xref: /openbmc/linux/mm/filemap.c (revision e4c0d0e2)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
39 
40 /*
41  * FIXME: remove all knowledge of the buffer layer from the core VM
42  */
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 
45 #include <asm/mman.h>
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_mutex		(truncate_pagecache)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_mutex
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  inode_wb_list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_mutex
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    inode_wb_list_lock	(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    inode_wb_list_lock	(zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_mutex
111  */
112 
113 /*
114  * Delete a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __delete_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	/*
123 	 * if we're uptodate, flush out into the cleancache, otherwise
124 	 * invalidate any existing cleancache entries.  We can't leave
125 	 * stale data around in the cleancache once our page is gone
126 	 */
127 	if (PageUptodate(page) && PageMappedToDisk(page))
128 		cleancache_put_page(page);
129 	else
130 		cleancache_flush_page(mapping, page);
131 
132 	radix_tree_delete(&mapping->page_tree, page->index);
133 	page->mapping = NULL;
134 	mapping->nrpages--;
135 	__dec_zone_page_state(page, NR_FILE_PAGES);
136 	if (PageSwapBacked(page))
137 		__dec_zone_page_state(page, NR_SHMEM);
138 	BUG_ON(page_mapped(page));
139 
140 	/*
141 	 * Some filesystems seem to re-dirty the page even after
142 	 * the VM has canceled the dirty bit (eg ext3 journaling).
143 	 *
144 	 * Fix it up by doing a final dirty accounting check after
145 	 * having removed the page entirely.
146 	 */
147 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148 		dec_zone_page_state(page, NR_FILE_DIRTY);
149 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
150 	}
151 }
152 
153 /**
154  * delete_from_page_cache - delete page from page cache
155  * @page: the page which the kernel is trying to remove from page cache
156  *
157  * This must be called only on pages that have been verified to be in the page
158  * cache and locked.  It will never put the page into the free list, the caller
159  * has a reference on the page.
160  */
161 void delete_from_page_cache(struct page *page)
162 {
163 	struct address_space *mapping = page->mapping;
164 	void (*freepage)(struct page *);
165 
166 	BUG_ON(!PageLocked(page));
167 
168 	freepage = mapping->a_ops->freepage;
169 	spin_lock_irq(&mapping->tree_lock);
170 	__delete_from_page_cache(page);
171 	spin_unlock_irq(&mapping->tree_lock);
172 	mem_cgroup_uncharge_cache_page(page);
173 
174 	if (freepage)
175 		freepage(page);
176 	page_cache_release(page);
177 }
178 EXPORT_SYMBOL(delete_from_page_cache);
179 
180 static int sleep_on_page(void *word)
181 {
182 	io_schedule();
183 	return 0;
184 }
185 
186 static int sleep_on_page_killable(void *word)
187 {
188 	sleep_on_page(word);
189 	return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191 
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:	address space structure to write
195  * @start:	offset in bytes where the range starts
196  * @end:	offset in bytes where the range ends (inclusive)
197  * @sync_mode:	enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 				loff_t end, int sync_mode)
209 {
210 	int ret;
211 	struct writeback_control wbc = {
212 		.sync_mode = sync_mode,
213 		.nr_to_write = LONG_MAX,
214 		.range_start = start,
215 		.range_end = end,
216 	};
217 
218 	if (!mapping_cap_writeback_dirty(mapping))
219 		return 0;
220 
221 	ret = do_writepages(mapping, &wbc);
222 	return ret;
223 }
224 
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 	int sync_mode)
227 {
228 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230 
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236 
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 				loff_t end)
239 {
240 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:	target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256 
257 /**
258  * filemap_fdatawait_range - wait for writeback to complete
259  * @mapping:		address space structure to wait for
260  * @start_byte:		offset in bytes where the range starts
261  * @end_byte:		offset in bytes where the range ends (inclusive)
262  *
263  * Walk the list of under-writeback pages of the given address space
264  * in the given range and wait for all of them.
265  */
266 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267 			    loff_t end_byte)
268 {
269 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
271 	struct pagevec pvec;
272 	int nr_pages;
273 	int ret = 0;
274 
275 	if (end_byte < start_byte)
276 		return 0;
277 
278 	pagevec_init(&pvec, 0);
279 	while ((index <= end) &&
280 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 			PAGECACHE_TAG_WRITEBACK,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 		unsigned i;
284 
285 		for (i = 0; i < nr_pages; i++) {
286 			struct page *page = pvec.pages[i];
287 
288 			/* until radix tree lookup accepts end_index */
289 			if (page->index > end)
290 				continue;
291 
292 			wait_on_page_writeback(page);
293 			if (TestClearPageError(page))
294 				ret = -EIO;
295 		}
296 		pagevec_release(&pvec);
297 		cond_resched();
298 	}
299 
300 	/* Check for outstanding write errors */
301 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 		ret = -ENOSPC;
303 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 		ret = -EIO;
305 
306 	return ret;
307 }
308 EXPORT_SYMBOL(filemap_fdatawait_range);
309 
310 /**
311  * filemap_fdatawait - wait for all under-writeback pages to complete
312  * @mapping: address space structure to wait for
313  *
314  * Walk the list of under-writeback pages of the given address space
315  * and wait for all of them.
316  */
317 int filemap_fdatawait(struct address_space *mapping)
318 {
319 	loff_t i_size = i_size_read(mapping->host);
320 
321 	if (i_size == 0)
322 		return 0;
323 
324 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
325 }
326 EXPORT_SYMBOL(filemap_fdatawait);
327 
328 int filemap_write_and_wait(struct address_space *mapping)
329 {
330 	int err = 0;
331 
332 	if (mapping->nrpages) {
333 		err = filemap_fdatawrite(mapping);
334 		/*
335 		 * Even if the above returned error, the pages may be
336 		 * written partially (e.g. -ENOSPC), so we wait for it.
337 		 * But the -EIO is special case, it may indicate the worst
338 		 * thing (e.g. bug) happened, so we avoid waiting for it.
339 		 */
340 		if (err != -EIO) {
341 			int err2 = filemap_fdatawait(mapping);
342 			if (!err)
343 				err = err2;
344 		}
345 	}
346 	return err;
347 }
348 EXPORT_SYMBOL(filemap_write_and_wait);
349 
350 /**
351  * filemap_write_and_wait_range - write out & wait on a file range
352  * @mapping:	the address_space for the pages
353  * @lstart:	offset in bytes where the range starts
354  * @lend:	offset in bytes where the range ends (inclusive)
355  *
356  * Write out and wait upon file offsets lstart->lend, inclusive.
357  *
358  * Note that `lend' is inclusive (describes the last byte to be written) so
359  * that this function can be used to write to the very end-of-file (end = -1).
360  */
361 int filemap_write_and_wait_range(struct address_space *mapping,
362 				 loff_t lstart, loff_t lend)
363 {
364 	int err = 0;
365 
366 	if (mapping->nrpages) {
367 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
368 						 WB_SYNC_ALL);
369 		/* See comment of filemap_write_and_wait() */
370 		if (err != -EIO) {
371 			int err2 = filemap_fdatawait_range(mapping,
372 						lstart, lend);
373 			if (!err)
374 				err = err2;
375 		}
376 	}
377 	return err;
378 }
379 EXPORT_SYMBOL(filemap_write_and_wait_range);
380 
381 /**
382  * replace_page_cache_page - replace a pagecache page with a new one
383  * @old:	page to be replaced
384  * @new:	page to replace with
385  * @gfp_mask:	allocation mode
386  *
387  * This function replaces a page in the pagecache with a new one.  On
388  * success it acquires the pagecache reference for the new page and
389  * drops it for the old page.  Both the old and new pages must be
390  * locked.  This function does not add the new page to the LRU, the
391  * caller must do that.
392  *
393  * The remove + add is atomic.  The only way this function can fail is
394  * memory allocation failure.
395  */
396 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
397 {
398 	int error;
399 	struct mem_cgroup *memcg = NULL;
400 
401 	VM_BUG_ON(!PageLocked(old));
402 	VM_BUG_ON(!PageLocked(new));
403 	VM_BUG_ON(new->mapping);
404 
405 	/*
406 	 * This is not page migration, but prepare_migration and
407 	 * end_migration does enough work for charge replacement.
408 	 *
409 	 * In the longer term we probably want a specialized function
410 	 * for moving the charge from old to new in a more efficient
411 	 * manner.
412 	 */
413 	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
414 	if (error)
415 		return error;
416 
417 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
418 	if (!error) {
419 		struct address_space *mapping = old->mapping;
420 		void (*freepage)(struct page *);
421 
422 		pgoff_t offset = old->index;
423 		freepage = mapping->a_ops->freepage;
424 
425 		page_cache_get(new);
426 		new->mapping = mapping;
427 		new->index = offset;
428 
429 		spin_lock_irq(&mapping->tree_lock);
430 		__delete_from_page_cache(old);
431 		error = radix_tree_insert(&mapping->page_tree, offset, new);
432 		BUG_ON(error);
433 		mapping->nrpages++;
434 		__inc_zone_page_state(new, NR_FILE_PAGES);
435 		if (PageSwapBacked(new))
436 			__inc_zone_page_state(new, NR_SHMEM);
437 		spin_unlock_irq(&mapping->tree_lock);
438 		radix_tree_preload_end();
439 		if (freepage)
440 			freepage(old);
441 		page_cache_release(old);
442 		mem_cgroup_end_migration(memcg, old, new, true);
443 	} else {
444 		mem_cgroup_end_migration(memcg, old, new, false);
445 	}
446 
447 	return error;
448 }
449 EXPORT_SYMBOL_GPL(replace_page_cache_page);
450 
451 /**
452  * add_to_page_cache_locked - add a locked page to the pagecache
453  * @page:	page to add
454  * @mapping:	the page's address_space
455  * @offset:	page index
456  * @gfp_mask:	page allocation mode
457  *
458  * This function is used to add a page to the pagecache. It must be locked.
