xref: /openbmc/linux/mm/filemap.c (revision e9839402)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 			if (node)
136 				workingset_node_shadows_dec(node);
137 		} else {
138 			/* DAX can replace empty locked entry with a hole */
139 			WARN_ON_ONCE(p !=
140 				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 					 RADIX_DAX_ENTRY_LOCK));
142 			/* DAX accounts exceptional entries as normal pages */
143 			if (node)
144 				workingset_node_pages_dec(node);
145 			/* Wakeup waiters for exceptional entry lock */
146 			dax_wake_mapping_entry_waiter(mapping, page->index,
147 						      false);
148 		}
149 	}
150 	radix_tree_replace_slot(slot, page);
151 	mapping->nrpages++;
152 	if (node) {
153 		workingset_node_pages_inc(node);
154 		/*
155 		 * Don't track node that contains actual pages.
156 		 *
157 		 * Avoid acquiring the list_lru lock if already
158 		 * untracked.  The list_empty() test is safe as
159 		 * node->private_list is protected by
160 		 * mapping->tree_lock.
161 		 */
162 		if (!list_empty(&node->private_list))
163 			list_lru_del(&workingset_shadow_nodes,
164 				     &node->private_list);
165 	}
166 	return 0;
167 }
168 
169 static void page_cache_tree_delete(struct address_space *mapping,
170 				   struct page *page, void *shadow)
171 {
172 	int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173 
174 	VM_BUG_ON_PAGE(!PageLocked(page), page);
175 	VM_BUG_ON_PAGE(PageTail(page), page);
176 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177 
178 	for (i = 0; i < nr; i++) {
179 		struct radix_tree_node *node;
180 		void **slot;
181 
182 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
183 				    &node, &slot);
184 
185 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
186 
187 		if (!node) {
188 			VM_BUG_ON_PAGE(nr != 1, page);
189 			/*
190 			 * We need a node to properly account shadow
191 			 * entries. Don't plant any without. XXX
192 			 */
193 			shadow = NULL;
194 		}
195 
196 		radix_tree_replace_slot(slot, shadow);
197 
198 		if (!node)
199 			break;
200 
201 		workingset_node_pages_dec(node);
202 		if (shadow)
203 			workingset_node_shadows_inc(node);
204 		else
205 			if (__radix_tree_delete_node(&mapping->page_tree, node))
206 				continue;
207 
208 		/*
209 		 * Track node that only contains shadow entries. DAX mappings
210 		 * contain no shadow entries and may contain other exceptional
211 		 * entries so skip those.
212 		 *
213 		 * Avoid acquiring the list_lru lock if already tracked.
214 		 * The list_empty() test is safe as node->private_list is
215 		 * protected by mapping->tree_lock.
216 		 */
217 		if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 				list_empty(&node->private_list)) {
219 			node->private_data = mapping;
220 			list_lru_add(&workingset_shadow_nodes,
221 					&node->private_list);
222 		}
223 	}
224 
225 	if (shadow) {
226 		mapping->nrexceptional += nr;
227 		/*
228 		 * Make sure the nrexceptional update is committed before
229 		 * the nrpages update so that final truncate racing
230 		 * with reclaim does not see both counters 0 at the
231 		 * same time and miss a shadow entry.
232 		 */
233 		smp_wmb();
234 	}
235 	mapping->nrpages -= nr;
236 }
237 
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245 	struct address_space *mapping = page->mapping;
246 	int nr = hpage_nr_pages(page);
247 
248 	trace_mm_filemap_delete_from_page_cache(page);
249 	/*
250 	 * if we're uptodate, flush out into the cleancache, otherwise
251 	 * invalidate any existing cleancache entries.  We can't leave
252 	 * stale data around in the cleancache once our page is gone
253 	 */
254 	if (PageUptodate(page) && PageMappedToDisk(page))
255 		cleancache_put_page(page);
256 	else
257 		cleancache_invalidate_page(mapping, page);
258 
259 	VM_BUG_ON_PAGE(PageTail(page), page);
260 	VM_BUG_ON_PAGE(page_mapped(page), page);
261 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 		int mapcount;
263 
264 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265 			 current->comm, page_to_pfn(page));
266 		dump_page(page, "still mapped when deleted");
267 		dump_stack();
268 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269 
270 		mapcount = page_mapcount(page);
271 		if (mapping_exiting(mapping) &&
272 		    page_count(page) >= mapcount + 2) {
273 			/*
274 			 * All vmas have already been torn down, so it's
275 			 * a good bet that actually the page is unmapped,
276 			 * and we'd prefer not to leak it: if we're wrong,
277 			 * some other bad page check should catch it later.
278 			 */
279 			page_mapcount_reset(page);
280 			page_ref_sub(page, mapcount);
281 		}
282 	}
283 
284 	page_cache_tree_delete(mapping, page, shadow);
285 
286 	page->mapping = NULL;
287 	/* Leave page->index set: truncation lookup relies upon it */
288 
289 	/* hugetlb pages do not participate in page cache accounting. */
290 	if (!PageHuge(page))
291 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 	if (PageSwapBacked(page)) {
293 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 		if (PageTransHuge(page))
295 			__dec_node_page_state(page, NR_SHMEM_THPS);
296 	} else {
297 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 	}
299 
300 	/*
301 	 * At this point page must be either written or cleaned by truncate.
302 	 * Dirty page here signals a bug and loss of unwritten data.
303 	 *
304 	 * This fixes dirty accounting after removing the page entirely but
305 	 * leaves PageDirty set: it has no effect for truncated page and
306 	 * anyway will be cleared before returning page into buddy allocator.
307 	 */
308 	if (WARN_ON_ONCE(PageDirty(page)))
309 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311 
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
320 void delete_from_page_cache(struct page *page)
321 {
322 	struct address_space *mapping = page_mapping(page);
323 	unsigned long flags;
324 	void (*freepage)(struct page *);
325 
326 	BUG_ON(!PageLocked(page));
327 
328 	freepage = mapping->a_ops->freepage;
329 
330 	spin_lock_irqsave(&mapping->tree_lock, flags);
331 	__delete_from_page_cache(page, NULL);
332 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
333 
334 	if (freepage)
335 		freepage(page);
336 
337 	if (PageTransHuge(page) && !PageHuge(page)) {
338 		page_ref_sub(page, HPAGE_PMD_NR);
339 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 	} else {
341 		put_page(page);
342 	}
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:	address space structure to write
363  * @start:	offset in bytes where the range starts
364  * @end:	offset in bytes where the range ends (inclusive)
365  * @sync_mode:	enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 				loff_t end, int sync_mode)
377 {
378 	int ret;
379 	struct writeback_control wbc = {
380 		.sync_mode = sync_mode,
381 		.nr_to_write = LONG_MAX,
382 		.range_start = start,
383 		.range_end = end,
384 	};
385 
386 	if (!mapping_cap_writeback_dirty(mapping))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 	ret = do_writepages(mapping, &wbc);
391 	wbc_detach_inode(&wbc);
392 	return ret;
393 }
394 
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 	int sync_mode)
397 {
398 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400 
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406 
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 				loff_t end)
409 {
410 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413 
414 /**
415  * filemap_flush - mostly a non-blocking flush
416  * @mapping:	target address_space
417  *
418  * This is a mostly non-blocking flush.  Not suitable for data-integrity
419  * purposes - I/O may not be started against all dirty pages.
420  */
421 int filemap_flush(struct address_space *mapping)
422 {
423 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426 
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 				     loff_t start_byte, loff_t end_byte)
429 {
430 	pgoff_t index = start_byte >> PAGE_SHIFT;
431 	pgoff_t end = end_byte >> PAGE_SHIFT;
432 	struct pagevec pvec;
433 	int nr_pages;
434 	int ret = 0;
435 
436 	if (end_byte < start_byte)
437 		goto out;
438 
439 	pagevec_init(&pvec, 0);
440 	while ((index <= end) &&
441 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 			PAGECACHE_TAG_WRITEBACK,
443 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 		unsigned i;
445 
446 		for (i = 0; i < nr_pages; i++) {
447 			struct page *page = pvec.pages[i];
448 
449 			/* until radix tree lookup accepts end_index */
450 			if (page->index > end)
451 				continue;
452 
453 			wait_on_page_writeback(page);
454 			if (TestClearPageError(page))
455 				ret = -EIO;
456 		}
457 		pagevec_release(&pvec);
458 		cond_resched();
459 	}
460 out:
461 	return ret;
462 }
463 
464 /**
465  * filemap_fdatawait_range - wait for writeback to complete
466  * @mapping:		address space structure to wait for
467  * @start_byte:		offset in bytes where the range starts
468  * @end_byte:		offset in bytes where the range ends (inclusive)
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * in the given range and wait for all of them.  Check error status of
472  * the address space and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 			    loff_t end_byte)
480 {
481 	int ret, ret2;
482 
483 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 	ret2 = filemap_check_errors(mapping);
485 	if (!ret)
486 		ret = ret2;
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491 
492 /**
493  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494  * @mapping: address space structure to wait for
495  *
496  * Walk the list of under-writeback pages of the given address space
497  * and wait for all of them.  Unlike filemap_fdatawait(), this function
498  * does not clear error status of the address space.
499  *
500  * Use this function if callers don't handle errors themselves.  Expected
501  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502  * fsfreeze(8)
503  */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506 	loff_t i_size = i_size_read(mapping->host);
507 
508 	if (i_size == 0)
509 		return;
510 
511 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513 
514 /**
515  * filemap_fdatawait - wait for all under-writeback pages to complete
516  * @mapping: address space structure to wait for
517  *
518  * Walk the list of under-writeback pages of the given address space
519  * and wait for all of them.  Check error status of the address space
520  * and return it.
521  *
522  * Since the error status of the address space is cleared by this function,
523  * callers are responsible for checking the return value and handling and/or
524  * reporting the error.
525  */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528 	loff_t i_size = i_size_read(mapping->host);
529 
530 	if (i_size == 0)
531 		return 0;
532 
533 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536 
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 	int err = 0;
540 
541 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
543 		err = filemap_fdatawrite(mapping);
544 		/*
545 		 * Even if the above returned error, the pages may be
546 		 * written partially (e.g. -ENOSPC), so we wait for it.
547 		 * But the -EIO is special case, it may indicate the worst
548 		 * thing (e.g. bug) happened, so we avoid waiting for it.
549 		 */
550 		if (err != -EIO) {
551 			int err2 = filemap_fdatawait(mapping);
552 			if (!err)
553 				err = err2;
554 		}
555 	} else {
556 		err = filemap_check_errors(mapping);
557 	}
558 	return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561 
562 /**
563  * filemap_write_and_wait_range - write out & wait on a file range
564  * @mapping:	the address_space for the pages
565  * @lstart:	offset in bytes where the range starts
566  * @lend:	offset in bytes where the range ends (inclusive)
567  *
568  * Write out and wait upon file offsets lstart->lend, inclusive.
