1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 * 108 * (code doesn't rely on that order, so you could switch it around) 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 * ->i_mmap_lock 111 */ 112 113 /* 114 * Remove a page from the page cache and free it. Caller has to make 115 * sure the page is locked and that nobody else uses it - or that usage 116 * is safe. The caller must hold the mapping's tree_lock. 117 */ 118 void __remove_from_page_cache(struct page *page) 119 { 120 struct address_space *mapping = page->mapping; 121 122 radix_tree_delete(&mapping->page_tree, page->index); 123 page->mapping = NULL; 124 mapping->nrpages--; 125 __dec_zone_page_state(page, NR_FILE_PAGES); 126 if (PageSwapBacked(page)) 127 __dec_zone_page_state(page, NR_SHMEM); 128 BUG_ON(page_mapped(page)); 129 130 /* 131 * Some filesystems seem to re-dirty the page even after 132 * the VM has canceled the dirty bit (eg ext3 journaling). 133 * 134 * Fix it up by doing a final dirty accounting check after 135 * having removed the page entirely. 136 */ 137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 138 dec_zone_page_state(page, NR_FILE_DIRTY); 139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 140 } 141 } 142 143 void remove_from_page_cache(struct page *page) 144 { 145 struct address_space *mapping = page->mapping; 146 147 BUG_ON(!PageLocked(page)); 148 149 spin_lock_irq(&mapping->tree_lock); 150 __remove_from_page_cache(page); 151 spin_unlock_irq(&mapping->tree_lock); 152 mem_cgroup_uncharge_cache_page(page); 153 } 154 155 static int sync_page(void *word) 156 { 157 struct address_space *mapping; 158 struct page *page; 159 160 page = container_of((unsigned long *)word, struct page, flags); 161 162 /* 163 * page_mapping() is being called without PG_locked held. 164 * Some knowledge of the state and use of the page is used to 165 * reduce the requirements down to a memory barrier. 166 * The danger here is of a stale page_mapping() return value 167 * indicating a struct address_space different from the one it's 168 * associated with when it is associated with one. 169 * After smp_mb(), it's either the correct page_mapping() for 170 * the page, or an old page_mapping() and the page's own 171 * page_mapping() has gone NULL. 172 * The ->sync_page() address_space operation must tolerate 173 * page_mapping() going NULL. By an amazing coincidence, 174 * this comes about because none of the users of the page 175 * in the ->sync_page() methods make essential use of the 176 * page_mapping(), merely passing the page down to the backing 177 * device's unplug functions when it's non-NULL, which in turn 178 * ignore it for all cases but swap, where only page_private(page) is 179 * of interest. When page_mapping() does go NULL, the entire 180 * call stack gracefully ignores the page and returns. 181 * -- wli 182 */ 183 smp_mb(); 184 mapping = page_mapping(page); 185 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 186 mapping->a_ops->sync_page(page); 187 io_schedule(); 188 return 0; 189 } 190 191 static int sync_page_killable(void *word) 192 { 193 sync_page(word); 194 return fatal_signal_pending(current) ? -EINTR : 0; 195 } 196 197 /** 198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 199 * @mapping: address space structure to write 200 * @start: offset in bytes where the range starts 201 * @end: offset in bytes where the range ends (inclusive) 202 * @sync_mode: enable synchronous operation 203 * 204 * Start writeback against all of a mapping's dirty pages that lie 205 * within the byte offsets <start, end> inclusive. 206 * 207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 208 * opposed to a regular memory cleansing writeback. The difference between 209 * these two operations is that if a dirty page/buffer is encountered, it must 210 * be waited upon, and not just skipped over. 211 */ 212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 213 loff_t end, int sync_mode) 214 { 215 int ret; 216 struct writeback_control wbc = { 217 .sync_mode = sync_mode, 218 .nr_to_write = LONG_MAX, 219 .range_start = start, 220 .range_end = end, 221 }; 222 223 if (!mapping_cap_writeback_dirty(mapping)) 224 return 0; 225 226 ret = do_writepages(mapping, &wbc); 227 return ret; 228 } 229 230 static inline int __filemap_fdatawrite(struct address_space *mapping, 231 int sync_mode) 232 { 233 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 234 } 235 236 int filemap_fdatawrite(struct address_space *mapping) 237 { 238 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 239 } 240 EXPORT_SYMBOL(filemap_fdatawrite); 241 242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 243 loff_t end) 244 { 245 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 246 } 247 EXPORT_SYMBOL(filemap_fdatawrite_range); 248 249 /** 250 * filemap_flush - mostly a non-blocking flush 251 * @mapping: target address_space 252 * 253 * This is a mostly non-blocking flush. Not suitable for data-integrity 254 * purposes - I/O may not be started against all dirty pages. 255 */ 256 int filemap_flush(struct address_space *mapping) 257 { 258 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 259 } 260 EXPORT_SYMBOL(filemap_flush); 261 262 /** 263 * wait_on_page_writeback_range - wait for writeback to complete 264 * @mapping: target address_space 265 * @start: beginning page index 266 * @end: ending page index 267 * 268 * Wait for writeback to complete against pages indexed by start->end 269 * inclusive 270 */ 271 int wait_on_page_writeback_range(struct address_space *mapping, 272 pgoff_t start, pgoff_t end) 273 { 274 struct pagevec pvec; 275 int nr_pages; 276 int ret = 0; 277 pgoff_t index; 278 279 if (end < start) 280 return 0; 281 282 pagevec_init(&pvec, 0); 283 index = start; 284 while ((index <= end) && 285 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 286 PAGECACHE_TAG_WRITEBACK, 287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 288 unsigned i; 289 290 for (i = 0; i < nr_pages; i++) { 291 struct page *page = pvec.pages[i]; 292 293 /* until radix tree lookup accepts end_index */ 294 if (page->index > end) 295 continue; 296 297 wait_on_page_writeback(page); 298 if (PageError(page)) 299 ret = -EIO; 300 } 301 pagevec_release(&pvec); 302 cond_resched(); 303 } 304 305 /* Check for outstanding write errors */ 306 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 307 ret = -ENOSPC; 308 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 309 ret = -EIO; 310 311 return ret; 312 } 313 314 /** 315 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range 316 * @mapping: address space structure to wait for 317 * @start: offset in bytes where the range starts 318 * @end: offset in bytes where the range ends (inclusive) 319 * 320 * Walk the list of under-writeback pages of the given address space 321 * in the given range and wait for all of them. 322 * 323 * This is just a simple wrapper so that callers don't have to convert offsets 324 * to page indexes themselves 325 */ 326 int filemap_fdatawait_range(struct address_space *mapping, loff_t start, 327 loff_t end) 328 { 329 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT, 330 end >> PAGE_CACHE_SHIFT); 331 } 332 EXPORT_SYMBOL(filemap_fdatawait_range); 333 334 /** 335 * filemap_fdatawait - wait for all under-writeback pages to complete 336 * @mapping: address space structure to wait for 337 * 338 * Walk the list of under-writeback pages of the given address space 339 * and wait for all of them. 340 */ 341 int filemap_fdatawait(struct address_space *mapping) 342 { 343 loff_t i_size = i_size_read(mapping->host); 344 345 if (i_size == 0) 346 return 0; 347 348 return wait_on_page_writeback_range(mapping, 0, 349 (i_size - 1) >> PAGE_CACHE_SHIFT); 350 } 351 EXPORT_SYMBOL(filemap_fdatawait); 352 353 int filemap_write_and_wait(struct address_space *mapping) 354 { 355 int err = 0; 356 357 if (mapping->nrpages) { 358 err = filemap_fdatawrite(mapping); 359 /* 360 * Even if the above returned error, the pages may be 361 * written partially (e.g. -ENOSPC), so we wait for it. 362 * But the -EIO is special case, it may indicate the worst 363 * thing (e.g. bug) happened, so we avoid waiting for it. 364 */ 365 if (err != -EIO) { 366 int err2 = filemap_fdatawait(mapping); 367 if (!err) 368 err = err2; 369 } 370 } 371 return err; 372 } 373 EXPORT_SYMBOL(filemap_write_and_wait); 374 375 /** 376 * filemap_write_and_wait_range - write out & wait on a file range 377 * @mapping: the address_space for the pages 378 * @lstart: offset in bytes where the range starts 379 * @lend: offset in bytes where the range ends (inclusive) 380 * 381 * Write out and wait upon file offsets lstart->lend, inclusive. 