1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include "internal.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/filemap.h> 49 50 /* 51 * FIXME: remove all knowledge of the buffer layer from the core VM 52 */ 53 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 54 55 #include <asm/mman.h> 56 57 /* 58 * Shared mappings implemented 30.11.1994. It's not fully working yet, 59 * though. 60 * 61 * Shared mappings now work. 15.8.1995 Bruno. 62 * 63 * finished 'unifying' the page and buffer cache and SMP-threaded the 64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 65 * 66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 67 */ 68 69 /* 70 * Lock ordering: 71 * 72 * ->i_mmap_rwsem (truncate_pagecache) 73 * ->private_lock (__free_pte->__set_page_dirty_buffers) 74 * ->swap_lock (exclusive_swap_page, others) 75 * ->i_pages lock 76 * 77 * ->i_mutex 78 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 79 * 80 * ->mmap_lock 81 * ->i_mmap_rwsem 82 * ->page_table_lock or pte_lock (various, mainly in memory.c) 83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 84 * 85 * ->mmap_lock 86 * ->lock_page (access_process_vm) 87 * 88 * ->i_mutex (generic_perform_write) 89 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 90 * 91 * bdi->wb.list_lock 92 * sb_lock (fs/fs-writeback.c) 93 * ->i_pages lock (__sync_single_inode) 94 * 95 * ->i_mmap_rwsem 96 * ->anon_vma.lock (vma_adjust) 97 * 98 * ->anon_vma.lock 99 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 100 * 101 * ->page_table_lock or pte_lock 102 * ->swap_lock (try_to_unmap_one) 103 * ->private_lock (try_to_unmap_one) 104 * ->i_pages lock (try_to_unmap_one) 105 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 106 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 107 * ->private_lock (page_remove_rmap->set_page_dirty) 108 * ->i_pages lock (page_remove_rmap->set_page_dirty) 109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 110 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 113 * ->inode->i_lock (zap_pte_range->set_page_dirty) 114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 115 * 116 * ->i_mmap_rwsem 117 * ->tasklist_lock (memory_failure, collect_procs_ao) 118 */ 119 120 static void page_cache_delete(struct address_space *mapping, 121 struct page *page, void *shadow) 122 { 123 XA_STATE(xas, &mapping->i_pages, page->index); 124 unsigned int nr = 1; 125 126 mapping_set_update(&xas, mapping); 127 128 /* hugetlb pages are represented by a single entry in the xarray */ 129 if (!PageHuge(page)) { 130 xas_set_order(&xas, page->index, compound_order(page)); 131 nr = compound_nr(page); 132 } 133 134 VM_BUG_ON_PAGE(!PageLocked(page), page); 135 VM_BUG_ON_PAGE(PageTail(page), page); 136 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 137 138 xas_store(&xas, shadow); 139 xas_init_marks(&xas); 140 141 page->mapping = NULL; 142 /* Leave page->index set: truncation lookup relies upon it */ 143 144 if (shadow) { 145 mapping->nrexceptional += nr; 146 /* 147 * Make sure the nrexceptional update is committed before 148 * the nrpages update so that final truncate racing 149 * with reclaim does not see both counters 0 at the 150 * same time and miss a shadow entry. 151 */ 152 smp_wmb(); 153 } 154 mapping->nrpages -= nr; 155 } 156 157 static void unaccount_page_cache_page(struct address_space *mapping, 158 struct page *page) 159 { 160 int nr; 161 162 /* 163 * if we're uptodate, flush out into the cleancache, otherwise 164 * invalidate any existing cleancache entries. We can't leave 165 * stale data around in the cleancache once our page is gone 166 */ 167 if (PageUptodate(page) && PageMappedToDisk(page)) 168 cleancache_put_page(page); 169 else 170 cleancache_invalidate_page(mapping, page); 171 172 VM_BUG_ON_PAGE(PageTail(page), page); 173 VM_BUG_ON_PAGE(page_mapped(page), page); 174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 175 int mapcount; 176 177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 178 current->comm, page_to_pfn(page)); 179 dump_page(page, "still mapped when deleted"); 180 dump_stack(); 181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 182 183 mapcount = page_mapcount(page); 184 if (mapping_exiting(mapping) && 185 page_count(page) >= mapcount + 2) { 186 /* 187 * All vmas have already been torn down, so it's 188 * a good bet that actually the page is unmapped, 189 * and we'd prefer not to leak it: if we're wrong, 190 * some other bad page check should catch it later. 