1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include <linux/cleancache.h> 38 #include "internal.h" 39 40 /* 41 * FIXME: remove all knowledge of the buffer layer from the core VM 42 */ 43 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 44 45 #include <asm/mman.h> 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_mutex (truncate_pagecache) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_mutex (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_mutex 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * inode_wb_list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_mutex 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * inode_wb_list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * inode_wb_list_lock (zap_pte_range->set_page_dirty) 105 * ->inode->i_lock (zap_pte_range->set_page_dirty) 106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 107 * 108 * (code doesn't rely on that order, so you could switch it around) 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 * ->i_mmap_mutex 111 */ 112 113 /* 114 * Delete a page from the page cache and free it. Caller has to make 115 * sure the page is locked and that nobody else uses it - or that usage 116 * is safe. The caller must hold the mapping's tree_lock. 117 */ 118 void __delete_from_page_cache(struct page *page) 119 { 120 struct address_space *mapping = page->mapping; 121 122 /* 123 * if we're uptodate, flush out into the cleancache, otherwise 124 * invalidate any existing cleancache entries. We can't leave 125 * stale data around in the cleancache once our page is gone 126 */ 127 if (PageUptodate(page) && PageMappedToDisk(page)) 128 cleancache_put_page(page); 129 else 130 cleancache_flush_page(mapping, page); 131 132 radix_tree_delete(&mapping->page_tree, page->index); 133 page->mapping = NULL; 134 mapping->nrpages--; 135 __dec_zone_page_state(page, NR_FILE_PAGES); 136 if (PageSwapBacked(page)) 137 __dec_zone_page_state(page, NR_SHMEM); 138 BUG_ON(page_mapped(page)); 139 140 /* 141 * Some filesystems seem to re-dirty the page even after 142 * the VM has canceled the dirty bit (eg ext3 journaling). 143 * 144 * Fix it up by doing a final dirty accounting check after 145 * having removed the page entirely. 146 */ 147 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 148 dec_zone_page_state(page, NR_FILE_DIRTY); 149 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 150 } 151 } 152 153 /** 154 * delete_from_page_cache - delete page from page cache 155 * @page: the page which the kernel is trying to remove from page cache 156 * 157 * This must be called only on pages that have been verified to be in the page 158 * cache and locked. It will never put the page into the free list, the caller 159 * has a reference on the page. 160 */ 161 void delete_from_page_cache(struct page *page) 162 { 163 struct address_space *mapping = page->mapping; 164 void (*freepage)(struct page *); 165 166 BUG_ON(!PageLocked(page)); 167 168 freepage = mapping->a_ops->freepage; 169 spin_lock_irq(&mapping->tree_lock); 170 __delete_from_page_cache(page); 171 spin_unlock_irq(&mapping->tree_lock); 172 mem_cgroup_uncharge_cache_page(page); 173 174 if (freepage) 175 freepage(page); 176 page_cache_release(page); 177 } 178 EXPORT_SYMBOL(delete_from_page_cache); 179 180 static int sleep_on_page(void *word) 181 { 182 io_schedule(); 183 return 0; 184 } 185 186 static int sleep_on_page_killable(void *word) 187 { 188 sleep_on_page(word); 189 return fatal_signal_pending(current) ? -EINTR : 0; 190 } 191 192 /** 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 194 * @mapping: address space structure to write 195 * @start: offset in bytes where the range starts 196 * @end: offset in bytes where the range ends (inclusive) 197 * @sync_mode: enable synchronous operation 198 * 199 * Start writeback against all of a mapping's dirty pages that lie 200 * within the byte offsets <start, end> inclusive. 201 * 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 203 * opposed to a regular memory cleansing writeback. The difference between 204 * these two operations is that if a dirty page/buffer is encountered, it must 205 * be waited upon, and not just skipped over. 206 */ 207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 208 loff_t end, int sync_mode) 209 { 210 int ret; 211 struct writeback_control wbc = { 212 .sync_mode = sync_mode, 213 .nr_to_write = LONG_MAX, 214 .range_start = start, 215 .range_end = end, 216 }; 217 218 if (!mapping_cap_writeback_dirty(mapping)) 219 return 0; 220 221 ret = do_writepages(mapping, &wbc); 222 return ret; 223 } 224 225 static inline int __filemap_fdatawrite(struct address_space *mapping, 226 int sync_mode) 227 { 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 229 } 230 231 int filemap_fdatawrite(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 234 } 235 EXPORT_SYMBOL(filemap_fdatawrite); 236 237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 238 loff_t end) 239 { 240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 241 } 242 EXPORT_SYMBOL(filemap_fdatawrite_range); 243 244 /** 245 * filemap_flush - mostly a non-blocking flush 246 * @mapping: target address_space 247 * 248 * This is a mostly non-blocking flush. Not suitable for data-integrity 249 * purposes - I/O may not be started against all dirty pages. 250 */ 251 int filemap_flush(struct address_space *mapping) 252 { 253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 254 } 255 EXPORT_SYMBOL(filemap_flush); 256 257 /** 258 * filemap_fdatawait_range - wait for writeback to complete 259 * @mapping: address space structure to wait for 260 * @start_byte: offset in bytes where the range starts 261 * @end_byte: offset in bytes where the range ends (inclusive) 262 * 263 * Walk the list of under-writeback pages of the given address space 264 * in the given range and wait for all of them. 265 */ 266 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 267 loff_t end_byte) 268 { 269 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 270 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 271 struct pagevec pvec; 272 int nr_pages; 273 int ret = 0; 274 275 if (end_byte < start_byte) 276 return 0; 277 278 pagevec_init(&pvec, 0); 279 while ((index <= end) && 280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 281 PAGECACHE_TAG_WRITEBACK, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 283 unsigned i; 284 285 for (i = 0; i < nr_pages; i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* until radix tree lookup accepts end_index */ 289 if (page->index > end) 290 continue; 291 292 wait_on_page_writeback(page); 293 if (TestClearPageError(page)) 294 ret = -EIO; 295 } 296 pagevec_release(&pvec); 297 cond_resched(); 298 } 299 300 /* Check for outstanding write errors */ 301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 302 ret = -ENOSPC; 303 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 304 ret = -EIO; 305 306 return ret; 307 } 308 EXPORT_SYMBOL(filemap_fdatawait_range); 309 310 /** 311 * filemap_fdatawait - wait for all under-writeback pages to complete 312 * @mapping: address space structure to wait for 313 * 314 * Walk the list of under-writeback pages of the given address space 315 * and wait for all of them. 316 */ 317 int filemap_fdatawait(struct address_space *mapping) 318 { 319 loff_t i_size = i_size_read(mapping->host); 320 321 if (i_size == 0) 322 return 0; 323 324 return filemap_fdatawait_range(mapping, 0, i_size - 1); 325 } 326 EXPORT_SYMBOL(filemap_fdatawait); 327 328 int filemap_write_and_wait(struct address_space *mapping) 329 { 330 int err = 0; 331 332 if (mapping->nrpages) { 333 err = filemap_fdatawrite(mapping); 334 /* 335 * Even if the above returned error, the pages may be 336 * written partially (e.g. -ENOSPC), so we wait for it. 337 * But the -EIO is special case, it may indicate the worst 338 * thing (e.g. bug) happened, so we avoid waiting for it. 339 */ 340 if (err != -EIO) { 341 int err2 = filemap_fdatawait(mapping); 342 if (!err) 343 err = err2; 344 } 345 } 346 return err; 347 } 348 EXPORT_SYMBOL(filemap_write_and_wait); 349 350 /** 351 * filemap_write_and_wait_range - write out & wait on a file range 352 * @mapping: the address_space for the pages 353 * @lstart: offset in bytes where the range starts 354 * @lend: offset in bytes where the range ends (inclusive) 355 * 356 * Write out and wait upon file offsets lstart->lend, inclusive. 357 * 358 * Note that `lend' is inclusive (describes the last byte to be written) so 359 * that this function can be used to write to the very end-of-file (end = -1). 360 */ 361 int filemap_write_and_wait_range(struct address_space *mapping, 362 loff_t lstart, loff_t lend) 363 { 364 int err = 0; 365 366 if (mapping->nrpages) { 367 err = __filemap_fdatawrite_range(mapping, lstart, lend, 368 WB_SYNC_ALL); 369 /* See comment of filemap_write_and_wait() */ 370 if (err != -EIO) { 371 int err2 = filemap_fdatawait_range(mapping, 372 lstart, lend); 373 if (!err) 374 err = err2; 375 } 376 } 377 return err; 378 } 379 EXPORT_SYMBOL(filemap_write_and_wait_range); 380 381 /** 382 * replace_page_cache_page - replace a pagecache page with a new one 383 * @old: page to be replaced 384 * @new: page to replace with 385 * @gfp_mask: allocation mode 386 * 387 * This function replaces a page in the pagecache with a new one. On 388 * success it acquires the pagecache reference for the new page and 389 * drops it for the old page. Both the old and new pages must be 390 * locked. This function does not add the new page to the LRU, the 391 * caller must do that. 392 * 393 * The remove + add is atomic. The only way this function can fail is 394 * memory allocation failure. 