page);
2171 			goto out;
2172 		}
2173 
2174 		/* nr is the maximum number of bytes to copy from this page */
2175 		nr = PAGE_SIZE;
2176 		if (index == end_index) {
2177 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2178 			if (nr <= offset) {
2179 				put_page(page);
2180 				goto out;
2181 			}
2182 		}
2183 		nr = nr - offset;
2184 
2185 		/* If users can be writing to this page using arbitrary
2186 		 * virtual addresses, take care about potential aliasing
2187 		 * before reading the page on the kernel side.
2188 		 */
2189 		if (mapping_writably_mapped(mapping))
2190 			flush_dcache_page(page);
2191 
2192 		/*
2193 		 * When a sequential read accesses a page several times,
2194 		 * only mark it as accessed the first time.
2195 		 */
2196 		if (prev_index != index || offset != prev_offset)
2197 			mark_page_accessed(page);
2198 		prev_index = index;
2199 
2200 		/*
2201 		 * Ok, we have the page, and it's up-to-date, so
2202 		 * now we can copy it to user space...
2203 		 */
2204 
2205 		ret = copy_page_to_iter(page, offset, nr, iter);
2206 		offset += ret;
2207 		index += offset >> PAGE_SHIFT;
2208 		offset &= ~PAGE_MASK;
2209 		prev_offset = offset;
2210 
2211 		put_page(page);
2212 		written += ret;
2213 		if (!iov_iter_count(iter))
2214 			goto out;
2215 		if (ret < nr) {
2216 			error = -EFAULT;
2217 			goto out;
2218 		}
2219 		continue;
2220 
2221 page_not_up_to_date:
2222 		/* Get exclusive access to the page ... */
2223 		error = lock_page_killable(page);
2224 		if (unlikely(error))
2225 			goto readpage_error;
2226 
2227 page_not_up_to_date_locked:
2228 		/* Did it get truncated before we got the lock? */
2229 		if (!page->mapping) {
2230 			unlock_page(page);
2231 			put_page(page);
2232 			continue;
2233 		}
2234 
2235 		/* Did somebody else fill it already? */
2236 		if (PageUptodate(page)) {
2237 			unlock_page(page);
2238 			goto page_ok;
2239 		}
2240 
2241 readpage:
2242 		/*
2243 		 * A previous I/O error may have been due to temporary
2244 		 * failures, eg. multipath errors.
2245 		 * PG_error will be set again if readpage fails.
2246 		 */
2247 		ClearPageError(page);
2248 		/* Start the actual read. The read will unlock the page. */
2249 		error = mapping->a_ops->readpage(filp, page);
2250 
2251 		if (unlikely(error)) {
2252 			if (error == AOP_TRUNCATED_PAGE) {
2253 				put_page(page);
2254 				error = 0;
2255 				goto find_page;
2256 			}
2257 			goto readpage_error;
2258 		}
2259 
2260 		if (!PageUptodate(page)) {
2261 			error = lock_page_killable(page);
2262 			if (unlikely(error))
2263 				goto readpage_error;
2264 			if (!PageUptodate(page)) {
2265 				if (page->mapping == NULL) {
2266 					/*
2267 					 * invalidate_mapping_pages got it
2268 					 */
2269 					unlock_page(page);
2270 					put_page(page);
2271 					goto find_page;
2272 				}
2273 				unlock_page(page);
2274 				shrink_readahead_size_eio(filp, ra);
2275 				error = -EIO;
2276 				goto readpage_error;
2277 			}
2278 			unlock_page(page);
2279 		}
2280 
2281 		goto page_ok;
2282 
2283 readpage_error:
2284 		/* UHHUH! A synchronous read error occurred. Report it */
2285 		put_page(page);
2286 		goto out;
2287 
2288 no_cached_page:
2289 		/*
2290 		 * Ok, it wasn't cached, so we need to create a new
2291 		 * page..
2292 		 */
2293 		page = page_cache_alloc(mapping);
2294 		if (!page) {
2295 			error = -ENOMEM;
2296 			goto out;
2297 		}
2298 		error = add_to_page_cache_lru(page, mapping, index,
2299 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2300 		if (error) {
2301 			put_page(page);
2302 			if (error == -EEXIST) {
2303 				error = 0;
2304 				goto find_page;
2305 			}
2306 			goto out;
2307 		}
2308 		goto readpage;
2309 	}
2310 
2311 would_block:
2312 	error = -EAGAIN;
2313 out:
2314 	ra->prev_pos = prev_index;
2315 	ra->prev_pos <<= PAGE_SHIFT;
2316 	ra->prev_pos |= prev_offset;
2317 
2318 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2319 	file_accessed(filp);
2320 	return written ? written : error;
2321 }
2322 
2323 /**
2324  * generic_file_read_iter - generic filesystem read routine
2325  * @iocb:	kernel I/O control block
2326  * @iter:	destination for the data read
2327  *
2328  * This is the "read_iter()" routine for all filesystems
2329  * that can use the page cache directly.