459  * This function does not add the page to the LRU.  The caller must do that.
460  */
461 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
462 		pgoff_t offset, gfp_t gfp_mask)
463 {
464 	int error;
465 
466 	VM_BUG_ON(!PageLocked(page));
467 
468 	error = mem_cgroup_cache_charge(page, current->mm,
469 					gfp_mask & GFP_RECLAIM_MASK);
470 	if (error)
471 		goto out;
472 
473 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
474 	if (error == 0) {
475 		page_cache_get(page);
476 		page->mapping = mapping;
477 		page->index = offset;
478 
479 		spin_lock_irq(&mapping->tree_lock);
480 		error = radix_tree_insert(&mapping->page_tree, offset, page);
481 		if (likely(!error)) {
482 			mapping->nrpages++;
483 			__inc_zone_page_state(page, NR_FILE_PAGES);
484 			if (PageSwapBacked(page))
485 				__inc_zone_page_state(page, NR_SHMEM);
486 			spin_unlock_irq(&mapping->tree_lock);
487 		} else {
488 			page->mapping = NULL;
489 			spin_unlock_irq(&mapping->tree_lock);
490 			mem_cgroup_uncharge_cache_page(page);
491 			page_cache_release(page);
492 		}
493 		radix_tree_preload_end();
494 	} else
495 		mem_cgroup_uncharge_cache_page(page);
496 out:
497 	return error;
498 }
499 EXPORT_SYMBOL(add_to_page_cache_locked);
500 
501 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
502 				pgoff_t offset, gfp_t gfp_mask)
503 {
504 	int ret;
505 
506 	/*
507 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
508 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
509 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
510 	 * (called in add_to_page_cache) needs to know where they're going too.
511 	 */
512 	if (mapping_cap_swap_backed(mapping))
513 		SetPageSwapBacked(page);
514 
515 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
516 	if (ret == 0) {
517 		if (page_is_file_cache(page))
518 			lru_cache_add_file(page);
519 		else
520 			lru_cache_add_anon(page);
521 	}
522 	return ret;
523 }
524 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
525 
526 #ifdef CONFIG_NUMA
527 struct page *__page_cache_alloc(gfp_t gfp)
528 {
529 	int n;
530 	struct page *page;
531 
532 	if (cpuset_do_page_mem_spread()) {
533 		get_mems_allowed();
534 		n = cpuset_mem_spread_node();
535 		page = alloc_pages_exact_node(n, gfp, 0);
536 		put_mems_allowed();
537 		return page;
538 	}
539 	return alloc_pages(gfp, 0);
540 }
541 EXPORT_SYMBOL(__page_cache_alloc);
542 #endif
543 
544 /*
545  * In order to wait for pages to become available there must be
546  * waitqueues associated with pages. By using a hash table of
547  * waitqueues where the bucket discipline is to maintain all
548  * waiters on the same queue and wake all when any of the pages
549  * become available, and for the woken contexts to check to be
550  * sure the appropriate page became available, this saves space
551  * at a cost of "thundering herd" phenomena during rare hash
552  * collisions.
553  */
554 static wait_queue_head_t *page_waitqueue(struct page *page)
555 {
556 	const struct zone *zone = page_zone(page);
557 
558 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
559 }
560 
561 static inline void wake_up_page(struct page *page, int bit)
562 {
563 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
564 }
565 
566 void wait_on_page_bit(struct page *page, int bit_nr)
567 {
568 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
569 
570 	if (test_bit(bit_nr, &page->flags))
571 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
572 							TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(wait_on_page_bit);
575 
576 int wait_on_page_bit_killable(struct page *page, int bit_nr)
577 {
578 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
579 
580 	if (!test_bit(bit_nr, &page->flags))
581 		return 0;
582 
583 	return __wait_on_bit(page_waitqueue(page), &wait,
584 			     sleep_on_page_killable, TASK_KILLABLE);
585 }
586 
587 /**
588  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
589  * @page: Page defining the wait queue of interest
590  * @waiter: Waiter to add to the queue
591  *
592  * Add an arbitrary @waiter to the wait queue for the nominated @page.
593  */
594 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
595 {
596 	wait_queue_head_t *q = page_waitqueue(page);
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&q->lock, flags);
600 	__add_wait_queue(q, waiter);
601 	spin_unlock_irqrestore(&q->lock, flags);
602 }
603 EXPORT_SYMBOL_GPL(add_page_wait_queue);
604 
605 /**
606  * unlock_page - unlock a locked page
607  * @page: the page
608  *
609  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
610  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
611  * mechananism between PageLocked pages and PageWriteback pages is shared.
612  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
613  *
614  * The mb is necessary to enforce ordering between the clear_bit and the read
615  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
616  */
617 void unlock_page(struct page *page)
618 {
619 	VM_BUG_ON(!PageLocked(page));
620 	clear_bit_unlock(PG_locked, &page->flags);
621 	smp_mb__after_clear_bit();
622 	wake_up_page(page, PG_locked);
623 }
624 EXPORT_SYMBOL(unlock_page);
625 
626 /**
627  * end_page_writeback - end writeback against a page
628  * @page: the page
629  */
630 void end_page_writeback(struct page *page)
631 {
632 	if (TestClearPageReclaim(page))
633 		rotate_reclaimable_page(page);
634 
635 	if (!test_clear_page_writeback(page))
636 		BUG();
637 
638 	smp_mb__after_clear_bit();
639 	wake_up_page(page, PG_writeback);
640 }
641 EXPORT_SYMBOL(end_page_writeback);
642 
643 /**
644  * __lock_page - get a lock on the page, assuming we need to sleep to get it
645  * @page: the page to lock
646  */
647 void __lock_page(struct page *page)
648 {
649 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650 
651 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
652 							TASK_UNINTERRUPTIBLE);
653 }
654 EXPORT_SYMBOL(__lock_page);
655 
656 int __lock_page_killable(struct page *page)
657 {
658 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
659 
660 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
661 					sleep_on_page_killable, TASK_KILLABLE);
662 }
663 EXPORT_SYMBOL_GPL(__lock_page_killable);
664 
665 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
666 			 unsigned int flags)
667 {
668 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
669 		/*
670 		 * CAUTION! In this case, mmap_sem is not released
671 		 * even though return 0.
672 		 */
673 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
674 			return 0;
675 
676 		up_read(&mm->mmap_sem);
677 		if (flags & FAULT_FLAG_KILLABLE)
678 			wait_on_page_locked_killable(page);
679 		else
680 			wait_on_page_locked(page);
681 		return 0;
682 	} else {
683 		if (flags & FAULT_FLAG_KILLABLE) {
684 			int ret;
685 
686 			ret = __lock_page_killable(page);
687 			if (ret) {
688 				up_read(&mm->mmap_sem);
689 				return 0;
690 			}
691 		} else
692 			__lock_page(page);
693 		return 1;
694 	}
695 }
696 
697 /**
698  * find_get_page - find and get a page reference
699  * @mapping: the address_space to search
700  * @offset: the page index
701  *
702  * Is there a pagecache struct page at the given (mapping, offset) tuple?
703  * If yes, increment its refcount and return it; if no, return NULL.
704  */
705 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
706 {
707 	void **pagep;
708 	struct page *page;
709 
710 	rcu_read_lock();
711 repeat:
712 	page = NULL;
713 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
714 	if (pagep) {
715 		page = radix_tree_deref_slot(pagep);
716 		if (unlikely(!page))
717 			goto out;
718 		if (radix_tree_deref_retry(page))
719 			goto repeat;
720 
721 		if (!page_cache_get_speculative(page))
722 			goto repeat;
723 
724 		/*
725 		 * Has the page moved?
726 		 * This is part of the lockless pagecache protocol. See
727 		 * include/linux/pagemap.h for details.
728 		 */
729 		if (unlikely(page != *pagep)) {
730 			page_cache_release(page);
731 			goto repeat;
732 		}
733 	}
734 out:
735 	rcu_read_unlock();
736 
737 	return page;
738 }
739 EXPORT_SYMBOL(find_get_page);
740 
741 /**
742  * find_lock_page - locate, pin and lock a pagecache page
743  * @mapping: the address_space to search
744  * @offset: the page index
745  *
746  * Locates the desired pagecache page, locks it, increments its reference
747  * count and returns its address.
748  *
749  * Returns zero if the page was not present. find_lock_page() may sleep.
750  */
751 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
752 {
753 	struct page *page;
754 
755 repeat:
756 	page = find_get_page(mapping, offset);
757 	if (page) {
758 		lock_page(page);
759 		/* Has the page been truncated? */
760 		if (unlikely(page->mapping != mapping)) {
761 			unlock_page(page);
762 			page_cache_release(page);
763 			goto repeat;
764 		}
765 		VM_BUG_ON(page->index != offset);
766 	}
767 	return page;
768 }
769 EXPORT_SYMBOL(find_lock_page);
770 
771 /**
772  * find_or_create_page - locate or add a pagecache page
773  * @mapping: the page's address_space
774  * @index: the page's index into the mapping
775  * @gfp_mask: page allocation mode
776  *
777  * Locates a page in the pagecache.  If the page is not present, a new page
778  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
779  * LRU list.  The returned page is locked and has its reference count
780  * incremented.
781  *
782  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
783  * allocation!
784  *
785  * find_or_create_page() returns the desired page's address, or zero on
786  * memory exhaustion.
787  */
788 struct page *find_or_create_page(struct address_space *mapping,
789 		pgoff_t index, gfp_t gfp_mask)
790 {
791 	struct page *page;
792 	int err;
793 repeat:
794 	page = find_lock_page(mapping, index);
795 	if (!page) {
796 		page = __page_cache_alloc(gfp_mask);
797 		if (!page)
798 			return NULL;
799 		/*
800 		 * We want a regular kernel memory (not highmem or DMA etc)
801 		 * allocation for the radix tree nodes, but we need to honour
802 		 * the context-specific requirements the caller has asked for.