395 */ 396 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 397 { 398 int error; 399 struct mem_cgroup *memcg = NULL; 400 401 VM_BUG_ON(!PageLocked(old)); 402 VM_BUG_ON(!PageLocked(new)); 403 VM_BUG_ON(new->mapping); 404 405 /* 406 * This is not page migration, but prepare_migration and 407 * end_migration does enough work for charge replacement. 408 * 409 * In the longer term we probably want a specialized function 410 * for moving the charge from old to new in a more efficient 411 * manner. 412 */ 413 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask); 414 if (error) 415 return error; 416 417 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 418 if (!error) { 419 struct address_space *mapping = old->mapping; 420 void (*freepage)(struct page *); 421 422 pgoff_t offset = old->index; 423 freepage = mapping->a_ops->freepage; 424 425 page_cache_get(new); 426 new->mapping = mapping; 427 new->index = offset; 428 429 spin_lock_irq(&mapping->tree_lock); 430 __delete_from_page_cache(old); 431 error = radix_tree_insert(&mapping->page_tree, offset, new); 432 BUG_ON(error); 433 mapping->nrpages++; 434 __inc_zone_page_state(new, NR_FILE_PAGES); 435 if (PageSwapBacked(new)) 436 __inc_zone_page_state(new, NR_SHMEM); 437 spin_unlock_irq(&mapping->tree_lock); 438 radix_tree_preload_end(); 439 if (freepage) 440 freepage(old); 441 page_cache_release(old); 442 mem_cgroup_end_migration(memcg, old, new, true); 443 } else { 444 mem_cgroup_end_migration(memcg, old, new, false); 445 } 446 447 return error; 448 } 449 EXPORT_SYMBOL_GPL(replace_page_cache_page); 450 451 /** 452 * add_to_page_cache_locked - add a locked page to the pagecache 453 * @page: page to add 454 * @mapping: the page's address_space 455 * @offset: page index 456 * @gfp_mask: page allocation mode 457 * 458 * This function is used to add a page to the pagecache. It must be locked. 459 * This function does not add the page to the LRU. The caller must do that. 460 */ 461 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 462 pgoff_t offset, gfp_t gfp_mask) 463 { 464 int error; 465 466 VM_BUG_ON(!PageLocked(page)); 467 468 error = mem_cgroup_cache_charge(page, current->mm, 469 gfp_mask & GFP_RECLAIM_MASK); 470 if (error) 471 goto out; 472 473 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 474 if (error == 0) { 475 page_cache_get(page); 476 page->mapping = mapping; 477 page->index = offset; 478 479 spin_lock_irq(&mapping->tree_lock); 480 error = radix_tree_insert(&mapping->page_tree, offset, page); 481 if (likely(!error)) { 482 mapping->nrpages++; 483 __inc_zone_page_state(page, NR_FILE_PAGES); 484 if (PageSwapBacked(page)) 485 __inc_zone_page_state(page, NR_SHMEM); 486 spin_unlock_irq(&mapping->tree_lock); 487 } else { 488 page->mapping = NULL; 489 spin_unlock_irq(&mapping->tree_lock); 490 mem_cgroup_uncharge_cache_page(page); 491 page_cache_release(page); 492 } 493 radix_tree_preload_end(); 494 } else 495 mem_cgroup_uncharge_cache_page(page); 496 out: 497 return error; 498 } 499 EXPORT_SYMBOL(add_to_page_cache_locked); 500 501 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 502 pgoff_t offset, gfp_t gfp_mask) 503 { 504 int ret; 505 506 /* 507 * Splice_read and readahead add shmem/tmpfs pages into the page cache 508 * before shmem_readpage has a chance to mark them as SwapBacked: they 509 * need to go on the anon lru below, and mem_cgroup_cache_charge 510 * (called in add_to_page_cache) needs to know where they're going too. 511 */ 512 if (mapping_cap_swap_backed(mapping)) 513 SetPageSwapBacked(page); 514 515 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 516 if (ret == 0) { 517 if (page_is_file_cache(page)) 518 lru_cache_add_file(page); 519 else 520 lru_cache_add_anon(page); 521 } 522 return ret; 523 } 524 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 525 526 #ifdef CONFIG_NUMA 527 struct page *__page_cache_alloc(gfp_t gfp) 528 { 529 int n; 530 struct page *page; 531 532 if (cpuset_do_page_mem_spread()) { 533 get_mems_allowed(); 534 n = cpuset_mem_spread_node(); 535 page = alloc_pages_exact_node(n, gfp, 0); 536 put_mems_allowed(); 537 return page; 538 } 539 return alloc_pages(gfp, 0); 540 } 541 EXPORT_SYMBOL(__page_cache_alloc); 542 #endif 543 544 /* 545 * In order to wait for pages to become available there must be 546 * waitqueues associated with pages. By using a hash table of 547 * waitqueues where the bucket discipline is to maintain all 548 * waiters on the same queue and wake all when any of the pages 549 * become available, and for the woken contexts to check to be 550 * sure the appropriate page became available, this saves space 551 * at a cost of "thundering herd" phenomena during rare hash 552 * collisions. 553 */ 554 static wait_queue_head_t *page_waitqueue(struct page *page) 555 { 556 const struct zone *zone = page_zone(page); 557 558 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 559 } 560 561 static inline void wake_up_page(struct page *page, int bit) 562 { 563 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 564 } 565 566 void wait_on_page_bit(struct page *page, int bit_nr) 567 { 568 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 569 570 if (test_bit(bit_nr, &page->flags)) 571 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 572 TASK_UNINTERRUPTIBLE); 573 } 574 EXPORT_SYMBOL(wait_on_page_bit); 575 576 int wait_on_page_bit_killable(struct page *page, int bit_nr) 577 { 578 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 579 580 if (!test_bit(bit_nr, &page->flags)) 581 return 0; 582 583 return __wait_on_bit(page_waitqueue(page), &wait, 584 sleep_on_page_killable, TASK_KILLABLE); 585 } 586 587 /** 588 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 589 * @page: Page defining the wait queue of interest 590 * @waiter: Waiter to add to the queue 591 * 592 * Add an arbitrary @waiter to the wait queue for the nominated @page. 593 */ 594 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 595 { 596 wait_queue_head_t *q = page_waitqueue(page); 597 unsigned long flags; 598 599 spin_lock_irqsave(&q->lock, flags); 600 __add_wait_queue(q, waiter); 601 spin_unlock_irqrestore(&q->lock, flags); 602 } 603 EXPORT_SYMBOL_GPL(add_page_wait_queue); 604 605 /** 606 * unlock_page - unlock a locked page 607 * @page: the page 608 * 609 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 610 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 611 * mechananism between PageLocked pages and PageWriteback pages is shared. 612 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 613 * 614 * The mb is necessary to enforce ordering between the clear_bit and the read 615 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 616 */ 617 void unlock_page(struct page *page) 618 { 619 VM_BUG_ON(!PageLocked(page)); 620 clear_bit_unlock(PG_locked, &page->flags); 621 smp_mb__after_clear_bit(); 622 wake_up_page(page, PG_locked); 623 } 624 EXPORT_SYMBOL(unlock_page); 625 626 /** 627 * end_page_writeback - end writeback against a page 628 * @page: the page 629 */ 630 void end_page_writeback(struct page *page) 631 { 632 if (TestClearPageReclaim(page)) 633 rotate_reclaimable_page(page); 634 635 if (!test_clear_page_writeback(page)) 636 BUG(); 637 638 smp_mb__after_clear_bit(); 639 wake_up_page(page, PG_writeback); 640 } 641 EXPORT_SYMBOL(end_page_writeback); 642 643 /** 644 * __lock_page - get a lock on the page, assuming we need to sleep to get it 645 * @page: the page to lock 646 */ 647 void __lock_page(struct page *page) 648 { 649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 650 651 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 652 TASK_UNINTERRUPTIBLE); 653 } 654 EXPORT_SYMBOL(__lock_page); 655 656 int __lock_page_killable(struct page *page) 657 { 658 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 659 660 return __wait_on_bit_lock(page_waitqueue(page), &wait, 661 sleep_on_page_killable, TASK_KILLABLE); 662 } 663 EXPORT_SYMBOL_GPL(__lock_page_killable); 664 665 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 666 unsigned int flags) 667 { 668 if (flags & FAULT_FLAG_ALLOW_RETRY) { 669 /* 670 * CAUTION! In this case, mmap_sem is not released 671 * even though return 0. 672 */ 673 if (flags & FAULT_FLAG_RETRY_NOWAIT) 674 return 0; 675 676 up_read(&mm->mmap_sem); 677 if (flags & FAULT_FLAG_KILLABLE) 678 wait_on_page_locked_killable(page); 679 else 680 wait_on_page_locked(page); 681 return 0; 682 } else { 683 if (flags & FAULT_FLAG_KILLABLE) { 684 int ret; 685 686 ret = __lock_page_killable(page); 687 if (ret) { 688 up_read(&mm->mmap_sem); 689 return 0; 690 } 691 } else 692 __lock_page(page); 693 return 1; 694 } 695 } 696 697 /** 698 * find_get_page - find and get a page reference 699 * @mapping: the address_space to search 700 * @offset: the page index 701 * 702 * Is there a pagecache struct page at the given (mapping, offset) tuple? 