xref: /openbmc/linux/mm/filemap.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
47 
48 /*
49  * FIXME: remove all knowledge of the buffer layer from the core VM
50  */
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 
53 #include <asm/mman.h>
54 
55 /*
56  * Shared mappings implemented 30.11.1994. It's not fully working yet,
57  * though.
58  *
59  * Shared mappings now work. 15.8.1995  Bruno.
60  *
61  * finished 'unifying' the page and buffer cache and SMP-threaded the
62  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
63  *
64  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65  */
66 
67 /*
68  * Lock ordering:
69  *
70  *  ->i_mmap_rwsem		(truncate_pagecache)
71  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
72  *      ->swap_lock		(exclusive_swap_page, others)
73  *        ->i_pages lock
74  *
75  *  ->i_mutex
76  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
77  *
78  *  ->mmap_sem
79  *    ->i_mmap_rwsem
80  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
81  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
82  *
83  *  ->mmap_sem
84  *    ->lock_page		(access_process_vm)
85  *
86  *  ->i_mutex			(generic_perform_write)
87  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
88  *
89  *  bdi->wb.list_lock
90  *    sb_lock			(fs/fs-writeback.c)
91  *    ->i_pages lock		(__sync_single_inode)
92  *
93  *  ->i_mmap_rwsem
94  *    ->anon_vma.lock		(vma_adjust)
95  *
96  *  ->anon_vma.lock
97  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
98  *
99  *  ->page_table_lock or pte_lock
100  *    ->swap_lock		(try_to_unmap_one)
101  *    ->private_lock		(try_to_unmap_one)
102  *    ->i_pages lock		(try_to_unmap_one)
103  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
104  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
105  *    ->private_lock		(page_remove_rmap->set_page_dirty)
106  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
107  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
108  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
109  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
110  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
111  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
112  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
113  *
114  * ->i_mmap_rwsem
115  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
116  */
117 
118 static void page_cache_delete(struct address_space *mapping,
119 				   struct page *page, void *shadow)
120 {
121 	XA_STATE(xas, &mapping->i_pages, page->index);
122 	unsigned int nr = 1;
123 
124 	mapping_set_update(&xas, mapping);
125 
126 	/* hugetlb pages are represented by a single entry in the xarray */
127 	if (!PageHuge(page)) {
128 		xas_set_order(&xas, page->index, compound_order(page));
129 		nr = compound_nr(page);
130 	}
131 
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE(PageTail(page), page);
134 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
135 
136 	xas_store(&xas, shadow);
137 	xas_init_marks(&xas);
138 
139 	page->mapping = NULL;
140 	/* Leave page->index set: truncation lookup relies upon it */
141 
142 	if (shadow) {
143 		mapping->nrexceptional += nr;
144 		/*
145 		 * Make sure the nrexceptional update is committed before
146 		 * the nrpages update so that final truncate racing
147 		 * with reclaim does not see both counters 0 at the
148 		 * same time and miss a shadow entry.
149 		 */
150 		smp_wmb();
151 	}
152 	mapping->nrpages -= nr;
153 }
154 
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 				      struct page *page)
157 {
158 	int nr;
159 
160 	/*
161 	 * if we're uptodate, flush out into the cleancache, otherwise
162 	 * invalidate any existing cleancache entries.  We can't leave
163 	 * stale data around in the cleancache once our page is gone
164 	 */
165 	if (PageUptodate(page) && PageMappedToDisk(page))
166 		cleancache_put_page(page);
167 	else
168 		cleancache_invalidate_page(mapping, page);
169 
170 	VM_BUG_ON_PAGE(PageTail(page), page);
171 	VM_BUG_ON_PAGE(page_mapped(page), page);
172 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 		int mapcount;
174 
175 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
176 			 current->comm, page_to_pfn(page));
177 		dump_page(page, "still mapped when deleted");
178 		dump_stack();
179 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
180 
181 		mapcount = page_mapcount(page);
182 		if (mapping_exiting(mapping) &&
183 		    page_count(page) >= mapcount + 2) {
184 			/*
185 			 * All vmas have already been torn down, so it's
186 			 * a good bet that actually the page is unmapped,
187 			 * and we'd prefer not to leak it: if we're wrong,
188 			 * some other bad page check should catch it later.
189 			 */
190 			page_mapcount_reset(page);
191 			page_ref_sub(page, mapcount);
192 		}
193 	}
194 
195 	/* hugetlb pages do not participate in page cache accounting. */
196 	if (PageHuge(page))
197 		return;
198 
199 	nr = hpage_nr_pages(page);
200 
201 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 	if (PageSwapBacked(page)) {
203 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 		if (PageTransHuge(page))
205 			__dec_node_page_state(page, NR_SHMEM_THPS);
206 	} else if (PageTransHuge(page)) {
207 		__dec_node_page_state(page, NR_FILE_THPS);
208 		filemap_nr_thps_dec(mapping);
209 	}
210 
211 	/*
212 	 * At this point page must be either written or cleaned by
213 	 * truncate.  Dirty page here signals a bug and loss of
214 	 * unwritten data.
215 	 *
216 	 * This fixes dirty accounting after removing the page entirely
217 	 * but leaves PageDirty set: it has no effect for truncated
218 	 * page and anyway will be cleared before returning page into
219 	 * buddy allocator.
220 	 */
221 	if (WARN_ON_ONCE(PageDirty(page)))
222 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
223 }
224 
225 /*
226  * Delete a page from the page cache and free it. Caller has to make
227  * sure the page is locked and that nobody else uses it - or that usage
228  * is safe.  The caller must hold the i_pages lock.
229  */
230 void __delete_from_page_cache(struct page *page, void *shadow)
231 {
232 	struct address_space *mapping = page->mapping;
233 
234 	trace_mm_filemap_delete_from_page_cache(page);
235 
236 	unaccount_page_cache_page(mapping, page);
237 	page_cache_delete(mapping, page, shadow);
238 }
239 
240 static void page_cache_free_page(struct address_space *mapping,
241 				struct page *page)
242 {
243 	void (*freepage)(struct page *);
244 
245 	freepage = mapping->a_ops->freepage;
246 	if (freepage)
247 		freepage(page);
248 
249 	if (PageTransHuge(page) && !PageHuge(page)) {
250 		page_ref_sub(page, HPAGE_PMD_NR);
251 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
252 	} else {
253 		put_page(page);
254 	}
255 }
256 
257 /**
258  * delete_from_page_cache - delete page from page cache
259  * @page: the page which the kernel is trying to remove from page cache
260  *
261  * This must be called only on pages that have been verified to be in the page
262  * cache and locked.  It will never put the page into the free list, the caller
263  * has a reference on the page.
264  */
265 void delete_from_page_cache(struct page *page)
266 {
267 	struct address_space *mapping = page_mapping(page);
268 	unsigned long flags;
269 
270 	BUG_ON(!PageLocked(page));
271 	xa_lock_irqsave(&mapping->i_pages, flags);
272 	__delete_from_page_cache(page, NULL);
273 	xa_unlock_irqrestore(&mapping->i_pages, flags);
274 
275 	page_cache_free_page(mapping, page);
276 }
277 EXPORT_SYMBOL(delete_from_page_cache);
278 
279 /*
280  * page_cache_delete_batch - delete several pages from page cache
281  * @mapping: the mapping to which pages belong
282  * @pvec: pagevec with pages to delete
283  *
284  * The function walks over mapping->i_pages and removes pages passed in @pvec
285  * from the mapping. The function expects @pvec to be sorted by page index
286  * and is optimised for it to be dense.
287  * It tolerates holes in @pvec (mapping entries at those indices are not
288  * modified). The function expects only THP head pages to be present in the
289  * @pvec.
290  *
291  * The function expects the i_pages lock to be held.
292  */
293 static void page_cache_delete_batch(struct address_space *mapping,
294 			     struct pagevec *pvec)
295 {
296 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
297 	int total_pages = 0;
298 	int i = 0;
299 	struct page *page;
300 
301 	mapping_set_update(&xas, mapping);
302 	xas_for_each(&xas, page, ULONG_MAX) {
303 		if (i >= pagevec_count(pvec))
304 			break;
305 
306 		/* A swap/dax/shadow entry got inserted? Skip it. */
307 		if (xa_is_value(page))
308 			continue;
309 		/*
310 		 * A page got inserted in our range? Skip it. We have our
311 		 * pages locked so they are protected from being removed.
312 		 * If we see a page whose index is higher than ours, it
313 		 * means our page has been removed, which shouldn't be
314 		 * possible because we're holding the PageLock.
315 		 */
316 		if (page != pvec->pages[i]) {
317 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
318 					page);
319 			continue;
320 		}
321 
322 		WARN_ON_ONCE(!PageLocked(page));
323 
324 		if (page->index == xas.xa_index)
325 			page->mapping = NULL;
326 		/* Leave page->index set: truncation lookup relies on it */
327 
328 		/*
329 		 * Move to the next page in the vector if this is a regular
330 		 * page or the index is of the last sub-page of this compound
331 		 * page.
332 		 */
333 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
334 			i++;
335 		xas_store(&xas, NULL);
336 		total_pages++;
337 	}
338 	mapping->nrpages -= total_pages;
339 }
340 
341 void delete_from_page_cache_batch(struct address_space *mapping,
342 				  struct pagevec *pvec)
343 {
344 	int i;
345 	unsigned long flags;
346 
347 	if (!pagevec_count(pvec))
348 		return;
349 
350 	xa_lock_irqsave(&mapping->i_pages, flags);
351 	for (i = 0; i < pagevec_count(pvec); i++) {
352 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
353 
354 		unaccount_page_cache_page(mapping, pvec->pages[i]);
355 	}
356 	page_cache_delete_batch(mapping, pvec);
357 	xa_unlock_irqrestore(&mapping->i_pages, flags);
358 
359 	for (i = 0; i < pagevec_count(pvec); i++)
360 		page_cache_free_page(mapping, pvec->pages[i]);
361 }
362 
363 int filemap_check_errors(struct address_space *mapping)
364 {
365 	int ret = 0;
366 	/* Check for outstanding write errors */
367 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
369 		ret = -ENOSPC;
370 	if (test_bit(AS_EIO, &mapping->flags) &&
371 	    test_and_clear_bit(AS_EIO, &mapping->flags))
372 		ret = -EIO;
373 	return ret;
374 }
375 EXPORT_SYMBOL(filemap_check_errors);
376 
377 static int filemap_check_and_keep_errors(struct address_space *mapping)
378 {
379 	/* Check for outstanding write errors */
380 	if (test_bit(AS_EIO, &mapping->flags))
381 		return -EIO;
382 	if (test_bit(AS_ENOSPC, &mapping->flags))
383 		return -ENOSPC;
384 	return 0;
385 }
386 
387 /**
388  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
389  * @mapping:	address space structure to write
390  * @start:	offset in bytes where the range starts
391  * @end:	offset in bytes where the range ends (inclusive)
392  * @sync_mode:	enable synchronous operation
393  *
394  * Start writeback against all of a mapping's dirty pages that lie
395  * within the byte offsets <start, end> inclusive.
396  *
397  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
398  * opposed to a regular memory cleansing writeback.  The difference between
399  * these two operations is that if a dirty page/buffer is encountered, it must
400  * be waited upon, and not just skipped over.
401  *
402  * Return: %0 on success, negative error code otherwise.
403  */
404 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
405 				loff_t end, int sync_mode)
406 {
407 	int ret;
408 	struct writeback_control wbc = {
409 		.sync_mode = sync_mode,
410 		.nr_to_write = LONG_MAX,
411 		.range_start = start,
412 		.range_end = end,
413 	};
414 
415 	if (!mapping_cap_writeback_dirty(mapping) ||
416 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
417 		return 0;
418 
419 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
420 	ret = do_writepages(mapping, &wbc);
421 	wbc_detach_inode(&wbc);
422 	return ret;
423 }
424 
425 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 	int sync_mode)
427 {
428 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
429 }
430 
431 int filemap_fdatawrite(struct address_space *mapping)
432 {
433 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 }
435 EXPORT_SYMBOL(filemap_fdatawrite);
436 
437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 				loff_t end)
439 {
440 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 }
442 EXPORT_SYMBOL(filemap_fdatawrite_range);
443 
444 /**
445  * filemap_flush - mostly a non-blocking flush
446  * @mapping:	target address_space
447  *
448  * This is a mostly non-blocking flush.  Not suitable for data-integrity
449  * purposes - I/O may not be started against all dirty pages.
450  *
451  * Return: %0 on success, negative error code otherwise.
452  */
453 int filemap_flush(struct address_space *mapping)
454 {
455 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 }
457 EXPORT_SYMBOL(filemap_flush);
458 
459 /**
460  * filemap_range_has_page - check if a page exists in range.
461  * @mapping:           address space within which to check
462  * @start_byte:        offset in bytes where the range starts
463  * @end_byte:          offset in bytes where the range ends (inclusive)
464  *
465  * Find at least one page in the range supplied, usually used to check if
466  * direct writing in this range will trigger a writeback.
467  *
468  * Return: %true if at least one page exists in the specified range,
469  * %false otherwise.
470  */
471 bool filemap_range_has_page(struct address_space *mapping,
472 			   loff_t start_byte, loff_t end_byte)
473 {
474 	struct page *page;
475 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
476 	pgoff_t max = end_byte >> PAGE_SHIFT;
477 
478 	if (end_byte < start_byte)
479 		return false;
480 
481 	rcu_read_lock();
482 	for (;;) {
483 		page = xas_find(&xas, max);
484 		if (xas_retry(&xas, page))
485 			continue;
486 		/* Shadow entries don't count */
487 		if (xa_is_value(page))
488 			continue;
489 		/*
490 		 * We don't need to try to pin this page; we're about to
491 		 * release the RCU lock anyway.  It is enough to know that
492 		 * there was a page here recently.