382 * 383 * Note that `lend' is inclusive (describes the last byte to be written) so 384 * that this function can be used to write to the very end-of-file (end = -1). 385 */ 386 int filemap_write_and_wait_range(struct address_space *mapping, 387 loff_t lstart, loff_t lend) 388 { 389 int err = 0; 390 391 if (mapping->nrpages) { 392 err = __filemap_fdatawrite_range(mapping, lstart, lend, 393 WB_SYNC_ALL); 394 /* See comment of filemap_write_and_wait() */ 395 if (err != -EIO) { 396 int err2 = wait_on_page_writeback_range(mapping, 397 lstart >> PAGE_CACHE_SHIFT, 398 lend >> PAGE_CACHE_SHIFT); 399 if (!err) 400 err = err2; 401 } 402 } 403 return err; 404 } 405 EXPORT_SYMBOL(filemap_write_and_wait_range); 406 407 /** 408 * add_to_page_cache_locked - add a locked page to the pagecache 409 * @page: page to add 410 * @mapping: the page's address_space 411 * @offset: page index 412 * @gfp_mask: page allocation mode 413 * 414 * This function is used to add a page to the pagecache. It must be locked. 415 * This function does not add the page to the LRU. The caller must do that. 416 */ 417 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 418 pgoff_t offset, gfp_t gfp_mask) 419 { 420 int error; 421 422 VM_BUG_ON(!PageLocked(page)); 423 424 error = mem_cgroup_cache_charge(page, current->mm, 425 gfp_mask & GFP_RECLAIM_MASK); 426 if (error) 427 goto out; 428 429 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 430 if (error == 0) { 431 page_cache_get(page); 432 page->mapping = mapping; 433 page->index = offset; 434 435 spin_lock_irq(&mapping->tree_lock); 436 error = radix_tree_insert(&mapping->page_tree, offset, page); 437 if (likely(!error)) { 438 mapping->nrpages++; 439 __inc_zone_page_state(page, NR_FILE_PAGES); 440 if (PageSwapBacked(page)) 441 __inc_zone_page_state(page, NR_SHMEM); 442 spin_unlock_irq(&mapping->tree_lock); 443 } else { 444 page->mapping = NULL; 445 spin_unlock_irq(&mapping->tree_lock); 446 mem_cgroup_uncharge_cache_page(page); 447 page_cache_release(page); 448 } 449 radix_tree_preload_end(); 450 } else 451 mem_cgroup_uncharge_cache_page(page); 452 out: 453 return error; 454 } 455 EXPORT_SYMBOL(add_to_page_cache_locked); 456 457 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 458 pgoff_t offset, gfp_t gfp_mask) 459 { 460 int ret; 461 462 /* 463 * Splice_read and readahead add shmem/tmpfs pages into the page cache 464 * before shmem_readpage has a chance to mark them as SwapBacked: they 465 * need to go on the active_anon lru below, and mem_cgroup_cache_charge 466 * (called in add_to_page_cache) needs to know where they're going too. 467 */ 468 if (mapping_cap_swap_backed(mapping)) 469 SetPageSwapBacked(page); 470 471 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 472 if (ret == 0) { 473 if (page_is_file_cache(page)) 474 lru_cache_add_file(page); 475 else 476 lru_cache_add_active_anon(page); 477 } 478 return ret; 479 } 480 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 481 482 #ifdef CONFIG_NUMA 483 struct page *__page_cache_alloc(gfp_t gfp) 484 { 485 if (cpuset_do_page_mem_spread()) { 486 int n = cpuset_mem_spread_node(); 487 return alloc_pages_exact_node(n, gfp, 0); 488 } 489 return alloc_pages(gfp, 0); 490 } 491 EXPORT_SYMBOL(__page_cache_alloc); 492 #endif 493 494 static int __sleep_on_page_lock(void *word) 495 { 496 io_schedule(); 497 return 0; 498 } 499 500 /* 501 * In order to wait for pages to become available there must be 502 * waitqueues associated with pages. By using a hash table of 503 * waitqueues where the bucket discipline is to maintain all 504 * waiters on the same queue and wake all when any of the pages 505 * become available, and for the woken contexts to check to be 506 * sure the appropriate page became available, this saves space 507 * at a cost of "thundering herd" phenomena during rare hash 508 * collisions. 509 */ 510 static wait_queue_head_t *page_waitqueue(struct page *page) 511 { 512 const struct zone *zone = page_zone(page); 513 514 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 515 } 516 517 static inline void wake_up_page(struct page *page, int bit) 518 { 519 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 520 } 521 522 void wait_on_page_bit(struct page *page, int bit_nr) 523 { 524 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 525 526 if (test_bit(bit_nr, &page->flags)) 527 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 528 TASK_UNINTERRUPTIBLE); 529 } 530 EXPORT_SYMBOL(wait_on_page_bit); 531 532 /** 533 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 534 * @page: Page defining the wait queue of interest 535 * @waiter: Waiter to add to the queue 536 * 537 * Add an arbitrary @waiter to the wait queue for the nominated @page. 538 */ 539 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 540 { 541 wait_queue_head_t *q = page_waitqueue(page); 542 unsigned long flags; 543 544 spin_lock_irqsave(&q->lock, flags); 545 __add_wait_queue(q, waiter); 546 spin_unlock_irqrestore(&q->lock, flags); 547 } 548 EXPORT_SYMBOL_GPL(add_page_wait_queue); 549 550 /** 551 * unlock_page - unlock a locked page 552 * @page: the page 553 * 554 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 555 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 556 * mechananism between PageLocked pages and PageWriteback pages is shared. 557 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 558 * 559 * The mb is necessary to enforce ordering between the clear_bit and the read 560 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 561 */ 562 void unlock_page(struct page *page) 563 { 564 VM_BUG_ON(!PageLocked(page)); 565 clear_bit_unlock(PG_locked, &page->flags); 566 smp_mb__after_clear_bit(); 567 wake_up_page(page, PG_locked); 568 } 569 EXPORT_SYMBOL(unlock_page); 570 571 /** 572 * end_page_writeback - end writeback against a page 573 * @page: the page 574 */ 575 void end_page_writeback(struct page *page) 576 { 577 if (TestClearPageReclaim(page)) 578 rotate_reclaimable_page(page); 579 580 if (!test_clear_page_writeback(page)) 581 BUG(); 582 583 smp_mb__after_clear_bit(); 584 wake_up_page(page, PG_writeback); 585 } 586 EXPORT_SYMBOL(end_page_writeback); 587 588 /** 589 * __lock_page - get a lock on the page, assuming we need to sleep to get it 590 * @page: the page to lock 591 * 592 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 593 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 594 * chances are that on the second loop, the block layer's plug list is empty, 595 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 596 */ 597 void __lock_page(struct page *page) 598 { 599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 600 601 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 602 TASK_UNINTERRUPTIBLE); 603 } 604 EXPORT_SYMBOL(__lock_page); 605 606 int __lock_page_killable(struct page *page) 607 { 608 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 609 610 return __wait_on_bit_lock(page_waitqueue(page), &wait, 611 sync_page_killable, TASK_KILLABLE); 612 } 613 EXPORT_SYMBOL_GPL(__lock_page_killable); 614 615 /** 616 * __lock_page_nosync - get a lock on the page, without calling sync_page() 617 * @page: the page to lock 618 * 619 * Variant of lock_page that does not require the caller to hold a reference 620 * on the page's mapping. 621 */ 622 void __lock_page_nosync(struct page *page) 623 { 624 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 625 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 626 TASK_UNINTERRUPTIBLE); 627 } 628 629 /** 630 * find_get_page - find and get a page reference 631 * @mapping: the address_space to search 632 * @offset: the page index 633 * 634 * Is there a pagecache struct page at the given (mapping, offset) tuple? 635 * If yes, increment its refcount and return it; if no, return NULL. 636 */ 637 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 638 { 639 void **pagep; 640 struct page *page; 641 642 rcu_read_lock(); 643 repeat: 644 page = NULL; 645 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 646 if (pagep) { 647 page = radix_tree_deref_slot(pagep); 648 if (unlikely(!page || page == RADIX_TREE_RETRY)) 649 goto repeat; 650 651 if (!page_cache_get_speculative(page)) 652 goto repeat; 653 654 /* 655 * Has the page moved? 656 * This is part of the lockless pagecache protocol. See 657 * include/linux/pagemap.h for details. 658 */ 659 if (unlikely(page != *pagep)) { 660 page_cache_release(page); 661 goto repeat; 662 } 663 } 664 rcu_read_unlock(); 665 666 return page; 667 } 668 EXPORT_SYMBOL(find_get_page); 669 670 /** 671 * find_lock_page - locate, pin and lock a pagecache page 672 * @mapping: the address_space to search 673 * @offset: the page index 674 * 675 * Locates the desired pagecache page, locks it, increments its reference 676 * count and returns its address. 