2330  * Return:
2331  * * number of bytes copied, even for partial reads
2332  * * negative error code if nothing was read
2333  */
2334 ssize_t
2335 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2336 {
2337 	size_t count = iov_iter_count(iter);
2338 	ssize_t retval = 0;
2339 
2340 	if (!count)
2341 		goto out; /* skip atime */
2342 
2343 	if (iocb->ki_flags & IOCB_DIRECT) {
2344 		struct file *file = iocb->ki_filp;
2345 		struct address_space *mapping = file->f_mapping;
2346 		struct inode *inode = mapping->host;
2347 		loff_t size;
2348 
2349 		size = i_size_read(inode);
2350 		if (iocb->ki_flags & IOCB_NOWAIT) {
2351 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2352 						   iocb->ki_pos + count - 1))
2353 				return -EAGAIN;
2354 		} else {
2355 			retval = filemap_write_and_wait_range(mapping,
2356 						iocb->ki_pos,
2357 					        iocb->ki_pos + count - 1);
2358 			if (retval < 0)
2359 				goto out;
2360 		}
2361 
2362 		file_accessed(file);
2363 
2364 		retval = mapping->a_ops->direct_IO(iocb, iter);
2365 		if (retval >= 0) {
2366 			iocb->ki_pos += retval;
2367 			count -= retval;
2368 		}
2369 		iov_iter_revert(iter, count - iov_iter_count(iter));
2370 
2371 		/*
2372 		 * Btrfs can have a short DIO read if we encounter
2373 		 * compressed extents, so if there was an error, or if
2374 		 * we've already read everything we wanted to, or if
2375 		 * there was a short read because we hit EOF, go ahead
2376 		 * and return.  Otherwise fallthrough to buffered io for
2377 		 * the rest of the read.  Buffered reads will not work for
2378 		 * DAX files, so don't bother trying.
2379 		 */
2380 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2381 		    IS_DAX(inode))
2382 			goto out;
2383 	}
2384 
2385 	retval = generic_file_buffered_read(iocb, iter, retval);
2386 out:
2387 	return retval;
2388 }
2389 EXPORT_SYMBOL(generic_file_read_iter);
2390 
2391 #ifdef CONFIG_MMU
2392 #define MMAP_LOTSAMISS  (100)
2393 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2394 					     struct file *fpin)
2395 {
2396 	int flags = vmf->flags;
2397 
2398 	if (fpin)
2399 		return fpin;
2400 
2401 	/*
2402 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2403 	 * anything, so we only pin the file and drop the mmap_sem if only
2404 	 * FAULT_FLAG_ALLOW_RETRY is set.
2405 	 */
2406 	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2407 	    FAULT_FLAG_ALLOW_RETRY) {
2408 		fpin = get_file(vmf->vma->vm_file);
2409 		up_read(&vmf->vma->vm_mm->mmap_sem);
2410 	}
2411 	return fpin;
2412 }
2413 
2414 /*
2415  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2416  * @vmf - the vm_fault for this fault.
2417  * @page - the page to lock.
2418  * @fpin - the pointer to the file we may pin (or is already pinned).
2419  *
2420  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2421  * It differs in that it actually returns the page locked if it returns 1 and 0
2422  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2423  * will point to the pinned file and needs to be fput()'ed at a later point.
2424  */
2425 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2426 				     struct file **fpin)
2427 {
2428 	if (trylock_page(page))
2429 		return 1;
2430 
2431 	/*
2432 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2433 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2434 	 * is supposed to work. We have way too many special cases..
2435 	 */
2436 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2437 		return 0;
2438 
2439 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2440 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2441 		if (__lock_page_killable(page)) {
2442 			/*
2443 			 * We didn't have the right flags to drop the mmap_sem,
2444 			 * but all fault_handlers only check for fatal signals
2445 			 * if we return VM_FAULT_RETRY, so we need to drop the
2446 			 * mmap_sem here and return 0 if we don't have a fpin.
2447 			 */
2448 			if (*fpin == NULL)
2449 				up_read(&vmf->vma->vm_mm->mmap_sem);
2450 			return 0;
2451 		}
2452 	} else
2453 		__lock_page(page);
2454 	return 1;
2455 }
2456 
2457 
2458 /*
2459  * Synchronous readahead happens when we don't even find a page in the page
2460  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2461  * to drop the mmap sem we return the file that was pinned in order for us to do
2462  * that.  If we didn't pin a file then we return NULL.  The file that is
2463  * returned needs to be fput()'ed when we're done with it.
2464  */
2465 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2466 {
2467 	struct file *file = vmf->vma->vm_file;
2468 	struct file_ra_state *ra = &file->f_ra;
2469 	struct address_space *mapping = file->f_mapping;
2470 	struct file *fpin = NULL;
2471 	pgoff_t offset = vmf->pgoff;
2472 
2473 	/* If we don't want any read-ahead, don't bother */
2474 	if (vmf->vma->vm_flags & VM_RAND_READ)
2475 		return fpin;
2476 	if (!ra->ra_pages)
2477 		return fpin;
2478 
2479 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2480 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2481 		page_cache_sync_readahead(mapping, ra, file, offset,
2482 					  ra->ra_pages);
2483 		return fpin;
2484 	}
2485 
2486 	/* Avoid banging the cache line if not needed */
2487 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2488 		ra->mmap_miss++;
2489 
2490 	/*
2491 	 * Do we miss much more than hit in this file? If so,
2492 	 * stop bothering with read-ahead. It will only hurt.
2493 	 */
2494 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2495 		return fpin;
2496 
2497 	/*
2498 	 * mmap read-around
2499 	 */
2500 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2501 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2502 	ra->size = ra->ra_pages;
2503 	ra->async_size = ra->ra_pages / 4;
2504 	ra_submit(ra, mapping, file);
2505 	return fpin;
2506 }
2507 
2508 /*
2509  * Asynchronous readahead happens when we find the page and PG_readahead,
2510  * so we want to possibly extend the readahead further.  We return the file that
2511  * was pinned if we have to drop the mmap_sem in order to do IO.
