xref: /openbmc/linux/mm/filemap.c (revision e5c86679)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (!dax_mapping(mapping)) {
134 			if (shadowp)
135 				*shadowp = p;
136 		} else {
137 			/* DAX can replace empty locked entry with a hole */
138 			WARN_ON_ONCE(p !=
139 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 			/* Wakeup waiters for exceptional entry lock */
141 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 						      true);
143 		}
144 	}
145 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
146 			     workingset_update_node, mapping);
147 	mapping->nrpages++;
148 	return 0;
149 }
150 
151 static void page_cache_tree_delete(struct address_space *mapping,
152 				   struct page *page, void *shadow)
153 {
154 	int i, nr;
155 
156 	/* hugetlb pages are represented by one entry in the radix tree */
157 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158 
159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
160 	VM_BUG_ON_PAGE(PageTail(page), page);
161 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162 
163 	for (i = 0; i < nr; i++) {
164 		struct radix_tree_node *node;
165 		void **slot;
166 
167 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
168 				    &node, &slot);
169 
170 		VM_BUG_ON_PAGE(!node && nr != 1, page);
171 
172 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 				     workingset_update_node, mapping);
175 	}
176 
177 	if (shadow) {
178 		mapping->nrexceptional += nr;
179 		/*
180 		 * Make sure the nrexceptional update is committed before
181 		 * the nrpages update so that final truncate racing
182 		 * with reclaim does not see both counters 0 at the
183 		 * same time and miss a shadow entry.
184 		 */
185 		smp_wmb();
186 	}
187 	mapping->nrpages -= nr;
188 }
189 
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 	struct address_space *mapping = page->mapping;
198 	int nr = hpage_nr_pages(page);
199 
200 	trace_mm_filemap_delete_from_page_cache(page);
201 	/*
202 	 * if we're uptodate, flush out into the cleancache, otherwise
203 	 * invalidate any existing cleancache entries.  We can't leave
204 	 * stale data around in the cleancache once our page is gone
205 	 */
206 	if (PageUptodate(page) && PageMappedToDisk(page))
207 		cleancache_put_page(page);
208 	else
209 		cleancache_invalidate_page(mapping, page);
210 
211 	VM_BUG_ON_PAGE(PageTail(page), page);
212 	VM_BUG_ON_PAGE(page_mapped(page), page);
213 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 		int mapcount;
215 
216 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217 			 current->comm, page_to_pfn(page));
218 		dump_page(page, "still mapped when deleted");
219 		dump_stack();
220 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221 
222 		mapcount = page_mapcount(page);
223 		if (mapping_exiting(mapping) &&
224 		    page_count(page) >= mapcount + 2) {
225 			/*
226 			 * All vmas have already been torn down, so it's
227 			 * a good bet that actually the page is unmapped,
228 			 * and we'd prefer not to leak it: if we're wrong,
229 			 * some other bad page check should catch it later.
230 			 */
231 			page_mapcount_reset(page);
232 			page_ref_sub(page, mapcount);
233 		}
234 	}
235 
236 	page_cache_tree_delete(mapping, page, shadow);
237 
238 	page->mapping = NULL;
239 	/* Leave page->index set: truncation lookup relies upon it */
240 
241 	/* hugetlb pages do not participate in page cache accounting. */
242 	if (!PageHuge(page))
243 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244 	if (PageSwapBacked(page)) {
245 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246 		if (PageTransHuge(page))
247 			__dec_node_page_state(page, NR_SHMEM_THPS);
248 	} else {
249 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 	}
251 
252 	/*
253 	 * At this point page must be either written or cleaned by truncate.
254 	 * Dirty page here signals a bug and loss of unwritten data.
255 	 *
256 	 * This fixes dirty accounting after removing the page entirely but
257 	 * leaves PageDirty set: it has no effect for truncated page and
258 	 * anyway will be cleared before returning page into buddy allocator.
259 	 */
260 	if (WARN_ON_ONCE(PageDirty(page)))
261 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263 
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274 	struct address_space *mapping = page_mapping(page);
275 	unsigned long flags;
276 	void (*freepage)(struct page *);
277 
278 	BUG_ON(!PageLocked(page));
279 
280 	freepage = mapping->a_ops->freepage;
281 
282 	spin_lock_irqsave(&mapping->tree_lock, flags);
283 	__delete_from_page_cache(page, NULL);
284 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
285 
286 	if (freepage)
287 		freepage(page);
288 
289 	if (PageTransHuge(page) && !PageHuge(page)) {
290 		page_ref_sub(page, HPAGE_PMD_NR);
291 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 	} else {
293 		put_page(page);
294 	}
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297 
298 int filemap_check_errors(struct address_space *mapping)
299 {
300 	int ret = 0;
301 	/* Check for outstanding write errors */
302 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 		ret = -ENOSPC;
305 	if (test_bit(AS_EIO, &mapping->flags) &&
306 	    test_and_clear_bit(AS_EIO, &mapping->flags))
307 		ret = -EIO;
308 	return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311 
312 /**
313  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
314  * @mapping:	address space structure to write
315  * @start:	offset in bytes where the range starts
316  * @end:	offset in bytes where the range ends (inclusive)
317  * @sync_mode:	enable synchronous operation
318  *
319  * Start writeback against all of a mapping's dirty pages that lie
320  * within the byte offsets <start, end> inclusive.
321  *
322  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
323  * opposed to a regular memory cleansing writeback.  The difference between
324  * these two operations is that if a dirty page/buffer is encountered, it must
325  * be waited upon, and not just skipped over.
326  */
327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328 				loff_t end, int sync_mode)
329 {
330 	int ret;
331 	struct writeback_control wbc = {
332 		.sync_mode = sync_mode,
333 		.nr_to_write = LONG_MAX,
334 		.range_start = start,
335 		.range_end = end,
336 	};
337 
338 	if (!mapping_cap_writeback_dirty(mapping))
339 		return 0;
340 
341 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
342 	ret = do_writepages(mapping, &wbc);
343 	wbc_detach_inode(&wbc);
344 	return ret;
345 }
346 
347 static inline int __filemap_fdatawrite(struct address_space *mapping,
348 	int sync_mode)
349 {
350 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
351 }
352 
353 int filemap_fdatawrite(struct address_space *mapping)
354 {
355 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356 }
357 EXPORT_SYMBOL(filemap_fdatawrite);
358 
359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
360 				loff_t end)
361 {
362 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363 }
364 EXPORT_SYMBOL(filemap_fdatawrite_range);
365 
366 /**
367  * filemap_flush - mostly a non-blocking flush
368  * @mapping:	target address_space
369  *
370  * This is a mostly non-blocking flush.  Not suitable for data-integrity
371  * purposes - I/O may not be started against all dirty pages.
372  */
373 int filemap_flush(struct address_space *mapping)
374 {
375 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376 }
377 EXPORT_SYMBOL(filemap_flush);
378 
379 static int __filemap_fdatawait_range(struct address_space *mapping,
380 				     loff_t start_byte, loff_t end_byte)
381 {
382 	pgoff_t index = start_byte >> PAGE_SHIFT;
383 	pgoff_t end = end_byte >> PAGE_SHIFT;
384 	struct pagevec pvec;
385 	int nr_pages;
386 	int ret = 0;
387 
388 	if (end_byte < start_byte)
389 		goto out;
390 
391 	pagevec_init(&pvec, 0);
392 	while ((index <= end) &&
393 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
394 			PAGECACHE_TAG_WRITEBACK,
395 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
396 		unsigned i;
397 
398 		for (i = 0; i < nr_pages; i++) {
399 			struct page *page = pvec.pages[i];
400 
401 			/* until radix tree lookup accepts end_index */
402 			if (page->index > end)
403 				continue;
404 
405 			wait_on_page_writeback(page);
406 			if (TestClearPageError(page))
407 				ret = -EIO;
408 		}
409 		pagevec_release(&pvec);
410 		cond_resched();
411 	}
412 out:
413 	return ret;
414 }
415 
416 /**
417  * filemap_fdatawait_range - wait for writeback to complete
418  * @mapping:		address space structure to wait for
419  * @start_byte:		offset in bytes where the range starts
420  * @end_byte:		offset in bytes where the range ends (inclusive)
421  *
422  * Walk the list of under-writeback pages of the given address space
423  * in the given range and wait for all of them.  Check error status of
424  * the address space and return it.
425  *
426  * Since the error status of the address space is cleared by this function,
427  * callers are responsible for checking the return value and handling and/or
428  * reporting the error.
429  */
430 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
431 			    loff_t end_byte)
432 {
433 	int ret, ret2;
434 
435 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
436 	ret2 = filemap_check_errors(mapping);
437 	if (!ret)
438 		ret = ret2;
439 
440 	return ret;
441 }
442 EXPORT_SYMBOL(filemap_fdatawait_range);
443 
444 /**
445  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446  * @mapping: address space structure to wait for
447  *
448  * Walk the list of under-writeback pages of the given address space
449  * and wait for all of them.  Unlike filemap_fdatawait(), this function
450  * does not clear error status of the address space.
451  *
452  * Use this function if callers don't handle errors themselves.  Expected
453  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
454  * fsfreeze(8)
455  */
456 void filemap_fdatawait_keep_errors(struct address_space *mapping)
457 {
458 	loff_t i_size = i_size_read(mapping->host);
459 
460 	if (i_size == 0)
461 		return;
462 
463 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
464 }
465 
466 /**
467  * filemap_fdatawait - wait for all under-writeback pages to complete
468  * @mapping: address space structure to wait for
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * and wait for all of them.  Check error status of the address space
472  * and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait(struct address_space *mapping)
479 {
480 	loff_t i_size = i_size_read(mapping->host);
481 
482 	if (i_size == 0)
483 		return 0;
484 
485 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
486 }
487 EXPORT_SYMBOL(filemap_fdatawait);
488 
489 int filemap_write_and_wait(struct address_space *mapping)
490 {
491 	int err = 0;
492 
493 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
494 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
495 		err = filemap_fdatawrite(mapping);
496 		/*
497 		 * Even if the above returned error, the pages may be
498 		 * written partially (e.g. -ENOSPC), so we wait for it.
499 		 * But the -EIO is special case, it may indicate the worst
500 		 * thing (e.g. bug) happened, so we avoid waiting for it.
501 		 */
502 		if (err != -EIO) {
503 			int err2 = filemap_fdatawait(mapping);
504 			if (!err)
505 				err = err2;
506 		}
507 	} else {
508 		err = filemap_check_errors(mapping);
509 	}
510 	return err;
511 }
512 EXPORT_SYMBOL(filemap_write_and_wait);
513 
514 /**
515  * filemap_write_and_wait_range - write out & wait on a file range
516  * @mapping:	the address_space for the pages
517  * @lstart:	offset in bytes where the range starts
518  * @lend:	offset in bytes where the range ends (inclusive)
519  *
520  * Write out and wait upon file offsets lstart->lend, inclusive.
521  *
522  * Note that `lend' is inclusive (describes the last byte to be written) so
523  * that this function can be used to write to the very end-of-file (end = -1).