677 * 678 * Returns zero if the page was not present. find_lock_page() may sleep. 679 */ 680 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 681 { 682 struct page *page; 683 684 repeat: 685 page = find_get_page(mapping, offset); 686 if (page) { 687 lock_page(page); 688 /* Has the page been truncated? */ 689 if (unlikely(page->mapping != mapping)) { 690 unlock_page(page); 691 page_cache_release(page); 692 goto repeat; 693 } 694 VM_BUG_ON(page->index != offset); 695 } 696 return page; 697 } 698 EXPORT_SYMBOL(find_lock_page); 699 700 /** 701 * find_or_create_page - locate or add a pagecache page 702 * @mapping: the page's address_space 703 * @index: the page's index into the mapping 704 * @gfp_mask: page allocation mode 705 * 706 * Locates a page in the pagecache. If the page is not present, a new page 707 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 708 * LRU list. The returned page is locked and has its reference count 709 * incremented. 710 * 711 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 712 * allocation! 713 * 714 * find_or_create_page() returns the desired page's address, or zero on 715 * memory exhaustion. 716 */ 717 struct page *find_or_create_page(struct address_space *mapping, 718 pgoff_t index, gfp_t gfp_mask) 719 { 720 struct page *page; 721 int err; 722 repeat: 723 page = find_lock_page(mapping, index); 724 if (!page) { 725 page = __page_cache_alloc(gfp_mask); 726 if (!page) 727 return NULL; 728 /* 729 * We want a regular kernel memory (not highmem or DMA etc) 730 * allocation for the radix tree nodes, but we need to honour 731 * the context-specific requirements the caller has asked for. 732 * GFP_RECLAIM_MASK collects those requirements. 733 */ 734 err = add_to_page_cache_lru(page, mapping, index, 735 (gfp_mask & GFP_RECLAIM_MASK)); 736 if (unlikely(err)) { 737 page_cache_release(page); 738 page = NULL; 739 if (err == -EEXIST) 740 goto repeat; 741 } 742 } 743 return page; 744 } 745 EXPORT_SYMBOL(find_or_create_page); 746 747 /** 748 * find_get_pages - gang pagecache lookup 749 * @mapping: The address_space to search 750 * @start: The starting page index 751 * @nr_pages: The maximum number of pages 752 * @pages: Where the resulting pages are placed 753 * 754 * find_get_pages() will search for and return a group of up to 755 * @nr_pages pages in the mapping. The pages are placed at @pages. 756 * find_get_pages() takes a reference against the returned pages. 757 * 758 * The search returns a group of mapping-contiguous pages with ascending 759 * indexes. There may be holes in the indices due to not-present pages. 760 * 761 * find_get_pages() returns the number of pages which were found. 762 */ 763 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 764 unsigned int nr_pages, struct page **pages) 765 { 766 unsigned int i; 767 unsigned int ret; 768 unsigned int nr_found; 769 770 rcu_read_lock(); 771 restart: 772 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 773 (void ***)pages, start, nr_pages); 774 ret = 0; 775 for (i = 0; i < nr_found; i++) { 776 struct page *page; 777 repeat: 778 page = radix_tree_deref_slot((void **)pages[i]); 779 if (unlikely(!page)) 780 continue; 781 /* 782 * this can only trigger if nr_found == 1, making livelock 783 * a non issue. 784 */ 785 if (unlikely(page == RADIX_TREE_RETRY)) 786 goto restart; 787 788 if (!page_cache_get_speculative(page)) 789 goto repeat; 790 791 /* Has the page moved? */ 792 if (unlikely(page != *((void **)pages[i]))) { 793 page_cache_release(page); 794 goto repeat; 795 } 796 797 pages[ret] = page; 798 ret++; 799 } 800 rcu_read_unlock(); 801 return ret; 802 } 803 804 /** 805 * find_get_pages_contig - gang contiguous pagecache lookup 806 * @mapping: The address_space to search 807 * @index: The starting page index 808 * @nr_pages: The maximum number of pages 809 * @pages: Where the resulting pages are placed 810 * 811 * find_get_pages_contig() works exactly like find_get_pages(), except 812 * that the returned number of pages are guaranteed to be contiguous. 813 * 814 * find_get_pages_contig() returns the number of pages which were found. 815 */ 816 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 817 unsigned int nr_pages, struct page **pages) 818 { 819 unsigned int i; 820 unsigned int ret; 821 unsigned int nr_found; 822 823 rcu_read_lock(); 824 restart: 825 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 826 (void ***)pages, index, nr_pages); 827 ret = 0; 828 for (i = 0; i < nr_found; i++) { 829 struct page *page; 830 repeat: 831 page = radix_tree_deref_slot((void **)pages[i]); 832 if (unlikely(!page)) 833 continue; 834 /* 835 * this can only trigger if nr_found == 1, making livelock 836 * a non issue. 837 */ 838 if (unlikely(page == RADIX_TREE_RETRY)) 839 goto restart; 840 841 if (page->mapping == NULL || page->index != index) 842 break; 843 844 if (!page_cache_get_speculative(page)) 845 goto repeat; 846 847 /* Has the page moved? */ 848 if (unlikely(page != *((void **)pages[i]))) { 849 page_cache_release(page); 850 goto repeat; 851 } 852 853 pages[ret] = page; 854 ret++; 855 index++; 856 } 857 rcu_read_unlock(); 858 return ret; 859 } 860 EXPORT_SYMBOL(find_get_pages_contig); 861 862 /** 863 * find_get_pages_tag - find and return pages that match @tag 864 * @mapping: the address_space to search 865 * @index: the starting page index 866 * @tag: the tag index 867 * @nr_pages: the maximum number of pages 868 * @pages: where the resulting pages are placed 869 * 870 * Like find_get_pages, except we only return pages which are tagged with 871 * @tag. We update @index to index the next page for the traversal. 872 */ 873 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 874 int tag, unsigned int nr_pages, struct page **pages) 875 { 876 unsigned int i; 877 unsigned int ret; 878 unsigned int nr_found; 879 880 rcu_read_lock(); 881 restart: 882 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 883 (void ***)pages, *index, nr_pages, tag); 884 ret = 0; 885 for (i = 0; i < nr_found; i++) { 886 struct page *page; 887 repeat: 888 page = radix_tree_deref_slot((void **)pages[i]); 889 if (unlikely(!page)) 890 continue; 891 /* 892 * this can only trigger if nr_found == 1, making livelock 893 * a non issue. 894 */ 895 if (unlikely(page == RADIX_TREE_RETRY)) 896 goto restart; 897 898 if (!page_cache_get_speculative(page)) 899 goto repeat; 900 901 /* Has the page moved? */ 902 if (unlikely(page != *((void **)pages[i]))) { 903 page_cache_release(page); 904 goto repeat; 905 } 906 907 pages[ret] = page; 908 ret++; 909 } 910 rcu_read_unlock(); 911 912 if (ret) 913 *index = pages[ret - 1]->index + 1; 914 915 return ret; 916 } 917 EXPORT_SYMBOL(find_get_pages_tag); 918 919 /** 920 * grab_cache_page_nowait - returns locked page at given index in given cache 921 * @mapping: target address_space 922 * @index: the page index 923 * 924 * Same as grab_cache_page(), but do not wait if the page is unavailable. 925 * This is intended for speculative data generators, where the data can 926 * be regenerated if the page couldn't be grabbed. This routine should 927 * be safe to call while holding the lock for another page. 928 * 929 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 930 * and deadlock against the caller's locked page. 931 */ 932 struct page * 933 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 934 { 935 struct page *page = find_get_page(mapping, index); 936 937 if (page) { 938 if (trylock_page(page)) 939 return page; 940 page_cache_release(page); 941 return NULL; 942 } 943 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 944 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 945 page_cache_release(page); 946 page = NULL; 947 } 948 return page; 949 } 950 EXPORT_SYMBOL(grab_cache_page_nowait); 951 952 /* 953 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 954 * a _large_ part of the i/o request. Imagine the worst scenario: 955 * 956 * ---R__________________________________________B__________ 957 * ^ reading here ^ bad block(assume 4k) 958 * 959 * read(R) => miss => readahead(R...B) => media error => frustrating retries 960 * => failing the whole request => read(R) => read(R+1) => 961 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 962 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 963 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 964 * 965 * It is going insane. Fix it by quickly scaling down the readahead size. 966 */ 967 static void shrink_readahead_size_eio(struct file *filp, 968 struct file_ra_state *ra) 969 { 970 ra->ra_pages /= 4; 971 } 972 973 /** 974 * do_generic_file_read - generic file read routine 975 * @filp: the file to read 976 * @ppos: current file position 977 * @desc: read_descriptor 978 * @actor: read method 979 * 980 * This is a generic file read routine, and uses the 981 * mapping->a_ops->readpage() function for the actual low-level stuff. 