1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 106 * ->inode->i_lock (zap_pte_range->set_page_dirty) 107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 108 * 109 * ->i_mmap_rwsem 110 * ->tasklist_lock (memory_failure, collect_procs_ao) 111 */ 112 113 static void page_cache_tree_delete(struct address_space *mapping, 114 struct page *page, void *shadow) 115 { 116 struct radix_tree_node *node; 117 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 118 119 VM_BUG_ON_PAGE(!PageLocked(page), page); 120 VM_BUG_ON_PAGE(PageTail(page), page); 121 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 122 123 if (shadow) { 124 mapping->nrexceptional += nr; 125 /* 126 * Make sure the nrexceptional update is committed before 127 * the nrpages update so that final truncate racing 128 * with reclaim does not see both counters 0 at the 129 * same time and miss a shadow entry. 130 */ 131 smp_wmb(); 132 } 133 mapping->nrpages -= nr; 134 135 for (i = 0; i < nr; i++) { 136 node = radix_tree_replace_clear_tags(&mapping->page_tree, 137 page->index + i, shadow); 138 if (!node) { 139 VM_BUG_ON_PAGE(nr != 1, page); 140 return; 141 } 142 143 workingset_node_pages_dec(node); 144 if (shadow) 145 workingset_node_shadows_inc(node); 146 else 147 if (__radix_tree_delete_node(&mapping->page_tree, node)) 148 continue; 149 150 /* 151 * Track node that only contains shadow entries. DAX mappings 152 * contain no shadow entries and may contain other exceptional 153 * entries so skip those. 154 * 155 * Avoid acquiring the list_lru lock if already tracked. 156 * The list_empty() test is safe as node->private_list is 157 * protected by mapping->tree_lock. 158 */ 159 if (!dax_mapping(mapping) && !workingset_node_pages(node) && 160 list_empty(&node->private_list)) { 161 node->private_data = mapping; 162 list_lru_add(&workingset_shadow_nodes, 163 &node->private_list); 164 } 165 } 166 } 167 168 /* 169 * Delete a page from the page cache and free it. Caller has to make 170 * sure the page is locked and that nobody else uses it - or that usage 171 * is safe. The caller must hold the mapping's tree_lock. 172 */ 173 void __delete_from_page_cache(struct page *page, void *shadow) 174 { 175 struct address_space *mapping = page->mapping; 176 int nr = hpage_nr_pages(page); 177 178 trace_mm_filemap_delete_from_page_cache(page); 179 /* 180 * if we're uptodate, flush out into the cleancache, otherwise 181 * invalidate any existing cleancache entries. We can't leave 182 * stale data around in the cleancache once our page is gone 183 */ 184 if (PageUptodate(page) && PageMappedToDisk(page)) 185 cleancache_put_page(page); 186 else 187 cleancache_invalidate_page(mapping, page); 188 189 VM_BUG_ON_PAGE(PageTail(page), page); 190 VM_BUG_ON_PAGE(page_mapped(page), page); 191 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 192 int mapcount; 193 194 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 195 current->comm, page_to_pfn(page)); 196 dump_page(page, "still mapped when deleted"); 197 dump_stack(); 198 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 199 200 mapcount = page_mapcount(page); 201 if (mapping_exiting(mapping) && 202 page_count(page) >= mapcount + 2) { 203 /* 204 * All vmas have already been torn down, so it's 205 * a good bet that actually the page is unmapped, 206 * and we'd prefer not to leak it: if we're wrong, 207 * some other bad page check should catch it later. 208 */ 209 page_mapcount_reset(page); 210 page_ref_sub(page, mapcount); 211 } 212 } 213 214 page_cache_tree_delete(mapping, page, shadow); 215 216 page->mapping = NULL; 217 /* Leave page->index set: truncation lookup relies upon it */ 218 219 /* hugetlb pages do not participate in page cache accounting. */ 220 if (!PageHuge(page)) 221 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 222 if (PageSwapBacked(page)) { 223 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 224 if (PageTransHuge(page)) 225 __dec_node_page_state(page, NR_SHMEM_THPS); 226 } else { 227 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 228 } 229 230 /* 231 * At this point page must be either written or cleaned by truncate. 232 * Dirty page here signals a bug and loss of unwritten data. 233 * 234 * This fixes dirty accounting after removing the page entirely but 235 * leaves PageDirty set: it has no effect for truncated page and 236 * anyway will be cleared before returning page into buddy allocator. 237 */ 238 if (WARN_ON_ONCE(PageDirty(page))) 239 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 240 } 241 242 /** 243 * delete_from_page_cache - delete page from page cache 244 * @page: the page which the kernel is trying to remove from page cache 245 * 246 * This must be called only on pages that have been verified to be in the page 247 * cache and locked. It will never put the page into the free list, the caller 248 * has a reference on the page. 249 */ 250 void delete_from_page_cache(struct page *page) 251 { 252 struct address_space *mapping = page_mapping(page); 253 unsigned long flags; 254 void (*freepage)(struct page *); 255 256 BUG_ON(!PageLocked(page)); 257 258 freepage = mapping->a_ops->freepage; 259 260 spin_lock_irqsave(&mapping->tree_lock, flags); 261 __delete_from_page_cache(page, NULL); 262 spin_unlock_irqrestore(&mapping->tree_lock, flags); 263 264 if (freepage) 265 freepage(page); 266 267 if (PageTransHuge(page) && !PageHuge(page)) { 268 page_ref_sub(page, HPAGE_PMD_NR); 269 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 270 } else { 271 put_page(page); 272 } 273 } 274 EXPORT_SYMBOL(delete_from_page_cache); 275 276 int filemap_check_errors(struct address_space *mapping) 277 { 278 int ret = 0; 279 /* Check for outstanding write errors */ 280 if (test_bit(AS_ENOSPC, &mapping->flags) && 281 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 282 ret = -ENOSPC; 283 if (test_bit(AS_EIO, &mapping->flags) && 284 test_and_clear_bit(AS_EIO, &mapping->flags)) 285 ret = -EIO; 286 return ret; 287 } 288 EXPORT_SYMBOL(filemap_check_errors); 289 290 /** 291 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 292 * @mapping: address space structure to write 293 * @start: offset in bytes where the range starts 294 * @end: offset in bytes where the range ends (inclusive) 295 * @sync_mode: enable synchronous operation 296 * 297 * Start writeback against all of a mapping's dirty pages that lie 298 * within the byte offsets <start, end> inclusive. 299 * 300 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 301 * opposed to a regular memory cleansing writeback. The difference between 302 * these two operations is that if a dirty page/buffer is encountered, it must 303 * be waited upon, and not just skipped over. 304 */ 305 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 306 loff_t end, int sync_mode) 307 { 308 int ret; 309 struct writeback_control wbc = { 310 .sync_mode = sync_mode, 311 .nr_to_write = LONG_MAX, 312 .range_start = start, 313 .range_end = end, 314 }; 315 316 if (!mapping_cap_writeback_dirty(mapping)) 317 return 0; 318 319 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 320 ret = do_writepages(mapping, &wbc); 321 wbc_detach_inode(&wbc); 322 return ret; 323 } 324 325 static inline int __filemap_fdatawrite(struct address_space *mapping, 326 int sync_mode) 327 { 328 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 329 } 330 331 int filemap_fdatawrite(struct address_space *mapping) 332 { 333 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 334 } 335 EXPORT_SYMBOL(filemap_fdatawrite); 336 337 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 338 loff_t end) 339 { 340 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 341 } 342 EXPORT_SYMBOL(filemap_fdatawrite_range); 343 344 /** 345 * filemap_flush - mostly a non-blocking flush 346 * @mapping: target address_space 347 * 348 * This is a mostly non-blocking flush. Not suitable for data-integrity 349 * purposes - I/O may not be started against all dirty pages. 350 */ 351 int filemap_flush(struct address_space *mapping) 352 { 353 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 354 } 355 EXPORT_SYMBOL(filemap_flush); 356 357 static int __filemap_fdatawait_range(struct address_space *mapping, 358 loff_t start_byte, loff_t end_byte) 359 { 360 pgoff_t index = start_byte >> PAGE_SHIFT; 361 pgoff_t end = end_byte >> PAGE_SHIFT; 362 struct pagevec pvec; 363 int nr_pages; 364 int ret = 0; 365 366 if (end_byte < start_byte) 367 goto out; 368 369 pagevec_init(&pvec, 0); 370 while ((index <= end) && 371 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 372 PAGECACHE_TAG_WRITEBACK, 373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 374 unsigned i; 375 376 for (i = 0; i < nr_pages; i++) { 377 struct page *page = pvec.pages[i]; 378 379 /* until radix tree lookup accepts end_index */ 380 if (page->index > end) 381 continue; 382 383 wait_on_page_writeback(page); 384 if (TestClearPageError(page)) 385 ret = -EIO; 386 } 387 pagevec_release(&pvec); 388 cond_resched(); 389 } 390 out: 391 return ret; 392 } 393 394 /** 395 * filemap_fdatawait_range - wait for writeback to complete 396 * @mapping: address space structure to wait for 397 * @start_byte: offset in bytes where the range starts 398 * @end_byte: offset in bytes where the range ends (inclusive) 399 * 400 * Walk the list of under-writeback pages of the given address space 401 * in the given range and wait for all of them. Check error status of 402 * the address space and return it. 403 * 404 * Since the error status of the address space is cleared by this function, 405 * callers are responsible for checking the return value and handling and/or 406 * reporting the error. 407 */ 408 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 409 loff_t end_byte) 410 { 411 int ret, ret2; 412 413 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 414 ret2 = filemap_check_errors(mapping); 415 if (!ret) 416 ret = ret2; 417 418 return ret; 419 } 420 EXPORT_SYMBOL(filemap_fdatawait_range); 421 422 /** 423 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 424 * @mapping: address space structure to wait for 425 * 426 * Walk the list of under-writeback pages of the given address space 427 * and wait for all of them. Unlike filemap_fdatawait(), this function 428 * does not clear error status of the address space. 