xref: /openbmc/linux/mm/filemap.c (revision e8e0929d)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	if (PageSwapBacked(page))
127 		__dec_zone_page_state(page, NR_SHMEM);
128 	BUG_ON(page_mapped(page));
129 
130 	/*
131 	 * Some filesystems seem to re-dirty the page even after
132 	 * the VM has canceled the dirty bit (eg ext3 journaling).
133 	 *
134 	 * Fix it up by doing a final dirty accounting check after
135 	 * having removed the page entirely.
136 	 */
137 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 		dec_zone_page_state(page, NR_FILE_DIRTY);
139 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 	}
141 }
142 
143 void remove_from_page_cache(struct page *page)
144 {
145 	struct address_space *mapping = page->mapping;
146 
147 	BUG_ON(!PageLocked(page));
148 
149 	spin_lock_irq(&mapping->tree_lock);
150 	__remove_from_page_cache(page);
151 	spin_unlock_irq(&mapping->tree_lock);
152 	mem_cgroup_uncharge_cache_page(page);
153 }
154 
155 static int sync_page(void *word)
156 {
157 	struct address_space *mapping;
158 	struct page *page;
159 
160 	page = container_of((unsigned long *)word, struct page, flags);
161 
162 	/*
163 	 * page_mapping() is being called without PG_locked held.
164 	 * Some knowledge of the state and use of the page is used to
165 	 * reduce the requirements down to a memory barrier.
166 	 * The danger here is of a stale page_mapping() return value
167 	 * indicating a struct address_space different from the one it's
168 	 * associated with when it is associated with one.
169 	 * After smp_mb(), it's either the correct page_mapping() for
170 	 * the page, or an old page_mapping() and the page's own
171 	 * page_mapping() has gone NULL.
172 	 * The ->sync_page() address_space operation must tolerate
173 	 * page_mapping() going NULL. By an amazing coincidence,
174 	 * this comes about because none of the users of the page
175 	 * in the ->sync_page() methods make essential use of the
176 	 * page_mapping(), merely passing the page down to the backing
177 	 * device's unplug functions when it's non-NULL, which in turn
178 	 * ignore it for all cases but swap, where only page_private(page) is
179 	 * of interest. When page_mapping() does go NULL, the entire
180 	 * call stack gracefully ignores the page and returns.
181 	 * -- wli
182 	 */
183 	smp_mb();
184 	mapping = page_mapping(page);
185 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 		mapping->a_ops->sync_page(page);
187 	io_schedule();
188 	return 0;
189 }
190 
191 static int sync_page_killable(void *word)
192 {
193 	sync_page(word);
194 	return fatal_signal_pending(current) ? -EINTR : 0;
195 }
196 
197 /**
198  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199  * @mapping:	address space structure to write
200  * @start:	offset in bytes where the range starts
201  * @end:	offset in bytes where the range ends (inclusive)
202  * @sync_mode:	enable synchronous operation
203  *
204  * Start writeback against all of a mapping's dirty pages that lie
205  * within the byte offsets <start, end> inclusive.
206  *
207  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208  * opposed to a regular memory cleansing writeback.  The difference between
209  * these two operations is that if a dirty page/buffer is encountered, it must
210  * be waited upon, and not just skipped over.
211  */
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 				loff_t end, int sync_mode)
214 {
215 	int ret;
216 	struct writeback_control wbc = {
217 		.sync_mode = sync_mode,
218 		.nr_to_write = LONG_MAX,
219 		.range_start = start,
220 		.range_end = end,
221 	};
222 
223 	if (!mapping_cap_writeback_dirty(mapping))
224 		return 0;
225 
226 	ret = do_writepages(mapping, &wbc);
227 	return ret;
228 }
229 
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231 	int sync_mode)
232 {
233 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
234 }
235 
236 int filemap_fdatawrite(struct address_space *mapping)
237 {
238 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239 }
240 EXPORT_SYMBOL(filemap_fdatawrite);
241 
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243 				loff_t end)
244 {
245 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 }
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
248 
249 /**
250  * filemap_flush - mostly a non-blocking flush
251  * @mapping:	target address_space
252  *
253  * This is a mostly non-blocking flush.  Not suitable for data-integrity
254  * purposes - I/O may not be started against all dirty pages.
255  */
256 int filemap_flush(struct address_space *mapping)
257 {
258 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259 }
260 EXPORT_SYMBOL(filemap_flush);
261 
262 /**
263  * wait_on_page_writeback_range - wait for writeback to complete
264  * @mapping:	target address_space
265  * @start:	beginning page index
266  * @end:	ending page index
267  *
268  * Wait for writeback to complete against pages indexed by start->end
269  * inclusive
270  */
271 int wait_on_page_writeback_range(struct address_space *mapping,
272 				pgoff_t start, pgoff_t end)
273 {
274 	struct pagevec pvec;
275 	int nr_pages;
276 	int ret = 0;
277 	pgoff_t index;
278 
279 	if (end < start)
280 		return 0;
281 
282 	pagevec_init(&pvec, 0);
283 	index = start;
284 	while ((index <= end) &&
285 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 			PAGECACHE_TAG_WRITEBACK,
287 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 		unsigned i;
289 
290 		for (i = 0; i < nr_pages; i++) {
291 			struct page *page = pvec.pages[i];
292 
293 			/* until radix tree lookup accepts end_index */
294 			if (page->index > end)
295 				continue;
296 
297 			wait_on_page_writeback(page);
298 			if (PageError(page))
299 				ret = -EIO;
300 		}
301 		pagevec_release(&pvec);
302 		cond_resched();
303 	}
304 
305 	/* Check for outstanding write errors */
306 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 		ret = -ENOSPC;
308 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 		ret = -EIO;
310 
311 	return ret;
312 }
313 
314 /**
315  * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
316  * @mapping: address space structure to wait for
317  * @start:	offset in bytes where the range starts
318  * @end:	offset in bytes where the range ends (inclusive)
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * in the given range and wait for all of them.
322  *
323  * This is just a simple wrapper so that callers don't have to convert offsets
324  * to page indexes themselves
325  */
326 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
327 			    loff_t end)
328 {
329 	return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
330 					    end >> PAGE_CACHE_SHIFT);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait_range);
333 
334 /**
335  * filemap_fdatawait - wait for all under-writeback pages to complete
336  * @mapping: address space structure to wait for
337  *
338  * Walk the list of under-writeback pages of the given address space
339  * and wait for all of them.
340  */
341 int filemap_fdatawait(struct address_space *mapping)
342 {
343 	loff_t i_size = i_size_read(mapping->host);
344 
345 	if (i_size == 0)
346 		return 0;
347 
348 	return wait_on_page_writeback_range(mapping, 0,
349 				(i_size - 1) >> PAGE_CACHE_SHIFT);
350 }
351 EXPORT_SYMBOL(filemap_fdatawait);
352 
353 int filemap_write_and_wait(struct address_space *mapping)
354 {
355 	int err = 0;
356 
357 	if (mapping->nrpages) {
358 		err = filemap_fdatawrite(mapping);
359 		/*
360 		 * Even if the above returned error, the pages may be
361 		 * written partially (e.g. -ENOSPC), so we wait for it.
362 		 * But the -EIO is special case, it may indicate the worst
363 		 * thing (e.g. bug) happened, so we avoid waiting for it.
364 		 */
365 		if (err != -EIO) {
366 			int err2 = filemap_fdatawait(mapping);
367 			if (!err)
368 				err = err2;
369 		}
370 	}
371 	return err;
372 }
373 EXPORT_SYMBOL(filemap_write_and_wait);
374 
375 /**
376  * filemap_write_and_wait_range - write out & wait on a file range
377  * @mapping:	the address_space for the pages
378  * @lstart:	offset in bytes where the range starts
379  * @lend:	offset in bytes where the range ends (inclusive)
380  *
381  * Write out and wait upon file offsets lstart->lend, inclusive.
382  *
383  * Note that `lend' is inclusive (describes the last byte to be written) so
384  * that this function can be used to write to the very end-of-file (end = -1).
385  */
386 int filemap_write_and_wait_range(struct address_space *mapping,
387 				 loff_t lstart, loff_t lend)
388 {
389 	int err = 0;
390 
391 	if (mapping->nrpages) {
392 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
393 						 WB_SYNC_ALL);
394 		/* See comment of filemap_write_and_wait() */
395 		if (err != -EIO) {
396 			int err2 = wait_on_page_writeback_range(mapping,
397 						lstart >> PAGE_CACHE_SHIFT,
398 						lend >> PAGE_CACHE_SHIFT);
399 			if (!err)
400 				err = err2;
401 		}
402 	}
403 	return err;
404 }
405 EXPORT_SYMBOL(filemap_write_and_wait_range);
406 
407 /**
408  * add_to_page_cache_locked - add a locked page to the pagecache
409  * @page:	page to add
410  * @mapping:	the page's address_space
411  * @offset:	page index
412  * @gfp_mask:	page allocation mode
413  *
414  * This function is used to add a page to the pagecache. It must be locked.
415  * This function does not add the page to the LRU.  The caller must do that.