191 */ 192 page_mapcount_reset(page); 193 page_ref_sub(page, mapcount); 194 } 195 } 196 197 /* hugetlb pages do not participate in page cache accounting. */ 198 if (PageHuge(page)) 199 return; 200 201 nr = thp_nr_pages(page); 202 203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 204 if (PageSwapBacked(page)) { 205 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 206 if (PageTransHuge(page)) 207 __dec_node_page_state(page, NR_SHMEM_THPS); 208 } else if (PageTransHuge(page)) { 209 __dec_node_page_state(page, NR_FILE_THPS); 210 filemap_nr_thps_dec(mapping); 211 } 212 213 /* 214 * At this point page must be either written or cleaned by 215 * truncate. Dirty page here signals a bug and loss of 216 * unwritten data. 217 * 218 * This fixes dirty accounting after removing the page entirely 219 * but leaves PageDirty set: it has no effect for truncated 220 * page and anyway will be cleared before returning page into 221 * buddy allocator. 222 */ 223 if (WARN_ON_ONCE(PageDirty(page))) 224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 225 } 226 227 /* 228 * Delete a page from the page cache and free it. Caller has to make 229 * sure the page is locked and that nobody else uses it - or that usage 230 * is safe. The caller must hold the i_pages lock. 231 */ 232 void __delete_from_page_cache(struct page *page, void *shadow) 233 { 234 struct address_space *mapping = page->mapping; 235 236 trace_mm_filemap_delete_from_page_cache(page); 237 238 unaccount_page_cache_page(mapping, page); 239 page_cache_delete(mapping, page, shadow); 240 } 241 242 static void page_cache_free_page(struct address_space *mapping, 243 struct page *page) 244 { 245 void (*freepage)(struct page *); 246 247 freepage = mapping->a_ops->freepage; 248 if (freepage) 249 freepage(page); 250 251 if (PageTransHuge(page) && !PageHuge(page)) { 252 page_ref_sub(page, HPAGE_PMD_NR); 253 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 254 } else { 255 put_page(page); 256 } 257 } 258 259 /** 260 * delete_from_page_cache - delete page from page cache 261 * @page: the page which the kernel is trying to remove from page cache 262 * 263 * This must be called only on pages that have been verified to be in the page 264 * cache and locked. It will never put the page into the free list, the caller 265 * has a reference on the page. 266 */ 267 void delete_from_page_cache(struct page *page) 268 { 269 struct address_space *mapping = page_mapping(page); 270 unsigned long flags; 271 272 BUG_ON(!PageLocked(page)); 273 xa_lock_irqsave(&mapping->i_pages, flags); 274 __delete_from_page_cache(page, NULL); 275 xa_unlock_irqrestore(&mapping->i_pages, flags); 276 277 page_cache_free_page(mapping, page); 278 } 279 EXPORT_SYMBOL(delete_from_page_cache); 280 281 /* 282 * page_cache_delete_batch - delete several pages from page cache 283 * @mapping: the mapping to which pages belong 284 * @pvec: pagevec with pages to delete 285 * 286 * The function walks over mapping->i_pages and removes pages passed in @pvec 287 * from the mapping. The function expects @pvec to be sorted by page index 288 * and is optimised for it to be dense. 289 * It tolerates holes in @pvec (mapping entries at those indices are not 290 * modified). The function expects only THP head pages to be present in the 291 * @pvec. 292 * 293 * The function expects the i_pages lock to be held. 294 */ 295 static void page_cache_delete_batch(struct address_space *mapping, 296 struct pagevec *pvec) 297 { 298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 299 int total_pages = 0; 300 int i = 0; 301 struct page *page; 302 303 mapping_set_update(&xas, mapping); 304 xas_for_each(&xas, page, ULONG_MAX) { 305 if (i >= pagevec_count(pvec)) 306 break; 307 308 /* A swap/dax/shadow entry got inserted? Skip it. */ 309 if (xa_is_value(page)) 310 continue; 311 /* 312 * A page got inserted in our range? Skip it. We have our 313 * pages locked so they are protected from being removed. 314 * If we see a page whose index is higher than ours, it 315 * means our page has been removed, which shouldn't be 316 * possible because we're holding the PageLock. 