569  *
570  * Note that `lend' is inclusive (describes the last byte to be written) so
571  * that this function can be used to write to the very end-of-file (end = -1).
572  */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 				 loff_t lstart, loff_t lend)
575 {
576 	int err = 0;
577 
578 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
580 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 						 WB_SYNC_ALL);
582 		/* See comment of filemap_write_and_wait() */
583 		if (err != -EIO) {
584 			int err2 = filemap_fdatawait_range(mapping,
585 						lstart, lend);
586 			if (!err)
587 				err = err2;
588 		}
589 	} else {
590 		err = filemap_check_errors(mapping);
591 	}
592 	return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595 
596 /**
597  * replace_page_cache_page - replace a pagecache page with a new one
598  * @old:	page to be replaced
599  * @new:	page to replace with
600  * @gfp_mask:	allocation mode
601  *
602  * This function replaces a page in the pagecache with a new one.  On
603  * success it acquires the pagecache reference for the new page and
604  * drops it for the old page.  Both the old and new pages must be
605  * locked.  This function does not add the new page to the LRU, the
606  * caller must do that.
607  *
608  * The remove + add is atomic.  The only way this function can fail is
609  * memory allocation failure.
610  */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613 	int error;
614 
615 	VM_BUG_ON_PAGE(!PageLocked(old), old);
616 	VM_BUG_ON_PAGE(!PageLocked(new), new);
617 	VM_BUG_ON_PAGE(new->mapping, new);
618 
619 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 	if (!error) {
621 		struct address_space *mapping = old->mapping;
622 		void (*freepage)(struct page *);
623 		unsigned long flags;
624 
625 		pgoff_t offset = old->index;
626 		freepage = mapping->a_ops->freepage;
627 
628 		get_page(new);
629 		new->mapping = mapping;
630 		new->index = offset;
631 
632 		spin_lock_irqsave(&mapping->tree_lock, flags);
633 		__delete_from_page_cache(old, NULL);
634 		error = page_cache_tree_insert(mapping, new, NULL);
635 		BUG_ON(error);
636 
637 		/*
638 		 * hugetlb pages do not participate in page cache accounting.
639 		 */
640 		if (!PageHuge(new))
641 			__inc_node_page_state(new, NR_FILE_PAGES);
642 		if (PageSwapBacked(new))
643 			__inc_node_page_state(new, NR_SHMEM);
644 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 		mem_cgroup_migrate(old, new);
646 		radix_tree_preload_end();
647 		if (freepage)
648 			freepage(old);
649 		put_page(old);
650 	}
651 
652 	return error;
653 }
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
655 
656 static int __add_to_page_cache_locked(struct page *page,
657 				      struct address_space *mapping,
658 				      pgoff_t offset, gfp_t gfp_mask,
659 				      void **shadowp)
660 {
661 	int huge = PageHuge(page);
662 	struct mem_cgroup *memcg;
663 	int error;
664 
665 	VM_BUG_ON_PAGE(!PageLocked(page), page);
666 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667 
668 	if (!huge) {
669 		error = mem_cgroup_try_charge(page, current->mm,
670 					      gfp_mask, &memcg, false);
671 		if (error)
672 			return error;
673 	}
674 
675 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
676 	if (error) {
677 		if (!huge)
678 			mem_cgroup_cancel_charge(page, memcg, false);
679 		return error;
680 	}
681 
682 	get_page(page);
683 	page->mapping = mapping;
684 	page->index = offset;
685 
686 	spin_lock_irq(&mapping->tree_lock);
687 	error = page_cache_tree_insert(mapping, page, shadowp);
688 	radix_tree_preload_end();
689 	if (unlikely(error))
690 		goto err_insert;
691 
692 	/* hugetlb pages do not participate in page cache accounting. */
693 	if (!huge)
694 		__inc_node_page_state(page, NR_FILE_PAGES);
695 	spin_unlock_irq(&mapping->tree_lock);
696 	if (!huge)
697 		mem_cgroup_commit_charge(page, memcg, false, false);
698 	trace_mm_filemap_add_to_page_cache(page);
699 	return 0;
700 err_insert:
701 	page->mapping = NULL;
702 	/* Leave page->index set: truncation relies upon it */
703 	spin_unlock_irq(&mapping->tree_lock);
704 	if (!huge)
705 		mem_cgroup_cancel_charge(page, memcg, false);
706 	put_page(page);
707 	return error;
708 }
709 
710 /**
711  * add_to_page_cache_locked - add a locked page to the pagecache
712  * @page:	page to add
713  * @mapping:	the page's address_space
714  * @offset:	page index
715  * @gfp_mask:	page allocation mode
716  *
717  * This function is used to add a page to the pagecache. It must be locked.
718  * This function does not add the page to the LRU.  The caller must do that.
719  */
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 		pgoff_t offset, gfp_t gfp_mask)
722 {
723 	return __add_to_page_cache_locked(page, mapping, offset,
724 					  gfp_mask, NULL);
725 }
726 EXPORT_SYMBOL(add_to_page_cache_locked);
727 
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 				pgoff_t offset, gfp_t gfp_mask)
730 {
731 	void *shadow = NULL;
732 	int ret;
733 
734 	__SetPageLocked(page);
735 	ret = __add_to_page_cache_locked(page, mapping, offset,
736 					 gfp_mask, &shadow);
737 	if (unlikely(ret))
738 		__ClearPageLocked(page);
739 	else {
740 		/*
741 		 * The page might have been evicted from cache only
742 		 * recently, in which case it should be activated like
743 		 * any other repeatedly accessed page.
744 		 * The exception is pages getting rewritten; evicting other
745 		 * data from the working set, only to cache data that will
746 		 * get overwritten with something else, is a waste of memory.
747 		 */
748 		if (!(gfp_mask & __GFP_WRITE) &&
749 		    shadow && workingset_refault(shadow)) {
750 			SetPageActive(page);
751 			workingset_activation(page);
752 		} else
753 			ClearPageActive(page);
754 		lru_cache_add(page);
755 	}
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759 
760 #ifdef CONFIG_NUMA
761 struct page *__page_cache_alloc(gfp_t gfp)
762 {
763 	int n;
764 	struct page *page;
765 
766 	if (cpuset_do_page_mem_spread()) {
767 		unsigned int cpuset_mems_cookie;
768 		do {
769 			cpuset_mems_cookie = read_mems_allowed_begin();
770 			n = cpuset_mem_spread_node();
771 			page = __alloc_pages_node(n, gfp, 0);
772 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773 
774 		return page;
775 	}
776 	return alloc_pages(gfp, 0);
777 }
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
780 
781 /*
782  * In order to wait for pages to become available there must be
783  * waitqueues associated with pages. By using a hash table of
784  * waitqueues where the bucket discipline is to maintain all
785  * waiters on the same queue and wake all when any of the pages
786  * become available, and for the woken contexts to check to be
787  * sure the appropriate page became available, this saves space
788  * at a cost of "thundering herd" phenomena during rare hash
789  * collisions.
790  */
791 wait_queue_head_t *page_waitqueue(struct page *page)
792 {
793 	const struct zone *zone = page_zone(page);
794 
795 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
796 }
797 EXPORT_SYMBOL(page_waitqueue);
798 
799 void wait_on_page_bit(struct page *page, int bit_nr)
800 {
801 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
802 
803 	if (test_bit(bit_nr, &page->flags))
804 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
805 							TASK_UNINTERRUPTIBLE);
806 }
807 EXPORT_SYMBOL(wait_on_page_bit);
808 
809 int wait_on_page_bit_killable(struct page *page, int bit_nr)
810 {
811 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
812 
813 	if (!test_bit(bit_nr, &page->flags))
814 		return 0;
815 
816 	return __wait_on_bit(page_waitqueue(page), &wait,
817 			     bit_wait_io, TASK_KILLABLE);
818 }
819 
820 int wait_on_page_bit_killable_timeout(struct page *page,
821 				       int bit_nr, unsigned long timeout)
822 {
823 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
824 
825 	wait.key.timeout = jiffies + timeout;
826 	if (!test_bit(bit_nr, &page->flags))
827 		return 0;
828 	return __wait_on_bit(page_waitqueue(page), &wait,
829 			     bit_wait_io_timeout, TASK_KILLABLE);
830 }
831 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
832 
833 /**
834  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
835  * @page: Page defining the wait queue of interest
836  * @waiter: Waiter to add to the queue
837  *
838  * Add an arbitrary @waiter to the wait queue for the nominated @page.
839  */
840 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
841 {
842 	wait_queue_head_t *q = page_waitqueue(page);
843 	unsigned long flags;
844 
845 	spin_lock_irqsave(&q->lock, flags);
846 	__add_wait_queue(q, waiter);
847 	spin_unlock_irqrestore(&q->lock, flags);
848 }
849 EXPORT_SYMBOL_GPL(add_page_wait_queue);
850 
851 /**
852  * unlock_page - unlock a locked page
853  * @page: the page
854  *
855  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
856  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
857  * mechanism between PageLocked pages and PageWriteback pages is shared.
858  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
859  *
860  * The mb is necessary to enforce ordering between the clear_bit and the read
861  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
862  */
863 void unlock_page(struct page *page)
864 {
865 	page = compound_head(page);
866 	VM_BUG_ON_PAGE(!PageLocked(page), page);
867 	clear_bit_unlock(PG_locked, &page->flags);
868 	smp_mb__after_atomic();
869 	wake_up_page(page, PG_locked);
870 }
871 EXPORT_SYMBOL(unlock_page);
872 
873 /**
874  * end_page_writeback - end writeback against a page
875  * @page: the page
876  */
877 void end_page_writeback(struct page *page)
878 {
879 	/*
880 	 * TestClearPageReclaim could be used here but it is an atomic
881 	 * operation and overkill in this particular case. Failing to
882 	 * shuffle a page marked for immediate reclaim is too mild to
883 	 * justify taking an atomic operation penalty at the end of
884 	 * ever page writeback.