416  */
417 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
418 		pgoff_t offset, gfp_t gfp_mask)
419 {
420 	int error;
421 
422 	VM_BUG_ON(!PageLocked(page));
423 
424 	error = mem_cgroup_cache_charge(page, current->mm,
425 					gfp_mask & GFP_RECLAIM_MASK);
426 	if (error)
427 		goto out;
428 
429 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
430 	if (error == 0) {
431 		page_cache_get(page);
432 		page->mapping = mapping;
433 		page->index = offset;
434 
435 		spin_lock_irq(&mapping->tree_lock);
436 		error = radix_tree_insert(&mapping->page_tree, offset, page);
437 		if (likely(!error)) {
438 			mapping->nrpages++;
439 			__inc_zone_page_state(page, NR_FILE_PAGES);
440 			if (PageSwapBacked(page))
441 				__inc_zone_page_state(page, NR_SHMEM);
442 			spin_unlock_irq(&mapping->tree_lock);
443 		} else {
444 			page->mapping = NULL;
445 			spin_unlock_irq(&mapping->tree_lock);
446 			mem_cgroup_uncharge_cache_page(page);
447 			page_cache_release(page);
448 		}
449 		radix_tree_preload_end();
450 	} else
451 		mem_cgroup_uncharge_cache_page(page);
452 out:
453 	return error;
454 }
455 EXPORT_SYMBOL(add_to_page_cache_locked);
456 
457 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
458 				pgoff_t offset, gfp_t gfp_mask)
459 {
460 	int ret;
461 
462 	/*
463 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
464 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
465 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
466 	 * (called in add_to_page_cache) needs to know where they're going too.
467 	 */
468 	if (mapping_cap_swap_backed(mapping))
469 		SetPageSwapBacked(page);
470 
471 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
472 	if (ret == 0) {
473 		if (page_is_file_cache(page))
474 			lru_cache_add_file(page);
475 		else
476 			lru_cache_add_active_anon(page);
477 	}
478 	return ret;
479 }
480 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
481 
482 #ifdef CONFIG_NUMA
483 struct page *__page_cache_alloc(gfp_t gfp)
484 {
485 	if (cpuset_do_page_mem_spread()) {
486 		int n = cpuset_mem_spread_node();
487 		return alloc_pages_exact_node(n, gfp, 0);
488 	}
489 	return alloc_pages(gfp, 0);
490 }
491 EXPORT_SYMBOL(__page_cache_alloc);
492 #endif
493 
494 static int __sleep_on_page_lock(void *word)
495 {
496 	io_schedule();
497 	return 0;
498 }
499 
500 /*
501  * In order to wait for pages to become available there must be
502  * waitqueues associated with pages. By using a hash table of
503  * waitqueues where the bucket discipline is to maintain all
504  * waiters on the same queue and wake all when any of the pages
505  * become available, and for the woken contexts to check to be
506  * sure the appropriate page became available, this saves space
507  * at a cost of "thundering herd" phenomena during rare hash
508  * collisions.
509  */
510 static wait_queue_head_t *page_waitqueue(struct page *page)
511 {
512 	const struct zone *zone = page_zone(page);
513 
514 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
515 }
516 
517 static inline void wake_up_page(struct page *page, int bit)
518 {
519 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
520 }
521 
522 void wait_on_page_bit(struct page *page, int bit_nr)
523 {
524 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
525 
526 	if (test_bit(bit_nr, &page->flags))
527 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
528 							TASK_UNINTERRUPTIBLE);
529 }
530 EXPORT_SYMBOL(wait_on_page_bit);
531 
532 /**
533  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
534  * @page: Page defining the wait queue of interest
535  * @waiter: Waiter to add to the queue
536  *
537  * Add an arbitrary @waiter to the wait queue for the nominated @page.
538  */
539 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
540 {
541 	wait_queue_head_t *q = page_waitqueue(page);
542 	unsigned long flags;
543 
544 	spin_lock_irqsave(&q->lock, flags);
545 	__add_wait_queue(q, waiter);
546 	spin_unlock_irqrestore(&q->lock, flags);
547 }
548 EXPORT_SYMBOL_GPL(add_page_wait_queue);
549 
550 /**
551  * unlock_page - unlock a locked page
552  * @page: the page
553  *
554  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
555  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
556  * mechananism between PageLocked pages and PageWriteback pages is shared.
557  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558  *
559  * The mb is necessary to enforce ordering between the clear_bit and the read
560  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
561  */
562 void unlock_page(struct page *page)
563 {
564 	VM_BUG_ON(!PageLocked(page));
565 	clear_bit_unlock(PG_locked, &page->flags);
566 	smp_mb__after_clear_bit();
567 	wake_up_page(page, PG_locked);
568 }
569 EXPORT_SYMBOL(unlock_page);
570 
571 /**
572  * end_page_writeback - end writeback against a page
573  * @page: the page
574  */
575 void end_page_writeback(struct page *page)
576 {
577 	if (TestClearPageReclaim(page))
578 		rotate_reclaimable_page(page);
579 
580 	if (!test_clear_page_writeback(page))
581 		BUG();
582 
583 	smp_mb__after_clear_bit();
584 	wake_up_page(page, PG_writeback);
585 }
586 EXPORT_SYMBOL(end_page_writeback);
587 
588 /**
589  * __lock_page - get a lock on the page, assuming we need to sleep to get it
590  * @page: the page to lock
591  *
592  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
593  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
594  * chances are that on the second loop, the block layer's plug list is empty,
595  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
596  */
597 void __lock_page(struct page *page)
598 {
599 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600 
601 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602 							TASK_UNINTERRUPTIBLE);
603 }
604 EXPORT_SYMBOL(__lock_page);
605 
606 int __lock_page_killable(struct page *page)
607 {
608 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
609 
610 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
611 					sync_page_killable, TASK_KILLABLE);
612 }
613 EXPORT_SYMBOL_GPL(__lock_page_killable);
614 
615 /**
616  * __lock_page_nosync - get a lock on the page, without calling sync_page()
617  * @page: the page to lock
618  *
619  * Variant of lock_page that does not require the caller to hold a reference
620  * on the page's mapping.
621  */
622 void __lock_page_nosync(struct page *page)
623 {
624 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
625 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
626 							TASK_UNINTERRUPTIBLE);
627 }
628 
629 /**
630  * find_get_page - find and get a page reference
631  * @mapping: the address_space to search
632  * @offset: the page index
633  *
634  * Is there a pagecache struct page at the given (mapping, offset) tuple?
635  * If yes, increment its refcount and return it; if no, return NULL.
636  */
637 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
638 {
639 	void **pagep;
640 	struct page *page;
641 
642 	rcu_read_lock();
643 repeat:
644 	page = NULL;
645 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
646 	if (pagep) {
647 		page = radix_tree_deref_slot(pagep);
648 		if (unlikely(!page || page == RADIX_TREE_RETRY))
649 			goto repeat;
650 
651 		if (!page_cache_get_speculative(page))
652 			goto repeat;
653 
654 		/*
655 		 * Has the page moved?
656 		 * This is part of the lockless pagecache protocol. See
657 		 * include/linux/pagemap.h for details.
658 		 */
659 		if (unlikely(page != *pagep)) {
660 			page_cache_release(page);
661 			goto repeat;
662 		}
663 	}
664 	rcu_read_unlock();
665 
666 	return page;
667 }
668 EXPORT_SYMBOL(find_get_page);
669 
670 /**
671  * find_lock_page - locate, pin and lock a pagecache page
672  * @mapping: the address_space to search
673  * @offset: the page index
674  *
675  * Locates the desired pagecache page, locks it, increments its reference
676  * count and returns its address.
677  *
678  * Returns zero if the page was not present. find_lock_page() may sleep.
679  */
680 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
681 {
682 	struct page *page;
683 
684 repeat:
685 	page = find_get_page(mapping, offset);
686 	if (page) {
687 		lock_page(page);
688 		/* Has the page been truncated? */
689 		if (unlikely(page->mapping != mapping)) {
690 			unlock_page(page);
691 			page_cache_release(page);
692 			goto repeat;
693 		}
694 		VM_BUG_ON(page->index != offset);
695 	}
696 	return page;
697 }
698 EXPORT_SYMBOL(find_lock_page);
699 
700 /**
701  * find_or_create_page - locate or add a pagecache page
702  * @mapping: the page's address_space
703  * @index: the page's index into the mapping
704  * @gfp_mask: page allocation mode
705  *
706  * Locates a page in the pagecache.  If the page is not present, a new page
707  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
708  * LRU list.  The returned page is locked and has its reference count
709  * incremented.
710  *
711  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
712  * allocation!
713  *
714  * find_or_create_page() returns the desired page's address, or zero on
715  * memory exhaustion.
716  */
717 struct page *find_or_create_page(struct address_space *mapping,
718 		pgoff_t index, gfp_t gfp_mask)
719 {
720 	struct page *page;
721 	int err;
722 repeat:
723 	page = find_lock_page(mapping, index);
724 	if (!page) {
725 		page = __page_cache_alloc(gfp_mask);
726 		if (!page)
727 			return NULL;
728 		/*
729 		 * We want a regular kernel memory (not highmem or DMA etc)
730 		 * allocation for the radix tree nodes, but we need to honour
731 		 * the context-specific requirements the caller has asked for.
732 		 * GFP_RECLAIM_MASK collects those requirements.