803 		 * GFP_RECLAIM_MASK collects those requirements.
804 		 */
805 		err = add_to_page_cache_lru(page, mapping, index,
806 			(gfp_mask & GFP_RECLAIM_MASK));
807 		if (unlikely(err)) {
808 			page_cache_release(page);
809 			page = NULL;
810 			if (err == -EEXIST)
811 				goto repeat;
812 		}
813 	}
814 	return page;
815 }
816 EXPORT_SYMBOL(find_or_create_page);
817 
818 /**
819  * find_get_pages - gang pagecache lookup
820  * @mapping:	The address_space to search
821  * @start:	The starting page index
822  * @nr_pages:	The maximum number of pages
823  * @pages:	Where the resulting pages are placed
824  *
825  * find_get_pages() will search for and return a group of up to
826  * @nr_pages pages in the mapping.  The pages are placed at @pages.
827  * find_get_pages() takes a reference against the returned pages.
828  *
829  * The search returns a group of mapping-contiguous pages with ascending
830  * indexes.  There may be holes in the indices due to not-present pages.
831  *
832  * find_get_pages() returns the number of pages which were found.
833  */
834 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
835 			    unsigned int nr_pages, struct page **pages)
836 {
837 	unsigned int i;
838 	unsigned int ret;
839 	unsigned int nr_found;
840 
841 	rcu_read_lock();
842 restart:
843 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
844 				(void ***)pages, start, nr_pages);
845 	ret = 0;
846 	for (i = 0; i < nr_found; i++) {
847 		struct page *page;
848 repeat:
849 		page = radix_tree_deref_slot((void **)pages[i]);
850 		if (unlikely(!page))
851 			continue;
852 
853 		/*
854 		 * This can only trigger when the entry at index 0 moves out
855 		 * of or back to the root: none yet gotten, safe to restart.
856 		 */
857 		if (radix_tree_deref_retry(page)) {
858 			WARN_ON(start | i);
859 			goto restart;
860 		}
861 
862 		if (!page_cache_get_speculative(page))
863 			goto repeat;
864 
865 		/* Has the page moved? */
866 		if (unlikely(page != *((void **)pages[i]))) {
867 			page_cache_release(page);
868 			goto repeat;
869 		}
870 
871 		pages[ret] = page;
872 		ret++;
873 	}
874 
875 	/*
876 	 * If all entries were removed before we could secure them,
877 	 * try again, because callers stop trying once 0 is returned.
878 	 */
879 	if (unlikely(!ret && nr_found))
880 		goto restart;
881 	rcu_read_unlock();
882 	return ret;
883 }
884 
885 /**
886  * find_get_pages_contig - gang contiguous pagecache lookup
887  * @mapping:	The address_space to search
888  * @index:	The starting page index
889  * @nr_pages:	The maximum number of pages
890  * @pages:	Where the resulting pages are placed
891  *
892  * find_get_pages_contig() works exactly like find_get_pages(), except
893  * that the returned number of pages are guaranteed to be contiguous.
894  *
895  * find_get_pages_contig() returns the number of pages which were found.
896  */
897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 			       unsigned int nr_pages, struct page **pages)
899 {
900 	unsigned int i;
901 	unsigned int ret;
902 	unsigned int nr_found;
903 
904 	rcu_read_lock();
905 restart:
906 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
907 				(void ***)pages, index, nr_pages);
908 	ret = 0;
909 	for (i = 0; i < nr_found; i++) {
910 		struct page *page;
911 repeat:
912 		page = radix_tree_deref_slot((void **)pages[i]);
913 		if (unlikely(!page))
914 			continue;
915 
916 		/*
917 		 * This can only trigger when the entry at index 0 moves out
918 		 * of or back to the root: none yet gotten, safe to restart.
919 		 */
920 		if (radix_tree_deref_retry(page))
921 			goto restart;
922 
923 		if (!page_cache_get_speculative(page))
924 			goto repeat;
925 
926 		/* Has the page moved? */
927 		if (unlikely(page != *((void **)pages[i]))) {
928 			page_cache_release(page);
929 			goto repeat;
930 		}
931 
932 		/*
933 		 * must check mapping and index after taking the ref.
934 		 * otherwise we can get both false positives and false
935 		 * negatives, which is just confusing to the caller.
936 		 */
937 		if (page->mapping == NULL || page->index != index) {
938 			page_cache_release(page);
939 			break;
940 		}
941 
942 		pages[ret] = page;
943 		ret++;
944 		index++;
945 	}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(find_get_pages_contig);
950 
951 /**
952  * find_get_pages_tag - find and return pages that match @tag
953  * @mapping:	the address_space to search
954  * @index:	the starting page index
955  * @tag:	the tag index
956  * @nr_pages:	the maximum number of pages
957  * @pages:	where the resulting pages are placed
958  *
959  * Like find_get_pages, except we only return pages which are tagged with
960  * @tag.   We update @index to index the next page for the traversal.
961  */
962 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
963 			int tag, unsigned int nr_pages, struct page **pages)
964 {
965 	unsigned int i;
966 	unsigned int ret;
967 	unsigned int nr_found;
968 
969 	rcu_read_lock();
970 restart:
971 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
972 				(void ***)pages, *index, nr_pages, tag);
973 	ret = 0;
974 	for (i = 0; i < nr_found; i++) {
975 		struct page *page;
976 repeat:
977 		page = radix_tree_deref_slot((void **)pages[i]);
978 		if (unlikely(!page))
979 			continue;
980 
981 		/*
982 		 * This can only trigger when the entry at index 0 moves out
983 		 * of or back to the root: none yet gotten, safe to restart.
984 		 */
985 		if (radix_tree_deref_retry(page))
986 			goto restart;
987 
988 		if (!page_cache_get_speculative(page))
989 			goto repeat;
990 
991 		/* Has the page moved? */
992 		if (unlikely(page != *((void **)pages[i]))) {
993 			page_cache_release(page);
994 			goto repeat;
995 		}
996 
997 		pages[ret] = page;
998 		ret++;
999 	}
1000 
1001 	/*
1002 	 * If all entries were removed before we could secure them,
1003 	 * try again, because callers stop trying once 0 is returned.
1004 	 */
1005 	if (unlikely(!ret && nr_found))
1006 		goto restart;
1007 	rcu_read_unlock();
1008 
1009 	if (ret)
1010 		*index = pages[ret - 1]->index + 1;
1011 
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(find_get_pages_tag);
1015 
1016 /**
1017  * grab_cache_page_nowait - returns locked page at given index in given cache
1018  * @mapping: target address_space
1019  * @index: the page index
1020  *
1021  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1022  * This is intended for speculative data generators, where the data can
1023  * be regenerated if the page couldn't be grabbed.  This routine should
1024  * be safe to call while holding the lock for another page.
1025  *
1026  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1027  * and deadlock against the caller's locked page.
1028  */
1029 struct page *
1030 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1031 {
1032 	struct page *page = find_get_page(mapping, index);
1033 
1034 	if (page) {
1035 		if (trylock_page(page))
1036 			return page;
1037 		page_cache_release(page);
1038 		return NULL;
1039 	}
1040 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1041 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1042 		page_cache_release(page);
1043 		page = NULL;
1044 	}
1045 	return page;
1046 }
1047 EXPORT_SYMBOL(grab_cache_page_nowait);
1048 
1049 /*
1050  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1051  * a _large_ part of the i/o request. Imagine the worst scenario:
1052  *
1053  *      ---R__________________________________________B__________
1054  *         ^ reading here                             ^ bad block(assume 4k)
1055  *
1056  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1057  * => failing the whole request => read(R) => read(R+1) =>
1058  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1059  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1060  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1061  *
1062  * It is going insane. Fix it by quickly scaling down the readahead size.
1063  */
1064 static void shrink_readahead_size_eio(struct file *filp,
1065 					struct file_ra_state *ra)
1066 {
1067 	ra->ra_pages /= 4;
1068 }
1069 
1070 /**
1071  * do_generic_file_read - generic file read routine
1072  * @filp:	the file to read
1073  * @ppos:	current file position
1074  * @desc:	read_descriptor
1075  * @actor:	read method
1076  *
1077  * This is a generic file read routine, and uses the
1078  * mapping->a_ops->readpage() function for the actual low-level stuff.
1079  *
1080  * This is really ugly. But the goto's actually try to clarify some
1081  * of the logic when it comes to error handling etc.
1082  */
1083 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1084 		read_descriptor_t *desc, read_actor_t actor)
1085 {
1086 	struct address_space *mapping = filp->f_mapping;
1087 	struct inode *inode = mapping->host;
1088 	struct file_ra_state *ra = &filp->f_ra;
1089 	pgoff_t index;
1090 	pgoff_t last_index;
1091 	pgoff_t prev_index;
1092 	unsigned long offset;      /* offset into pagecache page */
1093 	unsigned int prev_offset;
1094 	int error;
1095 
1096 	index = *ppos >> PAGE_CACHE_SHIFT;
1097 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1098 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1099 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1100 	offset = *ppos & ~PAGE_CACHE_MASK;
1101 
1102 	for (;;) {
1103 		struct page *page;
1104 		pgoff_t end_index;
1105 		loff_t isize;
1106 		unsigned long nr, ret;
1107 
1108 		cond_resched();
1109 find_page:
1110 		page = find_get_page(mapping, index);
1111 		if (!page) {
1112 			page_cache_sync_readahead(mapping,
1113 					ra, filp,
1114 					index, last_index - index);
1115 			page = find_get_page(mapping, index);
1116 			if (unlikely(page == NULL))
1117 				goto no_cached_page;
1118 		}
1119 		if (PageReadahead(page)) {
1120 			page_cache_async_readahead(mapping,
1121 					ra, filp, page,
1122 					index, last_index - index);
1123 		}
1124 		if (!PageUptodate(page)) {
1125 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1126 					!mapping->a_ops->is_partially_uptodate)
1127 				goto page_not_up_to_date;
1128 			if (!trylock_page(page))
1129 				goto page_not_up_to_date;
1130 			/* Did it get truncated before we got the lock? */
1131 			if (!page->mapping)
1132 				goto page_not_up_to_date_locked;
1133 			if (!mapping->a_ops->is_partially_uptodate(page,
1134 								desc, offset))
1135 				goto page_not_up_to_date_locked;
1136 			unlock_page(page);
1137 		}
1138 page_ok:
1139 		/*
1140 		 * i_size must be checked after we know the page is Uptodate.