493 		 */
494 		break;
495 	}
496 	rcu_read_unlock();
497 
498 	return page != NULL;
499 }
500 EXPORT_SYMBOL(filemap_range_has_page);
501 
502 static void __filemap_fdatawait_range(struct address_space *mapping,
503 				     loff_t start_byte, loff_t end_byte)
504 {
505 	pgoff_t index = start_byte >> PAGE_SHIFT;
506 	pgoff_t end = end_byte >> PAGE_SHIFT;
507 	struct pagevec pvec;
508 	int nr_pages;
509 
510 	if (end_byte < start_byte)
511 		return;
512 
513 	pagevec_init(&pvec);
514 	while (index <= end) {
515 		unsigned i;
516 
517 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
518 				end, PAGECACHE_TAG_WRITEBACK);
519 		if (!nr_pages)
520 			break;
521 
522 		for (i = 0; i < nr_pages; i++) {
523 			struct page *page = pvec.pages[i];
524 
525 			wait_on_page_writeback(page);
526 			ClearPageError(page);
527 		}
528 		pagevec_release(&pvec);
529 		cond_resched();
530 	}
531 }
532 
533 /**
534  * filemap_fdatawait_range - wait for writeback to complete
535  * @mapping:		address space structure to wait for
536  * @start_byte:		offset in bytes where the range starts
537  * @end_byte:		offset in bytes where the range ends (inclusive)
538  *
539  * Walk the list of under-writeback pages of the given address space
540  * in the given range and wait for all of them.  Check error status of
541  * the address space and return it.
542  *
543  * Since the error status of the address space is cleared by this function,
544  * callers are responsible for checking the return value and handling and/or
545  * reporting the error.
546  *
547  * Return: error status of the address space.
548  */
549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 			    loff_t end_byte)
551 {
552 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
553 	return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556 
557 /**
558  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559  * @mapping:		address space structure to wait for
560  * @start_byte:		offset in bytes where the range starts
561  * @end_byte:		offset in bytes where the range ends (inclusive)
562  *
563  * Walk the list of under-writeback pages of the given address space in the
564  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
565  * this function does not clear error status of the address space.
566  *
567  * Use this function if callers don't handle errors themselves.  Expected
568  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569  * fsfreeze(8)
570  */
571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 		loff_t start_byte, loff_t end_byte)
573 {
574 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
575 	return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578 
579 /**
580  * file_fdatawait_range - wait for writeback to complete
581  * @file:		file pointing to address space structure to wait for
582  * @start_byte:		offset in bytes where the range starts
583  * @end_byte:		offset in bytes where the range ends (inclusive)
584  *
585  * Walk the list of under-writeback pages of the address space that file
586  * refers to, in the given range and wait for all of them.  Check error
587  * status of the address space vs. the file->f_wb_err cursor and return it.
588  *
589  * Since the error status of the file is advanced by this function,
590  * callers are responsible for checking the return value and handling and/or
591  * reporting the error.
592  *
593  * Return: error status of the address space vs. the file->f_wb_err cursor.
594  */
595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 	struct address_space *mapping = file->f_mapping;
598 
599 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
600 	return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603 
604 /**
605  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606  * @mapping: address space structure to wait for
607  *
608  * Walk the list of under-writeback pages of the given address space
609  * and wait for all of them.  Unlike filemap_fdatawait(), this function
610  * does not clear error status of the address space.
611  *
612  * Use this function if callers don't handle errors themselves.  Expected
613  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614  * fsfreeze(8)
615  *
616  * Return: error status of the address space.
617  */
618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 	return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 	if (dax_mapping(mapping))
629 		return mapping->nrexceptional;
630 
631 	return mapping->nrpages;
632 }
633 
634 int filemap_write_and_wait(struct address_space *mapping)
635 {
636 	int err = 0;
637 
638 	if (mapping_needs_writeback(mapping)) {
639 		err = filemap_fdatawrite(mapping);
640 		/*
641 		 * Even if the above returned error, the pages may be
642 		 * written partially (e.g. -ENOSPC), so we wait for it.
643 		 * But the -EIO is special case, it may indicate the worst
644 		 * thing (e.g. bug) happened, so we avoid waiting for it.
645 		 */
646 		if (err != -EIO) {
647 			int err2 = filemap_fdatawait(mapping);
648 			if (!err)
649 				err = err2;
650 		} else {
651 			/* Clear any previously stored errors */
652 			filemap_check_errors(mapping);
653 		}
654 	} else {
655 		err = filemap_check_errors(mapping);
656 	}
657 	return err;
658 }
659 EXPORT_SYMBOL(filemap_write_and_wait);
660 
661 /**
662  * filemap_write_and_wait_range - write out & wait on a file range
663  * @mapping:	the address_space for the pages
664  * @lstart:	offset in bytes where the range starts
665  * @lend:	offset in bytes where the range ends (inclusive)
666  *
667  * Write out and wait upon file offsets lstart->lend, inclusive.
668  *
669  * Note that @lend is inclusive (describes the last byte to be written) so
670  * that this function can be used to write to the very end-of-file (end = -1).
671  *
672  * Return: error status of the address space.
673  */
674 int filemap_write_and_wait_range(struct address_space *mapping,
675 				 loff_t lstart, loff_t lend)
676 {
677 	int err = 0;
678 
679 	if (mapping_needs_writeback(mapping)) {
680 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
681 						 WB_SYNC_ALL);
682 		/* See comment of filemap_write_and_wait() */
683 		if (err != -EIO) {
684 			int err2 = filemap_fdatawait_range(mapping,
685 						lstart, lend);
686 			if (!err)
687 				err = err2;
688 		} else {
689 			/* Clear any previously stored errors */
690 			filemap_check_errors(mapping);
691 		}
692 	} else {
693 		err = filemap_check_errors(mapping);
694 	}
695 	return err;
696 }
697 EXPORT_SYMBOL(filemap_write_and_wait_range);
698 
699 void __filemap_set_wb_err(struct address_space *mapping, int err)
700 {
701 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
702 
703 	trace_filemap_set_wb_err(mapping, eseq);
704 }
705 EXPORT_SYMBOL(__filemap_set_wb_err);
706 
707 /**
708  * file_check_and_advance_wb_err - report wb error (if any) that was previously
709  * 				   and advance wb_err to current one
710  * @file: struct file on which the error is being reported
711  *
712  * When userland calls fsync (or something like nfsd does the equivalent), we
713  * want to report any writeback errors that occurred since the last fsync (or
714  * since the file was opened if there haven't been any).
715  *
716  * Grab the wb_err from the mapping. If it matches what we have in the file,
717  * then just quickly return 0. The file is all caught up.
718  *
719  * If it doesn't match, then take the mapping value, set the "seen" flag in
720  * it and try to swap it into place. If it works, or another task beat us
721  * to it with the new value, then update the f_wb_err and return the error
722  * portion. The error at this point must be reported via proper channels
723  * (a'la fsync, or NFS COMMIT operation, etc.).
724  *
725  * While we handle mapping->wb_err with atomic operations, the f_wb_err
726  * value is protected by the f_lock since we must ensure that it reflects
727  * the latest value swapped in for this file descriptor.
728  *
729  * Return: %0 on success, negative error code otherwise.
730  */
731 int file_check_and_advance_wb_err(struct file *file)
732 {
733 	int err = 0;
734 	errseq_t old = READ_ONCE(file->f_wb_err);
735 	struct address_space *mapping = file->f_mapping;
736 
737 	/* Locklessly handle the common case where nothing has changed */
738 	if (errseq_check(&mapping->wb_err, old)) {
739 		/* Something changed, must use slow path */
740 		spin_lock(&file->f_lock);
741 		old = file->f_wb_err;
742 		err = errseq_check_and_advance(&mapping->wb_err,
743 						&file->f_wb_err);
744 		trace_file_check_and_advance_wb_err(file, old);
745 		spin_unlock(&file->f_lock);
746 	}
747 
748 	/*
749 	 * We're mostly using this function as a drop in replacement for
750 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 	 * that the legacy code would have had on these flags.
752 	 */
753 	clear_bit(AS_EIO, &mapping->flags);
754 	clear_bit(AS_ENOSPC, &mapping->flags);
755 	return err;
756 }
757 EXPORT_SYMBOL(file_check_and_advance_wb_err);
758 
759 /**
760  * file_write_and_wait_range - write out & wait on a file range
761  * @file:	file pointing to address_space with pages
762  * @lstart:	offset in bytes where the range starts
763  * @lend:	offset in bytes where the range ends (inclusive)
764  *
765  * Write out and wait upon file offsets lstart->lend, inclusive.
766  *
767  * Note that @lend is inclusive (describes the last byte to be written) so
768  * that this function can be used to write to the very end-of-file (end = -1).
769  *
770  * After writing out and waiting on the data, we check and advance the
771  * f_wb_err cursor to the latest value, and return any errors detected there.
772  *
773  * Return: %0 on success, negative error code otherwise.
774  */
775 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776 {
777 	int err = 0, err2;
778 	struct address_space *mapping = file->f_mapping;
779 
780 	if (mapping_needs_writeback(mapping)) {
781 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 						 WB_SYNC_ALL);
783 		/* See comment of filemap_write_and_wait() */
784 		if (err != -EIO)
785 			__filemap_fdatawait_range(mapping, lstart, lend);
786 	}
787 	err2 = file_check_and_advance_wb_err(file);
788 	if (!err)
789 		err = err2;
790 	return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793 
794 /**
795  * replace_page_cache_page - replace a pagecache page with a new one
796  * @old:	page to be replaced
797  * @new:	page to replace with
798  * @gfp_mask:	allocation mode
799  *
800  * This function replaces a page in the pagecache with a new one.  On
801  * success it acquires the pagecache reference for the new page and
802  * drops it for the old page.  Both the old and new pages must be
803  * locked.  This function does not add the new page to the LRU, the
804  * caller must do that.
805  *
806  * The remove + add is atomic.  This function cannot fail.
807  *
808  * Return: %0
809  */
810 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
811 {
812 	struct address_space *mapping = old->mapping;
813 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
814 	pgoff_t offset = old->index;
815 	XA_STATE(xas, &mapping->i_pages, offset);
816 	unsigned long flags;
817 
818 	VM_BUG_ON_PAGE(!PageLocked(old), old);
819 	VM_BUG_ON_PAGE(!PageLocked(new), new);
820 	VM_BUG_ON_PAGE(new->mapping, new);
821 
822 	get_page(new);
823 	new->mapping = mapping;
824 	new->index = offset;
825 
826 	xas_lock_irqsave(&xas, flags);
827 	xas_store(&xas, new);
828 
829 	old->mapping = NULL;
830 	/* hugetlb pages do not participate in page cache accounting. */
831 	if (!PageHuge(old))
832 		__dec_node_page_state(new, NR_FILE_PAGES);
833 	if (!PageHuge(new))
834 		__inc_node_page_state(new, NR_FILE_PAGES);
835 	if (PageSwapBacked(old))
836 		__dec_node_page_state(new, NR_SHMEM);
837 	if (PageSwapBacked(new))
838 		__inc_node_page_state(new, NR_SHMEM);
839 	xas_unlock_irqrestore(&xas, flags);
840 	mem_cgroup_migrate(old, new);
841 	if (freepage)
842 		freepage(old);
843 	put_page(old);
844 
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(replace_page_cache_page);
848 
849 static int __add_to_page_cache_locked(struct page *page,
850 				      struct address_space *mapping,
851 				      pgoff_t offset, gfp_t gfp_mask,
852 				      void **shadowp)
853 {
854 	XA_STATE(xas, &mapping->i_pages, offset);
855 	int huge = PageHuge(page);
856 	struct mem_cgroup *memcg;
857 	int error;
858 	void *old;
859 
860 	VM_BUG_ON_PAGE(!PageLocked(page), page);
861 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
862 	mapping_set_update(&xas, mapping);
863 
864 	if (!huge) {
865 		error = mem_cgroup_try_charge(page, current->mm,
866 					      gfp_mask, &memcg, false);
867 		if (error)
868 			return error;
869 	}
870 
871 	get_page(page);
872 	page->mapping = mapping;
873 	page->index = offset;
874 
875 	do {
876 		xas_lock_irq(&xas);
877 		old = xas_load(&xas);
878 		if (old && !xa_is_value(old))
879 			xas_set_err(&xas, -EEXIST);
880 		xas_store(&xas, page);
881 		if (xas_error(&xas))
882 			goto unlock;
883 
884 		if (xa_is_value(old)) {
885 			mapping->nrexceptional--;
886 			if (shadowp)
887 				*shadowp = old;
888 		}
889 		mapping->nrpages++;
890 
891 		/* hugetlb pages do not participate in page cache accounting */
892 		if (!huge)
893 			__inc_node_page_state(page, NR_FILE_PAGES);
894 unlock:
895 		xas_unlock_irq(&xas);
896 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
897 
898 	if (xas_error(&xas))
899 		goto error;
900 
901 	if (!huge)
902 		mem_cgroup_commit_charge(page, memcg, false, false);
903 	trace_mm_filemap_add_to_page_cache(page);
904 	return 0;
905 error:
906 	page->mapping = NULL;
907 	/* Leave page->index set: truncation relies upon it */
908 	if (!huge)
909 		mem_cgroup_cancel_charge(page, memcg, false);
910 	put_page(page);
911 	return xas_error(&xas);
912 }
913 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
914 
915 /**
916  * add_to_page_cache_locked - add a locked page to the pagecache
917  * @page:	page to add
918  * @mapping:	the page's address_space
919  * @offset:	page index
920  * @gfp_mask:	page allocation mode
921  *
922  * This function is used to add a page to the pagecache. It must be locked.
923  * This function does not add the page to the LRU.  The caller must do that.
924  *
925  * Return: %0 on success, negative error code otherwise.
926  */
927 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
928 		pgoff_t offset, gfp_t gfp_mask)
929 {
930 	return __add_to_page_cache_locked(page, mapping, offset,
931 					  gfp_mask, NULL);
932 }
933 EXPORT_SYMBOL(add_to_page_cache_locked);
934 
935 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
936 				pgoff_t offset, gfp_t gfp_mask)
937 {
938 	void *shadow = NULL;
939 	int ret;
940 
941 	__SetPageLocked(page);
942 	ret = __add_to_page_cache_locked(page, mapping, offset,
943 					 gfp_mask, &shadow);
944 	if (unlikely(ret))
945 		__ClearPageLocked(page);
946 	else {
947 		/*
948 		 * The page might have been evicted from cache only
949 		 * recently, in which case it should be activated like
950 		 * any other repeatedly accessed page.