885 	 */
886 	if (PageReclaim(page)) {
887 		ClearPageReclaim(page);
888 		rotate_reclaimable_page(page);
889 	}
890 
891 	if (!test_clear_page_writeback(page))
892 		BUG();
893 
894 	smp_mb__after_atomic();
895 	wake_up_page(page, PG_writeback);
896 }
897 EXPORT_SYMBOL(end_page_writeback);
898 
899 /*
900  * After completing I/O on a page, call this routine to update the page
901  * flags appropriately
902  */
903 void page_endio(struct page *page, bool is_write, int err)
904 {
905 	if (!is_write) {
906 		if (!err) {
907 			SetPageUptodate(page);
908 		} else {
909 			ClearPageUptodate(page);
910 			SetPageError(page);
911 		}
912 		unlock_page(page);
913 	} else {
914 		if (err) {
915 			SetPageError(page);
916 			if (page->mapping)
917 				mapping_set_error(page->mapping, err);
918 		}
919 		end_page_writeback(page);
920 	}
921 }
922 EXPORT_SYMBOL_GPL(page_endio);
923 
924 /**
925  * __lock_page - get a lock on the page, assuming we need to sleep to get it
926  * @page: the page to lock
927  */
928 void __lock_page(struct page *page)
929 {
930 	struct page *page_head = compound_head(page);
931 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
932 
933 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
934 							TASK_UNINTERRUPTIBLE);
935 }
936 EXPORT_SYMBOL(__lock_page);
937 
938 int __lock_page_killable(struct page *page)
939 {
940 	struct page *page_head = compound_head(page);
941 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
942 
943 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
944 					bit_wait_io, TASK_KILLABLE);
945 }
946 EXPORT_SYMBOL_GPL(__lock_page_killable);
947 
948 /*
949  * Return values:
950  * 1 - page is locked; mmap_sem is still held.
951  * 0 - page is not locked.
952  *     mmap_sem has been released (up_read()), unless flags had both
953  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
954  *     which case mmap_sem is still held.
955  *
956  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
957  * with the page locked and the mmap_sem unperturbed.
958  */
959 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
960 			 unsigned int flags)
961 {
962 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
963 		/*
964 		 * CAUTION! In this case, mmap_sem is not released
965 		 * even though return 0.
966 		 */
967 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
968 			return 0;
969 
970 		up_read(&mm->mmap_sem);
971 		if (flags & FAULT_FLAG_KILLABLE)
972 			wait_on_page_locked_killable(page);
973 		else
974 			wait_on_page_locked(page);
975 		return 0;
976 	} else {
977 		if (flags & FAULT_FLAG_KILLABLE) {
978 			int ret;
979 
980 			ret = __lock_page_killable(page);
981 			if (ret) {
982 				up_read(&mm->mmap_sem);
983 				return 0;
984 			}
985 		} else
986 			__lock_page(page);
987 		return 1;
988 	}
989 }
990 
991 /**
992  * page_cache_next_hole - find the next hole (not-present entry)
993  * @mapping: mapping
994  * @index: index
995  * @max_scan: maximum range to search
996  *
997  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
998  * lowest indexed hole.
999  *
1000  * Returns: the index of the hole if found, otherwise returns an index
1001  * outside of the set specified (in which case 'return - index >=
1002  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1003  * be returned.
1004  *
1005  * page_cache_next_hole may be called under rcu_read_lock. However,
1006  * like radix_tree_gang_lookup, this will not atomically search a
1007  * snapshot of the tree at a single point in time. For example, if a
1008  * hole is created at index 5, then subsequently a hole is created at
1009  * index 10, page_cache_next_hole covering both indexes may return 10
1010  * if called under rcu_read_lock.
1011  */
1012 pgoff_t page_cache_next_hole(struct address_space *mapping,
1013 			     pgoff_t index, unsigned long max_scan)
1014 {
1015 	unsigned long i;
1016 
1017 	for (i = 0; i < max_scan; i++) {
1018 		struct page *page;
1019 
1020 		page = radix_tree_lookup(&mapping->page_tree, index);
1021 		if (!page || radix_tree_exceptional_entry(page))
1022 			break;
1023 		index++;
1024 		if (index == 0)
1025 			break;
1026 	}
1027 
1028 	return index;
1029 }
1030 EXPORT_SYMBOL(page_cache_next_hole);
1031 
1032 /**
1033  * page_cache_prev_hole - find the prev hole (not-present entry)
1034  * @mapping: mapping
1035  * @index: index
1036  * @max_scan: maximum range to search
1037  *
1038  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1039  * the first hole.
1040  *
1041  * Returns: the index of the hole if found, otherwise returns an index
1042  * outside of the set specified (in which case 'index - return >=
1043  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1044  * will be returned.
1045  *
1046  * page_cache_prev_hole may be called under rcu_read_lock. However,
1047  * like radix_tree_gang_lookup, this will not atomically search a
1048  * snapshot of the tree at a single point in time. For example, if a
1049  * hole is created at index 10, then subsequently a hole is created at
1050  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1051  * called under rcu_read_lock.
1052  */
1053 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1054 			     pgoff_t index, unsigned long max_scan)
1055 {
1056 	unsigned long i;
1057 
1058 	for (i = 0; i < max_scan; i++) {
1059 		struct page *page;
1060 
1061 		page = radix_tree_lookup(&mapping->page_tree, index);
1062 		if (!page || radix_tree_exceptional_entry(page))
1063 			break;
1064 		index--;
1065 		if (index == ULONG_MAX)
1066 			break;
1067 	}
1068 
1069 	return index;
1070 }
1071 EXPORT_SYMBOL(page_cache_prev_hole);
1072 
1073 /**
1074  * find_get_entry - find and get a page cache entry
1075  * @mapping: the address_space to search
1076  * @offset: the page cache index
1077  *
1078  * Looks up the page cache slot at @mapping & @offset.  If there is a
1079  * page cache page, it is returned with an increased refcount.
1080  *
1081  * If the slot holds a shadow entry of a previously evicted page, or a
1082  * swap entry from shmem/tmpfs, it is returned.
1083  *
1084  * Otherwise, %NULL is returned.
1085  */
1086 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1087 {
1088 	void **pagep;
1089 	struct page *head, *page;
1090 
1091 	rcu_read_lock();
1092 repeat:
1093 	page = NULL;
1094 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1095 	if (pagep) {
1096 		page = radix_tree_deref_slot(pagep);
1097 		if (unlikely(!page))
1098 			goto out;
1099 		if (radix_tree_exception(page)) {
1100 			if (radix_tree_deref_retry(page))
1101 				goto repeat;
1102 			/*
1103 			 * A shadow entry of a recently evicted page,
1104 			 * or a swap entry from shmem/tmpfs.  Return
1105 			 * it without attempting to raise page count.
1106 			 */
1107 			goto out;
1108 		}
1109 
1110 		head = compound_head(page);
1111 		if (!page_cache_get_speculative(head))
1112 			goto repeat;
1113 
1114 		/* The page was split under us? */
1115 		if (compound_head(page) != head) {
1116 			put_page(head);
1117 			goto repeat;
1118 		}
1119 
1120 		/*
1121 		 * Has the page moved?
1122 		 * This is part of the lockless pagecache protocol. See
1123 		 * include/linux/pagemap.h for details.
1124 		 */
1125 		if (unlikely(page != *pagep)) {
1126 			put_page(head);
1127 			goto repeat;
1128 		}
1129 	}
1130 out:
1131 	rcu_read_unlock();
1132 
1133 	return page;
1134 }
1135 EXPORT_SYMBOL(find_get_entry);
1136 
1137 /**
1138  * find_lock_entry - locate, pin and lock a page cache entry
1139  * @mapping: the address_space to search
1140  * @offset: the page cache index
1141  *
1142  * Looks up the page cache slot at @mapping & @offset.  If there is a
1143  * page cache page, it is returned locked and with an increased
1144  * refcount.
1145  *
1146  * If the slot holds a shadow entry of a previously evicted page, or a
1147  * swap entry from shmem/tmpfs, it is returned.
1148  *
1149  * Otherwise, %NULL is returned.
1150  *
1151  * find_lock_entry() may sleep.
1152  */
1153 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1154 {
1155 	struct page *page;
1156 
1157 repeat:
1158 	page = find_get_entry(mapping, offset);
1159 	if (page && !radix_tree_exception(page)) {
1160 		lock_page(page);
1161 		/* Has the page been truncated? */
1162 		if (unlikely(page_mapping(page) != mapping)) {
1163 			unlock_page(page);
1164 			put_page(page);
1165 			goto repeat;
1166 		}
1167 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1168 	}
1169 	return page;
1170 }
1171 EXPORT_SYMBOL(find_lock_entry);
1172 
1173 /**
1174  * pagecache_get_page - find and get a page reference
1175  * @mapping: the address_space to search
1176  * @offset: the page index
1177  * @fgp_flags: PCG flags
1178  * @gfp_mask: gfp mask to use for the page cache data page allocation
1179  *
1180  * Looks up the page cache slot at @mapping & @offset.
1181  *
1182  * PCG flags modify how the page is returned.
1183  *
1184  * FGP_ACCESSED: the page will be marked accessed
1185  * FGP_LOCK: Page is return locked
1186  * FGP_CREAT: If page is not present then a new page is allocated using
1187  *		@gfp_mask and added to the page cache and the VM's LRU
1188  *		list. The page is returned locked and with an increased
1189  *		refcount. Otherwise, %NULL is returned.
1190  *
1191  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1192  * if the GFP flags specified for FGP_CREAT are atomic.
1193  *
1194  * If there is a page cache page, it is returned with an increased refcount.
1195  */
1196 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1197 	int fgp_flags, gfp_t gfp_mask)
1198 {
1199 	struct page *page;
1200 
1201 repeat:
1202 	page = find_get_entry(mapping, offset);
1203 	if (radix_tree_exceptional_entry(page))
1204 		page = NULL;
1205 	if (!page)
1206 		goto no_page;
1207 
1208 	if (fgp_flags & FGP_LOCK) {
1209 		if (fgp_flags & FGP_NOWAIT) {
1210 			if (!trylock_page(page)) {
1211 				put_page(page);
1212 				return NULL;
1213 			}
1214 		} else {
1215 			lock_page(page);
1216 		}
1217 
1218 		/* Has the page been truncated? */
1219 		if (unlikely(page->mapping != mapping)) {
1220 			unlock_page(page);
1221 			put_page(page);
1222 			goto repeat;
1223 		}
1224 		VM_BUG_ON_PAGE(page->index != offset, page);
1225 	}
1226 
1227 	if (page && (fgp_flags & FGP_ACCESSED))
1228 		mark_page_accessed(page);
1229 
1230 no_page:
1231 	if (!page && (fgp_flags & FGP_CREAT)) {
1232 		int err;
1233 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1234 			gfp_mask |= __GFP_WRITE;
1235 		if (fgp_flags & FGP_NOFS)
1236 			gfp_mask &= ~__GFP_FS;
1237 
1238 		page = __page_cache_alloc(gfp_mask);
1239 		if (!page)
1240 			return NULL;
1241 
1242 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1243 			fgp_flags |= FGP_LOCK;
1244 
1245 		/* Init accessed so avoid atomic mark_page_accessed later */
1246 		if (fgp_flags & FGP_ACCESSED)
1247 			__SetPageReferenced(page);
1248 
1249 		err = add_to_page_cache_lru(page, mapping, offset,
1250 				gfp_mask & GFP_RECLAIM_MASK);
1251 		if (unlikely(err)) {
1252 			put_page(page);
1253 			page = NULL;
1254 			if (err == -EEXIST)
1255 				goto repeat;
1256 		}
1257 	}
1258 
1259 	return page;
1260 }
1261 EXPORT_SYMBOL(pagecache_get_page);
1262 
1263 /**
1264  * find_get_entries - gang pagecache lookup
1265  * @mapping:	The address_space to search
1266  * @start:	The starting page cache index
1267  * @nr_entries:	The maximum number of entries
1268  * @entries:	Where the resulting entries are placed
1269  * @indices:	The cache indices corresponding to the entries in @entries
1270  *
1271  * find_get_entries() will search for and return a group of up to
1272  * @nr_entries entries in the mapping.  The entries are placed at
1273  * @entries.  find_get_entries() takes a reference against any actual
1274  * pages it returns.