317 */ 318 if (page != pvec->pages[i]) { 319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 320 page); 321 continue; 322 } 323 324 WARN_ON_ONCE(!PageLocked(page)); 325 326 if (page->index == xas.xa_index) 327 page->mapping = NULL; 328 /* Leave page->index set: truncation lookup relies on it */ 329 330 /* 331 * Move to the next page in the vector if this is a regular 332 * page or the index is of the last sub-page of this compound 333 * page. 334 */ 335 if (page->index + compound_nr(page) - 1 == xas.xa_index) 336 i++; 337 xas_store(&xas, NULL); 338 total_pages++; 339 } 340 mapping->nrpages -= total_pages; 341 } 342 343 void delete_from_page_cache_batch(struct address_space *mapping, 344 struct pagevec *pvec) 345 { 346 int i; 347 unsigned long flags; 348 349 if (!pagevec_count(pvec)) 350 return; 351 352 xa_lock_irqsave(&mapping->i_pages, flags); 353 for (i = 0; i < pagevec_count(pvec); i++) { 354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 355 356 unaccount_page_cache_page(mapping, pvec->pages[i]); 357 } 358 page_cache_delete_batch(mapping, pvec); 359 xa_unlock_irqrestore(&mapping->i_pages, flags); 360 361 for (i = 0; i < pagevec_count(pvec); i++) 362 page_cache_free_page(mapping, pvec->pages[i]); 363 } 364 365 int filemap_check_errors(struct address_space *mapping) 366 { 367 int ret = 0; 368 /* Check for outstanding write errors */ 369 if (test_bit(AS_ENOSPC, &mapping->flags) && 370 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 371 ret = -ENOSPC; 372 if (test_bit(AS_EIO, &mapping->flags) && 373 test_and_clear_bit(AS_EIO, &mapping->flags)) 374 ret = -EIO; 375 return ret; 376 } 377 EXPORT_SYMBOL(filemap_check_errors); 378 379 static int filemap_check_and_keep_errors(struct address_space *mapping) 380 { 381 /* Check for outstanding write errors */ 382 if (test_bit(AS_EIO, &mapping->flags)) 383 return -EIO; 384 if (test_bit(AS_ENOSPC, &mapping->flags)) 385 return -ENOSPC; 386 return 0; 387 } 388 389 /** 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 391 * @mapping: address space structure to write 392 * @start: offset in bytes where the range starts 393 * @end: offset in bytes where the range ends (inclusive) 394 * @sync_mode: enable synchronous operation 395 * 396 * Start writeback against all of a mapping's dirty pages that lie 397 * within the byte offsets <start, end> inclusive. 398 * 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 400 * opposed to a regular memory cleansing writeback. The difference between 401 * these two operations is that if a dirty page/buffer is encountered, it must 402 * be waited upon, and not just skipped over. 403 * 404 * Return: %0 on success, negative error code otherwise. 405 */ 406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 407 loff_t end, int sync_mode) 408 { 409 int ret; 410 struct writeback_control wbc = { 411 .sync_mode = sync_mode, 412 .nr_to_write = LONG_MAX, 413 .range_start = start, 414 .range_end = end, 415 }; 416 417 if (!mapping_cap_writeback_dirty(mapping) || 418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 419 return 0; 420 421 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 422 ret = do_writepages(mapping, &wbc); 423 wbc_detach_inode(&wbc); 424 return ret; 425 } 426 427 static inline int __filemap_fdatawrite(struct address_space *mapping, 428 int sync_mode) 429 { 430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 431 } 432 433 int filemap_fdatawrite(struct address_space *mapping) 434 { 435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite); 438 439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 440 loff_t end) 441 { 442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 443 } 444 EXPORT_SYMBOL(filemap_fdatawrite_range); 445 446 /** 447 * filemap_flush - mostly a non-blocking flush 448 * @mapping: target address_space 449 * 450 * This is a mostly non-blocking flush. Not suitable for data-integrity 451 * purposes - I/O may not be started against all dirty pages. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_flush(struct address_space *mapping) 456 { 457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 458 } 459 EXPORT_SYMBOL(filemap_flush); 460 461 /** 462 * filemap_range_has_page - check if a page exists in range. 463 * @mapping: address space within which to check 464 * @start_byte: offset in bytes where the range starts 465 * @end_byte: offset in bytes where the range ends (inclusive) 466 * 467 * Find at least one page in the range supplied, usually used to check if 468 * direct writing in this range will trigger a writeback. 469 * 470 * Return: %true if at least one page exists in the specified range, 471 * %false otherwise. 472 */ 473 bool filemap_range_has_page(struct address_space *mapping, 474 loff_t start_byte, loff_t end_byte) 475 { 476 struct page *page; 477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 478 pgoff_t max = end_byte >> PAGE_SHIFT; 479 480 if (end_byte < start_byte) 481 return false; 482 483 rcu_read_lock(); 484 for (;;) { 485 page = xas_find(&xas, max); 486 if (xas_retry(&xas, page)) 487 continue; 488 /* Shadow entries don't count */ 489 if (xa_is_value(page)) 490 continue; 491 /* 492 * We don't need to try to pin this page; we're about to 493 * release the RCU lock anyway. It is enough to know that 494 * there was a page here recently. 