524  */
525 int filemap_write_and_wait_range(struct address_space *mapping,
526 				 loff_t lstart, loff_t lend)
527 {
528 	int err = 0;
529 
530 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
531 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
532 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
533 						 WB_SYNC_ALL);
534 		/* See comment of filemap_write_and_wait() */
535 		if (err != -EIO) {
536 			int err2 = filemap_fdatawait_range(mapping,
537 						lstart, lend);
538 			if (!err)
539 				err = err2;
540 		}
541 	} else {
542 		err = filemap_check_errors(mapping);
543 	}
544 	return err;
545 }
546 EXPORT_SYMBOL(filemap_write_and_wait_range);
547 
548 /**
549  * replace_page_cache_page - replace a pagecache page with a new one
550  * @old:	page to be replaced
551  * @new:	page to replace with
552  * @gfp_mask:	allocation mode
553  *
554  * This function replaces a page in the pagecache with a new one.  On
555  * success it acquires the pagecache reference for the new page and
556  * drops it for the old page.  Both the old and new pages must be
557  * locked.  This function does not add the new page to the LRU, the
558  * caller must do that.
559  *
560  * The remove + add is atomic.  The only way this function can fail is
561  * memory allocation failure.
562  */
563 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
564 {
565 	int error;
566 
567 	VM_BUG_ON_PAGE(!PageLocked(old), old);
568 	VM_BUG_ON_PAGE(!PageLocked(new), new);
569 	VM_BUG_ON_PAGE(new->mapping, new);
570 
571 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
572 	if (!error) {
573 		struct address_space *mapping = old->mapping;
574 		void (*freepage)(struct page *);
575 		unsigned long flags;
576 
577 		pgoff_t offset = old->index;
578 		freepage = mapping->a_ops->freepage;
579 
580 		get_page(new);
581 		new->mapping = mapping;
582 		new->index = offset;
583 
584 		spin_lock_irqsave(&mapping->tree_lock, flags);
585 		__delete_from_page_cache(old, NULL);
586 		error = page_cache_tree_insert(mapping, new, NULL);
587 		BUG_ON(error);
588 
589 		/*
590 		 * hugetlb pages do not participate in page cache accounting.
591 		 */
592 		if (!PageHuge(new))
593 			__inc_node_page_state(new, NR_FILE_PAGES);
594 		if (PageSwapBacked(new))
595 			__inc_node_page_state(new, NR_SHMEM);
596 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
597 		mem_cgroup_migrate(old, new);
598 		radix_tree_preload_end();
599 		if (freepage)
600 			freepage(old);
601 		put_page(old);
602 	}
603 
604 	return error;
605 }
606 EXPORT_SYMBOL_GPL(replace_page_cache_page);
607 
608 static int __add_to_page_cache_locked(struct page *page,
609 				      struct address_space *mapping,
610 				      pgoff_t offset, gfp_t gfp_mask,
611 				      void **shadowp)
612 {
613 	int huge = PageHuge(page);
614 	struct mem_cgroup *memcg;
615 	int error;
616 
617 	VM_BUG_ON_PAGE(!PageLocked(page), page);
618 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
619 
620 	if (!huge) {
621 		error = mem_cgroup_try_charge(page, current->mm,
622 					      gfp_mask, &memcg, false);
623 		if (error)
624 			return error;
625 	}
626 
627 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
628 	if (error) {
629 		if (!huge)
630 			mem_cgroup_cancel_charge(page, memcg, false);
631 		return error;
632 	}
633 
634 	get_page(page);
635 	page->mapping = mapping;
636 	page->index = offset;
637 
638 	spin_lock_irq(&mapping->tree_lock);
639 	error = page_cache_tree_insert(mapping, page, shadowp);
640 	radix_tree_preload_end();
641 	if (unlikely(error))
642 		goto err_insert;
643 
644 	/* hugetlb pages do not participate in page cache accounting. */
645 	if (!huge)
646 		__inc_node_page_state(page, NR_FILE_PAGES);
647 	spin_unlock_irq(&mapping->tree_lock);
648 	if (!huge)
649 		mem_cgroup_commit_charge(page, memcg, false, false);
650 	trace_mm_filemap_add_to_page_cache(page);
651 	return 0;
652 err_insert:
653 	page->mapping = NULL;
654 	/* Leave page->index set: truncation relies upon it */
655 	spin_unlock_irq(&mapping->tree_lock);
656 	if (!huge)
657 		mem_cgroup_cancel_charge(page, memcg, false);
658 	put_page(page);
659 	return error;
660 }
661 
662 /**
663  * add_to_page_cache_locked - add a locked page to the pagecache
664  * @page:	page to add
665  * @mapping:	the page's address_space
666  * @offset:	page index
667  * @gfp_mask:	page allocation mode
668  *
669  * This function is used to add a page to the pagecache. It must be locked.
670  * This function does not add the page to the LRU.  The caller must do that.
671  */
672 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
673 		pgoff_t offset, gfp_t gfp_mask)
674 {
675 	return __add_to_page_cache_locked(page, mapping, offset,
676 					  gfp_mask, NULL);
677 }
678 EXPORT_SYMBOL(add_to_page_cache_locked);
679 
680 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
681 				pgoff_t offset, gfp_t gfp_mask)
682 {
683 	void *shadow = NULL;
684 	int ret;
685 
686 	__SetPageLocked(page);
687 	ret = __add_to_page_cache_locked(page, mapping, offset,
688 					 gfp_mask, &shadow);
689 	if (unlikely(ret))
690 		__ClearPageLocked(page);
691 	else {
692 		/*
693 		 * The page might have been evicted from cache only
694 		 * recently, in which case it should be activated like
695 		 * any other repeatedly accessed page.
696 		 * The exception is pages getting rewritten; evicting other
697 		 * data from the working set, only to cache data that will
698 		 * get overwritten with something else, is a waste of memory.
699 		 */
700 		if (!(gfp_mask & __GFP_WRITE) &&
701 		    shadow && workingset_refault(shadow)) {
702 			SetPageActive(page);
703 			workingset_activation(page);
704 		} else
705 			ClearPageActive(page);
706 		lru_cache_add(page);
707 	}
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
711 
712 #ifdef CONFIG_NUMA
713 struct page *__page_cache_alloc(gfp_t gfp)
714 {
715 	int n;
716 	struct page *page;
717 
718 	if (cpuset_do_page_mem_spread()) {
719 		unsigned int cpuset_mems_cookie;
720 		do {
721 			cpuset_mems_cookie = read_mems_allowed_begin();
722 			n = cpuset_mem_spread_node();
723 			page = __alloc_pages_node(n, gfp, 0);
724 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
725 
726 		return page;
727 	}
728 	return alloc_pages(gfp, 0);
729 }
730 EXPORT_SYMBOL(__page_cache_alloc);
731 #endif
732 
733 /*
734  * In order to wait for pages to become available there must be
735  * waitqueues associated with pages. By using a hash table of
736  * waitqueues where the bucket discipline is to maintain all
737  * waiters on the same queue and wake all when any of the pages
738  * become available, and for the woken contexts to check to be
739  * sure the appropriate page became available, this saves space
740  * at a cost of "thundering herd" phenomena during rare hash
741  * collisions.
742  */
743 #define PAGE_WAIT_TABLE_BITS 8
744 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
745 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
746 
747 static wait_queue_head_t *page_waitqueue(struct page *page)
748 {
749 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
750 }
751 
752 void __init pagecache_init(void)
753 {
754 	int i;
755 
756 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
757 		init_waitqueue_head(&page_wait_table[i]);
758 
759 	page_writeback_init();
760 }
761 
762 struct wait_page_key {
763 	struct page *page;
764 	int bit_nr;
765 	int page_match;
766 };
767 
768 struct wait_page_queue {
769 	struct page *page;
770 	int bit_nr;
771 	wait_queue_t wait;
772 };
773 
774 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
775 {
776 	struct wait_page_key *key = arg;
777 	struct wait_page_queue *wait_page
778 		= container_of(wait, struct wait_page_queue, wait);
779 
780 	if (wait_page->page != key->page)
781 	       return 0;
782 	key->page_match = 1;
783 
784 	if (wait_page->bit_nr != key->bit_nr)
785 		return 0;
786 	if (test_bit(key->bit_nr, &key->page->flags))
787 		return 0;
788 
789 	return autoremove_wake_function(wait, mode, sync, key);
790 }
791 
792 static void wake_up_page_bit(struct page *page, int bit_nr)
793 {
794 	wait_queue_head_t *q = page_waitqueue(page);
795 	struct wait_page_key key;
796 	unsigned long flags;
797 
798 	key.page = page;
799 	key.bit_nr = bit_nr;
800 	key.page_match = 0;
801 
802 	spin_lock_irqsave(&q->lock, flags);
803 	__wake_up_locked_key(q, TASK_NORMAL, &key);
804 	/*
805 	 * It is possible for other pages to have collided on the waitqueue
806 	 * hash, so in that case check for a page match. That prevents a long-
807 	 * term waiter
808 	 *
809 	 * It is still possible to miss a case here, when we woke page waiters
810 	 * and removed them from the waitqueue, but there are still other
811 	 * page waiters.
812 	 */
813 	if (!waitqueue_active(q) || !key.page_match) {
814 		ClearPageWaiters(page);
815 		/*
816 		 * It's possible to miss clearing Waiters here, when we woke
817 		 * our page waiters, but the hashed waitqueue has waiters for
818 		 * other pages on it.
819 		 *
820 		 * That's okay, it's a rare case. The next waker will clear it.
821 		 */
822 	}
823 	spin_unlock_irqrestore(&q->lock, flags);
824 }
825 
826 static void wake_up_page(struct page *page, int bit)
827 {
828 	if (!PageWaiters(page))
829 		return;
830 	wake_up_page_bit(page, bit);
831 }
832 
833 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
834 		struct page *page, int bit_nr, int state, bool lock)
835 {
836 	struct wait_page_queue wait_page;
837 	wait_queue_t *wait = &wait_page.wait;
838 	int ret = 0;
839 
840 	init_wait(wait);
841 	wait->func = wake_page_function;
842 	wait_page.page = page;
843 	wait_page.bit_nr = bit_nr;
844 
845 	for (;;) {
846 		spin_lock_irq(&q->lock);
847 
848 		if (likely(list_empty(&wait->task_list))) {
849 			if (lock)
850 				__add_wait_queue_tail_exclusive(q, wait);
851 			else
852 				__add_wait_queue(q, wait);
853 			SetPageWaiters(page);
854 		}
855 
856 		set_current_state(state);
857 
858 		spin_unlock_irq(&q->lock);
859 
860 		if (likely(test_bit(bit_nr, &page->flags))) {
861 			io_schedule();
862 			if (unlikely(signal_pending_state(state, current))) {
863 				ret = -EINTR;
864 				break;
865 			}
866 		}
867 
868 		if (lock) {
869 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
870 				break;
871 		} else {
872 			if (!test_bit(bit_nr, &page->flags))
873 				break;
874 		}
875 	}
876 
877 	finish_wait(q, wait);
878 
879 	/*
880 	 * A signal could leave PageWaiters set. Clearing it here if
881 	 * !waitqueue_active would be possible (by open-coding finish_wait),
882 	 * but still fail to catch it in the case of wait hash collision. We
883 	 * already can fail to clear wait hash collision cases, so don't
884 	 * bother with signals either.
885 	 */
886 
887 	return ret;
888 }
889 
890 void wait_on_page_bit(struct page *page, int bit_nr)
891 {
892 	wait_queue_head_t *q = page_waitqueue(page);
893 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
894 }
895 EXPORT_SYMBOL(wait_on_page_bit);
896 
897 int wait_on_page_bit_killable(struct page *page, int bit_nr)
898 {
899 	wait_queue_head_t *q = page_waitqueue(page);
900 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
901 }
902 
903 /**
904  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
905  * @page: Page defining the wait queue of interest
906  * @waiter: Waiter to add to the queue
907  *
908  * Add an arbitrary @waiter to the wait queue for the nominated @page.
