xref: /openbmc/linux/mm/filemap.c (revision e6dec923)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (!dax_mapping(mapping)) {
134 			if (shadowp)
135 				*shadowp = p;
136 		} else {
137 			/* DAX can replace empty locked entry with a hole */
138 			WARN_ON_ONCE(p !=
139 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 			/* Wakeup waiters for exceptional entry lock */
141 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 						      true);
143 		}
144 	}
145 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
146 			     workingset_update_node, mapping);
147 	mapping->nrpages++;
148 	return 0;
149 }
150 
151 static void page_cache_tree_delete(struct address_space *mapping,
152 				   struct page *page, void *shadow)
153 {
154 	int i, nr;
155 
156 	/* hugetlb pages are represented by one entry in the radix tree */
157 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158 
159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
160 	VM_BUG_ON_PAGE(PageTail(page), page);
161 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162 
163 	for (i = 0; i < nr; i++) {
164 		struct radix_tree_node *node;
165 		void **slot;
166 
167 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
168 				    &node, &slot);
169 
170 		VM_BUG_ON_PAGE(!node && nr != 1, page);
171 
172 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 				     workingset_update_node, mapping);
175 	}
176 
177 	if (shadow) {
178 		mapping->nrexceptional += nr;
179 		/*
180 		 * Make sure the nrexceptional update is committed before
181 		 * the nrpages update so that final truncate racing
182 		 * with reclaim does not see both counters 0 at the
183 		 * same time and miss a shadow entry.
184 		 */
185 		smp_wmb();
186 	}
187 	mapping->nrpages -= nr;
188 }
189 
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 	struct address_space *mapping = page->mapping;
198 	int nr = hpage_nr_pages(page);
199 
200 	trace_mm_filemap_delete_from_page_cache(page);
201 	/*
202 	 * if we're uptodate, flush out into the cleancache, otherwise
203 	 * invalidate any existing cleancache entries.  We can't leave
204 	 * stale data around in the cleancache once our page is gone
205 	 */
206 	if (PageUptodate(page) && PageMappedToDisk(page))
207 		cleancache_put_page(page);
208 	else
209 		cleancache_invalidate_page(mapping, page);
210 
211 	VM_BUG_ON_PAGE(PageTail(page), page);
212 	VM_BUG_ON_PAGE(page_mapped(page), page);
213 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 		int mapcount;
215 
216 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217 			 current->comm, page_to_pfn(page));
218 		dump_page(page, "still mapped when deleted");
219 		dump_stack();
220 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221 
222 		mapcount = page_mapcount(page);
223 		if (mapping_exiting(mapping) &&
224 		    page_count(page) >= mapcount + 2) {
225 			/*
226 			 * All vmas have already been torn down, so it's
227 			 * a good bet that actually the page is unmapped,
228 			 * and we'd prefer not to leak it: if we're wrong,
229 			 * some other bad page check should catch it later.
230 			 */
231 			page_mapcount_reset(page);
232 			page_ref_sub(page, mapcount);
233 		}
234 	}
235 
236 	page_cache_tree_delete(mapping, page, shadow);
237 
238 	page->mapping = NULL;
239 	/* Leave page->index set: truncation lookup relies upon it */
240 
241 	/* hugetlb pages do not participate in page cache accounting. */
242 	if (PageHuge(page))
243 		return;
244 
245 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246 	if (PageSwapBacked(page)) {
247 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248 		if (PageTransHuge(page))
249 			__dec_node_page_state(page, NR_SHMEM_THPS);
250 	} else {
251 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
252 	}
253 
254 	/*
255 	 * At this point page must be either written or cleaned by truncate.
256 	 * Dirty page here signals a bug and loss of unwritten data.
257 	 *
258 	 * This fixes dirty accounting after removing the page entirely but
259 	 * leaves PageDirty set: it has no effect for truncated page and
260 	 * anyway will be cleared before returning page into buddy allocator.
261 	 */
262 	if (WARN_ON_ONCE(PageDirty(page)))
263 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265 
266 /**
267  * delete_from_page_cache - delete page from page cache
268  * @page: the page which the kernel is trying to remove from page cache
269  *
270  * This must be called only on pages that have been verified to be in the page
271  * cache and locked.  It will never put the page into the free list, the caller
272  * has a reference on the page.
273  */
274 void delete_from_page_cache(struct page *page)
275 {
276 	struct address_space *mapping = page_mapping(page);
277 	unsigned long flags;
278 	void (*freepage)(struct page *);
279 
280 	BUG_ON(!PageLocked(page));
281 
282 	freepage = mapping->a_ops->freepage;
283 
284 	spin_lock_irqsave(&mapping->tree_lock, flags);
285 	__delete_from_page_cache(page, NULL);
286 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
287 
288 	if (freepage)
289 		freepage(page);
290 
291 	if (PageTransHuge(page) && !PageHuge(page)) {
292 		page_ref_sub(page, HPAGE_PMD_NR);
293 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 	} else {
295 		put_page(page);
296 	}
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299 
300 int filemap_check_errors(struct address_space *mapping)
301 {
302 	int ret = 0;
303 	/* Check for outstanding write errors */
304 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306 		ret = -ENOSPC;
307 	if (test_bit(AS_EIO, &mapping->flags) &&
308 	    test_and_clear_bit(AS_EIO, &mapping->flags))
309 		ret = -EIO;
310 	return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313 
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316 	/* Check for outstanding write errors */
317 	if (test_bit(AS_EIO, &mapping->flags))
318 		return -EIO;
319 	if (test_bit(AS_ENOSPC, &mapping->flags))
320 		return -ENOSPC;
321 	return 0;
322 }
323 
324 /**
325  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326  * @mapping:	address space structure to write
327  * @start:	offset in bytes where the range starts
328  * @end:	offset in bytes where the range ends (inclusive)
329  * @sync_mode:	enable synchronous operation
330  *
331  * Start writeback against all of a mapping's dirty pages that lie
332  * within the byte offsets <start, end> inclusive.
333  *
334  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335  * opposed to a regular memory cleansing writeback.  The difference between
336  * these two operations is that if a dirty page/buffer is encountered, it must
337  * be waited upon, and not just skipped over.
338  */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 				loff_t end, int sync_mode)
341 {
342 	int ret;
343 	struct writeback_control wbc = {
344 		.sync_mode = sync_mode,
345 		.nr_to_write = LONG_MAX,
346 		.range_start = start,
347 		.range_end = end,
348 	};
349 
350 	if (!mapping_cap_writeback_dirty(mapping))
351 		return 0;
352 
353 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354 	ret = do_writepages(mapping, &wbc);
355 	wbc_detach_inode(&wbc);
356 	return ret;
357 }
358 
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360 	int sync_mode)
361 {
362 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364 
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370 
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372 				loff_t end)
373 {
374 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377 
378 /**
379  * filemap_flush - mostly a non-blocking flush
380  * @mapping:	target address_space
381  *
382  * This is a mostly non-blocking flush.  Not suitable for data-integrity
383  * purposes - I/O may not be started against all dirty pages.
384  */
385 int filemap_flush(struct address_space *mapping)
386 {
387 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390 
391 /**
392  * filemap_range_has_page - check if a page exists in range.
393  * @mapping:           address space within which to check
394  * @start_byte:        offset in bytes where the range starts
395  * @end_byte:          offset in bytes where the range ends (inclusive)
396  *
397  * Find at least one page in the range supplied, usually used to check if
398  * direct writing in this range will trigger a writeback.
399  */
400 bool filemap_range_has_page(struct address_space *mapping,
401 			   loff_t start_byte, loff_t end_byte)
402 {
403 	pgoff_t index = start_byte >> PAGE_SHIFT;
404 	pgoff_t end = end_byte >> PAGE_SHIFT;
405 	struct pagevec pvec;
406 	bool ret;
407 
408 	if (end_byte < start_byte)
409 		return false;
410 
411 	if (mapping->nrpages == 0)
412 		return false;
413 
414 	pagevec_init(&pvec, 0);
415 	if (!pagevec_lookup(&pvec, mapping, index, 1))
416 		return false;
417 	ret = (pvec.pages[0]->index <= end);
418 	pagevec_release(&pvec);
419 	return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422 
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424 				     loff_t start_byte, loff_t end_byte)
425 {
426 	pgoff_t index = start_byte >> PAGE_SHIFT;
427 	pgoff_t end = end_byte >> PAGE_SHIFT;
428 	struct pagevec pvec;
429 	int nr_pages;
430 
431 	if (end_byte < start_byte)
432 		return;
433 
434 	pagevec_init(&pvec, 0);
435 	while ((index <= end) &&
436 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 			PAGECACHE_TAG_WRITEBACK,
438 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 		unsigned i;
440 
441 		for (i = 0; i < nr_pages; i++) {
442 			struct page *page = pvec.pages[i];
443 
444 			/* until radix tree lookup accepts end_index */
445 			if (page->index > end)
446 				continue;
447 
448 			wait_on_page_writeback(page);
449 			ClearPageError(page);
450 		}
451 		pagevec_release(&pvec);
452 		cond_resched();
453 	}
454 }
455 
456 /**
457  * filemap_fdatawait_range - wait for writeback to complete
458  * @mapping:		address space structure to wait for
459  * @start_byte:		offset in bytes where the range starts
460  * @end_byte:		offset in bytes where the range ends (inclusive)
461  *
462  * Walk the list of under-writeback pages of the given address space
463  * in the given range and wait for all of them.  Check error status of
464  * the address space and return it.
465  *
466  * Since the error status of the address space is cleared by this function,
467  * callers are responsible for checking the return value and handling and/or
468  * reporting the error.
469  */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 			    loff_t end_byte)
472 {
473 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
474 	return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477 
478 /**
479  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Unlike filemap_fdatawait(), this function
484  * does not clear error status of the address space.
485  *
486  * Use this function if callers don't handle errors themselves.  Expected
487  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488  * fsfreeze(8)
489  */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492 	loff_t i_size = i_size_read(mapping->host);
493 
494 	if (i_size == 0)
495 		return 0;
496 
497 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
498 	return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501 
502 /**
503  * filemap_fdatawait - wait for all under-writeback pages to complete
504  * @mapping: address space structure to wait for
505  *
506  * Walk the list of under-writeback pages of the given address space
507  * and wait for all of them.  Check error status of the address space
508  * and return it.
509  *
510  * Since the error status of the address space is cleared by this function,
511  * callers are responsible for checking the return value and handling and/or
512  * reporting the error.
513  */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516 	loff_t i_size = i_size_read(mapping->host);
517 
518 	if (i_size == 0)
519 		return 0;
520 
521 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524 
525 int filemap_write_and_wait(struct address_space *mapping)
526 {
527 	int err = 0;
528 
529 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
531 		err = filemap_fdatawrite(mapping);
532 		/*
533 		 * Even if the above returned error, the pages may be
534 		 * written partially (e.g. -ENOSPC), so we wait for it.
535 		 * But the -EIO is special case, it may indicate the worst
536 		 * thing (e.g. bug) happened, so we avoid waiting for it.
537 		 */
538 		if (err != -EIO) {
539 			int err2 = filemap_fdatawait(mapping);
540 			if (!err)
541 				err = err2;
542 		} else {
543 			/* Clear any previously stored errors */
544 			filemap_check_errors(mapping);
545 		}
546 	} else {
547 		err = filemap_check_errors(mapping);
548 	}
549 	return err;
550 }
551 EXPORT_SYMBOL(filemap_write_and_wait);
552 
553 /**
554  * filemap_write_and_wait_range - write out & wait on a file range
555  * @mapping:	the address_space for the pages
556  * @lstart:	offset in bytes where the range starts
557  * @lend:	offset in bytes where the range ends (inclusive)
558  *
559  * Write out and wait upon file offsets lstart->lend, inclusive.
560  *
561  * Note that @lend is inclusive (describes the last byte to be written) so
562  * that this function can be used to write to the very end-of-file (end = -1).