495 */ 496 break; 497 } 498 rcu_read_unlock(); 499 500 return page != NULL; 501 } 502 EXPORT_SYMBOL(filemap_range_has_page); 503 504 static void __filemap_fdatawait_range(struct address_space *mapping, 505 loff_t start_byte, loff_t end_byte) 506 { 507 pgoff_t index = start_byte >> PAGE_SHIFT; 508 pgoff_t end = end_byte >> PAGE_SHIFT; 509 struct pagevec pvec; 510 int nr_pages; 511 512 if (end_byte < start_byte) 513 return; 514 515 pagevec_init(&pvec); 516 while (index <= end) { 517 unsigned i; 518 519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 520 end, PAGECACHE_TAG_WRITEBACK); 521 if (!nr_pages) 522 break; 523 524 for (i = 0; i < nr_pages; i++) { 525 struct page *page = pvec.pages[i]; 526 527 wait_on_page_writeback(page); 528 ClearPageError(page); 529 } 530 pagevec_release(&pvec); 531 cond_resched(); 532 } 533 } 534 535 /** 536 * filemap_fdatawait_range - wait for writeback to complete 537 * @mapping: address space structure to wait for 538 * @start_byte: offset in bytes where the range starts 539 * @end_byte: offset in bytes where the range ends (inclusive) 540 * 541 * Walk the list of under-writeback pages of the given address space 542 * in the given range and wait for all of them. Check error status of 543 * the address space and return it. 544 * 545 * Since the error status of the address space is cleared by this function, 546 * callers are responsible for checking the return value and handling and/or 547 * reporting the error. 548 * 549 * Return: error status of the address space. 550 */ 551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 552 loff_t end_byte) 553 { 554 __filemap_fdatawait_range(mapping, start_byte, end_byte); 555 return filemap_check_errors(mapping); 556 } 557 EXPORT_SYMBOL(filemap_fdatawait_range); 558 559 /** 560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 561 * @mapping: address space structure to wait for 562 * @start_byte: offset in bytes where the range starts 563 * @end_byte: offset in bytes where the range ends (inclusive) 564 * 565 * Walk the list of under-writeback pages of the given address space in the 566 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 567 * this function does not clear error status of the address space. 568 * 569 * Use this function if callers don't handle errors themselves. Expected 570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 571 * fsfreeze(8) 572 */ 573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 574 loff_t start_byte, loff_t end_byte) 575 { 576 __filemap_fdatawait_range(mapping, start_byte, end_byte); 577 return filemap_check_and_keep_errors(mapping); 578 } 579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 580 581 /** 582 * file_fdatawait_range - wait for writeback to complete 583 * @file: file pointing to address space structure to wait for 584 * @start_byte: offset in bytes where the range starts 585 * @end_byte: offset in bytes where the range ends (inclusive) 586 * 587 * Walk the list of under-writeback pages of the address space that file 588 * refers to, in the given range and wait for all of them. Check error 589 * status of the address space vs. the file->f_wb_err cursor and return it. 590 * 591 * Since the error status of the file is advanced by this function, 592 * callers are responsible for checking the return value and handling and/or 593 * reporting the error. 594 * 595 * Return: error status of the address space vs. the file->f_wb_err cursor. 596 */ 597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 598 { 599 struct address_space *mapping = file->f_mapping; 600 601 __filemap_fdatawait_range(mapping, start_byte, end_byte); 602 return file_check_and_advance_wb_err(file); 603 } 604 EXPORT_SYMBOL(file_fdatawait_range); 605 606 /** 607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 608 * @mapping: address space structure to wait for 609 * 610 * Walk the list of under-writeback pages of the given address space 611 * and wait for all of them. Unlike filemap_fdatawait(), this function 612 * does not clear error status of the address space. 613 * 614 * Use this function if callers don't handle errors themselves. Expected 615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 616 * fsfreeze(8) 617 * 618 * Return: error status of the address space. 