951 		 * The exception is pages getting rewritten; evicting other
952 		 * data from the working set, only to cache data that will
953 		 * get overwritten with something else, is a waste of memory.
954 		 */
955 		WARN_ON_ONCE(PageActive(page));
956 		if (!(gfp_mask & __GFP_WRITE) && shadow)
957 			workingset_refault(page, shadow);
958 		lru_cache_add(page);
959 	}
960 	return ret;
961 }
962 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
963 
964 #ifdef CONFIG_NUMA
965 struct page *__page_cache_alloc(gfp_t gfp)
966 {
967 	int n;
968 	struct page *page;
969 
970 	if (cpuset_do_page_mem_spread()) {
971 		unsigned int cpuset_mems_cookie;
972 		do {
973 			cpuset_mems_cookie = read_mems_allowed_begin();
974 			n = cpuset_mem_spread_node();
975 			page = __alloc_pages_node(n, gfp, 0);
976 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
977 
978 		return page;
979 	}
980 	return alloc_pages(gfp, 0);
981 }
982 EXPORT_SYMBOL(__page_cache_alloc);
983 #endif
984 
985 /*
986  * In order to wait for pages to become available there must be
987  * waitqueues associated with pages. By using a hash table of
988  * waitqueues where the bucket discipline is to maintain all
989  * waiters on the same queue and wake all when any of the pages
990  * become available, and for the woken contexts to check to be
991  * sure the appropriate page became available, this saves space
992  * at a cost of "thundering herd" phenomena during rare hash
993  * collisions.
994  */
995 #define PAGE_WAIT_TABLE_BITS 8
996 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
997 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
998 
999 static wait_queue_head_t *page_waitqueue(struct page *page)
1000 {
1001 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1002 }
1003 
1004 void __init pagecache_init(void)
1005 {
1006 	int i;
1007 
1008 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1009 		init_waitqueue_head(&page_wait_table[i]);
1010 
1011 	page_writeback_init();
1012 }
1013 
1014 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1015 struct wait_page_key {
1016 	struct page *page;
1017 	int bit_nr;
1018 	int page_match;
1019 };
1020 
1021 struct wait_page_queue {
1022 	struct page *page;
1023 	int bit_nr;
1024 	wait_queue_entry_t wait;
1025 };
1026 
1027 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1028 {
1029 	struct wait_page_key *key = arg;
1030 	struct wait_page_queue *wait_page
1031 		= container_of(wait, struct wait_page_queue, wait);
1032 
1033 	if (wait_page->page != key->page)
1034 	       return 0;
1035 	key->page_match = 1;
1036 
1037 	if (wait_page->bit_nr != key->bit_nr)
1038 		return 0;
1039 
1040 	/*
1041 	 * Stop walking if it's locked.
1042 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1043 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1044 	 * has now already been set by another task, that task must also hold
1045 	 * a reference to the *same usage* of this page; so there is no need
1046 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1047 	 */
1048 	if (test_bit(key->bit_nr, &key->page->flags))
1049 		return -1;
1050 
1051 	return autoremove_wake_function(wait, mode, sync, key);
1052 }
1053 
1054 static void wake_up_page_bit(struct page *page, int bit_nr)
1055 {
1056 	wait_queue_head_t *q = page_waitqueue(page);
1057 	struct wait_page_key key;
1058 	unsigned long flags;
1059 	wait_queue_entry_t bookmark;
1060 
1061 	key.page = page;
1062 	key.bit_nr = bit_nr;
1063 	key.page_match = 0;
1064 
1065 	bookmark.flags = 0;
1066 	bookmark.private = NULL;
1067 	bookmark.func = NULL;
1068 	INIT_LIST_HEAD(&bookmark.entry);
1069 
1070 	spin_lock_irqsave(&q->lock, flags);
1071 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1072 
1073 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1074 		/*
1075 		 * Take a breather from holding the lock,
1076 		 * allow pages that finish wake up asynchronously
1077 		 * to acquire the lock and remove themselves
1078 		 * from wait queue
1079 		 */
1080 		spin_unlock_irqrestore(&q->lock, flags);
1081 		cpu_relax();
1082 		spin_lock_irqsave(&q->lock, flags);
1083 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1084 	}
1085 
1086 	/*
1087 	 * It is possible for other pages to have collided on the waitqueue
1088 	 * hash, so in that case check for a page match. That prevents a long-
1089 	 * term waiter
1090 	 *
1091 	 * It is still possible to miss a case here, when we woke page waiters
1092 	 * and removed them from the waitqueue, but there are still other
1093 	 * page waiters.
1094 	 */
1095 	if (!waitqueue_active(q) || !key.page_match) {
1096 		ClearPageWaiters(page);
1097 		/*
1098 		 * It's possible to miss clearing Waiters here, when we woke
1099 		 * our page waiters, but the hashed waitqueue has waiters for
1100 		 * other pages on it.
1101 		 *
1102 		 * That's okay, it's a rare case. The next waker will clear it.
1103 		 */
1104 	}
1105 	spin_unlock_irqrestore(&q->lock, flags);
1106 }
1107 
1108 static void wake_up_page(struct page *page, int bit)
1109 {
1110 	if (!PageWaiters(page))
1111 		return;
1112 	wake_up_page_bit(page, bit);
1113 }
1114 
1115 /*
1116  * A choice of three behaviors for wait_on_page_bit_common():
1117  */
1118 enum behavior {
1119 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1120 			 * __lock_page() waiting on then setting PG_locked.
1121 			 */
1122 	SHARED,		/* Hold ref to page and check the bit when woken, like
1123 			 * wait_on_page_writeback() waiting on PG_writeback.
1124 			 */
1125 	DROP,		/* Drop ref to page before wait, no check when woken,
1126 			 * like put_and_wait_on_page_locked() on PG_locked.
1127 			 */
1128 };
1129 
1130 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1131 	struct page *page, int bit_nr, int state, enum behavior behavior)
1132 {
1133 	struct wait_page_queue wait_page;
1134 	wait_queue_entry_t *wait = &wait_page.wait;
1135 	bool bit_is_set;
1136 	bool thrashing = false;
1137 	bool delayacct = false;
1138 	unsigned long pflags;
1139 	int ret = 0;
1140 
1141 	if (bit_nr == PG_locked &&
1142 	    !PageUptodate(page) && PageWorkingset(page)) {
1143 		if (!PageSwapBacked(page)) {
1144 			delayacct_thrashing_start();
1145 			delayacct = true;
1146 		}
1147 		psi_memstall_enter(&pflags);
1148 		thrashing = true;
1149 	}
1150 
1151 	init_wait(wait);
1152 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1153 	wait->func = wake_page_function;
1154 	wait_page.page = page;
1155 	wait_page.bit_nr = bit_nr;
1156 
1157 	for (;;) {
1158 		spin_lock_irq(&q->lock);
1159 
1160 		if (likely(list_empty(&wait->entry))) {
1161 			__add_wait_queue_entry_tail(q, wait);
1162 			SetPageWaiters(page);
1163 		}
1164 
1165 		set_current_state(state);
1166 
1167 		spin_unlock_irq(&q->lock);
1168 
1169 		bit_is_set = test_bit(bit_nr, &page->flags);
1170 		if (behavior == DROP)
1171 			put_page(page);
1172 
1173 		if (likely(bit_is_set))
1174 			io_schedule();
1175 
1176 		if (behavior == EXCLUSIVE) {
1177 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1178 				break;
1179 		} else if (behavior == SHARED) {
1180 			if (!test_bit(bit_nr, &page->flags))
1181 				break;
1182 		}
1183 
1184 		if (signal_pending_state(state, current)) {
1185 			ret = -EINTR;
1186 			break;
1187 		}
1188 
1189 		if (behavior == DROP) {
1190 			/*
1191 			 * We can no longer safely access page->flags:
1192 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1193 			 * there is a risk of waiting forever on a page reused
1194 			 * for something that keeps it locked indefinitely.
1195 			 * But best check for -EINTR above before breaking.
1196 			 */
1197 			break;
1198 		}
1199 	}
1200 
1201 	finish_wait(q, wait);
1202 
1203 	if (thrashing) {
1204 		if (delayacct)
1205 			delayacct_thrashing_end();
1206 		psi_memstall_leave(&pflags);
1207 	}
1208 
1209 	/*
1210 	 * A signal could leave PageWaiters set. Clearing it here if
1211 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1212 	 * but still fail to catch it in the case of wait hash collision. We
1213 	 * already can fail to clear wait hash collision cases, so don't
1214 	 * bother with signals either.
1215 	 */
1216 
1217 	return ret;
1218 }
1219 
1220 void wait_on_page_bit(struct page *page, int bit_nr)
1221 {
1222 	wait_queue_head_t *q = page_waitqueue(page);
1223 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1224 }
1225 EXPORT_SYMBOL(wait_on_page_bit);
1226 
1227 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1228 {
1229 	wait_queue_head_t *q = page_waitqueue(page);
1230 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1231 }
1232 EXPORT_SYMBOL(wait_on_page_bit_killable);
1233 
1234 /**
1235  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1236  * @page: The page to wait for.
1237  *
1238  * The caller should hold a reference on @page.  They expect the page to
1239  * become unlocked relatively soon, but do not wish to hold up migration
1240  * (for example) by holding the reference while waiting for the page to
1241  * come unlocked.  After this function returns, the caller should not
1242  * dereference @page.
1243  */
1244 void put_and_wait_on_page_locked(struct page *page)
1245 {
1246 	wait_queue_head_t *q;
1247 
1248 	page = compound_head(page);
1249 	q = page_waitqueue(page);
1250 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1251 }
1252 
1253 /**
1254  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1255  * @page: Page defining the wait queue of interest
1256  * @waiter: Waiter to add to the queue
1257  *
1258  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1259  */
1260 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1261 {
1262 	wait_queue_head_t *q = page_waitqueue(page);
1263 	unsigned long flags;
1264 
1265 	spin_lock_irqsave(&q->lock, flags);
1266 	__add_wait_queue_entry_tail(q, waiter);
1267 	SetPageWaiters(page);
1268 	spin_unlock_irqrestore(&q->lock, flags);
1269 }
1270 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1271 
1272 #ifndef clear_bit_unlock_is_negative_byte
1273 
1274 /*
1275  * PG_waiters is the high bit in the same byte as PG_lock.
1276  *
1277  * On x86 (and on many other architectures), we can clear PG_lock and
1278  * test the sign bit at the same time. But if the architecture does
1279  * not support that special operation, we just do this all by hand
1280  * instead.
1281  *
1282  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1283  * being cleared, but a memory barrier should be unneccssary since it is
1284  * in the same byte as PG_locked.
1285  */
1286 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1287 {
1288 	clear_bit_unlock(nr, mem);
1289 	/* smp_mb__after_atomic(); */
1290 	return test_bit(PG_waiters, mem);
1291 }
1292 
1293 #endif
1294 
1295 /**
1296  * unlock_page - unlock a locked page
1297  * @page: the page
1298  *
1299  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1300  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1301  * mechanism between PageLocked pages and PageWriteback pages is shared.
1302  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1303  *
1304  * Note that this depends on PG_waiters being the sign bit in the byte
1305  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1306  * clear the PG_locked bit and test PG_waiters at the same time fairly
1307  * portably (architectures that do LL/SC can test any bit, while x86 can
1308  * test the sign bit).
1309  */
1310 void unlock_page(struct page *page)
1311 {
1312 	BUILD_BUG_ON(PG_waiters != 7);
1313 	page = compound_head(page);
1314 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1315 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1316 		wake_up_page_bit(page, PG_locked);
1317 }
1318 EXPORT_SYMBOL(unlock_page);
1319 
1320 /**
1321  * end_page_writeback - end writeback against a page
1322  * @page: the page
1323  */
1324 void end_page_writeback(struct page *page)
1325 {
1326 	/*
1327 	 * TestClearPageReclaim could be used here but it is an atomic
1328 	 * operation and overkill in this particular case. Failing to
1329 	 * shuffle a page marked for immediate reclaim is too mild to
1330 	 * justify taking an atomic operation penalty at the end of
1331 	 * ever page writeback.
1332 	 */
1333 	if (PageReclaim(page)) {
1334 		ClearPageReclaim(page);
1335 		rotate_reclaimable_page(page);
1336 	}
1337 
1338 	if (!test_clear_page_writeback(page))
1339 		BUG();
1340 
1341 	smp_mb__after_atomic();
1342 	wake_up_page(page, PG_writeback);
1343 }
1344 EXPORT_SYMBOL(end_page_writeback);
1345 
1346 /*
1347  * After completing I/O on a page, call this routine to update the page
1348  * flags appropriately
1349  */
1350 void page_endio(struct page *page, bool is_write, int err)
1351 {
1352 	if (!is_write) {
1353 		if (!err) {
1354 			SetPageUptodate(page);
1355 		} else {
1356 			ClearPageUptodate(page);
1357 			SetPageError(page);
1358 		}
1359 		unlock_page(page);
1360 	} else {
1361 		if (err) {
1362 			struct address_space *mapping;
1363 
1364 			SetPageError(page);
1365 			mapping = page_mapping(page);
1366 			if (mapping)
1367 				mapping_set_error(mapping, err);
1368 		}
1369 		end_page_writeback(page);
1370 	}
1371 }
1372 EXPORT_SYMBOL_GPL(page_endio);
1373 
1374 /**
1375  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1376  * @__page: the page to lock
1377  */
1378 void __lock_page(struct page *__page)
1379 {
1380 	struct page *page = compound_head(__page);
1381 	wait_queue_head_t *q = page_waitqueue(page);
1382 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1383 				EXCLUSIVE);
1384 }
1385 EXPORT_SYMBOL(__lock_page);
1386 
1387 int __lock_page_killable(struct page *__page)
1388 {
1389 	struct page *page = compound_head(__page);
1390 	wait_queue_head_t *q = page_waitqueue(page);
1391 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1392 					EXCLUSIVE);
1393 }
1394 EXPORT_SYMBOL_GPL(__lock_page_killable);
1395 
1396 /*
1397  * Return values:
1398  * 1 - page is locked; mmap_sem is still held.