703 * If yes, increment its refcount and return it; if no, return NULL. 704 */ 705 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 706 { 707 void **pagep; 708 struct page *page; 709 710 rcu_read_lock(); 711 repeat: 712 page = NULL; 713 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 714 if (pagep) { 715 page = radix_tree_deref_slot(pagep); 716 if (unlikely(!page)) 717 goto out; 718 if (radix_tree_deref_retry(page)) 719 goto repeat; 720 721 if (!page_cache_get_speculative(page)) 722 goto repeat; 723 724 /* 725 * Has the page moved? 726 * This is part of the lockless pagecache protocol. See 727 * include/linux/pagemap.h for details. 728 */ 729 if (unlikely(page != *pagep)) { 730 page_cache_release(page); 731 goto repeat; 732 } 733 } 734 out: 735 rcu_read_unlock(); 736 737 return page; 738 } 739 EXPORT_SYMBOL(find_get_page); 740 741 /** 742 * find_lock_page - locate, pin and lock a pagecache page 743 * @mapping: the address_space to search 744 * @offset: the page index 745 * 746 * Locates the desired pagecache page, locks it, increments its reference 747 * count and returns its address. 748 * 749 * Returns zero if the page was not present. find_lock_page() may sleep. 750 */ 751 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 752 { 753 struct page *page; 754 755 repeat: 756 page = find_get_page(mapping, offset); 757 if (page) { 758 lock_page(page); 759 /* Has the page been truncated? */ 760 if (unlikely(page->mapping != mapping)) { 761 unlock_page(page); 762 page_cache_release(page); 763 goto repeat; 764 } 765 VM_BUG_ON(page->index != offset); 766 } 767 return page; 768 } 769 EXPORT_SYMBOL(find_lock_page); 770 771 /** 772 * find_or_create_page - locate or add a pagecache page 773 * @mapping: the page's address_space 774 * @index: the page's index into the mapping 775 * @gfp_mask: page allocation mode 776 * 777 * Locates a page in the pagecache. If the page is not present, a new page 778 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 779 * LRU list. The returned page is locked and has its reference count 780 * incremented. 781 * 782 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 783 * allocation! 784 * 785 * find_or_create_page() returns the desired page's address, or zero on 786 * memory exhaustion. 787 */ 788 struct page *find_or_create_page(struct address_space *mapping, 789 pgoff_t index, gfp_t gfp_mask) 790 { 791 struct page *page; 792 int err; 793 repeat: 794 page = find_lock_page(mapping, index); 795 if (!page) { 796 page = __page_cache_alloc(gfp_mask); 797 if (!page) 798 return NULL; 799 /* 800 * We want a regular kernel memory (not highmem or DMA etc) 801 * allocation for the radix tree nodes, but we need to honour 802 * the context-specific requirements the caller has asked for. 803 * GFP_RECLAIM_MASK collects those requirements. 804 */ 805 err = add_to_page_cache_lru(page, mapping, index, 806 (gfp_mask & GFP_RECLAIM_MASK)); 807 if (unlikely(err)) { 808 page_cache_release(page); 809 page = NULL; 810 if (err == -EEXIST) 811 goto repeat; 812 } 813 } 814 return page; 815 } 816 EXPORT_SYMBOL(find_or_create_page); 817 818 /** 819 * find_get_pages - gang pagecache lookup 820 * @mapping: The address_space to search 821 * @start: The starting page index 822 * @nr_pages: The maximum number of pages 823 * @pages: Where the resulting pages are placed 824 * 825 * find_get_pages() will search for and return a group of up to 826 * @nr_pages pages in the mapping. The pages are placed at @pages. 827 * find_get_pages() takes a reference against the returned pages. 828 * 829 * The search returns a group of mapping-contiguous pages with ascending 830 * indexes. There may be holes in the indices due to not-present pages. 831 * 832 * find_get_pages() returns the number of pages which were found. 833 */ 834 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 835 unsigned int nr_pages, struct page **pages) 836 { 837 unsigned int i; 838 unsigned int ret; 839 unsigned int nr_found; 840 841 rcu_read_lock(); 842 restart: 843 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 844 (void ***)pages, start, nr_pages); 845 ret = 0; 846 for (i = 0; i < nr_found; i++) { 847 struct page *page; 848 repeat: 849 page = radix_tree_deref_slot((void **)pages[i]); 850 if (unlikely(!page)) 851 continue; 852 853 /* 854 * This can only trigger when the entry at index 0 moves out 855 * of or back to the root: none yet gotten, safe to restart. 856 */ 857 if (radix_tree_deref_retry(page)) { 858 WARN_ON(start | i); 859 goto restart; 860 } 861 862 if (!page_cache_get_speculative(page)) 863 goto repeat; 864 865 /* Has the page moved? */ 866 if (unlikely(page != *((void **)pages[i]))) { 867 page_cache_release(page); 868 goto repeat; 869 } 870 871 pages[ret] = page; 872 ret++; 873 } 874 875 /* 876 * If all entries were removed before we could secure them, 877 * try again, because callers stop trying once 0 is returned. 878 */ 879 if (unlikely(!ret && nr_found)) 880 goto restart; 881 rcu_read_unlock(); 882 return ret; 883 } 884 885 /** 886 * find_get_pages_contig - gang contiguous pagecache lookup 887 * @mapping: The address_space to search 888 * @index: The starting page index 889 * @nr_pages: The maximum number of pages 890 * @pages: Where the resulting pages are placed 891 * 892 * find_get_pages_contig() works exactly like find_get_pages(), except 893 * that the returned number of pages are guaranteed to be contiguous. 894 * 895 * find_get_pages_contig() returns the number of pages which were found. 896 */ 897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 898 unsigned int nr_pages, struct page **pages) 899 { 900 unsigned int i; 901 unsigned int ret; 902 unsigned int nr_found; 903 904 rcu_read_lock(); 905 restart: 906 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 907 (void ***)pages, index, nr_pages); 908 ret = 0; 909 for (i = 0; i < nr_found; i++) { 910 struct page *page; 911 repeat: 912 page = radix_tree_deref_slot((void **)pages[i]); 913 if (unlikely(!page)) 914 continue; 915 916 /* 917 * This can only trigger when the entry at index 0 moves out 918 * of or back to the root: none yet gotten, safe to restart. 919 */ 920 if (radix_tree_deref_retry(page)) 921 goto restart; 922 923 if (!page_cache_get_speculative(page)) 924 goto repeat; 925 926 /* Has the page moved? */ 927 if (unlikely(page != *((void **)pages[i]))) { 928 page_cache_release(page); 929 goto repeat; 930 } 931 932 /* 933 * must check mapping and index after taking the ref. 934 * otherwise we can get both false positives and false 935 * negatives, which is just confusing to the caller. 936 */ 937 if (page->mapping == NULL || page->index != index) { 938 page_cache_release(page); 939 break; 940 } 941 942 pages[ret] = page; 943 ret++; 944 index++; 945 } 946 rcu_read_unlock(); 947 return ret; 948 } 949 EXPORT_SYMBOL(find_get_pages_contig); 950 951 /** 952 * find_get_pages_tag - find and return pages that match @tag 953 * @mapping: the address_space to search 954 * @index: the starting page index 955 * @tag: the tag index 956 * @nr_pages: the maximum number of pages 957 * @pages: where the resulting pages are placed 958 * 959 * Like find_get_pages, except we only return pages which are tagged with 960 * @tag. We update @index to index the next page for the traversal. 961 */ 962 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 963 int tag, unsigned int nr_pages, struct page **pages) 964 { 965 unsigned int i; 966 unsigned int ret; 967 unsigned int nr_found; 968 969 rcu_read_lock(); 970 restart: 971 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 972 (void ***)pages, *index, nr_pages, tag); 973 ret = 0; 974 for (i = 0; i < nr_found; i++) { 975 struct page *page; 976 repeat: 977 page = radix_tree_deref_slot((void **)pages[i]); 978 if (unlikely(!page)) 979 continue; 980 981 /* 982 * This can only trigger when the entry at index 0 moves out 983 * of or back to the root: none yet gotten, safe to restart. 984 */ 985 if (radix_tree_deref_retry(page)) 986 goto restart; 987 988 if (!page_cache_get_speculative(page)) 989 goto repeat; 990 991 /* Has the page moved? */ 992 if (unlikely(page != *((void **)pages[i]))) { 993 page_cache_release(page); 994 goto repeat; 995 } 996 997 pages[ret] = page; 998 ret++; 999 } 1000 1001 /* 1002 * If all entries were removed before we could secure them, 1003 * try again, because callers stop trying once 0 is returned. 1004 */ 1005 if (unlikely(!ret && nr_found)) 1006 goto restart; 1007 rcu_read_unlock(); 1008 1009 if (ret) 1010 *index = pages[ret - 1]->index + 1; 1011 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(find_get_pages_tag); 1015 1016 /** 1017 * grab_cache_page_nowait - returns locked page at given index in given cache 1018 * @mapping: target address_space 1019 * @index: the page index 1020 * 1021 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1022 * This is intended for speculative data generators, where the data can 1023 * be regenerated if the page couldn't be grabbed. This routine should 1024 * be safe to call while holding the lock for another page. 1025 * 1026 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1027 * and deadlock against the caller's locked page. 1028 */ 1029 struct page * 1030 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1031 { 1032 struct page *page = find_get_page(mapping, index); 1033 1034 if (page) { 1035 if (trylock_page(page)) 1036 return page; 1037 page_cache_release(page); 1038 return NULL; 1039 } 1040 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1041 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1042 page_cache_release(page); 1043 page = NULL; 1044 } 1045 return page; 1046 } 1047 EXPORT_SYMBOL(grab_cache_page_nowait); 1048 1049 /* 1050 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1051 * a _large_ part of the i/o request. Imagine the worst scenario: 1052 * 1053 * ---R__________________________________________B__________ 1054 * ^ reading here ^ bad block(assume 4k) 1055 * 1056 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1057 * => failing the whole request => read(R) => read(R+1) => 1058 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1059 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1060 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1061 * 1062 * It is going insane. Fix it by quickly scaling down the readahead size. 1063 */ 1064 static void shrink_readahead_size_eio(struct file *filp, 1065 struct file_ra_state *ra) 1066 { 1067 ra->ra_pages /= 4; 1068 } 1069 1070 /** 1071 * do_generic_file_read - generic file read routine 1072 * @filp: the file to read 1073 * @ppos: current file position 1074 * @desc: read_descriptor 1075 * @actor: read method 1076 * 1077 * This is a generic file read routine, and uses the 1078 * mapping->a_ops->readpage() function for the actual low-level stuff. 