982 * 983 * This is really ugly. But the goto's actually try to clarify some 984 * of the logic when it comes to error handling etc. 985 */ 986 static void do_generic_file_read(struct file *filp, loff_t *ppos, 987 read_descriptor_t *desc, read_actor_t actor) 988 { 989 struct address_space *mapping = filp->f_mapping; 990 struct inode *inode = mapping->host; 991 struct file_ra_state *ra = &filp->f_ra; 992 pgoff_t index; 993 pgoff_t last_index; 994 pgoff_t prev_index; 995 unsigned long offset; /* offset into pagecache page */ 996 unsigned int prev_offset; 997 int error; 998 999 index = *ppos >> PAGE_CACHE_SHIFT; 1000 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1001 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1002 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1003 offset = *ppos & ~PAGE_CACHE_MASK; 1004 1005 for (;;) { 1006 struct page *page; 1007 pgoff_t end_index; 1008 loff_t isize; 1009 unsigned long nr, ret; 1010 1011 cond_resched(); 1012 find_page: 1013 page = find_get_page(mapping, index); 1014 if (!page) { 1015 page_cache_sync_readahead(mapping, 1016 ra, filp, 1017 index, last_index - index); 1018 page = find_get_page(mapping, index); 1019 if (unlikely(page == NULL)) 1020 goto no_cached_page; 1021 } 1022 if (PageReadahead(page)) { 1023 page_cache_async_readahead(mapping, 1024 ra, filp, page, 1025 index, last_index - index); 1026 } 1027 if (!PageUptodate(page)) { 1028 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1029 !mapping->a_ops->is_partially_uptodate) 1030 goto page_not_up_to_date; 1031 if (!trylock_page(page)) 1032 goto page_not_up_to_date; 1033 if (!mapping->a_ops->is_partially_uptodate(page, 1034 desc, offset)) 1035 goto page_not_up_to_date_locked; 1036 unlock_page(page); 1037 } 1038 page_ok: 1039 /* 1040 * i_size must be checked after we know the page is Uptodate. 1041 * 1042 * Checking i_size after the check allows us to calculate 1043 * the correct value for "nr", which means the zero-filled 1044 * part of the page is not copied back to userspace (unless 1045 * another truncate extends the file - this is desired though). 1046 */ 1047 1048 isize = i_size_read(inode); 1049 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1050 if (unlikely(!isize || index > end_index)) { 1051 page_cache_release(page); 1052 goto out; 1053 } 1054 1055 /* nr is the maximum number of bytes to copy from this page */ 1056 nr = PAGE_CACHE_SIZE; 1057 if (index == end_index) { 1058 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1059 if (nr <= offset) { 1060 page_cache_release(page); 1061 goto out; 1062 } 1063 } 1064 nr = nr - offset; 1065 1066 /* If users can be writing to this page using arbitrary 1067 * virtual addresses, take care about potential aliasing 1068 * before reading the page on the kernel side. 1069 */ 1070 if (mapping_writably_mapped(mapping)) 1071 flush_dcache_page(page); 1072 1073 /* 1074 * When a sequential read accesses a page several times, 1075 * only mark it as accessed the first time. 1076 */ 1077 if (prev_index != index || offset != prev_offset) 1078 mark_page_accessed(page); 1079 prev_index = index; 1080 1081 /* 1082 * Ok, we have the page, and it's up-to-date, so 1083 * now we can copy it to user space... 1084 * 1085 * The actor routine returns how many bytes were actually used.. 1086 * NOTE! This may not be the same as how much of a user buffer 1087 * we filled up (we may be padding etc), so we can only update 1088 * "pos" here (the actor routine has to update the user buffer 1089 * pointers and the remaining count). 1090 */ 1091 ret = actor(desc, page, offset, nr); 1092 offset += ret; 1093 index += offset >> PAGE_CACHE_SHIFT; 1094 offset &= ~PAGE_CACHE_MASK; 1095 prev_offset = offset; 1096 1097 page_cache_release(page); 1098 if (ret == nr && desc->count) 1099 continue; 1100 goto out; 1101 1102 page_not_up_to_date: 1103 /* Get exclusive access to the page ... */ 1104 error = lock_page_killable(page); 1105 if (unlikely(error)) 1106 goto readpage_error; 1107 1108 page_not_up_to_date_locked: 1109 /* Did it get truncated before we got the lock? */ 1110 if (!page->mapping) { 1111 unlock_page(page); 1112 page_cache_release(page); 1113 continue; 1114 } 1115 1116 /* Did somebody else fill it already? */ 1117 if (PageUptodate(page)) { 1118 unlock_page(page); 1119 goto page_ok; 1120 } 1121 1122 readpage: 1123 /* Start the actual read. The read will unlock the page. */ 1124 error = mapping->a_ops->readpage(filp, page); 1125 1126 if (unlikely(error)) { 1127 if (error == AOP_TRUNCATED_PAGE) { 1128 page_cache_release(page); 1129 goto find_page; 1130 } 1131 goto readpage_error; 1132 } 1133 1134 if (!PageUptodate(page)) { 1135 error = lock_page_killable(page); 1136 if (unlikely(error)) 1137 goto readpage_error; 1138 if (!PageUptodate(page)) { 1139 if (page->mapping == NULL) { 1140 /* 1141 * invalidate_inode_pages got it 1142 */ 1143 unlock_page(page); 1144 page_cache_release(page); 1145 goto find_page; 1146 } 1147 unlock_page(page); 1148 shrink_readahead_size_eio(filp, ra); 1149 error = -EIO; 1150 goto readpage_error; 1151 } 1152 unlock_page(page); 1153 } 1154 1155 goto page_ok; 1156 1157 readpage_error: 1158 /* UHHUH! A synchronous read error occurred. Report it */ 1159 desc->error = error; 1160 page_cache_release(page); 1161 goto out; 1162 1163 no_cached_page: 1164 /* 1165 * Ok, it wasn't cached, so we need to create a new 1166 * page.. 1167 */ 1168 page = page_cache_alloc_cold(mapping); 1169 if (!page) { 1170 desc->error = -ENOMEM; 1171 goto out; 1172 } 1173 error = add_to_page_cache_lru(page, mapping, 1174 index, GFP_KERNEL); 1175 if (error) { 1176 page_cache_release(page); 1177 if (error == -EEXIST) 1178 goto find_page; 1179 desc->error = error; 1180 goto out; 1181 } 1182 goto readpage; 1183 } 1184 1185 out: 1186 ra->prev_pos = prev_index; 1187 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1188 ra->prev_pos |= prev_offset; 1189 1190 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1191 file_accessed(filp); 1192 } 1193 1194 int file_read_actor(read_descriptor_t *desc, struct page *page, 1195 unsigned long offset, unsigned long size) 1196 { 1197 char *kaddr; 1198 unsigned long left, count = desc->count; 1199 1200 if (size > count) 1201 size = count; 1202 1203 /* 1204 * Faults on the destination of a read are common, so do it before 1205 * taking the kmap. 1206 */ 1207 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1208 kaddr = kmap_atomic(page, KM_USER0); 1209 left = __copy_to_user_inatomic(desc->arg.buf, 1210 kaddr + offset, size); 1211 kunmap_atomic(kaddr, KM_USER0); 1212 if (left == 0) 1213 goto success; 1214 } 1215 1216 /* Do it the slow way */ 1217 kaddr = kmap(page); 1218 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1219 kunmap(page); 1220 1221 if (left) { 1222 size -= left; 1223 desc->error = -EFAULT; 1224 } 1225 success: 1226 desc->count = count - size; 1227 desc->written += size; 1228 desc->arg.buf += size; 1229 return size; 1230 } 1231 1232 /* 1233 * Performs necessary checks before doing a write 1234 * @iov: io vector request 1235 * @nr_segs: number of segments in the iovec 1236 * @count: number of bytes to write 1237 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1238 * 1239 * Adjust number of segments and amount of bytes to write (nr_segs should be 1240 * properly initialized first). Returns appropriate error code that caller 1241 * should return or zero in case that write should be allowed. 1242 */ 1243 int generic_segment_checks(const struct iovec *iov, 1244 unsigned long *nr_segs, size_t *count, int access_flags) 1245 { 1246 unsigned long seg; 1247 size_t cnt = 0; 1248 for (seg = 0; seg < *nr_segs; seg++) { 1249 const struct iovec *iv = &iov[seg]; 1250 1251 /* 1252 * If any segment has a negative length, or the cumulative 1253 * length ever wraps negative then return -EINVAL. 1254 */ 1255 cnt += iv->iov_len; 1256 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1257 return -EINVAL; 1258 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1259 continue; 1260 if (seg == 0) 1261 return -EFAULT; 1262 *nr_segs = seg; 1263 cnt -= iv->iov_len; /* This segment is no good */ 1264 break; 1265 } 1266 *count = cnt; 1267 return 0; 1268 } 1269 EXPORT_SYMBOL(generic_segment_checks); 1270 1271 /** 1272 * generic_file_aio_read - generic filesystem read routine 1273 * @iocb: kernel I/O control block 1274 * @iov: io vector request 1275 * @nr_segs: number of segments in the iovec 1276 * @pos: current file position 1277 * 1278 * This is the "read()" routine for all filesystems 1279 * that can use the page cache directly. 