1399  * 0 - page is not locked.
1400  *     mmap_sem has been released (up_read()), unless flags had both
1401  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1402  *     which case mmap_sem is still held.
1403  *
1404  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1405  * with the page locked and the mmap_sem unperturbed.
1406  */
1407 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1408 			 unsigned int flags)
1409 {
1410 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1411 		/*
1412 		 * CAUTION! In this case, mmap_sem is not released
1413 		 * even though return 0.
1414 		 */
1415 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1416 			return 0;
1417 
1418 		up_read(&mm->mmap_sem);
1419 		if (flags & FAULT_FLAG_KILLABLE)
1420 			wait_on_page_locked_killable(page);
1421 		else
1422 			wait_on_page_locked(page);
1423 		return 0;
1424 	} else {
1425 		if (flags & FAULT_FLAG_KILLABLE) {
1426 			int ret;
1427 
1428 			ret = __lock_page_killable(page);
1429 			if (ret) {
1430 				up_read(&mm->mmap_sem);
1431 				return 0;
1432 			}
1433 		} else
1434 			__lock_page(page);
1435 		return 1;
1436 	}
1437 }
1438 
1439 /**
1440  * page_cache_next_miss() - Find the next gap in the page cache.
1441  * @mapping: Mapping.
1442  * @index: Index.
1443  * @max_scan: Maximum range to search.
1444  *
1445  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1446  * gap with the lowest index.
1447  *
1448  * This function may be called under the rcu_read_lock.  However, this will
1449  * not atomically search a snapshot of the cache at a single point in time.
1450  * For example, if a gap is created at index 5, then subsequently a gap is
1451  * created at index 10, page_cache_next_miss covering both indices may
1452  * return 10 if called under the rcu_read_lock.
1453  *
1454  * Return: The index of the gap if found, otherwise an index outside the
1455  * range specified (in which case 'return - index >= max_scan' will be true).
1456  * In the rare case of index wrap-around, 0 will be returned.
1457  */
1458 pgoff_t page_cache_next_miss(struct address_space *mapping,
1459 			     pgoff_t index, unsigned long max_scan)
1460 {
1461 	XA_STATE(xas, &mapping->i_pages, index);
1462 
1463 	while (max_scan--) {
1464 		void *entry = xas_next(&xas);
1465 		if (!entry || xa_is_value(entry))
1466 			break;
1467 		if (xas.xa_index == 0)
1468 			break;
1469 	}
1470 
1471 	return xas.xa_index;
1472 }
1473 EXPORT_SYMBOL(page_cache_next_miss);
1474 
1475 /**
1476  * page_cache_prev_miss() - Find the previous gap in the page cache.
1477  * @mapping: Mapping.
1478  * @index: Index.
1479  * @max_scan: Maximum range to search.
1480  *
1481  * Search the range [max(index - max_scan + 1, 0), index] for the
1482  * gap with the highest index.
1483  *
1484  * This function may be called under the rcu_read_lock.  However, this will
1485  * not atomically search a snapshot of the cache at a single point in time.
1486  * For example, if a gap is created at index 10, then subsequently a gap is
1487  * created at index 5, page_cache_prev_miss() covering both indices may
1488  * return 5 if called under the rcu_read_lock.
1489  *
1490  * Return: The index of the gap if found, otherwise an index outside the
1491  * range specified (in which case 'index - return >= max_scan' will be true).
1492  * In the rare case of wrap-around, ULONG_MAX will be returned.
1493  */
1494 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1495 			     pgoff_t index, unsigned long max_scan)
1496 {
1497 	XA_STATE(xas, &mapping->i_pages, index);
1498 
1499 	while (max_scan--) {
1500 		void *entry = xas_prev(&xas);
1501 		if (!entry || xa_is_value(entry))
1502 			break;
1503 		if (xas.xa_index == ULONG_MAX)
1504 			break;
1505 	}
1506 
1507 	return xas.xa_index;
1508 }
1509 EXPORT_SYMBOL(page_cache_prev_miss);
1510 
1511 /**
1512  * find_get_entry - find and get a page cache entry
1513  * @mapping: the address_space to search
1514  * @offset: the page cache index
1515  *
1516  * Looks up the page cache slot at @mapping & @offset.  If there is a
1517  * page cache page, it is returned with an increased refcount.
1518  *
1519  * If the slot holds a shadow entry of a previously evicted page, or a
1520  * swap entry from shmem/tmpfs, it is returned.
1521  *
1522  * Return: the found page or shadow entry, %NULL if nothing is found.
1523  */
1524 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1525 {
1526 	XA_STATE(xas, &mapping->i_pages, offset);
1527 	struct page *page;
1528 
1529 	rcu_read_lock();
1530 repeat:
1531 	xas_reset(&xas);
1532 	page = xas_load(&xas);
1533 	if (xas_retry(&xas, page))
1534 		goto repeat;
1535 	/*
1536 	 * A shadow entry of a recently evicted page, or a swap entry from
1537 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1538 	 */
1539 	if (!page || xa_is_value(page))
1540 		goto out;
1541 
1542 	if (!page_cache_get_speculative(page))
1543 		goto repeat;
1544 
1545 	/*
1546 	 * Has the page moved or been split?
1547 	 * This is part of the lockless pagecache protocol. See
1548 	 * include/linux/pagemap.h for details.
1549 	 */
1550 	if (unlikely(page != xas_reload(&xas))) {
1551 		put_page(page);
1552 		goto repeat;
1553 	}
1554 	page = find_subpage(page, offset);
1555 out:
1556 	rcu_read_unlock();
1557 
1558 	return page;
1559 }
1560 EXPORT_SYMBOL(find_get_entry);
1561 
1562 /**
1563  * find_lock_entry - locate, pin and lock a page cache entry
1564  * @mapping: the address_space to search
1565  * @offset: the page cache index
1566  *
1567  * Looks up the page cache slot at @mapping & @offset.  If there is a
1568  * page cache page, it is returned locked and with an increased
1569  * refcount.
1570  *
1571  * If the slot holds a shadow entry of a previously evicted page, or a
1572  * swap entry from shmem/tmpfs, it is returned.
1573  *
1574  * find_lock_entry() may sleep.
1575  *
1576  * Return: the found page or shadow entry, %NULL if nothing is found.
1577  */
1578 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1579 {
1580 	struct page *page;
1581 
1582 repeat:
1583 	page = find_get_entry(mapping, offset);
1584 	if (page && !xa_is_value(page)) {
1585 		lock_page(page);
1586 		/* Has the page been truncated? */
1587 		if (unlikely(page_mapping(page) != mapping)) {
1588 			unlock_page(page);
1589 			put_page(page);
1590 			goto repeat;
1591 		}
1592 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1593 	}
1594 	return page;
1595 }
1596 EXPORT_SYMBOL(find_lock_entry);
1597 
1598 /**
1599  * pagecache_get_page - find and get a page reference
1600  * @mapping: the address_space to search
1601  * @offset: the page index
1602  * @fgp_flags: PCG flags
1603  * @gfp_mask: gfp mask to use for the page cache data page allocation
1604  *
1605  * Looks up the page cache slot at @mapping & @offset.
1606  *
1607  * PCG flags modify how the page is returned.
1608  *
1609  * @fgp_flags can be:
1610  *
1611  * - FGP_ACCESSED: the page will be marked accessed
1612  * - FGP_LOCK: Page is return locked
1613  * - FGP_CREAT: If page is not present then a new page is allocated using
1614  *   @gfp_mask and added to the page cache and the VM's LRU
1615  *   list. The page is returned locked and with an increased
1616  *   refcount.
1617  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1618  *   its own locking dance if the page is already in cache, or unlock the page
1619  *   before returning if we had to add the page to pagecache.
1620  *
1621  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1622  * if the GFP flags specified for FGP_CREAT are atomic.
1623  *
1624  * If there is a page cache page, it is returned with an increased refcount.
1625  *
1626  * Return: the found page or %NULL otherwise.
1627  */
1628 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1629 	int fgp_flags, gfp_t gfp_mask)
1630 {
1631 	struct page *page;
1632 
1633 repeat:
1634 	page = find_get_entry(mapping, offset);
1635 	if (xa_is_value(page))
1636 		page = NULL;
1637 	if (!page)
1638 		goto no_page;
1639 
1640 	if (fgp_flags & FGP_LOCK) {
1641 		if (fgp_flags & FGP_NOWAIT) {
1642 			if (!trylock_page(page)) {
1643 				put_page(page);
1644 				return NULL;
1645 			}
1646 		} else {
1647 			lock_page(page);
1648 		}
1649 
1650 		/* Has the page been truncated? */
1651 		if (unlikely(compound_head(page)->mapping != mapping)) {
1652 			unlock_page(page);
1653 			put_page(page);
1654 			goto repeat;
1655 		}
1656 		VM_BUG_ON_PAGE(page->index != offset, page);
1657 	}
1658 
1659 	if (fgp_flags & FGP_ACCESSED)
1660 		mark_page_accessed(page);
1661 
1662 no_page:
1663 	if (!page && (fgp_flags & FGP_CREAT)) {
1664 		int err;
1665 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1666 			gfp_mask |= __GFP_WRITE;
1667 		if (fgp_flags & FGP_NOFS)
1668 			gfp_mask &= ~__GFP_FS;
1669 
1670 		page = __page_cache_alloc(gfp_mask);
1671 		if (!page)
1672 			return NULL;
1673 
1674 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1675 			fgp_flags |= FGP_LOCK;
1676 
1677 		/* Init accessed so avoid atomic mark_page_accessed later */
1678 		if (fgp_flags & FGP_ACCESSED)
1679 			__SetPageReferenced(page);
1680 
1681 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1682 		if (unlikely(err)) {
1683 			put_page(page);
1684 			page = NULL;
1685 			if (err == -EEXIST)
1686 				goto repeat;
1687 		}
1688 
1689 		/*
1690 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1691 		 * an unlocked page.
1692 		 */
1693 		if (page && (fgp_flags & FGP_FOR_MMAP))
1694 			unlock_page(page);
1695 	}
1696 
1697 	return page;
1698 }
1699 EXPORT_SYMBOL(pagecache_get_page);
1700 
1701 /**
1702  * find_get_entries - gang pagecache lookup
1703  * @mapping:	The address_space to search
1704  * @start:	The starting page cache index
1705  * @nr_entries:	The maximum number of entries
1706  * @entries:	Where the resulting entries are placed
1707  * @indices:	The cache indices corresponding to the entries in @entries
1708  *
1709  * find_get_entries() will search for and return a group of up to
1710  * @nr_entries entries in the mapping.  The entries are placed at
1711  * @entries.  find_get_entries() takes a reference against any actual
1712  * pages it returns.
1713  *
1714  * The search returns a group of mapping-contiguous page cache entries
1715  * with ascending indexes.  There may be holes in the indices due to
1716  * not-present pages.
1717  *
1718  * Any shadow entries of evicted pages, or swap entries from
1719  * shmem/tmpfs, are included in the returned array.
1720  *
1721  * Return: the number of pages and shadow entries which were found.
1722  */
1723 unsigned find_get_entries(struct address_space *mapping,
1724 			  pgoff_t start, unsigned int nr_entries,
1725 			  struct page **entries, pgoff_t *indices)
1726 {
1727 	XA_STATE(xas, &mapping->i_pages, start);
1728 	struct page *page;
1729 	unsigned int ret = 0;
1730 
1731 	if (!nr_entries)
1732 		return 0;
1733 
1734 	rcu_read_lock();
1735 	xas_for_each(&xas, page, ULONG_MAX) {
1736 		if (xas_retry(&xas, page))
1737 			continue;
1738 		/*
1739 		 * A shadow entry of a recently evicted page, a swap
1740 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1741 		 * without attempting to raise page count.
1742 		 */
1743 		if (xa_is_value(page))
1744 			goto export;
1745 
1746 		if (!page_cache_get_speculative(page))
1747 			goto retry;
1748 
1749 		/* Has the page moved or been split? */
1750 		if (unlikely(page != xas_reload(&xas)))
1751 			goto put_page;
1752 		page = find_subpage(page, xas.xa_index);
1753 
1754 export:
1755 		indices[ret] = xas.xa_index;
1756 		entries[ret] = page;
1757 		if (++ret == nr_entries)
1758 			break;
1759 		continue;
1760 put_page:
1761 		put_page(page);
1762 retry:
1763 		xas_reset(&xas);
1764 	}
1765 	rcu_read_unlock();
1766 	return ret;
1767 }
1768 
1769 /**
1770  * find_get_pages_range - gang pagecache lookup
1771  * @mapping:	The address_space to search
1772  * @start:	The starting page index
1773  * @end:	The final page index (inclusive)
1774  * @nr_pages:	The maximum number of pages
1775  * @pages:	Where the resulting pages are placed
1776  *
1777  * find_get_pages_range() will search for and return a group of up to @nr_pages
1778  * pages in the mapping starting at index @start and up to index @end
1779  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1780  * a reference against the returned pages.
1781  *
1782  * The search returns a group of mapping-contiguous pages with ascending
1783  * indexes.  There may be holes in the indices due to not-present pages.
1784  * We also update @start to index the next page for the traversal.
1785  *
1786  * Return: the number of pages which were found. If this number is
1787  * smaller than @nr_pages, the end of specified range has been
1788  * reached.