909  */
910 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
911 {
912 	wait_queue_head_t *q = page_waitqueue(page);
913 	unsigned long flags;
914 
915 	spin_lock_irqsave(&q->lock, flags);
916 	__add_wait_queue(q, waiter);
917 	SetPageWaiters(page);
918 	spin_unlock_irqrestore(&q->lock, flags);
919 }
920 EXPORT_SYMBOL_GPL(add_page_wait_queue);
921 
922 #ifndef clear_bit_unlock_is_negative_byte
923 
924 /*
925  * PG_waiters is the high bit in the same byte as PG_lock.
926  *
927  * On x86 (and on many other architectures), we can clear PG_lock and
928  * test the sign bit at the same time. But if the architecture does
929  * not support that special operation, we just do this all by hand
930  * instead.
931  *
932  * The read of PG_waiters has to be after (or concurrently with) PG_locked
933  * being cleared, but a memory barrier should be unneccssary since it is
934  * in the same byte as PG_locked.
935  */
936 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
937 {
938 	clear_bit_unlock(nr, mem);
939 	/* smp_mb__after_atomic(); */
940 	return test_bit(PG_waiters, mem);
941 }
942 
943 #endif
944 
945 /**
946  * unlock_page - unlock a locked page
947  * @page: the page
948  *
949  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
950  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
951  * mechanism between PageLocked pages and PageWriteback pages is shared.
952  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
953  *
954  * Note that this depends on PG_waiters being the sign bit in the byte
955  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
956  * clear the PG_locked bit and test PG_waiters at the same time fairly
957  * portably (architectures that do LL/SC can test any bit, while x86 can
958  * test the sign bit).
959  */
960 void unlock_page(struct page *page)
961 {
962 	BUILD_BUG_ON(PG_waiters != 7);
963 	page = compound_head(page);
964 	VM_BUG_ON_PAGE(!PageLocked(page), page);
965 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
966 		wake_up_page_bit(page, PG_locked);
967 }
968 EXPORT_SYMBOL(unlock_page);
969 
970 /**
971  * end_page_writeback - end writeback against a page
972  * @page: the page
973  */
974 void end_page_writeback(struct page *page)
975 {
976 	/*
977 	 * TestClearPageReclaim could be used here but it is an atomic
978 	 * operation and overkill in this particular case. Failing to
979 	 * shuffle a page marked for immediate reclaim is too mild to
980 	 * justify taking an atomic operation penalty at the end of
981 	 * ever page writeback.
982 	 */
983 	if (PageReclaim(page)) {
984 		ClearPageReclaim(page);
985 		rotate_reclaimable_page(page);
986 	}
987 
988 	if (!test_clear_page_writeback(page))
989 		BUG();
990 
991 	smp_mb__after_atomic();
992 	wake_up_page(page, PG_writeback);
993 }
994 EXPORT_SYMBOL(end_page_writeback);
995 
996 /*
997  * After completing I/O on a page, call this routine to update the page
998  * flags appropriately
999  */
1000 void page_endio(struct page *page, bool is_write, int err)
1001 {
1002 	if (!is_write) {
1003 		if (!err) {
1004 			SetPageUptodate(page);
1005 		} else {
1006 			ClearPageUptodate(page);
1007 			SetPageError(page);
1008 		}
1009 		unlock_page(page);
1010 	} else {
1011 		if (err) {
1012 			struct address_space *mapping;
1013 
1014 			SetPageError(page);
1015 			mapping = page_mapping(page);
1016 			if (mapping)
1017 				mapping_set_error(mapping, err);
1018 		}
1019 		end_page_writeback(page);
1020 	}
1021 }
1022 EXPORT_SYMBOL_GPL(page_endio);
1023 
1024 /**
1025  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1026  * @__page: the page to lock
1027  */
1028 void __lock_page(struct page *__page)
1029 {
1030 	struct page *page = compound_head(__page);
1031 	wait_queue_head_t *q = page_waitqueue(page);
1032 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1033 }
1034 EXPORT_SYMBOL(__lock_page);
1035 
1036 int __lock_page_killable(struct page *__page)
1037 {
1038 	struct page *page = compound_head(__page);
1039 	wait_queue_head_t *q = page_waitqueue(page);
1040 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1041 }
1042 EXPORT_SYMBOL_GPL(__lock_page_killable);
1043 
1044 /*
1045  * Return values:
1046  * 1 - page is locked; mmap_sem is still held.
1047  * 0 - page is not locked.
1048  *     mmap_sem has been released (up_read()), unless flags had both
1049  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1050  *     which case mmap_sem is still held.
1051  *
1052  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1053  * with the page locked and the mmap_sem unperturbed.
1054  */
1055 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1056 			 unsigned int flags)
1057 {
1058 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1059 		/*
1060 		 * CAUTION! In this case, mmap_sem is not released
1061 		 * even though return 0.
1062 		 */
1063 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1064 			return 0;
1065 
1066 		up_read(&mm->mmap_sem);
1067 		if (flags & FAULT_FLAG_KILLABLE)
1068 			wait_on_page_locked_killable(page);
1069 		else
1070 			wait_on_page_locked(page);
1071 		return 0;
1072 	} else {
1073 		if (flags & FAULT_FLAG_KILLABLE) {
1074 			int ret;
1075 
1076 			ret = __lock_page_killable(page);
1077 			if (ret) {
1078 				up_read(&mm->mmap_sem);
1079 				return 0;
1080 			}
1081 		} else
1082 			__lock_page(page);
1083 		return 1;
1084 	}
1085 }
1086 
1087 /**
1088  * page_cache_next_hole - find the next hole (not-present entry)
1089  * @mapping: mapping
1090  * @index: index
1091  * @max_scan: maximum range to search
1092  *
1093  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1094  * lowest indexed hole.
1095  *
1096  * Returns: the index of the hole if found, otherwise returns an index
1097  * outside of the set specified (in which case 'return - index >=
1098  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1099  * be returned.
1100  *
1101  * page_cache_next_hole may be called under rcu_read_lock. However,
1102  * like radix_tree_gang_lookup, this will not atomically search a
1103  * snapshot of the tree at a single point in time. For example, if a
1104  * hole is created at index 5, then subsequently a hole is created at
1105  * index 10, page_cache_next_hole covering both indexes may return 10
1106  * if called under rcu_read_lock.
1107  */
1108 pgoff_t page_cache_next_hole(struct address_space *mapping,
1109 			     pgoff_t index, unsigned long max_scan)
1110 {
1111 	unsigned long i;
1112 
1113 	for (i = 0; i < max_scan; i++) {
1114 		struct page *page;
1115 
1116 		page = radix_tree_lookup(&mapping->page_tree, index);
1117 		if (!page || radix_tree_exceptional_entry(page))
1118 			break;
1119 		index++;
1120 		if (index == 0)
1121 			break;
1122 	}
1123 
1124 	return index;
1125 }
1126 EXPORT_SYMBOL(page_cache_next_hole);
1127 
1128 /**
1129  * page_cache_prev_hole - find the prev hole (not-present entry)
1130  * @mapping: mapping
1131  * @index: index
1132  * @max_scan: maximum range to search
1133  *
1134  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1135  * the first hole.
1136  *
1137  * Returns: the index of the hole if found, otherwise returns an index
1138  * outside of the set specified (in which case 'index - return >=
1139  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1140  * will be returned.
1141  *
1142  * page_cache_prev_hole may be called under rcu_read_lock. However,
1143  * like radix_tree_gang_lookup, this will not atomically search a
1144  * snapshot of the tree at a single point in time. For example, if a
1145  * hole is created at index 10, then subsequently a hole is created at
1146  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1147  * called under rcu_read_lock.
1148  */
1149 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1150 			     pgoff_t index, unsigned long max_scan)
1151 {
1152 	unsigned long i;
1153 
1154 	for (i = 0; i < max_scan; i++) {
1155 		struct page *page;
1156 
1157 		page = radix_tree_lookup(&mapping->page_tree, index);
1158 		if (!page || radix_tree_exceptional_entry(page))
1159 			break;
1160 		index--;
1161 		if (index == ULONG_MAX)
1162 			break;
1163 	}
1164 
1165 	return index;
1166 }
1167 EXPORT_SYMBOL(page_cache_prev_hole);
1168 
1169 /**
1170  * find_get_entry - find and get a page cache entry
1171  * @mapping: the address_space to search
1172  * @offset: the page cache index
1173  *
1174  * Looks up the page cache slot at @mapping & @offset.  If there is a
1175  * page cache page, it is returned with an increased refcount.
1176  *
1177  * If the slot holds a shadow entry of a previously evicted page, or a
1178  * swap entry from shmem/tmpfs, it is returned.
1179  *
1180  * Otherwise, %NULL is returned.
1181  */
1182 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1183 {
1184 	void **pagep;
1185 	struct page *head, *page;
1186 
1187 	rcu_read_lock();
1188 repeat:
1189 	page = NULL;
1190 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1191 	if (pagep) {
1192 		page = radix_tree_deref_slot(pagep);
1193 		if (unlikely(!page))
1194 			goto out;
1195 		if (radix_tree_exception(page)) {
1196 			if (radix_tree_deref_retry(page))
1197 				goto repeat;
1198 			/*
1199 			 * A shadow entry of a recently evicted page,
1200 			 * or a swap entry from shmem/tmpfs.  Return
1201 			 * it without attempting to raise page count.
1202 			 */
1203 			goto out;
1204 		}
1205 
1206 		head = compound_head(page);
1207 		if (!page_cache_get_speculative(head))
1208 			goto repeat;
1209 
1210 		/* The page was split under us? */
1211 		if (compound_head(page) != head) {
1212 			put_page(head);
1213 			goto repeat;
1214 		}
1215 
1216 		/*
1217 		 * Has the page moved?
1218 		 * This is part of the lockless pagecache protocol. See
1219 		 * include/linux/pagemap.h for details.
1220 		 */
1221 		if (unlikely(page != *pagep)) {
1222 			put_page(head);
1223 			goto repeat;
1224 		}
1225 	}
1226 out:
1227 	rcu_read_unlock();
1228 
1229 	return page;
1230 }
1231 EXPORT_SYMBOL(find_get_entry);
1232 
1233 /**
1234  * find_lock_entry - locate, pin and lock a page cache entry
1235  * @mapping: the address_space to search
1236  * @offset: the page cache index
1237  *
1238  * Looks up the page cache slot at @mapping & @offset.  If there is a
1239  * page cache page, it is returned locked and with an increased
1240  * refcount.
1241  *
1242  * If the slot holds a shadow entry of a previously evicted page, or a
1243  * swap entry from shmem/tmpfs, it is returned.
1244  *
1245  * Otherwise, %NULL is returned.
1246  *
1247  * find_lock_entry() may sleep.
1248  */
1249 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1250 {
1251 	struct page *page;
1252 
1253 repeat:
1254 	page = find_get_entry(mapping, offset);
1255 	if (page && !radix_tree_exception(page)) {
1256 		lock_page(page);
1257 		/* Has the page been truncated? */
1258 		if (unlikely(page_mapping(page) != mapping)) {
1259 			unlock_page(page);
1260 			put_page(page);
1261 			goto repeat;
1262 		}
1263 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1264 	}
1265 	return page;
1266 }
1267 EXPORT_SYMBOL(find_lock_entry);
1268 
1269 /**
1270  * pagecache_get_page - find and get a page reference
1271  * @mapping: the address_space to search
1272  * @offset: the page index
1273  * @fgp_flags: PCG flags
1274  * @gfp_mask: gfp mask to use for the page cache data page allocation
1275  *
1276  * Looks up the page cache slot at @mapping & @offset.