1280 */ 1281 ssize_t 1282 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1283 unsigned long nr_segs, loff_t pos) 1284 { 1285 struct file *filp = iocb->ki_filp; 1286 ssize_t retval; 1287 unsigned long seg; 1288 size_t count; 1289 loff_t *ppos = &iocb->ki_pos; 1290 1291 count = 0; 1292 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1293 if (retval) 1294 return retval; 1295 1296 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1297 if (filp->f_flags & O_DIRECT) { 1298 loff_t size; 1299 struct address_space *mapping; 1300 struct inode *inode; 1301 1302 mapping = filp->f_mapping; 1303 inode = mapping->host; 1304 if (!count) 1305 goto out; /* skip atime */ 1306 size = i_size_read(inode); 1307 if (pos < size) { 1308 retval = filemap_write_and_wait_range(mapping, pos, 1309 pos + iov_length(iov, nr_segs) - 1); 1310 if (!retval) { 1311 retval = mapping->a_ops->direct_IO(READ, iocb, 1312 iov, pos, nr_segs); 1313 } 1314 if (retval > 0) 1315 *ppos = pos + retval; 1316 if (retval) { 1317 file_accessed(filp); 1318 goto out; 1319 } 1320 } 1321 } 1322 1323 for (seg = 0; seg < nr_segs; seg++) { 1324 read_descriptor_t desc; 1325 1326 desc.written = 0; 1327 desc.arg.buf = iov[seg].iov_base; 1328 desc.count = iov[seg].iov_len; 1329 if (desc.count == 0) 1330 continue; 1331 desc.error = 0; 1332 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1333 retval += desc.written; 1334 if (desc.error) { 1335 retval = retval ?: desc.error; 1336 break; 1337 } 1338 if (desc.count > 0) 1339 break; 1340 } 1341 out: 1342 return retval; 1343 } 1344 EXPORT_SYMBOL(generic_file_aio_read); 1345 1346 static ssize_t 1347 do_readahead(struct address_space *mapping, struct file *filp, 1348 pgoff_t index, unsigned long nr) 1349 { 1350 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1351 return -EINVAL; 1352 1353 force_page_cache_readahead(mapping, filp, index, nr); 1354 return 0; 1355 } 1356 1357 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1358 { 1359 ssize_t ret; 1360 struct file *file; 1361 1362 ret = -EBADF; 1363 file = fget(fd); 1364 if (file) { 1365 if (file->f_mode & FMODE_READ) { 1366 struct address_space *mapping = file->f_mapping; 1367 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1368 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1369 unsigned long len = end - start + 1; 1370 ret = do_readahead(mapping, file, start, len); 1371 } 1372 fput(file); 1373 } 1374 return ret; 1375 } 1376 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1377 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1378 { 1379 return SYSC_readahead((int) fd, offset, (size_t) count); 1380 } 1381 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1382 #endif 1383 1384 #ifdef CONFIG_MMU 1385 /** 1386 * page_cache_read - adds requested page to the page cache if not already there 1387 * @file: file to read 1388 * @offset: page index 1389 * 1390 * This adds the requested page to the page cache if it isn't already there, 1391 * and schedules an I/O to read in its contents from disk. 1392 */ 1393 static int page_cache_read(struct file *file, pgoff_t offset) 1394 { 1395 struct address_space *mapping = file->f_mapping; 1396 struct page *page; 1397 int ret; 1398 1399 do { 1400 page = page_cache_alloc_cold(mapping); 1401 if (!page) 1402 return -ENOMEM; 1403 1404 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1405 if (ret == 0) 1406 ret = mapping->a_ops->readpage(file, page); 1407 else if (ret == -EEXIST) 1408 ret = 0; /* losing race to add is OK */ 1409 1410 page_cache_release(page); 1411 1412 } while (ret == AOP_TRUNCATED_PAGE); 1413 1414 return ret; 1415 } 1416 1417 #define MMAP_LOTSAMISS (100) 1418 1419 /* 1420 * Synchronous readahead happens when we don't even find 1421 * a page in the page cache at all. 1422 */ 1423 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1424 struct file_ra_state *ra, 1425 struct file *file, 1426 pgoff_t offset) 1427 { 1428 unsigned long ra_pages; 1429 struct address_space *mapping = file->f_mapping; 1430 1431 /* If we don't want any read-ahead, don't bother */ 1432 if (VM_RandomReadHint(vma)) 1433 return; 1434 1435 if (VM_SequentialReadHint(vma) || 1436 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1437 page_cache_sync_readahead(mapping, ra, file, offset, 1438 ra->ra_pages); 1439 return; 1440 } 1441 1442 if (ra->mmap_miss < INT_MAX) 1443 ra->mmap_miss++; 1444 1445 /* 1446 * Do we miss much more than hit in this file? If so, 1447 * stop bothering with read-ahead. It will only hurt. 1448 */ 1449 if (ra->mmap_miss > MMAP_LOTSAMISS) 1450 return; 1451 1452 /* 1453 * mmap read-around 1454 */ 1455 ra_pages = max_sane_readahead(ra->ra_pages); 1456 if (ra_pages) { 1457 ra->start = max_t(long, 0, offset - ra_pages/2); 1458 ra->size = ra_pages; 1459 ra->async_size = 0; 1460 ra_submit(ra, mapping, file); 1461 } 1462 } 1463 1464 /* 1465 * Asynchronous readahead happens when we find the page and PG_readahead, 1466 * so we want to possibly extend the readahead further.. 1467 */ 1468 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1469 struct file_ra_state *ra, 1470 struct file *file, 1471 struct page *page, 1472 pgoff_t offset) 1473 { 1474 struct address_space *mapping = file->f_mapping; 1475 1476 /* If we don't want any read-ahead, don't bother */ 1477 if (VM_RandomReadHint(vma)) 1478 return; 1479 if (ra->mmap_miss > 0) 1480 ra->mmap_miss--; 1481 if (PageReadahead(page)) 1482 page_cache_async_readahead(mapping, ra, file, 1483 page, offset, ra->ra_pages); 1484 } 1485 1486 /** 1487 * filemap_fault - read in file data for page fault handling 1488 * @vma: vma in which the fault was taken 1489 * @vmf: struct vm_fault containing details of the fault 1490 * 1491 * filemap_fault() is invoked via the vma operations vector for a 1492 * mapped memory region to read in file data during a page fault. 1493 * 1494 * The goto's are kind of ugly, but this streamlines the normal case of having 1495 * it in the page cache, and handles the special cases reasonably without 1496 * having a lot of duplicated code. 1497 */ 1498 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1499 { 1500 int error; 1501 struct file *file = vma->vm_file; 1502 struct address_space *mapping = file->f_mapping; 1503 struct file_ra_state *ra = &file->f_ra; 1504 struct inode *inode = mapping->host; 1505 pgoff_t offset = vmf->pgoff; 1506 struct page *page; 1507 pgoff_t size; 1508 int ret = 0; 1509 1510 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1511 if (offset >= size) 1512 return VM_FAULT_SIGBUS; 1513 1514 /* 1515 * Do we have something in the page cache already? 1516 */ 1517 page = find_get_page(mapping, offset); 1518 if (likely(page)) { 1519 /* 1520 * We found the page, so try async readahead before 1521 * waiting for the lock. 1522 */ 1523 do_async_mmap_readahead(vma, ra, file, page, offset); 1524 lock_page(page); 1525 1526 /* Did it get truncated? */ 1527 if (unlikely(page->mapping != mapping)) { 1528 unlock_page(page); 1529 put_page(page); 1530 goto no_cached_page; 1531 } 1532 } else { 1533 /* No page in the page cache at all */ 1534 do_sync_mmap_readahead(vma, ra, file, offset); 1535 count_vm_event(PGMAJFAULT); 1536 ret = VM_FAULT_MAJOR; 1537 retry_find: 1538 page = find_lock_page(mapping, offset); 1539 if (!page) 1540 goto no_cached_page; 1541 } 1542 1543 /* 1544 * We have a locked page in the page cache, now we need to check 1545 * that it's up-to-date. If not, it is going to be due to an error. 1546 */ 1547 if (unlikely(!PageUptodate(page))) 1548 goto page_not_uptodate; 1549 1550 /* 1551 * Found the page and have a reference on it. 1552 * We must recheck i_size under page lock. 1553 */ 1554 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1555 if (unlikely(offset >= size)) { 1556 unlock_page(page); 1557 page_cache_release(page); 1558 return VM_FAULT_SIGBUS; 1559 } 1560 1561 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1562 vmf->page = page; 1563 return ret | VM_FAULT_LOCKED; 1564 1565 no_cached_page: 1566 /* 1567 * We're only likely to ever get here if MADV_RANDOM is in 1568 * effect. 1569 */ 1570 error = page_cache_read(file, offset); 1571 1572 /* 1573 * The page we want has now been added to the page cache. 1574 * In the unlikely event that someone removed it in the 1575 * meantime, we'll just come back here and read it again. 1576 */ 1577 if (error >= 0) 1578 goto retry_find; 1579 1580 /* 1581 * An error return from page_cache_read can result if the 1582 * system is low on memory, or a problem occurs while trying 1583 * to schedule I/O. 1584 */ 1585 if (error == -ENOMEM) 1586 return VM_FAULT_OOM; 1587 return VM_FAULT_SIGBUS; 1588 1589 page_not_uptodate: 1590 /* 1591 * Umm, take care of errors if the page isn't up-to-date. 1592 * Try to re-read it _once_. We do this synchronously, 1593 * because there really aren't any performance issues here 1594 * and we need to check for errors. 