563  */
564 int filemap_write_and_wait_range(struct address_space *mapping,
565 				 loff_t lstart, loff_t lend)
566 {
567 	int err = 0;
568 
569 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
571 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
572 						 WB_SYNC_ALL);
573 		/* See comment of filemap_write_and_wait() */
574 		if (err != -EIO) {
575 			int err2 = filemap_fdatawait_range(mapping,
576 						lstart, lend);
577 			if (!err)
578 				err = err2;
579 		} else {
580 			/* Clear any previously stored errors */
581 			filemap_check_errors(mapping);
582 		}
583 	} else {
584 		err = filemap_check_errors(mapping);
585 	}
586 	return err;
587 }
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
589 
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
591 {
592 	errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593 
594 	trace_filemap_set_wb_err(mapping, eseq);
595 }
596 EXPORT_SYMBOL(__filemap_set_wb_err);
597 
598 /**
599  * file_check_and_advance_wb_err - report wb error (if any) that was previously
600  * 				   and advance wb_err to current one
601  * @file: struct file on which the error is being reported
602  *
603  * When userland calls fsync (or something like nfsd does the equivalent), we
604  * want to report any writeback errors that occurred since the last fsync (or
605  * since the file was opened if there haven't been any).
606  *
607  * Grab the wb_err from the mapping. If it matches what we have in the file,
608  * then just quickly return 0. The file is all caught up.
609  *
610  * If it doesn't match, then take the mapping value, set the "seen" flag in
611  * it and try to swap it into place. If it works, or another task beat us
612  * to it with the new value, then update the f_wb_err and return the error
613  * portion. The error at this point must be reported via proper channels
614  * (a'la fsync, or NFS COMMIT operation, etc.).
615  *
616  * While we handle mapping->wb_err with atomic operations, the f_wb_err
617  * value is protected by the f_lock since we must ensure that it reflects
618  * the latest value swapped in for this file descriptor.
619  */
620 int file_check_and_advance_wb_err(struct file *file)
621 {
622 	int err = 0;
623 	errseq_t old = READ_ONCE(file->f_wb_err);
624 	struct address_space *mapping = file->f_mapping;
625 
626 	/* Locklessly handle the common case where nothing has changed */
627 	if (errseq_check(&mapping->wb_err, old)) {
628 		/* Something changed, must use slow path */
629 		spin_lock(&file->f_lock);
630 		old = file->f_wb_err;
631 		err = errseq_check_and_advance(&mapping->wb_err,
632 						&file->f_wb_err);
633 		trace_file_check_and_advance_wb_err(file, old);
634 		spin_unlock(&file->f_lock);
635 	}
636 	return err;
637 }
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
639 
640 /**
641  * file_write_and_wait_range - write out & wait on a file range
642  * @file:	file pointing to address_space with pages
643  * @lstart:	offset in bytes where the range starts
644  * @lend:	offset in bytes where the range ends (inclusive)
645  *
646  * Write out and wait upon file offsets lstart->lend, inclusive.
647  *
648  * Note that @lend is inclusive (describes the last byte to be written) so
649  * that this function can be used to write to the very end-of-file (end = -1).
650  *
651  * After writing out and waiting on the data, we check and advance the
652  * f_wb_err cursor to the latest value, and return any errors detected there.
653  */
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655 {
656 	int err = 0, err2;
657 	struct address_space *mapping = file->f_mapping;
658 
659 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
661 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
662 						 WB_SYNC_ALL);
663 		/* See comment of filemap_write_and_wait() */
664 		if (err != -EIO)
665 			__filemap_fdatawait_range(mapping, lstart, lend);
666 	}
667 	err2 = file_check_and_advance_wb_err(file);
668 	if (!err)
669 		err = err2;
670 	return err;
671 }
672 EXPORT_SYMBOL(file_write_and_wait_range);
673 
674 /**
675  * replace_page_cache_page - replace a pagecache page with a new one
676  * @old:	page to be replaced
677  * @new:	page to replace with
678  * @gfp_mask:	allocation mode
679  *
680  * This function replaces a page in the pagecache with a new one.  On
681  * success it acquires the pagecache reference for the new page and
682  * drops it for the old page.  Both the old and new pages must be
683  * locked.  This function does not add the new page to the LRU, the
684  * caller must do that.
685  *
686  * The remove + add is atomic.  The only way this function can fail is
687  * memory allocation failure.
688  */
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690 {
691 	int error;
692 
693 	VM_BUG_ON_PAGE(!PageLocked(old), old);
694 	VM_BUG_ON_PAGE(!PageLocked(new), new);
695 	VM_BUG_ON_PAGE(new->mapping, new);
696 
697 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698 	if (!error) {
699 		struct address_space *mapping = old->mapping;
700 		void (*freepage)(struct page *);
701 		unsigned long flags;
702 
703 		pgoff_t offset = old->index;
704 		freepage = mapping->a_ops->freepage;
705 
706 		get_page(new);
707 		new->mapping = mapping;
708 		new->index = offset;
709 
710 		spin_lock_irqsave(&mapping->tree_lock, flags);
711 		__delete_from_page_cache(old, NULL);
712 		error = page_cache_tree_insert(mapping, new, NULL);
713 		BUG_ON(error);
714 
715 		/*
716 		 * hugetlb pages do not participate in page cache accounting.
717 		 */
718 		if (!PageHuge(new))
719 			__inc_node_page_state(new, NR_FILE_PAGES);
720 		if (PageSwapBacked(new))
721 			__inc_node_page_state(new, NR_SHMEM);
722 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 		mem_cgroup_migrate(old, new);
724 		radix_tree_preload_end();
725 		if (freepage)
726 			freepage(old);
727 		put_page(old);
728 	}
729 
730 	return error;
731 }
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
733 
734 static int __add_to_page_cache_locked(struct page *page,
735 				      struct address_space *mapping,
736 				      pgoff_t offset, gfp_t gfp_mask,
737 				      void **shadowp)
738 {
739 	int huge = PageHuge(page);
740 	struct mem_cgroup *memcg;
741 	int error;
742 
743 	VM_BUG_ON_PAGE(!PageLocked(page), page);
744 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745 
746 	if (!huge) {
747 		error = mem_cgroup_try_charge(page, current->mm,
748 					      gfp_mask, &memcg, false);
749 		if (error)
750 			return error;
751 	}
752 
753 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754 	if (error) {
755 		if (!huge)
756 			mem_cgroup_cancel_charge(page, memcg, false);
757 		return error;
758 	}
759 
760 	get_page(page);
761 	page->mapping = mapping;
762 	page->index = offset;
763 
764 	spin_lock_irq(&mapping->tree_lock);
765 	error = page_cache_tree_insert(mapping, page, shadowp);
766 	radix_tree_preload_end();
767 	if (unlikely(error))
768 		goto err_insert;
769 
770 	/* hugetlb pages do not participate in page cache accounting. */
771 	if (!huge)
772 		__inc_node_page_state(page, NR_FILE_PAGES);
773 	spin_unlock_irq(&mapping->tree_lock);
774 	if (!huge)
775 		mem_cgroup_commit_charge(page, memcg, false, false);
776 	trace_mm_filemap_add_to_page_cache(page);
777 	return 0;
778 err_insert:
779 	page->mapping = NULL;
780 	/* Leave page->index set: truncation relies upon it */
781 	spin_unlock_irq(&mapping->tree_lock);
782 	if (!huge)
783 		mem_cgroup_cancel_charge(page, memcg, false);
784 	put_page(page);
785 	return error;
786 }
787 
788 /**
789  * add_to_page_cache_locked - add a locked page to the pagecache
790  * @page:	page to add
791  * @mapping:	the page's address_space
792  * @offset:	page index
793  * @gfp_mask:	page allocation mode
794  *
795  * This function is used to add a page to the pagecache. It must be locked.
796  * This function does not add the page to the LRU.  The caller must do that.
797  */
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 		pgoff_t offset, gfp_t gfp_mask)
800 {
801 	return __add_to_page_cache_locked(page, mapping, offset,
802 					  gfp_mask, NULL);
803 }
804 EXPORT_SYMBOL(add_to_page_cache_locked);
805 
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807 				pgoff_t offset, gfp_t gfp_mask)
808 {
809 	void *shadow = NULL;
810 	int ret;
811 
812 	__SetPageLocked(page);
813 	ret = __add_to_page_cache_locked(page, mapping, offset,
814 					 gfp_mask, &shadow);
815 	if (unlikely(ret))
816 		__ClearPageLocked(page);
817 	else {
818 		/*
819 		 * The page might have been evicted from cache only
820 		 * recently, in which case it should be activated like
821 		 * any other repeatedly accessed page.
822 		 * The exception is pages getting rewritten; evicting other
823 		 * data from the working set, only to cache data that will
824 		 * get overwritten with something else, is a waste of memory.
825 		 */
826 		if (!(gfp_mask & __GFP_WRITE) &&
827 		    shadow && workingset_refault(shadow)) {
828 			SetPageActive(page);
829 			workingset_activation(page);
830 		} else
831 			ClearPageActive(page);
832 		lru_cache_add(page);
833 	}
834 	return ret;
835 }
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837 
838 #ifdef CONFIG_NUMA
839 struct page *__page_cache_alloc(gfp_t gfp)
840 {
841 	int n;
842 	struct page *page;
843 
844 	if (cpuset_do_page_mem_spread()) {
845 		unsigned int cpuset_mems_cookie;
846 		do {
847 			cpuset_mems_cookie = read_mems_allowed_begin();
848 			n = cpuset_mem_spread_node();
849 			page = __alloc_pages_node(n, gfp, 0);
850 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
851 
852 		return page;
853 	}
854 	return alloc_pages(gfp, 0);
855 }
856 EXPORT_SYMBOL(__page_cache_alloc);
857 #endif
858 
859 /*
860  * In order to wait for pages to become available there must be
861  * waitqueues associated with pages. By using a hash table of
862  * waitqueues where the bucket discipline is to maintain all
863  * waiters on the same queue and wake all when any of the pages
864  * become available, and for the woken contexts to check to be
865  * sure the appropriate page became available, this saves space
866  * at a cost of "thundering herd" phenomena during rare hash
867  * collisions.
868  */
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872 
873 static wait_queue_head_t *page_waitqueue(struct page *page)
874 {
875 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 }
877 
878 void __init pagecache_init(void)
879 {
880 	int i;
881 
882 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 		init_waitqueue_head(&page_wait_table[i]);
884 
885 	page_writeback_init();
886 }
887 
888 struct wait_page_key {
889 	struct page *page;
890 	int bit_nr;
891 	int page_match;
892 };
893 
894 struct wait_page_queue {
895 	struct page *page;
896 	int bit_nr;
897 	wait_queue_entry_t wait;
898 };
899 
900 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
901 {
902 	struct wait_page_key *key = arg;
903 	struct wait_page_queue *wait_page
904 		= container_of(wait, struct wait_page_queue, wait);
905 
906 	if (wait_page->page != key->page)
907 	       return 0;
908 	key->page_match = 1;
909 
910 	if (wait_page->bit_nr != key->bit_nr)
911 		return 0;
912 	if (test_bit(key->bit_nr, &key->page->flags))
913 		return 0;
914 
915 	return autoremove_wake_function(wait, mode, sync, key);
916 }
917 
918 static void wake_up_page_bit(struct page *page, int bit_nr)
919 {
920 	wait_queue_head_t *q = page_waitqueue(page);
921 	struct wait_page_key key;
922 	unsigned long flags;
923 
924 	key.page = page;
925 	key.bit_nr = bit_nr;
926 	key.page_match = 0;
927 
928 	spin_lock_irqsave(&q->lock, flags);
929 	__wake_up_locked_key(q, TASK_NORMAL, &key);
930 	/*
931 	 * It is possible for other pages to have collided on the waitqueue
932 	 * hash, so in that case check for a page match. That prevents a long-
933 	 * term waiter
934 	 *
935 	 * It is still possible to miss a case here, when we woke page waiters
936 	 * and removed them from the waitqueue, but there are still other
937 	 * page waiters.