1275  *
1276  * The search returns a group of mapping-contiguous page cache entries
1277  * with ascending indexes.  There may be holes in the indices due to
1278  * not-present pages.
1279  *
1280  * Any shadow entries of evicted pages, or swap entries from
1281  * shmem/tmpfs, are included in the returned array.
1282  *
1283  * find_get_entries() returns the number of pages and shadow entries
1284  * which were found.
1285  */
1286 unsigned find_get_entries(struct address_space *mapping,
1287 			  pgoff_t start, unsigned int nr_entries,
1288 			  struct page **entries, pgoff_t *indices)
1289 {
1290 	void **slot;
1291 	unsigned int ret = 0;
1292 	struct radix_tree_iter iter;
1293 
1294 	if (!nr_entries)
1295 		return 0;
1296 
1297 	rcu_read_lock();
1298 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1299 		struct page *head, *page;
1300 repeat:
1301 		page = radix_tree_deref_slot(slot);
1302 		if (unlikely(!page))
1303 			continue;
1304 		if (radix_tree_exception(page)) {
1305 			if (radix_tree_deref_retry(page)) {
1306 				slot = radix_tree_iter_retry(&iter);
1307 				continue;
1308 			}
1309 			/*
1310 			 * A shadow entry of a recently evicted page, a swap
1311 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1312 			 * without attempting to raise page count.
1313 			 */
1314 			goto export;
1315 		}
1316 
1317 		head = compound_head(page);
1318 		if (!page_cache_get_speculative(head))
1319 			goto repeat;
1320 
1321 		/* The page was split under us? */
1322 		if (compound_head(page) != head) {
1323 			put_page(head);
1324 			goto repeat;
1325 		}
1326 
1327 		/* Has the page moved? */
1328 		if (unlikely(page != *slot)) {
1329 			put_page(head);
1330 			goto repeat;
1331 		}
1332 export:
1333 		indices[ret] = iter.index;
1334 		entries[ret] = page;
1335 		if (++ret == nr_entries)
1336 			break;
1337 	}
1338 	rcu_read_unlock();
1339 	return ret;
1340 }
1341 
1342 /**
1343  * find_get_pages - gang pagecache lookup
1344  * @mapping:	The address_space to search
1345  * @start:	The starting page index
1346  * @nr_pages:	The maximum number of pages
1347  * @pages:	Where the resulting pages are placed
1348  *
1349  * find_get_pages() will search for and return a group of up to
1350  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1351  * find_get_pages() takes a reference against the returned pages.
1352  *
1353  * The search returns a group of mapping-contiguous pages with ascending
1354  * indexes.  There may be holes in the indices due to not-present pages.
1355  *
1356  * find_get_pages() returns the number of pages which were found.
1357  */
1358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1359 			    unsigned int nr_pages, struct page **pages)
1360 {
1361 	struct radix_tree_iter iter;
1362 	void **slot;
1363 	unsigned ret = 0;
1364 
1365 	if (unlikely(!nr_pages))
1366 		return 0;
1367 
1368 	rcu_read_lock();
1369 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1370 		struct page *head, *page;
1371 repeat:
1372 		page = radix_tree_deref_slot(slot);
1373 		if (unlikely(!page))
1374 			continue;
1375 
1376 		if (radix_tree_exception(page)) {
1377 			if (radix_tree_deref_retry(page)) {
1378 				slot = radix_tree_iter_retry(&iter);
1379 				continue;
1380 			}
1381 			/*
1382 			 * A shadow entry of a recently evicted page,
1383 			 * or a swap entry from shmem/tmpfs.  Skip
1384 			 * over it.
1385 			 */
1386 			continue;
1387 		}
1388 
1389 		head = compound_head(page);
1390 		if (!page_cache_get_speculative(head))
1391 			goto repeat;
1392 
1393 		/* The page was split under us? */
1394 		if (compound_head(page) != head) {
1395 			put_page(head);
1396 			goto repeat;
1397 		}
1398 
1399 		/* Has the page moved? */
1400 		if (unlikely(page != *slot)) {
1401 			put_page(head);
1402 			goto repeat;
1403 		}
1404 
1405 		pages[ret] = page;
1406 		if (++ret == nr_pages)
1407 			break;
1408 	}
1409 
1410 	rcu_read_unlock();
1411 	return ret;
1412 }
1413 
1414 /**
1415  * find_get_pages_contig - gang contiguous pagecache lookup
1416  * @mapping:	The address_space to search
1417  * @index:	The starting page index
1418  * @nr_pages:	The maximum number of pages
1419  * @pages:	Where the resulting pages are placed
1420  *
1421  * find_get_pages_contig() works exactly like find_get_pages(), except
1422  * that the returned number of pages are guaranteed to be contiguous.
1423  *
1424  * find_get_pages_contig() returns the number of pages which were found.
1425  */
1426 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1427 			       unsigned int nr_pages, struct page **pages)
1428 {
1429 	struct radix_tree_iter iter;
1430 	void **slot;
1431 	unsigned int ret = 0;
1432 
1433 	if (unlikely(!nr_pages))
1434 		return 0;
1435 
1436 	rcu_read_lock();
1437 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1438 		struct page *head, *page;
1439 repeat:
1440 		page = radix_tree_deref_slot(slot);
1441 		/* The hole, there no reason to continue */
1442 		if (unlikely(!page))
1443 			break;
1444 
1445 		if (radix_tree_exception(page)) {
1446 			if (radix_tree_deref_retry(page)) {
1447 				slot = radix_tree_iter_retry(&iter);
1448 				continue;
1449 			}
1450 			/*
1451 			 * A shadow entry of a recently evicted page,
1452 			 * or a swap entry from shmem/tmpfs.  Stop
1453 			 * looking for contiguous pages.
1454 			 */
1455 			break;
1456 		}
1457 
1458 		head = compound_head(page);
1459 		if (!page_cache_get_speculative(head))
1460 			goto repeat;
1461 
1462 		/* The page was split under us? */
1463 		if (compound_head(page) != head) {
1464 			put_page(head);
1465 			goto repeat;
1466 		}
1467 
1468 		/* Has the page moved? */
1469 		if (unlikely(page != *slot)) {
1470 			put_page(head);
1471 			goto repeat;
1472 		}
1473 
1474 		/*
1475 		 * must check mapping and index after taking the ref.
1476 		 * otherwise we can get both false positives and false
1477 		 * negatives, which is just confusing to the caller.
1478 		 */
1479 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1480 			put_page(page);
1481 			break;
1482 		}
1483 
1484 		pages[ret] = page;
1485 		if (++ret == nr_pages)
1486 			break;
1487 	}
1488 	rcu_read_unlock();
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(find_get_pages_contig);
1492 
1493 /**
1494  * find_get_pages_tag - find and return pages that match @tag
1495  * @mapping:	the address_space to search
1496  * @index:	the starting page index
1497  * @tag:	the tag index
1498  * @nr_pages:	the maximum number of pages
1499  * @pages:	where the resulting pages are placed
1500  *
1501  * Like find_get_pages, except we only return pages which are tagged with
1502  * @tag.   We update @index to index the next page for the traversal.
1503  */
1504 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1505 			int tag, unsigned int nr_pages, struct page **pages)
1506 {
1507 	struct radix_tree_iter iter;
1508 	void **slot;
1509 	unsigned ret = 0;
1510 
1511 	if (unlikely(!nr_pages))
1512 		return 0;
1513 
1514 	rcu_read_lock();
1515 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1516 				   &iter, *index, tag) {
1517 		struct page *head, *page;
1518 repeat:
1519 		page = radix_tree_deref_slot(slot);
1520 		if (unlikely(!page))
1521 			continue;
1522 
1523 		if (radix_tree_exception(page)) {
1524 			if (radix_tree_deref_retry(page)) {
1525 				slot = radix_tree_iter_retry(&iter);
1526 				continue;
1527 			}
1528 			/*
1529 			 * A shadow entry of a recently evicted page.
1530 			 *
1531 			 * Those entries should never be tagged, but
1532 			 * this tree walk is lockless and the tags are
1533 			 * looked up in bulk, one radix tree node at a
1534 			 * time, so there is a sizable window for page
1535 			 * reclaim to evict a page we saw tagged.
1536 			 *
1537 			 * Skip over it.
1538 			 */
1539 			continue;
1540 		}
1541 
1542 		head = compound_head(page);
1543 		if (!page_cache_get_speculative(head))
1544 			goto repeat;
1545 
1546 		/* The page was split under us? */
1547 		if (compound_head(page) != head) {
1548 			put_page(head);
1549 			goto repeat;
1550 		}
1551 
1552 		/* Has the page moved? */
1553 		if (unlikely(page != *slot)) {
1554 			put_page(head);
1555 			goto repeat;
1556 		}
1557 
1558 		pages[ret] = page;
1559 		if (++ret == nr_pages)
1560 			break;
1561 	}
1562 
1563 	rcu_read_unlock();
1564 
1565 	if (ret)
1566 		*index = pages[ret - 1]->index + 1;
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL(find_get_pages_tag);
1571 
1572 /**
1573  * find_get_entries_tag - find and return entries that match @tag
1574  * @mapping:	the address_space to search
1575  * @start:	the starting page cache index
1576  * @tag:	the tag index
1577  * @nr_entries:	the maximum number of entries
1578  * @entries:	where the resulting entries are placed
1579  * @indices:	the cache indices corresponding to the entries in @entries
1580  *
1581  * Like find_get_entries, except we only return entries which are tagged with
1582  * @tag.
1583  */
1584 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1585 			int tag, unsigned int nr_entries,
1586 			struct page **entries, pgoff_t *indices)
1587 {
1588 	void **slot;
1589 	unsigned int ret = 0;
1590 	struct radix_tree_iter iter;
1591 
1592 	if (!nr_entries)
1593 		return 0;
1594 
1595 	rcu_read_lock();
1596 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1597 				   &iter, start, tag) {
1598 		struct page *head, *page;
1599 repeat:
1600 		page = radix_tree_deref_slot(slot);
1601 		if (unlikely(!page))
1602 			continue;
1603 		if (radix_tree_exception(page)) {
1604 			if (radix_tree_deref_retry(page)) {
1605 				slot = radix_tree_iter_retry(&iter);
1606 				continue;
1607 			}
1608 
1609 			/*
1610 			 * A shadow entry of a recently evicted page, a swap
1611 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1612 			 * without attempting to raise page count.