733 		 */
734 		err = add_to_page_cache_lru(page, mapping, index,
735 			(gfp_mask & GFP_RECLAIM_MASK));
736 		if (unlikely(err)) {
737 			page_cache_release(page);
738 			page = NULL;
739 			if (err == -EEXIST)
740 				goto repeat;
741 		}
742 	}
743 	return page;
744 }
745 EXPORT_SYMBOL(find_or_create_page);
746 
747 /**
748  * find_get_pages - gang pagecache lookup
749  * @mapping:	The address_space to search
750  * @start:	The starting page index
751  * @nr_pages:	The maximum number of pages
752  * @pages:	Where the resulting pages are placed
753  *
754  * find_get_pages() will search for and return a group of up to
755  * @nr_pages pages in the mapping.  The pages are placed at @pages.
756  * find_get_pages() takes a reference against the returned pages.
757  *
758  * The search returns a group of mapping-contiguous pages with ascending
759  * indexes.  There may be holes in the indices due to not-present pages.
760  *
761  * find_get_pages() returns the number of pages which were found.
762  */
763 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
764 			    unsigned int nr_pages, struct page **pages)
765 {
766 	unsigned int i;
767 	unsigned int ret;
768 	unsigned int nr_found;
769 
770 	rcu_read_lock();
771 restart:
772 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
773 				(void ***)pages, start, nr_pages);
774 	ret = 0;
775 	for (i = 0; i < nr_found; i++) {
776 		struct page *page;
777 repeat:
778 		page = radix_tree_deref_slot((void **)pages[i]);
779 		if (unlikely(!page))
780 			continue;
781 		/*
782 		 * this can only trigger if nr_found == 1, making livelock
783 		 * a non issue.
784 		 */
785 		if (unlikely(page == RADIX_TREE_RETRY))
786 			goto restart;
787 
788 		if (!page_cache_get_speculative(page))
789 			goto repeat;
790 
791 		/* Has the page moved? */
792 		if (unlikely(page != *((void **)pages[i]))) {
793 			page_cache_release(page);
794 			goto repeat;
795 		}
796 
797 		pages[ret] = page;
798 		ret++;
799 	}
800 	rcu_read_unlock();
801 	return ret;
802 }
803 
804 /**
805  * find_get_pages_contig - gang contiguous pagecache lookup
806  * @mapping:	The address_space to search
807  * @index:	The starting page index
808  * @nr_pages:	The maximum number of pages
809  * @pages:	Where the resulting pages are placed
810  *
811  * find_get_pages_contig() works exactly like find_get_pages(), except
812  * that the returned number of pages are guaranteed to be contiguous.
813  *
814  * find_get_pages_contig() returns the number of pages which were found.
815  */
816 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
817 			       unsigned int nr_pages, struct page **pages)
818 {
819 	unsigned int i;
820 	unsigned int ret;
821 	unsigned int nr_found;
822 
823 	rcu_read_lock();
824 restart:
825 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
826 				(void ***)pages, index, nr_pages);
827 	ret = 0;
828 	for (i = 0; i < nr_found; i++) {
829 		struct page *page;
830 repeat:
831 		page = radix_tree_deref_slot((void **)pages[i]);
832 		if (unlikely(!page))
833 			continue;
834 		/*
835 		 * this can only trigger if nr_found == 1, making livelock
836 		 * a non issue.
837 		 */
838 		if (unlikely(page == RADIX_TREE_RETRY))
839 			goto restart;
840 
841 		if (page->mapping == NULL || page->index != index)
842 			break;
843 
844 		if (!page_cache_get_speculative(page))
845 			goto repeat;
846 
847 		/* Has the page moved? */
848 		if (unlikely(page != *((void **)pages[i]))) {
849 			page_cache_release(page);
850 			goto repeat;
851 		}
852 
853 		pages[ret] = page;
854 		ret++;
855 		index++;
856 	}
857 	rcu_read_unlock();
858 	return ret;
859 }
860 EXPORT_SYMBOL(find_get_pages_contig);
861 
862 /**
863  * find_get_pages_tag - find and return pages that match @tag
864  * @mapping:	the address_space to search
865  * @index:	the starting page index
866  * @tag:	the tag index
867  * @nr_pages:	the maximum number of pages
868  * @pages:	where the resulting pages are placed
869  *
870  * Like find_get_pages, except we only return pages which are tagged with
871  * @tag.   We update @index to index the next page for the traversal.
872  */
873 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
874 			int tag, unsigned int nr_pages, struct page **pages)
875 {
876 	unsigned int i;
877 	unsigned int ret;
878 	unsigned int nr_found;
879 
880 	rcu_read_lock();
881 restart:
882 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
883 				(void ***)pages, *index, nr_pages, tag);
884 	ret = 0;
885 	for (i = 0; i < nr_found; i++) {
886 		struct page *page;
887 repeat:
888 		page = radix_tree_deref_slot((void **)pages[i]);
889 		if (unlikely(!page))
890 			continue;
891 		/*
892 		 * this can only trigger if nr_found == 1, making livelock
893 		 * a non issue.
894 		 */
895 		if (unlikely(page == RADIX_TREE_RETRY))
896 			goto restart;
897 
898 		if (!page_cache_get_speculative(page))
899 			goto repeat;
900 
901 		/* Has the page moved? */
902 		if (unlikely(page != *((void **)pages[i]))) {
903 			page_cache_release(page);
904 			goto repeat;
905 		}
906 
907 		pages[ret] = page;
908 		ret++;
909 	}
910 	rcu_read_unlock();
911 
912 	if (ret)
913 		*index = pages[ret - 1]->index + 1;
914 
915 	return ret;
916 }
917 EXPORT_SYMBOL(find_get_pages_tag);
918 
919 /**
920  * grab_cache_page_nowait - returns locked page at given index in given cache
921  * @mapping: target address_space
922  * @index: the page index
923  *
924  * Same as grab_cache_page(), but do not wait if the page is unavailable.
925  * This is intended for speculative data generators, where the data can
926  * be regenerated if the page couldn't be grabbed.  This routine should
927  * be safe to call while holding the lock for another page.
928  *
929  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
930  * and deadlock against the caller's locked page.
931  */
932 struct page *
933 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
934 {
935 	struct page *page = find_get_page(mapping, index);
936 
937 	if (page) {
938 		if (trylock_page(page))
939 			return page;
940 		page_cache_release(page);
941 		return NULL;
942 	}
943 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
944 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
945 		page_cache_release(page);
946 		page = NULL;
947 	}
948 	return page;
949 }
950 EXPORT_SYMBOL(grab_cache_page_nowait);
951 
952 /*
953  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
954  * a _large_ part of the i/o request. Imagine the worst scenario:
955  *
956  *      ---R__________________________________________B__________
957  *         ^ reading here                             ^ bad block(assume 4k)
958  *
959  * read(R) => miss => readahead(R...B) => media error => frustrating retries
960  * => failing the whole request => read(R) => read(R+1) =>
961  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
962  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
963  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
964  *
965  * It is going insane. Fix it by quickly scaling down the readahead size.
966  */
967 static void shrink_readahead_size_eio(struct file *filp,
968 					struct file_ra_state *ra)
969 {
970 	ra->ra_pages /= 4;
971 }
972 
973 /**
974  * do_generic_file_read - generic file read routine
975  * @filp:	the file to read
976  * @ppos:	current file position
977  * @desc:	read_descriptor
978  * @actor:	read method
979  *
980  * This is a generic file read routine, and uses the
981  * mapping->a_ops->readpage() function for the actual low-level stuff.
982  *
983  * This is really ugly. But the goto's actually try to clarify some
984  * of the logic when it comes to error handling etc.
985  */
986 static void do_generic_file_read(struct file *filp, loff_t *ppos,
987 		read_descriptor_t *desc, read_actor_t actor)
988 {
989 	struct address_space *mapping = filp->f_mapping;
990 	struct inode *inode = mapping->host;
991 	struct file_ra_state *ra = &filp->f_ra;
992 	pgoff_t index;
993 	pgoff_t last_index;
994 	pgoff_t prev_index;
995 	unsigned long offset;      /* offset into pagecache page */
996 	unsigned int prev_offset;
997 	int error;
998 
999 	index = *ppos >> PAGE_CACHE_SHIFT;
1000 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1001 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1002 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1003 	offset = *ppos & ~PAGE_CACHE_MASK;
1004 
1005 	for (;;) {
1006 		struct page *page;
1007 		pgoff_t end_index;
1008 		loff_t isize;
1009 		unsigned long nr, ret;
1010 
1011 		cond_resched();
1012 find_page:
1013 		page = find_get_page(mapping, index);
1014 		if (!page) {
1015 			page_cache_sync_readahead(mapping,
1016 					ra, filp,
1017 					index, last_index - index);
1018 			page = find_get_page(mapping, index);
1019 			if (unlikely(page == NULL))
1020 				goto no_cached_page;
1021 		}
1022 		if (PageReadahead(page)) {
1023 			page_cache_async_readahead(mapping,
1024 					ra, filp, page,
1025 					index, last_index - index);
1026 		}
1027 		if (!PageUptodate(page)) {
1028 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1029 					!mapping->a_ops->is_partially_uptodate)
1030 				goto page_not_up_to_date;
1031 			if (!trylock_page(page))
1032 				goto page_not_up_to_date;
1033 			if (!mapping->a_ops->is_partially_uptodate(page,
1034 								desc, offset))
1035 				goto page_not_up_to_date_locked;
1036 			unlock_page(page);
1037 		}
1038 page_ok:
1039 		/*
1040 		 * i_size must be checked after we know the page is Uptodate.