938 	 */
939 	if (!waitqueue_active(q) || !key.page_match) {
940 		ClearPageWaiters(page);
941 		/*
942 		 * It's possible to miss clearing Waiters here, when we woke
943 		 * our page waiters, but the hashed waitqueue has waiters for
944 		 * other pages on it.
945 		 *
946 		 * That's okay, it's a rare case. The next waker will clear it.
947 		 */
948 	}
949 	spin_unlock_irqrestore(&q->lock, flags);
950 }
951 
952 static void wake_up_page(struct page *page, int bit)
953 {
954 	if (!PageWaiters(page))
955 		return;
956 	wake_up_page_bit(page, bit);
957 }
958 
959 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
960 		struct page *page, int bit_nr, int state, bool lock)
961 {
962 	struct wait_page_queue wait_page;
963 	wait_queue_entry_t *wait = &wait_page.wait;
964 	int ret = 0;
965 
966 	init_wait(wait);
967 	wait->func = wake_page_function;
968 	wait_page.page = page;
969 	wait_page.bit_nr = bit_nr;
970 
971 	for (;;) {
972 		spin_lock_irq(&q->lock);
973 
974 		if (likely(list_empty(&wait->entry))) {
975 			if (lock)
976 				__add_wait_queue_entry_tail_exclusive(q, wait);
977 			else
978 				__add_wait_queue(q, wait);
979 			SetPageWaiters(page);
980 		}
981 
982 		set_current_state(state);
983 
984 		spin_unlock_irq(&q->lock);
985 
986 		if (likely(test_bit(bit_nr, &page->flags))) {
987 			io_schedule();
988 			if (unlikely(signal_pending_state(state, current))) {
989 				ret = -EINTR;
990 				break;
991 			}
992 		}
993 
994 		if (lock) {
995 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
996 				break;
997 		} else {
998 			if (!test_bit(bit_nr, &page->flags))
999 				break;
1000 		}
1001 	}
1002 
1003 	finish_wait(q, wait);
1004 
1005 	/*
1006 	 * A signal could leave PageWaiters set. Clearing it here if
1007 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1008 	 * but still fail to catch it in the case of wait hash collision. We
1009 	 * already can fail to clear wait hash collision cases, so don't
1010 	 * bother with signals either.
1011 	 */
1012 
1013 	return ret;
1014 }
1015 
1016 void wait_on_page_bit(struct page *page, int bit_nr)
1017 {
1018 	wait_queue_head_t *q = page_waitqueue(page);
1019 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1020 }
1021 EXPORT_SYMBOL(wait_on_page_bit);
1022 
1023 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1024 {
1025 	wait_queue_head_t *q = page_waitqueue(page);
1026 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1027 }
1028 
1029 /**
1030  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1031  * @page: Page defining the wait queue of interest
1032  * @waiter: Waiter to add to the queue
1033  *
1034  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1035  */
1036 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1037 {
1038 	wait_queue_head_t *q = page_waitqueue(page);
1039 	unsigned long flags;
1040 
1041 	spin_lock_irqsave(&q->lock, flags);
1042 	__add_wait_queue(q, waiter);
1043 	SetPageWaiters(page);
1044 	spin_unlock_irqrestore(&q->lock, flags);
1045 }
1046 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1047 
1048 #ifndef clear_bit_unlock_is_negative_byte
1049 
1050 /*
1051  * PG_waiters is the high bit in the same byte as PG_lock.
1052  *
1053  * On x86 (and on many other architectures), we can clear PG_lock and
1054  * test the sign bit at the same time. But if the architecture does
1055  * not support that special operation, we just do this all by hand
1056  * instead.
1057  *
1058  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1059  * being cleared, but a memory barrier should be unneccssary since it is
1060  * in the same byte as PG_locked.
1061  */
1062 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1063 {
1064 	clear_bit_unlock(nr, mem);
1065 	/* smp_mb__after_atomic(); */
1066 	return test_bit(PG_waiters, mem);
1067 }
1068 
1069 #endif
1070 
1071 /**
1072  * unlock_page - unlock a locked page
1073  * @page: the page
1074  *
1075  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1076  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1077  * mechanism between PageLocked pages and PageWriteback pages is shared.
1078  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1079  *
1080  * Note that this depends on PG_waiters being the sign bit in the byte
1081  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1082  * clear the PG_locked bit and test PG_waiters at the same time fairly
1083  * portably (architectures that do LL/SC can test any bit, while x86 can
1084  * test the sign bit).
1085  */
1086 void unlock_page(struct page *page)
1087 {
1088 	BUILD_BUG_ON(PG_waiters != 7);
1089 	page = compound_head(page);
1090 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1091 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1092 		wake_up_page_bit(page, PG_locked);
1093 }
1094 EXPORT_SYMBOL(unlock_page);
1095 
1096 /**
1097  * end_page_writeback - end writeback against a page
1098  * @page: the page
1099  */
1100 void end_page_writeback(struct page *page)
1101 {
1102 	/*
1103 	 * TestClearPageReclaim could be used here but it is an atomic
1104 	 * operation and overkill in this particular case. Failing to
1105 	 * shuffle a page marked for immediate reclaim is too mild to
1106 	 * justify taking an atomic operation penalty at the end of
1107 	 * ever page writeback.
1108 	 */
1109 	if (PageReclaim(page)) {
1110 		ClearPageReclaim(page);
1111 		rotate_reclaimable_page(page);
1112 	}
1113 
1114 	if (!test_clear_page_writeback(page))
1115 		BUG();
1116 
1117 	smp_mb__after_atomic();
1118 	wake_up_page(page, PG_writeback);
1119 }
1120 EXPORT_SYMBOL(end_page_writeback);
1121 
1122 /*
1123  * After completing I/O on a page, call this routine to update the page
1124  * flags appropriately
1125  */
1126 void page_endio(struct page *page, bool is_write, int err)
1127 {
1128 	if (!is_write) {
1129 		if (!err) {
1130 			SetPageUptodate(page);
1131 		} else {
1132 			ClearPageUptodate(page);
1133 			SetPageError(page);
1134 		}
1135 		unlock_page(page);
1136 	} else {
1137 		if (err) {
1138 			struct address_space *mapping;
1139 
1140 			SetPageError(page);
1141 			mapping = page_mapping(page);
1142 			if (mapping)
1143 				mapping_set_error(mapping, err);
1144 		}
1145 		end_page_writeback(page);
1146 	}
1147 }
1148 EXPORT_SYMBOL_GPL(page_endio);
1149 
1150 /**
1151  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1152  * @__page: the page to lock
1153  */
1154 void __lock_page(struct page *__page)
1155 {
1156 	struct page *page = compound_head(__page);
1157 	wait_queue_head_t *q = page_waitqueue(page);
1158 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1159 }
1160 EXPORT_SYMBOL(__lock_page);
1161 
1162 int __lock_page_killable(struct page *__page)
1163 {
1164 	struct page *page = compound_head(__page);
1165 	wait_queue_head_t *q = page_waitqueue(page);
1166 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1167 }
1168 EXPORT_SYMBOL_GPL(__lock_page_killable);
1169 
1170 /*
1171  * Return values:
1172  * 1 - page is locked; mmap_sem is still held.
1173  * 0 - page is not locked.
1174  *     mmap_sem has been released (up_read()), unless flags had both
1175  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1176  *     which case mmap_sem is still held.
1177  *
1178  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1179  * with the page locked and the mmap_sem unperturbed.
1180  */
1181 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1182 			 unsigned int flags)
1183 {
1184 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1185 		/*
1186 		 * CAUTION! In this case, mmap_sem is not released
1187 		 * even though return 0.
1188 		 */
1189 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1190 			return 0;
1191 
1192 		up_read(&mm->mmap_sem);
1193 		if (flags & FAULT_FLAG_KILLABLE)
1194 			wait_on_page_locked_killable(page);
1195 		else
1196 			wait_on_page_locked(page);
1197 		return 0;
1198 	} else {
1199 		if (flags & FAULT_FLAG_KILLABLE) {
1200 			int ret;
1201 
1202 			ret = __lock_page_killable(page);
1203 			if (ret) {
1204 				up_read(&mm->mmap_sem);
1205 				return 0;
1206 			}
1207 		} else
1208 			__lock_page(page);
1209 		return 1;
1210 	}
1211 }
1212 
1213 /**
1214  * page_cache_next_hole - find the next hole (not-present entry)
1215  * @mapping: mapping
1216  * @index: index
1217  * @max_scan: maximum range to search
1218  *
1219  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1220  * lowest indexed hole.
1221  *
1222  * Returns: the index of the hole if found, otherwise returns an index
1223  * outside of the set specified (in which case 'return - index >=
1224  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1225  * be returned.
1226  *
1227  * page_cache_next_hole may be called under rcu_read_lock. However,
1228  * like radix_tree_gang_lookup, this will not atomically search a
1229  * snapshot of the tree at a single point in time. For example, if a
1230  * hole is created at index 5, then subsequently a hole is created at
1231  * index 10, page_cache_next_hole covering both indexes may return 10
1232  * if called under rcu_read_lock.
1233  */
1234 pgoff_t page_cache_next_hole(struct address_space *mapping,
1235 			     pgoff_t index, unsigned long max_scan)
1236 {
1237 	unsigned long i;
1238 
1239 	for (i = 0; i < max_scan; i++) {
1240 		struct page *page;
1241 
1242 		page = radix_tree_lookup(&mapping->page_tree, index);
1243 		if (!page || radix_tree_exceptional_entry(page))
1244 			break;
1245 		index++;
1246 		if (index == 0)
1247 			break;
1248 	}
1249 
1250 	return index;
1251 }
1252 EXPORT_SYMBOL(page_cache_next_hole);
1253 
1254 /**
1255  * page_cache_prev_hole - find the prev hole (not-present entry)
1256  * @mapping: mapping
1257  * @index: index
1258  * @max_scan: maximum range to search
1259  *
1260  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1261  * the first hole.
1262  *
1263  * Returns: the index of the hole if found, otherwise returns an index
1264  * outside of the set specified (in which case 'index - return >=
1265  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1266  * will be returned.
1267  *
1268  * page_cache_prev_hole may be called under rcu_read_lock. However,
1269  * like radix_tree_gang_lookup, this will not atomically search a
1270  * snapshot of the tree at a single point in time. For example, if a
1271  * hole is created at index 10, then subsequently a hole is created at
1272  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1273  * called under rcu_read_lock.
1274  */
1275 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1276 			     pgoff_t index, unsigned long max_scan)
1277 {
1278 	unsigned long i;
1279 
1280 	for (i = 0; i < max_scan; i++) {
1281 		struct page *page;
1282 
1283 		page = radix_tree_lookup(&mapping->page_tree, index);
1284 		if (!page || radix_tree_exceptional_entry(page))
1285 			break;
1286 		index--;
1287 		if (index == ULONG_MAX)
1288 			break;
1289 	}
1290 
1291 	return index;
1292 }
1293 EXPORT_SYMBOL(page_cache_prev_hole);
1294 
1295 /**
1296  * find_get_entry - find and get a page cache entry
1297  * @mapping: the address_space to search
1298  * @offset: the page cache index
1299  *
1300  * Looks up the page cache slot at @mapping & @offset.  If there is a
1301  * page cache page, it is returned with an increased refcount.
1302  *
1303  * If the slot holds a shadow entry of a previously evicted page, or a
1304  * swap entry from shmem/tmpfs, it is returned.
1305  *
1306  * Otherwise, %NULL is returned.
1307  */
1308 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1309 {
1310 	void **pagep;
1311 	struct page *head, *page;
1312 
1313 	rcu_read_lock();
1314 repeat:
1315 	page = NULL;
1316 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1317 	if (pagep) {
1318 		page = radix_tree_deref_slot(pagep);
1319 		if (unlikely(!page))
1320 			goto out;
1321 		if (radix_tree_exception(page)) {
1322 			if (radix_tree_deref_retry(page))
1323 				goto repeat;
1324 			/*
1325 			 * A shadow entry of a recently evicted page,
1326 			 * or a swap entry from shmem/tmpfs.  Return
1327 			 * it without attempting to raise page count.