1277  *
1278  * PCG flags modify how the page is returned.
1279  *
1280  * FGP_ACCESSED: the page will be marked accessed
1281  * FGP_LOCK: Page is return locked
1282  * FGP_CREAT: If page is not present then a new page is allocated using
1283  *		@gfp_mask and added to the page cache and the VM's LRU
1284  *		list. The page is returned locked and with an increased
1285  *		refcount. Otherwise, %NULL is returned.
1286  *
1287  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1288  * if the GFP flags specified for FGP_CREAT are atomic.
1289  *
1290  * If there is a page cache page, it is returned with an increased refcount.
1291  */
1292 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1293 	int fgp_flags, gfp_t gfp_mask)
1294 {
1295 	struct page *page;
1296 
1297 repeat:
1298 	page = find_get_entry(mapping, offset);
1299 	if (radix_tree_exceptional_entry(page))
1300 		page = NULL;
1301 	if (!page)
1302 		goto no_page;
1303 
1304 	if (fgp_flags & FGP_LOCK) {
1305 		if (fgp_flags & FGP_NOWAIT) {
1306 			if (!trylock_page(page)) {
1307 				put_page(page);
1308 				return NULL;
1309 			}
1310 		} else {
1311 			lock_page(page);
1312 		}
1313 
1314 		/* Has the page been truncated? */
1315 		if (unlikely(page->mapping != mapping)) {
1316 			unlock_page(page);
1317 			put_page(page);
1318 			goto repeat;
1319 		}
1320 		VM_BUG_ON_PAGE(page->index != offset, page);
1321 	}
1322 
1323 	if (page && (fgp_flags & FGP_ACCESSED))
1324 		mark_page_accessed(page);
1325 
1326 no_page:
1327 	if (!page && (fgp_flags & FGP_CREAT)) {
1328 		int err;
1329 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1330 			gfp_mask |= __GFP_WRITE;
1331 		if (fgp_flags & FGP_NOFS)
1332 			gfp_mask &= ~__GFP_FS;
1333 
1334 		page = __page_cache_alloc(gfp_mask);
1335 		if (!page)
1336 			return NULL;
1337 
1338 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1339 			fgp_flags |= FGP_LOCK;
1340 
1341 		/* Init accessed so avoid atomic mark_page_accessed later */
1342 		if (fgp_flags & FGP_ACCESSED)
1343 			__SetPageReferenced(page);
1344 
1345 		err = add_to_page_cache_lru(page, mapping, offset,
1346 				gfp_mask & GFP_RECLAIM_MASK);
1347 		if (unlikely(err)) {
1348 			put_page(page);
1349 			page = NULL;
1350 			if (err == -EEXIST)
1351 				goto repeat;
1352 		}
1353 	}
1354 
1355 	return page;
1356 }
1357 EXPORT_SYMBOL(pagecache_get_page);
1358 
1359 /**
1360  * find_get_entries - gang pagecache lookup
1361  * @mapping:	The address_space to search
1362  * @start:	The starting page cache index
1363  * @nr_entries:	The maximum number of entries
1364  * @entries:	Where the resulting entries are placed
1365  * @indices:	The cache indices corresponding to the entries in @entries
1366  *
1367  * find_get_entries() will search for and return a group of up to
1368  * @nr_entries entries in the mapping.  The entries are placed at
1369  * @entries.  find_get_entries() takes a reference against any actual
1370  * pages it returns.
1371  *
1372  * The search returns a group of mapping-contiguous page cache entries
1373  * with ascending indexes.  There may be holes in the indices due to
1374  * not-present pages.
1375  *
1376  * Any shadow entries of evicted pages, or swap entries from
1377  * shmem/tmpfs, are included in the returned array.
1378  *
1379  * find_get_entries() returns the number of pages and shadow entries
1380  * which were found.
1381  */
1382 unsigned find_get_entries(struct address_space *mapping,
1383 			  pgoff_t start, unsigned int nr_entries,
1384 			  struct page **entries, pgoff_t *indices)
1385 {
1386 	void **slot;
1387 	unsigned int ret = 0;
1388 	struct radix_tree_iter iter;
1389 
1390 	if (!nr_entries)
1391 		return 0;
1392 
1393 	rcu_read_lock();
1394 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1395 		struct page *head, *page;
1396 repeat:
1397 		page = radix_tree_deref_slot(slot);
1398 		if (unlikely(!page))
1399 			continue;
1400 		if (radix_tree_exception(page)) {
1401 			if (radix_tree_deref_retry(page)) {
1402 				slot = radix_tree_iter_retry(&iter);
1403 				continue;
1404 			}
1405 			/*
1406 			 * A shadow entry of a recently evicted page, a swap
1407 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1408 			 * without attempting to raise page count.
1409 			 */
1410 			goto export;
1411 		}
1412 
1413 		head = compound_head(page);
1414 		if (!page_cache_get_speculative(head))
1415 			goto repeat;
1416 
1417 		/* The page was split under us? */
1418 		if (compound_head(page) != head) {
1419 			put_page(head);
1420 			goto repeat;
1421 		}
1422 
1423 		/* Has the page moved? */
1424 		if (unlikely(page != *slot)) {
1425 			put_page(head);
1426 			goto repeat;
1427 		}
1428 export:
1429 		indices[ret] = iter.index;
1430 		entries[ret] = page;
1431 		if (++ret == nr_entries)
1432 			break;
1433 	}
1434 	rcu_read_unlock();
1435 	return ret;
1436 }
1437 
1438 /**
1439  * find_get_pages - gang pagecache lookup
1440  * @mapping:	The address_space to search
1441  * @start:	The starting page index
1442  * @nr_pages:	The maximum number of pages
1443  * @pages:	Where the resulting pages are placed
1444  *
1445  * find_get_pages() will search for and return a group of up to
1446  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1447  * find_get_pages() takes a reference against the returned pages.
1448  *
1449  * The search returns a group of mapping-contiguous pages with ascending
1450  * indexes.  There may be holes in the indices due to not-present pages.
1451  *
1452  * find_get_pages() returns the number of pages which were found.
1453  */
1454 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1455 			    unsigned int nr_pages, struct page **pages)
1456 {
1457 	struct radix_tree_iter iter;
1458 	void **slot;
1459 	unsigned ret = 0;
1460 
1461 	if (unlikely(!nr_pages))
1462 		return 0;
1463 
1464 	rcu_read_lock();
1465 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1466 		struct page *head, *page;
1467 repeat:
1468 		page = radix_tree_deref_slot(slot);
1469 		if (unlikely(!page))
1470 			continue;
1471 
1472 		if (radix_tree_exception(page)) {
1473 			if (radix_tree_deref_retry(page)) {
1474 				slot = radix_tree_iter_retry(&iter);
1475 				continue;
1476 			}
1477 			/*
1478 			 * A shadow entry of a recently evicted page,
1479 			 * or a swap entry from shmem/tmpfs.  Skip
1480 			 * over it.
1481 			 */
1482 			continue;
1483 		}
1484 
1485 		head = compound_head(page);
1486 		if (!page_cache_get_speculative(head))
1487 			goto repeat;
1488 
1489 		/* The page was split under us? */
1490 		if (compound_head(page) != head) {
1491 			put_page(head);
1492 			goto repeat;
1493 		}
1494 
1495 		/* Has the page moved? */
1496 		if (unlikely(page != *slot)) {
1497 			put_page(head);
1498 			goto repeat;
1499 		}
1500 
1501 		pages[ret] = page;
1502 		if (++ret == nr_pages)
1503 			break;
1504 	}
1505 
1506 	rcu_read_unlock();
1507 	return ret;
1508 }
1509 
1510 /**
1511  * find_get_pages_contig - gang contiguous pagecache lookup
1512  * @mapping:	The address_space to search
1513  * @index:	The starting page index
1514  * @nr_pages:	The maximum number of pages
1515  * @pages:	Where the resulting pages are placed
1516  *
1517  * find_get_pages_contig() works exactly like find_get_pages(), except
1518  * that the returned number of pages are guaranteed to be contiguous.
1519  *
1520  * find_get_pages_contig() returns the number of pages which were found.
1521  */
1522 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1523 			       unsigned int nr_pages, struct page **pages)
1524 {
1525 	struct radix_tree_iter iter;
1526 	void **slot;
1527 	unsigned int ret = 0;
1528 
1529 	if (unlikely(!nr_pages))
1530 		return 0;
1531 
1532 	rcu_read_lock();
1533 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1534 		struct page *head, *page;
1535 repeat:
1536 		page = radix_tree_deref_slot(slot);
1537 		/* The hole, there no reason to continue */
1538 		if (unlikely(!page))
1539 			break;
1540 
1541 		if (radix_tree_exception(page)) {
1542 			if (radix_tree_deref_retry(page)) {
1543 				slot = radix_tree_iter_retry(&iter);
1544 				continue;
1545 			}
1546 			/*
1547 			 * A shadow entry of a recently evicted page,
1548 			 * or a swap entry from shmem/tmpfs.  Stop
1549 			 * looking for contiguous pages.
1550 			 */
1551 			break;
1552 		}
1553 
1554 		head = compound_head(page);
1555 		if (!page_cache_get_speculative(head))
1556 			goto repeat;
1557 
1558 		/* The page was split under us? */
1559 		if (compound_head(page) != head) {
1560 			put_page(head);
1561 			goto repeat;
1562 		}
1563 
1564 		/* Has the page moved? */
1565 		if (unlikely(page != *slot)) {
1566 			put_page(head);
1567 			goto repeat;
1568 		}
1569 
1570 		/*
1571 		 * must check mapping and index after taking the ref.
1572 		 * otherwise we can get both false positives and false
1573 		 * negatives, which is just confusing to the caller.
1574 		 */
1575 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1576 			put_page(page);
1577 			break;
1578 		}
1579 
1580 		pages[ret] = page;
1581 		if (++ret == nr_pages)
1582 			break;
1583 	}
1584 	rcu_read_unlock();
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(find_get_pages_contig);
1588 
1589 /**
1590  * find_get_pages_tag - find and return pages that match @tag
1591  * @mapping:	the address_space to search
1592  * @index:	the starting page index
1593  * @tag:	the tag index
1594  * @nr_pages:	the maximum number of pages
1595  * @pages:	where the resulting pages are placed
1596  *
1597  * Like find_get_pages, except we only return pages which are tagged with
1598  * @tag.   We update @index to index the next page for the traversal.
1599  */
1600 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1601 			int tag, unsigned int nr_pages, struct page **pages)
1602 {
1603 	struct radix_tree_iter iter;
1604 	void **slot;
1605 	unsigned ret = 0;
1606 
1607 	if (unlikely(!nr_pages))
1608 		return 0;
1609 
1610 	rcu_read_lock();
1611 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1612 				   &iter, *index, tag) {
1613 		struct page *head, *page;
1614 repeat:
1615 		page = radix_tree_deref_slot(slot);
1616 		if (unlikely(!page))
1617 			continue;
1618 
1619 		if (radix_tree_exception(page)) {
1620 			if (radix_tree_deref_retry(page)) {
1621 				slot = radix_tree_iter_retry(&iter);
1622 				continue;
1623 			}
1624 			/*
1625 			 * A shadow entry of a recently evicted page.