1613 			 */
1614 			goto export;
1615 		}
1616 
1617 		head = compound_head(page);
1618 		if (!page_cache_get_speculative(head))
1619 			goto repeat;
1620 
1621 		/* The page was split under us? */
1622 		if (compound_head(page) != head) {
1623 			put_page(head);
1624 			goto repeat;
1625 		}
1626 
1627 		/* Has the page moved? */
1628 		if (unlikely(page != *slot)) {
1629 			put_page(head);
1630 			goto repeat;
1631 		}
1632 export:
1633 		indices[ret] = iter.index;
1634 		entries[ret] = page;
1635 		if (++ret == nr_entries)
1636 			break;
1637 	}
1638 	rcu_read_unlock();
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL(find_get_entries_tag);
1642 
1643 /*
1644  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1645  * a _large_ part of the i/o request. Imagine the worst scenario:
1646  *
1647  *      ---R__________________________________________B__________
1648  *         ^ reading here                             ^ bad block(assume 4k)
1649  *
1650  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1651  * => failing the whole request => read(R) => read(R+1) =>
1652  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1653  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1654  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1655  *
1656  * It is going insane. Fix it by quickly scaling down the readahead size.
1657  */
1658 static void shrink_readahead_size_eio(struct file *filp,
1659 					struct file_ra_state *ra)
1660 {
1661 	ra->ra_pages /= 4;
1662 }
1663 
1664 /**
1665  * do_generic_file_read - generic file read routine
1666  * @filp:	the file to read
1667  * @ppos:	current file position
1668  * @iter:	data destination
1669  * @written:	already copied
1670  *
1671  * This is a generic file read routine, and uses the
1672  * mapping->a_ops->readpage() function for the actual low-level stuff.
1673  *
1674  * This is really ugly. But the goto's actually try to clarify some
1675  * of the logic when it comes to error handling etc.
1676  */
1677 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1678 		struct iov_iter *iter, ssize_t written)
1679 {
1680 	struct address_space *mapping = filp->f_mapping;
1681 	struct inode *inode = mapping->host;
1682 	struct file_ra_state *ra = &filp->f_ra;
1683 	pgoff_t index;
1684 	pgoff_t last_index;
1685 	pgoff_t prev_index;
1686 	unsigned long offset;      /* offset into pagecache page */
1687 	unsigned int prev_offset;
1688 	int error = 0;
1689 
1690 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1691 		return -EINVAL;
1692 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1693 
1694 	index = *ppos >> PAGE_SHIFT;
1695 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1696 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1697 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1698 	offset = *ppos & ~PAGE_MASK;
1699 
1700 	for (;;) {
1701 		struct page *page;
1702 		pgoff_t end_index;
1703 		loff_t isize;
1704 		unsigned long nr, ret;
1705 
1706 		cond_resched();
1707 find_page:
1708 		page = find_get_page(mapping, index);
1709 		if (!page) {
1710 			page_cache_sync_readahead(mapping,
1711 					ra, filp,
1712 					index, last_index - index);
1713 			page = find_get_page(mapping, index);
1714 			if (unlikely(page == NULL))
1715 				goto no_cached_page;
1716 		}
1717 		if (PageReadahead(page)) {
1718 			page_cache_async_readahead(mapping,
1719 					ra, filp, page,
1720 					index, last_index - index);
1721 		}
1722 		if (!PageUptodate(page)) {
1723 			/*
1724 			 * See comment in do_read_cache_page on why
1725 			 * wait_on_page_locked is used to avoid unnecessarily
1726 			 * serialisations and why it's safe.
1727 			 */
1728 			error = wait_on_page_locked_killable(page);
1729 			if (unlikely(error))
1730 				goto readpage_error;
1731 			if (PageUptodate(page))
1732 				goto page_ok;
1733 
1734 			if (inode->i_blkbits == PAGE_SHIFT ||
1735 					!mapping->a_ops->is_partially_uptodate)
1736 				goto page_not_up_to_date;
1737 			if (!trylock_page(page))
1738 				goto page_not_up_to_date;
1739 			/* Did it get truncated before we got the lock? */
1740 			if (!page->mapping)
1741 				goto page_not_up_to_date_locked;
1742 			if (!mapping->a_ops->is_partially_uptodate(page,
1743 							offset, iter->count))
1744 				goto page_not_up_to_date_locked;
1745 			unlock_page(page);
1746 		}
1747 page_ok:
1748 		/*
1749 		 * i_size must be checked after we know the page is Uptodate.
1750 		 *
1751 		 * Checking i_size after the check allows us to calculate
1752 		 * the correct value for "nr", which means the zero-filled
1753 		 * part of the page is not copied back to userspace (unless
1754 		 * another truncate extends the file - this is desired though).
1755 		 */
1756 
1757 		isize = i_size_read(inode);
1758 		end_index = (isize - 1) >> PAGE_SHIFT;
1759 		if (unlikely(!isize || index > end_index)) {
1760 			put_page(page);
1761 			goto out;
1762 		}
1763 
1764 		/* nr is the maximum number of bytes to copy from this page */
1765 		nr = PAGE_SIZE;
1766 		if (index == end_index) {
1767 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1768 			if (nr <= offset) {
1769 				put_page(page);
1770 				goto out;
1771 			}
1772 		}
1773 		nr = nr - offset;
1774 
1775 		/* If users can be writing to this page using arbitrary
1776 		 * virtual addresses, take care about potential aliasing
1777 		 * before reading the page on the kernel side.
1778 		 */
1779 		if (mapping_writably_mapped(mapping))
1780 			flush_dcache_page(page);
1781 
1782 		/*
1783 		 * When a sequential read accesses a page several times,
1784 		 * only mark it as accessed the first time.
1785 		 */
1786 		if (prev_index != index || offset != prev_offset)
1787 			mark_page_accessed(page);
1788 		prev_index = index;
1789 
1790 		/*
1791 		 * Ok, we have the page, and it's up-to-date, so
1792 		 * now we can copy it to user space...
1793 		 */
1794 
1795 		ret = copy_page_to_iter(page, offset, nr, iter);
1796 		offset += ret;
1797 		index += offset >> PAGE_SHIFT;
1798 		offset &= ~PAGE_MASK;
1799 		prev_offset = offset;
1800 
1801 		put_page(page);
1802 		written += ret;
1803 		if (!iov_iter_count(iter))
1804 			goto out;
1805 		if (ret < nr) {
1806 			error = -EFAULT;
1807 			goto out;
1808 		}
1809 		continue;
1810 
1811 page_not_up_to_date:
1812 		/* Get exclusive access to the page ... */
1813 		error = lock_page_killable(page);
1814 		if (unlikely(error))
1815 			goto readpage_error;
1816 
1817 page_not_up_to_date_locked:
1818 		/* Did it get truncated before we got the lock? */
1819 		if (!page->mapping) {
1820 			unlock_page(page);
1821 			put_page(page);
1822 			continue;
1823 		}
1824 
1825 		/* Did somebody else fill it already? */
1826 		if (PageUptodate(page)) {
1827 			unlock_page(page);
1828 			goto page_ok;
1829 		}
1830 
1831 readpage:
1832 		/*
1833 		 * A previous I/O error may have been due to temporary
1834 		 * failures, eg. multipath errors.
1835 		 * PG_error will be set again if readpage fails.
1836 		 */
1837 		ClearPageError(page);
1838 		/* Start the actual read. The read will unlock the page. */
1839 		error = mapping->a_ops->readpage(filp, page);
1840 
1841 		if (unlikely(error)) {
1842 			if (error == AOP_TRUNCATED_PAGE) {
1843 				put_page(page);
1844 				error = 0;
1845 				goto find_page;
1846 			}
1847 			goto readpage_error;
1848 		}
1849 
1850 		if (!PageUptodate(page)) {
1851 			error = lock_page_killable(page);
1852 			if (unlikely(error))
1853 				goto readpage_error;
1854 			if (!PageUptodate(page)) {
1855 				if (page->mapping == NULL) {
1856 					/*
1857 					 * invalidate_mapping_pages got it
1858 					 */
1859 					unlock_page(page);
1860 					put_page(page);
1861 					goto find_page;
1862 				}
1863 				unlock_page(page);
1864 				shrink_readahead_size_eio(filp, ra);
1865 				error = -EIO;
1866 				goto readpage_error;
1867 			}
1868 			unlock_page(page);
1869 		}
1870 
1871 		goto page_ok;
1872 
1873 readpage_error:
1874 		/* UHHUH! A synchronous read error occurred. Report it */
1875 		put_page(page);
1876 		goto out;
1877 
1878 no_cached_page:
1879 		/*
1880 		 * Ok, it wasn't cached, so we need to create a new
1881 		 * page..
1882 		 */
1883 		page = page_cache_alloc_cold(mapping);
1884 		if (!page) {
1885 			error = -ENOMEM;
1886 			goto out;
1887 		}
1888 		error = add_to_page_cache_lru(page, mapping, index,
1889 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1890 		if (error) {
1891 			put_page(page);
1892 			if (error == -EEXIST) {
1893 				error = 0;
1894 				goto find_page;
1895 			}
1896 			goto out;
1897 		}
1898 		goto readpage;
1899 	}
1900 
1901 out:
1902 	ra->prev_pos = prev_index;
1903 	ra->prev_pos <<= PAGE_SHIFT;
1904 	ra->prev_pos |= prev_offset;
1905 
1906 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1907 	file_accessed(filp);
1908 	return written ? written : error;
1909 }
1910 
1911 /**
1912  * generic_file_read_iter - generic filesystem read routine
1913  * @iocb:	kernel I/O control block
1914  * @iter:	destination for the data read
1915  *
1916  * This is the "read_iter()" routine for all filesystems
1917  * that can use the page cache directly.
1918  */
1919 ssize_t
1920 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1921 {
1922 	struct file *file = iocb->ki_filp;
1923 	ssize_t retval = 0;
1924 	size_t count = iov_iter_count(iter);
1925 
1926 	if (!count)
1927 		goto out; /* skip atime */
1928 
1929 	if (iocb->ki_flags & IOCB_DIRECT) {
1930 		struct address_space *mapping = file->f_mapping;
1931 		struct inode *inode = mapping->host;
1932 		struct iov_iter data = *iter;
1933 		loff_t size;
1934 
1935 		size = i_size_read(inode);
1936 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1937 					iocb->ki_pos + count - 1);
1938 		if (retval < 0)
1939 			goto out;
1940 
1941 		file_accessed(file);
1942 
1943 		retval = mapping->a_ops->direct_IO(iocb, &data);
1944 		if (retval >= 0) {
1945 			iocb->ki_pos += retval;
1946 			iov_iter_advance(iter, retval);
1947 		}
1948 
1949 		/*
1950 		 * Btrfs can have a short DIO read if we encounter
1951 		 * compressed extents, so if there was an error, or if
1952 		 * we've already read everything we wanted to, or if
1953 		 * there was a short read because we hit EOF, go ahead
1954 		 * and return.  Otherwise fallthrough to buffered io for
1955 		 * the rest of the read.  Buffered reads will not work for
1956 		 * DAX files, so don't bother trying.