619 */ 620 int filemap_fdatawait_keep_errors(struct address_space *mapping) 621 { 622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 623 return filemap_check_and_keep_errors(mapping); 624 } 625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 626 627 /* Returns true if writeback might be needed or already in progress. */ 628 static bool mapping_needs_writeback(struct address_space *mapping) 629 { 630 if (dax_mapping(mapping)) 631 return mapping->nrexceptional; 632 633 return mapping->nrpages; 634 } 635 636 /** 637 * filemap_write_and_wait_range - write out & wait on a file range 638 * @mapping: the address_space for the pages 639 * @lstart: offset in bytes where the range starts 640 * @lend: offset in bytes where the range ends (inclusive) 641 * 642 * Write out and wait upon file offsets lstart->lend, inclusive. 643 * 644 * Note that @lend is inclusive (describes the last byte to be written) so 645 * that this function can be used to write to the very end-of-file (end = -1). 646 * 647 * Return: error status of the address space. 648 */ 649 int filemap_write_and_wait_range(struct address_space *mapping, 650 loff_t lstart, loff_t lend) 651 { 652 int err = 0; 653 654 if (mapping_needs_writeback(mapping)) { 655 err = __filemap_fdatawrite_range(mapping, lstart, lend, 656 WB_SYNC_ALL); 657 /* 658 * Even if the above returned error, the pages may be 659 * written partially (e.g. -ENOSPC), so we wait for it. 660 * But the -EIO is special case, it may indicate the worst 661 * thing (e.g. bug) happened, so we avoid waiting for it. 662 */ 663 if (err != -EIO) { 664 int err2 = filemap_fdatawait_range(mapping, 665 lstart, lend); 666 if (!err) 667 err = err2; 668 } else { 669 /* Clear any previously stored errors */ 670 filemap_check_errors(mapping); 671 } 672 } else { 673 err = filemap_check_errors(mapping); 674 } 675 return err; 676 } 677 EXPORT_SYMBOL(filemap_write_and_wait_range); 678 679 void __filemap_set_wb_err(struct address_space *mapping, int err) 680 { 681 errseq_t eseq = errseq_set(&mapping->wb_err, err); 682 683 trace_filemap_set_wb_err(mapping, eseq); 684 } 685 EXPORT_SYMBOL(__filemap_set_wb_err); 686 687 /** 688 * file_check_and_advance_wb_err - report wb error (if any) that was previously 689 * and advance wb_err to current one 690 * @file: struct file on which the error is being reported 691 * 692 * When userland calls fsync (or something like nfsd does the equivalent), we 693 * want to report any writeback errors that occurred since the last fsync (or 694 * since the file was opened if there haven't been any). 695 * 696 * Grab the wb_err from the mapping. If it matches what we have in the file, 697 * then just quickly return 0. The file is all caught up. 698 * 699 * If it doesn't match, then take the mapping value, set the "seen" flag in 700 * it and try to swap it into place. If it works, or another task beat us 701 * to it with the new value, then update the f_wb_err and return the error 702 * portion. The error at this point must be reported via proper channels 703 * (a'la fsync, or NFS COMMIT operation, etc.). 704 * 705 * While we handle mapping->wb_err with atomic operations, the f_wb_err 706 * value is protected by the f_lock since we must ensure that it reflects 707 * the latest value swapped in for this file descriptor. 708 * 709 * Return: %0 on success, negative error code otherwise. 710 */ 711 int file_check_and_advance_wb_err(struct file *file) 712 { 713 int err = 0; 714 errseq_t old = READ_ONCE(file->f_wb_err); 715 struct address_space *mapping = file->f_mapping; 716 717 /* Locklessly handle the common case where nothing has changed */ 718 if (errseq_check(&mapping->wb_err, old)) { 719 /* Something changed, must use slow path */ 720 spin_lock(&file->f_lock); 721 old = file->f_wb_err; 722 err = errseq_check_and_advance(&mapping->wb_err, 723 &file->f_wb_err); 724 trace_file_check_and_advance_wb_err(file, old); 725 spin_unlock(&file->f_lock); 726 } 727 728 /* 729 * We're mostly using this function as a drop in replacement for 730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 731 * that the legacy code would have had on these flags. 732 */ 733 clear_bit(AS_EIO, &mapping->flags); 734 clear_bit(AS_ENOSPC, &mapping->flags); 735 return err; 736 } 737 EXPORT_SYMBOL(file_check_and_advance_wb_err); 738 739 /** 740 * file_write_and_wait_range - write out & wait on a file range 741 * @file: file pointing to address_space with pages 742 * @lstart: offset in bytes where the range starts 743 * @lend: offset in bytes where the range ends (inclusive) 744 * 745 * Write out and wait upon file offsets lstart->lend, inclusive. 746 * 747 * Note that @lend is inclusive (describes the last byte to be written) so 748 * that this function can be used to write to the very end-of-file (end = -1). 