1079 * 1080 * This is really ugly. But the goto's actually try to clarify some 1081 * of the logic when it comes to error handling etc. 1082 */ 1083 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1084 read_descriptor_t *desc, read_actor_t actor) 1085 { 1086 struct address_space *mapping = filp->f_mapping; 1087 struct inode *inode = mapping->host; 1088 struct file_ra_state *ra = &filp->f_ra; 1089 pgoff_t index; 1090 pgoff_t last_index; 1091 pgoff_t prev_index; 1092 unsigned long offset; /* offset into pagecache page */ 1093 unsigned int prev_offset; 1094 int error; 1095 1096 index = *ppos >> PAGE_CACHE_SHIFT; 1097 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1098 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1099 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1100 offset = *ppos & ~PAGE_CACHE_MASK; 1101 1102 for (;;) { 1103 struct page *page; 1104 pgoff_t end_index; 1105 loff_t isize; 1106 unsigned long nr, ret; 1107 1108 cond_resched(); 1109 find_page: 1110 page = find_get_page(mapping, index); 1111 if (!page) { 1112 page_cache_sync_readahead(mapping, 1113 ra, filp, 1114 index, last_index - index); 1115 page = find_get_page(mapping, index); 1116 if (unlikely(page == NULL)) 1117 goto no_cached_page; 1118 } 1119 if (PageReadahead(page)) { 1120 page_cache_async_readahead(mapping, 1121 ra, filp, page, 1122 index, last_index - index); 1123 } 1124 if (!PageUptodate(page)) { 1125 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1126 !mapping->a_ops->is_partially_uptodate) 1127 goto page_not_up_to_date; 1128 if (!trylock_page(page)) 1129 goto page_not_up_to_date; 1130 /* Did it get truncated before we got the lock? */ 1131 if (!page->mapping) 1132 goto page_not_up_to_date_locked; 1133 if (!mapping->a_ops->is_partially_uptodate(page, 1134 desc, offset)) 1135 goto page_not_up_to_date_locked; 1136 unlock_page(page); 1137 } 1138 page_ok: 1139 /* 1140 * i_size must be checked after we know the page is Uptodate. 1141 * 1142 * Checking i_size after the check allows us to calculate 1143 * the correct value for "nr", which means the zero-filled 1144 * part of the page is not copied back to userspace (unless 1145 * another truncate extends the file - this is desired though). 1146 */ 1147 1148 isize = i_size_read(inode); 1149 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1150 if (unlikely(!isize || index > end_index)) { 1151 page_cache_release(page); 1152 goto out; 1153 } 1154 1155 /* nr is the maximum number of bytes to copy from this page */ 1156 nr = PAGE_CACHE_SIZE; 1157 if (index == end_index) { 1158 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1159 if (nr <= offset) { 1160 page_cache_release(page); 1161 goto out; 1162 } 1163 } 1164 nr = nr - offset; 1165 1166 /* If users can be writing to this page using arbitrary 1167 * virtual addresses, take care about potential aliasing 1168 * before reading the page on the kernel side. 1169 */ 1170 if (mapping_writably_mapped(mapping)) 1171 flush_dcache_page(page); 1172 1173 /* 1174 * When a sequential read accesses a page several times, 1175 * only mark it as accessed the first time. 1176 */ 1177 if (prev_index != index || offset != prev_offset) 1178 mark_page_accessed(page); 1179 prev_index = index; 1180 1181 /* 1182 * Ok, we have the page, and it's up-to-date, so 1183 * now we can copy it to user space... 1184 * 1185 * The actor routine returns how many bytes were actually used.. 1186 * NOTE! This may not be the same as how much of a user buffer 1187 * we filled up (we may be padding etc), so we can only update 1188 * "pos" here (the actor routine has to update the user buffer 1189 * pointers and the remaining count). 1190 */ 1191 ret = actor(desc, page, offset, nr); 1192 offset += ret; 1193 index += offset >> PAGE_CACHE_SHIFT; 1194 offset &= ~PAGE_CACHE_MASK; 1195 prev_offset = offset; 1196 1197 page_cache_release(page); 1198 if (ret == nr && desc->count) 1199 continue; 1200 goto out; 1201 1202 page_not_up_to_date: 1203 /* Get exclusive access to the page ... */ 1204 error = lock_page_killable(page); 1205 if (unlikely(error)) 1206 goto readpage_error; 1207 1208 page_not_up_to_date_locked: 1209 /* Did it get truncated before we got the lock? */ 1210 if (!page->mapping) { 1211 unlock_page(page); 1212 page_cache_release(page); 1213 continue; 1214 } 1215 1216 /* Did somebody else fill it already? */ 1217 if (PageUptodate(page)) { 1218 unlock_page(page); 1219 goto page_ok; 1220 } 1221 1222 readpage: 1223 /* 1224 * A previous I/O error may have been due to temporary 1225 * failures, eg. multipath errors. 1226 * PG_error will be set again if readpage fails. 1227 */ 1228 ClearPageError(page); 1229 /* Start the actual read. The read will unlock the page. */ 1230 error = mapping->a_ops->readpage(filp, page); 1231 1232 if (unlikely(error)) { 1233 if (error == AOP_TRUNCATED_PAGE) { 1234 page_cache_release(page); 1235 goto find_page; 1236 } 1237 goto readpage_error; 1238 } 1239 1240 if (!PageUptodate(page)) { 1241 error = lock_page_killable(page); 1242 if (unlikely(error)) 1243 goto readpage_error; 1244 if (!PageUptodate(page)) { 1245 if (page->mapping == NULL) { 1246 /* 1247 * invalidate_mapping_pages got it 1248 */ 1249 unlock_page(page); 1250 page_cache_release(page); 1251 goto find_page; 1252 } 1253 unlock_page(page); 1254 shrink_readahead_size_eio(filp, ra); 1255 error = -EIO; 1256 goto readpage_error; 1257 } 1258 unlock_page(page); 1259 } 1260 1261 goto page_ok; 1262 1263 readpage_error: 1264 /* UHHUH! A synchronous read error occurred. Report it */ 1265 desc->error = error; 1266 page_cache_release(page); 1267 goto out; 1268 1269 no_cached_page: 1270 /* 1271 * Ok, it wasn't cached, so we need to create a new 1272 * page.. 1273 */ 1274 page = page_cache_alloc_cold(mapping); 1275 if (!page) { 1276 desc->error = -ENOMEM; 1277 goto out; 1278 } 1279 error = add_to_page_cache_lru(page, mapping, 1280 index, GFP_KERNEL); 1281 if (error) { 1282 page_cache_release(page); 1283 if (error == -EEXIST) 1284 goto find_page; 1285 desc->error = error; 1286 goto out; 1287 } 1288 goto readpage; 1289 } 1290 1291 out: 1292 ra->prev_pos = prev_index; 1293 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1294 ra->prev_pos |= prev_offset; 1295 1296 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1297 file_accessed(filp); 1298 } 1299 1300 int file_read_actor(read_descriptor_t *desc, struct page *page, 1301 unsigned long offset, unsigned long size) 1302 { 1303 char *kaddr; 1304 unsigned long left, count = desc->count; 1305 1306 if (size > count) 1307 size = count; 1308 1309 /* 1310 * Faults on the destination of a read are common, so do it before 1311 * taking the kmap. 1312 */ 1313 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1314 kaddr = kmap_atomic(page, KM_USER0); 1315 left = __copy_to_user_inatomic(desc->arg.buf, 1316 kaddr + offset, size); 1317 kunmap_atomic(kaddr, KM_USER0); 1318 if (left == 0) 1319 goto success; 1320 } 1321 1322 /* Do it the slow way */ 1323 kaddr = kmap(page); 1324 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1325 kunmap(page); 1326 1327 if (left) { 1328 size -= left; 1329 desc->error = -EFAULT; 1330 } 1331 success: 1332 desc->count = count - size; 1333 desc->written += size; 1334 desc->arg.buf += size; 1335 return size; 1336 } 1337 1338 /* 1339 * Performs necessary checks before doing a write 1340 * @iov: io vector request 1341 * @nr_segs: number of segments in the iovec 1342 * @count: number of bytes to write 1343 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1344 * 1345 * Adjust number of segments and amount of bytes to write (nr_segs should be 1346 * properly initialized first). Returns appropriate error code that caller 1347 * should return or zero in case that write should be allowed. 1348 */ 1349 int generic_segment_checks(const struct iovec *iov, 1350 unsigned long *nr_segs, size_t *count, int access_flags) 1351 { 1352 unsigned long seg; 1353 size_t cnt = 0; 1354 for (seg = 0; seg < *nr_segs; seg++) { 1355 const struct iovec *iv = &iov[seg]; 1356 1357 /* 1358 * If any segment has a negative length, or the cumulative 1359 * length ever wraps negative then return -EINVAL. 