1041 		 *
1042 		 * Checking i_size after the check allows us to calculate
1043 		 * the correct value for "nr", which means the zero-filled
1044 		 * part of the page is not copied back to userspace (unless
1045 		 * another truncate extends the file - this is desired though).
1046 		 */
1047 
1048 		isize = i_size_read(inode);
1049 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1050 		if (unlikely(!isize || index > end_index)) {
1051 			page_cache_release(page);
1052 			goto out;
1053 		}
1054 
1055 		/* nr is the maximum number of bytes to copy from this page */
1056 		nr = PAGE_CACHE_SIZE;
1057 		if (index == end_index) {
1058 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1059 			if (nr <= offset) {
1060 				page_cache_release(page);
1061 				goto out;
1062 			}
1063 		}
1064 		nr = nr - offset;
1065 
1066 		/* If users can be writing to this page using arbitrary
1067 		 * virtual addresses, take care about potential aliasing
1068 		 * before reading the page on the kernel side.
1069 		 */
1070 		if (mapping_writably_mapped(mapping))
1071 			flush_dcache_page(page);
1072 
1073 		/*
1074 		 * When a sequential read accesses a page several times,
1075 		 * only mark it as accessed the first time.
1076 		 */
1077 		if (prev_index != index || offset != prev_offset)
1078 			mark_page_accessed(page);
1079 		prev_index = index;
1080 
1081 		/*
1082 		 * Ok, we have the page, and it's up-to-date, so
1083 		 * now we can copy it to user space...
1084 		 *
1085 		 * The actor routine returns how many bytes were actually used..
1086 		 * NOTE! This may not be the same as how much of a user buffer
1087 		 * we filled up (we may be padding etc), so we can only update
1088 		 * "pos" here (the actor routine has to update the user buffer
1089 		 * pointers and the remaining count).
1090 		 */
1091 		ret = actor(desc, page, offset, nr);
1092 		offset += ret;
1093 		index += offset >> PAGE_CACHE_SHIFT;
1094 		offset &= ~PAGE_CACHE_MASK;
1095 		prev_offset = offset;
1096 
1097 		page_cache_release(page);
1098 		if (ret == nr && desc->count)
1099 			continue;
1100 		goto out;
1101 
1102 page_not_up_to_date:
1103 		/* Get exclusive access to the page ... */
1104 		error = lock_page_killable(page);
1105 		if (unlikely(error))
1106 			goto readpage_error;
1107 
1108 page_not_up_to_date_locked:
1109 		/* Did it get truncated before we got the lock? */
1110 		if (!page->mapping) {
1111 			unlock_page(page);
1112 			page_cache_release(page);
1113 			continue;
1114 		}
1115 
1116 		/* Did somebody else fill it already? */
1117 		if (PageUptodate(page)) {
1118 			unlock_page(page);
1119 			goto page_ok;
1120 		}
1121 
1122 readpage:
1123 		/* Start the actual read. The read will unlock the page. */
1124 		error = mapping->a_ops->readpage(filp, page);
1125 
1126 		if (unlikely(error)) {
1127 			if (error == AOP_TRUNCATED_PAGE) {
1128 				page_cache_release(page);
1129 				goto find_page;
1130 			}
1131 			goto readpage_error;
1132 		}
1133 
1134 		if (!PageUptodate(page)) {
1135 			error = lock_page_killable(page);
1136 			if (unlikely(error))
1137 				goto readpage_error;
1138 			if (!PageUptodate(page)) {
1139 				if (page->mapping == NULL) {
1140 					/*
1141 					 * invalidate_inode_pages got it
1142 					 */
1143 					unlock_page(page);
1144 					page_cache_release(page);
1145 					goto find_page;
1146 				}
1147 				unlock_page(page);
1148 				shrink_readahead_size_eio(filp, ra);
1149 				error = -EIO;
1150 				goto readpage_error;
1151 			}
1152 			unlock_page(page);
1153 		}
1154 
1155 		goto page_ok;
1156 
1157 readpage_error:
1158 		/* UHHUH! A synchronous read error occurred. Report it */
1159 		desc->error = error;
1160 		page_cache_release(page);
1161 		goto out;
1162 
1163 no_cached_page:
1164 		/*
1165 		 * Ok, it wasn't cached, so we need to create a new
1166 		 * page..
1167 		 */
1168 		page = page_cache_alloc_cold(mapping);
1169 		if (!page) {
1170 			desc->error = -ENOMEM;
1171 			goto out;
1172 		}
1173 		error = add_to_page_cache_lru(page, mapping,
1174 						index, GFP_KERNEL);
1175 		if (error) {
1176 			page_cache_release(page);
1177 			if (error == -EEXIST)
1178 				goto find_page;
1179 			desc->error = error;
1180 			goto out;
1181 		}
1182 		goto readpage;
1183 	}
1184 
1185 out:
1186 	ra->prev_pos = prev_index;
1187 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1188 	ra->prev_pos |= prev_offset;
1189 
1190 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1191 	file_accessed(filp);
1192 }
1193 
1194 int file_read_actor(read_descriptor_t *desc, struct page *page,
1195 			unsigned long offset, unsigned long size)
1196 {
1197 	char *kaddr;
1198 	unsigned long left, count = desc->count;
1199 
1200 	if (size > count)
1201 		size = count;
1202 
1203 	/*
1204 	 * Faults on the destination of a read are common, so do it before
1205 	 * taking the kmap.
1206 	 */
1207 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1208 		kaddr = kmap_atomic(page, KM_USER0);
1209 		left = __copy_to_user_inatomic(desc->arg.buf,
1210 						kaddr + offset, size);
1211 		kunmap_atomic(kaddr, KM_USER0);
1212 		if (left == 0)
1213 			goto success;
1214 	}
1215 
1216 	/* Do it the slow way */
1217 	kaddr = kmap(page);
1218 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1219 	kunmap(page);
1220 
1221 	if (left) {
1222 		size -= left;
1223 		desc->error = -EFAULT;
1224 	}
1225 success:
1226 	desc->count = count - size;
1227 	desc->written += size;
1228 	desc->arg.buf += size;
1229 	return size;
1230 }
1231 
1232 /*
1233  * Performs necessary checks before doing a write
1234  * @iov:	io vector request
1235  * @nr_segs:	number of segments in the iovec
1236  * @count:	number of bytes to write
1237  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1238  *
1239  * Adjust number of segments and amount of bytes to write (nr_segs should be
1240  * properly initialized first). Returns appropriate error code that caller
1241  * should return or zero in case that write should be allowed.
1242  */
1243 int generic_segment_checks(const struct iovec *iov,
1244 			unsigned long *nr_segs, size_t *count, int access_flags)
1245 {
1246 	unsigned long   seg;
1247 	size_t cnt = 0;
1248 	for (seg = 0; seg < *nr_segs; seg++) {
1249 		const struct iovec *iv = &iov[seg];
1250 
1251 		/*
1252 		 * If any segment has a negative length, or the cumulative
1253 		 * length ever wraps negative then return -EINVAL.
1254 		 */
1255 		cnt += iv->iov_len;
1256 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1257 			return -EINVAL;
1258 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1259 			continue;
1260 		if (seg == 0)
1261 			return -EFAULT;
1262 		*nr_segs = seg;
1263 		cnt -= iv->iov_len;	/* This segment is no good */
1264 		break;
1265 	}
1266 	*count = cnt;
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL(generic_segment_checks);
1270 
1271 /**
1272  * generic_file_aio_read - generic filesystem read routine
1273  * @iocb:	kernel I/O control block
1274  * @iov:	io vector request
1275  * @nr_segs:	number of segments in the iovec
1276  * @pos:	current file position
1277  *
1278  * This is the "read()" routine for all filesystems
1279  * that can use the page cache directly.