1141 		 *
1142 		 * Checking i_size after the check allows us to calculate
1143 		 * the correct value for "nr", which means the zero-filled
1144 		 * part of the page is not copied back to userspace (unless
1145 		 * another truncate extends the file - this is desired though).
1146 		 */
1147 
1148 		isize = i_size_read(inode);
1149 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1150 		if (unlikely(!isize || index > end_index)) {
1151 			page_cache_release(page);
1152 			goto out;
1153 		}
1154 
1155 		/* nr is the maximum number of bytes to copy from this page */
1156 		nr = PAGE_CACHE_SIZE;
1157 		if (index == end_index) {
1158 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1159 			if (nr <= offset) {
1160 				page_cache_release(page);
1161 				goto out;
1162 			}
1163 		}
1164 		nr = nr - offset;
1165 
1166 		/* If users can be writing to this page using arbitrary
1167 		 * virtual addresses, take care about potential aliasing
1168 		 * before reading the page on the kernel side.
1169 		 */
1170 		if (mapping_writably_mapped(mapping))
1171 			flush_dcache_page(page);
1172 
1173 		/*
1174 		 * When a sequential read accesses a page several times,
1175 		 * only mark it as accessed the first time.
1176 		 */
1177 		if (prev_index != index || offset != prev_offset)
1178 			mark_page_accessed(page);
1179 		prev_index = index;
1180 
1181 		/*
1182 		 * Ok, we have the page, and it's up-to-date, so
1183 		 * now we can copy it to user space...
1184 		 *
1185 		 * The actor routine returns how many bytes were actually used..
1186 		 * NOTE! This may not be the same as how much of a user buffer
1187 		 * we filled up (we may be padding etc), so we can only update
1188 		 * "pos" here (the actor routine has to update the user buffer
1189 		 * pointers and the remaining count).
1190 		 */
1191 		ret = actor(desc, page, offset, nr);
1192 		offset += ret;
1193 		index += offset >> PAGE_CACHE_SHIFT;
1194 		offset &= ~PAGE_CACHE_MASK;
1195 		prev_offset = offset;
1196 
1197 		page_cache_release(page);
1198 		if (ret == nr && desc->count)
1199 			continue;
1200 		goto out;
1201 
1202 page_not_up_to_date:
1203 		/* Get exclusive access to the page ... */
1204 		error = lock_page_killable(page);
1205 		if (unlikely(error))
1206 			goto readpage_error;
1207 
1208 page_not_up_to_date_locked:
1209 		/* Did it get truncated before we got the lock? */
1210 		if (!page->mapping) {
1211 			unlock_page(page);
1212 			page_cache_release(page);
1213 			continue;
1214 		}
1215 
1216 		/* Did somebody else fill it already? */
1217 		if (PageUptodate(page)) {
1218 			unlock_page(page);
1219 			goto page_ok;
1220 		}
1221 
1222 readpage:
1223 		/*
1224 		 * A previous I/O error may have been due to temporary
1225 		 * failures, eg. multipath errors.
1226 		 * PG_error will be set again if readpage fails.
1227 		 */
1228 		ClearPageError(page);
1229 		/* Start the actual read. The read will unlock the page. */
1230 		error = mapping->a_ops->readpage(filp, page);
1231 
1232 		if (unlikely(error)) {
1233 			if (error == AOP_TRUNCATED_PAGE) {
1234 				page_cache_release(page);
1235 				goto find_page;
1236 			}
1237 			goto readpage_error;
1238 		}
1239 
1240 		if (!PageUptodate(page)) {
1241 			error = lock_page_killable(page);
1242 			if (unlikely(error))
1243 				goto readpage_error;
1244 			if (!PageUptodate(page)) {
1245 				if (page->mapping == NULL) {
1246 					/*
1247 					 * invalidate_mapping_pages got it
1248 					 */
1249 					unlock_page(page);
1250 					page_cache_release(page);
1251 					goto find_page;
1252 				}
1253 				unlock_page(page);
1254 				shrink_readahead_size_eio(filp, ra);
1255 				error = -EIO;
1256 				goto readpage_error;
1257 			}
1258 			unlock_page(page);
1259 		}
1260 
1261 		goto page_ok;
1262 
1263 readpage_error:
1264 		/* UHHUH! A synchronous read error occurred. Report it */
1265 		desc->error = error;
1266 		page_cache_release(page);
1267 		goto out;
1268 
1269 no_cached_page:
1270 		/*
1271 		 * Ok, it wasn't cached, so we need to create a new
1272 		 * page..
1273 		 */
1274 		page = page_cache_alloc_cold(mapping);
1275 		if (!page) {
1276 			desc->error = -ENOMEM;
1277 			goto out;
1278 		}
1279 		error = add_to_page_cache_lru(page, mapping,
1280 						index, GFP_KERNEL);
1281 		if (error) {
1282 			page_cache_release(page);
1283 			if (error == -EEXIST)
1284 				goto find_page;
1285 			desc->error = error;
1286 			goto out;
1287 		}
1288 		goto readpage;
1289 	}
1290 
1291 out:
1292 	ra->prev_pos = prev_index;
1293 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1294 	ra->prev_pos |= prev_offset;
1295 
1296 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1297 	file_accessed(filp);
1298 }
1299 
1300 int file_read_actor(read_descriptor_t *desc, struct page *page,
1301 			unsigned long offset, unsigned long size)
1302 {
1303 	char *kaddr;
1304 	unsigned long left, count = desc->count;
1305 
1306 	if (size > count)
1307 		size = count;
1308 
1309 	/*
1310 	 * Faults on the destination of a read are common, so do it before
1311 	 * taking the kmap.
1312 	 */
1313 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1314 		kaddr = kmap_atomic(page, KM_USER0);
1315 		left = __copy_to_user_inatomic(desc->arg.buf,
1316 						kaddr + offset, size);
1317 		kunmap_atomic(kaddr, KM_USER0);
1318 		if (left == 0)
1319 			goto success;
1320 	}
1321 
1322 	/* Do it the slow way */
1323 	kaddr = kmap(page);
1324 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1325 	kunmap(page);
1326 
1327 	if (left) {
1328 		size -= left;
1329 		desc->error = -EFAULT;
1330 	}
1331 success:
1332 	desc->count = count - size;
1333 	desc->written += size;
1334 	desc->arg.buf += size;
1335 	return size;
1336 }
1337 
1338 /*
1339  * Performs necessary checks before doing a write
1340  * @iov:	io vector request
1341  * @nr_segs:	number of segments in the iovec
1342  * @count:	number of bytes to write
1343  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1344  *
1345  * Adjust number of segments and amount of bytes to write (nr_segs should be
1346  * properly initialized first). Returns appropriate error code that caller
1347  * should return or zero in case that write should be allowed.
1348  */
1349 int generic_segment_checks(const struct iovec *iov,
1350 			unsigned long *nr_segs, size_t *count, int access_flags)
1351 {
1352 	unsigned long   seg;
1353 	size_t cnt = 0;
1354 	for (seg = 0; seg < *nr_segs; seg++) {
1355 		const struct iovec *iv = &iov[seg];
1356 
1357 		/*
1358 		 * If any segment has a negative length, or the cumulative
1359 		 * length ever wraps negative then return -EINVAL.
1360 		 */
1361 		cnt += iv->iov_len;
1362 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1363 			return -EINVAL;
1364 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1365 			continue;
1366 		if (seg == 0)
1367 			return -EFAULT;
1368 		*nr_segs = seg;
1369 		cnt -= iv->iov_len;	/* This segment is no good */
1370 		break;
1371 	}
1372 	*count = cnt;
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(generic_segment_checks);
1376 
1377 /**
1378  * generic_file_aio_read - generic filesystem read routine
1379  * @iocb:	kernel I/O control block
1380  * @iov:	io vector request
1381  * @nr_segs:	number of segments in the iovec
1382  * @pos:	current file position
1383  *
1384  * This is the "read()" routine for all filesystems
1385  * that can use the page cache directly.
1386  */
1387 ssize_t
1388 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1389 		unsigned long nr_segs, loff_t pos)
1390 {
1391 	struct file *filp = iocb->ki_filp;
1392 	ssize_t retval;
1393 	unsigned long seg = 0;
1394 	size_t count;
1395 	loff_t *ppos = &iocb->ki_pos;
1396 	struct blk_plug plug;
1397 
1398 	count = 0;
1399 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1400 	if (retval)
1401 		return retval;
1402 
1403 	blk_start_plug(&plug);
1404 
1405 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1406 	if (filp->f_flags & O_DIRECT) {
1407 		loff_t size;
1408 		struct address_space *mapping;
1409 		struct inode *inode;
1410 
1411 		mapping = filp->f_mapping;
1412 		inode = mapping->host;
1413 		if (!count)
1414 			goto out; /* skip atime */
1415 		size = i_size_read(inode);
1416 		if (pos < size) {
1417 			retval = filemap_write_and_wait_range(mapping, pos,
1418 					pos + iov_length(iov, nr_segs) - 1);
1419 			if (!retval) {
1420 				retval = mapping->a_ops->direct_IO(READ, iocb,
1421 							iov, pos, nr_segs);
1422 			}
1423 			if (retval > 0) {
1424 				*ppos = pos + retval;
1425 				count -= retval;
1426 			}
1427 
1428 			/*
1429 			 * Btrfs can have a short DIO read if we encounter
1430 			 * compressed extents, so if there was an error, or if
1431 			 * we've already read everything we wanted to, or if
1432 			 * there was a short read because we hit EOF, go ahead
1433 			 * and return.  Otherwise fallthrough to buffered io for
1434 			 * the rest of the read.