1789  */
1790 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1791 			      pgoff_t end, unsigned int nr_pages,
1792 			      struct page **pages)
1793 {
1794 	XA_STATE(xas, &mapping->i_pages, *start);
1795 	struct page *page;
1796 	unsigned ret = 0;
1797 
1798 	if (unlikely(!nr_pages))
1799 		return 0;
1800 
1801 	rcu_read_lock();
1802 	xas_for_each(&xas, page, end) {
1803 		if (xas_retry(&xas, page))
1804 			continue;
1805 		/* Skip over shadow, swap and DAX entries */
1806 		if (xa_is_value(page))
1807 			continue;
1808 
1809 		if (!page_cache_get_speculative(page))
1810 			goto retry;
1811 
1812 		/* Has the page moved or been split? */
1813 		if (unlikely(page != xas_reload(&xas)))
1814 			goto put_page;
1815 
1816 		pages[ret] = find_subpage(page, xas.xa_index);
1817 		if (++ret == nr_pages) {
1818 			*start = xas.xa_index + 1;
1819 			goto out;
1820 		}
1821 		continue;
1822 put_page:
1823 		put_page(page);
1824 retry:
1825 		xas_reset(&xas);
1826 	}
1827 
1828 	/*
1829 	 * We come here when there is no page beyond @end. We take care to not
1830 	 * overflow the index @start as it confuses some of the callers. This
1831 	 * breaks the iteration when there is a page at index -1 but that is
1832 	 * already broken anyway.
1833 	 */
1834 	if (end == (pgoff_t)-1)
1835 		*start = (pgoff_t)-1;
1836 	else
1837 		*start = end + 1;
1838 out:
1839 	rcu_read_unlock();
1840 
1841 	return ret;
1842 }
1843 
1844 /**
1845  * find_get_pages_contig - gang contiguous pagecache lookup
1846  * @mapping:	The address_space to search
1847  * @index:	The starting page index
1848  * @nr_pages:	The maximum number of pages
1849  * @pages:	Where the resulting pages are placed
1850  *
1851  * find_get_pages_contig() works exactly like find_get_pages(), except
1852  * that the returned number of pages are guaranteed to be contiguous.
1853  *
1854  * Return: the number of pages which were found.
1855  */
1856 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1857 			       unsigned int nr_pages, struct page **pages)
1858 {
1859 	XA_STATE(xas, &mapping->i_pages, index);
1860 	struct page *page;
1861 	unsigned int ret = 0;
1862 
1863 	if (unlikely(!nr_pages))
1864 		return 0;
1865 
1866 	rcu_read_lock();
1867 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1868 		if (xas_retry(&xas, page))
1869 			continue;
1870 		/*
1871 		 * If the entry has been swapped out, we can stop looking.
1872 		 * No current caller is looking for DAX entries.
1873 		 */
1874 		if (xa_is_value(page))
1875 			break;
1876 
1877 		if (!page_cache_get_speculative(page))
1878 			goto retry;
1879 
1880 		/* Has the page moved or been split? */
1881 		if (unlikely(page != xas_reload(&xas)))
1882 			goto put_page;
1883 
1884 		pages[ret] = find_subpage(page, xas.xa_index);
1885 		if (++ret == nr_pages)
1886 			break;
1887 		continue;
1888 put_page:
1889 		put_page(page);
1890 retry:
1891 		xas_reset(&xas);
1892 	}
1893 	rcu_read_unlock();
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL(find_get_pages_contig);
1897 
1898 /**
1899  * find_get_pages_range_tag - find and return pages in given range matching @tag
1900  * @mapping:	the address_space to search
1901  * @index:	the starting page index
1902  * @end:	The final page index (inclusive)
1903  * @tag:	the tag index
1904  * @nr_pages:	the maximum number of pages
1905  * @pages:	where the resulting pages are placed
1906  *
1907  * Like find_get_pages, except we only return pages which are tagged with
1908  * @tag.   We update @index to index the next page for the traversal.
1909  *
1910  * Return: the number of pages which were found.
1911  */
1912 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1913 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1914 			struct page **pages)
1915 {
1916 	XA_STATE(xas, &mapping->i_pages, *index);
1917 	struct page *page;
1918 	unsigned ret = 0;
1919 
1920 	if (unlikely(!nr_pages))
1921 		return 0;
1922 
1923 	rcu_read_lock();
1924 	xas_for_each_marked(&xas, page, end, tag) {
1925 		if (xas_retry(&xas, page))
1926 			continue;
1927 		/*
1928 		 * Shadow entries should never be tagged, but this iteration
1929 		 * is lockless so there is a window for page reclaim to evict
1930 		 * a page we saw tagged.  Skip over it.
1931 		 */
1932 		if (xa_is_value(page))
1933 			continue;
1934 
1935 		if (!page_cache_get_speculative(page))
1936 			goto retry;
1937 
1938 		/* Has the page moved or been split? */
1939 		if (unlikely(page != xas_reload(&xas)))
1940 			goto put_page;
1941 
1942 		pages[ret] = find_subpage(page, xas.xa_index);
1943 		if (++ret == nr_pages) {
1944 			*index = xas.xa_index + 1;
1945 			goto out;
1946 		}
1947 		continue;
1948 put_page:
1949 		put_page(page);
1950 retry:
1951 		xas_reset(&xas);
1952 	}
1953 
1954 	/*
1955 	 * We come here when we got to @end. We take care to not overflow the
1956 	 * index @index as it confuses some of the callers. This breaks the
1957 	 * iteration when there is a page at index -1 but that is already
1958 	 * broken anyway.
1959 	 */
1960 	if (end == (pgoff_t)-1)
1961 		*index = (pgoff_t)-1;
1962 	else
1963 		*index = end + 1;
1964 out:
1965 	rcu_read_unlock();
1966 
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL(find_get_pages_range_tag);
1970 
1971 /*
1972  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1973  * a _large_ part of the i/o request. Imagine the worst scenario:
1974  *
1975  *      ---R__________________________________________B__________
1976  *         ^ reading here                             ^ bad block(assume 4k)
1977  *
1978  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1979  * => failing the whole request => read(R) => read(R+1) =>
1980  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1981  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1982  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1983  *
1984  * It is going insane. Fix it by quickly scaling down the readahead size.
1985  */
1986 static void shrink_readahead_size_eio(struct file *filp,
1987 					struct file_ra_state *ra)
1988 {
1989 	ra->ra_pages /= 4;
1990 }
1991 
1992 /**
1993  * generic_file_buffered_read - generic file read routine
1994  * @iocb:	the iocb to read
1995  * @iter:	data destination
1996  * @written:	already copied
1997  *
1998  * This is a generic file read routine, and uses the
1999  * mapping->a_ops->readpage() function for the actual low-level stuff.
2000  *
2001  * This is really ugly. But the goto's actually try to clarify some
2002  * of the logic when it comes to error handling etc.
2003  *
2004  * Return:
2005  * * total number of bytes copied, including those the were already @written
2006  * * negative error code if nothing was copied
2007  */
2008 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2009 		struct iov_iter *iter, ssize_t written)
2010 {
2011 	struct file *filp = iocb->ki_filp;
2012 	struct address_space *mapping = filp->f_mapping;
2013 	struct inode *inode = mapping->host;
2014 	struct file_ra_state *ra = &filp->f_ra;
2015 	loff_t *ppos = &iocb->ki_pos;
2016 	pgoff_t index;
2017 	pgoff_t last_index;
2018 	pgoff_t prev_index;
2019 	unsigned long offset;      /* offset into pagecache page */
2020 	unsigned int prev_offset;
2021 	int error = 0;
2022 
2023 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2024 		return 0;
2025 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2026 
2027 	index = *ppos >> PAGE_SHIFT;
2028 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2029 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2030 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2031 	offset = *ppos & ~PAGE_MASK;
2032 
2033 	for (;;) {
2034 		struct page *page;
2035 		pgoff_t end_index;
2036 		loff_t isize;
2037 		unsigned long nr, ret;
2038 
2039 		cond_resched();
2040 find_page:
2041 		if (fatal_signal_pending(current)) {
2042 			error = -EINTR;
2043 			goto out;
2044 		}
2045 
2046 		page = find_get_page(mapping, index);
2047 		if (!page) {
2048 			if (iocb->ki_flags & IOCB_NOWAIT)
2049 				goto would_block;
2050 			page_cache_sync_readahead(mapping,
2051 					ra, filp,
2052 					index, last_index - index);
2053 			page = find_get_page(mapping, index);
2054 			if (unlikely(page == NULL))
2055 				goto no_cached_page;
2056 		}
2057 		if (PageReadahead(page)) {
2058 			page_cache_async_readahead(mapping,
2059 					ra, filp, page,
2060 					index, last_index - index);
2061 		}
2062 		if (!PageUptodate(page)) {
2063 			if (iocb->ki_flags & IOCB_NOWAIT) {
2064 				put_page(page);
2065 				goto would_block;
2066 			}
2067 
2068 			/*
2069 			 * See comment in do_read_cache_page on why
2070 			 * wait_on_page_locked is used to avoid unnecessarily
2071 			 * serialisations and why it's safe.
2072 			 */
2073 			error = wait_on_page_locked_killable(page);
2074 			if (unlikely(error))
2075 				goto readpage_error;
2076 			if (PageUptodate(page))
2077 				goto page_ok;
2078 
2079 			if (inode->i_blkbits == PAGE_SHIFT ||
2080 					!mapping->a_ops->is_partially_uptodate)
2081 				goto page_not_up_to_date;
2082 			/* pipes can't handle partially uptodate pages */
2083 			if (unlikely(iov_iter_is_pipe(iter)))
2084 				goto page_not_up_to_date;
2085 			if (!trylock_page(page))
2086 				goto page_not_up_to_date;
2087 			/* Did it get truncated before we got the lock? */
2088 			if (!page->mapping)
2089 				goto page_not_up_to_date_locked;
2090 			if (!mapping->a_ops->is_partially_uptodate(page,
2091 							offset, iter->count))
2092 				goto page_not_up_to_date_locked;
2093 			unlock_page(page);
2094 		}
2095 page_ok:
2096 		/*
2097 		 * i_size must be checked after we know the page is Uptodate.
2098 		 *
2099 		 * Checking i_size after the check allows us to calculate
2100 		 * the correct value for "nr", which means the zero-filled
2101 		 * part of the page is not copied back to userspace (unless
2102 		 * another truncate extends the file - this is desired though).
2103 		 */
2104 
2105 		isize = i_size_read(inode);
2106 		end_index = (isize - 1) >> PAGE_SHIFT;
2107 		if (unlikely(!isize || index > end_index)) {
2108 			put_page(page);
2109 			goto out;
2110 		}
2111 
2112 		/* nr is the maximum number of bytes to copy from this page */
2113 		nr = PAGE_SIZE;
2114 		if (index == end_index) {
2115 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2116 			if (nr <= offset) {
2117 				put_page(page);
2118 				goto out;
2119 			}
2120 		}
2121 		nr = nr - offset;
2122 
2123 		/* If users can be writing to this page using arbitrary
2124 		 * virtual addresses, take care about potential aliasing
2125 		 * before reading the page on the kernel side.
2126 		 */
2127 		if (mapping_writably_mapped(mapping))
2128 			flush_dcache_page(page);
2129 
2130 		/*
2131 		 * When a sequential read accesses a page several times,
2132 		 * only mark it as accessed the first time.
2133 		 */
2134 		if (prev_index != index || offset != prev_offset)
2135 			mark_page_accessed(page);
2136 		prev_index = index;
2137 
2138 		/*
2139 		 * Ok, we have the page, and it's up-to-date, so
2140 		 * now we can copy it to user space...
2141 		 */
2142 
2143 		ret = copy_page_to_iter(page, offset, nr, iter);
2144 		offset += ret;
2145 		index += offset >> PAGE_SHIFT;
2146 		offset &= ~PAGE_MASK;
2147 		prev_offset = offset;
2148 
2149 		put_page(page);
2150 		written += ret;
2151 		if (!iov_iter_count(iter))
2152 			goto out;
2153 		if (ret < nr) {
2154 			error = -EFAULT;
2155 			goto out;
2156 		}
2157 		continue;
2158 
2159 page_not_up_to_date:
2160 		/* Get exclusive access to the page ... */
2161 		error = lock_page_killable(page);
2162 		if (unlikely(error))
2163 			goto readpage_error;
2164 
2165 page_not_up_to_date_locked:
2166 		/* Did it get truncated before we got the lock? */
2167 		if (!page->mapping) {
2168 			unlock_page(page);
2169 			put_page(page);
2170 			continue;
2171 		}
2172 
2173 		/* Did somebody else fill it already? */
2174 		if (PageUptodate(page)) {
2175 			unlock_page(page);
2176 			goto page_ok;
2177 		}
2178 
2179 readpage:
2180 		/*
2181 		 * A previous I/O error may have been due to temporary
2182 		 * failures, eg. multipath errors.
2183 		 * PG_error will be set again if readpage fails.
2184 		 */
2185 		ClearPageError(page);
2186 		/* Start the actual read. The read will unlock the page. */
2187 		error = mapping->a_ops->readpage(filp, page);
2188 
2189 		if (unlikely(error)) {
2190 			if (error == AOP_TRUNCATED_PAGE) {
2191 				put_page(page);
2192 				error = 0;
2193 				goto find_page;
2194 			}
2195 			goto readpage_error;
2196 		}
2197 
2198 		if (!PageUptodate(page)) {
2199 			error = lock_page_killable(page);
2200 			if (unlikely(error))
2201 				goto readpage_error;
2202 			if (!PageUptodate(page)) {
2203 				if (page->mapping == NULL) {
2204 					/*
2205 					 * invalidate_mapping_pages got it
2206 					 */
2207 					unlock_page(page);
2208 					put_page(page);
2209 					goto find_page;
2210 				}
2211 				unlock_page(page);
2212 				shrink_readahead_size_eio(filp, ra);
2213 				error = -EIO;
2214 				goto readpage_error;
2215 			}
2216 			unlock_page(page);
2217 		}
2218 
2219 		goto page_ok;
2220 
2221 readpage_error:
2222 		/* UHHUH! A synchronous read error occurred. Report it */
2223 		put_page(page);
2224 		goto out;
2225 
2226 no_cached_page:
2227 		/*
2228 		 * Ok, it wasn't cached, so we need to create a new
2229 		 * page..