1280  */
1281 ssize_t
1282 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1283 		unsigned long nr_segs, loff_t pos)
1284 {
1285 	struct file *filp = iocb->ki_filp;
1286 	ssize_t retval;
1287 	unsigned long seg;
1288 	size_t count;
1289 	loff_t *ppos = &iocb->ki_pos;
1290 
1291 	count = 0;
1292 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1293 	if (retval)
1294 		return retval;
1295 
1296 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1297 	if (filp->f_flags & O_DIRECT) {
1298 		loff_t size;
1299 		struct address_space *mapping;
1300 		struct inode *inode;
1301 
1302 		mapping = filp->f_mapping;
1303 		inode = mapping->host;
1304 		if (!count)
1305 			goto out; /* skip atime */
1306 		size = i_size_read(inode);
1307 		if (pos < size) {
1308 			retval = filemap_write_and_wait_range(mapping, pos,
1309 					pos + iov_length(iov, nr_segs) - 1);
1310 			if (!retval) {
1311 				retval = mapping->a_ops->direct_IO(READ, iocb,
1312 							iov, pos, nr_segs);
1313 			}
1314 			if (retval > 0)
1315 				*ppos = pos + retval;
1316 			if (retval) {
1317 				file_accessed(filp);
1318 				goto out;
1319 			}
1320 		}
1321 	}
1322 
1323 	for (seg = 0; seg < nr_segs; seg++) {
1324 		read_descriptor_t desc;
1325 
1326 		desc.written = 0;
1327 		desc.arg.buf = iov[seg].iov_base;
1328 		desc.count = iov[seg].iov_len;
1329 		if (desc.count == 0)
1330 			continue;
1331 		desc.error = 0;
1332 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1333 		retval += desc.written;
1334 		if (desc.error) {
1335 			retval = retval ?: desc.error;
1336 			break;
1337 		}
1338 		if (desc.count > 0)
1339 			break;
1340 	}
1341 out:
1342 	return retval;
1343 }
1344 EXPORT_SYMBOL(generic_file_aio_read);
1345 
1346 static ssize_t
1347 do_readahead(struct address_space *mapping, struct file *filp,
1348 	     pgoff_t index, unsigned long nr)
1349 {
1350 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1351 		return -EINVAL;
1352 
1353 	force_page_cache_readahead(mapping, filp, index, nr);
1354 	return 0;
1355 }
1356 
1357 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1358 {
1359 	ssize_t ret;
1360 	struct file *file;
1361 
1362 	ret = -EBADF;
1363 	file = fget(fd);
1364 	if (file) {
1365 		if (file->f_mode & FMODE_READ) {
1366 			struct address_space *mapping = file->f_mapping;
1367 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1368 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1369 			unsigned long len = end - start + 1;
1370 			ret = do_readahead(mapping, file, start, len);
1371 		}
1372 		fput(file);
1373 	}
1374 	return ret;
1375 }
1376 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1377 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1378 {
1379 	return SYSC_readahead((int) fd, offset, (size_t) count);
1380 }
1381 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1382 #endif
1383 
1384 #ifdef CONFIG_MMU
1385 /**
1386  * page_cache_read - adds requested page to the page cache if not already there
1387  * @file:	file to read
1388  * @offset:	page index
1389  *
1390  * This adds the requested page to the page cache if it isn't already there,
1391  * and schedules an I/O to read in its contents from disk.
1392  */
1393 static int page_cache_read(struct file *file, pgoff_t offset)
1394 {
1395 	struct address_space *mapping = file->f_mapping;
1396 	struct page *page;
1397 	int ret;
1398 
1399 	do {
1400 		page = page_cache_alloc_cold(mapping);
1401 		if (!page)
1402 			return -ENOMEM;
1403 
1404 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1405 		if (ret == 0)
1406 			ret = mapping->a_ops->readpage(file, page);
1407 		else if (ret == -EEXIST)
1408 			ret = 0; /* losing race to add is OK */
1409 
1410 		page_cache_release(page);
1411 
1412 	} while (ret == AOP_TRUNCATED_PAGE);
1413 
1414 	return ret;
1415 }
1416 
1417 #define MMAP_LOTSAMISS  (100)
1418 
1419 /*
1420  * Synchronous readahead happens when we don't even find
1421  * a page in the page cache at all.
1422  */
1423 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1424 				   struct file_ra_state *ra,
1425 				   struct file *file,
1426 				   pgoff_t offset)
1427 {
1428 	unsigned long ra_pages;
1429 	struct address_space *mapping = file->f_mapping;
1430 
1431 	/* If we don't want any read-ahead, don't bother */
1432 	if (VM_RandomReadHint(vma))
1433 		return;
1434 
1435 	if (VM_SequentialReadHint(vma) ||
1436 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1437 		page_cache_sync_readahead(mapping, ra, file, offset,
1438 					  ra->ra_pages);
1439 		return;
1440 	}
1441 
1442 	if (ra->mmap_miss < INT_MAX)
1443 		ra->mmap_miss++;
1444 
1445 	/*
1446 	 * Do we miss much more than hit in this file? If so,
1447 	 * stop bothering with read-ahead. It will only hurt.
1448 	 */
1449 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1450 		return;
1451 
1452 	/*
1453 	 * mmap read-around
1454 	 */
1455 	ra_pages = max_sane_readahead(ra->ra_pages);
1456 	if (ra_pages) {
1457 		ra->start = max_t(long, 0, offset - ra_pages/2);
1458 		ra->size = ra_pages;
1459 		ra->async_size = 0;
1460 		ra_submit(ra, mapping, file);
1461 	}
1462 }
1463 
1464 /*
1465  * Asynchronous readahead happens when we find the page and PG_readahead,
1466  * so we want to possibly extend the readahead further..
1467  */
1468 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1469 				    struct file_ra_state *ra,
1470 				    struct file *file,
1471 				    struct page *page,
1472 				    pgoff_t offset)
1473 {
1474 	struct address_space *mapping = file->f_mapping;
1475 
1476 	/* If we don't want any read-ahead, don't bother */
1477 	if (VM_RandomReadHint(vma))
1478 		return;
1479 	if (ra->mmap_miss > 0)
1480 		ra->mmap_miss--;
1481 	if (PageReadahead(page))
1482 		page_cache_async_readahead(mapping, ra, file,
1483 					   page, offset, ra->ra_pages);
1484 }
1485 
1486 /**
1487  * filemap_fault - read in file data for page fault handling
1488  * @vma:	vma in which the fault was taken
1489  * @vmf:	struct vm_fault containing details of the fault
1490  *
1491  * filemap_fault() is invoked via the vma operations vector for a
1492  * mapped memory region to read in file data during a page fault.
1493  *
1494  * The goto's are kind of ugly, but this streamlines the normal case of having
1495  * it in the page cache, and handles the special cases reasonably without
1496  * having a lot of duplicated code.
1497  */
1498 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1499 {
1500 	int error;
1501 	struct file *file = vma->vm_file;
1502 	struct address_space *mapping = file->f_mapping;
1503 	struct file_ra_state *ra = &file->f_ra;
1504 	struct inode *inode = mapping->host;
1505 	pgoff_t offset = vmf->pgoff;
1506 	struct page *page;
1507 	pgoff_t size;
1508 	int ret = 0;
1509 
1510 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1511 	if (offset >= size)
1512 		return VM_FAULT_SIGBUS;
1513 
1514 	/*
1515 	 * Do we have something in the page cache already?
1516 	 */
1517 	page = find_get_page(mapping, offset);
1518 	if (likely(page)) {
1519 		/*
1520 		 * We found the page, so try async readahead before
1521 		 * waiting for the lock.
1522 		 */
1523 		do_async_mmap_readahead(vma, ra, file, page, offset);
1524 		lock_page(page);
1525 
1526 		/* Did it get truncated? */
1527 		if (unlikely(page->mapping != mapping)) {
1528 			unlock_page(page);
1529 			put_page(page);
1530 			goto no_cached_page;
1531 		}
1532 	} else {
1533 		/* No page in the page cache at all */
1534 		do_sync_mmap_readahead(vma, ra, file, offset);
1535 		count_vm_event(PGMAJFAULT);
1536 		ret = VM_FAULT_MAJOR;
1537 retry_find:
1538 		page = find_lock_page(mapping, offset);
1539 		if (!page)
1540 			goto no_cached_page;
1541 	}
1542 
1543 	/*
1544 	 * We have a locked page in the page cache, now we need to check
1545 	 * that it's up-to-date. If not, it is going to be due to an error.
1546 	 */
1547 	if (unlikely(!PageUptodate(page)))
1548 		goto page_not_uptodate;
1549 
1550 	/*
1551 	 * Found the page and have a reference on it.
1552 	 * We must recheck i_size under page lock.
1553 	 */
1554 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1555 	if (unlikely(offset >= size)) {
1556 		unlock_page(page);
1557 		page_cache_release(page);
1558 		return VM_FAULT_SIGBUS;
1559 	}
1560 
1561 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1562 	vmf->page = page;
1563 	return ret | VM_FAULT_LOCKED;
1564 
1565 no_cached_page:
1566 	/*
1567 	 * We're only likely to ever get here if MADV_RANDOM is in
1568 	 * effect.
1569 	 */
1570 	error = page_cache_read(file, offset);
1571 
1572 	/*
1573 	 * The page we want has now been added to the page cache.
1574 	 * In the unlikely event that someone removed it in the
1575 	 * meantime, we'll just come back here and read it again.
1576 	 */
1577 	if (error >= 0)
1578 		goto retry_find;
1579 
1580 	/*
1581 	 * An error return from page_cache_read can result if the
1582 	 * system is low on memory, or a problem occurs while trying
1583 	 * to schedule I/O.
1584 	 */
1585 	if (error == -ENOMEM)
1586 		return VM_FAULT_OOM;
1587 	return VM_FAULT_SIGBUS;
1588 
1589 page_not_uptodate:
1590 	/*
1591 	 * Umm, take care of errors if the page isn't up-to-date.
1592 	 * Try to re-read it _once_. We do this synchronously,
1593 	 * because there really aren't any performance issues here
1594 	 * and we need to check for errors.