1595 */ 1596 ClearPageError(page); 1597 error = mapping->a_ops->readpage(file, page); 1598 if (!error) { 1599 wait_on_page_locked(page); 1600 if (!PageUptodate(page)) 1601 error = -EIO; 1602 } 1603 page_cache_release(page); 1604 1605 if (!error || error == AOP_TRUNCATED_PAGE) 1606 goto retry_find; 1607 1608 /* Things didn't work out. Return zero to tell the mm layer so. */ 1609 shrink_readahead_size_eio(file, ra); 1610 return VM_FAULT_SIGBUS; 1611 } 1612 EXPORT_SYMBOL(filemap_fault); 1613 1614 const struct vm_operations_struct generic_file_vm_ops = { 1615 .fault = filemap_fault, 1616 }; 1617 1618 /* This is used for a general mmap of a disk file */ 1619 1620 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1621 { 1622 struct address_space *mapping = file->f_mapping; 1623 1624 if (!mapping->a_ops->readpage) 1625 return -ENOEXEC; 1626 file_accessed(file); 1627 vma->vm_ops = &generic_file_vm_ops; 1628 vma->vm_flags |= VM_CAN_NONLINEAR; 1629 return 0; 1630 } 1631 1632 /* 1633 * This is for filesystems which do not implement ->writepage. 1634 */ 1635 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1636 { 1637 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1638 return -EINVAL; 1639 return generic_file_mmap(file, vma); 1640 } 1641 #else 1642 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1643 { 1644 return -ENOSYS; 1645 } 1646 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1647 { 1648 return -ENOSYS; 1649 } 1650 #endif /* CONFIG_MMU */ 1651 1652 EXPORT_SYMBOL(generic_file_mmap); 1653 EXPORT_SYMBOL(generic_file_readonly_mmap); 1654 1655 static struct page *__read_cache_page(struct address_space *mapping, 1656 pgoff_t index, 1657 int (*filler)(void *,struct page*), 1658 void *data) 1659 { 1660 struct page *page; 1661 int err; 1662 repeat: 1663 page = find_get_page(mapping, index); 1664 if (!page) { 1665 page = page_cache_alloc_cold(mapping); 1666 if (!page) 1667 return ERR_PTR(-ENOMEM); 1668 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1669 if (unlikely(err)) { 1670 page_cache_release(page); 1671 if (err == -EEXIST) 1672 goto repeat; 1673 /* Presumably ENOMEM for radix tree node */ 1674 return ERR_PTR(err); 1675 } 1676 err = filler(data, page); 1677 if (err < 0) { 1678 page_cache_release(page); 1679 page = ERR_PTR(err); 1680 } 1681 } 1682 return page; 1683 } 1684 1685 /** 1686 * read_cache_page_async - read into page cache, fill it if needed 1687 * @mapping: the page's address_space 1688 * @index: the page index 1689 * @filler: function to perform the read 1690 * @data: destination for read data 1691 * 1692 * Same as read_cache_page, but don't wait for page to become unlocked 1693 * after submitting it to the filler. 1694 * 1695 * Read into the page cache. If a page already exists, and PageUptodate() is 1696 * not set, try to fill the page but don't wait for it to become unlocked. 1697 * 1698 * If the page does not get brought uptodate, return -EIO. 1699 */ 1700 struct page *read_cache_page_async(struct address_space *mapping, 1701 pgoff_t index, 1702 int (*filler)(void *,struct page*), 1703 void *data) 1704 { 1705 struct page *page; 1706 int err; 1707 1708 retry: 1709 page = __read_cache_page(mapping, index, filler, data); 1710 if (IS_ERR(page)) 1711 return page; 1712 if (PageUptodate(page)) 1713 goto out; 1714 1715 lock_page(page); 1716 if (!page->mapping) { 1717 unlock_page(page); 1718 page_cache_release(page); 1719 goto retry; 1720 } 1721 if (PageUptodate(page)) { 1722 unlock_page(page); 1723 goto out; 1724 } 1725 err = filler(data, page); 1726 if (err < 0) { 1727 page_cache_release(page); 1728 return ERR_PTR(err); 1729 } 1730 out: 1731 mark_page_accessed(page); 1732 return page; 1733 } 1734 EXPORT_SYMBOL(read_cache_page_async); 1735 1736 /** 1737 * read_cache_page - read into page cache, fill it if needed 1738 * @mapping: the page's address_space 1739 * @index: the page index 1740 * @filler: function to perform the read 1741 * @data: destination for read data 1742 * 1743 * Read into the page cache. If a page already exists, and PageUptodate() is 1744 * not set, try to fill the page then wait for it to become unlocked. 1745 * 1746 * If the page does not get brought uptodate, return -EIO. 1747 */ 1748 struct page *read_cache_page(struct address_space *mapping, 1749 pgoff_t index, 1750 int (*filler)(void *,struct page*), 1751 void *data) 1752 { 1753 struct page *page; 1754 1755 page = read_cache_page_async(mapping, index, filler, data); 1756 if (IS_ERR(page)) 1757 goto out; 1758 wait_on_page_locked(page); 1759 if (!PageUptodate(page)) { 1760 page_cache_release(page); 1761 page = ERR_PTR(-EIO); 1762 } 1763 out: 1764 return page; 1765 } 1766 EXPORT_SYMBOL(read_cache_page); 1767 1768 /* 1769 * The logic we want is 1770 * 1771 * if suid or (sgid and xgrp) 1772 * remove privs 1773 */ 1774 int should_remove_suid(struct dentry *dentry) 1775 { 1776 mode_t mode = dentry->d_inode->i_mode; 1777 int kill = 0; 1778 1779 /* suid always must be killed */ 1780 if (unlikely(mode & S_ISUID)) 1781 kill = ATTR_KILL_SUID; 1782 1783 /* 1784 * sgid without any exec bits is just a mandatory locking mark; leave 1785 * it alone. If some exec bits are set, it's a real sgid; kill it. 1786 */ 1787 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1788 kill |= ATTR_KILL_SGID; 1789 1790 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1791 return kill; 1792 1793 return 0; 1794 } 1795 EXPORT_SYMBOL(should_remove_suid); 1796 1797 static int __remove_suid(struct dentry *dentry, int kill) 1798 { 1799 struct iattr newattrs; 1800 1801 newattrs.ia_valid = ATTR_FORCE | kill; 1802 return notify_change(dentry, &newattrs); 1803 } 1804 1805 int file_remove_suid(struct file *file) 1806 { 1807 struct dentry *dentry = file->f_path.dentry; 1808 int killsuid = should_remove_suid(dentry); 1809 int killpriv = security_inode_need_killpriv(dentry); 1810 int error = 0; 1811 1812 if (killpriv < 0) 1813 return killpriv; 1814 if (killpriv) 1815 error = security_inode_killpriv(dentry); 1816 if (!error && killsuid) 1817 error = __remove_suid(dentry, killsuid); 1818 1819 return error; 1820 } 1821 EXPORT_SYMBOL(file_remove_suid); 1822 1823 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1824 const struct iovec *iov, size_t base, size_t bytes) 1825 { 1826 size_t copied = 0, left = 0; 1827 1828 while (bytes) { 1829 char __user *buf = iov->iov_base + base; 1830 int copy = min(bytes, iov->iov_len - base); 1831 1832 base = 0; 1833 left = __copy_from_user_inatomic(vaddr, buf, copy); 1834 copied += copy; 1835 bytes -= copy; 1836 vaddr += copy; 1837 iov++; 1838 1839 if (unlikely(left)) 1840 break; 1841 } 1842 return copied - left; 1843 } 1844 1845 /* 1846 * Copy as much as we can into the page and return the number of bytes which 1847 * were sucessfully copied. If a fault is encountered then return the number of 1848 * bytes which were copied. 1849 */ 1850 size_t iov_iter_copy_from_user_atomic(struct page *page, 1851 struct iov_iter *i, unsigned long offset, size_t bytes) 1852 { 1853 char *kaddr; 1854 size_t copied; 1855 1856 BUG_ON(!in_atomic()); 1857 kaddr = kmap_atomic(page, KM_USER0); 1858 if (likely(i->nr_segs == 1)) { 1859 int left; 1860 char __user *buf = i->iov->iov_base + i->iov_offset; 1861 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1862 copied = bytes - left; 1863 } else { 1864 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1865 i->iov, i->iov_offset, bytes); 1866 } 1867 kunmap_atomic(kaddr, KM_USER0); 1868 1869 return copied; 1870 } 1871 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1872 1873 /* 1874 * This has the same sideeffects and return value as 1875 * iov_iter_copy_from_user_atomic(). 1876 * The difference is that it attempts to resolve faults. 1877 * Page must not be locked. 1878 */ 1879 size_t iov_iter_copy_from_user(struct page *page, 1880 struct iov_iter *i, unsigned long offset, size_t bytes) 1881 { 1882 char *kaddr; 1883 size_t copied; 1884 1885 kaddr = kmap(page); 1886 if (likely(i->nr_segs == 1)) { 1887 int left; 1888 char __user *buf = i->iov->iov_base + i->iov_offset; 1889 left = __copy_from_user(kaddr + offset, buf, bytes); 1890 copied = bytes - left; 1891 } else { 1892 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1893 i->iov, i->iov_offset, bytes); 1894 } 1895 kunmap(page); 1896 return copied; 1897 } 1898 EXPORT_SYMBOL(iov_iter_copy_from_user); 1899 1900 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1901 { 1902 BUG_ON(i->count < bytes); 1903 1904 if (likely(i->nr_segs == 1)) { 1905 i->iov_offset += bytes; 1906 i->count -= bytes; 1907 } else { 1908 const struct iovec *iov = i->iov; 1909 size_t base = i->iov_offset; 1910 1911 /* 1912 * The !iov->iov_len check ensures we skip over unlikely 1913 * zero-length segments (without overruning the iovec). 