2230 		 */
2231 		page = page_cache_alloc(mapping);
2232 		if (!page) {
2233 			error = -ENOMEM;
2234 			goto out;
2235 		}
2236 		error = add_to_page_cache_lru(page, mapping, index,
2237 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2238 		if (error) {
2239 			put_page(page);
2240 			if (error == -EEXIST) {
2241 				error = 0;
2242 				goto find_page;
2243 			}
2244 			goto out;
2245 		}
2246 		goto readpage;
2247 	}
2248 
2249 would_block:
2250 	error = -EAGAIN;
2251 out:
2252 	ra->prev_pos = prev_index;
2253 	ra->prev_pos <<= PAGE_SHIFT;
2254 	ra->prev_pos |= prev_offset;
2255 
2256 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2257 	file_accessed(filp);
2258 	return written ? written : error;
2259 }
2260 
2261 /**
2262  * generic_file_read_iter - generic filesystem read routine
2263  * @iocb:	kernel I/O control block
2264  * @iter:	destination for the data read
2265  *
2266  * This is the "read_iter()" routine for all filesystems
2267  * that can use the page cache directly.
2268  * Return:
2269  * * number of bytes copied, even for partial reads
2270  * * negative error code if nothing was read
2271  */
2272 ssize_t
2273 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2274 {
2275 	size_t count = iov_iter_count(iter);
2276 	ssize_t retval = 0;
2277 
2278 	if (!count)
2279 		goto out; /* skip atime */
2280 
2281 	if (iocb->ki_flags & IOCB_DIRECT) {
2282 		struct file *file = iocb->ki_filp;
2283 		struct address_space *mapping = file->f_mapping;
2284 		struct inode *inode = mapping->host;
2285 		loff_t size;
2286 
2287 		size = i_size_read(inode);
2288 		if (iocb->ki_flags & IOCB_NOWAIT) {
2289 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2290 						   iocb->ki_pos + count - 1))
2291 				return -EAGAIN;
2292 		} else {
2293 			retval = filemap_write_and_wait_range(mapping,
2294 						iocb->ki_pos,
2295 					        iocb->ki_pos + count - 1);
2296 			if (retval < 0)
2297 				goto out;
2298 		}
2299 
2300 		file_accessed(file);
2301 
2302 		retval = mapping->a_ops->direct_IO(iocb, iter);
2303 		if (retval >= 0) {
2304 			iocb->ki_pos += retval;
2305 			count -= retval;
2306 		}
2307 		iov_iter_revert(iter, count - iov_iter_count(iter));
2308 
2309 		/*
2310 		 * Btrfs can have a short DIO read if we encounter
2311 		 * compressed extents, so if there was an error, or if
2312 		 * we've already read everything we wanted to, or if
2313 		 * there was a short read because we hit EOF, go ahead
2314 		 * and return.  Otherwise fallthrough to buffered io for
2315 		 * the rest of the read.  Buffered reads will not work for
2316 		 * DAX files, so don't bother trying.
2317 		 */
2318 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2319 		    IS_DAX(inode))
2320 			goto out;
2321 	}
2322 
2323 	retval = generic_file_buffered_read(iocb, iter, retval);
2324 out:
2325 	return retval;
2326 }
2327 EXPORT_SYMBOL(generic_file_read_iter);
2328 
2329 #ifdef CONFIG_MMU
2330 #define MMAP_LOTSAMISS  (100)
2331 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2332 					     struct file *fpin)
2333 {
2334 	int flags = vmf->flags;
2335 
2336 	if (fpin)
2337 		return fpin;
2338 
2339 	/*
2340 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2341 	 * anything, so we only pin the file and drop the mmap_sem if only
2342 	 * FAULT_FLAG_ALLOW_RETRY is set.
2343 	 */
2344 	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2345 	    FAULT_FLAG_ALLOW_RETRY) {
2346 		fpin = get_file(vmf->vma->vm_file);
2347 		up_read(&vmf->vma->vm_mm->mmap_sem);
2348 	}
2349 	return fpin;
2350 }
2351 
2352 /*
2353  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2354  * @vmf - the vm_fault for this fault.
2355  * @page - the page to lock.
2356  * @fpin - the pointer to the file we may pin (or is already pinned).
2357  *
2358  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2359  * It differs in that it actually returns the page locked if it returns 1 and 0
2360  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2361  * will point to the pinned file and needs to be fput()'ed at a later point.
2362  */
2363 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2364 				     struct file **fpin)
2365 {
2366 	if (trylock_page(page))
2367 		return 1;
2368 
2369 	/*
2370 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2371 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2372 	 * is supposed to work. We have way too many special cases..
2373 	 */
2374 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2375 		return 0;
2376 
2377 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2378 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2379 		if (__lock_page_killable(page)) {
2380 			/*
2381 			 * We didn't have the right flags to drop the mmap_sem,
2382 			 * but all fault_handlers only check for fatal signals
2383 			 * if we return VM_FAULT_RETRY, so we need to drop the
2384 			 * mmap_sem here and return 0 if we don't have a fpin.
2385 			 */
2386 			if (*fpin == NULL)
2387 				up_read(&vmf->vma->vm_mm->mmap_sem);
2388 			return 0;
2389 		}
2390 	} else
2391 		__lock_page(page);
2392 	return 1;
2393 }
2394 
2395 
2396 /*
2397  * Synchronous readahead happens when we don't even find a page in the page
2398  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2399  * to drop the mmap sem we return the file that was pinned in order for us to do
2400  * that.  If we didn't pin a file then we return NULL.  The file that is
2401  * returned needs to be fput()'ed when we're done with it.
2402  */
2403 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2404 {
2405 	struct file *file = vmf->vma->vm_file;
2406 	struct file_ra_state *ra = &file->f_ra;
2407 	struct address_space *mapping = file->f_mapping;
2408 	struct file *fpin = NULL;
2409 	pgoff_t offset = vmf->pgoff;
2410 
2411 	/* If we don't want any read-ahead, don't bother */
2412 	if (vmf->vma->vm_flags & VM_RAND_READ)
2413 		return fpin;
2414 	if (!ra->ra_pages)
2415 		return fpin;
2416 
2417 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2418 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2419 		page_cache_sync_readahead(mapping, ra, file, offset,
2420 					  ra->ra_pages);
2421 		return fpin;
2422 	}
2423 
2424 	/* Avoid banging the cache line if not needed */
2425 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2426 		ra->mmap_miss++;
2427 
2428 	/*
2429 	 * Do we miss much more than hit in this file? If so,
2430 	 * stop bothering with read-ahead. It will only hurt.
2431 	 */
2432 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2433 		return fpin;
2434 
2435 	/*
2436 	 * mmap read-around
2437 	 */
2438 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2439 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2440 	ra->size = ra->ra_pages;
2441 	ra->async_size = ra->ra_pages / 4;
2442 	ra_submit(ra, mapping, file);
2443 	return fpin;
2444 }
2445 
2446 /*
2447  * Asynchronous readahead happens when we find the page and PG_readahead,
2448  * so we want to possibly extend the readahead further.  We return the file that
2449  * was pinned if we have to drop the mmap_sem in order to do IO.
2450  */
2451 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2452 					    struct page *page)
2453 {
2454 	struct file *file = vmf->vma->vm_file;
2455 	struct file_ra_state *ra = &file->f_ra;
2456 	struct address_space *mapping = file->f_mapping;
2457 	struct file *fpin = NULL;
2458 	pgoff_t offset = vmf->pgoff;
2459 
2460 	/* If we don't want any read-ahead, don't bother */
2461 	if (vmf->vma->vm_flags & VM_RAND_READ)
2462 		return fpin;
2463 	if (ra->mmap_miss > 0)
2464 		ra->mmap_miss--;
2465 	if (PageReadahead(page)) {
2466 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2467 		page_cache_async_readahead(mapping, ra, file,
2468 					   page, offset, ra->ra_pages);
2469 	}
2470 	return fpin;
2471 }
2472 
2473 /**
2474  * filemap_fault - read in file data for page fault handling
2475  * @vmf:	struct vm_fault containing details of the fault
2476  *
2477  * filemap_fault() is invoked via the vma operations vector for a
2478  * mapped memory region to read in file data during a page fault.
2479  *
2480  * The goto's are kind of ugly, but this streamlines the normal case of having
2481  * it in the page cache, and handles the special cases reasonably without
2482  * having a lot of duplicated code.
2483  *
2484  * vma->vm_mm->mmap_sem must be held on entry.
2485  *
2486  * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2487  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2488  *
2489  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2490  * has not been released.
2491  *
2492  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2493  *
2494  * Return: bitwise-OR of %VM_FAULT_ codes.
2495  */
2496 vm_fault_t filemap_fault(struct vm_fault *vmf)
2497 {
2498 	int error;
2499 	struct file *file = vmf->vma->vm_file;
2500 	struct file *fpin = NULL;
2501 	struct address_space *mapping = file->f_mapping;
2502 	struct file_ra_state *ra = &file->f_ra;
2503 	struct inode *inode = mapping->host;
2504 	pgoff_t offset = vmf->pgoff;
2505 	pgoff_t max_off;
2506 	struct page *page;
2507 	vm_fault_t ret = 0;
2508 
2509 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2510 	if (unlikely(offset >= max_off))
2511 		return VM_FAULT_SIGBUS;
2512 
2513 	/*
2514 	 * Do we have something in the page cache already?
2515 	 */
2516 	page = find_get_page(mapping, offset);
2517 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2518 		/*
2519 		 * We found the page, so try async readahead before
2520 		 * waiting for the lock.
2521 		 */
2522 		fpin = do_async_mmap_readahead(vmf, page);
2523 	} else if (!page) {
2524 		/* No page in the page cache at all */
2525 		count_vm_event(PGMAJFAULT);
2526 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2527 		ret = VM_FAULT_MAJOR;
2528 		fpin = do_sync_mmap_readahead(vmf);
2529 retry_find:
2530 		page = pagecache_get_page(mapping, offset,
2531 					  FGP_CREAT|FGP_FOR_MMAP,
2532 					  vmf->gfp_mask);
2533 		if (!page) {
2534 			if (fpin)
2535 				goto out_retry;
2536 			return vmf_error(-ENOMEM);
2537 		}
2538 	}
2539 
2540 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2541 		goto out_retry;
2542 
2543 	/* Did it get truncated? */
2544 	if (unlikely(compound_head(page)->mapping != mapping)) {
2545 		unlock_page(page);
2546 		put_page(page);
2547 		goto retry_find;
2548 	}
2549 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2550 
2551 	/*
2552 	 * We have a locked page in the page cache, now we need to check
2553 	 * that it's up-to-date. If not, it is going to be due to an error.
2554 	 */
2555 	if (unlikely(!PageUptodate(page)))
2556 		goto page_not_uptodate;
2557 
2558 	/*
2559 	 * We've made it this far and we had to drop our mmap_sem, now is the
2560 	 * time to return to the upper layer and have it re-find the vma and
2561 	 * redo the fault.
2562 	 */
2563 	if (fpin) {
2564 		unlock_page(page);
2565 		goto out_retry;
2566 	}
2567 
2568 	/*
2569 	 * Found the page and have a reference on it.
2570 	 * We must recheck i_size under page lock.
2571 	 */
2572 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2573 	if (unlikely(offset >= max_off)) {
2574 		unlock_page(page);
2575 		put_page(page);
2576 		return VM_FAULT_SIGBUS;
2577 	}
2578 
2579 	vmf->page = page;
2580 	return ret | VM_FAULT_LOCKED;
2581 
2582 page_not_uptodate:
2583 	/*
2584 	 * Umm, take care of errors if the page isn't up-to-date.
2585 	 * Try to re-read it _once_. We do this synchronously,
2586 	 * because there really aren't any performance issues here
2587 	 * and we need to check for errors.
2588 	 */
2589 	ClearPageError(page);
2590 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2591 	error = mapping->a_ops->readpage(file, page);
2592 	if (!error) {
2593 		wait_on_page_locked(page);
2594 		if (!PageUptodate(page))
2595 			error = -EIO;
2596 	}
2597 	if (fpin)
2598 		goto out_retry;
2599 	put_page(page);
2600 
2601 	if (!error || error == AOP_TRUNCATED_PAGE)
2602 		goto retry_find;
2603 
2604 	/* Things didn't work out. Return zero to tell the mm layer so. */
2605 	shrink_readahead_size_eio(file, ra);
2606 	return VM_FAULT_SIGBUS;
2607 
2608 out_retry:
2609 	/*
2610 	 * We dropped the mmap_sem, we need to return to the fault handler to
2611 	 * re-find the vma and come back and find our hopefully still populated
2612 	 * page.
2613 	 */
2614 	if (page)
2615 		put_page(page);
2616 	if (fpin)
2617 		fput(fpin);
2618 	return ret | VM_FAULT_RETRY;
2619 }
2620 EXPORT_SYMBOL(filemap_fault);
2621 
2622 void filemap_map_pages(struct vm_fault *vmf,
2623 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2624 {
2625 	struct file *file = vmf->vma->vm_file;
2626 	struct address_space *mapping = file->f_mapping;
2627 	pgoff_t last_pgoff = start_pgoff;
2628 	unsigned long max_idx;
2629 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2630 	struct page *page;
2631 
2632 	rcu_read_lock();
2633 	xas_for_each(&xas, page, end_pgoff) {
2634 		if (xas_retry(&xas, page))
2635 			continue;
2636 		if (xa_is_value(page))
2637 			goto next;
2638 
2639 		/*
2640 		 * Check for a locked page first, as a speculative
2641 		 * reference may adversely influence page migration.