1957 		 */
1958 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1959 		    IS_DAX(inode))
1960 			goto out;
1961 	}
1962 
1963 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1964 out:
1965 	return retval;
1966 }
1967 EXPORT_SYMBOL(generic_file_read_iter);
1968 
1969 #ifdef CONFIG_MMU
1970 /**
1971  * page_cache_read - adds requested page to the page cache if not already there
1972  * @file:	file to read
1973  * @offset:	page index
1974  * @gfp_mask:	memory allocation flags
1975  *
1976  * This adds the requested page to the page cache if it isn't already there,
1977  * and schedules an I/O to read in its contents from disk.
1978  */
1979 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1980 {
1981 	struct address_space *mapping = file->f_mapping;
1982 	struct page *page;
1983 	int ret;
1984 
1985 	do {
1986 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1987 		if (!page)
1988 			return -ENOMEM;
1989 
1990 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1991 		if (ret == 0)
1992 			ret = mapping->a_ops->readpage(file, page);
1993 		else if (ret == -EEXIST)
1994 			ret = 0; /* losing race to add is OK */
1995 
1996 		put_page(page);
1997 
1998 	} while (ret == AOP_TRUNCATED_PAGE);
1999 
2000 	return ret;
2001 }
2002 
2003 #define MMAP_LOTSAMISS  (100)
2004 
2005 /*
2006  * Synchronous readahead happens when we don't even find
2007  * a page in the page cache at all.
2008  */
2009 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2010 				   struct file_ra_state *ra,
2011 				   struct file *file,
2012 				   pgoff_t offset)
2013 {
2014 	struct address_space *mapping = file->f_mapping;
2015 
2016 	/* If we don't want any read-ahead, don't bother */
2017 	if (vma->vm_flags & VM_RAND_READ)
2018 		return;
2019 	if (!ra->ra_pages)
2020 		return;
2021 
2022 	if (vma->vm_flags & VM_SEQ_READ) {
2023 		page_cache_sync_readahead(mapping, ra, file, offset,
2024 					  ra->ra_pages);
2025 		return;
2026 	}
2027 
2028 	/* Avoid banging the cache line if not needed */
2029 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2030 		ra->mmap_miss++;
2031 
2032 	/*
2033 	 * Do we miss much more than hit in this file? If so,
2034 	 * stop bothering with read-ahead. It will only hurt.
2035 	 */
2036 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2037 		return;
2038 
2039 	/*
2040 	 * mmap read-around
2041 	 */
2042 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2043 	ra->size = ra->ra_pages;
2044 	ra->async_size = ra->ra_pages / 4;
2045 	ra_submit(ra, mapping, file);
2046 }
2047 
2048 /*
2049  * Asynchronous readahead happens when we find the page and PG_readahead,
2050  * so we want to possibly extend the readahead further..
2051  */
2052 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2053 				    struct file_ra_state *ra,
2054 				    struct file *file,
2055 				    struct page *page,
2056 				    pgoff_t offset)
2057 {
2058 	struct address_space *mapping = file->f_mapping;
2059 
2060 	/* If we don't want any read-ahead, don't bother */
2061 	if (vma->vm_flags & VM_RAND_READ)
2062 		return;
2063 	if (ra->mmap_miss > 0)
2064 		ra->mmap_miss--;
2065 	if (PageReadahead(page))
2066 		page_cache_async_readahead(mapping, ra, file,
2067 					   page, offset, ra->ra_pages);
2068 }
2069 
2070 /**
2071  * filemap_fault - read in file data for page fault handling
2072  * @vma:	vma in which the fault was taken
2073  * @vmf:	struct vm_fault containing details of the fault
2074  *
2075  * filemap_fault() is invoked via the vma operations vector for a
2076  * mapped memory region to read in file data during a page fault.
2077  *
2078  * The goto's are kind of ugly, but this streamlines the normal case of having
2079  * it in the page cache, and handles the special cases reasonably without
2080  * having a lot of duplicated code.
2081  *
2082  * vma->vm_mm->mmap_sem must be held on entry.
2083  *
2084  * If our return value has VM_FAULT_RETRY set, it's because
2085  * lock_page_or_retry() returned 0.
2086  * The mmap_sem has usually been released in this case.
2087  * See __lock_page_or_retry() for the exception.
2088  *
2089  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2090  * has not been released.
2091  *
2092  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2093  */
2094 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2095 {
2096 	int error;
2097 	struct file *file = vma->vm_file;
2098 	struct address_space *mapping = file->f_mapping;
2099 	struct file_ra_state *ra = &file->f_ra;
2100 	struct inode *inode = mapping->host;
2101 	pgoff_t offset = vmf->pgoff;
2102 	struct page *page;
2103 	loff_t size;
2104 	int ret = 0;
2105 
2106 	size = round_up(i_size_read(inode), PAGE_SIZE);
2107 	if (offset >= size >> PAGE_SHIFT)
2108 		return VM_FAULT_SIGBUS;
2109 
2110 	/*
2111 	 * Do we have something in the page cache already?
2112 	 */
2113 	page = find_get_page(mapping, offset);
2114 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2115 		/*
2116 		 * We found the page, so try async readahead before
2117 		 * waiting for the lock.
2118 		 */
2119 		do_async_mmap_readahead(vma, ra, file, page, offset);
2120 	} else if (!page) {
2121 		/* No page in the page cache at all */
2122 		do_sync_mmap_readahead(vma, ra, file, offset);
2123 		count_vm_event(PGMAJFAULT);
2124 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2125 		ret = VM_FAULT_MAJOR;
2126 retry_find:
2127 		page = find_get_page(mapping, offset);
2128 		if (!page)
2129 			goto no_cached_page;
2130 	}
2131 
2132 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2133 		put_page(page);
2134 		return ret | VM_FAULT_RETRY;
2135 	}
2136 
2137 	/* Did it get truncated? */
2138 	if (unlikely(page->mapping != mapping)) {
2139 		unlock_page(page);
2140 		put_page(page);
2141 		goto retry_find;
2142 	}
2143 	VM_BUG_ON_PAGE(page->index != offset, page);
2144 
2145 	/*
2146 	 * We have a locked page in the page cache, now we need to check
2147 	 * that it's up-to-date. If not, it is going to be due to an error.
2148 	 */
2149 	if (unlikely(!PageUptodate(page)))
2150 		goto page_not_uptodate;
2151 
2152 	/*
2153 	 * Found the page and have a reference on it.
2154 	 * We must recheck i_size under page lock.
2155 	 */
2156 	size = round_up(i_size_read(inode), PAGE_SIZE);
2157 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2158 		unlock_page(page);
2159 		put_page(page);
2160 		return VM_FAULT_SIGBUS;
2161 	}
2162 
2163 	vmf->page = page;
2164 	return ret | VM_FAULT_LOCKED;
2165 
2166 no_cached_page:
2167 	/*
2168 	 * We're only likely to ever get here if MADV_RANDOM is in
2169 	 * effect.
2170 	 */
2171 	error = page_cache_read(file, offset, vmf->gfp_mask);
2172 
2173 	/*
2174 	 * The page we want has now been added to the page cache.
2175 	 * In the unlikely event that someone removed it in the
2176 	 * meantime, we'll just come back here and read it again.
2177 	 */
2178 	if (error >= 0)
2179 		goto retry_find;
2180 
2181 	/*
2182 	 * An error return from page_cache_read can result if the
2183 	 * system is low on memory, or a problem occurs while trying
2184 	 * to schedule I/O.
2185 	 */
2186 	if (error == -ENOMEM)
2187 		return VM_FAULT_OOM;
2188 	return VM_FAULT_SIGBUS;
2189 
2190 page_not_uptodate:
2191 	/*
2192 	 * Umm, take care of errors if the page isn't up-to-date.
2193 	 * Try to re-read it _once_. We do this synchronously,
2194 	 * because there really aren't any performance issues here
2195 	 * and we need to check for errors.
2196 	 */
2197 	ClearPageError(page);
2198 	error = mapping->a_ops->readpage(file, page);
2199 	if (!error) {
2200 		wait_on_page_locked(page);
2201 		if (!PageUptodate(page))
2202 			error = -EIO;
2203 	}
2204 	put_page(page);
2205 
2206 	if (!error || error == AOP_TRUNCATED_PAGE)
2207 		goto retry_find;
2208 
2209 	/* Things didn't work out. Return zero to tell the mm layer so. */
2210 	shrink_readahead_size_eio(file, ra);
2211 	return VM_FAULT_SIGBUS;
2212 }
2213 EXPORT_SYMBOL(filemap_fault);
2214 
2215 void filemap_map_pages(struct fault_env *fe,
2216 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2217 {
2218 	struct radix_tree_iter iter;
2219 	void **slot;
2220 	struct file *file = fe->vma->vm_file;
2221 	struct address_space *mapping = file->f_mapping;
2222 	pgoff_t last_pgoff = start_pgoff;
2223 	loff_t size;
2224 	struct page *head, *page;
2225 
2226 	rcu_read_lock();
2227 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2228 			start_pgoff) {
2229 		if (iter.index > end_pgoff)
2230 			break;
2231 repeat:
2232 		page = radix_tree_deref_slot(slot);
2233 		if (unlikely(!page))
2234 			goto next;
2235 		if (radix_tree_exception(page)) {
2236 			if (radix_tree_deref_retry(page)) {
2237 				slot = radix_tree_iter_retry(&iter);
2238 				continue;
2239 			}
2240 			goto next;
2241 		}
2242 
2243 		head = compound_head(page);
2244 		if (!page_cache_get_speculative(head))
2245 			goto repeat;
2246 
2247 		/* The page was split under us? */
2248 		if (compound_head(page) != head) {
2249 			put_page(head);
2250 			goto repeat;
2251 		}
2252 
2253 		/* Has the page moved? */
2254 		if (unlikely(page != *slot)) {
2255 			put_page(head);
2256 			goto repeat;
2257 		}
2258 
2259 		if (!PageUptodate(page) ||
2260 				PageReadahead(page) ||
2261 				PageHWPoison(page))
2262 			goto skip;
2263 		if (!trylock_page(page))
2264 			goto skip;
2265 
2266 		if (page->mapping != mapping || !PageUptodate(page))
2267 			goto unlock;
2268 
2269 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2270 		if (page->index >= size >> PAGE_SHIFT)
2271 			goto unlock;
2272 
2273 		if (file->f_ra.mmap_miss > 0)
2274 			file->f_ra.mmap_miss--;
2275 
2276 		fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2277 		if (fe->pte)
2278 			fe->pte += iter.index - last_pgoff;
2279 		last_pgoff = iter.index;
2280 		if (alloc_set_pte(fe, NULL, page))
2281 			goto unlock;
2282 		unlock_page(page);
2283 		goto next;
2284 unlock:
2285 		unlock_page(page);
2286 skip:
2287 		put_page(page);
2288 next:
2289 		/* Huge page is mapped? No need to proceed. */
2290 		if (pmd_trans_huge(*fe->pmd))
2291 			break;
2292 		if (iter.index == end_pgoff)
2293 			break;
2294 	}
2295 	rcu_read_unlock();
2296 }
2297 EXPORT_SYMBOL(filemap_map_pages);
2298 
2299 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2300 {
2301 	struct page *page = vmf->page;
2302 	struct inode *inode = file_inode(vma->vm_file);
2303 	int ret = VM_FAULT_LOCKED;
2304 
2305 	sb_start_pagefault(inode->i_sb);
2306 	file_update_time(vma->vm_file);
2307 	lock_page(page);
2308 	if (page->mapping != inode->i_mapping) {
2309 		unlock_page(page);
2310 		ret = VM_FAULT_NOPAGE;
2311 		goto out;
2312 	}
2313 	/*
2314 	 * We mark the page dirty already here so that when freeze is in
2315 	 * progress, we are guaranteed that writeback during freezing will
2316 	 * see the dirty page and writeprotect it again.