1595 	 */
1596 	ClearPageError(page);
1597 	error = mapping->a_ops->readpage(file, page);
1598 	if (!error) {
1599 		wait_on_page_locked(page);
1600 		if (!PageUptodate(page))
1601 			error = -EIO;
1602 	}
1603 	page_cache_release(page);
1604 
1605 	if (!error || error == AOP_TRUNCATED_PAGE)
1606 		goto retry_find;
1607 
1608 	/* Things didn't work out. Return zero to tell the mm layer so. */
1609 	shrink_readahead_size_eio(file, ra);
1610 	return VM_FAULT_SIGBUS;
1611 }
1612 EXPORT_SYMBOL(filemap_fault);
1613 
1614 const struct vm_operations_struct generic_file_vm_ops = {
1615 	.fault		= filemap_fault,
1616 };
1617 
1618 /* This is used for a general mmap of a disk file */
1619 
1620 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1621 {
1622 	struct address_space *mapping = file->f_mapping;
1623 
1624 	if (!mapping->a_ops->readpage)
1625 		return -ENOEXEC;
1626 	file_accessed(file);
1627 	vma->vm_ops = &generic_file_vm_ops;
1628 	vma->vm_flags |= VM_CAN_NONLINEAR;
1629 	return 0;
1630 }
1631 
1632 /*
1633  * This is for filesystems which do not implement ->writepage.
1634  */
1635 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1636 {
1637 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1638 		return -EINVAL;
1639 	return generic_file_mmap(file, vma);
1640 }
1641 #else
1642 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1643 {
1644 	return -ENOSYS;
1645 }
1646 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1647 {
1648 	return -ENOSYS;
1649 }
1650 #endif /* CONFIG_MMU */
1651 
1652 EXPORT_SYMBOL(generic_file_mmap);
1653 EXPORT_SYMBOL(generic_file_readonly_mmap);
1654 
1655 static struct page *__read_cache_page(struct address_space *mapping,
1656 				pgoff_t index,
1657 				int (*filler)(void *,struct page*),
1658 				void *data)
1659 {
1660 	struct page *page;
1661 	int err;
1662 repeat:
1663 	page = find_get_page(mapping, index);
1664 	if (!page) {
1665 		page = page_cache_alloc_cold(mapping);
1666 		if (!page)
1667 			return ERR_PTR(-ENOMEM);
1668 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1669 		if (unlikely(err)) {
1670 			page_cache_release(page);
1671 			if (err == -EEXIST)
1672 				goto repeat;
1673 			/* Presumably ENOMEM for radix tree node */
1674 			return ERR_PTR(err);
1675 		}
1676 		err = filler(data, page);
1677 		if (err < 0) {
1678 			page_cache_release(page);
1679 			page = ERR_PTR(err);
1680 		}
1681 	}
1682 	return page;
1683 }
1684 
1685 /**
1686  * read_cache_page_async - read into page cache, fill it if needed
1687  * @mapping:	the page's address_space
1688  * @index:	the page index
1689  * @filler:	function to perform the read
1690  * @data:	destination for read data
1691  *
1692  * Same as read_cache_page, but don't wait for page to become unlocked
1693  * after submitting it to the filler.
1694  *
1695  * Read into the page cache. If a page already exists, and PageUptodate() is
1696  * not set, try to fill the page but don't wait for it to become unlocked.
1697  *
1698  * If the page does not get brought uptodate, return -EIO.
1699  */
1700 struct page *read_cache_page_async(struct address_space *mapping,
1701 				pgoff_t index,
1702 				int (*filler)(void *,struct page*),
1703 				void *data)
1704 {
1705 	struct page *page;
1706 	int err;
1707 
1708 retry:
1709 	page = __read_cache_page(mapping, index, filler, data);
1710 	if (IS_ERR(page))
1711 		return page;
1712 	if (PageUptodate(page))
1713 		goto out;
1714 
1715 	lock_page(page);
1716 	if (!page->mapping) {
1717 		unlock_page(page);
1718 		page_cache_release(page);
1719 		goto retry;
1720 	}
1721 	if (PageUptodate(page)) {
1722 		unlock_page(page);
1723 		goto out;
1724 	}
1725 	err = filler(data, page);
1726 	if (err < 0) {
1727 		page_cache_release(page);
1728 		return ERR_PTR(err);
1729 	}
1730 out:
1731 	mark_page_accessed(page);
1732 	return page;
1733 }
1734 EXPORT_SYMBOL(read_cache_page_async);
1735 
1736 /**
1737  * read_cache_page - read into page cache, fill it if needed
1738  * @mapping:	the page's address_space
1739  * @index:	the page index
1740  * @filler:	function to perform the read
1741  * @data:	destination for read data
1742  *
1743  * Read into the page cache. If a page already exists, and PageUptodate() is
1744  * not set, try to fill the page then wait for it to become unlocked.
1745  *
1746  * If the page does not get brought uptodate, return -EIO.
1747  */
1748 struct page *read_cache_page(struct address_space *mapping,
1749 				pgoff_t index,
1750 				int (*filler)(void *,struct page*),
1751 				void *data)
1752 {
1753 	struct page *page;
1754 
1755 	page = read_cache_page_async(mapping, index, filler, data);
1756 	if (IS_ERR(page))
1757 		goto out;
1758 	wait_on_page_locked(page);
1759 	if (!PageUptodate(page)) {
1760 		page_cache_release(page);
1761 		page = ERR_PTR(-EIO);
1762 	}
1763  out:
1764 	return page;
1765 }
1766 EXPORT_SYMBOL(read_cache_page);
1767 
1768 /*
1769  * The logic we want is
1770  *
1771  *	if suid or (sgid and xgrp)
1772  *		remove privs
1773  */
1774 int should_remove_suid(struct dentry *dentry)
1775 {
1776 	mode_t mode = dentry->d_inode->i_mode;
1777 	int kill = 0;
1778 
1779 	/* suid always must be killed */
1780 	if (unlikely(mode & S_ISUID))
1781 		kill = ATTR_KILL_SUID;
1782 
1783 	/*
1784 	 * sgid without any exec bits is just a mandatory locking mark; leave
1785 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1786 	 */
1787 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1788 		kill |= ATTR_KILL_SGID;
1789 
1790 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1791 		return kill;
1792 
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(should_remove_suid);
1796 
1797 static int __remove_suid(struct dentry *dentry, int kill)
1798 {
1799 	struct iattr newattrs;
1800 
1801 	newattrs.ia_valid = ATTR_FORCE | kill;
1802 	return notify_change(dentry, &newattrs);
1803 }
1804 
1805 int file_remove_suid(struct file *file)
1806 {
1807 	struct dentry *dentry = file->f_path.dentry;
1808 	int killsuid = should_remove_suid(dentry);
1809 	int killpriv = security_inode_need_killpriv(dentry);
1810 	int error = 0;
1811 
1812 	if (killpriv < 0)
1813 		return killpriv;
1814 	if (killpriv)
1815 		error = security_inode_killpriv(dentry);
1816 	if (!error && killsuid)
1817 		error = __remove_suid(dentry, killsuid);
1818 
1819 	return error;
1820 }
1821 EXPORT_SYMBOL(file_remove_suid);
1822 
1823 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1824 			const struct iovec *iov, size_t base, size_t bytes)
1825 {
1826 	size_t copied = 0, left = 0;
1827 
1828 	while (bytes) {
1829 		char __user *buf = iov->iov_base + base;
1830 		int copy = min(bytes, iov->iov_len - base);
1831 
1832 		base = 0;
1833 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1834 		copied += copy;
1835 		bytes -= copy;
1836 		vaddr += copy;
1837 		iov++;
1838 
1839 		if (unlikely(left))
1840 			break;
1841 	}
1842 	return copied - left;
1843 }
1844 
1845 /*
1846  * Copy as much as we can into the page and return the number of bytes which
1847  * were sucessfully copied.  If a fault is encountered then return the number of
1848  * bytes which were copied.
1849  */
1850 size_t iov_iter_copy_from_user_atomic(struct page *page,
1851 		struct iov_iter *i, unsigned long offset, size_t bytes)
1852 {
1853 	char *kaddr;
1854 	size_t copied;
1855 
1856 	BUG_ON(!in_atomic());
1857 	kaddr = kmap_atomic(page, KM_USER0);
1858 	if (likely(i->nr_segs == 1)) {
1859 		int left;
1860 		char __user *buf = i->iov->iov_base + i->iov_offset;
1861 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1862 		copied = bytes - left;
1863 	} else {
1864 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1865 						i->iov, i->iov_offset, bytes);
1866 	}
1867 	kunmap_atomic(kaddr, KM_USER0);
1868 
1869 	return copied;
1870 }
1871 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1872 
1873 /*
1874  * This has the same sideeffects and return value as
1875  * iov_iter_copy_from_user_atomic().
1876  * The difference is that it attempts to resolve faults.
1877  * Page must not be locked.
1878  */
1879 size_t iov_iter_copy_from_user(struct page *page,
1880 		struct iov_iter *i, unsigned long offset, size_t bytes)
1881 {
1882 	char *kaddr;
1883 	size_t copied;
1884 
1885 	kaddr = kmap(page);
1886 	if (likely(i->nr_segs == 1)) {
1887 		int left;
1888 		char __user *buf = i->iov->iov_base + i->iov_offset;
1889 		left = __copy_from_user(kaddr + offset, buf, bytes);
1890 		copied = bytes - left;
1891 	} else {
1892 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1893 						i->iov, i->iov_offset, bytes);
1894 	}
1895 	kunmap(page);
1896 	return copied;
1897 }
1898 EXPORT_SYMBOL(iov_iter_copy_from_user);
1899 
1900 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1901 {
1902 	BUG_ON(i->count < bytes);
1903 
1904 	if (likely(i->nr_segs == 1)) {
1905 		i->iov_offset += bytes;
1906 		i->count -= bytes;
1907 	} else {
1908 		const struct iovec *iov = i->iov;
1909 		size_t base = i->iov_offset;
1910 
1911 		/*
1912 		 * The !iov->iov_len check ensures we skip over unlikely
1913 		 * zero-length segments (without overruning the iovec).