1328 			 */
1329 			goto out;
1330 		}
1331 
1332 		head = compound_head(page);
1333 		if (!page_cache_get_speculative(head))
1334 			goto repeat;
1335 
1336 		/* The page was split under us? */
1337 		if (compound_head(page) != head) {
1338 			put_page(head);
1339 			goto repeat;
1340 		}
1341 
1342 		/*
1343 		 * Has the page moved?
1344 		 * This is part of the lockless pagecache protocol. See
1345 		 * include/linux/pagemap.h for details.
1346 		 */
1347 		if (unlikely(page != *pagep)) {
1348 			put_page(head);
1349 			goto repeat;
1350 		}
1351 	}
1352 out:
1353 	rcu_read_unlock();
1354 
1355 	return page;
1356 }
1357 EXPORT_SYMBOL(find_get_entry);
1358 
1359 /**
1360  * find_lock_entry - locate, pin and lock a page cache entry
1361  * @mapping: the address_space to search
1362  * @offset: the page cache index
1363  *
1364  * Looks up the page cache slot at @mapping & @offset.  If there is a
1365  * page cache page, it is returned locked and with an increased
1366  * refcount.
1367  *
1368  * If the slot holds a shadow entry of a previously evicted page, or a
1369  * swap entry from shmem/tmpfs, it is returned.
1370  *
1371  * Otherwise, %NULL is returned.
1372  *
1373  * find_lock_entry() may sleep.
1374  */
1375 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1376 {
1377 	struct page *page;
1378 
1379 repeat:
1380 	page = find_get_entry(mapping, offset);
1381 	if (page && !radix_tree_exception(page)) {
1382 		lock_page(page);
1383 		/* Has the page been truncated? */
1384 		if (unlikely(page_mapping(page) != mapping)) {
1385 			unlock_page(page);
1386 			put_page(page);
1387 			goto repeat;
1388 		}
1389 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1390 	}
1391 	return page;
1392 }
1393 EXPORT_SYMBOL(find_lock_entry);
1394 
1395 /**
1396  * pagecache_get_page - find and get a page reference
1397  * @mapping: the address_space to search
1398  * @offset: the page index
1399  * @fgp_flags: PCG flags
1400  * @gfp_mask: gfp mask to use for the page cache data page allocation
1401  *
1402  * Looks up the page cache slot at @mapping & @offset.
1403  *
1404  * PCG flags modify how the page is returned.
1405  *
1406  * @fgp_flags can be:
1407  *
1408  * - FGP_ACCESSED: the page will be marked accessed
1409  * - FGP_LOCK: Page is return locked
1410  * - FGP_CREAT: If page is not present then a new page is allocated using
1411  *   @gfp_mask and added to the page cache and the VM's LRU
1412  *   list. The page is returned locked and with an increased
1413  *   refcount. Otherwise, NULL is returned.
1414  *
1415  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1416  * if the GFP flags specified for FGP_CREAT are atomic.
1417  *
1418  * If there is a page cache page, it is returned with an increased refcount.
1419  */
1420 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1421 	int fgp_flags, gfp_t gfp_mask)
1422 {
1423 	struct page *page;
1424 
1425 repeat:
1426 	page = find_get_entry(mapping, offset);
1427 	if (radix_tree_exceptional_entry(page))
1428 		page = NULL;
1429 	if (!page)
1430 		goto no_page;
1431 
1432 	if (fgp_flags & FGP_LOCK) {
1433 		if (fgp_flags & FGP_NOWAIT) {
1434 			if (!trylock_page(page)) {
1435 				put_page(page);
1436 				return NULL;
1437 			}
1438 		} else {
1439 			lock_page(page);
1440 		}
1441 
1442 		/* Has the page been truncated? */
1443 		if (unlikely(page->mapping != mapping)) {
1444 			unlock_page(page);
1445 			put_page(page);
1446 			goto repeat;
1447 		}
1448 		VM_BUG_ON_PAGE(page->index != offset, page);
1449 	}
1450 
1451 	if (page && (fgp_flags & FGP_ACCESSED))
1452 		mark_page_accessed(page);
1453 
1454 no_page:
1455 	if (!page && (fgp_flags & FGP_CREAT)) {
1456 		int err;
1457 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1458 			gfp_mask |= __GFP_WRITE;
1459 		if (fgp_flags & FGP_NOFS)
1460 			gfp_mask &= ~__GFP_FS;
1461 
1462 		page = __page_cache_alloc(gfp_mask);
1463 		if (!page)
1464 			return NULL;
1465 
1466 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1467 			fgp_flags |= FGP_LOCK;
1468 
1469 		/* Init accessed so avoid atomic mark_page_accessed later */
1470 		if (fgp_flags & FGP_ACCESSED)
1471 			__SetPageReferenced(page);
1472 
1473 		err = add_to_page_cache_lru(page, mapping, offset,
1474 				gfp_mask & GFP_RECLAIM_MASK);
1475 		if (unlikely(err)) {
1476 			put_page(page);
1477 			page = NULL;
1478 			if (err == -EEXIST)
1479 				goto repeat;
1480 		}
1481 	}
1482 
1483 	return page;
1484 }
1485 EXPORT_SYMBOL(pagecache_get_page);
1486 
1487 /**
1488  * find_get_entries - gang pagecache lookup
1489  * @mapping:	The address_space to search
1490  * @start:	The starting page cache index
1491  * @nr_entries:	The maximum number of entries
1492  * @entries:	Where the resulting entries are placed
1493  * @indices:	The cache indices corresponding to the entries in @entries
1494  *
1495  * find_get_entries() will search for and return a group of up to
1496  * @nr_entries entries in the mapping.  The entries are placed at
1497  * @entries.  find_get_entries() takes a reference against any actual
1498  * pages it returns.
1499  *
1500  * The search returns a group of mapping-contiguous page cache entries
1501  * with ascending indexes.  There may be holes in the indices due to
1502  * not-present pages.
1503  *
1504  * Any shadow entries of evicted pages, or swap entries from
1505  * shmem/tmpfs, are included in the returned array.
1506  *
1507  * find_get_entries() returns the number of pages and shadow entries
1508  * which were found.
1509  */
1510 unsigned find_get_entries(struct address_space *mapping,
1511 			  pgoff_t start, unsigned int nr_entries,
1512 			  struct page **entries, pgoff_t *indices)
1513 {
1514 	void **slot;
1515 	unsigned int ret = 0;
1516 	struct radix_tree_iter iter;
1517 
1518 	if (!nr_entries)
1519 		return 0;
1520 
1521 	rcu_read_lock();
1522 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1523 		struct page *head, *page;
1524 repeat:
1525 		page = radix_tree_deref_slot(slot);
1526 		if (unlikely(!page))
1527 			continue;
1528 		if (radix_tree_exception(page)) {
1529 			if (radix_tree_deref_retry(page)) {
1530 				slot = radix_tree_iter_retry(&iter);
1531 				continue;
1532 			}
1533 			/*
1534 			 * A shadow entry of a recently evicted page, a swap
1535 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1536 			 * without attempting to raise page count.
1537 			 */
1538 			goto export;
1539 		}
1540 
1541 		head = compound_head(page);
1542 		if (!page_cache_get_speculative(head))
1543 			goto repeat;
1544 
1545 		/* The page was split under us? */
1546 		if (compound_head(page) != head) {
1547 			put_page(head);
1548 			goto repeat;
1549 		}
1550 
1551 		/* Has the page moved? */
1552 		if (unlikely(page != *slot)) {
1553 			put_page(head);
1554 			goto repeat;
1555 		}
1556 export:
1557 		indices[ret] = iter.index;
1558 		entries[ret] = page;
1559 		if (++ret == nr_entries)
1560 			break;
1561 	}
1562 	rcu_read_unlock();
1563 	return ret;
1564 }
1565 
1566 /**
1567  * find_get_pages - gang pagecache lookup
1568  * @mapping:	The address_space to search
1569  * @start:	The starting page index
1570  * @nr_pages:	The maximum number of pages
1571  * @pages:	Where the resulting pages are placed
1572  *
1573  * find_get_pages() will search for and return a group of up to
1574  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1575  * find_get_pages() takes a reference against the returned pages.
1576  *
1577  * The search returns a group of mapping-contiguous pages with ascending
1578  * indexes.  There may be holes in the indices due to not-present pages.
1579  *
1580  * find_get_pages() returns the number of pages which were found.
1581  */
1582 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1583 			    unsigned int nr_pages, struct page **pages)
1584 {
1585 	struct radix_tree_iter iter;
1586 	void **slot;
1587 	unsigned ret = 0;
1588 
1589 	if (unlikely(!nr_pages))
1590 		return 0;
1591 
1592 	rcu_read_lock();
1593 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1594 		struct page *head, *page;
1595 repeat:
1596 		page = radix_tree_deref_slot(slot);
1597 		if (unlikely(!page))
1598 			continue;
1599 
1600 		if (radix_tree_exception(page)) {
1601 			if (radix_tree_deref_retry(page)) {
1602 				slot = radix_tree_iter_retry(&iter);
1603 				continue;
1604 			}
1605 			/*
1606 			 * A shadow entry of a recently evicted page,
1607 			 * or a swap entry from shmem/tmpfs.  Skip
1608 			 * over it.
1609 			 */
1610 			continue;
1611 		}
1612 
1613 		head = compound_head(page);
1614 		if (!page_cache_get_speculative(head))
1615 			goto repeat;
1616 
1617 		/* The page was split under us? */
1618 		if (compound_head(page) != head) {
1619 			put_page(head);
1620 			goto repeat;
1621 		}
1622 
1623 		/* Has the page moved? */
1624 		if (unlikely(page != *slot)) {
1625 			put_page(head);
1626 			goto repeat;
1627 		}
1628 
1629 		pages[ret] = page;
1630 		if (++ret == nr_pages)
1631 			break;
1632 	}
1633 
1634 	rcu_read_unlock();
1635 	return ret;
1636 }
1637 
1638 /**
1639  * find_get_pages_contig - gang contiguous pagecache lookup
1640  * @mapping:	The address_space to search
1641  * @index:	The starting page index
1642  * @nr_pages:	The maximum number of pages
1643  * @pages:	Where the resulting pages are placed
1644  *
1645  * find_get_pages_contig() works exactly like find_get_pages(), except
1646  * that the returned number of pages are guaranteed to be contiguous.
1647  *
1648  * find_get_pages_contig() returns the number of pages which were found.
1649  */
1650 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1651 			       unsigned int nr_pages, struct page **pages)
1652 {
1653 	struct radix_tree_iter iter;
1654 	void **slot;
1655 	unsigned int ret = 0;
1656 
1657 	if (unlikely(!nr_pages))
1658 		return 0;
1659 
1660 	rcu_read_lock();
1661 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1662 		struct page *head, *page;
1663 repeat:
1664 		page = radix_tree_deref_slot(slot);
1665 		/* The hole, there no reason to continue */
1666 		if (unlikely(!page))
1667 			break;
1668 
1669 		if (radix_tree_exception(page)) {
1670 			if (radix_tree_deref_retry(page)) {
1671 				slot = radix_tree_iter_retry(&iter);
1672 				continue;
1673 			}
1674 			/*
1675 			 * A shadow entry of a recently evicted page,
1676 			 * or a swap entry from shmem/tmpfs.  Stop
1677 			 * looking for contiguous pages.
1678 			 */
1679 			break;
1680 		}
1681 
1682 		head = compound_head(page);
1683 		if (!page_cache_get_speculative(head))
1684 			goto repeat;
1685 
1686 		/* The page was split under us? */
1687 		if (compound_head(page) != head) {
1688 			put_page(head);
1689 			goto repeat;
1690 		}
1691 
1692 		/* Has the page moved? */
1693 		if (unlikely(page != *slot)) {
1694 			put_page(head);
1695 			goto repeat;
1696 		}
1697 
1698 		/*
1699 		 * must check mapping and index after taking the ref.
1700 		 * otherwise we can get both false positives and false
1701 		 * negatives, which is just confusing to the caller.