749 * 750 * After writing out and waiting on the data, we check and advance the 751 * f_wb_err cursor to the latest value, and return any errors detected there. 752 * 753 * Return: %0 on success, negative error code otherwise. 754 */ 755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 756 { 757 int err = 0, err2; 758 struct address_space *mapping = file->f_mapping; 759 760 if (mapping_needs_writeback(mapping)) { 761 err = __filemap_fdatawrite_range(mapping, lstart, lend, 762 WB_SYNC_ALL); 763 /* See comment of filemap_write_and_wait() */ 764 if (err != -EIO) 765 __filemap_fdatawait_range(mapping, lstart, lend); 766 } 767 err2 = file_check_and_advance_wb_err(file); 768 if (!err) 769 err = err2; 770 return err; 771 } 772 EXPORT_SYMBOL(file_write_and_wait_range); 773 774 /** 775 * replace_page_cache_page - replace a pagecache page with a new one 776 * @old: page to be replaced 777 * @new: page to replace with 778 * @gfp_mask: allocation mode 779 * 780 * This function replaces a page in the pagecache with a new one. On 781 * success it acquires the pagecache reference for the new page and 782 * drops it for the old page. Both the old and new pages must be 783 * locked. This function does not add the new page to the LRU, the 784 * caller must do that. 785 * 786 * The remove + add is atomic. This function cannot fail. 787 * 788 * Return: %0 789 */ 790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 791 { 792 struct address_space *mapping = old->mapping; 793 void (*freepage)(struct page *) = mapping->a_ops->freepage; 794 pgoff_t offset = old->index; 795 XA_STATE(xas, &mapping->i_pages, offset); 796 unsigned long flags; 797 798 VM_BUG_ON_PAGE(!PageLocked(old), old); 799 VM_BUG_ON_PAGE(!PageLocked(new), new); 800 VM_BUG_ON_PAGE(new->mapping, new); 801 802 get_page(new); 803 new->mapping = mapping; 804 new->index = offset; 805 806 mem_cgroup_migrate(old, new); 807 808 xas_lock_irqsave(&xas, flags); 809 xas_store(&xas, new); 810 811 old->mapping = NULL; 812 /* hugetlb pages do not participate in page cache accounting. */ 813 if (!PageHuge(old)) 814 __dec_lruvec_page_state(old, NR_FILE_PAGES); 815 if (!PageHuge(new)) 816 __inc_lruvec_page_state(new, NR_FILE_PAGES); 817 if (PageSwapBacked(old)) 818 __dec_lruvec_page_state(old, NR_SHMEM); 819 if (PageSwapBacked(new)) 820 __inc_lruvec_page_state(new, NR_SHMEM); 821 xas_unlock_irqrestore(&xas, flags); 822 if (freepage) 823 freepage(old); 824 put_page(old); 825 826 return 0; 827 } 828 EXPORT_SYMBOL_GPL(replace_page_cache_page); 829 830 static int __add_to_page_cache_locked(struct page *page, 831 struct address_space *mapping, 832 pgoff_t offset, gfp_t gfp_mask, 833 void **shadowp) 834 { 835 XA_STATE(xas, &mapping->i_pages, offset); 836 int huge = PageHuge(page); 837 int error; 838 void *old; 839 840 VM_BUG_ON_PAGE(!PageLocked(page), page); 841 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 842 mapping_set_update(&xas, mapping); 843 844 get_page(page); 845 page->mapping = mapping; 846 page->index = offset; 847 848 if (!huge) { 849 error = mem_cgroup_charge(page, current->mm, gfp_mask); 850 if (error) 851 goto error; 852 } 853 854 do { 855 xas_lock_irq(&xas); 856 old = xas_load(&xas); 857 if (old && !xa_is_value(old)) 858 xas_set_err(&xas, -EEXIST); 859 xas_store(&xas, page); 860 if (xas_error(&xas)) 861 goto unlock; 862 863 if (xa_is_value(old)) { 864 mapping->nrexceptional--; 865 if (shadowp) 866 *shadowp = old; 867 } 868 mapping->nrpages++; 869 870 /* hugetlb pages do not participate in page cache accounting */ 871 if (!huge) 872 __inc_lruvec_page_state(page, NR_FILE_PAGES); 873 unlock: 874 xas_unlock_irq(&xas); 875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 876 877 if (xas_error(&xas)) { 878 error = xas_error(&xas); 879 goto error; 880 } 881 882 trace_mm_filemap_add_to_page_cache(page); 883 return 0; 884 error: 885 page->mapping = NULL; 886 /* Leave page->index set: truncation relies upon it */ 887 put_page(page); 888 return error; 889 } 890 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 891 892 /** 893 * add_to_page_cache_locked - add a locked page to the pagecache 894 * @page: page to add 895 * @mapping: the page's address_space 896 * @offset: page index 897 * @gfp_mask: page allocation mode 898 * 899 * This function is used to add a page to the pagecache. It must be locked. 900 * This function does not add the page to the LRU. The caller must do that. 901 * 902 * Return: %0 on success, negative error code otherwise. 