2512  */
2513 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2514 					    struct page *page)
2515 {
2516 	struct file *file = vmf->vma->vm_file;
2517 	struct file_ra_state *ra = &file->f_ra;
2518 	struct address_space *mapping = file->f_mapping;
2519 	struct file *fpin = NULL;
2520 	pgoff_t offset = vmf->pgoff;
2521 
2522 	/* If we don't want any read-ahead, don't bother */
2523 	if (vmf->vma->vm_flags & VM_RAND_READ)
2524 		return fpin;
2525 	if (ra->mmap_miss > 0)
2526 		ra->mmap_miss--;
2527 	if (PageReadahead(page)) {
2528 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2529 		page_cache_async_readahead(mapping, ra, file,
2530 					   page, offset, ra->ra_pages);
2531 	}
2532 	return fpin;
2533 }
2534 
2535 /**
2536  * filemap_fault - read in file data for page fault handling
2537  * @vmf:	struct vm_fault containing details of the fault
2538  *
2539  * filemap_fault() is invoked via the vma operations vector for a
2540  * mapped memory region to read in file data during a page fault.
2541  *
2542  * The goto's are kind of ugly, but this streamlines the normal case of having
2543  * it in the page cache, and handles the special cases reasonably without
2544  * having a lot of duplicated code.
2545  *
2546  * vma->vm_mm->mmap_sem must be held on entry.
2547  *
2548  * If our return value has VM_FAULT_RETRY set, it's because
2549  * lock_page_or_retry() returned 0.
2550  * The mmap_sem has usually been released in this case.
2551  * See __lock_page_or_retry() for the exception.
2552  *
2553  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2554  * has not been released.
2555  *
2556  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2557  *
2558  * Return: bitwise-OR of %VM_FAULT_ codes.
2559  */
2560 vm_fault_t filemap_fault(struct vm_fault *vmf)
2561 {
2562 	int error;
2563 	struct file *file = vmf->vma->vm_file;
2564 	struct file *fpin = NULL;
2565 	struct address_space *mapping = file->f_mapping;
2566 	struct file_ra_state *ra = &file->f_ra;
2567 	struct inode *inode = mapping->host;
2568 	pgoff_t offset = vmf->pgoff;
2569 	pgoff_t max_off;
2570 	struct page *page;
2571 	vm_fault_t ret = 0;
2572 
2573 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2574 	if (unlikely(offset >= max_off))
2575 		return VM_FAULT_SIGBUS;
2576 
2577 	/*
2578 	 * Do we have something in the page cache already?
2579 	 */
2580 	page = find_get_page(mapping, offset);
2581 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2582 		/*
2583 		 * We found the page, so try async readahead before
2584 		 * waiting for the lock.
2585 		 */
2586 		fpin = do_async_mmap_readahead(vmf, page);
2587 	} else if (!page) {
2588 		/* No page in the page cache at all */
2589 		count_vm_event(PGMAJFAULT);
2590 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2591 		ret = VM_FAULT_MAJOR;
2592 		fpin = do_sync_mmap_readahead(vmf);
2593 retry_find:
2594 		page = pagecache_get_page(mapping, offset,
2595 					  FGP_CREAT|FGP_FOR_MMAP,
2596 					  vmf->gfp_mask);
2597 		if (!page) {
2598 			if (fpin)
2599 				goto out_retry;
2600 			return vmf_error(-ENOMEM);
2601 		}
2602 	}
2603 
2604 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2605 		goto out_retry;
2606 
2607 	/* Did it get truncated? */
2608 	if (unlikely(page->mapping != mapping)) {
2609 		unlock_page(page);
2610 		put_page(page);
2611 		goto retry_find;
2612 	}
2613 	VM_BUG_ON_PAGE(page->index != offset, page);
2614 
2615 	/*
2616 	 * We have a locked page in the page cache, now we need to check
2617 	 * that it's up-to-date. If not, it is going to be due to an error.
2618 	 */
2619 	if (unlikely(!PageUptodate(page)))
2620 		goto page_not_uptodate;
2621 
2622 	/*
2623 	 * We've made it this far and we had to drop our mmap_sem, now is the
2624 	 * time to return to the upper layer and have it re-find the vma and
2625 	 * redo the fault.
2626 	 */
2627 	if (fpin) {
2628 		unlock_page(page);
2629 		goto out_retry;
2630 	}
2631 
2632 	/*
2633 	 * Found the page and have a reference on it.
2634 	 * We must recheck i_size under page lock.
2635 	 */
2636 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2637 	if (unlikely(offset >= max_off)) {
2638 		unlock_page(page);
2639 		put_page(page);
2640 		return VM_FAULT_SIGBUS;
2641 	}
2642 
2643 	vmf->page = page;
2644 	return ret | VM_FAULT_LOCKED;
2645 
2646 page_not_uptodate:
2647 	/*
2648 	 * Umm, take care of errors if the page isn't up-to-date.
2649 	 * Try to re-read it _once_. We do this synchronously,
2650 	 * because there really aren't any performance issues here
2651 	 * and we need to check for errors.
2652 	 */
2653 	ClearPageError(page);
2654 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2655 	error = mapping->a_ops->readpage(file, page);
2656 	if (!error) {
2657 		wait_on_page_locked(page);
2658 		if (!PageUptodate(page))
2659 			error = -EIO;
2660 	}
2661 	if (fpin)
2662 		goto out_retry;
2663 	put_page(page);
2664 
2665 	if (!error || error == AOP_TRUNCATED_PAGE)
2666 		goto retry_find;
2667 
2668 	/* Things didn't work out. Return zero to tell the mm layer so. */
2669 	shrink_readahead_size_eio(file, ra);
2670 	return VM_FAULT_SIGBUS;
2671 
2672 out_retry:
2673 	/*
2674 	 * We dropped the mmap_sem, we need to return to the fault handler to
2675 	 * re-find the vma and come back and find our hopefully still populated
2676 	 * page.