1702 		 */
1703 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1704 			put_page(page);
1705 			break;
1706 		}
1707 
1708 		pages[ret] = page;
1709 		if (++ret == nr_pages)
1710 			break;
1711 	}
1712 	rcu_read_unlock();
1713 	return ret;
1714 }
1715 EXPORT_SYMBOL(find_get_pages_contig);
1716 
1717 /**
1718  * find_get_pages_tag - find and return pages that match @tag
1719  * @mapping:	the address_space to search
1720  * @index:	the starting page index
1721  * @tag:	the tag index
1722  * @nr_pages:	the maximum number of pages
1723  * @pages:	where the resulting pages are placed
1724  *
1725  * Like find_get_pages, except we only return pages which are tagged with
1726  * @tag.   We update @index to index the next page for the traversal.
1727  */
1728 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1729 			int tag, unsigned int nr_pages, struct page **pages)
1730 {
1731 	struct radix_tree_iter iter;
1732 	void **slot;
1733 	unsigned ret = 0;
1734 
1735 	if (unlikely(!nr_pages))
1736 		return 0;
1737 
1738 	rcu_read_lock();
1739 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1740 				   &iter, *index, tag) {
1741 		struct page *head, *page;
1742 repeat:
1743 		page = radix_tree_deref_slot(slot);
1744 		if (unlikely(!page))
1745 			continue;
1746 
1747 		if (radix_tree_exception(page)) {
1748 			if (radix_tree_deref_retry(page)) {
1749 				slot = radix_tree_iter_retry(&iter);
1750 				continue;
1751 			}
1752 			/*
1753 			 * A shadow entry of a recently evicted page.
1754 			 *
1755 			 * Those entries should never be tagged, but
1756 			 * this tree walk is lockless and the tags are
1757 			 * looked up in bulk, one radix tree node at a
1758 			 * time, so there is a sizable window for page
1759 			 * reclaim to evict a page we saw tagged.
1760 			 *
1761 			 * Skip over it.
1762 			 */
1763 			continue;
1764 		}
1765 
1766 		head = compound_head(page);
1767 		if (!page_cache_get_speculative(head))
1768 			goto repeat;
1769 
1770 		/* The page was split under us? */
1771 		if (compound_head(page) != head) {
1772 			put_page(head);
1773 			goto repeat;
1774 		}
1775 
1776 		/* Has the page moved? */
1777 		if (unlikely(page != *slot)) {
1778 			put_page(head);
1779 			goto repeat;
1780 		}
1781 
1782 		pages[ret] = page;
1783 		if (++ret == nr_pages)
1784 			break;
1785 	}
1786 
1787 	rcu_read_unlock();
1788 
1789 	if (ret)
1790 		*index = pages[ret - 1]->index + 1;
1791 
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL(find_get_pages_tag);
1795 
1796 /**
1797  * find_get_entries_tag - find and return entries that match @tag
1798  * @mapping:	the address_space to search
1799  * @start:	the starting page cache index
1800  * @tag:	the tag index
1801  * @nr_entries:	the maximum number of entries
1802  * @entries:	where the resulting entries are placed
1803  * @indices:	the cache indices corresponding to the entries in @entries
1804  *
1805  * Like find_get_entries, except we only return entries which are tagged with
1806  * @tag.
1807  */
1808 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1809 			int tag, unsigned int nr_entries,
1810 			struct page **entries, pgoff_t *indices)
1811 {
1812 	void **slot;
1813 	unsigned int ret = 0;
1814 	struct radix_tree_iter iter;
1815 
1816 	if (!nr_entries)
1817 		return 0;
1818 
1819 	rcu_read_lock();
1820 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1821 				   &iter, start, tag) {
1822 		struct page *head, *page;
1823 repeat:
1824 		page = radix_tree_deref_slot(slot);
1825 		if (unlikely(!page))
1826 			continue;
1827 		if (radix_tree_exception(page)) {
1828 			if (radix_tree_deref_retry(page)) {
1829 				slot = radix_tree_iter_retry(&iter);
1830 				continue;
1831 			}
1832 
1833 			/*
1834 			 * A shadow entry of a recently evicted page, a swap
1835 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1836 			 * without attempting to raise page count.
1837 			 */
1838 			goto export;
1839 		}
1840 
1841 		head = compound_head(page);
1842 		if (!page_cache_get_speculative(head))
1843 			goto repeat;
1844 
1845 		/* The page was split under us? */
1846 		if (compound_head(page) != head) {
1847 			put_page(head);
1848 			goto repeat;
1849 		}
1850 
1851 		/* Has the page moved? */
1852 		if (unlikely(page != *slot)) {
1853 			put_page(head);
1854 			goto repeat;
1855 		}
1856 export:
1857 		indices[ret] = iter.index;
1858 		entries[ret] = page;
1859 		if (++ret == nr_entries)
1860 			break;
1861 	}
1862 	rcu_read_unlock();
1863 	return ret;
1864 }
1865 EXPORT_SYMBOL(find_get_entries_tag);
1866 
1867 /*
1868  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1869  * a _large_ part of the i/o request. Imagine the worst scenario:
1870  *
1871  *      ---R__________________________________________B__________
1872  *         ^ reading here                             ^ bad block(assume 4k)
1873  *
1874  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1875  * => failing the whole request => read(R) => read(R+1) =>
1876  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1877  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1878  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1879  *
1880  * It is going insane. Fix it by quickly scaling down the readahead size.
1881  */
1882 static void shrink_readahead_size_eio(struct file *filp,
1883 					struct file_ra_state *ra)
1884 {
1885 	ra->ra_pages /= 4;
1886 }
1887 
1888 /**
1889  * do_generic_file_read - generic file read routine
1890  * @filp:	the file to read
1891  * @ppos:	current file position
1892  * @iter:	data destination
1893  * @written:	already copied
1894  *
1895  * This is a generic file read routine, and uses the
1896  * mapping->a_ops->readpage() function for the actual low-level stuff.
1897  *
1898  * This is really ugly. But the goto's actually try to clarify some
1899  * of the logic when it comes to error handling etc.
1900  */
1901 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1902 		struct iov_iter *iter, ssize_t written)
1903 {
1904 	struct address_space *mapping = filp->f_mapping;
1905 	struct inode *inode = mapping->host;
1906 	struct file_ra_state *ra = &filp->f_ra;
1907 	pgoff_t index;
1908 	pgoff_t last_index;
1909 	pgoff_t prev_index;
1910 	unsigned long offset;      /* offset into pagecache page */
1911 	unsigned int prev_offset;
1912 	int error = 0;
1913 
1914 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1915 		return 0;
1916 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1917 
1918 	index = *ppos >> PAGE_SHIFT;
1919 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1920 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1921 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1922 	offset = *ppos & ~PAGE_MASK;
1923 
1924 	for (;;) {
1925 		struct page *page;
1926 		pgoff_t end_index;
1927 		loff_t isize;
1928 		unsigned long nr, ret;
1929 
1930 		cond_resched();
1931 find_page:
1932 		if (fatal_signal_pending(current)) {
1933 			error = -EINTR;
1934 			goto out;
1935 		}
1936 
1937 		page = find_get_page(mapping, index);
1938 		if (!page) {
1939 			page_cache_sync_readahead(mapping,
1940 					ra, filp,
1941 					index, last_index - index);
1942 			page = find_get_page(mapping, index);
1943 			if (unlikely(page == NULL))
1944 				goto no_cached_page;
1945 		}
1946 		if (PageReadahead(page)) {
1947 			page_cache_async_readahead(mapping,
1948 					ra, filp, page,
1949 					index, last_index - index);
1950 		}
1951 		if (!PageUptodate(page)) {
1952 			/*
1953 			 * See comment in do_read_cache_page on why
1954 			 * wait_on_page_locked is used to avoid unnecessarily
1955 			 * serialisations and why it's safe.
1956 			 */
1957 			error = wait_on_page_locked_killable(page);
1958 			if (unlikely(error))
1959 				goto readpage_error;
1960 			if (PageUptodate(page))
1961 				goto page_ok;
1962 
1963 			if (inode->i_blkbits == PAGE_SHIFT ||
1964 					!mapping->a_ops->is_partially_uptodate)
1965 				goto page_not_up_to_date;
1966 			/* pipes can't handle partially uptodate pages */
1967 			if (unlikely(iter->type & ITER_PIPE))
1968 				goto page_not_up_to_date;
1969 			if (!trylock_page(page))
1970 				goto page_not_up_to_date;
1971 			/* Did it get truncated before we got the lock? */
1972 			if (!page->mapping)
1973 				goto page_not_up_to_date_locked;
1974 			if (!mapping->a_ops->is_partially_uptodate(page,
1975 							offset, iter->count))
1976 				goto page_not_up_to_date_locked;
1977 			unlock_page(page);
1978 		}
1979 page_ok:
1980 		/*
1981 		 * i_size must be checked after we know the page is Uptodate.
1982 		 *
1983 		 * Checking i_size after the check allows us to calculate
1984 		 * the correct value for "nr", which means the zero-filled
1985 		 * part of the page is not copied back to userspace (unless
1986 		 * another truncate extends the file - this is desired though).
1987 		 */
1988 
1989 		isize = i_size_read(inode);
1990 		end_index = (isize - 1) >> PAGE_SHIFT;
1991 		if (unlikely(!isize || index > end_index)) {
1992 			put_page(page);
1993 			goto out;
1994 		}
1995 
1996 		/* nr is the maximum number of bytes to copy from this page */
1997 		nr = PAGE_SIZE;
1998 		if (index == end_index) {
1999 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2000 			if (nr <= offset) {
2001 				put_page(page);
2002 				goto out;
2003 			}
2004 		}
2005 		nr = nr - offset;
2006 
2007 		/* If users can be writing to this page using arbitrary
2008 		 * virtual addresses, take care about potential aliasing
2009 		 * before reading the page on the kernel side.
2010 		 */
2011 		if (mapping_writably_mapped(mapping))
2012 			flush_dcache_page(page);
2013 
2014 		/*
2015 		 * When a sequential read accesses a page several times,
2016 		 * only mark it as accessed the first time.
2017 		 */
2018 		if (prev_index != index || offset != prev_offset)
2019 			mark_page_accessed(page);
2020 		prev_index = index;
2021 
2022 		/*
2023 		 * Ok, we have the page, and it's up-to-date, so
2024 		 * now we can copy it to user space...
2025 		 */
2026 
2027 		ret = copy_page_to_iter(page, offset, nr, iter);
2028 		offset += ret;
2029 		index += offset >> PAGE_SHIFT;
2030 		offset &= ~PAGE_MASK;
2031 		prev_offset = offset;
2032 
2033 		put_page(page);
2034 		written += ret;
2035 		if (!iov_iter_count(iter))
2036 			goto out;
2037 		if (ret < nr) {
2038 			error = -EFAULT;
2039 			goto out;
2040 		}
2041 		continue;
2042 
2043 page_not_up_to_date:
2044 		/* Get exclusive access to the page ... */
2045 		error = lock_page_killable(page);
2046 		if (unlikely(error))
2047 			goto readpage_error;
2048 
2049 page_not_up_to_date_locked:
2050 		/* Did it get truncated before we got the lock? */
2051 		if (!page->mapping) {
2052 			unlock_page(page);
2053 			put_page(page);
2054 			continue;
2055 		}
2056 
2057 		/* Did somebody else fill it already? */
2058 		if (PageUptodate(page)) {
2059 			unlock_page(page);
2060 			goto page_ok;
2061 		}
2062 
2063 readpage:
2064 		/*
2065 		 * A previous I/O error may have been due to temporary
2066 		 * failures, eg. multipath errors.
2067 		 * PG_error will be set again if readpage fails.