429 * 430 * Use this function if callers don't handle errors themselves. Expected 431 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 432 * fsfreeze(8) 433 */ 434 void filemap_fdatawait_keep_errors(struct address_space *mapping) 435 { 436 loff_t i_size = i_size_read(mapping->host); 437 438 if (i_size == 0) 439 return; 440 441 __filemap_fdatawait_range(mapping, 0, i_size - 1); 442 } 443 444 /** 445 * filemap_fdatawait - wait for all under-writeback pages to complete 446 * @mapping: address space structure to wait for 447 * 448 * Walk the list of under-writeback pages of the given address space 449 * and wait for all of them. Check error status of the address space 450 * and return it. 451 * 452 * Since the error status of the address space is cleared by this function, 453 * callers are responsible for checking the return value and handling and/or 454 * reporting the error. 455 */ 456 int filemap_fdatawait(struct address_space *mapping) 457 { 458 loff_t i_size = i_size_read(mapping->host); 459 460 if (i_size == 0) 461 return 0; 462 463 return filemap_fdatawait_range(mapping, 0, i_size - 1); 464 } 465 EXPORT_SYMBOL(filemap_fdatawait); 466 467 int filemap_write_and_wait(struct address_space *mapping) 468 { 469 int err = 0; 470 471 if ((!dax_mapping(mapping) && mapping->nrpages) || 472 (dax_mapping(mapping) && mapping->nrexceptional)) { 473 err = filemap_fdatawrite(mapping); 474 /* 475 * Even if the above returned error, the pages may be 476 * written partially (e.g. -ENOSPC), so we wait for it. 477 * But the -EIO is special case, it may indicate the worst 478 * thing (e.g. bug) happened, so we avoid waiting for it. 479 */ 480 if (err != -EIO) { 481 int err2 = filemap_fdatawait(mapping); 482 if (!err) 483 err = err2; 484 } 485 } else { 486 err = filemap_check_errors(mapping); 487 } 488 return err; 489 } 490 EXPORT_SYMBOL(filemap_write_and_wait); 491 492 /** 493 * filemap_write_and_wait_range - write out & wait on a file range 494 * @mapping: the address_space for the pages 495 * @lstart: offset in bytes where the range starts 496 * @lend: offset in bytes where the range ends (inclusive) 497 * 498 * Write out and wait upon file offsets lstart->lend, inclusive. 499 * 500 * Note that `lend' is inclusive (describes the last byte to be written) so 501 * that this function can be used to write to the very end-of-file (end = -1). 502 */ 503 int filemap_write_and_wait_range(struct address_space *mapping, 504 loff_t lstart, loff_t lend) 505 { 506 int err = 0; 507 508 if ((!dax_mapping(mapping) && mapping->nrpages) || 509 (dax_mapping(mapping) && mapping->nrexceptional)) { 510 err = __filemap_fdatawrite_range(mapping, lstart, lend, 511 WB_SYNC_ALL); 512 /* See comment of filemap_write_and_wait() */ 513 if (err != -EIO) { 514 int err2 = filemap_fdatawait_range(mapping, 515 lstart, lend); 516 if (!err) 517 err = err2; 518 } 519 } else { 520 err = filemap_check_errors(mapping); 521 } 522 return err; 523 } 524 EXPORT_SYMBOL(filemap_write_and_wait_range); 525 526 /** 527 * replace_page_cache_page - replace a pagecache page with a new one 528 * @old: page to be replaced 529 * @new: page to replace with 530 * @gfp_mask: allocation mode 531 * 532 * This function replaces a page in the pagecache with a new one. On 533 * success it acquires the pagecache reference for the new page and 534 * drops it for the old page. Both the old and new pages must be 535 * locked. This function does not add the new page to the LRU, the 536 * caller must do that. 537 * 538 * The remove + add is atomic. The only way this function can fail is 539 * memory allocation failure. 540 */ 541 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 542 { 543 int error; 544 545 VM_BUG_ON_PAGE(!PageLocked(old), old); 546 VM_BUG_ON_PAGE(!PageLocked(new), new); 547 VM_BUG_ON_PAGE(new->mapping, new); 548 549 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 550 if (!error) { 551 struct address_space *mapping = old->mapping; 552 void (*freepage)(struct page *); 553 unsigned long flags; 554 555 pgoff_t offset = old->index; 556 freepage = mapping->a_ops->freepage; 557 558 get_page(new); 559 new->mapping = mapping; 560 new->index = offset; 561 562 spin_lock_irqsave(&mapping->tree_lock, flags); 563 __delete_from_page_cache(old, NULL); 564 error = radix_tree_insert(&mapping->page_tree, offset, new); 565 BUG_ON(error); 566 mapping->nrpages++; 567 568 /* 569 * hugetlb pages do not participate in page cache accounting. 570 */ 571 if (!PageHuge(new)) 572 __inc_node_page_state(new, NR_FILE_PAGES); 573 if (PageSwapBacked(new)) 574 __inc_node_page_state(new, NR_SHMEM); 575 spin_unlock_irqrestore(&mapping->tree_lock, flags); 576 mem_cgroup_migrate(old, new); 577 radix_tree_preload_end(); 578 if (freepage) 579 freepage(old); 580 put_page(old); 581 } 582 583 return error; 584 } 585 EXPORT_SYMBOL_GPL(replace_page_cache_page); 586 587 static int page_cache_tree_insert(struct address_space *mapping, 588 struct page *page, void **shadowp) 589 { 590 struct radix_tree_node *node; 591 void **slot; 592 int error; 593 594 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 595 &node, &slot); 596 if (error) 597 return error; 598 if (*slot) { 599 void *p; 600 601 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 602 if (!radix_tree_exceptional_entry(p)) 603 return -EEXIST; 604 605 mapping->nrexceptional--; 606 if (!dax_mapping(mapping)) { 607 if (shadowp) 608 *shadowp = p; 609 if (node) 610 workingset_node_shadows_dec(node); 611 } else { 612 /* DAX can replace empty locked entry with a hole */ 613 WARN_ON_ONCE(p != 614 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | 615 RADIX_DAX_ENTRY_LOCK)); 616 /* DAX accounts exceptional entries as normal pages */ 617 if (node) 618 workingset_node_pages_dec(node); 619 /* Wakeup waiters for exceptional entry lock */ 620 dax_wake_mapping_entry_waiter(mapping, page->index, 621 false); 622 } 623 } 624 radix_tree_replace_slot(slot, page); 625 mapping->nrpages++; 626 if (node) { 627 workingset_node_pages_inc(node); 628 /* 629 * Don't track node that contains actual pages. 630 * 631 * Avoid acquiring the list_lru lock if already 632 * untracked. The list_empty() test is safe as 633 * node->private_list is protected by 634 * mapping->tree_lock. 635 */ 636 if (!list_empty(&node->private_list)) 637 list_lru_del(&workingset_shadow_nodes, 638 &node->private_list); 639 } 640 return 0; 641 } 642 643 static int __add_to_page_cache_locked(struct page *page, 644 struct address_space *mapping, 645 pgoff_t offset, gfp_t gfp_mask, 646 void **shadowp) 647 { 648 int huge = PageHuge(page); 649 struct mem_cgroup *memcg; 650 int error; 651 652 VM_BUG_ON_PAGE(!PageLocked(page), page); 653 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 654 655 if (!huge) { 656 error = mem_cgroup_try_charge(page, current->mm, 657 gfp_mask, &memcg, false); 658 if (error) 659 return error; 660 } 661 662 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 663 if (error) { 664 if (!huge) 665 mem_cgroup_cancel_charge(page, memcg, false); 666 return error; 667 } 668 669 get_page(page); 670 page->mapping = mapping; 671 page->index = offset; 672 673 spin_lock_irq(&mapping->tree_lock); 674 error = page_cache_tree_insert(mapping, page, shadowp); 675 radix_tree_preload_end(); 676 if (unlikely(error)) 677 goto err_insert; 678 679 /* hugetlb pages do not participate in page cache accounting. */ 680 if (!huge) 681 __inc_node_page_state(page, NR_FILE_PAGES); 682 spin_unlock_irq(&mapping->tree_lock); 683 if (!huge) 684 mem_cgroup_commit_charge(page, memcg, false, false); 685 trace_mm_filemap_add_to_page_cache(page); 686 return 0; 687 err_insert: 688 page->mapping = NULL; 689 /* Leave page->index set: truncation relies upon it */ 690 spin_unlock_irq(&mapping->tree_lock); 691 if (!huge) 692 mem_cgroup_cancel_charge(page, memcg, false); 693 put_page(page); 694 return error; 695 } 696 697 /** 698 * add_to_page_cache_locked - add a locked page to the pagecache 699 * @page: page to add 700 * @mapping: the page's address_space 701 * @offset: page index 702 * @gfp_mask: page allocation mode 703 * 704 * This function is used to add a page to the pagecache. It must be locked. 705 * This function does not add the page to the LRU. The caller must do that. 706 */ 707 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 708 pgoff_t offset, gfp_t gfp_mask) 709 { 710 return __add_to_page_cache_locked(page, mapping, offset, 711 gfp_mask, NULL); 712 } 713 EXPORT_SYMBOL(add_to_page_cache_locked); 714 715 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 716 pgoff_t offset, gfp_t gfp_mask) 717 { 718 void *shadow = NULL; 719 int ret; 720 721 __SetPageLocked(page); 722 ret = __add_to_page_cache_locked(page, mapping, offset, 723 gfp_mask, &shadow); 724 if (unlikely(ret)) 725 __ClearPageLocked(page); 726 else { 727 /* 728 * The page might have been evicted from cache only 729 * recently, in which case it should be activated like 730 * any other repeatedly accessed page. 731 * The exception is pages getting rewritten; evicting other 732 * data from the working set, only to cache data that will 733 * get overwritten with something else, is a waste of memory. 734 */ 735 if (!(gfp_mask & __GFP_WRITE) && 736 shadow && workingset_refault(shadow)) { 737 SetPageActive(page); 738 workingset_activation(page); 739 } else 740 ClearPageActive(page); 741 lru_cache_add(page); 742 } 743 return ret; 744 } 745 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 746 747 #ifdef CONFIG_NUMA 748 struct page *__page_cache_alloc(gfp_t gfp) 749 { 750 int n; 751 struct page *page; 752 753 if (cpuset_do_page_mem_spread()) { 754 unsigned int cpuset_mems_cookie; 755 do { 756 cpuset_mems_cookie = read_mems_allowed_begin(); 757 n = cpuset_mem_spread_node(); 758 page = __alloc_pages_node(n, gfp, 0); 759 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 760 761 return page; 762 } 763 return alloc_pages(gfp, 0); 764 } 765 EXPORT_SYMBOL(__page_cache_alloc); 766 #endif 767 768 /* 769 * In order to wait for pages to become available there must be 770 * waitqueues associated with pages. By using a hash table of 771 * waitqueues where the bucket discipline is to maintain all 772 * waiters on the same queue and wake all when any of the pages 773 * become available, and for the woken contexts to check to be 774 * sure the appropriate page became available, this saves space 775 * at a cost of "thundering herd" phenomena during rare hash 776 * collisions. 