1914 		 */
1915 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1916 			int copy;
1917 
1918 			copy = min(bytes, iov->iov_len - base);
1919 			BUG_ON(!i->count || i->count < copy);
1920 			i->count -= copy;
1921 			bytes -= copy;
1922 			base += copy;
1923 			if (iov->iov_len == base) {
1924 				iov++;
1925 				base = 0;
1926 			}
1927 		}
1928 		i->iov = iov;
1929 		i->iov_offset = base;
1930 	}
1931 }
1932 EXPORT_SYMBOL(iov_iter_advance);
1933 
1934 /*
1935  * Fault in the first iovec of the given iov_iter, to a maximum length
1936  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1937  * accessed (ie. because it is an invalid address).
1938  *
1939  * writev-intensive code may want this to prefault several iovecs -- that
1940  * would be possible (callers must not rely on the fact that _only_ the
1941  * first iovec will be faulted with the current implementation).
1942  */
1943 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1944 {
1945 	char __user *buf = i->iov->iov_base + i->iov_offset;
1946 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1947 	return fault_in_pages_readable(buf, bytes);
1948 }
1949 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1950 
1951 /*
1952  * Return the count of just the current iov_iter segment.
1953  */
1954 size_t iov_iter_single_seg_count(struct iov_iter *i)
1955 {
1956 	const struct iovec *iov = i->iov;
1957 	if (i->nr_segs == 1)
1958 		return i->count;
1959 	else
1960 		return min(i->count, iov->iov_len - i->iov_offset);
1961 }
1962 EXPORT_SYMBOL(iov_iter_single_seg_count);
1963 
1964 /*
1965  * Performs necessary checks before doing a write
1966  *
1967  * Can adjust writing position or amount of bytes to write.
1968  * Returns appropriate error code that caller should return or
1969  * zero in case that write should be allowed.
1970  */
1971 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1972 {
1973 	struct inode *inode = file->f_mapping->host;
1974 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1975 
1976         if (unlikely(*pos < 0))
1977                 return -EINVAL;
1978 
1979 	if (!isblk) {
1980 		/* FIXME: this is for backwards compatibility with 2.4 */
1981 		if (file->f_flags & O_APPEND)
1982                         *pos = i_size_read(inode);
1983 
1984 		if (limit != RLIM_INFINITY) {
1985 			if (*pos >= limit) {
1986 				send_sig(SIGXFSZ, current, 0);
1987 				return -EFBIG;
1988 			}
1989 			if (*count > limit - (typeof(limit))*pos) {
1990 				*count = limit - (typeof(limit))*pos;
1991 			}
1992 		}
1993 	}
1994 
1995 	/*
1996 	 * LFS rule
1997 	 */
1998 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1999 				!(file->f_flags & O_LARGEFILE))) {
2000 		if (*pos >= MAX_NON_LFS) {
2001 			return -EFBIG;
2002 		}
2003 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2004 			*count = MAX_NON_LFS - (unsigned long)*pos;
2005 		}
2006 	}
2007 
2008 	/*
2009 	 * Are we about to exceed the fs block limit ?
2010 	 *
2011 	 * If we have written data it becomes a short write.  If we have
2012 	 * exceeded without writing data we send a signal and return EFBIG.
2013 	 * Linus frestrict idea will clean these up nicely..
2014 	 */
2015 	if (likely(!isblk)) {
2016 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2017 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2018 				return -EFBIG;
2019 			}
2020 			/* zero-length writes at ->s_maxbytes are OK */
2021 		}
2022 
2023 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2024 			*count = inode->i_sb->s_maxbytes - *pos;
2025 	} else {
2026 #ifdef CONFIG_BLOCK
2027 		loff_t isize;
2028 		if (bdev_read_only(I_BDEV(inode)))
2029 			return -EPERM;
2030 		isize = i_size_read(inode);
2031 		if (*pos >= isize) {
2032 			if (*count || *pos > isize)
2033 				return -ENOSPC;
2034 		}
2035 
2036 		if (*pos + *count > isize)
2037 			*count = isize - *pos;
2038 #else
2039 		return -EPERM;
2040 #endif
2041 	}
2042 	return 0;
2043 }
2044 EXPORT_SYMBOL(generic_write_checks);
2045 
2046 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2047 				loff_t pos, unsigned len, unsigned flags,
2048 				struct page **pagep, void **fsdata)
2049 {
2050 	const struct address_space_operations *aops = mapping->a_ops;
2051 
2052 	return aops->write_begin(file, mapping, pos, len, flags,
2053 							pagep, fsdata);
2054 }
2055 EXPORT_SYMBOL(pagecache_write_begin);
2056 
2057 int pagecache_write_end(struct file *file, struct address_space *mapping,
2058 				loff_t pos, unsigned len, unsigned copied,
2059 				struct page *page, void *fsdata)
2060 {
2061 	const struct address_space_operations *aops = mapping->a_ops;
2062 
2063 	mark_page_accessed(page);
2064 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2065 }
2066 EXPORT_SYMBOL(pagecache_write_end);
2067 
2068 ssize_t
2069 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2070 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2071 		size_t count, size_t ocount)
2072 {
2073 	struct file	*file = iocb->ki_filp;
2074 	struct address_space *mapping = file->f_mapping;
2075 	struct inode	*inode = mapping->host;
2076 	ssize_t		written;
2077 	size_t		write_len;
2078 	pgoff_t		end;
2079 
2080 	if (count != ocount)
2081 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2082 
2083 	write_len = iov_length(iov, *nr_segs);
2084 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2085 
2086 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2087 	if (written)
2088 		goto out;
2089 
2090 	/*
2091 	 * After a write we want buffered reads to be sure to go to disk to get
2092 	 * the new data.  We invalidate clean cached page from the region we're
2093 	 * about to write.  We do this *before* the write so that we can return
2094 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2095 	 */
2096 	if (mapping->nrpages) {
2097 		written = invalidate_inode_pages2_range(mapping,
2098 					pos >> PAGE_CACHE_SHIFT, end);
2099 		/*
2100 		 * If a page can not be invalidated, return 0 to fall back
2101 		 * to buffered write.
2102 		 */
2103 		if (written) {
2104 			if (written == -EBUSY)
2105 				return 0;
2106 			goto out;
2107 		}
2108 	}
2109 
2110 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2111 
2112 	/*
2113 	 * Finally, try again to invalidate clean pages which might have been
2114 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2115 	 * if the source of the write was an mmap'ed region of the file
2116 	 * we're writing.  Either one is a pretty crazy thing to do,
2117 	 * so we don't support it 100%.  If this invalidation
2118 	 * fails, tough, the write still worked...
2119 	 */
2120 	if (mapping->nrpages) {
2121 		invalidate_inode_pages2_range(mapping,
2122 					      pos >> PAGE_CACHE_SHIFT, end);
2123 	}
2124 
2125 	if (written > 0) {
2126 		loff_t end = pos + written;
2127 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2128 			i_size_write(inode,  end);
2129 			mark_inode_dirty(inode);
2130 		}
2131 		*ppos = end;
2132 	}
2133 out:
2134 	return written;
2135 }
2136 EXPORT_SYMBOL(generic_file_direct_write);
2137 
2138 /*
2139  * Find or create a page at the given pagecache position. Return the locked
2140  * page. This function is specifically for buffered writes.
2141  */
2142 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2143 					pgoff_t index, unsigned flags)
2144 {
2145 	int status;
2146 	struct page *page;
2147 	gfp_t gfp_notmask = 0;
2148 	if (flags & AOP_FLAG_NOFS)
2149 		gfp_notmask = __GFP_FS;
2150 repeat:
2151 	page = find_lock_page(mapping, index);
2152 	if (likely(page))
2153 		return page;
2154 
2155 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2156 	if (!page)
2157 		return NULL;
2158 	status = add_to_page_cache_lru(page, mapping, index,
2159 						GFP_KERNEL & ~gfp_notmask);
2160 	if (unlikely(status)) {
2161 		page_cache_release(page);
2162 		if (status == -EEXIST)
2163 			goto repeat;
2164 		return NULL;
2165 	}
2166 	return page;
2167 }
2168 EXPORT_SYMBOL(grab_cache_page_write_begin);
2169 
2170 static ssize_t generic_perform_write(struct file *file,
2171 				struct iov_iter *i, loff_t pos)
2172 {
2173 	struct address_space *mapping = file->f_mapping;
2174 	const struct address_space_operations *a_ops = mapping->a_ops;
2175 	long status = 0;
2176 	ssize_t written = 0;
2177 	unsigned int flags = 0;
2178 
2179 	/*
2180 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2181 	 */
2182 	if (segment_eq(get_fs(), KERNEL_DS))
2183 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2184 
2185 	do {
2186 		struct page *page;
2187 		pgoff_t index;		/* Pagecache index for current page */
2188 		unsigned long offset;	/* Offset into pagecache page */
2189 		unsigned long bytes;	/* Bytes to write to page */
2190 		size_t copied;		/* Bytes copied from user */
2191 		void *fsdata;
2192 
2193 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2194 		index = pos >> PAGE_CACHE_SHIFT;
2195 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2196 						iov_iter_count(i));
2197 
2198 again:
2199 
2200 		/*
2201 		 * Bring in the user page that we will copy from _first_.