1360 */ 1361 cnt += iv->iov_len; 1362 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1363 return -EINVAL; 1364 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1365 continue; 1366 if (seg == 0) 1367 return -EFAULT; 1368 *nr_segs = seg; 1369 cnt -= iv->iov_len; /* This segment is no good */ 1370 break; 1371 } 1372 *count = cnt; 1373 return 0; 1374 } 1375 EXPORT_SYMBOL(generic_segment_checks); 1376 1377 /** 1378 * generic_file_aio_read - generic filesystem read routine 1379 * @iocb: kernel I/O control block 1380 * @iov: io vector request 1381 * @nr_segs: number of segments in the iovec 1382 * @pos: current file position 1383 * 1384 * This is the "read()" routine for all filesystems 1385 * that can use the page cache directly. 1386 */ 1387 ssize_t 1388 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1389 unsigned long nr_segs, loff_t pos) 1390 { 1391 struct file *filp = iocb->ki_filp; 1392 ssize_t retval; 1393 unsigned long seg = 0; 1394 size_t count; 1395 loff_t *ppos = &iocb->ki_pos; 1396 struct blk_plug plug; 1397 1398 count = 0; 1399 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1400 if (retval) 1401 return retval; 1402 1403 blk_start_plug(&plug); 1404 1405 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1406 if (filp->f_flags & O_DIRECT) { 1407 loff_t size; 1408 struct address_space *mapping; 1409 struct inode *inode; 1410 1411 mapping = filp->f_mapping; 1412 inode = mapping->host; 1413 if (!count) 1414 goto out; /* skip atime */ 1415 size = i_size_read(inode); 1416 if (pos < size) { 1417 retval = filemap_write_and_wait_range(mapping, pos, 1418 pos + iov_length(iov, nr_segs) - 1); 1419 if (!retval) { 1420 retval = mapping->a_ops->direct_IO(READ, iocb, 1421 iov, pos, nr_segs); 1422 } 1423 if (retval > 0) { 1424 *ppos = pos + retval; 1425 count -= retval; 1426 } 1427 1428 /* 1429 * Btrfs can have a short DIO read if we encounter 1430 * compressed extents, so if there was an error, or if 1431 * we've already read everything we wanted to, or if 1432 * there was a short read because we hit EOF, go ahead 1433 * and return. Otherwise fallthrough to buffered io for 1434 * the rest of the read. 1435 */ 1436 if (retval < 0 || !count || *ppos >= size) { 1437 file_accessed(filp); 1438 goto out; 1439 } 1440 } 1441 } 1442 1443 count = retval; 1444 for (seg = 0; seg < nr_segs; seg++) { 1445 read_descriptor_t desc; 1446 loff_t offset = 0; 1447 1448 /* 1449 * If we did a short DIO read we need to skip the section of the 1450 * iov that we've already read data into. 1451 */ 1452 if (count) { 1453 if (count > iov[seg].iov_len) { 1454 count -= iov[seg].iov_len; 1455 continue; 1456 } 1457 offset = count; 1458 count = 0; 1459 } 1460 1461 desc.written = 0; 1462 desc.arg.buf = iov[seg].iov_base + offset; 1463 desc.count = iov[seg].iov_len - offset; 1464 if (desc.count == 0) 1465 continue; 1466 desc.error = 0; 1467 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1468 retval += desc.written; 1469 if (desc.error) { 1470 retval = retval ?: desc.error; 1471 break; 1472 } 1473 if (desc.count > 0) 1474 break; 1475 } 1476 out: 1477 blk_finish_plug(&plug); 1478 return retval; 1479 } 1480 EXPORT_SYMBOL(generic_file_aio_read); 1481 1482 static ssize_t 1483 do_readahead(struct address_space *mapping, struct file *filp, 1484 pgoff_t index, unsigned long nr) 1485 { 1486 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1487 return -EINVAL; 1488 1489 force_page_cache_readahead(mapping, filp, index, nr); 1490 return 0; 1491 } 1492 1493 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1494 { 1495 ssize_t ret; 1496 struct file *file; 1497 1498 ret = -EBADF; 1499 file = fget(fd); 1500 if (file) { 1501 if (file->f_mode & FMODE_READ) { 1502 struct address_space *mapping = file->f_mapping; 1503 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1504 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1505 unsigned long len = end - start + 1; 1506 ret = do_readahead(mapping, file, start, len); 1507 } 1508 fput(file); 1509 } 1510 return ret; 1511 } 1512 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1513 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1514 { 1515 return SYSC_readahead((int) fd, offset, (size_t) count); 1516 } 1517 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1518 #endif 1519 1520 #ifdef CONFIG_MMU 1521 /** 1522 * page_cache_read - adds requested page to the page cache if not already there 1523 * @file: file to read 1524 * @offset: page index 1525 * 1526 * This adds the requested page to the page cache if it isn't already there, 1527 * and schedules an I/O to read in its contents from disk. 1528 */ 1529 static int page_cache_read(struct file *file, pgoff_t offset) 1530 { 1531 struct address_space *mapping = file->f_mapping; 1532 struct page *page; 1533 int ret; 1534 1535 do { 1536 page = page_cache_alloc_cold(mapping); 1537 if (!page) 1538 return -ENOMEM; 1539 1540 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1541 if (ret == 0) 1542 ret = mapping->a_ops->readpage(file, page); 1543 else if (ret == -EEXIST) 1544 ret = 0; /* losing race to add is OK */ 1545 1546 page_cache_release(page); 1547 1548 } while (ret == AOP_TRUNCATED_PAGE); 1549 1550 return ret; 1551 } 1552 1553 #define MMAP_LOTSAMISS (100) 1554 1555 /* 1556 * Synchronous readahead happens when we don't even find 1557 * a page in the page cache at all. 1558 */ 1559 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1560 struct file_ra_state *ra, 1561 struct file *file, 1562 pgoff_t offset) 1563 { 1564 unsigned long ra_pages; 1565 struct address_space *mapping = file->f_mapping; 1566 1567 /* If we don't want any read-ahead, don't bother */ 1568 if (VM_RandomReadHint(vma)) 1569 return; 1570 if (!ra->ra_pages) 1571 return; 1572 1573 if (VM_SequentialReadHint(vma)) { 1574 page_cache_sync_readahead(mapping, ra, file, offset, 1575 ra->ra_pages); 1576 return; 1577 } 1578 1579 /* Avoid banging the cache line if not needed */ 1580 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1581 ra->mmap_miss++; 1582 1583 /* 1584 * Do we miss much more than hit in this file? If so, 1585 * stop bothering with read-ahead. It will only hurt. 1586 */ 1587 if (ra->mmap_miss > MMAP_LOTSAMISS) 1588 return; 1589 1590 /* 1591 * mmap read-around 1592 */ 1593 ra_pages = max_sane_readahead(ra->ra_pages); 1594 ra->start = max_t(long, 0, offset - ra_pages / 2); 1595 ra->size = ra_pages; 1596 ra->async_size = ra_pages / 4; 1597 ra_submit(ra, mapping, file); 1598 } 1599 1600 /* 1601 * Asynchronous readahead happens when we find the page and PG_readahead, 1602 * so we want to possibly extend the readahead further.. 1603 */ 1604 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1605 struct file_ra_state *ra, 1606 struct file *file, 1607 struct page *page, 1608 pgoff_t offset) 1609 { 1610 struct address_space *mapping = file->f_mapping; 1611 1612 /* If we don't want any read-ahead, don't bother */ 1613 if (VM_RandomReadHint(vma)) 1614 return; 1615 if (ra->mmap_miss > 0) 1616 ra->mmap_miss--; 1617 if (PageReadahead(page)) 1618 page_cache_async_readahead(mapping, ra, file, 1619 page, offset, ra->ra_pages); 1620 } 1621 1622 /** 1623 * filemap_fault - read in file data for page fault handling 1624 * @vma: vma in which the fault was taken 1625 * @vmf: struct vm_fault containing details of the fault 1626 * 1627 * filemap_fault() is invoked via the vma operations vector for a 1628 * mapped memory region to read in file data during a page fault. 1629 * 1630 * The goto's are kind of ugly, but this streamlines the normal case of having 1631 * it in the page cache, and handles the special cases reasonably without 1632 * having a lot of duplicated code. 1633 */ 1634 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1635 { 1636 int error; 1637 struct file *file = vma->vm_file; 1638 struct address_space *mapping = file->f_mapping; 1639 struct file_ra_state *ra = &file->f_ra; 1640 struct inode *inode = mapping->host; 1641 pgoff_t offset = vmf->pgoff; 1642 struct page *page; 1643 pgoff_t size; 1644 int ret = 0; 1645 1646 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1647 if (offset >= size) 1648 return VM_FAULT_SIGBUS; 1649 1650 /* 1651 * Do we have something in the page cache already? 1652 */ 1653 page = find_get_page(mapping, offset); 1654 if (likely(page)) { 1655 /* 1656 * We found the page, so try async readahead before 1657 * waiting for the lock. 1658 */ 1659 do_async_mmap_readahead(vma, ra, file, page, offset); 1660 } else { 1661 /* No page in the page cache at all */ 1662 do_sync_mmap_readahead(vma, ra, file, offset); 1663 count_vm_event(PGMAJFAULT); 1664 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1665 ret = VM_FAULT_MAJOR; 1666 retry_find: 1667 page = find_get_page(mapping, offset); 1668 if (!page) 1669 goto no_cached_page; 1670 } 1671 1672 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1673 page_cache_release(page); 1674 return ret | VM_FAULT_RETRY; 1675 } 1676 1677 /* Did it get truncated? */ 1678 if (unlikely(page->mapping != mapping)) { 1679 unlock_page(page); 1680 put_page(page); 1681 goto retry_find; 1682 } 1683 VM_BUG_ON(page->index != offset); 1684 1685 /* 1686 * We have a locked page in the page cache, now we need to check 1687 * that it's up-to-date. If not, it is going to be due to an error. 