2068 		 */
2069 		ClearPageError(page);
2070 		/* Start the actual read. The read will unlock the page. */
2071 		error = mapping->a_ops->readpage(filp, page);
2072 
2073 		if (unlikely(error)) {
2074 			if (error == AOP_TRUNCATED_PAGE) {
2075 				put_page(page);
2076 				error = 0;
2077 				goto find_page;
2078 			}
2079 			goto readpage_error;
2080 		}
2081 
2082 		if (!PageUptodate(page)) {
2083 			error = lock_page_killable(page);
2084 			if (unlikely(error))
2085 				goto readpage_error;
2086 			if (!PageUptodate(page)) {
2087 				if (page->mapping == NULL) {
2088 					/*
2089 					 * invalidate_mapping_pages got it
2090 					 */
2091 					unlock_page(page);
2092 					put_page(page);
2093 					goto find_page;
2094 				}
2095 				unlock_page(page);
2096 				shrink_readahead_size_eio(filp, ra);
2097 				error = -EIO;
2098 				goto readpage_error;
2099 			}
2100 			unlock_page(page);
2101 		}
2102 
2103 		goto page_ok;
2104 
2105 readpage_error:
2106 		/* UHHUH! A synchronous read error occurred. Report it */
2107 		put_page(page);
2108 		goto out;
2109 
2110 no_cached_page:
2111 		/*
2112 		 * Ok, it wasn't cached, so we need to create a new
2113 		 * page..
2114 		 */
2115 		page = page_cache_alloc_cold(mapping);
2116 		if (!page) {
2117 			error = -ENOMEM;
2118 			goto out;
2119 		}
2120 		error = add_to_page_cache_lru(page, mapping, index,
2121 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2122 		if (error) {
2123 			put_page(page);
2124 			if (error == -EEXIST) {
2125 				error = 0;
2126 				goto find_page;
2127 			}
2128 			goto out;
2129 		}
2130 		goto readpage;
2131 	}
2132 
2133 out:
2134 	ra->prev_pos = prev_index;
2135 	ra->prev_pos <<= PAGE_SHIFT;
2136 	ra->prev_pos |= prev_offset;
2137 
2138 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2139 	file_accessed(filp);
2140 	return written ? written : error;
2141 }
2142 
2143 /**
2144  * generic_file_read_iter - generic filesystem read routine
2145  * @iocb:	kernel I/O control block
2146  * @iter:	destination for the data read
2147  *
2148  * This is the "read_iter()" routine for all filesystems
2149  * that can use the page cache directly.
2150  */
2151 ssize_t
2152 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2153 {
2154 	struct file *file = iocb->ki_filp;
2155 	ssize_t retval = 0;
2156 	size_t count = iov_iter_count(iter);
2157 
2158 	if (!count)
2159 		goto out; /* skip atime */
2160 
2161 	if (iocb->ki_flags & IOCB_DIRECT) {
2162 		struct address_space *mapping = file->f_mapping;
2163 		struct inode *inode = mapping->host;
2164 		loff_t size;
2165 
2166 		size = i_size_read(inode);
2167 		if (iocb->ki_flags & IOCB_NOWAIT) {
2168 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2169 						   iocb->ki_pos + count - 1))
2170 				return -EAGAIN;
2171 		} else {
2172 			retval = filemap_write_and_wait_range(mapping,
2173 						iocb->ki_pos,
2174 					        iocb->ki_pos + count - 1);
2175 			if (retval < 0)
2176 				goto out;
2177 		}
2178 
2179 		file_accessed(file);
2180 
2181 		retval = mapping->a_ops->direct_IO(iocb, iter);
2182 		if (retval >= 0) {
2183 			iocb->ki_pos += retval;
2184 			count -= retval;
2185 		}
2186 		iov_iter_revert(iter, count - iov_iter_count(iter));
2187 
2188 		/*
2189 		 * Btrfs can have a short DIO read if we encounter
2190 		 * compressed extents, so if there was an error, or if
2191 		 * we've already read everything we wanted to, or if
2192 		 * there was a short read because we hit EOF, go ahead
2193 		 * and return.  Otherwise fallthrough to buffered io for
2194 		 * the rest of the read.  Buffered reads will not work for
2195 		 * DAX files, so don't bother trying.
2196 		 */
2197 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2198 		    IS_DAX(inode))
2199 			goto out;
2200 	}
2201 
2202 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2203 out:
2204 	return retval;
2205 }
2206 EXPORT_SYMBOL(generic_file_read_iter);
2207 
2208 #ifdef CONFIG_MMU
2209 /**
2210  * page_cache_read - adds requested page to the page cache if not already there
2211  * @file:	file to read
2212  * @offset:	page index
2213  * @gfp_mask:	memory allocation flags
2214  *
2215  * This adds the requested page to the page cache if it isn't already there,
2216  * and schedules an I/O to read in its contents from disk.
2217  */
2218 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2219 {
2220 	struct address_space *mapping = file->f_mapping;
2221 	struct page *page;
2222 	int ret;
2223 
2224 	do {
2225 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2226 		if (!page)
2227 			return -ENOMEM;
2228 
2229 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2230 		if (ret == 0)
2231 			ret = mapping->a_ops->readpage(file, page);
2232 		else if (ret == -EEXIST)
2233 			ret = 0; /* losing race to add is OK */
2234 
2235 		put_page(page);
2236 
2237 	} while (ret == AOP_TRUNCATED_PAGE);
2238 
2239 	return ret;
2240 }
2241 
2242 #define MMAP_LOTSAMISS  (100)
2243 
2244 /*
2245  * Synchronous readahead happens when we don't even find
2246  * a page in the page cache at all.
2247  */
2248 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2249 				   struct file_ra_state *ra,
2250 				   struct file *file,
2251 				   pgoff_t offset)
2252 {
2253 	struct address_space *mapping = file->f_mapping;
2254 
2255 	/* If we don't want any read-ahead, don't bother */
2256 	if (vma->vm_flags & VM_RAND_READ)
2257 		return;
2258 	if (!ra->ra_pages)
2259 		return;
2260 
2261 	if (vma->vm_flags & VM_SEQ_READ) {
2262 		page_cache_sync_readahead(mapping, ra, file, offset,
2263 					  ra->ra_pages);
2264 		return;
2265 	}
2266 
2267 	/* Avoid banging the cache line if not needed */
2268 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2269 		ra->mmap_miss++;
2270 
2271 	/*
2272 	 * Do we miss much more than hit in this file? If so,
2273 	 * stop bothering with read-ahead. It will only hurt.
2274 	 */
2275 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2276 		return;
2277 
2278 	/*
2279 	 * mmap read-around
2280 	 */
2281 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2282 	ra->size = ra->ra_pages;
2283 	ra->async_size = ra->ra_pages / 4;
2284 	ra_submit(ra, mapping, file);
2285 }
2286 
2287 /*
2288  * Asynchronous readahead happens when we find the page and PG_readahead,
2289  * so we want to possibly extend the readahead further..
2290  */
2291 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2292 				    struct file_ra_state *ra,
2293 				    struct file *file,
2294 				    struct page *page,
2295 				    pgoff_t offset)
2296 {
2297 	struct address_space *mapping = file->f_mapping;
2298 
2299 	/* If we don't want any read-ahead, don't bother */
2300 	if (vma->vm_flags & VM_RAND_READ)
2301 		return;
2302 	if (ra->mmap_miss > 0)
2303 		ra->mmap_miss--;
2304 	if (PageReadahead(page))
2305 		page_cache_async_readahead(mapping, ra, file,
2306 					   page, offset, ra->ra_pages);
2307 }
2308 
2309 /**
2310  * filemap_fault - read in file data for page fault handling
2311  * @vmf:	struct vm_fault containing details of the fault
2312  *
2313  * filemap_fault() is invoked via the vma operations vector for a
2314  * mapped memory region to read in file data during a page fault.
2315  *
2316  * The goto's are kind of ugly, but this streamlines the normal case of having
2317  * it in the page cache, and handles the special cases reasonably without
2318  * having a lot of duplicated code.
2319  *
2320  * vma->vm_mm->mmap_sem must be held on entry.
2321  *
2322  * If our return value has VM_FAULT_RETRY set, it's because
2323  * lock_page_or_retry() returned 0.
2324  * The mmap_sem has usually been released in this case.
2325  * See __lock_page_or_retry() for the exception.
2326  *
2327  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2328  * has not been released.
2329  *
2330  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2331  */
2332 int filemap_fault(struct vm_fault *vmf)
2333 {
2334 	int error;
2335 	struct file *file = vmf->vma->vm_file;
2336 	struct address_space *mapping = file->f_mapping;
2337 	struct file_ra_state *ra = &file->f_ra;
2338 	struct inode *inode = mapping->host;
2339 	pgoff_t offset = vmf->pgoff;
2340 	pgoff_t max_off;
2341 	struct page *page;
2342 	int ret = 0;
2343 
2344 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 	if (unlikely(offset >= max_off))
2346 		return VM_FAULT_SIGBUS;
2347 
2348 	/*
2349 	 * Do we have something in the page cache already?
2350 	 */
2351 	page = find_get_page(mapping, offset);
2352 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2353 		/*
2354 		 * We found the page, so try async readahead before
2355 		 * waiting for the lock.
2356 		 */
2357 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2358 	} else if (!page) {
2359 		/* No page in the page cache at all */
2360 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2361 		count_vm_event(PGMAJFAULT);
2362 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2363 		ret = VM_FAULT_MAJOR;
2364 retry_find:
2365 		page = find_get_page(mapping, offset);
2366 		if (!page)
2367 			goto no_cached_page;
2368 	}
2369 
2370 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2371 		put_page(page);
2372 		return ret | VM_FAULT_RETRY;
2373 	}
2374 
2375 	/* Did it get truncated? */
2376 	if (unlikely(page->mapping != mapping)) {
2377 		unlock_page(page);
2378 		put_page(page);
2379 		goto retry_find;
2380 	}
2381 	VM_BUG_ON_PAGE(page->index != offset, page);
2382 
2383 	/*
2384 	 * We have a locked page in the page cache, now we need to check
2385 	 * that it's up-to-date. If not, it is going to be due to an error.
2386 	 */
2387 	if (unlikely(!PageUptodate(page)))
2388 		goto page_not_uptodate;
2389 
2390 	/*
2391 	 * Found the page and have a reference on it.
2392 	 * We must recheck i_size under page lock.
2393 	 */
2394 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2395 	if (unlikely(offset >= max_off)) {
2396 		unlock_page(page);
2397 		put_page(page);
2398 		return VM_FAULT_SIGBUS;
2399 	}
2400 
2401 	vmf->page = page;
2402 	return ret | VM_FAULT_LOCKED;
2403 
2404 no_cached_page:
2405 	/*
2406 	 * We're only likely to ever get here if MADV_RANDOM is in
2407 	 * effect.
2408 	 */
2409 	error = page_cache_read(file, offset, vmf->gfp_mask);
2410 
2411 	/*
2412 	 * The page we want has now been added to the page cache.
2413 	 * In the unlikely event that someone removed it in the
2414 	 * meantime, we'll just come back here and read it again.
2415 	 */
2416 	if (error >= 0)
2417 		goto retry_find;
2418 
2419 	/*
2420 	 * An error return from page_cache_read can result if the
2421 	 * system is low on memory, or a problem occurs while trying
2422 	 * to schedule I/O.
2423 	 */
2424 	if (error == -ENOMEM)
2425 		return VM_FAULT_OOM;
2426 	return VM_FAULT_SIGBUS;
2427 
2428 page_not_uptodate:
2429 	/*
2430 	 * Umm, take care of errors if the page isn't up-to-date.
2431 	 * Try to re-read it _once_. We do this synchronously,
2432 	 * because there really aren't any performance issues here
2433 	 * and we need to check for errors.