777 */ 778 wait_queue_head_t *page_waitqueue(struct page *page) 779 { 780 const struct zone *zone = page_zone(page); 781 782 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 783 } 784 EXPORT_SYMBOL(page_waitqueue); 785 786 void wait_on_page_bit(struct page *page, int bit_nr) 787 { 788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 789 790 if (test_bit(bit_nr, &page->flags)) 791 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 792 TASK_UNINTERRUPTIBLE); 793 } 794 EXPORT_SYMBOL(wait_on_page_bit); 795 796 int wait_on_page_bit_killable(struct page *page, int bit_nr) 797 { 798 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 799 800 if (!test_bit(bit_nr, &page->flags)) 801 return 0; 802 803 return __wait_on_bit(page_waitqueue(page), &wait, 804 bit_wait_io, TASK_KILLABLE); 805 } 806 807 int wait_on_page_bit_killable_timeout(struct page *page, 808 int bit_nr, unsigned long timeout) 809 { 810 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 811 812 wait.key.timeout = jiffies + timeout; 813 if (!test_bit(bit_nr, &page->flags)) 814 return 0; 815 return __wait_on_bit(page_waitqueue(page), &wait, 816 bit_wait_io_timeout, TASK_KILLABLE); 817 } 818 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout); 819 820 /** 821 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 822 * @page: Page defining the wait queue of interest 823 * @waiter: Waiter to add to the queue 824 * 825 * Add an arbitrary @waiter to the wait queue for the nominated @page. 826 */ 827 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 828 { 829 wait_queue_head_t *q = page_waitqueue(page); 830 unsigned long flags; 831 832 spin_lock_irqsave(&q->lock, flags); 833 __add_wait_queue(q, waiter); 834 spin_unlock_irqrestore(&q->lock, flags); 835 } 836 EXPORT_SYMBOL_GPL(add_page_wait_queue); 837 838 /** 839 * unlock_page - unlock a locked page 840 * @page: the page 841 * 842 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 843 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 844 * mechanism between PageLocked pages and PageWriteback pages is shared. 845 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 846 * 847 * The mb is necessary to enforce ordering between the clear_bit and the read 848 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 849 */ 850 void unlock_page(struct page *page) 851 { 852 page = compound_head(page); 853 VM_BUG_ON_PAGE(!PageLocked(page), page); 854 clear_bit_unlock(PG_locked, &page->flags); 855 smp_mb__after_atomic(); 856 wake_up_page(page, PG_locked); 857 } 858 EXPORT_SYMBOL(unlock_page); 859 860 /** 861 * end_page_writeback - end writeback against a page 862 * @page: the page 863 */ 864 void end_page_writeback(struct page *page) 865 { 866 /* 867 * TestClearPageReclaim could be used here but it is an atomic 868 * operation and overkill in this particular case. Failing to 869 * shuffle a page marked for immediate reclaim is too mild to 870 * justify taking an atomic operation penalty at the end of 871 * ever page writeback. 872 */ 873 if (PageReclaim(page)) { 874 ClearPageReclaim(page); 875 rotate_reclaimable_page(page); 876 } 877 878 if (!test_clear_page_writeback(page)) 879 BUG(); 880 881 smp_mb__after_atomic(); 882 wake_up_page(page, PG_writeback); 883 } 884 EXPORT_SYMBOL(end_page_writeback); 885 886 /* 887 * After completing I/O on a page, call this routine to update the page 888 * flags appropriately 889 */ 890 void page_endio(struct page *page, bool is_write, int err) 891 { 892 if (!is_write) { 893 if (!err) { 894 SetPageUptodate(page); 895 } else { 896 ClearPageUptodate(page); 897 SetPageError(page); 898 } 899 unlock_page(page); 900 } else { 901 if (err) { 902 SetPageError(page); 903 if (page->mapping) 904 mapping_set_error(page->mapping, err); 905 } 906 end_page_writeback(page); 907 } 908 } 909 EXPORT_SYMBOL_GPL(page_endio); 910 911 /** 912 * __lock_page - get a lock on the page, assuming we need to sleep to get it 913 * @page: the page to lock 914 */ 915 void __lock_page(struct page *page) 916 { 917 struct page *page_head = compound_head(page); 918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); 919 920 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io, 921 TASK_UNINTERRUPTIBLE); 922 } 923 EXPORT_SYMBOL(__lock_page); 924 925 int __lock_page_killable(struct page *page) 926 { 927 struct page *page_head = compound_head(page); 928 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); 929 930 return __wait_on_bit_lock(page_waitqueue(page_head), &wait, 931 bit_wait_io, TASK_KILLABLE); 932 } 933 EXPORT_SYMBOL_GPL(__lock_page_killable); 934 935 /* 936 * Return values: 937 * 1 - page is locked; mmap_sem is still held. 938 * 0 - page is not locked. 939 * mmap_sem has been released (up_read()), unless flags had both 940 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 941 * which case mmap_sem is still held. 942 * 943 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 944 * with the page locked and the mmap_sem unperturbed. 945 */ 946 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 947 unsigned int flags) 948 { 949 if (flags & FAULT_FLAG_ALLOW_RETRY) { 950 /* 951 * CAUTION! In this case, mmap_sem is not released 952 * even though return 0. 953 */ 954 if (flags & FAULT_FLAG_RETRY_NOWAIT) 955 return 0; 956 957 up_read(&mm->mmap_sem); 958 if (flags & FAULT_FLAG_KILLABLE) 959 wait_on_page_locked_killable(page); 960 else 961 wait_on_page_locked(page); 962 return 0; 963 } else { 964 if (flags & FAULT_FLAG_KILLABLE) { 965 int ret; 966 967 ret = __lock_page_killable(page); 968 if (ret) { 969 up_read(&mm->mmap_sem); 970 return 0; 971 } 972 } else 973 __lock_page(page); 974 return 1; 975 } 976 } 977 978 /** 979 * page_cache_next_hole - find the next hole (not-present entry) 980 * @mapping: mapping 981 * @index: index 982 * @max_scan: maximum range to search 983 * 984 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 985 * lowest indexed hole. 986 * 987 * Returns: the index of the hole if found, otherwise returns an index 988 * outside of the set specified (in which case 'return - index >= 989 * max_scan' will be true). In rare cases of index wrap-around, 0 will 990 * be returned. 991 * 992 * page_cache_next_hole may be called under rcu_read_lock. However, 993 * like radix_tree_gang_lookup, this will not atomically search a 994 * snapshot of the tree at a single point in time. For example, if a 995 * hole is created at index 5, then subsequently a hole is created at 996 * index 10, page_cache_next_hole covering both indexes may return 10 997 * if called under rcu_read_lock. 998 */ 999 pgoff_t page_cache_next_hole(struct address_space *mapping, 1000 pgoff_t index, unsigned long max_scan) 1001 { 1002 unsigned long i; 1003 1004 for (i = 0; i < max_scan; i++) { 1005 struct page *page; 1006 1007 page = radix_tree_lookup(&mapping->page_tree, index); 1008 if (!page || radix_tree_exceptional_entry(page)) 1009 break; 1010 index++; 1011 if (index == 0) 1012 break; 1013 } 1014 1015 return index; 1016 } 1017 EXPORT_SYMBOL(page_cache_next_hole); 1018 1019 /** 1020 * page_cache_prev_hole - find the prev hole (not-present entry) 1021 * @mapping: mapping 1022 * @index: index 1023 * @max_scan: maximum range to search 1024 * 1025 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1026 * the first hole. 1027 * 1028 * Returns: the index of the hole if found, otherwise returns an index 1029 * outside of the set specified (in which case 'index - return >= 1030 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1031 * will be returned. 1032 * 1033 * page_cache_prev_hole may be called under rcu_read_lock. However, 1034 * like radix_tree_gang_lookup, this will not atomically search a 1035 * snapshot of the tree at a single point in time. For example, if a 1036 * hole is created at index 10, then subsequently a hole is created at 1037 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1038 * called under rcu_read_lock. 1039 */ 1040 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1041 pgoff_t index, unsigned long max_scan) 1042 { 1043 unsigned long i; 1044 1045 for (i = 0; i < max_scan; i++) { 1046 struct page *page; 1047 1048 page = radix_tree_lookup(&mapping->page_tree, index); 1049 if (!page || radix_tree_exceptional_entry(page)) 1050 break; 1051 index--; 1052 if (index == ULONG_MAX) 1053 break; 1054 } 1055 1056 return index; 1057 } 1058 EXPORT_SYMBOL(page_cache_prev_hole); 1059 1060 /** 1061 * find_get_entry - find and get a page cache entry 1062 * @mapping: the address_space to search 1063 * @offset: the page cache index 1064 * 1065 * Looks up the page cache slot at @mapping & @offset. If there is a 1066 * page cache page, it is returned with an increased refcount. 1067 * 1068 * If the slot holds a shadow entry of a previously evicted page, or a 1069 * swap entry from shmem/tmpfs, it is returned. 1070 * 1071 * Otherwise, %NULL is returned. 1072 */ 1073 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1074 { 1075 void **pagep; 1076 struct page *head, *page; 1077 1078 rcu_read_lock(); 1079 repeat: 1080 page = NULL; 1081 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1082 if (pagep) { 1083 page = radix_tree_deref_slot(pagep); 1084 if (unlikely(!page)) 1085 goto out; 1086 if (radix_tree_exception(page)) { 1087 if (radix_tree_deref_retry(page)) 1088 goto repeat; 1089 /* 1090 * A shadow entry of a recently evicted page, 1091 * or a swap entry from shmem/tmpfs. Return 1092 * it without attempting to raise page count. 1093 */ 1094 goto out; 1095 } 1096 1097 head = compound_head(page); 1098 if (!page_cache_get_speculative(head)) 1099 goto repeat; 1100 1101 /* The page was split under us? */ 1102 if (compound_head(page) != head) { 1103 put_page(head); 1104 goto repeat; 1105 } 1106 1107 /* 1108 * Has the page moved? 1109 * This is part of the lockless pagecache protocol. See 1110 * include/linux/pagemap.h for details. 1111 */ 1112 if (unlikely(page != *pagep)) { 1113 put_page(head); 1114 goto repeat; 1115 } 1116 } 1117 out: 1118 rcu_read_unlock(); 1119 1120 return page; 1121 } 1122 EXPORT_SYMBOL(find_get_entry); 1123 1124 /** 1125 * find_lock_entry - locate, pin and lock a page cache entry 1126 * @mapping: the address_space to search 1127 * @offset: the page cache index 1128 * 1129 * Looks up the page cache slot at @mapping & @offset. If there is a 1130 * page cache page, it is returned locked and with an increased 1131 * refcount. 