2642 		 */
2643 		if (PageLocked(page))
2644 			goto next;
2645 		if (!page_cache_get_speculative(page))
2646 			goto next;
2647 
2648 		/* Has the page moved or been split? */
2649 		if (unlikely(page != xas_reload(&xas)))
2650 			goto skip;
2651 		page = find_subpage(page, xas.xa_index);
2652 
2653 		if (!PageUptodate(page) ||
2654 				PageReadahead(page) ||
2655 				PageHWPoison(page))
2656 			goto skip;
2657 		if (!trylock_page(page))
2658 			goto skip;
2659 
2660 		if (page->mapping != mapping || !PageUptodate(page))
2661 			goto unlock;
2662 
2663 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2664 		if (page->index >= max_idx)
2665 			goto unlock;
2666 
2667 		if (file->f_ra.mmap_miss > 0)
2668 			file->f_ra.mmap_miss--;
2669 
2670 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2671 		if (vmf->pte)
2672 			vmf->pte += xas.xa_index - last_pgoff;
2673 		last_pgoff = xas.xa_index;
2674 		if (alloc_set_pte(vmf, NULL, page))
2675 			goto unlock;
2676 		unlock_page(page);
2677 		goto next;
2678 unlock:
2679 		unlock_page(page);
2680 skip:
2681 		put_page(page);
2682 next:
2683 		/* Huge page is mapped? No need to proceed. */
2684 		if (pmd_trans_huge(*vmf->pmd))
2685 			break;
2686 	}
2687 	rcu_read_unlock();
2688 }
2689 EXPORT_SYMBOL(filemap_map_pages);
2690 
2691 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2692 {
2693 	struct page *page = vmf->page;
2694 	struct inode *inode = file_inode(vmf->vma->vm_file);
2695 	vm_fault_t ret = VM_FAULT_LOCKED;
2696 
2697 	sb_start_pagefault(inode->i_sb);
2698 	file_update_time(vmf->vma->vm_file);
2699 	lock_page(page);
2700 	if (page->mapping != inode->i_mapping) {
2701 		unlock_page(page);
2702 		ret = VM_FAULT_NOPAGE;
2703 		goto out;
2704 	}
2705 	/*
2706 	 * We mark the page dirty already here so that when freeze is in
2707 	 * progress, we are guaranteed that writeback during freezing will
2708 	 * see the dirty page and writeprotect it again.
2709 	 */
2710 	set_page_dirty(page);
2711 	wait_for_stable_page(page);
2712 out:
2713 	sb_end_pagefault(inode->i_sb);
2714 	return ret;
2715 }
2716 
2717 const struct vm_operations_struct generic_file_vm_ops = {
2718 	.fault		= filemap_fault,
2719 	.map_pages	= filemap_map_pages,
2720 	.page_mkwrite	= filemap_page_mkwrite,
2721 };
2722 
2723 /* This is used for a general mmap of a disk file */
2724 
2725 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2726 {
2727 	struct address_space *mapping = file->f_mapping;
2728 
2729 	if (!mapping->a_ops->readpage)
2730 		return -ENOEXEC;
2731 	file_accessed(file);
2732 	vma->vm_ops = &generic_file_vm_ops;
2733 	return 0;
2734 }
2735 
2736 /*
2737  * This is for filesystems which do not implement ->writepage.
2738  */
2739 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2740 {
2741 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2742 		return -EINVAL;
2743 	return generic_file_mmap(file, vma);
2744 }
2745 #else
2746 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2747 {
2748 	return VM_FAULT_SIGBUS;
2749 }
2750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2751 {
2752 	return -ENOSYS;
2753 }
2754 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2755 {
2756 	return -ENOSYS;
2757 }
2758 #endif /* CONFIG_MMU */
2759 
2760 EXPORT_SYMBOL(filemap_page_mkwrite);
2761 EXPORT_SYMBOL(generic_file_mmap);
2762 EXPORT_SYMBOL(generic_file_readonly_mmap);
2763 
2764 static struct page *wait_on_page_read(struct page *page)
2765 {
2766 	if (!IS_ERR(page)) {
2767 		wait_on_page_locked(page);
2768 		if (!PageUptodate(page)) {
2769 			put_page(page);
2770 			page = ERR_PTR(-EIO);
2771 		}
2772 	}
2773 	return page;
2774 }
2775 
2776 static struct page *do_read_cache_page(struct address_space *mapping,
2777 				pgoff_t index,
2778 				int (*filler)(void *, struct page *),
2779 				void *data,
2780 				gfp_t gfp)
2781 {
2782 	struct page *page;
2783 	int err;
2784 repeat:
2785 	page = find_get_page(mapping, index);
2786 	if (!page) {
2787 		page = __page_cache_alloc(gfp);
2788 		if (!page)
2789 			return ERR_PTR(-ENOMEM);
2790 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2791 		if (unlikely(err)) {
2792 			put_page(page);
2793 			if (err == -EEXIST)
2794 				goto repeat;
2795 			/* Presumably ENOMEM for xarray node */
2796 			return ERR_PTR(err);
2797 		}
2798 
2799 filler:
2800 		if (filler)
2801 			err = filler(data, page);
2802 		else
2803 			err = mapping->a_ops->readpage(data, page);
2804 
2805 		if (err < 0) {
2806 			put_page(page);
2807 			return ERR_PTR(err);
2808 		}
2809 
2810 		page = wait_on_page_read(page);
2811 		if (IS_ERR(page))
2812 			return page;
2813 		goto out;
2814 	}
2815 	if (PageUptodate(page))
2816 		goto out;
2817 
2818 	/*
2819 	 * Page is not up to date and may be locked due one of the following
2820 	 * case a: Page is being filled and the page lock is held
2821 	 * case b: Read/write error clearing the page uptodate status
2822 	 * case c: Truncation in progress (page locked)
2823 	 * case d: Reclaim in progress
2824 	 *
2825 	 * Case a, the page will be up to date when the page is unlocked.
2826 	 *    There is no need to serialise on the page lock here as the page
2827 	 *    is pinned so the lock gives no additional protection. Even if the
2828 	 *    the page is truncated, the data is still valid if PageUptodate as
2829 	 *    it's a race vs truncate race.
2830 	 * Case b, the page will not be up to date
2831 	 * Case c, the page may be truncated but in itself, the data may still
2832 	 *    be valid after IO completes as it's a read vs truncate race. The
2833 	 *    operation must restart if the page is not uptodate on unlock but
2834 	 *    otherwise serialising on page lock to stabilise the mapping gives
2835 	 *    no additional guarantees to the caller as the page lock is
2836 	 *    released before return.
2837 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2838 	 *    will be a race with remove_mapping that determines if the mapping
2839 	 *    is valid on unlock but otherwise the data is valid and there is
2840 	 *    no need to serialise with page lock.
2841 	 *
2842 	 * As the page lock gives no additional guarantee, we optimistically
2843 	 * wait on the page to be unlocked and check if it's up to date and
2844 	 * use the page if it is. Otherwise, the page lock is required to
2845 	 * distinguish between the different cases. The motivation is that we
2846 	 * avoid spurious serialisations and wakeups when multiple processes
2847 	 * wait on the same page for IO to complete.
2848 	 */
2849 	wait_on_page_locked(page);
2850 	if (PageUptodate(page))
2851 		goto out;
2852 
2853 	/* Distinguish between all the cases under the safety of the lock */
2854 	lock_page(page);
2855 
2856 	/* Case c or d, restart the operation */
2857 	if (!page->mapping) {
2858 		unlock_page(page);
2859 		put_page(page);
2860 		goto repeat;
2861 	}
2862 
2863 	/* Someone else locked and filled the page in a very small window */
2864 	if (PageUptodate(page)) {
2865 		unlock_page(page);
2866 		goto out;
2867 	}
2868 	goto filler;
2869 
2870 out:
2871 	mark_page_accessed(page);
2872 	return page;
2873 }
2874 
2875 /**
2876  * read_cache_page - read into page cache, fill it if needed
2877  * @mapping:	the page's address_space
2878  * @index:	the page index
2879  * @filler:	function to perform the read
2880  * @data:	first arg to filler(data, page) function, often left as NULL
2881  *
2882  * Read into the page cache. If a page already exists, and PageUptodate() is
2883  * not set, try to fill the page and wait for it to become unlocked.
2884  *
2885  * If the page does not get brought uptodate, return -EIO.
2886  *
2887  * Return: up to date page on success, ERR_PTR() on failure.
2888  */
2889 struct page *read_cache_page(struct address_space *mapping,
2890 				pgoff_t index,
2891 				int (*filler)(void *, struct page *),
2892 				void *data)
2893 {
2894 	return do_read_cache_page(mapping, index, filler, data,
2895 			mapping_gfp_mask(mapping));
2896 }
2897 EXPORT_SYMBOL(read_cache_page);
2898 
2899 /**
2900  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2901  * @mapping:	the page's address_space
2902  * @index:	the page index
2903  * @gfp:	the page allocator flags to use if allocating
2904  *
2905  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2906  * any new page allocations done using the specified allocation flags.
2907  *
2908  * If the page does not get brought uptodate, return -EIO.
2909  *
2910  * Return: up to date page on success, ERR_PTR() on failure.
2911  */
2912 struct page *read_cache_page_gfp(struct address_space *mapping,
2913 				pgoff_t index,
2914 				gfp_t gfp)
2915 {
2916 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2917 }
2918 EXPORT_SYMBOL(read_cache_page_gfp);
2919 
2920 /*
2921  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2922  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2923  * exceeds the limit we return -EFBIG.
2924  */
2925 static int generic_write_check_limits(struct file *file, loff_t pos,
2926 				      loff_t *count)
2927 {
2928 	struct inode *inode = file->f_mapping->host;
2929 	loff_t max_size = inode->i_sb->s_maxbytes;
2930 	loff_t limit = rlimit(RLIMIT_FSIZE);
2931 
2932 	if (limit != RLIM_INFINITY) {
2933 		if (pos >= limit) {
2934 			send_sig(SIGXFSZ, current, 0);
2935 			return -EFBIG;
2936 		}
2937 		*count = min(*count, limit - pos);
2938 	}
2939 
2940 	if (!(file->f_flags & O_LARGEFILE))
2941 		max_size = MAX_NON_LFS;
2942 
2943 	if (unlikely(pos >= max_size))
2944 		return -EFBIG;
2945 
2946 	*count = min(*count, max_size - pos);
2947 
2948 	return 0;
2949 }
2950 
2951 /*
2952  * Performs necessary checks before doing a write
2953  *
2954  * Can adjust writing position or amount of bytes to write.
2955  * Returns appropriate error code that caller should return or
2956  * zero in case that write should be allowed.
2957  */
2958 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2959 {
2960 	struct file *file = iocb->ki_filp;
2961 	struct inode *inode = file->f_mapping->host;
2962 	loff_t count;
2963 	int ret;
2964 
2965 	if (IS_SWAPFILE(inode))
2966 		return -ETXTBSY;
2967 
2968 	if (!iov_iter_count(from))
2969 		return 0;
2970 
2971 	/* FIXME: this is for backwards compatibility with 2.4 */
2972 	if (iocb->ki_flags & IOCB_APPEND)
2973 		iocb->ki_pos = i_size_read(inode);
2974 
2975 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2976 		return -EINVAL;
2977 
2978 	count = iov_iter_count(from);
2979 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2980 	if (ret)
2981 		return ret;
2982 
2983 	iov_iter_truncate(from, count);
2984 	return iov_iter_count(from);
2985 }
2986 EXPORT_SYMBOL(generic_write_checks);
2987 
2988 /*
2989  * Performs necessary checks before doing a clone.
2990  *
2991  * Can adjust amount of bytes to clone via @req_count argument.
2992  * Returns appropriate error code that caller should return or
2993  * zero in case the clone should be allowed.
2994  */
2995 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2996 			 struct file *file_out, loff_t pos_out,
2997 			 loff_t *req_count, unsigned int remap_flags)
2998 {
2999 	struct inode *inode_in = file_in->f_mapping->host;
3000 	struct inode *inode_out = file_out->f_mapping->host;
3001 	uint64_t count = *req_count;
3002 	uint64_t bcount;
3003 	loff_t size_in, size_out;
3004 	loff_t bs = inode_out->i_sb->s_blocksize;
3005 	int ret;
3006 
3007 	/* The start of both ranges must be aligned to an fs block. */
3008 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3009 		return -EINVAL;
3010 
3011 	/* Ensure offsets don't wrap. */
3012 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3013 		return -EINVAL;
3014 
3015 	size_in = i_size_read(inode_in);
3016 	size_out = i_size_read(inode_out);
3017 
3018 	/* Dedupe requires both ranges to be within EOF. */
3019 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3020 	    (pos_in >= size_in || pos_in + count > size_in ||
3021 	     pos_out >= size_out || pos_out + count > size_out))
3022 		return -EINVAL;
3023 
3024 	/* Ensure the infile range is within the infile. */
3025 	if (pos_in >= size_in)
3026 		return -EINVAL;
3027 	count = min(count, size_in - (uint64_t)pos_in);
3028 
3029 	ret = generic_write_check_limits(file_out, pos_out, &count);
3030 	if (ret)
3031 		return ret;
3032 
3033 	/*
3034 	 * If the user wanted us to link to the infile's EOF, round up to the
3035 	 * next block boundary for this check.
3036 	 *
3037 	 * Otherwise, make sure the count is also block-aligned, having
3038 	 * already confirmed the starting offsets' block alignment.
3039 	 */
3040 	if (pos_in + count == size_in) {
3041 		bcount = ALIGN(size_in, bs) - pos_in;
3042 	} else {
3043 		if (!IS_ALIGNED(count, bs))
3044 			count = ALIGN_DOWN(count, bs);
3045 		bcount = count;
3046 	}
3047 
3048 	/* Don't allow overlapped cloning within the same file. */
3049 	if (inode_in == inode_out &&
3050 	    pos_out + bcount > pos_in &&
3051 	    pos_out < pos_in + bcount)
3052 		return -EINVAL;
3053 
3054 	/*
3055 	 * We shortened the request but the caller can't deal with that, so
3056 	 * bounce the request back to userspace.
3057 	 */
3058 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3059 		return -EINVAL;
3060 
3061 	*req_count = count;
3062 	return 0;
3063 }
3064 
3065 
3066 /*
3067  * Performs common checks before doing a file copy/clone
3068  * from @file_in to @file_out.
3069  */
3070 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3071 {
3072 	struct inode *inode_in = file_inode(file_in);
3073 	struct inode *inode_out = file_inode(file_out);
3074 
3075 	/* Don't copy dirs, pipes, sockets... */
3076 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3077 		return -EISDIR;
3078 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3079 		return -EINVAL;
3080 
3081 	if (!(file_in->f_mode & FMODE_READ) ||
3082 	    !(file_out->f_mode & FMODE_WRITE) ||
3083 	    (file_out->f_flags & O_APPEND))
3084 		return -EBADF;
3085 
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Performs necessary checks before doing a file copy
3091  *
3092  * Can adjust amount of bytes to copy via @req_count argument.