1435 			 */
1436 			if (retval < 0 || !count || *ppos >= size) {
1437 				file_accessed(filp);
1438 				goto out;
1439 			}
1440 		}
1441 	}
1442 
1443 	count = retval;
1444 	for (seg = 0; seg < nr_segs; seg++) {
1445 		read_descriptor_t desc;
1446 		loff_t offset = 0;
1447 
1448 		/*
1449 		 * If we did a short DIO read we need to skip the section of the
1450 		 * iov that we've already read data into.
1451 		 */
1452 		if (count) {
1453 			if (count > iov[seg].iov_len) {
1454 				count -= iov[seg].iov_len;
1455 				continue;
1456 			}
1457 			offset = count;
1458 			count = 0;
1459 		}
1460 
1461 		desc.written = 0;
1462 		desc.arg.buf = iov[seg].iov_base + offset;
1463 		desc.count = iov[seg].iov_len - offset;
1464 		if (desc.count == 0)
1465 			continue;
1466 		desc.error = 0;
1467 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468 		retval += desc.written;
1469 		if (desc.error) {
1470 			retval = retval ?: desc.error;
1471 			break;
1472 		}
1473 		if (desc.count > 0)
1474 			break;
1475 	}
1476 out:
1477 	blk_finish_plug(&plug);
1478 	return retval;
1479 }
1480 EXPORT_SYMBOL(generic_file_aio_read);
1481 
1482 static ssize_t
1483 do_readahead(struct address_space *mapping, struct file *filp,
1484 	     pgoff_t index, unsigned long nr)
1485 {
1486 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1487 		return -EINVAL;
1488 
1489 	force_page_cache_readahead(mapping, filp, index, nr);
1490 	return 0;
1491 }
1492 
1493 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1494 {
1495 	ssize_t ret;
1496 	struct file *file;
1497 
1498 	ret = -EBADF;
1499 	file = fget(fd);
1500 	if (file) {
1501 		if (file->f_mode & FMODE_READ) {
1502 			struct address_space *mapping = file->f_mapping;
1503 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1504 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1505 			unsigned long len = end - start + 1;
1506 			ret = do_readahead(mapping, file, start, len);
1507 		}
1508 		fput(file);
1509 	}
1510 	return ret;
1511 }
1512 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1513 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1514 {
1515 	return SYSC_readahead((int) fd, offset, (size_t) count);
1516 }
1517 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1518 #endif
1519 
1520 #ifdef CONFIG_MMU
1521 /**
1522  * page_cache_read - adds requested page to the page cache if not already there
1523  * @file:	file to read
1524  * @offset:	page index
1525  *
1526  * This adds the requested page to the page cache if it isn't already there,
1527  * and schedules an I/O to read in its contents from disk.
1528  */
1529 static int page_cache_read(struct file *file, pgoff_t offset)
1530 {
1531 	struct address_space *mapping = file->f_mapping;
1532 	struct page *page;
1533 	int ret;
1534 
1535 	do {
1536 		page = page_cache_alloc_cold(mapping);
1537 		if (!page)
1538 			return -ENOMEM;
1539 
1540 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1541 		if (ret == 0)
1542 			ret = mapping->a_ops->readpage(file, page);
1543 		else if (ret == -EEXIST)
1544 			ret = 0; /* losing race to add is OK */
1545 
1546 		page_cache_release(page);
1547 
1548 	} while (ret == AOP_TRUNCATED_PAGE);
1549 
1550 	return ret;
1551 }
1552 
1553 #define MMAP_LOTSAMISS  (100)
1554 
1555 /*
1556  * Synchronous readahead happens when we don't even find
1557  * a page in the page cache at all.
1558  */
1559 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1560 				   struct file_ra_state *ra,
1561 				   struct file *file,
1562 				   pgoff_t offset)
1563 {
1564 	unsigned long ra_pages;
1565 	struct address_space *mapping = file->f_mapping;
1566 
1567 	/* If we don't want any read-ahead, don't bother */
1568 	if (VM_RandomReadHint(vma))
1569 		return;
1570 	if (!ra->ra_pages)
1571 		return;
1572 
1573 	if (VM_SequentialReadHint(vma)) {
1574 		page_cache_sync_readahead(mapping, ra, file, offset,
1575 					  ra->ra_pages);
1576 		return;
1577 	}
1578 
1579 	/* Avoid banging the cache line if not needed */
1580 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1581 		ra->mmap_miss++;
1582 
1583 	/*
1584 	 * Do we miss much more than hit in this file? If so,
1585 	 * stop bothering with read-ahead. It will only hurt.
1586 	 */
1587 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1588 		return;
1589 
1590 	/*
1591 	 * mmap read-around
1592 	 */
1593 	ra_pages = max_sane_readahead(ra->ra_pages);
1594 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1595 	ra->size = ra_pages;
1596 	ra->async_size = ra_pages / 4;
1597 	ra_submit(ra, mapping, file);
1598 }
1599 
1600 /*
1601  * Asynchronous readahead happens when we find the page and PG_readahead,
1602  * so we want to possibly extend the readahead further..
1603  */
1604 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1605 				    struct file_ra_state *ra,
1606 				    struct file *file,
1607 				    struct page *page,
1608 				    pgoff_t offset)
1609 {
1610 	struct address_space *mapping = file->f_mapping;
1611 
1612 	/* If we don't want any read-ahead, don't bother */
1613 	if (VM_RandomReadHint(vma))
1614 		return;
1615 	if (ra->mmap_miss > 0)
1616 		ra->mmap_miss--;
1617 	if (PageReadahead(page))
1618 		page_cache_async_readahead(mapping, ra, file,
1619 					   page, offset, ra->ra_pages);
1620 }
1621 
1622 /**
1623  * filemap_fault - read in file data for page fault handling
1624  * @vma:	vma in which the fault was taken
1625  * @vmf:	struct vm_fault containing details of the fault
1626  *
1627  * filemap_fault() is invoked via the vma operations vector for a
1628  * mapped memory region to read in file data during a page fault.
1629  *
1630  * The goto's are kind of ugly, but this streamlines the normal case of having
1631  * it in the page cache, and handles the special cases reasonably without
1632  * having a lot of duplicated code.
1633  */
1634 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1635 {
1636 	int error;
1637 	struct file *file = vma->vm_file;
1638 	struct address_space *mapping = file->f_mapping;
1639 	struct file_ra_state *ra = &file->f_ra;
1640 	struct inode *inode = mapping->host;
1641 	pgoff_t offset = vmf->pgoff;
1642 	struct page *page;
1643 	pgoff_t size;
1644 	int ret = 0;
1645 
1646 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1647 	if (offset >= size)
1648 		return VM_FAULT_SIGBUS;
1649 
1650 	/*
1651 	 * Do we have something in the page cache already?
1652 	 */
1653 	page = find_get_page(mapping, offset);
1654 	if (likely(page)) {
1655 		/*
1656 		 * We found the page, so try async readahead before
1657 		 * waiting for the lock.
1658 		 */
1659 		do_async_mmap_readahead(vma, ra, file, page, offset);
1660 	} else {
1661 		/* No page in the page cache at all */
1662 		do_sync_mmap_readahead(vma, ra, file, offset);
1663 		count_vm_event(PGMAJFAULT);
1664 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1665 		ret = VM_FAULT_MAJOR;
1666 retry_find:
1667 		page = find_get_page(mapping, offset);
1668 		if (!page)
1669 			goto no_cached_page;
1670 	}
1671 
1672 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1673 		page_cache_release(page);
1674 		return ret | VM_FAULT_RETRY;
1675 	}
1676 
1677 	/* Did it get truncated? */
1678 	if (unlikely(page->mapping != mapping)) {
1679 		unlock_page(page);
1680 		put_page(page);
1681 		goto retry_find;
1682 	}
1683 	VM_BUG_ON(page->index != offset);
1684 
1685 	/*
1686 	 * We have a locked page in the page cache, now we need to check
1687 	 * that it's up-to-date. If not, it is going to be due to an error.
1688 	 */
1689 	if (unlikely(!PageUptodate(page)))
1690 		goto page_not_uptodate;
1691 
1692 	/*
1693 	 * Found the page and have a reference on it.
1694 	 * We must recheck i_size under page lock.
1695 	 */
1696 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1697 	if (unlikely(offset >= size)) {
1698 		unlock_page(page);
1699 		page_cache_release(page);
1700 		return VM_FAULT_SIGBUS;
1701 	}
1702 
1703 	vmf->page = page;
1704 	return ret | VM_FAULT_LOCKED;
1705 
1706 no_cached_page:
1707 	/*
1708 	 * We're only likely to ever get here if MADV_RANDOM is in
1709 	 * effect.
1710 	 */
1711 	error = page_cache_read(file, offset);
1712 
1713 	/*
1714 	 * The page we want has now been added to the page cache.
1715 	 * In the unlikely event that someone removed it in the
1716 	 * meantime, we'll just come back here and read it again.
1717 	 */
1718 	if (error >= 0)
1719 		goto retry_find;
1720 
1721 	/*
1722 	 * An error return from page_cache_read can result if the
1723 	 * system is low on memory, or a problem occurs while trying
1724 	 * to schedule I/O.
1725 	 */
1726 	if (error == -ENOMEM)
1727 		return VM_FAULT_OOM;
1728 	return VM_FAULT_SIGBUS;
1729 
1730 page_not_uptodate:
1731 	/*
1732 	 * Umm, take care of errors if the page isn't up-to-date.