1132 * 1133 * If the slot holds a shadow entry of a previously evicted page, or a 1134 * swap entry from shmem/tmpfs, it is returned. 1135 * 1136 * Otherwise, %NULL is returned. 1137 * 1138 * find_lock_entry() may sleep. 1139 */ 1140 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1141 { 1142 struct page *page; 1143 1144 repeat: 1145 page = find_get_entry(mapping, offset); 1146 if (page && !radix_tree_exception(page)) { 1147 lock_page(page); 1148 /* Has the page been truncated? */ 1149 if (unlikely(page_mapping(page) != mapping)) { 1150 unlock_page(page); 1151 put_page(page); 1152 goto repeat; 1153 } 1154 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1155 } 1156 return page; 1157 } 1158 EXPORT_SYMBOL(find_lock_entry); 1159 1160 /** 1161 * pagecache_get_page - find and get a page reference 1162 * @mapping: the address_space to search 1163 * @offset: the page index 1164 * @fgp_flags: PCG flags 1165 * @gfp_mask: gfp mask to use for the page cache data page allocation 1166 * 1167 * Looks up the page cache slot at @mapping & @offset. 1168 * 1169 * PCG flags modify how the page is returned. 1170 * 1171 * FGP_ACCESSED: the page will be marked accessed 1172 * FGP_LOCK: Page is return locked 1173 * FGP_CREAT: If page is not present then a new page is allocated using 1174 * @gfp_mask and added to the page cache and the VM's LRU 1175 * list. The page is returned locked and with an increased 1176 * refcount. Otherwise, %NULL is returned. 1177 * 1178 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1179 * if the GFP flags specified for FGP_CREAT are atomic. 1180 * 1181 * If there is a page cache page, it is returned with an increased refcount. 1182 */ 1183 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1184 int fgp_flags, gfp_t gfp_mask) 1185 { 1186 struct page *page; 1187 1188 repeat: 1189 page = find_get_entry(mapping, offset); 1190 if (radix_tree_exceptional_entry(page)) 1191 page = NULL; 1192 if (!page) 1193 goto no_page; 1194 1195 if (fgp_flags & FGP_LOCK) { 1196 if (fgp_flags & FGP_NOWAIT) { 1197 if (!trylock_page(page)) { 1198 put_page(page); 1199 return NULL; 1200 } 1201 } else { 1202 lock_page(page); 1203 } 1204 1205 /* Has the page been truncated? */ 1206 if (unlikely(page->mapping != mapping)) { 1207 unlock_page(page); 1208 put_page(page); 1209 goto repeat; 1210 } 1211 VM_BUG_ON_PAGE(page->index != offset, page); 1212 } 1213 1214 if (page && (fgp_flags & FGP_ACCESSED)) 1215 mark_page_accessed(page); 1216 1217 no_page: 1218 if (!page && (fgp_flags & FGP_CREAT)) { 1219 int err; 1220 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1221 gfp_mask |= __GFP_WRITE; 1222 if (fgp_flags & FGP_NOFS) 1223 gfp_mask &= ~__GFP_FS; 1224 1225 page = __page_cache_alloc(gfp_mask); 1226 if (!page) 1227 return NULL; 1228 1229 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1230 fgp_flags |= FGP_LOCK; 1231 1232 /* Init accessed so avoid atomic mark_page_accessed later */ 1233 if (fgp_flags & FGP_ACCESSED) 1234 __SetPageReferenced(page); 1235 1236 err = add_to_page_cache_lru(page, mapping, offset, 1237 gfp_mask & GFP_RECLAIM_MASK); 1238 if (unlikely(err)) { 1239 put_page(page); 1240 page = NULL; 1241 if (err == -EEXIST) 1242 goto repeat; 1243 } 1244 } 1245 1246 return page; 1247 } 1248 EXPORT_SYMBOL(pagecache_get_page); 1249 1250 /** 1251 * find_get_entries - gang pagecache lookup 1252 * @mapping: The address_space to search 1253 * @start: The starting page cache index 1254 * @nr_entries: The maximum number of entries 1255 * @entries: Where the resulting entries are placed 1256 * @indices: The cache indices corresponding to the entries in @entries 1257 * 1258 * find_get_entries() will search for and return a group of up to 1259 * @nr_entries entries in the mapping. The entries are placed at 1260 * @entries. find_get_entries() takes a reference against any actual 1261 * pages it returns. 1262 * 1263 * The search returns a group of mapping-contiguous page cache entries 1264 * with ascending indexes. There may be holes in the indices due to 1265 * not-present pages. 1266 * 1267 * Any shadow entries of evicted pages, or swap entries from 1268 * shmem/tmpfs, are included in the returned array. 1269 * 1270 * find_get_entries() returns the number of pages and shadow entries 1271 * which were found. 1272 */ 1273 unsigned find_get_entries(struct address_space *mapping, 1274 pgoff_t start, unsigned int nr_entries, 1275 struct page **entries, pgoff_t *indices) 1276 { 1277 void **slot; 1278 unsigned int ret = 0; 1279 struct radix_tree_iter iter; 1280 1281 if (!nr_entries) 1282 return 0; 1283 1284 rcu_read_lock(); 1285 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1286 struct page *head, *page; 1287 repeat: 1288 page = radix_tree_deref_slot(slot); 1289 if (unlikely(!page)) 1290 continue; 1291 if (radix_tree_exception(page)) { 1292 if (radix_tree_deref_retry(page)) { 1293 slot = radix_tree_iter_retry(&iter); 1294 continue; 1295 } 1296 /* 1297 * A shadow entry of a recently evicted page, a swap 1298 * entry from shmem/tmpfs or a DAX entry. Return it 1299 * without attempting to raise page count. 1300 */ 1301 goto export; 1302 } 1303 1304 head = compound_head(page); 1305 if (!page_cache_get_speculative(head)) 1306 goto repeat; 1307 1308 /* The page was split under us? */ 1309 if (compound_head(page) != head) { 1310 put_page(head); 1311 goto repeat; 1312 } 1313 1314 /* Has the page moved? */ 1315 if (unlikely(page != *slot)) { 1316 put_page(head); 1317 goto repeat; 1318 } 1319 export: 1320 indices[ret] = iter.index; 1321 entries[ret] = page; 1322 if (++ret == nr_entries) 1323 break; 1324 } 1325 rcu_read_unlock(); 1326 return ret; 1327 } 1328 1329 /** 1330 * find_get_pages - gang pagecache lookup 1331 * @mapping: The address_space to search 1332 * @start: The starting page index 1333 * @nr_pages: The maximum number of pages 1334 * @pages: Where the resulting pages are placed 1335 * 1336 * find_get_pages() will search for and return a group of up to 1337 * @nr_pages pages in the mapping. The pages are placed at @pages. 1338 * find_get_pages() takes a reference against the returned pages. 1339 * 1340 * The search returns a group of mapping-contiguous pages with ascending 1341 * indexes. There may be holes in the indices due to not-present pages. 1342 * 1343 * find_get_pages() returns the number of pages which were found. 1344 */ 1345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1346 unsigned int nr_pages, struct page **pages) 1347 { 1348 struct radix_tree_iter iter; 1349 void **slot; 1350 unsigned ret = 0; 1351 1352 if (unlikely(!nr_pages)) 1353 return 0; 1354 1355 rcu_read_lock(); 1356 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1357 struct page *head, *page; 1358 repeat: 1359 page = radix_tree_deref_slot(slot); 1360 if (unlikely(!page)) 1361 continue; 1362 1363 if (radix_tree_exception(page)) { 1364 if (radix_tree_deref_retry(page)) { 1365 slot = radix_tree_iter_retry(&iter); 1366 continue; 1367 } 1368 /* 1369 * A shadow entry of a recently evicted page, 1370 * or a swap entry from shmem/tmpfs. Skip 1371 * over it. 1372 */ 1373 continue; 1374 } 1375 1376 head = compound_head(page); 1377 if (!page_cache_get_speculative(head)) 1378 goto repeat; 1379 1380 /* The page was split under us? */ 1381 if (compound_head(page) != head) { 1382 put_page(head); 1383 goto repeat; 1384 } 1385 1386 /* Has the page moved? */ 1387 if (unlikely(page != *slot)) { 1388 put_page(head); 1389 goto repeat; 1390 } 1391 1392 pages[ret] = page; 1393 if (++ret == nr_pages) 1394 break; 1395 } 1396 1397 rcu_read_unlock(); 1398 return ret; 1399 } 1400 1401 /** 1402 * find_get_pages_contig - gang contiguous pagecache lookup 1403 * @mapping: The address_space to search 1404 * @index: The starting page index 1405 * @nr_pages: The maximum number of pages 1406 * @pages: Where the resulting pages are placed 1407 * 1408 * find_get_pages_contig() works exactly like find_get_pages(), except 1409 * that the returned number of pages are guaranteed to be contiguous. 1410 * 1411 * find_get_pages_contig() returns the number of pages which were found. 1412 */ 1413 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1414 unsigned int nr_pages, struct page **pages) 1415 { 1416 struct radix_tree_iter iter; 1417 void **slot; 1418 unsigned int ret = 0; 1419 1420 if (unlikely(!nr_pages)) 1421 return 0; 1422 1423 rcu_read_lock(); 1424 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1425 struct page *head, *page; 1426 repeat: 1427 page = radix_tree_deref_slot(slot); 1428 /* The hole, there no reason to continue */ 1429 if (unlikely(!page)) 1430 break; 1431 1432 if (radix_tree_exception(page)) { 1433 if (radix_tree_deref_retry(page)) { 1434 slot = radix_tree_iter_retry(&iter); 1435 continue; 1436 } 1437 /* 1438 * A shadow entry of a recently evicted page, 1439 * or a swap entry from shmem/tmpfs. Stop 1440 * looking for contiguous pages. 1441 */ 1442 break; 1443 } 1444 1445 head = compound_head(page); 1446 if (!page_cache_get_speculative(head)) 1447 goto repeat; 1448 1449 /* The page was split under us? */ 1450 if (compound_head(page) != head) { 1451 put_page(head); 1452 goto repeat; 1453 } 1454 1455 /* Has the page moved? */ 1456 if (unlikely(page != *slot)) { 1457 put_page(head); 1458 goto repeat; 1459 } 1460 1461 /* 1462 * must check mapping and index after taking the ref. 1463 * otherwise we can get both false positives and false 1464 * negatives, which is just confusing to the caller. 1465 */ 1466 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1467 put_page(page); 1468 break; 1469 } 1470 1471 pages[ret] = page; 1472 if (++ret == nr_pages) 1473 break; 1474 } 1475 rcu_read_unlock(); 1476 return ret; 1477 } 1478 EXPORT_SYMBOL(find_get_pages_contig); 1479 1480 /** 1481 * find_get_pages_tag - find and return pages that match @tag 1482 * @mapping: the address_space to search 1483 * @index: the starting page index 1484 * @tag: the tag index 1485 * @nr_pages: the maximum number of pages 1486 * @pages: where the resulting pages are placed 1487 * 1488 * Like find_get_pages, except we only return pages which are tagged with 1489 * @tag. We update @index to index the next page for the traversal. 