2677 	 */
2678 	if (page)
2679 		put_page(page);
2680 	if (fpin)
2681 		fput(fpin);
2682 	return ret | VM_FAULT_RETRY;
2683 }
2684 EXPORT_SYMBOL(filemap_fault);
2685 
2686 void filemap_map_pages(struct vm_fault *vmf,
2687 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2688 {
2689 	struct file *file = vmf->vma->vm_file;
2690 	struct address_space *mapping = file->f_mapping;
2691 	pgoff_t last_pgoff = start_pgoff;
2692 	unsigned long max_idx;
2693 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2694 	struct page *head, *page;
2695 
2696 	rcu_read_lock();
2697 	xas_for_each(&xas, page, end_pgoff) {
2698 		if (xas_retry(&xas, page))
2699 			continue;
2700 		if (xa_is_value(page))
2701 			goto next;
2702 
2703 		head = compound_head(page);
2704 
2705 		/*
2706 		 * Check for a locked page first, as a speculative
2707 		 * reference may adversely influence page migration.
2708 		 */
2709 		if (PageLocked(head))
2710 			goto next;
2711 		if (!page_cache_get_speculative(head))
2712 			goto next;
2713 
2714 		/* The page was split under us? */
2715 		if (compound_head(page) != head)
2716 			goto skip;
2717 
2718 		/* Has the page moved? */
2719 		if (unlikely(page != xas_reload(&xas)))
2720 			goto skip;
2721 
2722 		if (!PageUptodate(page) ||
2723 				PageReadahead(page) ||
2724 				PageHWPoison(page))
2725 			goto skip;
2726 		if (!trylock_page(page))
2727 			goto skip;
2728 
2729 		if (page->mapping != mapping || !PageUptodate(page))
2730 			goto unlock;
2731 
2732 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2733 		if (page->index >= max_idx)
2734 			goto unlock;
2735 
2736 		if (file->f_ra.mmap_miss > 0)
2737 			file->f_ra.mmap_miss--;
2738 
2739 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2740 		if (vmf->pte)
2741 			vmf->pte += xas.xa_index - last_pgoff;
2742 		last_pgoff = xas.xa_index;
2743 		if (alloc_set_pte(vmf, NULL, page))
2744 			goto unlock;
2745 		unlock_page(page);
2746 		goto next;
2747 unlock:
2748 		unlock_page(page);
2749 skip:
2750 		put_page(page);
2751 next:
2752 		/* Huge page is mapped? No need to proceed. */
2753 		if (pmd_trans_huge(*vmf->pmd))
2754 			break;
2755 	}
2756 	rcu_read_unlock();
2757 }
2758 EXPORT_SYMBOL(filemap_map_pages);
2759 
2760 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2761 {
2762 	struct page *page = vmf->page;
2763 	struct inode *inode = file_inode(vmf->vma->vm_file);
2764 	vm_fault_t ret = VM_FAULT_LOCKED;
2765 
2766 	sb_start_pagefault(inode->i_sb);
2767 	file_update_time(vmf->vma->vm_file);
2768 	lock_page(page);
2769 	if (page->mapping != inode->i_mapping) {
2770 		unlock_page(page);
2771 		ret = VM_FAULT_NOPAGE;
2772 		goto out;
2773 	}
2774 	/*
2775 	 * We mark the page dirty already here so that when freeze is in
2776 	 * progress, we are guaranteed that writeback during freezing will
2777 	 * see the dirty page and writeprotect it again.
2778 	 */
2779 	set_page_dirty(page);
2780 	wait_for_stable_page(page);
2781 out:
2782 	sb_end_pagefault(inode->i_sb);
2783 	return ret;
2784 }
2785 
2786 const struct vm_operations_struct generic_file_vm_ops = {
2787 	.fault		= filemap_fault,
2788 	.map_pages	= filemap_map_pages,
2789 	.page_mkwrite	= filemap_page_mkwrite,
2790 };
2791 
2792 /* This is used for a general mmap of a disk file */
2793 
2794 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2795 {
2796 	struct address_space *mapping = file->f_mapping;
2797 
2798 	if (!mapping->a_ops->readpage)
2799 		return -ENOEXEC;
2800 	file_accessed(file);
2801 	vma->vm_ops = &generic_file_vm_ops;
2802 	return 0;
2803 }
2804 
2805 /*
2806  * This is for filesystems which do not implement ->writepage.
2807  */
2808 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2809 {
2810 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2811 		return -EINVAL;
2812 	return generic_file_mmap(file, vma);
2813 }
2814 #else
2815 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2816 {
2817 	return VM_FAULT_SIGBUS;
2818 }
2819 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2820 {
2821 	return -ENOSYS;
2822 }
2823 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2824 {
2825 	return -ENOSYS;
2826 }
2827 #endif /* CONFIG_MMU */
2828 
2829 EXPORT_SYMBOL(filemap_page_mkwrite);
2830 EXPORT_SYMBOL(generic_file_mmap);
2831 EXPORT_SYMBOL(generic_file_readonly_mmap);
2832 
2833 static struct page *wait_on_page_read(struct page *page)
2834 {
2835 	if (!IS_ERR(page)) {
2836 		wait_on_page_locked(page);
2837 		if (!PageUptodate(page)) {
2838 			put_page(page);
2839 			page = ERR_PTR(-EIO);
2840 		}
2841 	}
2842 	return page;
2843 }
2844 
2845 static struct page *do_read_cache_page(struct address_space *mapping,
2846 				pgoff_t index,
2847 				int (*filler)(void *, struct page *),
2848 				void *data,
2849 				gfp_t gfp)
2850 {
2851 	struct page *page;
2852 	int err;
2853 repeat:
2854 	page = find_get_page(mapping, index);
2855 	if (!page) {
2856 		page = __page_cache_alloc(gfp);
2857 		if (!page)
2858 			return ERR_PTR(-ENOMEM);
2859 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2860 		if (unlikely(err)) {
2861 			put_page(page);
2862 			if (err == -EEXIST)
2863 				goto repeat;
2864 			/* Presumably ENOMEM for xarray node */
2865 			return ERR_PTR(err);
2866 		}
2867 
2868 filler:
2869 		err = filler(data, page);
2870 		if (err < 0) {
2871 			put_page(page);
2872 			return ERR_PTR(err);
2873 		}
2874 
2875 		page = wait_on_page_read(page);
2876 		if (IS_ERR(page))
2877 			return page;
2878 		goto out;
2879 	}
2880 	if (PageUptodate(page))
2881 		goto out;
2882 
2883 	/*
2884 	 * Page is not up to date and may be locked due one of the following
2885 	 * case a: Page is being filled and the page lock is held
2886 	 * case b: Read/write error clearing the page uptodate status
2887 	 * case c: Truncation in progress (page locked)
2888 	 * case d: Reclaim in progress
2889 	 *
2890 	 * Case a, the page will be up to date when the page is unlocked.