1914 */ 1915 while (bytes || unlikely(i->count && !iov->iov_len)) { 1916 int copy; 1917 1918 copy = min(bytes, iov->iov_len - base); 1919 BUG_ON(!i->count || i->count < copy); 1920 i->count -= copy; 1921 bytes -= copy; 1922 base += copy; 1923 if (iov->iov_len == base) { 1924 iov++; 1925 base = 0; 1926 } 1927 } 1928 i->iov = iov; 1929 i->iov_offset = base; 1930 } 1931 } 1932 EXPORT_SYMBOL(iov_iter_advance); 1933 1934 /* 1935 * Fault in the first iovec of the given iov_iter, to a maximum length 1936 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1937 * accessed (ie. because it is an invalid address). 1938 * 1939 * writev-intensive code may want this to prefault several iovecs -- that 1940 * would be possible (callers must not rely on the fact that _only_ the 1941 * first iovec will be faulted with the current implementation). 1942 */ 1943 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1944 { 1945 char __user *buf = i->iov->iov_base + i->iov_offset; 1946 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1947 return fault_in_pages_readable(buf, bytes); 1948 } 1949 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1950 1951 /* 1952 * Return the count of just the current iov_iter segment. 1953 */ 1954 size_t iov_iter_single_seg_count(struct iov_iter *i) 1955 { 1956 const struct iovec *iov = i->iov; 1957 if (i->nr_segs == 1) 1958 return i->count; 1959 else 1960 return min(i->count, iov->iov_len - i->iov_offset); 1961 } 1962 EXPORT_SYMBOL(iov_iter_single_seg_count); 1963 1964 /* 1965 * Performs necessary checks before doing a write 1966 * 1967 * Can adjust writing position or amount of bytes to write. 1968 * Returns appropriate error code that caller should return or 1969 * zero in case that write should be allowed. 1970 */ 1971 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1972 { 1973 struct inode *inode = file->f_mapping->host; 1974 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1975 1976 if (unlikely(*pos < 0)) 1977 return -EINVAL; 1978 1979 if (!isblk) { 1980 /* FIXME: this is for backwards compatibility with 2.4 */ 1981 if (file->f_flags & O_APPEND) 1982 *pos = i_size_read(inode); 1983 1984 if (limit != RLIM_INFINITY) { 1985 if (*pos >= limit) { 1986 send_sig(SIGXFSZ, current, 0); 1987 return -EFBIG; 1988 } 1989 if (*count > limit - (typeof(limit))*pos) { 1990 *count = limit - (typeof(limit))*pos; 1991 } 1992 } 1993 } 1994 1995 /* 1996 * LFS rule 1997 */ 1998 if (unlikely(*pos + *count > MAX_NON_LFS && 1999 !(file->f_flags & O_LARGEFILE))) { 2000 if (*pos >= MAX_NON_LFS) { 2001 return -EFBIG; 2002 } 2003 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2004 *count = MAX_NON_LFS - (unsigned long)*pos; 2005 } 2006 } 2007 2008 /* 2009 * Are we about to exceed the fs block limit ? 2010 * 2011 * If we have written data it becomes a short write. If we have 2012 * exceeded without writing data we send a signal and return EFBIG. 2013 * Linus frestrict idea will clean these up nicely.. 2014 */ 2015 if (likely(!isblk)) { 2016 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2017 if (*count || *pos > inode->i_sb->s_maxbytes) { 2018 return -EFBIG; 2019 } 2020 /* zero-length writes at ->s_maxbytes are OK */ 2021 } 2022 2023 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2024 *count = inode->i_sb->s_maxbytes - *pos; 2025 } else { 2026 #ifdef CONFIG_BLOCK 2027 loff_t isize; 2028 if (bdev_read_only(I_BDEV(inode))) 2029 return -EPERM; 2030 isize = i_size_read(inode); 2031 if (*pos >= isize) { 2032 if (*count || *pos > isize) 2033 return -ENOSPC; 2034 } 2035 2036 if (*pos + *count > isize) 2037 *count = isize - *pos; 2038 #else 2039 return -EPERM; 2040 #endif 2041 } 2042 return 0; 2043 } 2044 EXPORT_SYMBOL(generic_write_checks); 2045 2046 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2047 loff_t pos, unsigned len, unsigned flags, 2048 struct page **pagep, void **fsdata) 2049 { 2050 const struct address_space_operations *aops = mapping->a_ops; 2051 2052 return aops->write_begin(file, mapping, pos, len, flags, 2053 pagep, fsdata); 2054 } 2055 EXPORT_SYMBOL(pagecache_write_begin); 2056 2057 int pagecache_write_end(struct file *file, struct address_space *mapping, 2058 loff_t pos, unsigned len, unsigned copied, 2059 struct page *page, void *fsdata) 2060 { 2061 const struct address_space_operations *aops = mapping->a_ops; 2062 2063 mark_page_accessed(page); 2064 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2065 } 2066 EXPORT_SYMBOL(pagecache_write_end); 2067 2068 ssize_t 2069 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2070 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2071 size_t count, size_t ocount) 2072 { 2073 struct file *file = iocb->ki_filp; 2074 struct address_space *mapping = file->f_mapping; 2075 struct inode *inode = mapping->host; 2076 ssize_t written; 2077 size_t write_len; 2078 pgoff_t end; 2079 2080 if (count != ocount) 2081 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2082 2083 write_len = iov_length(iov, *nr_segs); 2084 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2085 2086 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2087 if (written) 2088 goto out; 2089 2090 /* 2091 * After a write we want buffered reads to be sure to go to disk to get 2092 * the new data. We invalidate clean cached page from the region we're 2093 * about to write. We do this *before* the write so that we can return 2094 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2095 */ 2096 if (mapping->nrpages) { 2097 written = invalidate_inode_pages2_range(mapping, 2098 pos >> PAGE_CACHE_SHIFT, end); 2099 /* 2100 * If a page can not be invalidated, return 0 to fall back 2101 * to buffered write. 2102 */ 2103 if (written) { 2104 if (written == -EBUSY) 2105 return 0; 2106 goto out; 2107 } 2108 } 2109 2110 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2111 2112 /* 2113 * Finally, try again to invalidate clean pages which might have been 2114 * cached by non-direct readahead, or faulted in by get_user_pages() 2115 * if the source of the write was an mmap'ed region of the file 2116 * we're writing. Either one is a pretty crazy thing to do, 2117 * so we don't support it 100%. If this invalidation 2118 * fails, tough, the write still worked... 2119 */ 2120 if (mapping->nrpages) { 2121 invalidate_inode_pages2_range(mapping, 2122 pos >> PAGE_CACHE_SHIFT, end); 2123 } 2124 2125 if (written > 0) { 2126 loff_t end = pos + written; 2127 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2128 i_size_write(inode, end); 2129 mark_inode_dirty(inode); 2130 } 2131 *ppos = end; 2132 } 2133 out: 2134 return written; 2135 } 2136 EXPORT_SYMBOL(generic_file_direct_write); 2137 2138 /* 2139 * Find or create a page at the given pagecache position. Return the locked 2140 * page. This function is specifically for buffered writes. 2141 */ 2142 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2143 pgoff_t index, unsigned flags) 2144 { 2145 int status; 2146 struct page *page; 2147 gfp_t gfp_notmask = 0; 2148 if (flags & AOP_FLAG_NOFS) 2149 gfp_notmask = __GFP_FS; 2150 repeat: 2151 page = find_lock_page(mapping, index); 2152 if (likely(page)) 2153 return page; 2154 2155 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2156 if (!page) 2157 return NULL; 2158 status = add_to_page_cache_lru(page, mapping, index, 2159 GFP_KERNEL & ~gfp_notmask); 2160 if (unlikely(status)) { 2161 page_cache_release(page); 2162 if (status == -EEXIST) 2163 goto repeat; 2164 return NULL; 2165 } 2166 return page; 2167 } 2168 EXPORT_SYMBOL(grab_cache_page_write_begin); 2169 2170 static ssize_t generic_perform_write(struct file *file, 2171 struct iov_iter *i, loff_t pos) 2172 { 2173 struct address_space *mapping = file->f_mapping; 2174 const struct address_space_operations *a_ops = mapping->a_ops; 2175 long status = 0; 2176 ssize_t written = 0; 2177 unsigned int flags = 0; 2178 2179 /* 2180 * Copies from kernel address space cannot fail (NFSD is a big user). 2181 */ 2182 if (segment_eq(get_fs(), KERNEL_DS)) 2183 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2184 2185 do { 2186 struct page *page; 2187 pgoff_t index; /* Pagecache index for current page */ 2188 unsigned long offset; /* Offset into pagecache page */ 2189 unsigned long bytes; /* Bytes to write to page */ 2190 size_t copied; /* Bytes copied from user */ 2191 void *fsdata; 2192 2193 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2194 index = pos >> PAGE_CACHE_SHIFT; 2195 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2196 iov_iter_count(i)); 2197 2198 again: 2199 2200 /* 2201 * Bring in the user page that we will copy from _first_. 