1490 */ 1491 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1492 int tag, unsigned int nr_pages, struct page **pages) 1493 { 1494 struct radix_tree_iter iter; 1495 void **slot; 1496 unsigned ret = 0; 1497 1498 if (unlikely(!nr_pages)) 1499 return 0; 1500 1501 rcu_read_lock(); 1502 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1503 &iter, *index, tag) { 1504 struct page *head, *page; 1505 repeat: 1506 page = radix_tree_deref_slot(slot); 1507 if (unlikely(!page)) 1508 continue; 1509 1510 if (radix_tree_exception(page)) { 1511 if (radix_tree_deref_retry(page)) { 1512 slot = radix_tree_iter_retry(&iter); 1513 continue; 1514 } 1515 /* 1516 * A shadow entry of a recently evicted page. 1517 * 1518 * Those entries should never be tagged, but 1519 * this tree walk is lockless and the tags are 1520 * looked up in bulk, one radix tree node at a 1521 * time, so there is a sizable window for page 1522 * reclaim to evict a page we saw tagged. 1523 * 1524 * Skip over it. 1525 */ 1526 continue; 1527 } 1528 1529 head = compound_head(page); 1530 if (!page_cache_get_speculative(head)) 1531 goto repeat; 1532 1533 /* The page was split under us? */ 1534 if (compound_head(page) != head) { 1535 put_page(head); 1536 goto repeat; 1537 } 1538 1539 /* Has the page moved? */ 1540 if (unlikely(page != *slot)) { 1541 put_page(head); 1542 goto repeat; 1543 } 1544 1545 pages[ret] = page; 1546 if (++ret == nr_pages) 1547 break; 1548 } 1549 1550 rcu_read_unlock(); 1551 1552 if (ret) 1553 *index = pages[ret - 1]->index + 1; 1554 1555 return ret; 1556 } 1557 EXPORT_SYMBOL(find_get_pages_tag); 1558 1559 /** 1560 * find_get_entries_tag - find and return entries that match @tag 1561 * @mapping: the address_space to search 1562 * @start: the starting page cache index 1563 * @tag: the tag index 1564 * @nr_entries: the maximum number of entries 1565 * @entries: where the resulting entries are placed 1566 * @indices: the cache indices corresponding to the entries in @entries 1567 * 1568 * Like find_get_entries, except we only return entries which are tagged with 1569 * @tag. 1570 */ 1571 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1572 int tag, unsigned int nr_entries, 1573 struct page **entries, pgoff_t *indices) 1574 { 1575 void **slot; 1576 unsigned int ret = 0; 1577 struct radix_tree_iter iter; 1578 1579 if (!nr_entries) 1580 return 0; 1581 1582 rcu_read_lock(); 1583 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1584 &iter, start, tag) { 1585 struct page *head, *page; 1586 repeat: 1587 page = radix_tree_deref_slot(slot); 1588 if (unlikely(!page)) 1589 continue; 1590 if (radix_tree_exception(page)) { 1591 if (radix_tree_deref_retry(page)) { 1592 slot = radix_tree_iter_retry(&iter); 1593 continue; 1594 } 1595 1596 /* 1597 * A shadow entry of a recently evicted page, a swap 1598 * entry from shmem/tmpfs or a DAX entry. Return it 1599 * without attempting to raise page count. 1600 */ 1601 goto export; 1602 } 1603 1604 head = compound_head(page); 1605 if (!page_cache_get_speculative(head)) 1606 goto repeat; 1607 1608 /* The page was split under us? */ 1609 if (compound_head(page) != head) { 1610 put_page(head); 1611 goto repeat; 1612 } 1613 1614 /* Has the page moved? */ 1615 if (unlikely(page != *slot)) { 1616 put_page(head); 1617 goto repeat; 1618 } 1619 export: 1620 indices[ret] = iter.index; 1621 entries[ret] = page; 1622 if (++ret == nr_entries) 1623 break; 1624 } 1625 rcu_read_unlock(); 1626 return ret; 1627 } 1628 EXPORT_SYMBOL(find_get_entries_tag); 1629 1630 /* 1631 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1632 * a _large_ part of the i/o request. Imagine the worst scenario: 1633 * 1634 * ---R__________________________________________B__________ 1635 * ^ reading here ^ bad block(assume 4k) 1636 * 1637 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1638 * => failing the whole request => read(R) => read(R+1) => 1639 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1640 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1641 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1642 * 1643 * It is going insane. Fix it by quickly scaling down the readahead size. 1644 */ 1645 static void shrink_readahead_size_eio(struct file *filp, 1646 struct file_ra_state *ra) 1647 { 1648 ra->ra_pages /= 4; 1649 } 1650 1651 /** 1652 * do_generic_file_read - generic file read routine 1653 * @filp: the file to read 1654 * @ppos: current file position 1655 * @iter: data destination 1656 * @written: already copied 1657 * 1658 * This is a generic file read routine, and uses the 1659 * mapping->a_ops->readpage() function for the actual low-level stuff. 1660 * 1661 * This is really ugly. But the goto's actually try to clarify some 1662 * of the logic when it comes to error handling etc. 1663 */ 1664 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1665 struct iov_iter *iter, ssize_t written) 1666 { 1667 struct address_space *mapping = filp->f_mapping; 1668 struct inode *inode = mapping->host; 1669 struct file_ra_state *ra = &filp->f_ra; 1670 pgoff_t index; 1671 pgoff_t last_index; 1672 pgoff_t prev_index; 1673 unsigned long offset; /* offset into pagecache page */ 1674 unsigned int prev_offset; 1675 int error = 0; 1676 1677 index = *ppos >> PAGE_SHIFT; 1678 prev_index = ra->prev_pos >> PAGE_SHIFT; 1679 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1680 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1681 offset = *ppos & ~PAGE_MASK; 1682 1683 for (;;) { 1684 struct page *page; 1685 pgoff_t end_index; 1686 loff_t isize; 1687 unsigned long nr, ret; 1688 1689 cond_resched(); 1690 find_page: 1691 page = find_get_page(mapping, index); 1692 if (!page) { 1693 page_cache_sync_readahead(mapping, 1694 ra, filp, 1695 index, last_index - index); 1696 page = find_get_page(mapping, index); 1697 if (unlikely(page == NULL)) 1698 goto no_cached_page; 1699 } 1700 if (PageReadahead(page)) { 1701 page_cache_async_readahead(mapping, 1702 ra, filp, page, 1703 index, last_index - index); 1704 } 1705 if (!PageUptodate(page)) { 1706 /* 1707 * See comment in do_read_cache_page on why 1708 * wait_on_page_locked is used to avoid unnecessarily 1709 * serialisations and why it's safe. 1710 */ 1711 wait_on_page_locked_killable(page); 1712 if (PageUptodate(page)) 1713 goto page_ok; 1714 1715 if (inode->i_blkbits == PAGE_SHIFT || 1716 !mapping->a_ops->is_partially_uptodate) 1717 goto page_not_up_to_date; 1718 if (!trylock_page(page)) 1719 goto page_not_up_to_date; 1720 /* Did it get truncated before we got the lock? */ 1721 if (!page->mapping) 1722 goto page_not_up_to_date_locked; 1723 if (!mapping->a_ops->is_partially_uptodate(page, 1724 offset, iter->count)) 1725 goto page_not_up_to_date_locked; 1726 unlock_page(page); 1727 } 1728 page_ok: 1729 /* 1730 * i_size must be checked after we know the page is Uptodate. 1731 * 1732 * Checking i_size after the check allows us to calculate 1733 * the correct value for "nr", which means the zero-filled 1734 * part of the page is not copied back to userspace (unless 1735 * another truncate extends the file - this is desired though). 1736 */ 1737 1738 isize = i_size_read(inode); 1739 end_index = (isize - 1) >> PAGE_SHIFT; 1740 if (unlikely(!isize || index > end_index)) { 1741 put_page(page); 1742 goto out; 1743 } 1744 1745 /* nr is the maximum number of bytes to copy from this page */ 1746 nr = PAGE_SIZE; 1747 if (index == end_index) { 1748 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1749 if (nr <= offset) { 1750 put_page(page); 1751 goto out; 1752 } 1753 } 1754 nr = nr - offset; 1755 1756 /* If users can be writing to this page using arbitrary 1757 * virtual addresses, take care about potential aliasing 1758 * before reading the page on the kernel side. 1759 */ 1760 if (mapping_writably_mapped(mapping)) 1761 flush_dcache_page(page); 1762 1763 /* 1764 * When a sequential read accesses a page several times, 1765 * only mark it as accessed the first time. 1766 */ 1767 if (prev_index != index || offset != prev_offset) 1768 mark_page_accessed(page); 1769 prev_index = index; 1770 1771 /* 1772 * Ok, we have the page, and it's up-to-date, so 1773 * now we can copy it to user space... 1774 */ 1775 1776 ret = copy_page_to_iter(page, offset, nr, iter); 1777 offset += ret; 1778 index += offset >> PAGE_SHIFT; 1779 offset &= ~PAGE_MASK; 1780 prev_offset = offset; 1781 1782 put_page(page); 1783 written += ret; 1784 if (!iov_iter_count(iter)) 1785 goto out; 1786 if (ret < nr) { 1787 error = -EFAULT; 1788 goto out; 1789 } 1790 continue; 1791 1792 page_not_up_to_date: 1793 /* Get exclusive access to the page ... */ 1794 error = lock_page_killable(page); 1795 if (unlikely(error)) 1796 goto readpage_error; 1797 1798 page_not_up_to_date_locked: 1799 /* Did it get truncated before we got the lock? */ 1800 if (!page->mapping) { 1801 unlock_page(page); 1802 put_page(page); 1803 continue; 1804 } 1805 1806 /* Did somebody else fill it already? */ 1807 if (PageUptodate(page)) { 1808 unlock_page(page); 1809 goto page_ok; 1810 } 1811 1812 readpage: 1813 /* 1814 * A previous I/O error may have been due to temporary 1815 * failures, eg. multipath errors. 1816 * PG_error will be set again if readpage fails. 1817 */ 1818 ClearPageError(page); 1819 /* Start the actual read. The read will unlock the page. */ 1820 error = mapping->a_ops->readpage(filp, page); 1821 1822 if (unlikely(error)) { 1823 if (error == AOP_TRUNCATED_PAGE) { 1824 put_page(page); 1825 error = 0; 1826 goto find_page; 1827 } 1828 goto readpage_error; 1829 } 1830 1831 if (!PageUptodate(page)) { 1832 error = lock_page_killable(page); 1833 if (unlikely(error)) 1834 goto readpage_error; 1835 if (!PageUptodate(page)) { 1836 if (page->mapping == NULL) { 1837 /* 1838 * invalidate_mapping_pages got it 1839 */ 1840 unlock_page(page); 1841 put_page(page); 1842 goto find_page; 1843 } 1844 unlock_page(page); 1845 shrink_readahead_size_eio(filp, ra); 1846 error = -EIO; 1847 goto readpage_error; 1848 } 1849 unlock_page(page); 1850 } 1851 1852 goto page_ok; 1853 1854 readpage_error: 1855 /* UHHUH! A synchronous read error occurred. Report it */ 1856 put_page(page); 1857 goto out; 1858 1859 no_cached_page: 1860 /* 1861 * Ok, it wasn't cached, so we need to create a new 1862 * page.. 1863 */ 1864 page = page_cache_alloc_cold(mapping); 1865 if (!page) { 1866 error = -ENOMEM; 1867 goto out; 1868 } 1869 error = add_to_page_cache_lru(page, mapping, index, 1870 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1871 if (error) { 1872 put_page(page); 1873 if (error == -EEXIST) { 1874 error = 0; 1875 goto find_page; 1876 } 1877 goto out; 1878 } 1879 goto readpage; 1880 } 1881 1882 out: 1883 ra->prev_pos = prev_index; 1884 ra->prev_pos <<= PAGE_SHIFT; 1885 ra->prev_pos |= prev_offset; 1886 1887 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 1888 file_accessed(filp); 1889 return written ? written : error; 1890 } 1891 1892 /** 1893 * generic_file_read_iter - generic filesystem read routine 1894 * @iocb: kernel I/O control block 1895 * @iter: destination for the data read 1896 * 1897 * This is the "read_iter()" routine for all filesystems 1898 * that can use the page cache directly. 