1733 	 * Try to re-read it _once_. We do this synchronously,
1734 	 * because there really aren't any performance issues here
1735 	 * and we need to check for errors.
1736 	 */
1737 	ClearPageError(page);
1738 	error = mapping->a_ops->readpage(file, page);
1739 	if (!error) {
1740 		wait_on_page_locked(page);
1741 		if (!PageUptodate(page))
1742 			error = -EIO;
1743 	}
1744 	page_cache_release(page);
1745 
1746 	if (!error || error == AOP_TRUNCATED_PAGE)
1747 		goto retry_find;
1748 
1749 	/* Things didn't work out. Return zero to tell the mm layer so. */
1750 	shrink_readahead_size_eio(file, ra);
1751 	return VM_FAULT_SIGBUS;
1752 }
1753 EXPORT_SYMBOL(filemap_fault);
1754 
1755 const struct vm_operations_struct generic_file_vm_ops = {
1756 	.fault		= filemap_fault,
1757 };
1758 
1759 /* This is used for a general mmap of a disk file */
1760 
1761 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1762 {
1763 	struct address_space *mapping = file->f_mapping;
1764 
1765 	if (!mapping->a_ops->readpage)
1766 		return -ENOEXEC;
1767 	file_accessed(file);
1768 	vma->vm_ops = &generic_file_vm_ops;
1769 	vma->vm_flags |= VM_CAN_NONLINEAR;
1770 	return 0;
1771 }
1772 
1773 /*
1774  * This is for filesystems which do not implement ->writepage.
1775  */
1776 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1777 {
1778 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1779 		return -EINVAL;
1780 	return generic_file_mmap(file, vma);
1781 }
1782 #else
1783 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1784 {
1785 	return -ENOSYS;
1786 }
1787 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1788 {
1789 	return -ENOSYS;
1790 }
1791 #endif /* CONFIG_MMU */
1792 
1793 EXPORT_SYMBOL(generic_file_mmap);
1794 EXPORT_SYMBOL(generic_file_readonly_mmap);
1795 
1796 static struct page *__read_cache_page(struct address_space *mapping,
1797 				pgoff_t index,
1798 				int (*filler)(void *,struct page*),
1799 				void *data,
1800 				gfp_t gfp)
1801 {
1802 	struct page *page;
1803 	int err;
1804 repeat:
1805 	page = find_get_page(mapping, index);
1806 	if (!page) {
1807 		page = __page_cache_alloc(gfp | __GFP_COLD);
1808 		if (!page)
1809 			return ERR_PTR(-ENOMEM);
1810 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1811 		if (unlikely(err)) {
1812 			page_cache_release(page);
1813 			if (err == -EEXIST)
1814 				goto repeat;
1815 			/* Presumably ENOMEM for radix tree node */
1816 			return ERR_PTR(err);
1817 		}
1818 		err = filler(data, page);
1819 		if (err < 0) {
1820 			page_cache_release(page);
1821 			page = ERR_PTR(err);
1822 		}
1823 	}
1824 	return page;
1825 }
1826 
1827 static struct page *do_read_cache_page(struct address_space *mapping,
1828 				pgoff_t index,
1829 				int (*filler)(void *,struct page*),
1830 				void *data,
1831 				gfp_t gfp)
1832 
1833 {
1834 	struct page *page;
1835 	int err;
1836 
1837 retry:
1838 	page = __read_cache_page(mapping, index, filler, data, gfp);
1839 	if (IS_ERR(page))
1840 		return page;
1841 	if (PageUptodate(page))
1842 		goto out;
1843 
1844 	lock_page(page);
1845 	if (!page->mapping) {
1846 		unlock_page(page);
1847 		page_cache_release(page);
1848 		goto retry;
1849 	}
1850 	if (PageUptodate(page)) {
1851 		unlock_page(page);
1852 		goto out;
1853 	}
1854 	err = filler(data, page);
1855 	if (err < 0) {
1856 		page_cache_release(page);
1857 		return ERR_PTR(err);
1858 	}
1859 out:
1860 	mark_page_accessed(page);
1861 	return page;
1862 }
1863 
1864 /**
1865  * read_cache_page_async - read into page cache, fill it if needed
1866  * @mapping:	the page's address_space
1867  * @index:	the page index
1868  * @filler:	function to perform the read
1869  * @data:	destination for read data
1870  *
1871  * Same as read_cache_page, but don't wait for page to become unlocked
1872  * after submitting it to the filler.
1873  *
1874  * Read into the page cache. If a page already exists, and PageUptodate() is
1875  * not set, try to fill the page but don't wait for it to become unlocked.
1876  *
1877  * If the page does not get brought uptodate, return -EIO.
1878  */
1879 struct page *read_cache_page_async(struct address_space *mapping,
1880 				pgoff_t index,
1881 				int (*filler)(void *,struct page*),
1882 				void *data)
1883 {
1884 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1885 }
1886 EXPORT_SYMBOL(read_cache_page_async);
1887 
1888 static struct page *wait_on_page_read(struct page *page)
1889 {
1890 	if (!IS_ERR(page)) {
1891 		wait_on_page_locked(page);
1892 		if (!PageUptodate(page)) {
1893 			page_cache_release(page);
1894 			page = ERR_PTR(-EIO);
1895 		}
1896 	}
1897 	return page;
1898 }
1899 
1900 /**
1901  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1902  * @mapping:	the page's address_space
1903  * @index:	the page index
1904  * @gfp:	the page allocator flags to use if allocating
1905  *
1906  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1907  * any new page allocations done using the specified allocation flags. Note
1908  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1909  * expect to do this atomically or anything like that - but you can pass in
1910  * other page requirements.
1911  *
1912  * If the page does not get brought uptodate, return -EIO.
1913  */
1914 struct page *read_cache_page_gfp(struct address_space *mapping,
1915 				pgoff_t index,
1916 				gfp_t gfp)
1917 {
1918 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1919 
1920 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1921 }
1922 EXPORT_SYMBOL(read_cache_page_gfp);
1923 
1924 /**
1925  * read_cache_page - read into page cache, fill it if needed
1926  * @mapping:	the page's address_space
1927  * @index:	the page index
1928  * @filler:	function to perform the read
1929  * @data:	destination for read data
1930  *
1931  * Read into the page cache. If a page already exists, and PageUptodate() is
1932  * not set, try to fill the page then wait for it to become unlocked.
1933  *
1934  * If the page does not get brought uptodate, return -EIO.
1935  */
1936 struct page *read_cache_page(struct address_space *mapping,
1937 				pgoff_t index,
1938 				int (*filler)(void *,struct page*),
1939 				void *data)
1940 {
1941 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1942 }
1943 EXPORT_SYMBOL(read_cache_page);
1944 
1945 /*
1946  * The logic we want is
1947  *
1948  *	if suid or (sgid and xgrp)
1949  *		remove privs
1950  */
1951 int should_remove_suid(struct dentry *dentry)
1952 {
1953 	mode_t mode = dentry->d_inode->i_mode;
1954 	int kill = 0;
1955 
1956 	/* suid always must be killed */
1957 	if (unlikely(mode & S_ISUID))
1958 		kill = ATTR_KILL_SUID;
1959 
1960 	/*
1961 	 * sgid without any exec bits is just a mandatory locking mark; leave
1962 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1963 	 */
1964 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1965 		kill |= ATTR_KILL_SGID;
1966 
1967 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1968 		return kill;
1969 
1970 	return 0;
1971 }
1972 EXPORT_SYMBOL(should_remove_suid);
1973 
1974 static int __remove_suid(struct dentry *dentry, int kill)
1975 {
1976 	struct iattr newattrs;
1977 
1978 	newattrs.ia_valid = ATTR_FORCE | kill;
1979 	return notify_change(dentry, &newattrs);
1980 }
1981 
1982 int file_remove_suid(struct file *file)
1983 {
1984 	struct dentry *dentry = file->f_path.dentry;
1985 	struct inode *inode = dentry->d_inode;
1986 	int killsuid;
1987 	int killpriv;
1988 	int error = 0;
1989 
1990 	/* Fast path for nothing security related */
1991 	if (IS_NOSEC(inode))
1992 		return 0;
1993 
1994 	killsuid = should_remove_suid(dentry);
1995 	killpriv = security_inode_need_killpriv(dentry);
1996 
1997 	if (killpriv < 0)
1998 		return killpriv;
1999 	if (killpriv)
2000 		error = security_inode_killpriv(dentry);
2001 	if (!error && killsuid)
2002 		error = __remove_suid(dentry, killsuid);
2003 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2004 		inode->i_flags |= S_NOSEC;
2005 
2006 	return error;
2007 }
2008 EXPORT_SYMBOL(file_remove_suid);
2009 
2010 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2011 			const struct iovec *iov, size_t base, size_t bytes)
2012 {
2013 	size_t copied = 0, left = 0;
2014 
2015 	while (bytes) {
2016 		char __user *buf = iov->iov_base + base;
2017 		int copy = min(bytes, iov->iov_len - base);
2018 
2019 		base = 0;
2020 		left = __copy_from_user_inatomic(vaddr, buf, copy);
2021 		copied += copy;
2022 		bytes -= copy;
2023 		vaddr += copy;
2024 		iov++;
2025 
2026 		if (unlikely(left))
2027 			break;
2028 	}
2029 	return copied - left;
2030 }
2031 
2032 /*
2033  * Copy as much as we can into the page and return the number of bytes which
2034  * were successfully copied.  If a fault is encountered then return the number of
2035  * bytes which were copied.