3093  * Returns appropriate error code that caller should return or
3094  * zero in case the copy should be allowed.
3095  */
3096 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3097 			     struct file *file_out, loff_t pos_out,
3098 			     size_t *req_count, unsigned int flags)
3099 {
3100 	struct inode *inode_in = file_inode(file_in);
3101 	struct inode *inode_out = file_inode(file_out);
3102 	uint64_t count = *req_count;
3103 	loff_t size_in;
3104 	int ret;
3105 
3106 	ret = generic_file_rw_checks(file_in, file_out);
3107 	if (ret)
3108 		return ret;
3109 
3110 	/* Don't touch certain kinds of inodes */
3111 	if (IS_IMMUTABLE(inode_out))
3112 		return -EPERM;
3113 
3114 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3115 		return -ETXTBSY;
3116 
3117 	/* Ensure offsets don't wrap. */
3118 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3119 		return -EOVERFLOW;
3120 
3121 	/* Shorten the copy to EOF */
3122 	size_in = i_size_read(inode_in);
3123 	if (pos_in >= size_in)
3124 		count = 0;
3125 	else
3126 		count = min(count, size_in - (uint64_t)pos_in);
3127 
3128 	ret = generic_write_check_limits(file_out, pos_out, &count);
3129 	if (ret)
3130 		return ret;
3131 
3132 	/* Don't allow overlapped copying within the same file. */
3133 	if (inode_in == inode_out &&
3134 	    pos_out + count > pos_in &&
3135 	    pos_out < pos_in + count)
3136 		return -EINVAL;
3137 
3138 	*req_count = count;
3139 	return 0;
3140 }
3141 
3142 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3143 				loff_t pos, unsigned len, unsigned flags,
3144 				struct page **pagep, void **fsdata)
3145 {
3146 	const struct address_space_operations *aops = mapping->a_ops;
3147 
3148 	return aops->write_begin(file, mapping, pos, len, flags,
3149 							pagep, fsdata);
3150 }
3151 EXPORT_SYMBOL(pagecache_write_begin);
3152 
3153 int pagecache_write_end(struct file *file, struct address_space *mapping,
3154 				loff_t pos, unsigned len, unsigned copied,
3155 				struct page *page, void *fsdata)
3156 {
3157 	const struct address_space_operations *aops = mapping->a_ops;
3158 
3159 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3160 }
3161 EXPORT_SYMBOL(pagecache_write_end);
3162 
3163 ssize_t
3164 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3165 {
3166 	struct file	*file = iocb->ki_filp;
3167 	struct address_space *mapping = file->f_mapping;
3168 	struct inode	*inode = mapping->host;
3169 	loff_t		pos = iocb->ki_pos;
3170 	ssize_t		written;
3171 	size_t		write_len;
3172 	pgoff_t		end;
3173 
3174 	write_len = iov_iter_count(from);
3175 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3176 
3177 	if (iocb->ki_flags & IOCB_NOWAIT) {
3178 		/* If there are pages to writeback, return */
3179 		if (filemap_range_has_page(inode->i_mapping, pos,
3180 					   pos + write_len - 1))
3181 			return -EAGAIN;
3182 	} else {
3183 		written = filemap_write_and_wait_range(mapping, pos,
3184 							pos + write_len - 1);
3185 		if (written)
3186 			goto out;
3187 	}
3188 
3189 	/*
3190 	 * After a write we want buffered reads to be sure to go to disk to get
3191 	 * the new data.  We invalidate clean cached page from the region we're
3192 	 * about to write.  We do this *before* the write so that we can return
3193 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3194 	 */
3195 	written = invalidate_inode_pages2_range(mapping,
3196 					pos >> PAGE_SHIFT, end);
3197 	/*
3198 	 * If a page can not be invalidated, return 0 to fall back
3199 	 * to buffered write.
3200 	 */
3201 	if (written) {
3202 		if (written == -EBUSY)
3203 			return 0;
3204 		goto out;
3205 	}
3206 
3207 	written = mapping->a_ops->direct_IO(iocb, from);
3208 
3209 	/*
3210 	 * Finally, try again to invalidate clean pages which might have been
3211 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3212 	 * if the source of the write was an mmap'ed region of the file
3213 	 * we're writing.  Either one is a pretty crazy thing to do,
3214 	 * so we don't support it 100%.  If this invalidation
3215 	 * fails, tough, the write still worked...
3216 	 *
3217 	 * Most of the time we do not need this since dio_complete() will do
3218 	 * the invalidation for us. However there are some file systems that
3219 	 * do not end up with dio_complete() being called, so let's not break
3220 	 * them by removing it completely
3221 	 */
3222 	if (mapping->nrpages)
3223 		invalidate_inode_pages2_range(mapping,
3224 					pos >> PAGE_SHIFT, end);
3225 
3226 	if (written > 0) {
3227 		pos += written;
3228 		write_len -= written;
3229 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3230 			i_size_write(inode, pos);
3231 			mark_inode_dirty(inode);
3232 		}
3233 		iocb->ki_pos = pos;
3234 	}
3235 	iov_iter_revert(from, write_len - iov_iter_count(from));
3236 out:
3237 	return written;
3238 }
3239 EXPORT_SYMBOL(generic_file_direct_write);
3240 
3241 /*
3242  * Find or create a page at the given pagecache position. Return the locked
3243  * page. This function is specifically for buffered writes.
3244  */
3245 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3246 					pgoff_t index, unsigned flags)
3247 {
3248 	struct page *page;
3249 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3250 
3251 	if (flags & AOP_FLAG_NOFS)
3252 		fgp_flags |= FGP_NOFS;
3253 
3254 	page = pagecache_get_page(mapping, index, fgp_flags,
3255 			mapping_gfp_mask(mapping));
3256 	if (page)
3257 		wait_for_stable_page(page);
3258 
3259 	return page;
3260 }
3261 EXPORT_SYMBOL(grab_cache_page_write_begin);
3262 
3263 ssize_t generic_perform_write(struct file *file,
3264 				struct iov_iter *i, loff_t pos)
3265 {
3266 	struct address_space *mapping = file->f_mapping;
3267 	const struct address_space_operations *a_ops = mapping->a_ops;
3268 	long status = 0;
3269 	ssize_t written = 0;
3270 	unsigned int flags = 0;
3271 
3272 	do {
3273 		struct page *page;
3274 		unsigned long offset;	/* Offset into pagecache page */
3275 		unsigned long bytes;	/* Bytes to write to page */
3276 		size_t copied;		/* Bytes copied from user */
3277 		void *fsdata;
3278 
3279 		offset = (pos & (PAGE_SIZE - 1));
3280 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3281 						iov_iter_count(i));
3282 
3283 again:
3284 		/*
3285 		 * Bring in the user page that we will copy from _first_.
3286 		 * Otherwise there's a nasty deadlock on copying from the
3287 		 * same page as we're writing to, without it being marked
3288 		 * up-to-date.
3289 		 *
3290 		 * Not only is this an optimisation, but it is also required
3291 		 * to check that the address is actually valid, when atomic
3292 		 * usercopies are used, below.
3293 		 */
3294 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3295 			status = -EFAULT;
3296 			break;
3297 		}
3298 
3299 		if (fatal_signal_pending(current)) {
3300 			status = -EINTR;
3301 			break;
3302 		}
3303 
3304 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3305 						&page, &fsdata);
3306 		if (unlikely(status < 0))
3307 			break;
3308 
3309 		if (mapping_writably_mapped(mapping))
3310 			flush_dcache_page(page);
3311 
3312 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3313 		flush_dcache_page(page);
3314 
3315 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3316 						page, fsdata);
3317 		if (unlikely(status < 0))
3318 			break;
3319 		copied = status;
3320 
3321 		cond_resched();
3322 
3323 		iov_iter_advance(i, copied);
3324 		if (unlikely(copied == 0)) {
3325 			/*
3326 			 * If we were unable to copy any data at all, we must
3327 			 * fall back to a single segment length write.
3328 			 *
3329 			 * If we didn't fallback here, we could livelock
3330 			 * because not all segments in the iov can be copied at
3331 			 * once without a pagefault.
3332 			 */
3333 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3334 						iov_iter_single_seg_count(i));
3335 			goto again;
3336 		}
3337 		pos += copied;
3338 		written += copied;
3339 
3340 		balance_dirty_pages_ratelimited(mapping);
3341 	} while (iov_iter_count(i));
3342 
3343 	return written ? written : status;
3344 }
3345 EXPORT_SYMBOL(generic_perform_write);
3346 
3347 /**
3348  * __generic_file_write_iter - write data to a file
3349  * @iocb:	IO state structure (file, offset, etc.)
3350  * @from:	iov_iter with data to write
3351  *
3352  * This function does all the work needed for actually writing data to a
3353  * file. It does all basic checks, removes SUID from the file, updates
3354  * modification times and calls proper subroutines depending on whether we
3355  * do direct IO or a standard buffered write.
3356  *
3357  * It expects i_mutex to be grabbed unless we work on a block device or similar
3358  * object which does not need locking at all.
3359  *
3360  * This function does *not* take care of syncing data in case of O_SYNC write.
3361  * A caller has to handle it. This is mainly due to the fact that we want to
3362  * avoid syncing under i_mutex.
3363  *
3364  * Return:
3365  * * number of bytes written, even for truncated writes
3366  * * negative error code if no data has been written at all
3367  */
3368 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3369 {
3370 	struct file *file = iocb->ki_filp;
3371 	struct address_space * mapping = file->f_mapping;
3372 	struct inode 	*inode = mapping->host;
3373 	ssize_t		written = 0;
3374 	ssize_t		err;
3375 	ssize_t		status;
3376 
3377 	/* We can write back this queue in page reclaim */
3378 	current->backing_dev_info = inode_to_bdi(inode);
3379 	err = file_remove_privs(file);
3380 	if (err)
3381 		goto out;
3382 
3383 	err = file_update_time(file);
3384 	if (err)
3385 		goto out;
3386 
3387 	if (iocb->ki_flags & IOCB_DIRECT) {
3388 		loff_t pos, endbyte;
3389 
3390 		written = generic_file_direct_write(iocb, from);
3391 		/*
3392 		 * If the write stopped short of completing, fall back to
3393 		 * buffered writes.  Some filesystems do this for writes to
3394 		 * holes, for example.  For DAX files, a buffered write will
3395 		 * not succeed (even if it did, DAX does not handle dirty
3396 		 * page-cache pages correctly).
3397 		 */
3398 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3399 			goto out;
3400 
3401 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3402 		/*
3403 		 * If generic_perform_write() returned a synchronous error
3404 		 * then we want to return the number of bytes which were
3405 		 * direct-written, or the error code if that was zero.  Note
3406 		 * that this differs from normal direct-io semantics, which
3407 		 * will return -EFOO even if some bytes were written.
3408 		 */
3409 		if (unlikely(status < 0)) {
3410 			err = status;
3411 			goto out;
3412 		}
3413 		/*
3414 		 * We need to ensure that the page cache pages are written to
3415 		 * disk and invalidated to preserve the expected O_DIRECT
3416 		 * semantics.
3417 		 */
3418 		endbyte = pos + status - 1;
3419 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3420 		if (err == 0) {
3421 			iocb->ki_pos = endbyte + 1;
3422 			written += status;
3423 			invalidate_mapping_pages(mapping,
3424 						 pos >> PAGE_SHIFT,
3425 						 endbyte >> PAGE_SHIFT);
3426 		} else {
3427 			/*
3428 			 * We don't know how much we wrote, so just return
3429 			 * the number of bytes which were direct-written
3430 			 */
3431 		}
3432 	} else {
3433 		written = generic_perform_write(file, from, iocb->ki_pos);
3434 		if (likely(written > 0))
3435 			iocb->ki_pos += written;
3436 	}
3437 out:
3438 	current->backing_dev_info = NULL;
3439 	return written ? written : err;
3440 }
3441 EXPORT_SYMBOL(__generic_file_write_iter);
3442 
3443 /**
3444  * generic_file_write_iter - write data to a file
3445  * @iocb:	IO state structure
3446  * @from:	iov_iter with data to write
3447  *
3448  * This is a wrapper around __generic_file_write_iter() to be used by most
3449  * filesystems. It takes care of syncing the file in case of O_SYNC file
3450  * and acquires i_mutex as needed.
3451  * Return:
3452  * * negative error code if no data has been written at all of
3453  *   vfs_fsync_range() failed for a synchronous write
3454  * * number of bytes written, even for truncated writes
3455  */
3456 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3457 {
3458 	struct file *file = iocb->ki_filp;
3459 	struct inode *inode = file->f_mapping->host;
3460 	ssize_t ret;
3461 
3462 	inode_lock(inode);
3463 	ret = generic_write_checks(iocb, from);
3464 	if (ret > 0)
3465 		ret = __generic_file_write_iter(iocb, from);
3466 	inode_unlock(inode);
3467 
3468 	if (ret > 0)
3469 		ret = generic_write_sync(iocb, ret);
3470 	return ret;
3471 }
3472 EXPORT_SYMBOL(generic_file_write_iter);
3473 
3474 /**
3475  * try_to_release_page() - release old fs-specific metadata on a page
3476  *
3477  * @page: the page which the kernel is trying to free
3478  * @gfp_mask: memory allocation flags (and I/O mode)
3479  *
3480  * The address_space is to try to release any data against the page
3481  * (presumably at page->private).
3482  *
3483  * This may also be called if PG_fscache is set on a page, indicating that the
3484  * page is known to the local caching routines.
3485  *
3486  * The @gfp_mask argument specifies whether I/O may be performed to release
3487  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3488  *
3489  * Return: %1 if the release was successful, otherwise return zero.
3490  */
3491 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3492 {
3493 	struct address_space * const mapping = page->mapping;
3494 
3495 	BUG_ON(!PageLocked(page));
3496 	if (PageWriteback(page))
3497 		return 0;
3498 
3499 	if (mapping && mapping->a_ops->releasepage)
3500 		return mapping->a_ops->releasepage(page, gfp_mask);
3501 	return try_to_free_buffers(page);
3502 }
3503 
3504 EXPORT_SYMBOL(try_to_release_page);
3505