1688 */ 1689 if (unlikely(!PageUptodate(page))) 1690 goto page_not_uptodate; 1691 1692 /* 1693 * Found the page and have a reference on it. 1694 * We must recheck i_size under page lock. 1695 */ 1696 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1697 if (unlikely(offset >= size)) { 1698 unlock_page(page); 1699 page_cache_release(page); 1700 return VM_FAULT_SIGBUS; 1701 } 1702 1703 vmf->page = page; 1704 return ret | VM_FAULT_LOCKED; 1705 1706 no_cached_page: 1707 /* 1708 * We're only likely to ever get here if MADV_RANDOM is in 1709 * effect. 1710 */ 1711 error = page_cache_read(file, offset); 1712 1713 /* 1714 * The page we want has now been added to the page cache. 1715 * In the unlikely event that someone removed it in the 1716 * meantime, we'll just come back here and read it again. 1717 */ 1718 if (error >= 0) 1719 goto retry_find; 1720 1721 /* 1722 * An error return from page_cache_read can result if the 1723 * system is low on memory, or a problem occurs while trying 1724 * to schedule I/O. 1725 */ 1726 if (error == -ENOMEM) 1727 return VM_FAULT_OOM; 1728 return VM_FAULT_SIGBUS; 1729 1730 page_not_uptodate: 1731 /* 1732 * Umm, take care of errors if the page isn't up-to-date. 1733 * Try to re-read it _once_. We do this synchronously, 1734 * because there really aren't any performance issues here 1735 * and we need to check for errors. 1736 */ 1737 ClearPageError(page); 1738 error = mapping->a_ops->readpage(file, page); 1739 if (!error) { 1740 wait_on_page_locked(page); 1741 if (!PageUptodate(page)) 1742 error = -EIO; 1743 } 1744 page_cache_release(page); 1745 1746 if (!error || error == AOP_TRUNCATED_PAGE) 1747 goto retry_find; 1748 1749 /* Things didn't work out. Return zero to tell the mm layer so. */ 1750 shrink_readahead_size_eio(file, ra); 1751 return VM_FAULT_SIGBUS; 1752 } 1753 EXPORT_SYMBOL(filemap_fault); 1754 1755 const struct vm_operations_struct generic_file_vm_ops = { 1756 .fault = filemap_fault, 1757 }; 1758 1759 /* This is used for a general mmap of a disk file */ 1760 1761 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1762 { 1763 struct address_space *mapping = file->f_mapping; 1764 1765 if (!mapping->a_ops->readpage) 1766 return -ENOEXEC; 1767 file_accessed(file); 1768 vma->vm_ops = &generic_file_vm_ops; 1769 vma->vm_flags |= VM_CAN_NONLINEAR; 1770 return 0; 1771 } 1772 1773 /* 1774 * This is for filesystems which do not implement ->writepage. 1775 */ 1776 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1777 { 1778 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1779 return -EINVAL; 1780 return generic_file_mmap(file, vma); 1781 } 1782 #else 1783 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1784 { 1785 return -ENOSYS; 1786 } 1787 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1788 { 1789 return -ENOSYS; 1790 } 1791 #endif /* CONFIG_MMU */ 1792 1793 EXPORT_SYMBOL(generic_file_mmap); 1794 EXPORT_SYMBOL(generic_file_readonly_mmap); 1795 1796 static struct page *__read_cache_page(struct address_space *mapping, 1797 pgoff_t index, 1798 int (*filler)(void *,struct page*), 1799 void *data, 1800 gfp_t gfp) 1801 { 1802 struct page *page; 1803 int err; 1804 repeat: 1805 page = find_get_page(mapping, index); 1806 if (!page) { 1807 page = __page_cache_alloc(gfp | __GFP_COLD); 1808 if (!page) 1809 return ERR_PTR(-ENOMEM); 1810 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1811 if (unlikely(err)) { 1812 page_cache_release(page); 1813 if (err == -EEXIST) 1814 goto repeat; 1815 /* Presumably ENOMEM for radix tree node */ 1816 return ERR_PTR(err); 1817 } 1818 err = filler(data, page); 1819 if (err < 0) { 1820 page_cache_release(page); 1821 page = ERR_PTR(err); 1822 } 1823 } 1824 return page; 1825 } 1826 1827 static struct page *do_read_cache_page(struct address_space *mapping, 1828 pgoff_t index, 1829 int (*filler)(void *,struct page*), 1830 void *data, 1831 gfp_t gfp) 1832 1833 { 1834 struct page *page; 1835 int err; 1836 1837 retry: 1838 page = __read_cache_page(mapping, index, filler, data, gfp); 1839 if (IS_ERR(page)) 1840 return page; 1841 if (PageUptodate(page)) 1842 goto out; 1843 1844 lock_page(page); 1845 if (!page->mapping) { 1846 unlock_page(page); 1847 page_cache_release(page); 1848 goto retry; 1849 } 1850 if (PageUptodate(page)) { 1851 unlock_page(page); 1852 goto out; 1853 } 1854 err = filler(data, page); 1855 if (err < 0) { 1856 page_cache_release(page); 1857 return ERR_PTR(err); 1858 } 1859 out: 1860 mark_page_accessed(page); 1861 return page; 1862 } 1863 1864 /** 1865 * read_cache_page_async - read into page cache, fill it if needed 1866 * @mapping: the page's address_space 1867 * @index: the page index 1868 * @filler: function to perform the read 1869 * @data: destination for read data 1870 * 1871 * Same as read_cache_page, but don't wait for page to become unlocked 1872 * after submitting it to the filler. 1873 * 1874 * Read into the page cache. If a page already exists, and PageUptodate() is 1875 * not set, try to fill the page but don't wait for it to become unlocked. 1876 * 1877 * If the page does not get brought uptodate, return -EIO. 1878 */ 1879 struct page *read_cache_page_async(struct address_space *mapping, 1880 pgoff_t index, 1881 int (*filler)(void *,struct page*), 1882 void *data) 1883 { 1884 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1885 } 1886 EXPORT_SYMBOL(read_cache_page_async); 1887 1888 static struct page *wait_on_page_read(struct page *page) 1889 { 1890 if (!IS_ERR(page)) { 1891 wait_on_page_locked(page); 1892 if (!PageUptodate(page)) { 1893 page_cache_release(page); 1894 page = ERR_PTR(-EIO); 1895 } 1896 } 1897 return page; 1898 } 1899 1900 /** 1901 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1902 * @mapping: the page's address_space 1903 * @index: the page index 1904 * @gfp: the page allocator flags to use if allocating 1905 * 1906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1907 * any new page allocations done using the specified allocation flags. Note 1908 * that the Radix tree operations will still use GFP_KERNEL, so you can't 1909 * expect to do this atomically or anything like that - but you can pass in 1910 * other page requirements. 1911 * 1912 * If the page does not get brought uptodate, return -EIO. 1913 */ 1914 struct page *read_cache_page_gfp(struct address_space *mapping, 1915 pgoff_t index, 1916 gfp_t gfp) 1917 { 1918 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1919 1920 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1921 } 1922 EXPORT_SYMBOL(read_cache_page_gfp); 1923 1924 /** 1925 * read_cache_page - read into page cache, fill it if needed 1926 * @mapping: the page's address_space 1927 * @index: the page index 1928 * @filler: function to perform the read 1929 * @data: destination for read data 1930 * 1931 * Read into the page cache. If a page already exists, and PageUptodate() is 1932 * not set, try to fill the page then wait for it to become unlocked. 1933 * 1934 * If the page does not get brought uptodate, return -EIO. 1935 */ 1936 struct page *read_cache_page(struct address_space *mapping, 1937 pgoff_t index, 1938 int (*filler)(void *,struct page*), 1939 void *data) 1940 { 1941 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1942 } 1943 EXPORT_SYMBOL(read_cache_page); 1944 1945 /* 1946 * The logic we want is 1947 * 1948 * if suid or (sgid and xgrp) 1949 * remove privs 1950 */ 1951 int should_remove_suid(struct dentry *dentry) 1952 { 1953 mode_t mode = dentry->d_inode->i_mode; 1954 int kill = 0; 1955 1956 /* suid always must be killed */ 1957 if (unlikely(mode & S_ISUID)) 1958 kill = ATTR_KILL_SUID; 1959 1960 /* 1961 * sgid without any exec bits is just a mandatory locking mark; leave 1962 * it alone. If some exec bits are set, it's a real sgid; kill it. 1963 */ 1964 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1965 kill |= ATTR_KILL_SGID; 1966 1967 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1968 return kill; 1969 1970 return 0; 1971 } 1972 EXPORT_SYMBOL(should_remove_suid); 1973 1974 static int __remove_suid(struct dentry *dentry, int kill) 1975 { 1976 struct iattr newattrs; 1977 1978 newattrs.ia_valid = ATTR_FORCE | kill; 1979 return notify_change(dentry, &newattrs); 1980 } 1981 1982 int file_remove_suid(struct file *file) 1983 { 1984 struct dentry *dentry = file->f_path.dentry; 1985 struct inode *inode = dentry->d_inode; 1986 int killsuid; 1987 int killpriv; 1988 int error = 0; 1989 1990 /* Fast path for nothing security related */ 1991 if (IS_NOSEC(inode)) 1992 return 0; 1993 1994 killsuid = should_remove_suid(dentry); 1995 killpriv = security_inode_need_killpriv(dentry); 1996 1997 if (killpriv < 0) 1998 return killpriv; 1999 if (killpriv) 2000 error = security_inode_killpriv(dentry); 2001 if (!error && killsuid) 2002 error = __remove_suid(dentry, killsuid); 2003 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 2004 inode->i_flags |= S_NOSEC; 2005 2006 return error; 2007 } 2008 EXPORT_SYMBOL(file_remove_suid); 2009 2010 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 2011 const struct iovec *iov, size_t base, size_t bytes) 2012 { 2013 size_t copied = 0, left = 0; 2014 2015 while (bytes) { 2016 char __user *buf = iov->iov_base + base; 2017 int copy = min(bytes, iov->iov_len - base); 2018 2019 base = 0; 2020 left = __copy_from_user_inatomic(vaddr, buf, copy); 2021 copied += copy; 2022 bytes -= copy; 2023 vaddr += copy; 2024 iov++; 2025 2026 if (unlikely(left)) 2027 break; 2028 } 2029 return copied - left; 2030 } 2031 2032 /* 2033 * Copy as much as we can into the page and return the number of bytes which 2034 * were successfully copied. If a fault is encountered then return the number of 2035 * bytes which were copied. 