2317 	 */
2318 	set_page_dirty(page);
2319 	wait_for_stable_page(page);
2320 out:
2321 	sb_end_pagefault(inode->i_sb);
2322 	return ret;
2323 }
2324 EXPORT_SYMBOL(filemap_page_mkwrite);
2325 
2326 const struct vm_operations_struct generic_file_vm_ops = {
2327 	.fault		= filemap_fault,
2328 	.map_pages	= filemap_map_pages,
2329 	.page_mkwrite	= filemap_page_mkwrite,
2330 };
2331 
2332 /* This is used for a general mmap of a disk file */
2333 
2334 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2335 {
2336 	struct address_space *mapping = file->f_mapping;
2337 
2338 	if (!mapping->a_ops->readpage)
2339 		return -ENOEXEC;
2340 	file_accessed(file);
2341 	vma->vm_ops = &generic_file_vm_ops;
2342 	return 0;
2343 }
2344 
2345 /*
2346  * This is for filesystems which do not implement ->writepage.
2347  */
2348 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2349 {
2350 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2351 		return -EINVAL;
2352 	return generic_file_mmap(file, vma);
2353 }
2354 #else
2355 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2356 {
2357 	return -ENOSYS;
2358 }
2359 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2360 {
2361 	return -ENOSYS;
2362 }
2363 #endif /* CONFIG_MMU */
2364 
2365 EXPORT_SYMBOL(generic_file_mmap);
2366 EXPORT_SYMBOL(generic_file_readonly_mmap);
2367 
2368 static struct page *wait_on_page_read(struct page *page)
2369 {
2370 	if (!IS_ERR(page)) {
2371 		wait_on_page_locked(page);
2372 		if (!PageUptodate(page)) {
2373 			put_page(page);
2374 			page = ERR_PTR(-EIO);
2375 		}
2376 	}
2377 	return page;
2378 }
2379 
2380 static struct page *do_read_cache_page(struct address_space *mapping,
2381 				pgoff_t index,
2382 				int (*filler)(void *, struct page *),
2383 				void *data,
2384 				gfp_t gfp)
2385 {
2386 	struct page *page;
2387 	int err;
2388 repeat:
2389 	page = find_get_page(mapping, index);
2390 	if (!page) {
2391 		page = __page_cache_alloc(gfp | __GFP_COLD);
2392 		if (!page)
2393 			return ERR_PTR(-ENOMEM);
2394 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2395 		if (unlikely(err)) {
2396 			put_page(page);
2397 			if (err == -EEXIST)
2398 				goto repeat;
2399 			/* Presumably ENOMEM for radix tree node */
2400 			return ERR_PTR(err);
2401 		}
2402 
2403 filler:
2404 		err = filler(data, page);
2405 		if (err < 0) {
2406 			put_page(page);
2407 			return ERR_PTR(err);
2408 		}
2409 
2410 		page = wait_on_page_read(page);
2411 		if (IS_ERR(page))
2412 			return page;
2413 		goto out;
2414 	}
2415 	if (PageUptodate(page))
2416 		goto out;
2417 
2418 	/*
2419 	 * Page is not up to date and may be locked due one of the following
2420 	 * case a: Page is being filled and the page lock is held
2421 	 * case b: Read/write error clearing the page uptodate status
2422 	 * case c: Truncation in progress (page locked)
2423 	 * case d: Reclaim in progress
2424 	 *
2425 	 * Case a, the page will be up to date when the page is unlocked.
2426 	 *    There is no need to serialise on the page lock here as the page
2427 	 *    is pinned so the lock gives no additional protection. Even if the
2428 	 *    the page is truncated, the data is still valid if PageUptodate as
2429 	 *    it's a race vs truncate race.
2430 	 * Case b, the page will not be up to date
2431 	 * Case c, the page may be truncated but in itself, the data may still
2432 	 *    be valid after IO completes as it's a read vs truncate race. The
2433 	 *    operation must restart if the page is not uptodate on unlock but
2434 	 *    otherwise serialising on page lock to stabilise the mapping gives
2435 	 *    no additional guarantees to the caller as the page lock is
2436 	 *    released before return.
2437 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2438 	 *    will be a race with remove_mapping that determines if the mapping
2439 	 *    is valid on unlock but otherwise the data is valid and there is
2440 	 *    no need to serialise with page lock.
2441 	 *
2442 	 * As the page lock gives no additional guarantee, we optimistically
2443 	 * wait on the page to be unlocked and check if it's up to date and
2444 	 * use the page if it is. Otherwise, the page lock is required to
2445 	 * distinguish between the different cases. The motivation is that we
2446 	 * avoid spurious serialisations and wakeups when multiple processes
2447 	 * wait on the same page for IO to complete.
2448 	 */
2449 	wait_on_page_locked(page);
2450 	if (PageUptodate(page))
2451 		goto out;
2452 
2453 	/* Distinguish between all the cases under the safety of the lock */
2454 	lock_page(page);
2455 
2456 	/* Case c or d, restart the operation */
2457 	if (!page->mapping) {
2458 		unlock_page(page);
2459 		put_page(page);
2460 		goto repeat;
2461 	}
2462 
2463 	/* Someone else locked and filled the page in a very small window */
2464 	if (PageUptodate(page)) {
2465 		unlock_page(page);
2466 		goto out;
2467 	}
2468 	goto filler;
2469 
2470 out:
2471 	mark_page_accessed(page);
2472 	return page;
2473 }
2474 
2475 /**
2476  * read_cache_page - read into page cache, fill it if needed
2477  * @mapping:	the page's address_space
2478  * @index:	the page index
2479  * @filler:	function to perform the read
2480  * @data:	first arg to filler(data, page) function, often left as NULL
2481  *
2482  * Read into the page cache. If a page already exists, and PageUptodate() is
2483  * not set, try to fill the page and wait for it to become unlocked.
2484  *
2485  * If the page does not get brought uptodate, return -EIO.
2486  */
2487 struct page *read_cache_page(struct address_space *mapping,
2488 				pgoff_t index,
2489 				int (*filler)(void *, struct page *),
2490 				void *data)
2491 {
2492 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2493 }
2494 EXPORT_SYMBOL(read_cache_page);
2495 
2496 /**
2497  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2498  * @mapping:	the page's address_space
2499  * @index:	the page index
2500  * @gfp:	the page allocator flags to use if allocating
2501  *
2502  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2503  * any new page allocations done using the specified allocation flags.
2504  *
2505  * If the page does not get brought uptodate, return -EIO.
2506  */
2507 struct page *read_cache_page_gfp(struct address_space *mapping,
2508 				pgoff_t index,
2509 				gfp_t gfp)
2510 {
2511 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2512 
2513 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2514 }
2515 EXPORT_SYMBOL(read_cache_page_gfp);
2516 
2517 /*
2518  * Performs necessary checks before doing a write
2519  *
2520  * Can adjust writing position or amount of bytes to write.
2521  * Returns appropriate error code that caller should return or
2522  * zero in case that write should be allowed.
2523  */
2524 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2525 {
2526 	struct file *file = iocb->ki_filp;
2527 	struct inode *inode = file->f_mapping->host;
2528 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2529 	loff_t pos;
2530 
2531 	if (!iov_iter_count(from))
2532 		return 0;
2533 
2534 	/* FIXME: this is for backwards compatibility with 2.4 */
2535 	if (iocb->ki_flags & IOCB_APPEND)
2536 		iocb->ki_pos = i_size_read(inode);
2537 
2538 	pos = iocb->ki_pos;
2539 
2540 	if (limit != RLIM_INFINITY) {
2541 		if (iocb->ki_pos >= limit) {
2542 			send_sig(SIGXFSZ, current, 0);
2543 			return -EFBIG;
2544 		}
2545 		iov_iter_truncate(from, limit - (unsigned long)pos);
2546 	}
2547 
2548 	/*
2549 	 * LFS rule
2550 	 */
2551 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2552 				!(file->f_flags & O_LARGEFILE))) {
2553 		if (pos >= MAX_NON_LFS)
2554 			return -EFBIG;
2555 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2556 	}
2557 
2558 	/*
2559 	 * Are we about to exceed the fs block limit ?
2560 	 *
2561 	 * If we have written data it becomes a short write.  If we have
2562 	 * exceeded without writing data we send a signal and return EFBIG.
2563 	 * Linus frestrict idea will clean these up nicely..
2564 	 */
2565 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2566 		return -EFBIG;
2567 
2568 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2569 	return iov_iter_count(from);
2570 }
2571 EXPORT_SYMBOL(generic_write_checks);
2572 
2573 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2574 				loff_t pos, unsigned len, unsigned flags,
2575 				struct page **pagep, void **fsdata)
2576 {
2577 	const struct address_space_operations *aops = mapping->a_ops;
2578 
2579 	return aops->write_begin(file, mapping, pos, len, flags,
2580 							pagep, fsdata);
2581 }
2582 EXPORT_SYMBOL(pagecache_write_begin);
2583 
2584 int pagecache_write_end(struct file *file, struct address_space *mapping,
2585 				loff_t pos, unsigned len, unsigned copied,
2586 				struct page *page, void *fsdata)
2587 {
2588 	const struct address_space_operations *aops = mapping->a_ops;
2589 
2590 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2591 }
2592 EXPORT_SYMBOL(pagecache_write_end);
2593 
2594 ssize_t
2595 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2596 {
2597 	struct file	*file = iocb->ki_filp;
2598 	struct address_space *mapping = file->f_mapping;
2599 	struct inode	*inode = mapping->host;
2600 	loff_t		pos = iocb->ki_pos;
2601 	ssize_t		written;
2602 	size_t		write_len;
2603 	pgoff_t		end;
2604 	struct iov_iter data;
2605 
2606 	write_len = iov_iter_count(from);
2607 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2608 
2609 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2610 	if (written)
2611 		goto out;
2612 
2613 	/*
2614 	 * After a write we want buffered reads to be sure to go to disk to get
2615 	 * the new data.  We invalidate clean cached page from the region we're
2616 	 * about to write.  We do this *before* the write so that we can return
2617 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2618 	 */
2619 	if (mapping->nrpages) {
2620 		written = invalidate_inode_pages2_range(mapping,
2621 					pos >> PAGE_SHIFT, end);
2622 		/*
2623 		 * If a page can not be invalidated, return 0 to fall back
2624 		 * to buffered write.