2202 		 * Otherwise there's a nasty deadlock on copying from the
2203 		 * same page as we're writing to, without it being marked
2204 		 * up-to-date.
2205 		 *
2206 		 * Not only is this an optimisation, but it is also required
2207 		 * to check that the address is actually valid, when atomic
2208 		 * usercopies are used, below.
2209 		 */
2210 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2211 			status = -EFAULT;
2212 			break;
2213 		}
2214 
2215 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2216 						&page, &fsdata);
2217 		if (unlikely(status))
2218 			break;
2219 
2220 		pagefault_disable();
2221 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2222 		pagefault_enable();
2223 		flush_dcache_page(page);
2224 
2225 		mark_page_accessed(page);
2226 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2227 						page, fsdata);
2228 		if (unlikely(status < 0))
2229 			break;
2230 		copied = status;
2231 
2232 		cond_resched();
2233 
2234 		iov_iter_advance(i, copied);
2235 		if (unlikely(copied == 0)) {
2236 			/*
2237 			 * If we were unable to copy any data at all, we must
2238 			 * fall back to a single segment length write.
2239 			 *
2240 			 * If we didn't fallback here, we could livelock
2241 			 * because not all segments in the iov can be copied at
2242 			 * once without a pagefault.
2243 			 */
2244 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2245 						iov_iter_single_seg_count(i));
2246 			goto again;
2247 		}
2248 		pos += copied;
2249 		written += copied;
2250 
2251 		balance_dirty_pages_ratelimited(mapping);
2252 
2253 	} while (iov_iter_count(i));
2254 
2255 	return written ? written : status;
2256 }
2257 
2258 ssize_t
2259 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2260 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2261 		size_t count, ssize_t written)
2262 {
2263 	struct file *file = iocb->ki_filp;
2264 	struct address_space *mapping = file->f_mapping;
2265 	ssize_t status;
2266 	struct iov_iter i;
2267 
2268 	iov_iter_init(&i, iov, nr_segs, count, written);
2269 	status = generic_perform_write(file, &i, pos);
2270 
2271 	if (likely(status >= 0)) {
2272 		written += status;
2273 		*ppos = pos + status;
2274   	}
2275 
2276 	/*
2277 	 * If we get here for O_DIRECT writes then we must have fallen through
2278 	 * to buffered writes (block instantiation inside i_size).  So we sync
2279 	 * the file data here, to try to honour O_DIRECT expectations.
2280 	 */
2281 	if (unlikely(file->f_flags & O_DIRECT) && written)
2282 		status = filemap_write_and_wait_range(mapping,
2283 					pos, pos + written - 1);
2284 
2285 	return written ? written : status;
2286 }
2287 EXPORT_SYMBOL(generic_file_buffered_write);
2288 
2289 /**
2290  * __generic_file_aio_write - write data to a file
2291  * @iocb:	IO state structure (file, offset, etc.)
2292  * @iov:	vector with data to write
2293  * @nr_segs:	number of segments in the vector
2294  * @ppos:	position where to write
2295  *
2296  * This function does all the work needed for actually writing data to a
2297  * file. It does all basic checks, removes SUID from the file, updates
2298  * modification times and calls proper subroutines depending on whether we
2299  * do direct IO or a standard buffered write.
2300  *
2301  * It expects i_mutex to be grabbed unless we work on a block device or similar
2302  * object which does not need locking at all.
2303  *
2304  * This function does *not* take care of syncing data in case of O_SYNC write.
2305  * A caller has to handle it. This is mainly due to the fact that we want to
2306  * avoid syncing under i_mutex.
2307  */
2308 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2309 				 unsigned long nr_segs, loff_t *ppos)
2310 {
2311 	struct file *file = iocb->ki_filp;
2312 	struct address_space * mapping = file->f_mapping;
2313 	size_t ocount;		/* original count */
2314 	size_t count;		/* after file limit checks */
2315 	struct inode 	*inode = mapping->host;
2316 	loff_t		pos;
2317 	ssize_t		written;
2318 	ssize_t		err;
2319 
2320 	ocount = 0;
2321 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2322 	if (err)
2323 		return err;
2324 
2325 	count = ocount;
2326 	pos = *ppos;
2327 
2328 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2329 
2330 	/* We can write back this queue in page reclaim */
2331 	current->backing_dev_info = mapping->backing_dev_info;
2332 	written = 0;
2333 
2334 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2335 	if (err)
2336 		goto out;
2337 
2338 	if (count == 0)
2339 		goto out;
2340 
2341 	err = file_remove_suid(file);
2342 	if (err)
2343 		goto out;
2344 
2345 	file_update_time(file);
2346 
2347 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2348 	if (unlikely(file->f_flags & O_DIRECT)) {
2349 		loff_t endbyte;
2350 		ssize_t written_buffered;
2351 
2352 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2353 							ppos, count, ocount);
2354 		if (written < 0 || written == count)
2355 			goto out;
2356 		/*
2357 		 * direct-io write to a hole: fall through to buffered I/O
2358 		 * for completing the rest of the request.
2359 		 */
2360 		pos += written;
2361 		count -= written;
2362 		written_buffered = generic_file_buffered_write(iocb, iov,
2363 						nr_segs, pos, ppos, count,
2364 						written);
2365 		/*
2366 		 * If generic_file_buffered_write() retuned a synchronous error
2367 		 * then we want to return the number of bytes which were
2368 		 * direct-written, or the error code if that was zero.  Note
2369 		 * that this differs from normal direct-io semantics, which
2370 		 * will return -EFOO even if some bytes were written.
2371 		 */
2372 		if (written_buffered < 0) {
2373 			err = written_buffered;
2374 			goto out;
2375 		}
2376 
2377 		/*
2378 		 * We need to ensure that the page cache pages are written to
2379 		 * disk and invalidated to preserve the expected O_DIRECT
2380 		 * semantics.
2381 		 */
2382 		endbyte = pos + written_buffered - written - 1;
2383 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2384 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2385 					    SYNC_FILE_RANGE_WRITE|
2386 					    SYNC_FILE_RANGE_WAIT_AFTER);
2387 		if (err == 0) {
2388 			written = written_buffered;
2389 			invalidate_mapping_pages(mapping,
2390 						 pos >> PAGE_CACHE_SHIFT,
2391 						 endbyte >> PAGE_CACHE_SHIFT);
2392 		} else {
2393 			/*
2394 			 * We don't know how much we wrote, so just return
2395 			 * the number of bytes which were direct-written
2396 			 */
2397 		}
2398 	} else {
2399 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2400 				pos, ppos, count, written);
2401 	}
2402 out:
2403 	current->backing_dev_info = NULL;
2404 	return written ? written : err;
2405 }
2406 EXPORT_SYMBOL(__generic_file_aio_write);
2407 
2408 /**
2409  * generic_file_aio_write - write data to a file
2410  * @iocb:	IO state structure
2411  * @iov:	vector with data to write
2412  * @nr_segs:	number of segments in the vector
2413  * @pos:	position in file where to write
2414  *
2415  * This is a wrapper around __generic_file_aio_write() to be used by most
2416  * filesystems. It takes care of syncing the file in case of O_SYNC file
2417  * and acquires i_mutex as needed.
2418  */
2419 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2420 		unsigned long nr_segs, loff_t pos)
2421 {
2422 	struct file *file = iocb->ki_filp;
2423 	struct inode *inode = file->f_mapping->host;
2424 	ssize_t ret;
2425 
2426 	BUG_ON(iocb->ki_pos != pos);
2427 
2428 	mutex_lock(&inode->i_mutex);
2429 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2430 	mutex_unlock(&inode->i_mutex);
2431 
2432 	if (ret > 0 || ret == -EIOCBQUEUED) {
2433 		ssize_t err;
2434 
2435 		err = generic_write_sync(file, pos, ret);
2436 		if (err < 0 && ret > 0)
2437 			ret = err;
2438 	}
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(generic_file_aio_write);
2442 
2443 /**
2444  * try_to_release_page() - release old fs-specific metadata on a page
2445  *
2446  * @page: the page which the kernel is trying to free
2447  * @gfp_mask: memory allocation flags (and I/O mode)
2448  *
2449  * The address_space is to try to release any data against the page
2450  * (presumably at page->private).  If the release was successful, return `1'.
2451  * Otherwise return zero.
2452  *
2453  * This may also be called if PG_fscache is set on a page, indicating that the
2454  * page is known to the local caching routines.
2455  *
2456  * The @gfp_mask argument specifies whether I/O may be performed to release
2457  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2458  *
2459  */
2460 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2461 {
2462 	struct address_space * const mapping = page->mapping;
2463 
2464 	BUG_ON(!PageLocked(page));
2465 	if (PageWriteback(page))
2466 		return 0;
2467 
2468 	if (mapping && mapping->a_ops->releasepage)
2469 		return mapping->a_ops->releasepage(page, gfp_mask);
2470 	return try_to_free_buffers(page);
2471 }
2472 
2473 EXPORT_SYMBOL(try_to_release_page);
2474