2036  */
2037 size_t iov_iter_copy_from_user_atomic(struct page *page,
2038 		struct iov_iter *i, unsigned long offset, size_t bytes)
2039 {
2040 	char *kaddr;
2041 	size_t copied;
2042 
2043 	BUG_ON(!in_atomic());
2044 	kaddr = kmap_atomic(page, KM_USER0);
2045 	if (likely(i->nr_segs == 1)) {
2046 		int left;
2047 		char __user *buf = i->iov->iov_base + i->iov_offset;
2048 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2049 		copied = bytes - left;
2050 	} else {
2051 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2052 						i->iov, i->iov_offset, bytes);
2053 	}
2054 	kunmap_atomic(kaddr, KM_USER0);
2055 
2056 	return copied;
2057 }
2058 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2059 
2060 /*
2061  * This has the same sideeffects and return value as
2062  * iov_iter_copy_from_user_atomic().
2063  * The difference is that it attempts to resolve faults.
2064  * Page must not be locked.
2065  */
2066 size_t iov_iter_copy_from_user(struct page *page,
2067 		struct iov_iter *i, unsigned long offset, size_t bytes)
2068 {
2069 	char *kaddr;
2070 	size_t copied;
2071 
2072 	kaddr = kmap(page);
2073 	if (likely(i->nr_segs == 1)) {
2074 		int left;
2075 		char __user *buf = i->iov->iov_base + i->iov_offset;
2076 		left = __copy_from_user(kaddr + offset, buf, bytes);
2077 		copied = bytes - left;
2078 	} else {
2079 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2080 						i->iov, i->iov_offset, bytes);
2081 	}
2082 	kunmap(page);
2083 	return copied;
2084 }
2085 EXPORT_SYMBOL(iov_iter_copy_from_user);
2086 
2087 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2088 {
2089 	BUG_ON(i->count < bytes);
2090 
2091 	if (likely(i->nr_segs == 1)) {
2092 		i->iov_offset += bytes;
2093 		i->count -= bytes;
2094 	} else {
2095 		const struct iovec *iov = i->iov;
2096 		size_t base = i->iov_offset;
2097 
2098 		/*
2099 		 * The !iov->iov_len check ensures we skip over unlikely
2100 		 * zero-length segments (without overruning the iovec).
2101 		 */
2102 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2103 			int copy;
2104 
2105 			copy = min(bytes, iov->iov_len - base);
2106 			BUG_ON(!i->count || i->count < copy);
2107 			i->count -= copy;
2108 			bytes -= copy;
2109 			base += copy;
2110 			if (iov->iov_len == base) {
2111 				iov++;
2112 				base = 0;
2113 			}
2114 		}
2115 		i->iov = iov;
2116 		i->iov_offset = base;
2117 	}
2118 }
2119 EXPORT_SYMBOL(iov_iter_advance);
2120 
2121 /*
2122  * Fault in the first iovec of the given iov_iter, to a maximum length
2123  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2124  * accessed (ie. because it is an invalid address).
2125  *
2126  * writev-intensive code may want this to prefault several iovecs -- that
2127  * would be possible (callers must not rely on the fact that _only_ the
2128  * first iovec will be faulted with the current implementation).
2129  */
2130 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2131 {
2132 	char __user *buf = i->iov->iov_base + i->iov_offset;
2133 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2134 	return fault_in_pages_readable(buf, bytes);
2135 }
2136 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2137 
2138 /*
2139  * Return the count of just the current iov_iter segment.
2140  */
2141 size_t iov_iter_single_seg_count(struct iov_iter *i)
2142 {
2143 	const struct iovec *iov = i->iov;
2144 	if (i->nr_segs == 1)
2145 		return i->count;
2146 	else
2147 		return min(i->count, iov->iov_len - i->iov_offset);
2148 }
2149 EXPORT_SYMBOL(iov_iter_single_seg_count);
2150 
2151 /*
2152  * Performs necessary checks before doing a write
2153  *
2154  * Can adjust writing position or amount of bytes to write.
2155  * Returns appropriate error code that caller should return or
2156  * zero in case that write should be allowed.
2157  */
2158 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2159 {
2160 	struct inode *inode = file->f_mapping->host;
2161 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2162 
2163         if (unlikely(*pos < 0))
2164                 return -EINVAL;
2165 
2166 	if (!isblk) {
2167 		/* FIXME: this is for backwards compatibility with 2.4 */
2168 		if (file->f_flags & O_APPEND)
2169                         *pos = i_size_read(inode);
2170 
2171 		if (limit != RLIM_INFINITY) {
2172 			if (*pos >= limit) {
2173 				send_sig(SIGXFSZ, current, 0);
2174 				return -EFBIG;
2175 			}
2176 			if (*count > limit - (typeof(limit))*pos) {
2177 				*count = limit - (typeof(limit))*pos;
2178 			}
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * LFS rule
2184 	 */
2185 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2186 				!(file->f_flags & O_LARGEFILE))) {
2187 		if (*pos >= MAX_NON_LFS) {
2188 			return -EFBIG;
2189 		}
2190 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2191 			*count = MAX_NON_LFS - (unsigned long)*pos;
2192 		}
2193 	}
2194 
2195 	/*
2196 	 * Are we about to exceed the fs block limit ?
2197 	 *
2198 	 * If we have written data it becomes a short write.  If we have
2199 	 * exceeded without writing data we send a signal and return EFBIG.
2200 	 * Linus frestrict idea will clean these up nicely..
2201 	 */
2202 	if (likely(!isblk)) {
2203 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2204 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2205 				return -EFBIG;
2206 			}
2207 			/* zero-length writes at ->s_maxbytes are OK */
2208 		}
2209 
2210 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2211 			*count = inode->i_sb->s_maxbytes - *pos;
2212 	} else {
2213 #ifdef CONFIG_BLOCK
2214 		loff_t isize;
2215 		if (bdev_read_only(I_BDEV(inode)))
2216 			return -EPERM;
2217 		isize = i_size_read(inode);
2218 		if (*pos >= isize) {
2219 			if (*count || *pos > isize)
2220 				return -ENOSPC;
2221 		}
2222 
2223 		if (*pos + *count > isize)
2224 			*count = isize - *pos;
2225 #else
2226 		return -EPERM;
2227 #endif
2228 	}
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(generic_write_checks);
2232 
2233 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2234 				loff_t pos, unsigned len, unsigned flags,
2235 				struct page **pagep, void **fsdata)
2236 {
2237 	const struct address_space_operations *aops = mapping->a_ops;
2238 
2239 	return aops->write_begin(file, mapping, pos, len, flags,
2240 							pagep, fsdata);
2241 }
2242 EXPORT_SYMBOL(pagecache_write_begin);
2243 
2244 int pagecache_write_end(struct file *file, struct address_space *mapping,
2245 				loff_t pos, unsigned len, unsigned copied,
2246 				struct page *page, void *fsdata)
2247 {
2248 	const struct address_space_operations *aops = mapping->a_ops;
2249 
2250 	mark_page_accessed(page);
2251 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2252 }
2253 EXPORT_SYMBOL(pagecache_write_end);
2254 
2255 ssize_t
2256 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2257 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2258 		size_t count, size_t ocount)
2259 {
2260 	struct file	*file = iocb->ki_filp;
2261 	struct address_space *mapping = file->f_mapping;
2262 	struct inode	*inode = mapping->host;
2263 	ssize_t		written;
2264 	size_t		write_len;
2265 	pgoff_t		end;
2266 
2267 	if (count != ocount)
2268 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2269 
2270 	write_len = iov_length(iov, *nr_segs);
2271 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2272 
2273 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2274 	if (written)
2275 		goto out;
2276 
2277 	/*
2278 	 * After a write we want buffered reads to be sure to go to disk to get
2279 	 * the new data.  We invalidate clean cached page from the region we're
2280 	 * about to write.  We do this *before* the write so that we can return
2281 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2282 	 */
2283 	if (mapping->nrpages) {
2284 		written = invalidate_inode_pages2_range(mapping,
2285 					pos >> PAGE_CACHE_SHIFT, end);
2286 		/*
2287 		 * If a page can not be invalidated, return 0 to fall back
2288 		 * to buffered write.
2289 		 */
2290 		if (written) {
2291 			if (written == -EBUSY)
2292 				return 0;
2293 			goto out;
2294 		}
2295 	}
2296 
2297 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2298 
2299 	/*
2300 	 * Finally, try again to invalidate clean pages which might have been
2301 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2302 	 * if the source of the write was an mmap'ed region of the file
2303 	 * we're writing.  Either one is a pretty crazy thing to do,
2304 	 * so we don't support it 100%.  If this invalidation
2305 	 * fails, tough, the write still worked...
2306 	 */
2307 	if (mapping->nrpages) {
2308 		invalidate_inode_pages2_range(mapping,
2309 					      pos >> PAGE_CACHE_SHIFT, end);
2310 	}
2311 
2312 	if (written > 0) {
2313 		pos += written;
2314 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2315 			i_size_write(inode, pos);
2316 			mark_inode_dirty(inode);
2317 		}
2318 		*ppos = pos;
2319 	}
2320 out:
2321 	return written;
2322 }
2323 EXPORT_SYMBOL(generic_file_direct_write);
2324 
2325 /*
2326  * Find or create a page at the given pagecache position. Return the locked
2327  * page. This function is specifically for buffered writes.