1626 			 *
1627 			 * Those entries should never be tagged, but
1628 			 * this tree walk is lockless and the tags are
1629 			 * looked up in bulk, one radix tree node at a
1630 			 * time, so there is a sizable window for page
1631 			 * reclaim to evict a page we saw tagged.
1632 			 *
1633 			 * Skip over it.
1634 			 */
1635 			continue;
1636 		}
1637 
1638 		head = compound_head(page);
1639 		if (!page_cache_get_speculative(head))
1640 			goto repeat;
1641 
1642 		/* The page was split under us? */
1643 		if (compound_head(page) != head) {
1644 			put_page(head);
1645 			goto repeat;
1646 		}
1647 
1648 		/* Has the page moved? */
1649 		if (unlikely(page != *slot)) {
1650 			put_page(head);
1651 			goto repeat;
1652 		}
1653 
1654 		pages[ret] = page;
1655 		if (++ret == nr_pages)
1656 			break;
1657 	}
1658 
1659 	rcu_read_unlock();
1660 
1661 	if (ret)
1662 		*index = pages[ret - 1]->index + 1;
1663 
1664 	return ret;
1665 }
1666 EXPORT_SYMBOL(find_get_pages_tag);
1667 
1668 /**
1669  * find_get_entries_tag - find and return entries that match @tag
1670  * @mapping:	the address_space to search
1671  * @start:	the starting page cache index
1672  * @tag:	the tag index
1673  * @nr_entries:	the maximum number of entries
1674  * @entries:	where the resulting entries are placed
1675  * @indices:	the cache indices corresponding to the entries in @entries
1676  *
1677  * Like find_get_entries, except we only return entries which are tagged with
1678  * @tag.
1679  */
1680 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1681 			int tag, unsigned int nr_entries,
1682 			struct page **entries, pgoff_t *indices)
1683 {
1684 	void **slot;
1685 	unsigned int ret = 0;
1686 	struct radix_tree_iter iter;
1687 
1688 	if (!nr_entries)
1689 		return 0;
1690 
1691 	rcu_read_lock();
1692 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1693 				   &iter, start, tag) {
1694 		struct page *head, *page;
1695 repeat:
1696 		page = radix_tree_deref_slot(slot);
1697 		if (unlikely(!page))
1698 			continue;
1699 		if (radix_tree_exception(page)) {
1700 			if (radix_tree_deref_retry(page)) {
1701 				slot = radix_tree_iter_retry(&iter);
1702 				continue;
1703 			}
1704 
1705 			/*
1706 			 * A shadow entry of a recently evicted page, a swap
1707 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1708 			 * without attempting to raise page count.
1709 			 */
1710 			goto export;
1711 		}
1712 
1713 		head = compound_head(page);
1714 		if (!page_cache_get_speculative(head))
1715 			goto repeat;
1716 
1717 		/* The page was split under us? */
1718 		if (compound_head(page) != head) {
1719 			put_page(head);
1720 			goto repeat;
1721 		}
1722 
1723 		/* Has the page moved? */
1724 		if (unlikely(page != *slot)) {
1725 			put_page(head);
1726 			goto repeat;
1727 		}
1728 export:
1729 		indices[ret] = iter.index;
1730 		entries[ret] = page;
1731 		if (++ret == nr_entries)
1732 			break;
1733 	}
1734 	rcu_read_unlock();
1735 	return ret;
1736 }
1737 EXPORT_SYMBOL(find_get_entries_tag);
1738 
1739 /*
1740  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1741  * a _large_ part of the i/o request. Imagine the worst scenario:
1742  *
1743  *      ---R__________________________________________B__________
1744  *         ^ reading here                             ^ bad block(assume 4k)
1745  *
1746  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1747  * => failing the whole request => read(R) => read(R+1) =>
1748  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1749  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1750  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1751  *
1752  * It is going insane. Fix it by quickly scaling down the readahead size.
1753  */
1754 static void shrink_readahead_size_eio(struct file *filp,
1755 					struct file_ra_state *ra)
1756 {
1757 	ra->ra_pages /= 4;
1758 }
1759 
1760 /**
1761  * do_generic_file_read - generic file read routine
1762  * @filp:	the file to read
1763  * @ppos:	current file position
1764  * @iter:	data destination
1765  * @written:	already copied
1766  *
1767  * This is a generic file read routine, and uses the
1768  * mapping->a_ops->readpage() function for the actual low-level stuff.
1769  *
1770  * This is really ugly. But the goto's actually try to clarify some
1771  * of the logic when it comes to error handling etc.
1772  */
1773 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1774 		struct iov_iter *iter, ssize_t written)
1775 {
1776 	struct address_space *mapping = filp->f_mapping;
1777 	struct inode *inode = mapping->host;
1778 	struct file_ra_state *ra = &filp->f_ra;
1779 	pgoff_t index;
1780 	pgoff_t last_index;
1781 	pgoff_t prev_index;
1782 	unsigned long offset;      /* offset into pagecache page */
1783 	unsigned int prev_offset;
1784 	int error = 0;
1785 
1786 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1787 		return 0;
1788 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1789 
1790 	index = *ppos >> PAGE_SHIFT;
1791 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1792 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1793 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1794 	offset = *ppos & ~PAGE_MASK;
1795 
1796 	for (;;) {
1797 		struct page *page;
1798 		pgoff_t end_index;
1799 		loff_t isize;
1800 		unsigned long nr, ret;
1801 
1802 		cond_resched();
1803 find_page:
1804 		if (fatal_signal_pending(current)) {
1805 			error = -EINTR;
1806 			goto out;
1807 		}
1808 
1809 		page = find_get_page(mapping, index);
1810 		if (!page) {
1811 			page_cache_sync_readahead(mapping,
1812 					ra, filp,
1813 					index, last_index - index);
1814 			page = find_get_page(mapping, index);
1815 			if (unlikely(page == NULL))
1816 				goto no_cached_page;
1817 		}
1818 		if (PageReadahead(page)) {
1819 			page_cache_async_readahead(mapping,
1820 					ra, filp, page,
1821 					index, last_index - index);
1822 		}
1823 		if (!PageUptodate(page)) {
1824 			/*
1825 			 * See comment in do_read_cache_page on why
1826 			 * wait_on_page_locked is used to avoid unnecessarily
1827 			 * serialisations and why it's safe.
1828 			 */
1829 			error = wait_on_page_locked_killable(page);
1830 			if (unlikely(error))
1831 				goto readpage_error;
1832 			if (PageUptodate(page))
1833 				goto page_ok;
1834 
1835 			if (inode->i_blkbits == PAGE_SHIFT ||
1836 					!mapping->a_ops->is_partially_uptodate)
1837 				goto page_not_up_to_date;
1838 			/* pipes can't handle partially uptodate pages */
1839 			if (unlikely(iter->type & ITER_PIPE))
1840 				goto page_not_up_to_date;
1841 			if (!trylock_page(page))
1842 				goto page_not_up_to_date;
1843 			/* Did it get truncated before we got the lock? */
1844 			if (!page->mapping)
1845 				goto page_not_up_to_date_locked;
1846 			if (!mapping->a_ops->is_partially_uptodate(page,
1847 							offset, iter->count))
1848 				goto page_not_up_to_date_locked;
1849 			unlock_page(page);
1850 		}
1851 page_ok:
1852 		/*
1853 		 * i_size must be checked after we know the page is Uptodate.
1854 		 *
1855 		 * Checking i_size after the check allows us to calculate
1856 		 * the correct value for "nr", which means the zero-filled
1857 		 * part of the page is not copied back to userspace (unless
1858 		 * another truncate extends the file - this is desired though).
1859 		 */
1860 
1861 		isize = i_size_read(inode);
1862 		end_index = (isize - 1) >> PAGE_SHIFT;
1863 		if (unlikely(!isize || index > end_index)) {
1864 			put_page(page);
1865 			goto out;
1866 		}
1867 
1868 		/* nr is the maximum number of bytes to copy from this page */
1869 		nr = PAGE_SIZE;
1870 		if (index == end_index) {
1871 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1872 			if (nr <= offset) {
1873 				put_page(page);
1874 				goto out;
1875 			}
1876 		}
1877 		nr = nr - offset;
1878 
1879 		/* If users can be writing to this page using arbitrary
1880 		 * virtual addresses, take care about potential aliasing
1881 		 * before reading the page on the kernel side.
1882 		 */
1883 		if (mapping_writably_mapped(mapping))
1884 			flush_dcache_page(page);
1885 
1886 		/*
1887 		 * When a sequential read accesses a page several times,
1888 		 * only mark it as accessed the first time.
1889 		 */
1890 		if (prev_index != index || offset != prev_offset)
1891 			mark_page_accessed(page);
1892 		prev_index = index;
1893 
1894 		/*
1895 		 * Ok, we have the page, and it's up-to-date, so
1896 		 * now we can copy it to user space...
1897 		 */
1898 
1899 		ret = copy_page_to_iter(page, offset, nr, iter);
1900 		offset += ret;
1901 		index += offset >> PAGE_SHIFT;
1902 		offset &= ~PAGE_MASK;
1903 		prev_offset = offset;
1904 
1905 		put_page(page);
1906 		written += ret;
1907 		if (!iov_iter_count(iter))
1908 			goto out;
1909 		if (ret < nr) {
1910 			error = -EFAULT;
1911 			goto out;
1912 		}
1913 		continue;
1914 
1915 page_not_up_to_date:
1916 		/* Get exclusive access to the page ... */
1917 		error = lock_page_killable(page);
1918 		if (unlikely(error))
1919 			goto readpage_error;
1920 
1921 page_not_up_to_date_locked:
1922 		/* Did it get truncated before we got the lock? */
1923 		if (!page->mapping) {
1924 			unlock_page(page);
1925 			put_page(page);
1926 			continue;
1927 		}
1928 
1929 		/* Did somebody else fill it already? */
1930 		if (PageUptodate(page)) {
1931 			unlock_page(page);
1932 			goto page_ok;
1933 		}
1934 
1935 readpage:
1936 		/*
1937 		 * A previous I/O error may have been due to temporary
1938 		 * failures, eg. multipath errors.
1939 		 * PG_error will be set again if readpage fails.
1940 		 */
1941 		ClearPageError(page);
1942 		/* Start the actual read. The read will unlock the page. */
1943 		error = mapping->a_ops->readpage(filp, page);
1944 
1945 		if (unlikely(error)) {
1946 			if (error == AOP_TRUNCATED_PAGE) {
1947 				put_page(page);
1948 				error = 0;
1949 				goto find_page;
1950 			}
1951 			goto readpage_error;
1952 		}
1953 
1954 		if (!PageUptodate(page)) {
1955 			error = lock_page_killable(page);
1956 			if (unlikely(error))
1957 				goto readpage_error;
1958 			if (!PageUptodate(page)) {
1959 				if (page->mapping == NULL) {
1960 					/*
1961 					 * invalidate_mapping_pages got it
1962 					 */
1963 					unlock_page(page);
1964 					put_page(page);
1965 					goto find_page;
1966 				}
1967 				unlock_page(page);
1968 				shrink_readahead_size_eio(filp, ra);
1969 				error = -EIO;
1970 				goto readpage_error;
1971 			}
1972 			unlock_page(page);
1973 		}
1974 
1975 		goto page_ok;
1976 
1977 readpage_error:
1978 		/* UHHUH! A synchronous read error occurred. Report it */
1979 		put_page(page);
1980 		goto out;
1981 
1982 no_cached_page:
1983 		/*
1984 		 * Ok, it wasn't cached, so we need to create a new
1985 		 * page..