2891 	 *    There is no need to serialise on the page lock here as the page
2892 	 *    is pinned so the lock gives no additional protection. Even if the
2893 	 *    the page is truncated, the data is still valid if PageUptodate as
2894 	 *    it's a race vs truncate race.
2895 	 * Case b, the page will not be up to date
2896 	 * Case c, the page may be truncated but in itself, the data may still
2897 	 *    be valid after IO completes as it's a read vs truncate race. The
2898 	 *    operation must restart if the page is not uptodate on unlock but
2899 	 *    otherwise serialising on page lock to stabilise the mapping gives
2900 	 *    no additional guarantees to the caller as the page lock is
2901 	 *    released before return.
2902 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2903 	 *    will be a race with remove_mapping that determines if the mapping
2904 	 *    is valid on unlock but otherwise the data is valid and there is
2905 	 *    no need to serialise with page lock.
2906 	 *
2907 	 * As the page lock gives no additional guarantee, we optimistically
2908 	 * wait on the page to be unlocked and check if it's up to date and
2909 	 * use the page if it is. Otherwise, the page lock is required to
2910 	 * distinguish between the different cases. The motivation is that we
2911 	 * avoid spurious serialisations and wakeups when multiple processes
2912 	 * wait on the same page for IO to complete.
2913 	 */
2914 	wait_on_page_locked(page);
2915 	if (PageUptodate(page))
2916 		goto out;
2917 
2918 	/* Distinguish between all the cases under the safety of the lock */
2919 	lock_page(page);
2920 
2921 	/* Case c or d, restart the operation */
2922 	if (!page->mapping) {
2923 		unlock_page(page);
2924 		put_page(page);
2925 		goto repeat;
2926 	}
2927 
2928 	/* Someone else locked and filled the page in a very small window */
2929 	if (PageUptodate(page)) {
2930 		unlock_page(page);
2931 		goto out;
2932 	}
2933 	goto filler;
2934 
2935 out:
2936 	mark_page_accessed(page);
2937 	return page;
2938 }
2939 
2940 /**
2941  * read_cache_page - read into page cache, fill it if needed
2942  * @mapping:	the page's address_space
2943  * @index:	the page index
2944  * @filler:	function to perform the read
2945  * @data:	first arg to filler(data, page) function, often left as NULL
2946  *
2947  * Read into the page cache. If a page already exists, and PageUptodate() is
2948  * not set, try to fill the page and wait for it to become unlocked.
2949  *
2950  * If the page does not get brought uptodate, return -EIO.
2951  *
2952  * Return: up to date page on success, ERR_PTR() on failure.
2953  */
2954 struct page *read_cache_page(struct address_space *mapping,
2955 				pgoff_t index,
2956 				int (*filler)(void *, struct page *),
2957 				void *data)
2958 {
2959 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2960 }
2961 EXPORT_SYMBOL(read_cache_page);
2962 
2963 /**
2964  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2965  * @mapping:	the page's address_space
2966  * @index:	the page index
2967  * @gfp:	the page allocator flags to use if allocating
2968  *
2969  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2970  * any new page allocations done using the specified allocation flags.
2971  *
2972  * If the page does not get brought uptodate, return -EIO.
2973  *
2974  * Return: up to date page on success, ERR_PTR() on failure.
2975  */
2976 struct page *read_cache_page_gfp(struct address_space *mapping,
2977 				pgoff_t index,
2978 				gfp_t gfp)
2979 {
2980 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2981 
2982 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2983 }
2984 EXPORT_SYMBOL(read_cache_page_gfp);
2985 
2986 /*
2987  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2988  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2989  * exceeds the limit we return -EFBIG.
2990  */
2991 static int generic_access_check_limits(struct file *file, loff_t pos,
2992 				       loff_t *count)
2993 {
2994 	struct inode *inode = file->f_mapping->host;
2995 	loff_t max_size = inode->i_sb->s_maxbytes;
2996 
2997 	if (!(file->f_flags & O_LARGEFILE))
2998 		max_size = MAX_NON_LFS;
2999 
3000 	if (unlikely(pos >= max_size))
3001 		return -EFBIG;
3002 	*count = min(*count, max_size - pos);
3003 	return 0;
3004 }
3005 
3006 static int generic_write_check_limits(struct file *file, loff_t pos,
3007 				      loff_t *count)
3008 {
3009 	loff_t limit = rlimit(RLIMIT_FSIZE);
3010 
3011 	if (limit != RLIM_INFINITY) {
3012 		if (pos >= limit) {
3013 			send_sig(SIGXFSZ, current, 0);
3014 			return -EFBIG;
3015 		}
3016 		*count = min(*count, limit - pos);
3017 	}
3018 
3019 	return generic_access_check_limits(file, pos, count);
3020 }
3021 
3022 /*
3023  * Performs necessary checks before doing a write
3024  *
3025  * Can adjust writing position or amount of bytes to write.