2328  */
2329 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2330 					pgoff_t index, unsigned flags)
2331 {
2332 	int status;
2333 	struct page *page;
2334 	gfp_t gfp_notmask = 0;
2335 	if (flags & AOP_FLAG_NOFS)
2336 		gfp_notmask = __GFP_FS;
2337 repeat:
2338 	page = find_lock_page(mapping, index);
2339 	if (page)
2340 		goto found;
2341 
2342 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2343 	if (!page)
2344 		return NULL;
2345 	status = add_to_page_cache_lru(page, mapping, index,
2346 						GFP_KERNEL & ~gfp_notmask);
2347 	if (unlikely(status)) {
2348 		page_cache_release(page);
2349 		if (status == -EEXIST)
2350 			goto repeat;
2351 		return NULL;
2352 	}
2353 found:
2354 	wait_on_page_writeback(page);
2355 	return page;
2356 }
2357 EXPORT_SYMBOL(grab_cache_page_write_begin);
2358 
2359 static ssize_t generic_perform_write(struct file *file,
2360 				struct iov_iter *i, loff_t pos)
2361 {
2362 	struct address_space *mapping = file->f_mapping;
2363 	const struct address_space_operations *a_ops = mapping->a_ops;
2364 	long status = 0;
2365 	ssize_t written = 0;
2366 	unsigned int flags = 0;
2367 
2368 	/*
2369 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2370 	 */
2371 	if (segment_eq(get_fs(), KERNEL_DS))
2372 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2373 
2374 	do {
2375 		struct page *page;
2376 		unsigned long offset;	/* Offset into pagecache page */
2377 		unsigned long bytes;	/* Bytes to write to page */
2378 		size_t copied;		/* Bytes copied from user */
2379 		void *fsdata;
2380 
2381 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2382 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2383 						iov_iter_count(i));
2384 
2385 again:
2386 
2387 		/*
2388 		 * Bring in the user page that we will copy from _first_.
2389 		 * Otherwise there's a nasty deadlock on copying from the
2390 		 * same page as we're writing to, without it being marked
2391 		 * up-to-date.
2392 		 *
2393 		 * Not only is this an optimisation, but it is also required
2394 		 * to check that the address is actually valid, when atomic
2395 		 * usercopies are used, below.
2396 		 */
2397 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2398 			status = -EFAULT;
2399 			break;
2400 		}
2401 
2402 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2403 						&page, &fsdata);
2404 		if (unlikely(status))
2405 			break;
2406 
2407 		if (mapping_writably_mapped(mapping))
2408 			flush_dcache_page(page);
2409 
2410 		pagefault_disable();
2411 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2412 		pagefault_enable();
2413 		flush_dcache_page(page);
2414 
2415 		mark_page_accessed(page);
2416 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2417 						page, fsdata);
2418 		if (unlikely(status < 0))
2419 			break;
2420 		copied = status;
2421 
2422 		cond_resched();
2423 
2424 		iov_iter_advance(i, copied);
2425 		if (unlikely(copied == 0)) {
2426 			/*
2427 			 * If we were unable to copy any data at all, we must
2428 			 * fall back to a single segment length write.
2429 			 *
2430 			 * If we didn't fallback here, we could livelock
2431 			 * because not all segments in the iov can be copied at
2432 			 * once without a pagefault.
2433 			 */
2434 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2435 						iov_iter_single_seg_count(i));
2436 			goto again;
2437 		}
2438 		pos += copied;
2439 		written += copied;
2440 
2441 		balance_dirty_pages_ratelimited(mapping);
2442 
2443 	} while (iov_iter_count(i));
2444 
2445 	return written ? written : status;
2446 }
2447 
2448 ssize_t
2449 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2450 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2451 		size_t count, ssize_t written)
2452 {
2453 	struct file *file = iocb->ki_filp;
2454 	ssize_t status;
2455 	struct iov_iter i;
2456 
2457 	iov_iter_init(&i, iov, nr_segs, count, written);
2458 	status = generic_perform_write(file, &i, pos);
2459 
2460 	if (likely(status >= 0)) {
2461 		written += status;
2462 		*ppos = pos + status;
2463   	}
2464 
2465 	return written ? written : status;
2466 }
2467 EXPORT_SYMBOL(generic_file_buffered_write);
2468 
2469 /**
2470  * __generic_file_aio_write - write data to a file
2471  * @iocb:	IO state structure (file, offset, etc.)
2472  * @iov:	vector with data to write
2473  * @nr_segs:	number of segments in the vector
2474  * @ppos:	position where to write
2475  *
2476  * This function does all the work needed for actually writing data to a
2477  * file. It does all basic checks, removes SUID from the file, updates
2478  * modification times and calls proper subroutines depending on whether we
2479  * do direct IO or a standard buffered write.
2480  *
2481  * It expects i_mutex to be grabbed unless we work on a block device or similar
2482  * object which does not need locking at all.
2483  *
2484  * This function does *not* take care of syncing data in case of O_SYNC write.
2485  * A caller has to handle it. This is mainly due to the fact that we want to
2486  * avoid syncing under i_mutex.
2487  */
2488 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2489 				 unsigned long nr_segs, loff_t *ppos)
2490 {
2491 	struct file *file = iocb->ki_filp;
2492 	struct address_space * mapping = file->f_mapping;
2493 	size_t ocount;		/* original count */
2494 	size_t count;		/* after file limit checks */
2495 	struct inode 	*inode = mapping->host;
2496 	loff_t		pos;
2497 	ssize_t		written;
2498 	ssize_t		err;
2499 
2500 	ocount = 0;
2501 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2502 	if (err)
2503 		return err;
2504 
2505 	count = ocount;
2506 	pos = *ppos;
2507 
2508 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2509 
2510 	/* We can write back this queue in page reclaim */
2511 	current->backing_dev_info = mapping->backing_dev_info;
2512 	written = 0;
2513 
2514 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2515 	if (err)
2516 		goto out;
2517 
2518 	if (count == 0)
2519 		goto out;
2520 
2521 	err = file_remove_suid(file);
2522 	if (err)
2523 		goto out;
2524 
2525 	file_update_time(file);
2526 
2527 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2528 	if (unlikely(file->f_flags & O_DIRECT)) {
2529 		loff_t endbyte;
2530 		ssize_t written_buffered;
2531 
2532 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2533 							ppos, count, ocount);
2534 		if (written < 0 || written == count)
2535 			goto out;
2536 		/*
2537 		 * direct-io write to a hole: fall through to buffered I/O
2538 		 * for completing the rest of the request.
2539 		 */
2540 		pos += written;
2541 		count -= written;
2542 		written_buffered = generic_file_buffered_write(iocb, iov,
2543 						nr_segs, pos, ppos, count,
2544 						written);
2545 		/*
2546 		 * If generic_file_buffered_write() retuned a synchronous error
2547 		 * then we want to return the number of bytes which were
2548 		 * direct-written, or the error code if that was zero.  Note
2549 		 * that this differs from normal direct-io semantics, which
2550 		 * will return -EFOO even if some bytes were written.
2551 		 */
2552 		if (written_buffered < 0) {
2553 			err = written_buffered;
2554 			goto out;
2555 		}
2556 
2557 		/*
2558 		 * We need to ensure that the page cache pages are written to
2559 		 * disk and invalidated to preserve the expected O_DIRECT
2560 		 * semantics.
2561 		 */
2562 		endbyte = pos + written_buffered - written - 1;
2563 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2564 		if (err == 0) {
2565 			written = written_buffered;
2566 			invalidate_mapping_pages(mapping,
2567 						 pos >> PAGE_CACHE_SHIFT,
2568 						 endbyte >> PAGE_CACHE_SHIFT);
2569 		} else {
2570 			/*
2571 			 * We don't know how much we wrote, so just return
2572 			 * the number of bytes which were direct-written
2573 			 */
2574 		}
2575 	} else {
2576 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2577 				pos, ppos, count, written);
2578 	}
2579 out:
2580 	current->backing_dev_info = NULL;
2581 	return written ? written : err;
2582 }
2583 EXPORT_SYMBOL(__generic_file_aio_write);
2584 
2585 /**
2586  * generic_file_aio_write - write data to a file
2587  * @iocb:	IO state structure
2588  * @iov:	vector with data to write
2589  * @nr_segs:	number of segments in the vector
2590  * @pos:	position in file where to write
2591  *
2592  * This is a wrapper around __generic_file_aio_write() to be used by most
2593  * filesystems. It takes care of syncing the file in case of O_SYNC file
2594  * and acquires i_mutex as needed.
2595  */
2596 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2597 		unsigned long nr_segs, loff_t pos)
2598 {
2599 	struct file *file = iocb->ki_filp;
2600 	struct inode *inode = file->f_mapping->host;
2601 	struct blk_plug plug;
2602 	ssize_t ret;
2603 
2604 	BUG_ON(iocb->ki_pos != pos);
2605 
2606 	mutex_lock(&inode->i_mutex);
2607 	blk_start_plug(&plug);
2608 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2609 	mutex_unlock(&inode->i_mutex);
2610 
2611 	if (ret > 0 || ret == -EIOCBQUEUED) {
2612 		ssize_t err;
2613 
2614 		err = generic_write_sync(file, pos, ret);
2615 		if (err < 0 && ret > 0)
2616 			ret = err;
2617 	}
2618 	blk_finish_plug(&plug);
2619 	return ret;
2620 }
2621 EXPORT_SYMBOL(generic_file_aio_write);
2622 
2623 /**
2624  * try_to_release_page() - release old fs-specific metadata on a page
2625  *
2626  * @page: the page which the kernel is trying to free
2627  * @gfp_mask: memory allocation flags (and I/O mode)
2628  *
2629  * The address_space is to try to release any data against the page
2630  * (presumably at page->private).  If the release was successful, return `1'.
2631  * Otherwise return zero.
2632  *
2633  * This may also be called if PG_fscache is set on a page, indicating that the
2634  * page is known to the local caching routines.
2635  *
2636  * The @gfp_mask argument specifies whether I/O may be performed to release
2637  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2638  *
2639  */
2640 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2641 {
2642 	struct address_space * const mapping = page->mapping;
2643 
2644 	BUG_ON(!PageLocked(page));
2645 	if (PageWriteback(page))
2646 		return 0;
2647 
2648 	if (mapping && mapping->a_ops->releasepage)
2649 		return mapping->a_ops->releasepage(page, gfp_mask);
2650 	return try_to_free_buffers(page);
2651 }
2652 
2653 EXPORT_SYMBOL(try_to_release_page);
2654