1986 		 */
1987 		page = page_cache_alloc_cold(mapping);
1988 		if (!page) {
1989 			error = -ENOMEM;
1990 			goto out;
1991 		}
1992 		error = add_to_page_cache_lru(page, mapping, index,
1993 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1994 		if (error) {
1995 			put_page(page);
1996 			if (error == -EEXIST) {
1997 				error = 0;
1998 				goto find_page;
1999 			}
2000 			goto out;
2001 		}
2002 		goto readpage;
2003 	}
2004 
2005 out:
2006 	ra->prev_pos = prev_index;
2007 	ra->prev_pos <<= PAGE_SHIFT;
2008 	ra->prev_pos |= prev_offset;
2009 
2010 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2011 	file_accessed(filp);
2012 	return written ? written : error;
2013 }
2014 
2015 /**
2016  * generic_file_read_iter - generic filesystem read routine
2017  * @iocb:	kernel I/O control block
2018  * @iter:	destination for the data read
2019  *
2020  * This is the "read_iter()" routine for all filesystems
2021  * that can use the page cache directly.
2022  */
2023 ssize_t
2024 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2025 {
2026 	struct file *file = iocb->ki_filp;
2027 	ssize_t retval = 0;
2028 	size_t count = iov_iter_count(iter);
2029 
2030 	if (!count)
2031 		goto out; /* skip atime */
2032 
2033 	if (iocb->ki_flags & IOCB_DIRECT) {
2034 		struct address_space *mapping = file->f_mapping;
2035 		struct inode *inode = mapping->host;
2036 		struct iov_iter data = *iter;
2037 		loff_t size;
2038 
2039 		size = i_size_read(inode);
2040 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2041 					iocb->ki_pos + count - 1);
2042 		if (retval < 0)
2043 			goto out;
2044 
2045 		file_accessed(file);
2046 
2047 		retval = mapping->a_ops->direct_IO(iocb, &data);
2048 		if (retval >= 0) {
2049 			iocb->ki_pos += retval;
2050 			iov_iter_advance(iter, retval);
2051 		}
2052 
2053 		/*
2054 		 * Btrfs can have a short DIO read if we encounter
2055 		 * compressed extents, so if there was an error, or if
2056 		 * we've already read everything we wanted to, or if
2057 		 * there was a short read because we hit EOF, go ahead
2058 		 * and return.  Otherwise fallthrough to buffered io for
2059 		 * the rest of the read.  Buffered reads will not work for
2060 		 * DAX files, so don't bother trying.
2061 		 */
2062 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2063 		    IS_DAX(inode))
2064 			goto out;
2065 	}
2066 
2067 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2068 out:
2069 	return retval;
2070 }
2071 EXPORT_SYMBOL(generic_file_read_iter);
2072 
2073 #ifdef CONFIG_MMU
2074 /**
2075  * page_cache_read - adds requested page to the page cache if not already there
2076  * @file:	file to read
2077  * @offset:	page index
2078  * @gfp_mask:	memory allocation flags
2079  *
2080  * This adds the requested page to the page cache if it isn't already there,
2081  * and schedules an I/O to read in its contents from disk.
2082  */
2083 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2084 {
2085 	struct address_space *mapping = file->f_mapping;
2086 	struct page *page;
2087 	int ret;
2088 
2089 	do {
2090 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2091 		if (!page)
2092 			return -ENOMEM;
2093 
2094 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2095 		if (ret == 0)
2096 			ret = mapping->a_ops->readpage(file, page);
2097 		else if (ret == -EEXIST)
2098 			ret = 0; /* losing race to add is OK */
2099 
2100 		put_page(page);
2101 
2102 	} while (ret == AOP_TRUNCATED_PAGE);
2103 
2104 	return ret;
2105 }
2106 
2107 #define MMAP_LOTSAMISS  (100)
2108 
2109 /*
2110  * Synchronous readahead happens when we don't even find
2111  * a page in the page cache at all.
2112  */
2113 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2114 				   struct file_ra_state *ra,
2115 				   struct file *file,
2116 				   pgoff_t offset)
2117 {
2118 	struct address_space *mapping = file->f_mapping;
2119 
2120 	/* If we don't want any read-ahead, don't bother */
2121 	if (vma->vm_flags & VM_RAND_READ)
2122 		return;
2123 	if (!ra->ra_pages)
2124 		return;
2125 
2126 	if (vma->vm_flags & VM_SEQ_READ) {
2127 		page_cache_sync_readahead(mapping, ra, file, offset,
2128 					  ra->ra_pages);
2129 		return;
2130 	}
2131 
2132 	/* Avoid banging the cache line if not needed */
2133 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2134 		ra->mmap_miss++;
2135 
2136 	/*
2137 	 * Do we miss much more than hit in this file? If so,
2138 	 * stop bothering with read-ahead. It will only hurt.
2139 	 */
2140 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2141 		return;
2142 
2143 	/*
2144 	 * mmap read-around
2145 	 */
2146 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2147 	ra->size = ra->ra_pages;
2148 	ra->async_size = ra->ra_pages / 4;
2149 	ra_submit(ra, mapping, file);
2150 }
2151 
2152 /*
2153  * Asynchronous readahead happens when we find the page and PG_readahead,
2154  * so we want to possibly extend the readahead further..
2155  */
2156 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2157 				    struct file_ra_state *ra,
2158 				    struct file *file,
2159 				    struct page *page,
2160 				    pgoff_t offset)
2161 {
2162 	struct address_space *mapping = file->f_mapping;
2163 
2164 	/* If we don't want any read-ahead, don't bother */
2165 	if (vma->vm_flags & VM_RAND_READ)
2166 		return;
2167 	if (ra->mmap_miss > 0)
2168 		ra->mmap_miss--;
2169 	if (PageReadahead(page))
2170 		page_cache_async_readahead(mapping, ra, file,
2171 					   page, offset, ra->ra_pages);
2172 }
2173 
2174 /**
2175  * filemap_fault - read in file data for page fault handling
2176  * @vmf:	struct vm_fault containing details of the fault
2177  *
2178  * filemap_fault() is invoked via the vma operations vector for a
2179  * mapped memory region to read in file data during a page fault.
2180  *
2181  * The goto's are kind of ugly, but this streamlines the normal case of having
2182  * it in the page cache, and handles the special cases reasonably without
2183  * having a lot of duplicated code.
2184  *
2185  * vma->vm_mm->mmap_sem must be held on entry.
2186  *
2187  * If our return value has VM_FAULT_RETRY set, it's because
2188  * lock_page_or_retry() returned 0.
2189  * The mmap_sem has usually been released in this case.
2190  * See __lock_page_or_retry() for the exception.
2191  *
2192  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2193  * has not been released.
2194  *
2195  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2196  */
2197 int filemap_fault(struct vm_fault *vmf)
2198 {
2199 	int error;
2200 	struct file *file = vmf->vma->vm_file;
2201 	struct address_space *mapping = file->f_mapping;
2202 	struct file_ra_state *ra = &file->f_ra;
2203 	struct inode *inode = mapping->host;
2204 	pgoff_t offset = vmf->pgoff;
2205 	struct page *page;
2206 	loff_t size;
2207 	int ret = 0;
2208 
2209 	size = round_up(i_size_read(inode), PAGE_SIZE);
2210 	if (offset >= size >> PAGE_SHIFT)
2211 		return VM_FAULT_SIGBUS;
2212 
2213 	/*
2214 	 * Do we have something in the page cache already?
2215 	 */
2216 	page = find_get_page(mapping, offset);
2217 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2218 		/*
2219 		 * We found the page, so try async readahead before
2220 		 * waiting for the lock.
2221 		 */
2222 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2223 	} else if (!page) {
2224 		/* No page in the page cache at all */
2225 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2226 		count_vm_event(PGMAJFAULT);
2227 		mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2228 		ret = VM_FAULT_MAJOR;
2229 retry_find:
2230 		page = find_get_page(mapping, offset);
2231 		if (!page)
2232 			goto no_cached_page;
2233 	}
2234 
2235 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2236 		put_page(page);
2237 		return ret | VM_FAULT_RETRY;
2238 	}
2239 
2240 	/* Did it get truncated? */
2241 	if (unlikely(page->mapping != mapping)) {
2242 		unlock_page(page);
2243 		put_page(page);
2244 		goto retry_find;
2245 	}
2246 	VM_BUG_ON_PAGE(page->index != offset, page);
2247 
2248 	/*
2249 	 * We have a locked page in the page cache, now we need to check
2250 	 * that it's up-to-date. If not, it is going to be due to an error.
2251 	 */
2252 	if (unlikely(!PageUptodate(page)))
2253 		goto page_not_uptodate;
2254 
2255 	/*
2256 	 * Found the page and have a reference on it.
2257 	 * We must recheck i_size under page lock.
2258 	 */
2259 	size = round_up(i_size_read(inode), PAGE_SIZE);
2260 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2261 		unlock_page(page);
2262 		put_page(page);
2263 		return VM_FAULT_SIGBUS;
2264 	}
2265 
2266 	vmf->page = page;
2267 	return ret | VM_FAULT_LOCKED;
2268 
2269 no_cached_page:
2270 	/*
2271 	 * We're only likely to ever get here if MADV_RANDOM is in
2272 	 * effect.
2273 	 */
2274 	error = page_cache_read(file, offset, vmf->gfp_mask);
2275 
2276 	/*
2277 	 * The page we want has now been added to the page cache.
2278 	 * In the unlikely event that someone removed it in the
2279 	 * meantime, we'll just come back here and read it again.
2280 	 */
2281 	if (error >= 0)
2282 		goto retry_find;
2283 
2284 	/*
2285 	 * An error return from page_cache_read can result if the
2286 	 * system is low on memory, or a problem occurs while trying
2287 	 * to schedule I/O.
2288 	 */
2289 	if (error == -ENOMEM)
2290 		return VM_FAULT_OOM;
2291 	return VM_FAULT_SIGBUS;
2292 
2293 page_not_uptodate:
2294 	/*
2295 	 * Umm, take care of errors if the page isn't up-to-date.
2296 	 * Try to re-read it _once_. We do this synchronously,
2297 	 * because there really aren't any performance issues here
2298 	 * and we need to check for errors.