2036 */ 2037 size_t iov_iter_copy_from_user_atomic(struct page *page, 2038 struct iov_iter *i, unsigned long offset, size_t bytes) 2039 { 2040 char *kaddr; 2041 size_t copied; 2042 2043 BUG_ON(!in_atomic()); 2044 kaddr = kmap_atomic(page, KM_USER0); 2045 if (likely(i->nr_segs == 1)) { 2046 int left; 2047 char __user *buf = i->iov->iov_base + i->iov_offset; 2048 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 2049 copied = bytes - left; 2050 } else { 2051 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2052 i->iov, i->iov_offset, bytes); 2053 } 2054 kunmap_atomic(kaddr, KM_USER0); 2055 2056 return copied; 2057 } 2058 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2059 2060 /* 2061 * This has the same sideeffects and return value as 2062 * iov_iter_copy_from_user_atomic(). 2063 * The difference is that it attempts to resolve faults. 2064 * Page must not be locked. 2065 */ 2066 size_t iov_iter_copy_from_user(struct page *page, 2067 struct iov_iter *i, unsigned long offset, size_t bytes) 2068 { 2069 char *kaddr; 2070 size_t copied; 2071 2072 kaddr = kmap(page); 2073 if (likely(i->nr_segs == 1)) { 2074 int left; 2075 char __user *buf = i->iov->iov_base + i->iov_offset; 2076 left = __copy_from_user(kaddr + offset, buf, bytes); 2077 copied = bytes - left; 2078 } else { 2079 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2080 i->iov, i->iov_offset, bytes); 2081 } 2082 kunmap(page); 2083 return copied; 2084 } 2085 EXPORT_SYMBOL(iov_iter_copy_from_user); 2086 2087 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2088 { 2089 BUG_ON(i->count < bytes); 2090 2091 if (likely(i->nr_segs == 1)) { 2092 i->iov_offset += bytes; 2093 i->count -= bytes; 2094 } else { 2095 const struct iovec *iov = i->iov; 2096 size_t base = i->iov_offset; 2097 2098 /* 2099 * The !iov->iov_len check ensures we skip over unlikely 2100 * zero-length segments (without overruning the iovec). 2101 */ 2102 while (bytes || unlikely(i->count && !iov->iov_len)) { 2103 int copy; 2104 2105 copy = min(bytes, iov->iov_len - base); 2106 BUG_ON(!i->count || i->count < copy); 2107 i->count -= copy; 2108 bytes -= copy; 2109 base += copy; 2110 if (iov->iov_len == base) { 2111 iov++; 2112 base = 0; 2113 } 2114 } 2115 i->iov = iov; 2116 i->iov_offset = base; 2117 } 2118 } 2119 EXPORT_SYMBOL(iov_iter_advance); 2120 2121 /* 2122 * Fault in the first iovec of the given iov_iter, to a maximum length 2123 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2124 * accessed (ie. because it is an invalid address). 2125 * 2126 * writev-intensive code may want this to prefault several iovecs -- that 2127 * would be possible (callers must not rely on the fact that _only_ the 2128 * first iovec will be faulted with the current implementation). 2129 */ 2130 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2131 { 2132 char __user *buf = i->iov->iov_base + i->iov_offset; 2133 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2134 return fault_in_pages_readable(buf, bytes); 2135 } 2136 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2137 2138 /* 2139 * Return the count of just the current iov_iter segment. 2140 */ 2141 size_t iov_iter_single_seg_count(struct iov_iter *i) 2142 { 2143 const struct iovec *iov = i->iov; 2144 if (i->nr_segs == 1) 2145 return i->count; 2146 else 2147 return min(i->count, iov->iov_len - i->iov_offset); 2148 } 2149 EXPORT_SYMBOL(iov_iter_single_seg_count); 2150 2151 /* 2152 * Performs necessary checks before doing a write 2153 * 2154 * Can adjust writing position or amount of bytes to write. 2155 * Returns appropriate error code that caller should return or 2156 * zero in case that write should be allowed. 2157 */ 2158 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2159 { 2160 struct inode *inode = file->f_mapping->host; 2161 unsigned long limit = rlimit(RLIMIT_FSIZE); 2162 2163 if (unlikely(*pos < 0)) 2164 return -EINVAL; 2165 2166 if (!isblk) { 2167 /* FIXME: this is for backwards compatibility with 2.4 */ 2168 if (file->f_flags & O_APPEND) 2169 *pos = i_size_read(inode); 2170 2171 if (limit != RLIM_INFINITY) { 2172 if (*pos >= limit) { 2173 send_sig(SIGXFSZ, current, 0); 2174 return -EFBIG; 2175 } 2176 if (*count > limit - (typeof(limit))*pos) { 2177 *count = limit - (typeof(limit))*pos; 2178 } 2179 } 2180 } 2181 2182 /* 2183 * LFS rule 2184 */ 2185 if (unlikely(*pos + *count > MAX_NON_LFS && 2186 !(file->f_flags & O_LARGEFILE))) { 2187 if (*pos >= MAX_NON_LFS) { 2188 return -EFBIG; 2189 } 2190 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2191 *count = MAX_NON_LFS - (unsigned long)*pos; 2192 } 2193 } 2194 2195 /* 2196 * Are we about to exceed the fs block limit ? 2197 * 2198 * If we have written data it becomes a short write. If we have 2199 * exceeded without writing data we send a signal and return EFBIG. 2200 * Linus frestrict idea will clean these up nicely.. 2201 */ 2202 if (likely(!isblk)) { 2203 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2204 if (*count || *pos > inode->i_sb->s_maxbytes) { 2205 return -EFBIG; 2206 } 2207 /* zero-length writes at ->s_maxbytes are OK */ 2208 } 2209 2210 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2211 *count = inode->i_sb->s_maxbytes - *pos; 2212 } else { 2213 #ifdef CONFIG_BLOCK 2214 loff_t isize; 2215 if (bdev_read_only(I_BDEV(inode))) 2216 return -EPERM; 2217 isize = i_size_read(inode); 2218 if (*pos >= isize) { 2219 if (*count || *pos > isize) 2220 return -ENOSPC; 2221 } 2222 2223 if (*pos + *count > isize) 2224 *count = isize - *pos; 2225 #else 2226 return -EPERM; 2227 #endif 2228 } 2229 return 0; 2230 } 2231 EXPORT_SYMBOL(generic_write_checks); 2232 2233 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2234 loff_t pos, unsigned len, unsigned flags, 2235 struct page **pagep, void **fsdata) 2236 { 2237 const struct address_space_operations *aops = mapping->a_ops; 2238 2239 return aops->write_begin(file, mapping, pos, len, flags, 2240 pagep, fsdata); 2241 } 2242 EXPORT_SYMBOL(pagecache_write_begin); 2243 2244 int pagecache_write_end(struct file *file, struct address_space *mapping, 2245 loff_t pos, unsigned len, unsigned copied, 2246 struct page *page, void *fsdata) 2247 { 2248 const struct address_space_operations *aops = mapping->a_ops; 2249 2250 mark_page_accessed(page); 2251 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2252 } 2253 EXPORT_SYMBOL(pagecache_write_end); 2254 2255 ssize_t 2256 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2257 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2258 size_t count, size_t ocount) 2259 { 2260 struct file *file = iocb->ki_filp; 2261 struct address_space *mapping = file->f_mapping; 2262 struct inode *inode = mapping->host; 2263 ssize_t written; 2264 size_t write_len; 2265 pgoff_t end; 2266 2267 if (count != ocount) 2268 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2269 2270 write_len = iov_length(iov, *nr_segs); 2271 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2272 2273 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2274 if (written) 2275 goto out; 2276 2277 /* 2278 * After a write we want buffered reads to be sure to go to disk to get 2279 * the new data. We invalidate clean cached page from the region we're 2280 * about to write. We do this *before* the write so that we can return 2281 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2282 */ 2283 if (mapping->nrpages) { 2284 written = invalidate_inode_pages2_range(mapping, 2285 pos >> PAGE_CACHE_SHIFT, end); 2286 /* 2287 * If a page can not be invalidated, return 0 to fall back 2288 * to buffered write. 2289 */ 2290 if (written) { 2291 if (written == -EBUSY) 2292 return 0; 2293 goto out; 2294 } 2295 } 2296 2297 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2298 2299 /* 2300 * Finally, try again to invalidate clean pages which might have been 2301 * cached by non-direct readahead, or faulted in by get_user_pages() 2302 * if the source of the write was an mmap'ed region of the file 2303 * we're writing. Either one is a pretty crazy thing to do, 2304 * so we don't support it 100%. If this invalidation 2305 * fails, tough, the write still worked... 2306 */ 2307 if (mapping->nrpages) { 2308 invalidate_inode_pages2_range(mapping, 2309 pos >> PAGE_CACHE_SHIFT, end); 2310 } 2311 2312 if (written > 0) { 2313 pos += written; 2314 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2315 i_size_write(inode, pos); 2316 mark_inode_dirty(inode); 2317 } 2318 *ppos = pos; 2319 } 2320 out: 2321 return written; 2322 } 2323 EXPORT_SYMBOL(generic_file_direct_write); 2324 2325 /* 2326 * Find or create a page at the given pagecache position. Return the locked 2327 * page. This function is specifically for buffered writes. 