1899 */ 1900 ssize_t 1901 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1902 { 1903 struct file *file = iocb->ki_filp; 1904 ssize_t retval = 0; 1905 size_t count = iov_iter_count(iter); 1906 1907 if (!count) 1908 goto out; /* skip atime */ 1909 1910 if (iocb->ki_flags & IOCB_DIRECT) { 1911 struct address_space *mapping = file->f_mapping; 1912 struct inode *inode = mapping->host; 1913 loff_t size; 1914 1915 size = i_size_read(inode); 1916 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, 1917 iocb->ki_pos + count - 1); 1918 if (!retval) { 1919 struct iov_iter data = *iter; 1920 retval = mapping->a_ops->direct_IO(iocb, &data); 1921 } 1922 1923 if (retval > 0) { 1924 iocb->ki_pos += retval; 1925 iov_iter_advance(iter, retval); 1926 } 1927 1928 /* 1929 * Btrfs can have a short DIO read if we encounter 1930 * compressed extents, so if there was an error, or if 1931 * we've already read everything we wanted to, or if 1932 * there was a short read because we hit EOF, go ahead 1933 * and return. Otherwise fallthrough to buffered io for 1934 * the rest of the read. Buffered reads will not work for 1935 * DAX files, so don't bother trying. 1936 */ 1937 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || 1938 IS_DAX(inode)) { 1939 file_accessed(file); 1940 goto out; 1941 } 1942 } 1943 1944 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 1945 out: 1946 return retval; 1947 } 1948 EXPORT_SYMBOL(generic_file_read_iter); 1949 1950 #ifdef CONFIG_MMU 1951 /** 1952 * page_cache_read - adds requested page to the page cache if not already there 1953 * @file: file to read 1954 * @offset: page index 1955 * @gfp_mask: memory allocation flags 1956 * 1957 * This adds the requested page to the page cache if it isn't already there, 1958 * and schedules an I/O to read in its contents from disk. 1959 */ 1960 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 1961 { 1962 struct address_space *mapping = file->f_mapping; 1963 struct page *page; 1964 int ret; 1965 1966 do { 1967 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 1968 if (!page) 1969 return -ENOMEM; 1970 1971 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 1972 if (ret == 0) 1973 ret = mapping->a_ops->readpage(file, page); 1974 else if (ret == -EEXIST) 1975 ret = 0; /* losing race to add is OK */ 1976 1977 put_page(page); 1978 1979 } while (ret == AOP_TRUNCATED_PAGE); 1980 1981 return ret; 1982 } 1983 1984 #define MMAP_LOTSAMISS (100) 1985 1986 /* 1987 * Synchronous readahead happens when we don't even find 1988 * a page in the page cache at all. 1989 */ 1990 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1991 struct file_ra_state *ra, 1992 struct file *file, 1993 pgoff_t offset) 1994 { 1995 struct address_space *mapping = file->f_mapping; 1996 1997 /* If we don't want any read-ahead, don't bother */ 1998 if (vma->vm_flags & VM_RAND_READ) 1999 return; 2000 if (!ra->ra_pages) 2001 return; 2002 2003 if (vma->vm_flags & VM_SEQ_READ) { 2004 page_cache_sync_readahead(mapping, ra, file, offset, 2005 ra->ra_pages); 2006 return; 2007 } 2008 2009 /* Avoid banging the cache line if not needed */ 2010 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2011 ra->mmap_miss++; 2012 2013 /* 2014 * Do we miss much more than hit in this file? If so, 2015 * stop bothering with read-ahead. It will only hurt. 2016 */ 2017 if (ra->mmap_miss > MMAP_LOTSAMISS) 2018 return; 2019 2020 /* 2021 * mmap read-around 2022 */ 2023 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2024 ra->size = ra->ra_pages; 2025 ra->async_size = ra->ra_pages / 4; 2026 ra_submit(ra, mapping, file); 2027 } 2028 2029 /* 2030 * Asynchronous readahead happens when we find the page and PG_readahead, 2031 * so we want to possibly extend the readahead further.. 2032 */ 2033 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2034 struct file_ra_state *ra, 2035 struct file *file, 2036 struct page *page, 2037 pgoff_t offset) 2038 { 2039 struct address_space *mapping = file->f_mapping; 2040 2041 /* If we don't want any read-ahead, don't bother */ 2042 if (vma->vm_flags & VM_RAND_READ) 2043 return; 2044 if (ra->mmap_miss > 0) 2045 ra->mmap_miss--; 2046 if (PageReadahead(page)) 2047 page_cache_async_readahead(mapping, ra, file, 2048 page, offset, ra->ra_pages); 2049 } 2050 2051 /** 2052 * filemap_fault - read in file data for page fault handling 2053 * @vma: vma in which the fault was taken 2054 * @vmf: struct vm_fault containing details of the fault 2055 * 2056 * filemap_fault() is invoked via the vma operations vector for a 2057 * mapped memory region to read in file data during a page fault. 2058 * 2059 * The goto's are kind of ugly, but this streamlines the normal case of having 2060 * it in the page cache, and handles the special cases reasonably without 2061 * having a lot of duplicated code. 2062 * 2063 * vma->vm_mm->mmap_sem must be held on entry. 2064 * 2065 * If our return value has VM_FAULT_RETRY set, it's because 2066 * lock_page_or_retry() returned 0. 2067 * The mmap_sem has usually been released in this case. 2068 * See __lock_page_or_retry() for the exception. 2069 * 2070 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2071 * has not been released. 2072 * 2073 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2074 */ 2075 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2076 { 2077 int error; 2078 struct file *file = vma->vm_file; 2079 struct address_space *mapping = file->f_mapping; 2080 struct file_ra_state *ra = &file->f_ra; 2081 struct inode *inode = mapping->host; 2082 pgoff_t offset = vmf->pgoff; 2083 struct page *page; 2084 loff_t size; 2085 int ret = 0; 2086 2087 size = round_up(i_size_read(inode), PAGE_SIZE); 2088 if (offset >= size >> PAGE_SHIFT) 2089 return VM_FAULT_SIGBUS; 2090 2091 /* 2092 * Do we have something in the page cache already? 2093 */ 2094 page = find_get_page(mapping, offset); 2095 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2096 /* 2097 * We found the page, so try async readahead before 2098 * waiting for the lock. 2099 */ 2100 do_async_mmap_readahead(vma, ra, file, page, offset); 2101 } else if (!page) { 2102 /* No page in the page cache at all */ 2103 do_sync_mmap_readahead(vma, ra, file, offset); 2104 count_vm_event(PGMAJFAULT); 2105 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2106 ret = VM_FAULT_MAJOR; 2107 retry_find: 2108 page = find_get_page(mapping, offset); 2109 if (!page) 2110 goto no_cached_page; 2111 } 2112 2113 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 2114 put_page(page); 2115 return ret | VM_FAULT_RETRY; 2116 } 2117 2118 /* Did it get truncated? */ 2119 if (unlikely(page->mapping != mapping)) { 2120 unlock_page(page); 2121 put_page(page); 2122 goto retry_find; 2123 } 2124 VM_BUG_ON_PAGE(page->index != offset, page); 2125 2126 /* 2127 * We have a locked page in the page cache, now we need to check 2128 * that it's up-to-date. If not, it is going to be due to an error. 2129 */ 2130 if (unlikely(!PageUptodate(page))) 2131 goto page_not_uptodate; 2132 2133 /* 2134 * Found the page and have a reference on it. 2135 * We must recheck i_size under page lock. 2136 */ 2137 size = round_up(i_size_read(inode), PAGE_SIZE); 2138 if (unlikely(offset >= size >> PAGE_SHIFT)) { 2139 unlock_page(page); 2140 put_page(page); 2141 return VM_FAULT_SIGBUS; 2142 } 2143 2144 vmf->page = page; 2145 return ret | VM_FAULT_LOCKED; 2146 2147 no_cached_page: 2148 /* 2149 * We're only likely to ever get here if MADV_RANDOM is in 2150 * effect. 2151 */ 2152 error = page_cache_read(file, offset, vmf->gfp_mask); 2153 2154 /* 2155 * The page we want has now been added to the page cache. 2156 * In the unlikely event that someone removed it in the 2157 * meantime, we'll just come back here and read it again. 2158 */ 2159 if (error >= 0) 2160 goto retry_find; 2161 2162 /* 2163 * An error return from page_cache_read can result if the 2164 * system is low on memory, or a problem occurs while trying 2165 * to schedule I/O. 2166 */ 2167 if (error == -ENOMEM) 2168 return VM_FAULT_OOM; 2169 return VM_FAULT_SIGBUS; 2170 2171 page_not_uptodate: 2172 /* 2173 * Umm, take care of errors if the page isn't up-to-date. 2174 * Try to re-read it _once_. We do this synchronously, 2175 * because there really aren't any performance issues here 2176 * and we need to check for errors. 