2625 		 */
2626 		if (written) {
2627 			if (written == -EBUSY)
2628 				return 0;
2629 			goto out;
2630 		}
2631 	}
2632 
2633 	data = *from;
2634 	written = mapping->a_ops->direct_IO(iocb, &data);
2635 
2636 	/*
2637 	 * Finally, try again to invalidate clean pages which might have been
2638 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2639 	 * if the source of the write was an mmap'ed region of the file
2640 	 * we're writing.  Either one is a pretty crazy thing to do,
2641 	 * so we don't support it 100%.  If this invalidation
2642 	 * fails, tough, the write still worked...
2643 	 */
2644 	if (mapping->nrpages) {
2645 		invalidate_inode_pages2_range(mapping,
2646 					      pos >> PAGE_SHIFT, end);
2647 	}
2648 
2649 	if (written > 0) {
2650 		pos += written;
2651 		iov_iter_advance(from, written);
2652 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2653 			i_size_write(inode, pos);
2654 			mark_inode_dirty(inode);
2655 		}
2656 		iocb->ki_pos = pos;
2657 	}
2658 out:
2659 	return written;
2660 }
2661 EXPORT_SYMBOL(generic_file_direct_write);
2662 
2663 /*
2664  * Find or create a page at the given pagecache position. Return the locked
2665  * page. This function is specifically for buffered writes.
2666  */
2667 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2668 					pgoff_t index, unsigned flags)
2669 {
2670 	struct page *page;
2671 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2672 
2673 	if (flags & AOP_FLAG_NOFS)
2674 		fgp_flags |= FGP_NOFS;
2675 
2676 	page = pagecache_get_page(mapping, index, fgp_flags,
2677 			mapping_gfp_mask(mapping));
2678 	if (page)
2679 		wait_for_stable_page(page);
2680 
2681 	return page;
2682 }
2683 EXPORT_SYMBOL(grab_cache_page_write_begin);
2684 
2685 ssize_t generic_perform_write(struct file *file,
2686 				struct iov_iter *i, loff_t pos)
2687 {
2688 	struct address_space *mapping = file->f_mapping;
2689 	const struct address_space_operations *a_ops = mapping->a_ops;
2690 	long status = 0;
2691 	ssize_t written = 0;
2692 	unsigned int flags = 0;
2693 
2694 	/*
2695 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2696 	 */
2697 	if (!iter_is_iovec(i))
2698 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2699 
2700 	do {
2701 		struct page *page;
2702 		unsigned long offset;	/* Offset into pagecache page */
2703 		unsigned long bytes;	/* Bytes to write to page */
2704 		size_t copied;		/* Bytes copied from user */
2705 		void *fsdata;
2706 
2707 		offset = (pos & (PAGE_SIZE - 1));
2708 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2709 						iov_iter_count(i));
2710 
2711 again:
2712 		/*
2713 		 * Bring in the user page that we will copy from _first_.
2714 		 * Otherwise there's a nasty deadlock on copying from the
2715 		 * same page as we're writing to, without it being marked
2716 		 * up-to-date.
2717 		 *
2718 		 * Not only is this an optimisation, but it is also required
2719 		 * to check that the address is actually valid, when atomic
2720 		 * usercopies are used, below.
2721 		 */
2722 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2723 			status = -EFAULT;
2724 			break;
2725 		}
2726 
2727 		if (fatal_signal_pending(current)) {
2728 			status = -EINTR;
2729 			break;
2730 		}
2731 
2732 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2733 						&page, &fsdata);
2734 		if (unlikely(status < 0))
2735 			break;
2736 
2737 		if (mapping_writably_mapped(mapping))
2738 			flush_dcache_page(page);
2739 
2740 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2741 		flush_dcache_page(page);
2742 
2743 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2744 						page, fsdata);
2745 		if (unlikely(status < 0))
2746 			break;
2747 		copied = status;
2748 
2749 		cond_resched();
2750 
2751 		iov_iter_advance(i, copied);
2752 		if (unlikely(copied == 0)) {
2753 			/*
2754 			 * If we were unable to copy any data at all, we must
2755 			 * fall back to a single segment length write.
2756 			 *
2757 			 * If we didn't fallback here, we could livelock
2758 			 * because not all segments in the iov can be copied at
2759 			 * once without a pagefault.
2760 			 */
2761 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2762 						iov_iter_single_seg_count(i));
2763 			goto again;
2764 		}
2765 		pos += copied;
2766 		written += copied;
2767 
2768 		balance_dirty_pages_ratelimited(mapping);
2769 	} while (iov_iter_count(i));
2770 
2771 	return written ? written : status;
2772 }
2773 EXPORT_SYMBOL(generic_perform_write);
2774 
2775 /**
2776  * __generic_file_write_iter - write data to a file
2777  * @iocb:	IO state structure (file, offset, etc.)
2778  * @from:	iov_iter with data to write
2779  *
2780  * This function does all the work needed for actually writing data to a
2781  * file. It does all basic checks, removes SUID from the file, updates
2782  * modification times and calls proper subroutines depending on whether we
2783  * do direct IO or a standard buffered write.
2784  *
2785  * It expects i_mutex to be grabbed unless we work on a block device or similar
2786  * object which does not need locking at all.
2787  *
2788  * This function does *not* take care of syncing data in case of O_SYNC write.
2789  * A caller has to handle it. This is mainly due to the fact that we want to
2790  * avoid syncing under i_mutex.
2791  */
2792 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2793 {
2794 	struct file *file = iocb->ki_filp;
2795 	struct address_space * mapping = file->f_mapping;
2796 	struct inode 	*inode = mapping->host;
2797 	ssize_t		written = 0;
2798 	ssize_t		err;
2799 	ssize_t		status;
2800 
2801 	/* We can write back this queue in page reclaim */
2802 	current->backing_dev_info = inode_to_bdi(inode);
2803 	err = file_remove_privs(file);
2804 	if (err)
2805 		goto out;
2806 
2807 	err = file_update_time(file);
2808 	if (err)
2809 		goto out;
2810 
2811 	if (iocb->ki_flags & IOCB_DIRECT) {
2812 		loff_t pos, endbyte;
2813 
2814 		written = generic_file_direct_write(iocb, from);
2815 		/*
2816 		 * If the write stopped short of completing, fall back to
2817 		 * buffered writes.  Some filesystems do this for writes to
2818 		 * holes, for example.  For DAX files, a buffered write will
2819 		 * not succeed (even if it did, DAX does not handle dirty
2820 		 * page-cache pages correctly).
2821 		 */
2822 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2823 			goto out;
2824 
2825 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2826 		/*
2827 		 * If generic_perform_write() returned a synchronous error
2828 		 * then we want to return the number of bytes which were
2829 		 * direct-written, or the error code if that was zero.  Note
2830 		 * that this differs from normal direct-io semantics, which
2831 		 * will return -EFOO even if some bytes were written.
2832 		 */
2833 		if (unlikely(status < 0)) {
2834 			err = status;
2835 			goto out;
2836 		}
2837 		/*
2838 		 * We need to ensure that the page cache pages are written to
2839 		 * disk and invalidated to preserve the expected O_DIRECT
2840 		 * semantics.
2841 		 */
2842 		endbyte = pos + status - 1;
2843 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2844 		if (err == 0) {
2845 			iocb->ki_pos = endbyte + 1;
2846 			written += status;
2847 			invalidate_mapping_pages(mapping,
2848 						 pos >> PAGE_SHIFT,
2849 						 endbyte >> PAGE_SHIFT);
2850 		} else {
2851 			/*
2852 			 * We don't know how much we wrote, so just return
2853 			 * the number of bytes which were direct-written
2854 			 */
2855 		}
2856 	} else {
2857 		written = generic_perform_write(file, from, iocb->ki_pos);
2858 		if (likely(written > 0))
2859 			iocb->ki_pos += written;
2860 	}
2861 out:
2862 	current->backing_dev_info = NULL;
2863 	return written ? written : err;
2864 }
2865 EXPORT_SYMBOL(__generic_file_write_iter);
2866 
2867 /**
2868  * generic_file_write_iter - write data to a file
2869  * @iocb:	IO state structure
2870  * @from:	iov_iter with data to write
2871  *
2872  * This is a wrapper around __generic_file_write_iter() to be used by most
2873  * filesystems. It takes care of syncing the file in case of O_SYNC file
2874  * and acquires i_mutex as needed.
2875  */
2876 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2877 {
2878 	struct file *file = iocb->ki_filp;
2879 	struct inode *inode = file->f_mapping->host;
2880 	ssize_t ret;
2881 
2882 	inode_lock(inode);
2883 	ret = generic_write_checks(iocb, from);
2884 	if (ret > 0)
2885 		ret = __generic_file_write_iter(iocb, from);
2886 	inode_unlock(inode);
2887 
2888 	if (ret > 0)
2889 		ret = generic_write_sync(iocb, ret);
2890 	return ret;
2891 }
2892 EXPORT_SYMBOL(generic_file_write_iter);
2893 
2894 /**
2895  * try_to_release_page() - release old fs-specific metadata on a page
2896  *
2897  * @page: the page which the kernel is trying to free
2898  * @gfp_mask: memory allocation flags (and I/O mode)
2899  *
2900  * The address_space is to try to release any data against the page
2901  * (presumably at page->private).  If the release was successful, return `1'.
2902  * Otherwise return zero.
2903  *
2904  * This may also be called if PG_fscache is set on a page, indicating that the
2905  * page is known to the local caching routines.
2906  *
2907  * The @gfp_mask argument specifies whether I/O may be performed to release
2908  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2909  *
2910  */
2911 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2912 {
2913 	struct address_space * const mapping = page->mapping;
2914 
2915 	BUG_ON(!PageLocked(page));
2916 	if (PageWriteback(page))
2917 		return 0;
2918 
2919 	if (mapping && mapping->a_ops->releasepage)
2920 		return mapping->a_ops->releasepage(page, gfp_mask);
2921 	return try_to_free_buffers(page);
2922 }
2923 
2924 EXPORT_SYMBOL(try_to_release_page);
2925