903 */ 904 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 905 pgoff_t offset, gfp_t gfp_mask) 906 { 907 return __add_to_page_cache_locked(page, mapping, offset, 908 gfp_mask, NULL); 909 } 910 EXPORT_SYMBOL(add_to_page_cache_locked); 911 912 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 913 pgoff_t offset, gfp_t gfp_mask) 914 { 915 void *shadow = NULL; 916 int ret; 917 918 __SetPageLocked(page); 919 ret = __add_to_page_cache_locked(page, mapping, offset, 920 gfp_mask, &shadow); 921 if (unlikely(ret)) 922 __ClearPageLocked(page); 923 else { 924 /* 925 * The page might have been evicted from cache only 926 * recently, in which case it should be activated like 927 * any other repeatedly accessed page. 928 * The exception is pages getting rewritten; evicting other 929 * data from the working set, only to cache data that will 930 * get overwritten with something else, is a waste of memory. 931 */ 932 WARN_ON_ONCE(PageActive(page)); 933 if (!(gfp_mask & __GFP_WRITE) && shadow) 934 workingset_refault(page, shadow); 935 lru_cache_add(page); 936 } 937 return ret; 938 } 939 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 940 941 #ifdef CONFIG_NUMA 942 struct page *__page_cache_alloc(gfp_t gfp) 943 { 944 int n; 945 struct page *page; 946 947 if (cpuset_do_page_mem_spread()) { 948 unsigned int cpuset_mems_cookie; 949 do { 950 cpuset_mems_cookie = read_mems_allowed_begin(); 951 n = cpuset_mem_spread_node(); 952 page = __alloc_pages_node(n, gfp, 0); 953 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 954 955 return page; 956 } 957 return alloc_pages(gfp, 0); 958 } 959 EXPORT_SYMBOL(__page_cache_alloc); 960 #endif 961 962 /* 963 * In order to wait for pages to become available there must be 964 * waitqueues associated with pages. By using a hash table of 965 * waitqueues where the bucket discipline is to maintain all 966 * waiters on the same queue and wake all when any of the pages 967 * become available, and for the woken contexts to check to be 968 * sure the appropriate page became available, this saves space 969 * at a cost of "thundering herd" phenomena during rare hash 970 * collisions. 971 */ 972 #define PAGE_WAIT_TABLE_BITS 8 973 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 974 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 975 976 static wait_queue_head_t *page_waitqueue(struct page *page) 977 { 978 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 979 } 980 981 void __init pagecache_init(void) 982 { 983 int i; 984 985 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 986 init_waitqueue_head(&page_wait_table[i]); 987 988 page_writeback_init(); 989 } 990 991 /* 992 * The page wait code treats the "wait->flags" somewhat unusually, because 993 * we have multiple different kinds of waits, not just the usual "exclusive" 994 * one. 995 * 996 * We have: 997 * 998 * (a) no special bits set: 999 * 1000 * We're just waiting for the bit to be released, and when a waker 1001 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1002 * and remove it from the wait queue. 1003 * 1004 * Simple and straightforward. 1005 * 1006 * (b) WQ_FLAG_EXCLUSIVE: 1007 * 1008 * The waiter is waiting to get the lock, and only one waiter should 1009 * be woken up to avoid any thundering herd behavior. We'll set the 1010 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1011 * 1012 * This is the traditional exclusive wait. 1013 * 1014 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1015 * 1016 * The waiter is waiting to get the bit, and additionally wants the 1017 * lock to be transferred to it for fair lock behavior. If the lock 1018 * cannot be taken, we stop walking the wait queue without waking 1019 * the waiter. 1020 * 1021 * This is the "fair lock handoff" case, and in addition to setting 1022 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1023 * that it now has the lock. 1024 */ 1025 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1026 { 1027 unsigned int flags; 1028 struct wait_page_key *key = arg; 1029 struct wait_page_queue *wait_page 1030 = container_of(wait, struct wait_page_queue, wait); 1031 1032 if (!wake_page_match(wait_page, key)) 1033 return 0; 1034 1035 /* 1036 * If it's a lock handoff wait, we get the bit for it, and 1037 * stop walking (and do not wake it up) if we can't. 1038 */ 1039 flags = wait->flags; 1040 if (flags & WQ_FLAG_EXCLUSIVE) { 1041 if (test_bit(key->bit_nr, &key->page->flags)) 1042 return -1; 1043 if (flags & WQ_FLAG_CUSTOM) { 1044 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1045 return -1; 1046 flags |= WQ_FLAG_DONE; 1047 } 1048 } 1049 1050 /* 1051 * We are holding the wait-queue lock, but the waiter that 1052 * is waiting for this will be checking the flags without 1053 * any locking. 