2299 	 */
2300 	ClearPageError(page);
2301 	error = mapping->a_ops->readpage(file, page);
2302 	if (!error) {
2303 		wait_on_page_locked(page);
2304 		if (!PageUptodate(page))
2305 			error = -EIO;
2306 	}
2307 	put_page(page);
2308 
2309 	if (!error || error == AOP_TRUNCATED_PAGE)
2310 		goto retry_find;
2311 
2312 	/* Things didn't work out. Return zero to tell the mm layer so. */
2313 	shrink_readahead_size_eio(file, ra);
2314 	return VM_FAULT_SIGBUS;
2315 }
2316 EXPORT_SYMBOL(filemap_fault);
2317 
2318 void filemap_map_pages(struct vm_fault *vmf,
2319 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2320 {
2321 	struct radix_tree_iter iter;
2322 	void **slot;
2323 	struct file *file = vmf->vma->vm_file;
2324 	struct address_space *mapping = file->f_mapping;
2325 	pgoff_t last_pgoff = start_pgoff;
2326 	loff_t size;
2327 	struct page *head, *page;
2328 
2329 	rcu_read_lock();
2330 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2331 			start_pgoff) {
2332 		if (iter.index > end_pgoff)
2333 			break;
2334 repeat:
2335 		page = radix_tree_deref_slot(slot);
2336 		if (unlikely(!page))
2337 			goto next;
2338 		if (radix_tree_exception(page)) {
2339 			if (radix_tree_deref_retry(page)) {
2340 				slot = radix_tree_iter_retry(&iter);
2341 				continue;
2342 			}
2343 			goto next;
2344 		}
2345 
2346 		head = compound_head(page);
2347 		if (!page_cache_get_speculative(head))
2348 			goto repeat;
2349 
2350 		/* The page was split under us? */
2351 		if (compound_head(page) != head) {
2352 			put_page(head);
2353 			goto repeat;
2354 		}
2355 
2356 		/* Has the page moved? */
2357 		if (unlikely(page != *slot)) {
2358 			put_page(head);
2359 			goto repeat;
2360 		}
2361 
2362 		if (!PageUptodate(page) ||
2363 				PageReadahead(page) ||
2364 				PageHWPoison(page))
2365 			goto skip;
2366 		if (!trylock_page(page))
2367 			goto skip;
2368 
2369 		if (page->mapping != mapping || !PageUptodate(page))
2370 			goto unlock;
2371 
2372 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2373 		if (page->index >= size >> PAGE_SHIFT)
2374 			goto unlock;
2375 
2376 		if (file->f_ra.mmap_miss > 0)
2377 			file->f_ra.mmap_miss--;
2378 
2379 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2380 		if (vmf->pte)
2381 			vmf->pte += iter.index - last_pgoff;
2382 		last_pgoff = iter.index;
2383 		if (alloc_set_pte(vmf, NULL, page))
2384 			goto unlock;
2385 		unlock_page(page);
2386 		goto next;
2387 unlock:
2388 		unlock_page(page);
2389 skip:
2390 		put_page(page);
2391 next:
2392 		/* Huge page is mapped? No need to proceed. */
2393 		if (pmd_trans_huge(*vmf->pmd))
2394 			break;
2395 		if (iter.index == end_pgoff)
2396 			break;
2397 	}
2398 	rcu_read_unlock();
2399 }
2400 EXPORT_SYMBOL(filemap_map_pages);
2401 
2402 int filemap_page_mkwrite(struct vm_fault *vmf)
2403 {
2404 	struct page *page = vmf->page;
2405 	struct inode *inode = file_inode(vmf->vma->vm_file);
2406 	int ret = VM_FAULT_LOCKED;
2407 
2408 	sb_start_pagefault(inode->i_sb);
2409 	file_update_time(vmf->vma->vm_file);
2410 	lock_page(page);
2411 	if (page->mapping != inode->i_mapping) {
2412 		unlock_page(page);
2413 		ret = VM_FAULT_NOPAGE;
2414 		goto out;
2415 	}
2416 	/*
2417 	 * We mark the page dirty already here so that when freeze is in
2418 	 * progress, we are guaranteed that writeback during freezing will
2419 	 * see the dirty page and writeprotect it again.
2420 	 */
2421 	set_page_dirty(page);
2422 	wait_for_stable_page(page);
2423 out:
2424 	sb_end_pagefault(inode->i_sb);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(filemap_page_mkwrite);
2428 
2429 const struct vm_operations_struct generic_file_vm_ops = {
2430 	.fault		= filemap_fault,
2431 	.map_pages	= filemap_map_pages,
2432 	.page_mkwrite	= filemap_page_mkwrite,
2433 };
2434 
2435 /* This is used for a general mmap of a disk file */
2436 
2437 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2438 {
2439 	struct address_space *mapping = file->f_mapping;
2440 
2441 	if (!mapping->a_ops->readpage)
2442 		return -ENOEXEC;
2443 	file_accessed(file);
2444 	vma->vm_ops = &generic_file_vm_ops;
2445 	return 0;
2446 }
2447 
2448 /*
2449  * This is for filesystems which do not implement ->writepage.
2450  */
2451 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2452 {
2453 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2454 		return -EINVAL;
2455 	return generic_file_mmap(file, vma);
2456 }
2457 #else
2458 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2459 {
2460 	return -ENOSYS;
2461 }
2462 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2463 {
2464 	return -ENOSYS;
2465 }
2466 #endif /* CONFIG_MMU */
2467 
2468 EXPORT_SYMBOL(generic_file_mmap);
2469 EXPORT_SYMBOL(generic_file_readonly_mmap);
2470 
2471 static struct page *wait_on_page_read(struct page *page)
2472 {
2473 	if (!IS_ERR(page)) {
2474 		wait_on_page_locked(page);
2475 		if (!PageUptodate(page)) {
2476 			put_page(page);
2477 			page = ERR_PTR(-EIO);
2478 		}
2479 	}
2480 	return page;
2481 }
2482 
2483 static struct page *do_read_cache_page(struct address_space *mapping,
2484 				pgoff_t index,
2485 				int (*filler)(void *, struct page *),
2486 				void *data,
2487 				gfp_t gfp)
2488 {
2489 	struct page *page;
2490 	int err;
2491 repeat:
2492 	page = find_get_page(mapping, index);
2493 	if (!page) {
2494 		page = __page_cache_alloc(gfp | __GFP_COLD);
2495 		if (!page)
2496 			return ERR_PTR(-ENOMEM);
2497 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2498 		if (unlikely(err)) {
2499 			put_page(page);
2500 			if (err == -EEXIST)
2501 				goto repeat;
2502 			/* Presumably ENOMEM for radix tree node */
2503 			return ERR_PTR(err);
2504 		}
2505 
2506 filler:
2507 		err = filler(data, page);
2508 		if (err < 0) {
2509 			put_page(page);
2510 			return ERR_PTR(err);
2511 		}
2512 
2513 		page = wait_on_page_read(page);
2514 		if (IS_ERR(page))
2515 			return page;
2516 		goto out;
2517 	}
2518 	if (PageUptodate(page))
2519 		goto out;
2520 
2521 	/*
2522 	 * Page is not up to date and may be locked due one of the following
2523 	 * case a: Page is being filled and the page lock is held
2524 	 * case b: Read/write error clearing the page uptodate status
2525 	 * case c: Truncation in progress (page locked)
2526 	 * case d: Reclaim in progress
2527 	 *
2528 	 * Case a, the page will be up to date when the page is unlocked.
2529 	 *    There is no need to serialise on the page lock here as the page
2530 	 *    is pinned so the lock gives no additional protection. Even if the
2531 	 *    the page is truncated, the data is still valid if PageUptodate as
2532 	 *    it's a race vs truncate race.
2533 	 * Case b, the page will not be up to date
2534 	 * Case c, the page may be truncated but in itself, the data may still
2535 	 *    be valid after IO completes as it's a read vs truncate race. The
2536 	 *    operation must restart if the page is not uptodate on unlock but
2537 	 *    otherwise serialising on page lock to stabilise the mapping gives
2538 	 *    no additional guarantees to the caller as the page lock is
2539 	 *    released before return.
2540 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2541 	 *    will be a race with remove_mapping that determines if the mapping
2542 	 *    is valid on unlock but otherwise the data is valid and there is
2543 	 *    no need to serialise with page lock.
2544 	 *
2545 	 * As the page lock gives no additional guarantee, we optimistically
2546 	 * wait on the page to be unlocked and check if it's up to date and
2547 	 * use the page if it is. Otherwise, the page lock is required to
2548 	 * distinguish between the different cases. The motivation is that we
2549 	 * avoid spurious serialisations and wakeups when multiple processes
2550 	 * wait on the same page for IO to complete.
2551 	 */
2552 	wait_on_page_locked(page);
2553 	if (PageUptodate(page))
2554 		goto out;
2555 
2556 	/* Distinguish between all the cases under the safety of the lock */
2557 	lock_page(page);
2558 
2559 	/* Case c or d, restart the operation */
2560 	if (!page->mapping) {
2561 		unlock_page(page);
2562 		put_page(page);
2563 		goto repeat;
2564 	}
2565 
2566 	/* Someone else locked and filled the page in a very small window */
2567 	if (PageUptodate(page)) {
2568 		unlock_page(page);
2569 		goto out;
2570 	}
2571 	goto filler;
2572 
2573 out:
2574 	mark_page_accessed(page);
2575 	return page;
2576 }
2577 
2578 /**
2579  * read_cache_page - read into page cache, fill it if needed
2580  * @mapping:	the page's address_space
2581  * @index:	the page index
2582  * @filler:	function to perform the read
2583  * @data:	first arg to filler(data, page) function, often left as NULL
2584  *
2585  * Read into the page cache. If a page already exists, and PageUptodate() is
2586  * not set, try to fill the page and wait for it to become unlocked.
2587  *
2588  * If the page does not get brought uptodate, return -EIO.
2589  */
2590 struct page *read_cache_page(struct address_space *mapping,
2591 				pgoff_t index,
2592 				int (*filler)(void *, struct page *),
2593 				void *data)
2594 {
2595 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2596 }
2597 EXPORT_SYMBOL(read_cache_page);
2598 
2599 /**
2600  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2601  * @mapping:	the page's address_space
2602  * @index:	the page index
2603  * @gfp:	the page allocator flags to use if allocating
2604  *
2605  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2606  * any new page allocations done using the specified allocation flags.
2607  *
2608  * If the page does not get brought uptodate, return -EIO.
2609  */
2610 struct page *read_cache_page_gfp(struct address_space *mapping,
2611 				pgoff_t index,
2612 				gfp_t gfp)
2613 {
2614 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2615 
2616 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2617 }
2618 EXPORT_SYMBOL(read_cache_page_gfp);
2619 
2620 /*
2621  * Performs necessary checks before doing a write
2622  *
2623  * Can adjust writing position or amount of bytes to write.
2624  * Returns appropriate error code that caller should return or
2625  * zero in case that write should be allowed.
2626  */
2627 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2628 {
2629 	struct file *file = iocb->ki_filp;
2630 	struct inode *inode = file->f_mapping->host;
2631 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2632 	loff_t pos;
2633 
2634 	if (!iov_iter_count(from))
2635 		return 0;
2636 
2637 	/* FIXME: this is for backwards compatibility with 2.4 */
2638 	if (iocb->ki_flags & IOCB_APPEND)
2639 		iocb->ki_pos = i_size_read(inode);
2640 
2641 	pos = iocb->ki_pos;
2642 
2643 	if (limit != RLIM_INFINITY) {
2644 		if (iocb->ki_pos >= limit) {
2645 			send_sig(SIGXFSZ, current, 0);
2646 			return -EFBIG;
2647 		}
2648 		iov_iter_truncate(from, limit - (unsigned long)pos);
2649 	}
2650 
2651 	/*
2652 	 * LFS rule
2653 	 */
2654 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2655 				!(file->f_flags & O_LARGEFILE))) {
2656 		if (pos >= MAX_NON_LFS)
2657 			return -EFBIG;
2658 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2659 	}
2660 
2661 	/*
2662 	 * Are we about to exceed the fs block limit ?
2663 	 *
2664 	 * If we have written data it becomes a short write.  If we have
2665 	 * exceeded without writing data we send a signal and return EFBIG.
2666 	 * Linus frestrict idea will clean these up nicely..