3026  * Returns appropriate error code that caller should return or
3027  * zero in case that write should be allowed.
3028  */
3029 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3030 {
3031 	struct file *file = iocb->ki_filp;
3032 	struct inode *inode = file->f_mapping->host;
3033 	loff_t count;
3034 	int ret;
3035 
3036 	if (!iov_iter_count(from))
3037 		return 0;
3038 
3039 	/* FIXME: this is for backwards compatibility with 2.4 */
3040 	if (iocb->ki_flags & IOCB_APPEND)
3041 		iocb->ki_pos = i_size_read(inode);
3042 
3043 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3044 		return -EINVAL;
3045 
3046 	count = iov_iter_count(from);
3047 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3048 	if (ret)
3049 		return ret;
3050 
3051 	iov_iter_truncate(from, count);
3052 	return iov_iter_count(from);
3053 }
3054 EXPORT_SYMBOL(generic_write_checks);
3055 
3056 /*
3057  * Performs necessary checks before doing a clone.
3058  *
3059  * Can adjust amount of bytes to clone.
3060  * Returns appropriate error code that caller should return or
3061  * zero in case the clone should be allowed.
3062  */
3063 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3064 			 struct file *file_out, loff_t pos_out,
3065 			 loff_t *req_count, unsigned int remap_flags)
3066 {
3067 	struct inode *inode_in = file_in->f_mapping->host;
3068 	struct inode *inode_out = file_out->f_mapping->host;
3069 	uint64_t count = *req_count;
3070 	uint64_t bcount;
3071 	loff_t size_in, size_out;
3072 	loff_t bs = inode_out->i_sb->s_blocksize;
3073 	int ret;
3074 
3075 	/* The start of both ranges must be aligned to an fs block. */
3076 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3077 		return -EINVAL;
3078 
3079 	/* Ensure offsets don't wrap. */
3080 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3081 		return -EINVAL;
3082 
3083 	size_in = i_size_read(inode_in);
3084 	size_out = i_size_read(inode_out);
3085 
3086 	/* Dedupe requires both ranges to be within EOF. */
3087 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3088 	    (pos_in >= size_in || pos_in + count > size_in ||
3089 	     pos_out >= size_out || pos_out + count > size_out))
3090 		return -EINVAL;
3091 
3092 	/* Ensure the infile range is within the infile. */
3093 	if (pos_in >= size_in)
3094 		return -EINVAL;
3095 	count = min(count, size_in - (uint64_t)pos_in);
3096 
3097 	ret = generic_access_check_limits(file_in, pos_in, &count);
3098 	if (ret)
3099 		return ret;
3100 
3101 	ret = generic_write_check_limits(file_out, pos_out, &count);
3102 	if (ret)
3103 		return ret;
3104 
3105 	/*
3106 	 * If the user wanted us to link to the infile's EOF, round up to the
3107 	 * next block boundary for this check.
3108 	 *
3109 	 * Otherwise, make sure the count is also block-aligned, having
3110 	 * already confirmed the starting offsets' block alignment.
3111 	 */
3112 	if (pos_in + count == size_in) {
3113 		bcount = ALIGN(size_in, bs) - pos_in;
3114 	} else {
3115 		if (!IS_ALIGNED(count, bs))
3116 			count = ALIGN_DOWN(count, bs);
3117 		bcount = count;
3118 	}
3119 
3120 	/* Don't allow overlapped cloning within the same file. */
3121 	if (inode_in == inode_out &&
3122 	    pos_out + bcount > pos_in &&
3123 	    pos_out < pos_in + bcount)
3124 		return -EINVAL;
3125 
3126 	/*
3127 	 * We shortened the request but the caller can't deal with that, so
3128 	 * bounce the request back to userspace.
3129 	 */
3130 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3131 		return -EINVAL;
3132 
3133 	*req_count = count;
3134 	return 0;
3135 }
3136 
3137 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3138 				loff_t pos, unsigned len, unsigned flags,
3139 				struct page **pagep, void **fsdata)
3140 {
3141 	const struct address_space_operations *aops = mapping->a_ops;
3142 
3143 	return aops->write_begin(file, mapping, pos, len, flags,
3144 							pagep, fsdata);
3145 }
3146 EXPORT_SYMBOL(pagecache_write_begin);
3147 
3148 int pagecache_write_end(struct file *file, struct address_space *mapping,
3149 				loff_t pos, unsigned len, unsigned copied,
3150 				struct page *page, void *fsdata)
3151 {
3152 	const struct address_space_operations *aops = mapping->a_ops;
3153 
3154 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3155 }
3156 EXPORT_SYMBOL(pagecache_write_end);
3157 
3158 ssize_t
3159 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3160 {
3161 	struct file	*file = iocb->ki_filp;
3162 	struct address_space *mapping = file->f_mapping;
3163 	struct inode	*inode = mapping->host;
3164 	loff_t		pos = iocb->ki_pos;
3165 	ssize_t		written;
3166 	size_t		write_len;
3167 	pgoff_t		end;
3168 
3169 	write_len = iov_iter_count(from);
3170 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3171 
3172 	if (iocb->ki_flags & IOCB_NOWAIT) {
3173 		/* If there are pages to writeback, return */
3174 		if (filemap_range_has_page(inode->i_mapping, pos,
3175 					   pos + write_len - 1))
3176 			return -EAGAIN;
3177 	} else {
3178 		written = filemap_write_and_wait_range(mapping, pos,
3179 							pos + write_len - 1);
3180 		if (written)
3181 			goto out;
3182 	}
3183 
3184 	/*
3185 	 * After a write we want buffered reads to be sure to go to disk to get
3186 	 * the new data.  We invalidate clean cached page from the region we're
3187 	 * about to write.  We do this *before* the write so that we can return
3188 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3189 	 */
3190 	written = invalidate_inode_pages2_range(mapping,
3191 					pos >> PAGE_SHIFT, end);
3192 	/*
3193 	 * If a page can not be invalidated, return 0 to fall back
3194 	 * to buffered write.