2434 	 */
2435 	ClearPageError(page);
2436 	error = mapping->a_ops->readpage(file, page);
2437 	if (!error) {
2438 		wait_on_page_locked(page);
2439 		if (!PageUptodate(page))
2440 			error = -EIO;
2441 	}
2442 	put_page(page);
2443 
2444 	if (!error || error == AOP_TRUNCATED_PAGE)
2445 		goto retry_find;
2446 
2447 	/* Things didn't work out. Return zero to tell the mm layer so. */
2448 	shrink_readahead_size_eio(file, ra);
2449 	return VM_FAULT_SIGBUS;
2450 }
2451 EXPORT_SYMBOL(filemap_fault);
2452 
2453 void filemap_map_pages(struct vm_fault *vmf,
2454 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2455 {
2456 	struct radix_tree_iter iter;
2457 	void **slot;
2458 	struct file *file = vmf->vma->vm_file;
2459 	struct address_space *mapping = file->f_mapping;
2460 	pgoff_t last_pgoff = start_pgoff;
2461 	unsigned long max_idx;
2462 	struct page *head, *page;
2463 
2464 	rcu_read_lock();
2465 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2466 			start_pgoff) {
2467 		if (iter.index > end_pgoff)
2468 			break;
2469 repeat:
2470 		page = radix_tree_deref_slot(slot);
2471 		if (unlikely(!page))
2472 			goto next;
2473 		if (radix_tree_exception(page)) {
2474 			if (radix_tree_deref_retry(page)) {
2475 				slot = radix_tree_iter_retry(&iter);
2476 				continue;
2477 			}
2478 			goto next;
2479 		}
2480 
2481 		head = compound_head(page);
2482 		if (!page_cache_get_speculative(head))
2483 			goto repeat;
2484 
2485 		/* The page was split under us? */
2486 		if (compound_head(page) != head) {
2487 			put_page(head);
2488 			goto repeat;
2489 		}
2490 
2491 		/* Has the page moved? */
2492 		if (unlikely(page != *slot)) {
2493 			put_page(head);
2494 			goto repeat;
2495 		}
2496 
2497 		if (!PageUptodate(page) ||
2498 				PageReadahead(page) ||
2499 				PageHWPoison(page))
2500 			goto skip;
2501 		if (!trylock_page(page))
2502 			goto skip;
2503 
2504 		if (page->mapping != mapping || !PageUptodate(page))
2505 			goto unlock;
2506 
2507 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2508 		if (page->index >= max_idx)
2509 			goto unlock;
2510 
2511 		if (file->f_ra.mmap_miss > 0)
2512 			file->f_ra.mmap_miss--;
2513 
2514 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2515 		if (vmf->pte)
2516 			vmf->pte += iter.index - last_pgoff;
2517 		last_pgoff = iter.index;
2518 		if (alloc_set_pte(vmf, NULL, page))
2519 			goto unlock;
2520 		unlock_page(page);
2521 		goto next;
2522 unlock:
2523 		unlock_page(page);
2524 skip:
2525 		put_page(page);
2526 next:
2527 		/* Huge page is mapped? No need to proceed. */
2528 		if (pmd_trans_huge(*vmf->pmd))
2529 			break;
2530 		if (iter.index == end_pgoff)
2531 			break;
2532 	}
2533 	rcu_read_unlock();
2534 }
2535 EXPORT_SYMBOL(filemap_map_pages);
2536 
2537 int filemap_page_mkwrite(struct vm_fault *vmf)
2538 {
2539 	struct page *page = vmf->page;
2540 	struct inode *inode = file_inode(vmf->vma->vm_file);
2541 	int ret = VM_FAULT_LOCKED;
2542 
2543 	sb_start_pagefault(inode->i_sb);
2544 	file_update_time(vmf->vma->vm_file);
2545 	lock_page(page);
2546 	if (page->mapping != inode->i_mapping) {
2547 		unlock_page(page);
2548 		ret = VM_FAULT_NOPAGE;
2549 		goto out;
2550 	}
2551 	/*
2552 	 * We mark the page dirty already here so that when freeze is in
2553 	 * progress, we are guaranteed that writeback during freezing will
2554 	 * see the dirty page and writeprotect it again.
2555 	 */
2556 	set_page_dirty(page);
2557 	wait_for_stable_page(page);
2558 out:
2559 	sb_end_pagefault(inode->i_sb);
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(filemap_page_mkwrite);
2563 
2564 const struct vm_operations_struct generic_file_vm_ops = {
2565 	.fault		= filemap_fault,
2566 	.map_pages	= filemap_map_pages,
2567 	.page_mkwrite	= filemap_page_mkwrite,
2568 };
2569 
2570 /* This is used for a general mmap of a disk file */
2571 
2572 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2573 {
2574 	struct address_space *mapping = file->f_mapping;
2575 
2576 	if (!mapping->a_ops->readpage)
2577 		return -ENOEXEC;
2578 	file_accessed(file);
2579 	vma->vm_ops = &generic_file_vm_ops;
2580 	return 0;
2581 }
2582 
2583 /*
2584  * This is for filesystems which do not implement ->writepage.
2585  */
2586 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2587 {
2588 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2589 		return -EINVAL;
2590 	return generic_file_mmap(file, vma);
2591 }
2592 #else
2593 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2594 {
2595 	return -ENOSYS;
2596 }
2597 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2598 {
2599 	return -ENOSYS;
2600 }
2601 #endif /* CONFIG_MMU */
2602 
2603 EXPORT_SYMBOL(generic_file_mmap);
2604 EXPORT_SYMBOL(generic_file_readonly_mmap);
2605 
2606 static struct page *wait_on_page_read(struct page *page)
2607 {
2608 	if (!IS_ERR(page)) {
2609 		wait_on_page_locked(page);
2610 		if (!PageUptodate(page)) {
2611 			put_page(page);
2612 			page = ERR_PTR(-EIO);
2613 		}
2614 	}
2615 	return page;
2616 }
2617 
2618 static struct page *do_read_cache_page(struct address_space *mapping,
2619 				pgoff_t index,
2620 				int (*filler)(void *, struct page *),
2621 				void *data,
2622 				gfp_t gfp)
2623 {
2624 	struct page *page;
2625 	int err;
2626 repeat:
2627 	page = find_get_page(mapping, index);
2628 	if (!page) {
2629 		page = __page_cache_alloc(gfp | __GFP_COLD);
2630 		if (!page)
2631 			return ERR_PTR(-ENOMEM);
2632 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2633 		if (unlikely(err)) {
2634 			put_page(page);
2635 			if (err == -EEXIST)
2636 				goto repeat;
2637 			/* Presumably ENOMEM for radix tree node */
2638 			return ERR_PTR(err);
2639 		}
2640 
2641 filler:
2642 		err = filler(data, page);
2643 		if (err < 0) {
2644 			put_page(page);
2645 			return ERR_PTR(err);
2646 		}
2647 
2648 		page = wait_on_page_read(page);
2649 		if (IS_ERR(page))
2650 			return page;
2651 		goto out;
2652 	}
2653 	if (PageUptodate(page))
2654 		goto out;
2655 
2656 	/*
2657 	 * Page is not up to date and may be locked due one of the following
2658 	 * case a: Page is being filled and the page lock is held
2659 	 * case b: Read/write error clearing the page uptodate status
2660 	 * case c: Truncation in progress (page locked)
2661 	 * case d: Reclaim in progress
2662 	 *
2663 	 * Case a, the page will be up to date when the page is unlocked.
2664 	 *    There is no need to serialise on the page lock here as the page
2665 	 *    is pinned so the lock gives no additional protection. Even if the
2666 	 *    the page is truncated, the data is still valid if PageUptodate as
2667 	 *    it's a race vs truncate race.
2668 	 * Case b, the page will not be up to date
2669 	 * Case c, the page may be truncated but in itself, the data may still
2670 	 *    be valid after IO completes as it's a read vs truncate race. The
2671 	 *    operation must restart if the page is not uptodate on unlock but
2672 	 *    otherwise serialising on page lock to stabilise the mapping gives
2673 	 *    no additional guarantees to the caller as the page lock is
2674 	 *    released before return.
2675 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2676 	 *    will be a race with remove_mapping that determines if the mapping
2677 	 *    is valid on unlock but otherwise the data is valid and there is
2678 	 *    no need to serialise with page lock.
2679 	 *
2680 	 * As the page lock gives no additional guarantee, we optimistically
2681 	 * wait on the page to be unlocked and check if it's up to date and
2682 	 * use the page if it is. Otherwise, the page lock is required to
2683 	 * distinguish between the different cases. The motivation is that we
2684 	 * avoid spurious serialisations and wakeups when multiple processes
2685 	 * wait on the same page for IO to complete.
2686 	 */
2687 	wait_on_page_locked(page);
2688 	if (PageUptodate(page))
2689 		goto out;
2690 
2691 	/* Distinguish between all the cases under the safety of the lock */
2692 	lock_page(page);
2693 
2694 	/* Case c or d, restart the operation */
2695 	if (!page->mapping) {
2696 		unlock_page(page);
2697 		put_page(page);
2698 		goto repeat;
2699 	}
2700 
2701 	/* Someone else locked and filled the page in a very small window */
2702 	if (PageUptodate(page)) {
2703 		unlock_page(page);
2704 		goto out;
2705 	}
2706 	goto filler;
2707 
2708 out:
2709 	mark_page_accessed(page);
2710 	return page;
2711 }
2712 
2713 /**
2714  * read_cache_page - read into page cache, fill it if needed
2715  * @mapping:	the page's address_space
2716  * @index:	the page index
2717  * @filler:	function to perform the read
2718  * @data:	first arg to filler(data, page) function, often left as NULL
2719  *
2720  * Read into the page cache. If a page already exists, and PageUptodate() is
2721  * not set, try to fill the page and wait for it to become unlocked.
2722  *
2723  * If the page does not get brought uptodate, return -EIO.
2724  */
2725 struct page *read_cache_page(struct address_space *mapping,
2726 				pgoff_t index,
2727 				int (*filler)(void *, struct page *),
2728 				void *data)
2729 {
2730 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2731 }
2732 EXPORT_SYMBOL(read_cache_page);
2733 
2734 /**
2735  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2736  * @mapping:	the page's address_space
2737  * @index:	the page index
2738  * @gfp:	the page allocator flags to use if allocating
2739  *
2740  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2741  * any new page allocations done using the specified allocation flags.
2742  *
2743  * If the page does not get brought uptodate, return -EIO.
2744  */
2745 struct page *read_cache_page_gfp(struct address_space *mapping,
2746 				pgoff_t index,
2747 				gfp_t gfp)
2748 {
2749 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2750 
2751 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2752 }
2753 EXPORT_SYMBOL(read_cache_page_gfp);
2754 
2755 /*
2756  * Performs necessary checks before doing a write
2757  *
2758  * Can adjust writing position or amount of bytes to write.
2759  * Returns appropriate error code that caller should return or
2760  * zero in case that write should be allowed.
2761  */
2762 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2763 {
2764 	struct file *file = iocb->ki_filp;
2765 	struct inode *inode = file->f_mapping->host;
2766 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2767 	loff_t pos;
2768 
2769 	if (!iov_iter_count(from))
2770 		return 0;
2771 
2772 	/* FIXME: this is for backwards compatibility with 2.4 */
2773 	if (iocb->ki_flags & IOCB_APPEND)
2774 		iocb->ki_pos = i_size_read(inode);
2775 
2776 	pos = iocb->ki_pos;
2777 
2778 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2779 		return -EINVAL;
2780 
2781 	if (limit != RLIM_INFINITY) {
2782 		if (iocb->ki_pos >= limit) {
2783 			send_sig(SIGXFSZ, current, 0);
2784 			return -EFBIG;
2785 		}
2786 		iov_iter_truncate(from, limit - (unsigned long)pos);
2787 	}
2788 
2789 	/*
2790 	 * LFS rule
2791 	 */
2792 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2793 				!(file->f_flags & O_LARGEFILE))) {
2794 		if (pos >= MAX_NON_LFS)
2795 			return -EFBIG;
2796 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2797 	}
2798 
2799 	/*
2800 	 * Are we about to exceed the fs block limit ?
2801 	 *
2802 	 * If we have written data it becomes a short write.  If we have
2803 	 * exceeded without writing data we send a signal and return EFBIG.
2804 	 * Linus frestrict idea will clean these up nicely..