2667 	 */
2668 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2669 		return -EFBIG;
2670 
2671 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2672 	return iov_iter_count(from);
2673 }
2674 EXPORT_SYMBOL(generic_write_checks);
2675 
2676 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2677 				loff_t pos, unsigned len, unsigned flags,
2678 				struct page **pagep, void **fsdata)
2679 {
2680 	const struct address_space_operations *aops = mapping->a_ops;
2681 
2682 	return aops->write_begin(file, mapping, pos, len, flags,
2683 							pagep, fsdata);
2684 }
2685 EXPORT_SYMBOL(pagecache_write_begin);
2686 
2687 int pagecache_write_end(struct file *file, struct address_space *mapping,
2688 				loff_t pos, unsigned len, unsigned copied,
2689 				struct page *page, void *fsdata)
2690 {
2691 	const struct address_space_operations *aops = mapping->a_ops;
2692 
2693 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2694 }
2695 EXPORT_SYMBOL(pagecache_write_end);
2696 
2697 ssize_t
2698 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2699 {
2700 	struct file	*file = iocb->ki_filp;
2701 	struct address_space *mapping = file->f_mapping;
2702 	struct inode	*inode = mapping->host;
2703 	loff_t		pos = iocb->ki_pos;
2704 	ssize_t		written;
2705 	size_t		write_len;
2706 	pgoff_t		end;
2707 	struct iov_iter data;
2708 
2709 	write_len = iov_iter_count(from);
2710 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2711 
2712 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2713 	if (written)
2714 		goto out;
2715 
2716 	/*
2717 	 * After a write we want buffered reads to be sure to go to disk to get
2718 	 * the new data.  We invalidate clean cached page from the region we're
2719 	 * about to write.  We do this *before* the write so that we can return
2720 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2721 	 */
2722 	if (mapping->nrpages) {
2723 		written = invalidate_inode_pages2_range(mapping,
2724 					pos >> PAGE_SHIFT, end);
2725 		/*
2726 		 * If a page can not be invalidated, return 0 to fall back
2727 		 * to buffered write.
2728 		 */
2729 		if (written) {
2730 			if (written == -EBUSY)
2731 				return 0;
2732 			goto out;
2733 		}
2734 	}
2735 
2736 	data = *from;
2737 	written = mapping->a_ops->direct_IO(iocb, &data);
2738 
2739 	/*
2740 	 * Finally, try again to invalidate clean pages which might have been
2741 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2742 	 * if the source of the write was an mmap'ed region of the file
2743 	 * we're writing.  Either one is a pretty crazy thing to do,
2744 	 * so we don't support it 100%.  If this invalidation
2745 	 * fails, tough, the write still worked...
2746 	 */
2747 	if (mapping->nrpages) {
2748 		invalidate_inode_pages2_range(mapping,
2749 					      pos >> PAGE_SHIFT, end);
2750 	}
2751 
2752 	if (written > 0) {
2753 		pos += written;
2754 		iov_iter_advance(from, written);
2755 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2756 			i_size_write(inode, pos);
2757 			mark_inode_dirty(inode);
2758 		}
2759 		iocb->ki_pos = pos;
2760 	}
2761 out:
2762 	return written;
2763 }
2764 EXPORT_SYMBOL(generic_file_direct_write);
2765 
2766 /*
2767  * Find or create a page at the given pagecache position. Return the locked
2768  * page. This function is specifically for buffered writes.
2769  */
2770 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2771 					pgoff_t index, unsigned flags)
2772 {
2773 	struct page *page;
2774 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2775 
2776 	if (flags & AOP_FLAG_NOFS)
2777 		fgp_flags |= FGP_NOFS;
2778 
2779 	page = pagecache_get_page(mapping, index, fgp_flags,
2780 			mapping_gfp_mask(mapping));
2781 	if (page)
2782 		wait_for_stable_page(page);
2783 
2784 	return page;
2785 }
2786 EXPORT_SYMBOL(grab_cache_page_write_begin);
2787 
2788 ssize_t generic_perform_write(struct file *file,
2789 				struct iov_iter *i, loff_t pos)
2790 {
2791 	struct address_space *mapping = file->f_mapping;
2792 	const struct address_space_operations *a_ops = mapping->a_ops;
2793 	long status = 0;
2794 	ssize_t written = 0;
2795 	unsigned int flags = 0;
2796 
2797 	/*
2798 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2799 	 */
2800 	if (!iter_is_iovec(i))
2801 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2802 
2803 	do {
2804 		struct page *page;
2805 		unsigned long offset;	/* Offset into pagecache page */
2806 		unsigned long bytes;	/* Bytes to write to page */
2807 		size_t copied;		/* Bytes copied from user */
2808 		void *fsdata;
2809 
2810 		offset = (pos & (PAGE_SIZE - 1));
2811 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2812 						iov_iter_count(i));
2813 
2814 again:
2815 		/*
2816 		 * Bring in the user page that we will copy from _first_.
2817 		 * Otherwise there's a nasty deadlock on copying from the
2818 		 * same page as we're writing to, without it being marked
2819 		 * up-to-date.
2820 		 *
2821 		 * Not only is this an optimisation, but it is also required
2822 		 * to check that the address is actually valid, when atomic
2823 		 * usercopies are used, below.
2824 		 */
2825 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2826 			status = -EFAULT;
2827 			break;
2828 		}
2829 
2830 		if (fatal_signal_pending(current)) {
2831 			status = -EINTR;
2832 			break;
2833 		}
2834 
2835 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2836 						&page, &fsdata);
2837 		if (unlikely(status < 0))
2838 			break;
2839 
2840 		if (mapping_writably_mapped(mapping))
2841 			flush_dcache_page(page);
2842 
2843 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2844 		flush_dcache_page(page);
2845 
2846 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2847 						page, fsdata);
2848 		if (unlikely(status < 0))
2849 			break;
2850 		copied = status;
2851 
2852 		cond_resched();
2853 
2854 		iov_iter_advance(i, copied);
2855 		if (unlikely(copied == 0)) {
2856 			/*
2857 			 * If we were unable to copy any data at all, we must
2858 			 * fall back to a single segment length write.
2859 			 *
2860 			 * If we didn't fallback here, we could livelock
2861 			 * because not all segments in the iov can be copied at
2862 			 * once without a pagefault.
2863 			 */
2864 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2865 						iov_iter_single_seg_count(i));
2866 			goto again;
2867 		}
2868 		pos += copied;
2869 		written += copied;
2870 
2871 		balance_dirty_pages_ratelimited(mapping);
2872 	} while (iov_iter_count(i));
2873 
2874 	return written ? written : status;
2875 }
2876 EXPORT_SYMBOL(generic_perform_write);
2877 
2878 /**
2879  * __generic_file_write_iter - write data to a file
2880  * @iocb:	IO state structure (file, offset, etc.)
2881  * @from:	iov_iter with data to write
2882  *
2883  * This function does all the work needed for actually writing data to a
2884  * file. It does all basic checks, removes SUID from the file, updates
2885  * modification times and calls proper subroutines depending on whether we
2886  * do direct IO or a standard buffered write.
2887  *
2888  * It expects i_mutex to be grabbed unless we work on a block device or similar
2889  * object which does not need locking at all.
2890  *
2891  * This function does *not* take care of syncing data in case of O_SYNC write.
2892  * A caller has to handle it. This is mainly due to the fact that we want to
2893  * avoid syncing under i_mutex.
2894  */
2895 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2896 {
2897 	struct file *file = iocb->ki_filp;
2898 	struct address_space * mapping = file->f_mapping;
2899 	struct inode 	*inode = mapping->host;
2900 	ssize_t		written = 0;
2901 	ssize_t		err;
2902 	ssize_t		status;
2903 
2904 	/* We can write back this queue in page reclaim */
2905 	current->backing_dev_info = inode_to_bdi(inode);
2906 	err = file_remove_privs(file);
2907 	if (err)
2908 		goto out;
2909 
2910 	err = file_update_time(file);
2911 	if (err)
2912 		goto out;
2913 
2914 	if (iocb->ki_flags & IOCB_DIRECT) {
2915 		loff_t pos, endbyte;
2916 
2917 		written = generic_file_direct_write(iocb, from);
2918 		/*
2919 		 * If the write stopped short of completing, fall back to
2920 		 * buffered writes.  Some filesystems do this for writes to
2921 		 * holes, for example.  For DAX files, a buffered write will
2922 		 * not succeed (even if it did, DAX does not handle dirty
2923 		 * page-cache pages correctly).
2924 		 */
2925 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2926 			goto out;
2927 
2928 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2929 		/*
2930 		 * If generic_perform_write() returned a synchronous error
2931 		 * then we want to return the number of bytes which were
2932 		 * direct-written, or the error code if that was zero.  Note
2933 		 * that this differs from normal direct-io semantics, which
2934 		 * will return -EFOO even if some bytes were written.
2935 		 */
2936 		if (unlikely(status < 0)) {
2937 			err = status;
2938 			goto out;
2939 		}
2940 		/*
2941 		 * We need to ensure that the page cache pages are written to
2942 		 * disk and invalidated to preserve the expected O_DIRECT
2943 		 * semantics.
2944 		 */
2945 		endbyte = pos + status - 1;
2946 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2947 		if (err == 0) {
2948 			iocb->ki_pos = endbyte + 1;
2949 			written += status;
2950 			invalidate_mapping_pages(mapping,
2951 						 pos >> PAGE_SHIFT,
2952 						 endbyte >> PAGE_SHIFT);
2953 		} else {
2954 			/*
2955 			 * We don't know how much we wrote, so just return
2956 			 * the number of bytes which were direct-written
2957 			 */
2958 		}
2959 	} else {
2960 		written = generic_perform_write(file, from, iocb->ki_pos);
2961 		if (likely(written > 0))
2962 			iocb->ki_pos += written;
2963 	}
2964 out:
2965 	current->backing_dev_info = NULL;
2966 	return written ? written : err;
2967 }
2968 EXPORT_SYMBOL(__generic_file_write_iter);
2969 
2970 /**
2971  * generic_file_write_iter - write data to a file
2972  * @iocb:	IO state structure
2973  * @from:	iov_iter with data to write
2974  *
2975  * This is a wrapper around __generic_file_write_iter() to be used by most
2976  * filesystems. It takes care of syncing the file in case of O_SYNC file
2977  * and acquires i_mutex as needed.
2978  */
2979 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2980 {
2981 	struct file *file = iocb->ki_filp;
2982 	struct inode *inode = file->f_mapping->host;
2983 	ssize_t ret;
2984 
2985 	inode_lock(inode);
2986 	ret = generic_write_checks(iocb, from);
2987 	if (ret > 0)
2988 		ret = __generic_file_write_iter(iocb, from);
2989 	inode_unlock(inode);
2990 
2991 	if (ret > 0)
2992 		ret = generic_write_sync(iocb, ret);
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL(generic_file_write_iter);
2996 
2997 /**
2998  * try_to_release_page() - release old fs-specific metadata on a page
2999  *
3000  * @page: the page which the kernel is trying to free
3001  * @gfp_mask: memory allocation flags (and I/O mode)
3002  *
3003  * The address_space is to try to release any data against the page
3004  * (presumably at page->private).  If the release was successful, return `1'.
3005  * Otherwise return zero.
3006  *
3007  * This may also be called if PG_fscache is set on a page, indicating that the
3008  * page is known to the local caching routines.
3009  *
3010  * The @gfp_mask argument specifies whether I/O may be performed to release
3011  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3012  *
3013  */
3014 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3015 {
3016 	struct address_space * const mapping = page->mapping;
3017 
3018 	BUG_ON(!PageLocked(page));
3019 	if (PageWriteback(page))
3020 		return 0;
3021 
3022 	if (mapping && mapping->a_ops->releasepage)
3023 		return mapping->a_ops->releasepage(page, gfp_mask);
3024 	return try_to_free_buffers(page);
3025 }
3026 
3027 EXPORT_SYMBOL(try_to_release_page);
3028