2177 */ 2178 ClearPageError(page); 2179 error = mapping->a_ops->readpage(file, page); 2180 if (!error) { 2181 wait_on_page_locked(page); 2182 if (!PageUptodate(page)) 2183 error = -EIO; 2184 } 2185 put_page(page); 2186 2187 if (!error || error == AOP_TRUNCATED_PAGE) 2188 goto retry_find; 2189 2190 /* Things didn't work out. Return zero to tell the mm layer so. */ 2191 shrink_readahead_size_eio(file, ra); 2192 return VM_FAULT_SIGBUS; 2193 } 2194 EXPORT_SYMBOL(filemap_fault); 2195 2196 void filemap_map_pages(struct fault_env *fe, 2197 pgoff_t start_pgoff, pgoff_t end_pgoff) 2198 { 2199 struct radix_tree_iter iter; 2200 void **slot; 2201 struct file *file = fe->vma->vm_file; 2202 struct address_space *mapping = file->f_mapping; 2203 pgoff_t last_pgoff = start_pgoff; 2204 loff_t size; 2205 struct page *head, *page; 2206 2207 rcu_read_lock(); 2208 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2209 start_pgoff) { 2210 if (iter.index > end_pgoff) 2211 break; 2212 repeat: 2213 page = radix_tree_deref_slot(slot); 2214 if (unlikely(!page)) 2215 goto next; 2216 if (radix_tree_exception(page)) { 2217 if (radix_tree_deref_retry(page)) { 2218 slot = radix_tree_iter_retry(&iter); 2219 continue; 2220 } 2221 goto next; 2222 } 2223 2224 head = compound_head(page); 2225 if (!page_cache_get_speculative(head)) 2226 goto repeat; 2227 2228 /* The page was split under us? */ 2229 if (compound_head(page) != head) { 2230 put_page(head); 2231 goto repeat; 2232 } 2233 2234 /* Has the page moved? */ 2235 if (unlikely(page != *slot)) { 2236 put_page(head); 2237 goto repeat; 2238 } 2239 2240 if (!PageUptodate(page) || 2241 PageReadahead(page) || 2242 PageHWPoison(page)) 2243 goto skip; 2244 if (!trylock_page(page)) 2245 goto skip; 2246 2247 if (page->mapping != mapping || !PageUptodate(page)) 2248 goto unlock; 2249 2250 size = round_up(i_size_read(mapping->host), PAGE_SIZE); 2251 if (page->index >= size >> PAGE_SHIFT) 2252 goto unlock; 2253 2254 if (file->f_ra.mmap_miss > 0) 2255 file->f_ra.mmap_miss--; 2256 2257 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2258 if (fe->pte) 2259 fe->pte += iter.index - last_pgoff; 2260 last_pgoff = iter.index; 2261 if (alloc_set_pte(fe, NULL, page)) 2262 goto unlock; 2263 unlock_page(page); 2264 goto next; 2265 unlock: 2266 unlock_page(page); 2267 skip: 2268 put_page(page); 2269 next: 2270 /* Huge page is mapped? No need to proceed. */ 2271 if (pmd_trans_huge(*fe->pmd)) 2272 break; 2273 if (iter.index == end_pgoff) 2274 break; 2275 } 2276 rcu_read_unlock(); 2277 } 2278 EXPORT_SYMBOL(filemap_map_pages); 2279 2280 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2281 { 2282 struct page *page = vmf->page; 2283 struct inode *inode = file_inode(vma->vm_file); 2284 int ret = VM_FAULT_LOCKED; 2285 2286 sb_start_pagefault(inode->i_sb); 2287 file_update_time(vma->vm_file); 2288 lock_page(page); 2289 if (page->mapping != inode->i_mapping) { 2290 unlock_page(page); 2291 ret = VM_FAULT_NOPAGE; 2292 goto out; 2293 } 2294 /* 2295 * We mark the page dirty already here so that when freeze is in 2296 * progress, we are guaranteed that writeback during freezing will 2297 * see the dirty page and writeprotect it again. 2298 */ 2299 set_page_dirty(page); 2300 wait_for_stable_page(page); 2301 out: 2302 sb_end_pagefault(inode->i_sb); 2303 return ret; 2304 } 2305 EXPORT_SYMBOL(filemap_page_mkwrite); 2306 2307 const struct vm_operations_struct generic_file_vm_ops = { 2308 .fault = filemap_fault, 2309 .map_pages = filemap_map_pages, 2310 .page_mkwrite = filemap_page_mkwrite, 2311 }; 2312 2313 /* This is used for a general mmap of a disk file */ 2314 2315 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2316 { 2317 struct address_space *mapping = file->f_mapping; 2318 2319 if (!mapping->a_ops->readpage) 2320 return -ENOEXEC; 2321 file_accessed(file); 2322 vma->vm_ops = &generic_file_vm_ops; 2323 return 0; 2324 } 2325 2326 /* 2327 * This is for filesystems which do not implement ->writepage. 2328 */ 2329 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2330 { 2331 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2332 return -EINVAL; 2333 return generic_file_mmap(file, vma); 2334 } 2335 #else 2336 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2337 { 2338 return -ENOSYS; 2339 } 2340 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2341 { 2342 return -ENOSYS; 2343 } 2344 #endif /* CONFIG_MMU */ 2345 2346 EXPORT_SYMBOL(generic_file_mmap); 2347 EXPORT_SYMBOL(generic_file_readonly_mmap); 2348 2349 static struct page *wait_on_page_read(struct page *page) 2350 { 2351 if (!IS_ERR(page)) { 2352 wait_on_page_locked(page); 2353 if (!PageUptodate(page)) { 2354 put_page(page); 2355 page = ERR_PTR(-EIO); 2356 } 2357 } 2358 return page; 2359 } 2360 2361 static struct page *do_read_cache_page(struct address_space *mapping, 2362 pgoff_t index, 2363 int (*filler)(void *, struct page *), 2364 void *data, 2365 gfp_t gfp) 2366 { 2367 struct page *page; 2368 int err; 2369 repeat: 2370 page = find_get_page(mapping, index); 2371 if (!page) { 2372 page = __page_cache_alloc(gfp | __GFP_COLD); 2373 if (!page) 2374 return ERR_PTR(-ENOMEM); 2375 err = add_to_page_cache_lru(page, mapping, index, gfp); 2376 if (unlikely(err)) { 2377 put_page(page); 2378 if (err == -EEXIST) 2379 goto repeat; 2380 /* Presumably ENOMEM for radix tree node */ 2381 return ERR_PTR(err); 2382 } 2383 2384 filler: 2385 err = filler(data, page); 2386 if (err < 0) { 2387 put_page(page); 2388 return ERR_PTR(err); 2389 } 2390 2391 page = wait_on_page_read(page); 2392 if (IS_ERR(page)) 2393 return page; 2394 goto out; 2395 } 2396 if (PageUptodate(page)) 2397 goto out; 2398 2399 /* 2400 * Page is not up to date and may be locked due one of the following 2401 * case a: Page is being filled and the page lock is held 2402 * case b: Read/write error clearing the page uptodate status 2403 * case c: Truncation in progress (page locked) 2404 * case d: Reclaim in progress 2405 * 2406 * Case a, the page will be up to date when the page is unlocked. 2407 * There is no need to serialise on the page lock here as the page 2408 * is pinned so the lock gives no additional protection. Even if the 2409 * the page is truncated, the data is still valid if PageUptodate as 2410 * it's a race vs truncate race. 2411 * Case b, the page will not be up to date 2412 * Case c, the page may be truncated but in itself, the data may still 2413 * be valid after IO completes as it's a read vs truncate race. The 2414 * operation must restart if the page is not uptodate on unlock but 2415 * otherwise serialising on page lock to stabilise the mapping gives 2416 * no additional guarantees to the caller as the page lock is 2417 * released before return. 2418 * Case d, similar to truncation. If reclaim holds the page lock, it 2419 * will be a race with remove_mapping that determines if the mapping 2420 * is valid on unlock but otherwise the data is valid and there is 2421 * no need to serialise with page lock. 2422 * 2423 * As the page lock gives no additional guarantee, we optimistically 2424 * wait on the page to be unlocked and check if it's up to date and 2425 * use the page if it is. Otherwise, the page lock is required to 2426 * distinguish between the different cases. The motivation is that we 2427 * avoid spurious serialisations and wakeups when multiple processes 2428 * wait on the same page for IO to complete. 2429 */ 2430 wait_on_page_locked(page); 2431 if (PageUptodate(page)) 2432 goto out; 2433 2434 /* Distinguish between all the cases under the safety of the lock */ 2435 lock_page(page); 2436 2437 /* Case c or d, restart the operation */ 2438 if (!page->mapping) { 2439 unlock_page(page); 2440 put_page(page); 2441 goto repeat; 2442 } 2443 2444 /* Someone else locked and filled the page in a very small window */ 2445 if (PageUptodate(page)) { 2446 unlock_page(page); 2447 goto out; 2448 } 2449 goto filler; 2450 2451 out: 2452 mark_page_accessed(page); 2453 return page; 2454 } 2455 2456 /** 2457 * read_cache_page - read into page cache, fill it if needed 2458 * @mapping: the page's address_space 2459 * @index: the page index 2460 * @filler: function to perform the read 2461 * @data: first arg to filler(data, page) function, often left as NULL 2462 * 2463 * Read into the page cache. If a page already exists, and PageUptodate() is 2464 * not set, try to fill the page and wait for it to become unlocked. 2465 * 2466 * If the page does not get brought uptodate, return -EIO. 2467 */ 2468 struct page *read_cache_page(struct address_space *mapping, 2469 pgoff_t index, 2470 int (*filler)(void *, struct page *), 2471 void *data) 2472 { 2473 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2474 } 2475 EXPORT_SYMBOL(read_cache_page); 2476 2477 /** 2478 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2479 * @mapping: the page's address_space 2480 * @index: the page index 2481 * @gfp: the page allocator flags to use if allocating 2482 * 2483 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2484 * any new page allocations done using the specified allocation flags. 2485 * 2486 * If the page does not get brought uptodate, return -EIO. 2487 */ 2488 struct page *read_cache_page_gfp(struct address_space *mapping, 2489 pgoff_t index, 2490 gfp_t gfp) 2491 { 2492 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2493 2494 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2495 } 2496 EXPORT_SYMBOL(read_cache_page_gfp); 2497 2498 /* 2499 * Performs necessary checks before doing a write 2500 * 2501 * Can adjust writing position or amount of bytes to write. 2502 * Returns appropriate error code that caller should return or 2503 * zero in case that write should be allowed. 2504 */ 2505 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2506 { 2507 struct file *file = iocb->ki_filp; 2508 struct inode *inode = file->f_mapping->host; 2509 unsigned long limit = rlimit(RLIMIT_FSIZE); 2510 loff_t pos; 2511 2512 if (!iov_iter_count(from)) 2513 return 0; 2514 2515 /* FIXME: this is for backwards compatibility with 2.4 */ 2516 if (iocb->ki_flags & IOCB_APPEND) 2517 iocb->ki_pos = i_size_read(inode); 2518 2519 pos = iocb->ki_pos; 2520 2521 if (limit != RLIM_INFINITY) { 2522 if (iocb->ki_pos >= limit) { 2523 send_sig(SIGXFSZ, current, 0); 2524 return -EFBIG; 2525 } 2526 iov_iter_truncate(from, limit - (unsigned long)pos); 2527 } 2528 2529 /* 2530 * LFS rule 2531 */ 2532 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2533 !(file->f_flags & O_LARGEFILE))) { 2534 if (pos >= MAX_NON_LFS) 2535 return -EFBIG; 2536 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2537 } 2538 2539 /* 2540 * Are we about to exceed the fs block limit ? 2541 * 2542 * If we have written data it becomes a short write. If we have 2543 * exceeded without writing data we send a signal and return EFBIG. 2544 * Linus frestrict idea will clean these up nicely.. 