2805 	 */
2806 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2807 		return -EFBIG;
2808 
2809 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2810 	return iov_iter_count(from);
2811 }
2812 EXPORT_SYMBOL(generic_write_checks);
2813 
2814 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2815 				loff_t pos, unsigned len, unsigned flags,
2816 				struct page **pagep, void **fsdata)
2817 {
2818 	const struct address_space_operations *aops = mapping->a_ops;
2819 
2820 	return aops->write_begin(file, mapping, pos, len, flags,
2821 							pagep, fsdata);
2822 }
2823 EXPORT_SYMBOL(pagecache_write_begin);
2824 
2825 int pagecache_write_end(struct file *file, struct address_space *mapping,
2826 				loff_t pos, unsigned len, unsigned copied,
2827 				struct page *page, void *fsdata)
2828 {
2829 	const struct address_space_operations *aops = mapping->a_ops;
2830 
2831 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2832 }
2833 EXPORT_SYMBOL(pagecache_write_end);
2834 
2835 ssize_t
2836 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2837 {
2838 	struct file	*file = iocb->ki_filp;
2839 	struct address_space *mapping = file->f_mapping;
2840 	struct inode	*inode = mapping->host;
2841 	loff_t		pos = iocb->ki_pos;
2842 	ssize_t		written;
2843 	size_t		write_len;
2844 	pgoff_t		end;
2845 
2846 	write_len = iov_iter_count(from);
2847 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2848 
2849 	if (iocb->ki_flags & IOCB_NOWAIT) {
2850 		/* If there are pages to writeback, return */
2851 		if (filemap_range_has_page(inode->i_mapping, pos,
2852 					   pos + iov_iter_count(from)))
2853 			return -EAGAIN;
2854 	} else {
2855 		written = filemap_write_and_wait_range(mapping, pos,
2856 							pos + write_len - 1);
2857 		if (written)
2858 			goto out;
2859 	}
2860 
2861 	/*
2862 	 * After a write we want buffered reads to be sure to go to disk to get
2863 	 * the new data.  We invalidate clean cached page from the region we're
2864 	 * about to write.  We do this *before* the write so that we can return
2865 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2866 	 */
2867 	written = invalidate_inode_pages2_range(mapping,
2868 					pos >> PAGE_SHIFT, end);
2869 	/*
2870 	 * If a page can not be invalidated, return 0 to fall back
2871 	 * to buffered write.
2872 	 */
2873 	if (written) {
2874 		if (written == -EBUSY)
2875 			return 0;
2876 		goto out;
2877 	}
2878 
2879 	written = mapping->a_ops->direct_IO(iocb, from);
2880 
2881 	/*
2882 	 * Finally, try again to invalidate clean pages which might have been
2883 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2884 	 * if the source of the write was an mmap'ed region of the file
2885 	 * we're writing.  Either one is a pretty crazy thing to do,
2886 	 * so we don't support it 100%.  If this invalidation
2887 	 * fails, tough, the write still worked...
2888 	 */
2889 	invalidate_inode_pages2_range(mapping,
2890 				pos >> PAGE_SHIFT, end);
2891 
2892 	if (written > 0) {
2893 		pos += written;
2894 		write_len -= written;
2895 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2896 			i_size_write(inode, pos);
2897 			mark_inode_dirty(inode);
2898 		}
2899 		iocb->ki_pos = pos;
2900 	}
2901 	iov_iter_revert(from, write_len - iov_iter_count(from));
2902 out:
2903 	return written;
2904 }
2905 EXPORT_SYMBOL(generic_file_direct_write);
2906 
2907 /*
2908  * Find or create a page at the given pagecache position. Return the locked
2909  * page. This function is specifically for buffered writes.
2910  */
2911 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2912 					pgoff_t index, unsigned flags)
2913 {
2914 	struct page *page;
2915 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2916 
2917 	if (flags & AOP_FLAG_NOFS)
2918 		fgp_flags |= FGP_NOFS;
2919 
2920 	page = pagecache_get_page(mapping, index, fgp_flags,
2921 			mapping_gfp_mask(mapping));
2922 	if (page)
2923 		wait_for_stable_page(page);
2924 
2925 	return page;
2926 }
2927 EXPORT_SYMBOL(grab_cache_page_write_begin);
2928 
2929 ssize_t generic_perform_write(struct file *file,
2930 				struct iov_iter *i, loff_t pos)
2931 {
2932 	struct address_space *mapping = file->f_mapping;
2933 	const struct address_space_operations *a_ops = mapping->a_ops;
2934 	long status = 0;
2935 	ssize_t written = 0;
2936 	unsigned int flags = 0;
2937 
2938 	do {
2939 		struct page *page;
2940 		unsigned long offset;	/* Offset into pagecache page */
2941 		unsigned long bytes;	/* Bytes to write to page */
2942 		size_t copied;		/* Bytes copied from user */
2943 		void *fsdata;
2944 
2945 		offset = (pos & (PAGE_SIZE - 1));
2946 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2947 						iov_iter_count(i));
2948 
2949 again:
2950 		/*
2951 		 * Bring in the user page that we will copy from _first_.
2952 		 * Otherwise there's a nasty deadlock on copying from the
2953 		 * same page as we're writing to, without it being marked
2954 		 * up-to-date.
2955 		 *
2956 		 * Not only is this an optimisation, but it is also required
2957 		 * to check that the address is actually valid, when atomic
2958 		 * usercopies are used, below.
2959 		 */
2960 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2961 			status = -EFAULT;
2962 			break;
2963 		}
2964 
2965 		if (fatal_signal_pending(current)) {
2966 			status = -EINTR;
2967 			break;
2968 		}
2969 
2970 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2971 						&page, &fsdata);
2972 		if (unlikely(status < 0))
2973 			break;
2974 
2975 		if (mapping_writably_mapped(mapping))
2976 			flush_dcache_page(page);
2977 
2978 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2979 		flush_dcache_page(page);
2980 
2981 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2982 						page, fsdata);
2983 		if (unlikely(status < 0))
2984 			break;
2985 		copied = status;
2986 
2987 		cond_resched();
2988 
2989 		iov_iter_advance(i, copied);
2990 		if (unlikely(copied == 0)) {
2991 			/*
2992 			 * If we were unable to copy any data at all, we must
2993 			 * fall back to a single segment length write.
2994 			 *
2995 			 * If we didn't fallback here, we could livelock
2996 			 * because not all segments in the iov can be copied at
2997 			 * once without a pagefault.
2998 			 */
2999 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3000 						iov_iter_single_seg_count(i));
3001 			goto again;
3002 		}
3003 		pos += copied;
3004 		written += copied;
3005 
3006 		balance_dirty_pages_ratelimited(mapping);
3007 	} while (iov_iter_count(i));
3008 
3009 	return written ? written : status;
3010 }
3011 EXPORT_SYMBOL(generic_perform_write);
3012 
3013 /**
3014  * __generic_file_write_iter - write data to a file
3015  * @iocb:	IO state structure (file, offset, etc.)
3016  * @from:	iov_iter with data to write
3017  *
3018  * This function does all the work needed for actually writing data to a
3019  * file. It does all basic checks, removes SUID from the file, updates
3020  * modification times and calls proper subroutines depending on whether we
3021  * do direct IO or a standard buffered write.
3022  *
3023  * It expects i_mutex to be grabbed unless we work on a block device or similar
3024  * object which does not need locking at all.
3025  *
3026  * This function does *not* take care of syncing data in case of O_SYNC write.
3027  * A caller has to handle it. This is mainly due to the fact that we want to
3028  * avoid syncing under i_mutex.
3029  */
3030 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3031 {
3032 	struct file *file = iocb->ki_filp;
3033 	struct address_space * mapping = file->f_mapping;
3034 	struct inode 	*inode = mapping->host;
3035 	ssize_t		written = 0;
3036 	ssize_t		err;
3037 	ssize_t		status;
3038 
3039 	/* We can write back this queue in page reclaim */
3040 	current->backing_dev_info = inode_to_bdi(inode);
3041 	err = file_remove_privs(file);
3042 	if (err)
3043 		goto out;
3044 
3045 	err = file_update_time(file);
3046 	if (err)
3047 		goto out;
3048 
3049 	if (iocb->ki_flags & IOCB_DIRECT) {
3050 		loff_t pos, endbyte;
3051 
3052 		written = generic_file_direct_write(iocb, from);
3053 		/*
3054 		 * If the write stopped short of completing, fall back to
3055 		 * buffered writes.  Some filesystems do this for writes to
3056 		 * holes, for example.  For DAX files, a buffered write will
3057 		 * not succeed (even if it did, DAX does not handle dirty
3058 		 * page-cache pages correctly).
3059 		 */
3060 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3061 			goto out;
3062 
3063 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3064 		/*
3065 		 * If generic_perform_write() returned a synchronous error
3066 		 * then we want to return the number of bytes which were
3067 		 * direct-written, or the error code if that was zero.  Note
3068 		 * that this differs from normal direct-io semantics, which
3069 		 * will return -EFOO even if some bytes were written.
3070 		 */
3071 		if (unlikely(status < 0)) {
3072 			err = status;
3073 			goto out;
3074 		}
3075 		/*
3076 		 * We need to ensure that the page cache pages are written to
3077 		 * disk and invalidated to preserve the expected O_DIRECT
3078 		 * semantics.
3079 		 */
3080 		endbyte = pos + status - 1;
3081 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3082 		if (err == 0) {
3083 			iocb->ki_pos = endbyte + 1;
3084 			written += status;
3085 			invalidate_mapping_pages(mapping,
3086 						 pos >> PAGE_SHIFT,
3087 						 endbyte >> PAGE_SHIFT);
3088 		} else {
3089 			/*
3090 			 * We don't know how much we wrote, so just return
3091 			 * the number of bytes which were direct-written
3092 			 */
3093 		}
3094 	} else {
3095 		written = generic_perform_write(file, from, iocb->ki_pos);
3096 		if (likely(written > 0))
3097 			iocb->ki_pos += written;
3098 	}
3099 out:
3100 	current->backing_dev_info = NULL;
3101 	return written ? written : err;
3102 }
3103 EXPORT_SYMBOL(__generic_file_write_iter);
3104 
3105 /**
3106  * generic_file_write_iter - write data to a file
3107  * @iocb:	IO state structure
3108  * @from:	iov_iter with data to write
3109  *
3110  * This is a wrapper around __generic_file_write_iter() to be used by most
3111  * filesystems. It takes care of syncing the file in case of O_SYNC file
3112  * and acquires i_mutex as needed.
3113  */
3114 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3115 {
3116 	struct file *file = iocb->ki_filp;
3117 	struct inode *inode = file->f_mapping->host;
3118 	ssize_t ret;
3119 
3120 	inode_lock(inode);
3121 	ret = generic_write_checks(iocb, from);
3122 	if (ret > 0)
3123 		ret = __generic_file_write_iter(iocb, from);
3124 	inode_unlock(inode);
3125 
3126 	if (ret > 0)
3127 		ret = generic_write_sync(iocb, ret);
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL(generic_file_write_iter);
3131 
3132 /**
3133  * try_to_release_page() - release old fs-specific metadata on a page
3134  *
3135  * @page: the page which the kernel is trying to free
3136  * @gfp_mask: memory allocation flags (and I/O mode)
3137  *
3138  * The address_space is to try to release any data against the page
3139  * (presumably at page->private).  If the release was successful, return '1'.
3140  * Otherwise return zero.
3141  *
3142  * This may also be called if PG_fscache is set on a page, indicating that the
3143  * page is known to the local caching routines.
3144  *
3145  * The @gfp_mask argument specifies whether I/O may be performed to release
3146  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3147  *
3148  */
3149 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3150 {
3151 	struct address_space * const mapping = page->mapping;
3152 
3153 	BUG_ON(!PageLocked(page));
3154 	if (PageWriteback(page))
3155 		return 0;
3156 
3157 	if (mapping && mapping->a_ops->releasepage)
3158 		return mapping->a_ops->releasepage(page, gfp_mask);
3159 	return try_to_free_buffers(page);
3160 }
3161 
3162 EXPORT_SYMBOL(try_to_release_page);
3163