2202 * Otherwise there's a nasty deadlock on copying from the 2203 * same page as we're writing to, without it being marked 2204 * up-to-date. 2205 * 2206 * Not only is this an optimisation, but it is also required 2207 * to check that the address is actually valid, when atomic 2208 * usercopies are used, below. 2209 */ 2210 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2211 status = -EFAULT; 2212 break; 2213 } 2214 2215 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2216 &page, &fsdata); 2217 if (unlikely(status)) 2218 break; 2219 2220 pagefault_disable(); 2221 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2222 pagefault_enable(); 2223 flush_dcache_page(page); 2224 2225 mark_page_accessed(page); 2226 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2227 page, fsdata); 2228 if (unlikely(status < 0)) 2229 break; 2230 copied = status; 2231 2232 cond_resched(); 2233 2234 iov_iter_advance(i, copied); 2235 if (unlikely(copied == 0)) { 2236 /* 2237 * If we were unable to copy any data at all, we must 2238 * fall back to a single segment length write. 2239 * 2240 * If we didn't fallback here, we could livelock 2241 * because not all segments in the iov can be copied at 2242 * once without a pagefault. 2243 */ 2244 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2245 iov_iter_single_seg_count(i)); 2246 goto again; 2247 } 2248 pos += copied; 2249 written += copied; 2250 2251 balance_dirty_pages_ratelimited(mapping); 2252 2253 } while (iov_iter_count(i)); 2254 2255 return written ? written : status; 2256 } 2257 2258 ssize_t 2259 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2260 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2261 size_t count, ssize_t written) 2262 { 2263 struct file *file = iocb->ki_filp; 2264 struct address_space *mapping = file->f_mapping; 2265 ssize_t status; 2266 struct iov_iter i; 2267 2268 iov_iter_init(&i, iov, nr_segs, count, written); 2269 status = generic_perform_write(file, &i, pos); 2270 2271 if (likely(status >= 0)) { 2272 written += status; 2273 *ppos = pos + status; 2274 } 2275 2276 /* 2277 * If we get here for O_DIRECT writes then we must have fallen through 2278 * to buffered writes (block instantiation inside i_size). So we sync 2279 * the file data here, to try to honour O_DIRECT expectations. 2280 */ 2281 if (unlikely(file->f_flags & O_DIRECT) && written) 2282 status = filemap_write_and_wait_range(mapping, 2283 pos, pos + written - 1); 2284 2285 return written ? written : status; 2286 } 2287 EXPORT_SYMBOL(generic_file_buffered_write); 2288 2289 /** 2290 * __generic_file_aio_write - write data to a file 2291 * @iocb: IO state structure (file, offset, etc.) 2292 * @iov: vector with data to write 2293 * @nr_segs: number of segments in the vector 2294 * @ppos: position where to write 2295 * 2296 * This function does all the work needed for actually writing data to a 2297 * file. It does all basic checks, removes SUID from the file, updates 2298 * modification times and calls proper subroutines depending on whether we 2299 * do direct IO or a standard buffered write. 2300 * 2301 * It expects i_mutex to be grabbed unless we work on a block device or similar 2302 * object which does not need locking at all. 2303 * 2304 * This function does *not* take care of syncing data in case of O_SYNC write. 2305 * A caller has to handle it. This is mainly due to the fact that we want to 2306 * avoid syncing under i_mutex. 2307 */ 2308 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2309 unsigned long nr_segs, loff_t *ppos) 2310 { 2311 struct file *file = iocb->ki_filp; 2312 struct address_space * mapping = file->f_mapping; 2313 size_t ocount; /* original count */ 2314 size_t count; /* after file limit checks */ 2315 struct inode *inode = mapping->host; 2316 loff_t pos; 2317 ssize_t written; 2318 ssize_t err; 2319 2320 ocount = 0; 2321 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2322 if (err) 2323 return err; 2324 2325 count = ocount; 2326 pos = *ppos; 2327 2328 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2329 2330 /* We can write back this queue in page reclaim */ 2331 current->backing_dev_info = mapping->backing_dev_info; 2332 written = 0; 2333 2334 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2335 if (err) 2336 goto out; 2337 2338 if (count == 0) 2339 goto out; 2340 2341 err = file_remove_suid(file); 2342 if (err) 2343 goto out; 2344 2345 file_update_time(file); 2346 2347 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2348 if (unlikely(file->f_flags & O_DIRECT)) { 2349 loff_t endbyte; 2350 ssize_t written_buffered; 2351 2352 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2353 ppos, count, ocount); 2354 if (written < 0 || written == count) 2355 goto out; 2356 /* 2357 * direct-io write to a hole: fall through to buffered I/O 2358 * for completing the rest of the request. 2359 */ 2360 pos += written; 2361 count -= written; 2362 written_buffered = generic_file_buffered_write(iocb, iov, 2363 nr_segs, pos, ppos, count, 2364 written); 2365 /* 2366 * If generic_file_buffered_write() retuned a synchronous error 2367 * then we want to return the number of bytes which were 2368 * direct-written, or the error code if that was zero. Note 2369 * that this differs from normal direct-io semantics, which 2370 * will return -EFOO even if some bytes were written. 2371 */ 2372 if (written_buffered < 0) { 2373 err = written_buffered; 2374 goto out; 2375 } 2376 2377 /* 2378 * We need to ensure that the page cache pages are written to 2379 * disk and invalidated to preserve the expected O_DIRECT 2380 * semantics. 2381 */ 2382 endbyte = pos + written_buffered - written - 1; 2383 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2384 SYNC_FILE_RANGE_WAIT_BEFORE| 2385 SYNC_FILE_RANGE_WRITE| 2386 SYNC_FILE_RANGE_WAIT_AFTER); 2387 if (err == 0) { 2388 written = written_buffered; 2389 invalidate_mapping_pages(mapping, 2390 pos >> PAGE_CACHE_SHIFT, 2391 endbyte >> PAGE_CACHE_SHIFT); 2392 } else { 2393 /* 2394 * We don't know how much we wrote, so just return 2395 * the number of bytes which were direct-written 2396 */ 2397 } 2398 } else { 2399 written = generic_file_buffered_write(iocb, iov, nr_segs, 2400 pos, ppos, count, written); 2401 } 2402 out: 2403 current->backing_dev_info = NULL; 2404 return written ? written : err; 2405 } 2406 EXPORT_SYMBOL(__generic_file_aio_write); 2407 2408 /** 2409 * generic_file_aio_write - write data to a file 2410 * @iocb: IO state structure 2411 * @iov: vector with data to write 2412 * @nr_segs: number of segments in the vector 2413 * @pos: position in file where to write 2414 * 2415 * This is a wrapper around __generic_file_aio_write() to be used by most 2416 * filesystems. It takes care of syncing the file in case of O_SYNC file 2417 * and acquires i_mutex as needed. 2418 */ 2419 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2420 unsigned long nr_segs, loff_t pos) 2421 { 2422 struct file *file = iocb->ki_filp; 2423 struct inode *inode = file->f_mapping->host; 2424 ssize_t ret; 2425 2426 BUG_ON(iocb->ki_pos != pos); 2427 2428 mutex_lock(&inode->i_mutex); 2429 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2430 mutex_unlock(&inode->i_mutex); 2431 2432 if (ret > 0 || ret == -EIOCBQUEUED) { 2433 ssize_t err; 2434 2435 err = generic_write_sync(file, pos, ret); 2436 if (err < 0 && ret > 0) 2437 ret = err; 2438 } 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(generic_file_aio_write); 2442 2443 /** 2444 * try_to_release_page() - release old fs-specific metadata on a page 2445 * 2446 * @page: the page which the kernel is trying to free 2447 * @gfp_mask: memory allocation flags (and I/O mode) 2448 * 2449 * The address_space is to try to release any data against the page 2450 * (presumably at page->private). If the release was successful, return `1'. 2451 * Otherwise return zero. 2452 * 2453 * This may also be called if PG_fscache is set on a page, indicating that the 2454 * page is known to the local caching routines. 2455 * 2456 * The @gfp_mask argument specifies whether I/O may be performed to release 2457 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2458 * 2459 */ 2460 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2461 { 2462 struct address_space * const mapping = page->mapping; 2463 2464 BUG_ON(!PageLocked(page)); 2465 if (PageWriteback(page)) 2466 return 0; 2467 2468 if (mapping && mapping->a_ops->releasepage) 2469 return mapping->a_ops->releasepage(page, gfp_mask); 2470 return try_to_free_buffers(page); 2471 } 2472 2473 EXPORT_SYMBOL(try_to_release_page); 2474