2328 */ 2329 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2330 pgoff_t index, unsigned flags) 2331 { 2332 int status; 2333 struct page *page; 2334 gfp_t gfp_notmask = 0; 2335 if (flags & AOP_FLAG_NOFS) 2336 gfp_notmask = __GFP_FS; 2337 repeat: 2338 page = find_lock_page(mapping, index); 2339 if (page) 2340 goto found; 2341 2342 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2343 if (!page) 2344 return NULL; 2345 status = add_to_page_cache_lru(page, mapping, index, 2346 GFP_KERNEL & ~gfp_notmask); 2347 if (unlikely(status)) { 2348 page_cache_release(page); 2349 if (status == -EEXIST) 2350 goto repeat; 2351 return NULL; 2352 } 2353 found: 2354 wait_on_page_writeback(page); 2355 return page; 2356 } 2357 EXPORT_SYMBOL(grab_cache_page_write_begin); 2358 2359 static ssize_t generic_perform_write(struct file *file, 2360 struct iov_iter *i, loff_t pos) 2361 { 2362 struct address_space *mapping = file->f_mapping; 2363 const struct address_space_operations *a_ops = mapping->a_ops; 2364 long status = 0; 2365 ssize_t written = 0; 2366 unsigned int flags = 0; 2367 2368 /* 2369 * Copies from kernel address space cannot fail (NFSD is a big user). 2370 */ 2371 if (segment_eq(get_fs(), KERNEL_DS)) 2372 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2373 2374 do { 2375 struct page *page; 2376 unsigned long offset; /* Offset into pagecache page */ 2377 unsigned long bytes; /* Bytes to write to page */ 2378 size_t copied; /* Bytes copied from user */ 2379 void *fsdata; 2380 2381 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2382 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2383 iov_iter_count(i)); 2384 2385 again: 2386 2387 /* 2388 * Bring in the user page that we will copy from _first_. 2389 * Otherwise there's a nasty deadlock on copying from the 2390 * same page as we're writing to, without it being marked 2391 * up-to-date. 2392 * 2393 * Not only is this an optimisation, but it is also required 2394 * to check that the address is actually valid, when atomic 2395 * usercopies are used, below. 2396 */ 2397 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2398 status = -EFAULT; 2399 break; 2400 } 2401 2402 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2403 &page, &fsdata); 2404 if (unlikely(status)) 2405 break; 2406 2407 if (mapping_writably_mapped(mapping)) 2408 flush_dcache_page(page); 2409 2410 pagefault_disable(); 2411 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2412 pagefault_enable(); 2413 flush_dcache_page(page); 2414 2415 mark_page_accessed(page); 2416 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2417 page, fsdata); 2418 if (unlikely(status < 0)) 2419 break; 2420 copied = status; 2421 2422 cond_resched(); 2423 2424 iov_iter_advance(i, copied); 2425 if (unlikely(copied == 0)) { 2426 /* 2427 * If we were unable to copy any data at all, we must 2428 * fall back to a single segment length write. 2429 * 2430 * If we didn't fallback here, we could livelock 2431 * because not all segments in the iov can be copied at 2432 * once without a pagefault. 2433 */ 2434 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2435 iov_iter_single_seg_count(i)); 2436 goto again; 2437 } 2438 pos += copied; 2439 written += copied; 2440 2441 balance_dirty_pages_ratelimited(mapping); 2442 2443 } while (iov_iter_count(i)); 2444 2445 return written ? written : status; 2446 } 2447 2448 ssize_t 2449 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2450 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2451 size_t count, ssize_t written) 2452 { 2453 struct file *file = iocb->ki_filp; 2454 ssize_t status; 2455 struct iov_iter i; 2456 2457 iov_iter_init(&i, iov, nr_segs, count, written); 2458 status = generic_perform_write(file, &i, pos); 2459 2460 if (likely(status >= 0)) { 2461 written += status; 2462 *ppos = pos + status; 2463 } 2464 2465 return written ? written : status; 2466 } 2467 EXPORT_SYMBOL(generic_file_buffered_write); 2468 2469 /** 2470 * __generic_file_aio_write - write data to a file 2471 * @iocb: IO state structure (file, offset, etc.) 2472 * @iov: vector with data to write 2473 * @nr_segs: number of segments in the vector 2474 * @ppos: position where to write 2475 * 2476 * This function does all the work needed for actually writing data to a 2477 * file. It does all basic checks, removes SUID from the file, updates 2478 * modification times and calls proper subroutines depending on whether we 2479 * do direct IO or a standard buffered write. 2480 * 2481 * It expects i_mutex to be grabbed unless we work on a block device or similar 2482 * object which does not need locking at all. 2483 * 2484 * This function does *not* take care of syncing data in case of O_SYNC write. 2485 * A caller has to handle it. This is mainly due to the fact that we want to 2486 * avoid syncing under i_mutex. 2487 */ 2488 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2489 unsigned long nr_segs, loff_t *ppos) 2490 { 2491 struct file *file = iocb->ki_filp; 2492 struct address_space * mapping = file->f_mapping; 2493 size_t ocount; /* original count */ 2494 size_t count; /* after file limit checks */ 2495 struct inode *inode = mapping->host; 2496 loff_t pos; 2497 ssize_t written; 2498 ssize_t err; 2499 2500 ocount = 0; 2501 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2502 if (err) 2503 return err; 2504 2505 count = ocount; 2506 pos = *ppos; 2507 2508 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2509 2510 /* We can write back this queue in page reclaim */ 2511 current->backing_dev_info = mapping->backing_dev_info; 2512 written = 0; 2513 2514 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2515 if (err) 2516 goto out; 2517 2518 if (count == 0) 2519 goto out; 2520 2521 err = file_remove_suid(file); 2522 if (err) 2523 goto out; 2524 2525 file_update_time(file); 2526 2527 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2528 if (unlikely(file->f_flags & O_DIRECT)) { 2529 loff_t endbyte; 2530 ssize_t written_buffered; 2531 2532 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2533 ppos, count, ocount); 2534 if (written < 0 || written == count) 2535 goto out; 2536 /* 2537 * direct-io write to a hole: fall through to buffered I/O 2538 * for completing the rest of the request. 2539 */ 2540 pos += written; 2541 count -= written; 2542 written_buffered = generic_file_buffered_write(iocb, iov, 2543 nr_segs, pos, ppos, count, 2544 written); 2545 /* 2546 * If generic_file_buffered_write() retuned a synchronous error 2547 * then we want to return the number of bytes which were 2548 * direct-written, or the error code if that was zero. Note 2549 * that this differs from normal direct-io semantics, which 2550 * will return -EFOO even if some bytes were written. 2551 */ 2552 if (written_buffered < 0) { 2553 err = written_buffered; 2554 goto out; 2555 } 2556 2557 /* 2558 * We need to ensure that the page cache pages are written to 2559 * disk and invalidated to preserve the expected O_DIRECT 2560 * semantics. 2561 */ 2562 endbyte = pos + written_buffered - written - 1; 2563 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2564 if (err == 0) { 2565 written = written_buffered; 2566 invalidate_mapping_pages(mapping, 2567 pos >> PAGE_CACHE_SHIFT, 2568 endbyte >> PAGE_CACHE_SHIFT); 2569 } else { 2570 /* 2571 * We don't know how much we wrote, so just return 2572 * the number of bytes which were direct-written 2573 */ 2574 } 2575 } else { 2576 written = generic_file_buffered_write(iocb, iov, nr_segs, 2577 pos, ppos, count, written); 2578 } 2579 out: 2580 current->backing_dev_info = NULL; 2581 return written ? written : err; 2582 } 2583 EXPORT_SYMBOL(__generic_file_aio_write); 2584 2585 /** 2586 * generic_file_aio_write - write data to a file 2587 * @iocb: IO state structure 2588 * @iov: vector with data to write 2589 * @nr_segs: number of segments in the vector 2590 * @pos: position in file where to write 2591 * 2592 * This is a wrapper around __generic_file_aio_write() to be used by most 2593 * filesystems. It takes care of syncing the file in case of O_SYNC file 2594 * and acquires i_mutex as needed. 2595 */ 2596 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2597 unsigned long nr_segs, loff_t pos) 2598 { 2599 struct file *file = iocb->ki_filp; 2600 struct inode *inode = file->f_mapping->host; 2601 struct blk_plug plug; 2602 ssize_t ret; 2603 2604 BUG_ON(iocb->ki_pos != pos); 2605 2606 mutex_lock(&inode->i_mutex); 2607 blk_start_plug(&plug); 2608 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2609 mutex_unlock(&inode->i_mutex); 2610 2611 if (ret > 0 || ret == -EIOCBQUEUED) { 2612 ssize_t err; 2613 2614 err = generic_write_sync(file, pos, ret); 2615 if (err < 0 && ret > 0) 2616 ret = err; 2617 } 2618 blk_finish_plug(&plug); 2619 return ret; 2620 } 2621 EXPORT_SYMBOL(generic_file_aio_write); 2622 2623 /** 2624 * try_to_release_page() - release old fs-specific metadata on a page 2625 * 2626 * @page: the page which the kernel is trying to free 2627 * @gfp_mask: memory allocation flags (and I/O mode) 2628 * 2629 * The address_space is to try to release any data against the page 2630 * (presumably at page->private). If the release was successful, return `1'. 2631 * Otherwise return zero. 2632 * 2633 * This may also be called if PG_fscache is set on a page, indicating that the 2634 * page is known to the local caching routines. 2635 * 2636 * The @gfp_mask argument specifies whether I/O may be performed to release 2637 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2638 * 2639 */ 2640 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2641 { 2642 struct address_space * const mapping = page->mapping; 2643 2644 BUG_ON(!PageLocked(page)); 2645 if (PageWriteback(page)) 2646 return 0; 2647 2648 if (mapping && mapping->a_ops->releasepage) 2649 return mapping->a_ops->releasepage(page, gfp_mask); 2650 return try_to_free_buffers(page); 2651 } 2652 2653 EXPORT_SYMBOL(try_to_release_page); 2654