3195 	 */
3196 	if (written) {
3197 		if (written == -EBUSY)
3198 			return 0;
3199 		goto out;
3200 	}
3201 
3202 	written = mapping->a_ops->direct_IO(iocb, from);
3203 
3204 	/*
3205 	 * Finally, try again to invalidate clean pages which might have been
3206 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3207 	 * if the source of the write was an mmap'ed region of the file
3208 	 * we're writing.  Either one is a pretty crazy thing to do,
3209 	 * so we don't support it 100%.  If this invalidation
3210 	 * fails, tough, the write still worked...
3211 	 *
3212 	 * Most of the time we do not need this since dio_complete() will do
3213 	 * the invalidation for us. However there are some file systems that
3214 	 * do not end up with dio_complete() being called, so let's not break
3215 	 * them by removing it completely
3216 	 */
3217 	if (mapping->nrpages)
3218 		invalidate_inode_pages2_range(mapping,
3219 					pos >> PAGE_SHIFT, end);
3220 
3221 	if (written > 0) {
3222 		pos += written;
3223 		write_len -= written;
3224 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3225 			i_size_write(inode, pos);
3226 			mark_inode_dirty(inode);
3227 		}
3228 		iocb->ki_pos = pos;
3229 	}
3230 	iov_iter_revert(from, write_len - iov_iter_count(from));
3231 out:
3232 	return written;
3233 }
3234 EXPORT_SYMBOL(generic_file_direct_write);
3235 
3236 /*
3237  * Find or create a page at the given pagecache position. Return the locked
3238  * page. This function is specifically for buffered writes.
3239  */
3240 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3241 					pgoff_t index, unsigned flags)
3242 {
3243 	struct page *page;
3244 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3245 
3246 	if (flags & AOP_FLAG_NOFS)
3247 		fgp_flags |= FGP_NOFS;
3248 
3249 	page = pagecache_get_page(mapping, index, fgp_flags,
3250 			mapping_gfp_mask(mapping));
3251 	if (page)
3252 		wait_for_stable_page(page);
3253 
3254 	return page;
3255 }
3256 EXPORT_SYMBOL(grab_cache_page_write_begin);
3257 
3258 ssize_t generic_perform_write(struct file *file,
3259 				struct iov_iter *i, loff_t pos)
3260 {
3261 	struct address_space *mapping = file->f_mapping;
3262 	const struct address_space_operations *a_ops = mapping->a_ops;
3263 	long status = 0;
3264 	ssize_t written = 0;
3265 	unsigned int flags = 0;
3266 
3267 	do {
3268 		struct page *page;
3269 		unsigned long offset;	/* Offset into pagecache page */
3270 		unsigned long bytes;	/* Bytes to write to page */
3271 		size_t copied;		/* Bytes copied from user */
3272 		void *fsdata;
3273 
3274 		offset = (pos & (PAGE_SIZE - 1));
3275 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3276 						iov_iter_count(i));
3277 
3278 again:
3279 		/*
3280 		 * Bring in the user page that we will copy from _first_.
3281 		 * Otherwise there's a nasty deadlock on copying from the
3282 		 * same page as we're writing to, without it being marked
3283 		 * up-to-date.
3284 		 *
3285 		 * Not only is this an optimisation, but it is also required
3286 		 * to check that the address is actually valid, when atomic
3287 		 * usercopies are used, below.
3288 		 */
3289 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3290 			status = -EFAULT;
3291 			break;
3292 		}
3293 
3294 		if (fatal_signal_pending(current)) {
3295 			status = -EINTR;
3296 			break;
3297 		}
3298 
3299 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3300 						&page, &fsdata);
3301 		if (unlikely(status < 0))
3302 			break;
3303 
3304 		if (mapping_writably_mapped(mapping))
3305 			flush_dcache_page(page);
3306 
3307 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3308 		flush_dcache_page(page);
3309 
3310 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3311 						page, fsdata);
3312 		if (unlikely(status < 0))
3313 			break;
3314 		copied = status;
3315 
3316 		cond_resched();
3317 
3318 		iov_iter_advance(i, copied);
3319 		if (unlikely(copied == 0)) {
3320 			/*
3321 			 * If we were unable to copy any data at all, we must
3322 			 * fall back to a single segment length write.
3323 			 *
3324 			 * If we didn't fallback here, we could livelock
3325 			 * because not all segments in the iov can be copied at
3326 			 * once without a pagefault.
3327 			 */
3328 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3329 						iov_iter_single_seg_count(i));
3330 			goto again;
3331 		}
3332 		pos += copied;
3333 		written += copied;
3334 
3335 		balance_dirty_pages_ratelimited(mapping);
3336 	} while (iov_iter_count(i));
3337 
3338 	return written ? written : status;
3339 }
3340 EXPORT_SYMBOL(generic_perform_write);
3341 
3342 /**
3343  * __generic_file_write_iter - write data to a file
3344  * @iocb:	IO state structure (file, offset, etc.)