2545 */ 2546 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2547 return -EFBIG; 2548 2549 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2550 return iov_iter_count(from); 2551 } 2552 EXPORT_SYMBOL(generic_write_checks); 2553 2554 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2555 loff_t pos, unsigned len, unsigned flags, 2556 struct page **pagep, void **fsdata) 2557 { 2558 const struct address_space_operations *aops = mapping->a_ops; 2559 2560 return aops->write_begin(file, mapping, pos, len, flags, 2561 pagep, fsdata); 2562 } 2563 EXPORT_SYMBOL(pagecache_write_begin); 2564 2565 int pagecache_write_end(struct file *file, struct address_space *mapping, 2566 loff_t pos, unsigned len, unsigned copied, 2567 struct page *page, void *fsdata) 2568 { 2569 const struct address_space_operations *aops = mapping->a_ops; 2570 2571 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2572 } 2573 EXPORT_SYMBOL(pagecache_write_end); 2574 2575 ssize_t 2576 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2577 { 2578 struct file *file = iocb->ki_filp; 2579 struct address_space *mapping = file->f_mapping; 2580 struct inode *inode = mapping->host; 2581 loff_t pos = iocb->ki_pos; 2582 ssize_t written; 2583 size_t write_len; 2584 pgoff_t end; 2585 struct iov_iter data; 2586 2587 write_len = iov_iter_count(from); 2588 end = (pos + write_len - 1) >> PAGE_SHIFT; 2589 2590 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2591 if (written) 2592 goto out; 2593 2594 /* 2595 * After a write we want buffered reads to be sure to go to disk to get 2596 * the new data. We invalidate clean cached page from the region we're 2597 * about to write. We do this *before* the write so that we can return 2598 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2599 */ 2600 if (mapping->nrpages) { 2601 written = invalidate_inode_pages2_range(mapping, 2602 pos >> PAGE_SHIFT, end); 2603 /* 2604 * If a page can not be invalidated, return 0 to fall back 2605 * to buffered write. 2606 */ 2607 if (written) { 2608 if (written == -EBUSY) 2609 return 0; 2610 goto out; 2611 } 2612 } 2613 2614 data = *from; 2615 written = mapping->a_ops->direct_IO(iocb, &data); 2616 2617 /* 2618 * Finally, try again to invalidate clean pages which might have been 2619 * cached by non-direct readahead, or faulted in by get_user_pages() 2620 * if the source of the write was an mmap'ed region of the file 2621 * we're writing. Either one is a pretty crazy thing to do, 2622 * so we don't support it 100%. If this invalidation 2623 * fails, tough, the write still worked... 2624 */ 2625 if (mapping->nrpages) { 2626 invalidate_inode_pages2_range(mapping, 2627 pos >> PAGE_SHIFT, end); 2628 } 2629 2630 if (written > 0) { 2631 pos += written; 2632 iov_iter_advance(from, written); 2633 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2634 i_size_write(inode, pos); 2635 mark_inode_dirty(inode); 2636 } 2637 iocb->ki_pos = pos; 2638 } 2639 out: 2640 return written; 2641 } 2642 EXPORT_SYMBOL(generic_file_direct_write); 2643 2644 /* 2645 * Find or create a page at the given pagecache position. Return the locked 2646 * page. This function is specifically for buffered writes. 2647 */ 2648 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2649 pgoff_t index, unsigned flags) 2650 { 2651 struct page *page; 2652 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2653 2654 if (flags & AOP_FLAG_NOFS) 2655 fgp_flags |= FGP_NOFS; 2656 2657 page = pagecache_get_page(mapping, index, fgp_flags, 2658 mapping_gfp_mask(mapping)); 2659 if (page) 2660 wait_for_stable_page(page); 2661 2662 return page; 2663 } 2664 EXPORT_SYMBOL(grab_cache_page_write_begin); 2665 2666 ssize_t generic_perform_write(struct file *file, 2667 struct iov_iter *i, loff_t pos) 2668 { 2669 struct address_space *mapping = file->f_mapping; 2670 const struct address_space_operations *a_ops = mapping->a_ops; 2671 long status = 0; 2672 ssize_t written = 0; 2673 unsigned int flags = 0; 2674 2675 /* 2676 * Copies from kernel address space cannot fail (NFSD is a big user). 2677 */ 2678 if (!iter_is_iovec(i)) 2679 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2680 2681 do { 2682 struct page *page; 2683 unsigned long offset; /* Offset into pagecache page */ 2684 unsigned long bytes; /* Bytes to write to page */ 2685 size_t copied; /* Bytes copied from user */ 2686 void *fsdata; 2687 2688 offset = (pos & (PAGE_SIZE - 1)); 2689 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2690 iov_iter_count(i)); 2691 2692 again: 2693 /* 2694 * Bring in the user page that we will copy from _first_. 2695 * Otherwise there's a nasty deadlock on copying from the 2696 * same page as we're writing to, without it being marked 2697 * up-to-date. 2698 * 2699 * Not only is this an optimisation, but it is also required 2700 * to check that the address is actually valid, when atomic 2701 * usercopies are used, below. 2702 */ 2703 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2704 status = -EFAULT; 2705 break; 2706 } 2707 2708 if (fatal_signal_pending(current)) { 2709 status = -EINTR; 2710 break; 2711 } 2712 2713 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2714 &page, &fsdata); 2715 if (unlikely(status < 0)) 2716 break; 2717 2718 if (mapping_writably_mapped(mapping)) 2719 flush_dcache_page(page); 2720 2721 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2722 flush_dcache_page(page); 2723 2724 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2725 page, fsdata); 2726 if (unlikely(status < 0)) 2727 break; 2728 copied = status; 2729 2730 cond_resched(); 2731 2732 iov_iter_advance(i, copied); 2733 if (unlikely(copied == 0)) { 2734 /* 2735 * If we were unable to copy any data at all, we must 2736 * fall back to a single segment length write. 2737 * 2738 * If we didn't fallback here, we could livelock 2739 * because not all segments in the iov can be copied at 2740 * once without a pagefault. 2741 */ 2742 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2743 iov_iter_single_seg_count(i)); 2744 goto again; 2745 } 2746 pos += copied; 2747 written += copied; 2748 2749 balance_dirty_pages_ratelimited(mapping); 2750 } while (iov_iter_count(i)); 2751 2752 return written ? written : status; 2753 } 2754 EXPORT_SYMBOL(generic_perform_write); 2755 2756 /** 2757 * __generic_file_write_iter - write data to a file 2758 * @iocb: IO state structure (file, offset, etc.) 2759 * @from: iov_iter with data to write 2760 * 2761 * This function does all the work needed for actually writing data to a 2762 * file. It does all basic checks, removes SUID from the file, updates 2763 * modification times and calls proper subroutines depending on whether we 2764 * do direct IO or a standard buffered write. 2765 * 2766 * It expects i_mutex to be grabbed unless we work on a block device or similar 2767 * object which does not need locking at all. 2768 * 2769 * This function does *not* take care of syncing data in case of O_SYNC write. 2770 * A caller has to handle it. This is mainly due to the fact that we want to 2771 * avoid syncing under i_mutex. 2772 */ 2773 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2774 { 2775 struct file *file = iocb->ki_filp; 2776 struct address_space * mapping = file->f_mapping; 2777 struct inode *inode = mapping->host; 2778 ssize_t written = 0; 2779 ssize_t err; 2780 ssize_t status; 2781 2782 /* We can write back this queue in page reclaim */ 2783 current->backing_dev_info = inode_to_bdi(inode); 2784 err = file_remove_privs(file); 2785 if (err) 2786 goto out; 2787 2788 err = file_update_time(file); 2789 if (err) 2790 goto out; 2791 2792 if (iocb->ki_flags & IOCB_DIRECT) { 2793 loff_t pos, endbyte; 2794 2795 written = generic_file_direct_write(iocb, from); 2796 /* 2797 * If the write stopped short of completing, fall back to 2798 * buffered writes. Some filesystems do this for writes to 2799 * holes, for example. For DAX files, a buffered write will 2800 * not succeed (even if it did, DAX does not handle dirty 2801 * page-cache pages correctly). 2802 */ 2803 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2804 goto out; 2805 2806 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2807 /* 2808 * If generic_perform_write() returned a synchronous error 2809 * then we want to return the number of bytes which were 2810 * direct-written, or the error code if that was zero. Note 2811 * that this differs from normal direct-io semantics, which 2812 * will return -EFOO even if some bytes were written. 2813 */ 2814 if (unlikely(status < 0)) { 2815 err = status; 2816 goto out; 2817 } 2818 /* 2819 * We need to ensure that the page cache pages are written to 2820 * disk and invalidated to preserve the expected O_DIRECT 2821 * semantics. 2822 */ 2823 endbyte = pos + status - 1; 2824 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2825 if (err == 0) { 2826 iocb->ki_pos = endbyte + 1; 2827 written += status; 2828 invalidate_mapping_pages(mapping, 2829 pos >> PAGE_SHIFT, 2830 endbyte >> PAGE_SHIFT); 2831 } else { 2832 /* 2833 * We don't know how much we wrote, so just return 2834 * the number of bytes which were direct-written 2835 */ 2836 } 2837 } else { 2838 written = generic_perform_write(file, from, iocb->ki_pos); 2839 if (likely(written > 0)) 2840 iocb->ki_pos += written; 2841 } 2842 out: 2843 current->backing_dev_info = NULL; 2844 return written ? written : err; 2845 } 2846 EXPORT_SYMBOL(__generic_file_write_iter); 2847 2848 /** 2849 * generic_file_write_iter - write data to a file 2850 * @iocb: IO state structure 2851 * @from: iov_iter with data to write 2852 * 2853 * This is a wrapper around __generic_file_write_iter() to be used by most 2854 * filesystems. It takes care of syncing the file in case of O_SYNC file 2855 * and acquires i_mutex as needed. 2856 */ 2857 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2858 { 2859 struct file *file = iocb->ki_filp; 2860 struct inode *inode = file->f_mapping->host; 2861 ssize_t ret; 2862 2863 inode_lock(inode); 2864 ret = generic_write_checks(iocb, from); 2865 if (ret > 0) 2866 ret = __generic_file_write_iter(iocb, from); 2867 inode_unlock(inode); 2868 2869 if (ret > 0) 2870 ret = generic_write_sync(iocb, ret); 2871 return ret; 2872 } 2873 EXPORT_SYMBOL(generic_file_write_iter); 2874 2875 /** 2876 * try_to_release_page() - release old fs-specific metadata on a page 2877 * 2878 * @page: the page which the kernel is trying to free 2879 * @gfp_mask: memory allocation flags (and I/O mode) 2880 * 2881 * The address_space is to try to release any data against the page 2882 * (presumably at page->private). If the release was successful, return `1'. 2883 * Otherwise return zero. 2884 * 2885 * This may also be called if PG_fscache is set on a page, indicating that the 2886 * page is known to the local caching routines. 2887 * 2888 * The @gfp_mask argument specifies whether I/O may be performed to release 2889 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 2890 * 2891 */ 2892 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2893 { 2894 struct address_space * const mapping = page->mapping; 2895 2896 BUG_ON(!PageLocked(page)); 2897 if (PageWriteback(page)) 2898 return 0; 2899 2900 if (mapping && mapping->a_ops->releasepage) 2901 return mapping->a_ops->releasepage(page, gfp_mask); 2902 return try_to_free_buffers(page); 2903 } 2904 2905 EXPORT_SYMBOL(try_to_release_page); 2906