3345  * @from:	iov_iter with data to write
3346  *
3347  * This function does all the work needed for actually writing data to a
3348  * file. It does all basic checks, removes SUID from the file, updates
3349  * modification times and calls proper subroutines depending on whether we
3350  * do direct IO or a standard buffered write.
3351  *
3352  * It expects i_mutex to be grabbed unless we work on a block device or similar
3353  * object which does not need locking at all.
3354  *
3355  * This function does *not* take care of syncing data in case of O_SYNC write.
3356  * A caller has to handle it. This is mainly due to the fact that we want to
3357  * avoid syncing under i_mutex.
3358  *
3359  * Return:
3360  * * number of bytes written, even for truncated writes
3361  * * negative error code if no data has been written at all
3362  */
3363 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3364 {
3365 	struct file *file = iocb->ki_filp;
3366 	struct address_space * mapping = file->f_mapping;
3367 	struct inode 	*inode = mapping->host;
3368 	ssize_t		written = 0;
3369 	ssize_t		err;
3370 	ssize_t		status;
3371 
3372 	/* We can write back this queue in page reclaim */
3373 	current->backing_dev_info = inode_to_bdi(inode);
3374 	err = file_remove_privs(file);
3375 	if (err)
3376 		goto out;
3377 
3378 	err = file_update_time(file);
3379 	if (err)
3380 		goto out;
3381 
3382 	if (iocb->ki_flags & IOCB_DIRECT) {
3383 		loff_t pos, endbyte;
3384 
3385 		written = generic_file_direct_write(iocb, from);
3386 		/*
3387 		 * If the write stopped short of completing, fall back to
3388 		 * buffered writes.  Some filesystems do this for writes to
3389 		 * holes, for example.  For DAX files, a buffered write will
3390 		 * not succeed (even if it did, DAX does not handle dirty
3391 		 * page-cache pages correctly).
3392 		 */
3393 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3394 			goto out;
3395 
3396 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3397 		/*
3398 		 * If generic_perform_write() returned a synchronous error
3399 		 * then we want to return the number of bytes which were
3400 		 * direct-written, or the error code if that was zero.  Note
3401 		 * that this differs from normal direct-io semantics, which
3402 		 * will return -EFOO even if some bytes were written.
3403 		 */
3404 		if (unlikely(status < 0)) {
3405 			err = status;
3406 			goto out;
3407 		}
3408 		/*
3409 		 * We need to ensure that the page cache pages are written to
3410 		 * disk and invalidated to preserve the expected O_DIRECT
3411 		 * semantics.
3412 		 */
3413 		endbyte = pos + status - 1;
3414 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3415 		if (err == 0) {
3416 			iocb->ki_pos = endbyte + 1;
3417 			written += status;
3418 			invalidate_mapping_pages(mapping,
3419 						 pos >> PAGE_SHIFT,
3420 						 endbyte >> PAGE_SHIFT);
3421 		} else {
3422 			/*
3423 			 * We don't know how much we wrote, so just return
3424 			 * the number of bytes which were direct-written
3425 			 */
3426 		}
3427 	} else {
3428 		written = generic_perform_write(file, from, iocb->ki_pos);
3429 		if (likely(written > 0))
3430 			iocb->ki_pos += written;
3431 	}
3432 out:
3433 	current->backing_dev_info = NULL;
3434 	return written ? written : err;
3435 }
3436 EXPORT_SYMBOL(__generic_file_write_iter);
3437 
3438 /**
3439  * generic_file_write_iter - write data to a file
3440  * @iocb:	IO state structure
3441  * @from:	iov_iter with data to write
3442  *
3443  * This is a wrapper around __generic_file_write_iter() to be used by most
3444  * filesystems. It takes care of syncing the file in case of O_SYNC file
3445  * and acquires i_mutex as needed.
3446  * Return:
3447  * * negative error code if no data has been written at all of
3448  *   vfs_fsync_range() failed for a synchronous write
3449  * * number of bytes written, even for truncated writes
3450  */
3451 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3452 {
3453 	struct file *file = iocb->ki_filp;
3454 	struct inode *inode = file->f_mapping->host;
3455 	ssize_t ret;
3456 
3457 	inode_lock(inode);
3458 	ret = generic_write_checks(iocb, from);
3459 	if (ret > 0)
3460 		ret = __generic_file_write_iter(iocb, from);
3461 	inode_unlock(inode);
3462 
3463 	if (ret > 0)
3464 		ret = generic_write_sync(iocb, ret);
3465 	return ret;
3466 }
3467 EXPORT_SYMBOL(generic_file_write_iter);
3468 
3469 /**
3470  * try_to_release_page() - release old fs-specific metadata on a page
3471  *
3472  * @page: the page which the kernel is trying to free
3473  * @gfp_mask: memory allocation flags (and I/O mode)
3474  *
3475  * The address_space is to try to release any data against the page
3476  * (presumably at page->private).
3477  *
3478  * This may also be called if PG_fscache is set on a page, indicating that the
3479  * page is known to the local caching routines.
3480  *
3481  * The @gfp_mask argument specifies whether I/O may be performed to release
3482  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3483  *
3484  * Return: %1 if the release was successful, otherwise return zero.
3485  */
3486 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3487 {
3488 	struct address_space * const mapping = page->mapping;
3489 
3490 	BUG_ON(!PageLocked(page));
3491 	if (PageWriteback(page))
3492 		return 0;
3493 
3494 	if (mapping && mapping->a_ops->releasepage)
3495 		return mapping->a_ops->releasepage(page, gfp_mask);
3496 	return try_to_free_buffers(page);
3497 }
3498 
3499 EXPORT_SYMBOL(try_to_release_page);
3500