1054 * 1055 * So update the flags atomically, and wake up the waiter 1056 * afterwards to avoid any races. This store-release pairs 1057 * with the load-acquire in wait_on_page_bit_common(). 1058 */ 1059 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1060 wake_up_state(wait->private, mode); 1061 1062 /* 1063 * Ok, we have successfully done what we're waiting for, 1064 * and we can unconditionally remove the wait entry. 1065 * 1066 * Note that this pairs with the "finish_wait()" in the 1067 * waiter, and has to be the absolute last thing we do. 1068 * After this list_del_init(&wait->entry) the wait entry 1069 * might be de-allocated and the process might even have 1070 * exited. 1071 */ 1072 list_del_init_careful(&wait->entry); 1073 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1074 } 1075 1076 static void wake_up_page_bit(struct page *page, int bit_nr) 1077 { 1078 wait_queue_head_t *q = page_waitqueue(page); 1079 struct wait_page_key key; 1080 unsigned long flags; 1081 wait_queue_entry_t bookmark; 1082 1083 key.page = page; 1084 key.bit_nr = bit_nr; 1085 key.page_match = 0; 1086 1087 bookmark.flags = 0; 1088 bookmark.private = NULL; 1089 bookmark.func = NULL; 1090 INIT_LIST_HEAD(&bookmark.entry); 1091 1092 spin_lock_irqsave(&q->lock, flags); 1093 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1094 1095 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1096 /* 1097 * Take a breather from holding the lock, 1098 * allow pages that finish wake up asynchronously 1099 * to acquire the lock and remove themselves 1100 * from wait queue 1101 */ 1102 spin_unlock_irqrestore(&q->lock, flags); 1103 cpu_relax(); 1104 spin_lock_irqsave(&q->lock, flags); 1105 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1106 } 1107 1108 /* 1109 * It is possible for other pages to have collided on the waitqueue 1110 * hash, so in that case check for a page match. That prevents a long- 1111 * term waiter 1112 * 1113 * It is still possible to miss a case here, when we woke page waiters 1114 * and removed them from the waitqueue, but there are still other 1115 * page waiters. 1116 */ 1117 if (!waitqueue_active(q) || !key.page_match) { 1118 ClearPageWaiters(page); 1119 /* 1120 * It's possible to miss clearing Waiters here, when we woke 1121 * our page waiters, but the hashed waitqueue has waiters for 1122 * other pages on it. 1123 * 1124 * That's okay, it's a rare case. The next waker will clear it. 1125 */ 1126 } 1127 spin_unlock_irqrestore(&q->lock, flags); 1128 } 1129 1130 static void wake_up_page(struct page *page, int bit) 1131 { 1132 if (!PageWaiters(page)) 1133 return; 1134 wake_up_page_bit(page, bit); 1135 } 1136 1137 /* 1138 * A choice of three behaviors for wait_on_page_bit_common(): 1139 */ 1140 enum behavior { 1141 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1142 * __lock_page() waiting on then setting PG_locked. 1143 */ 1144 SHARED, /* Hold ref to page and check the bit when woken, like 1145 * wait_on_page_writeback() waiting on PG_writeback. 1146 */ 1147 DROP, /* Drop ref to page before wait, no check when woken, 1148 * like put_and_wait_on_page_locked() on PG_locked. 1149 */ 1150 }; 1151 1152 /* 1153 * Attempt to check (or get) the page bit, and mark us done 1154 * if successful. 1155 */ 1156 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1157 struct wait_queue_entry *wait) 1158 { 1159 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1160 if (test_and_set_bit(bit_nr, &page->flags)) 1161 return false; 1162 } else if (test_bit(bit_nr, &page->flags)) 1163 return false; 1164 1165 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1166 return true; 1167 } 1168 1169 /* How many times do we accept lock stealing from under a waiter? */ 1170 int sysctl_page_lock_unfairness = 5; 1171 1172 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1173 struct page *page, int bit_nr, int state, enum behavior behavior) 1174 { 1175 int unfairness = sysctl_page_lock_unfairness; 1176 struct wait_page_queue wait_page; 1177 wait_queue_entry_t *wait = &wait_page.wait; 1178 bool thrashing = false; 1179 bool delayacct = false; 1180 unsigned long pflags; 1181 1182 if (bit_nr == PG_locked && 1183 !PageUptodate(page) && PageWorkingset(page)) { 1184 if (!PageSwapBacked(page)) { 1185 delayacct_thrashing_start(); 1186 delayacct = true; 1187 } 1188 psi_memstall_enter(&pflags); 1189 thrashing = true; 1190 } 1191 1192 init_wait(wait); 1193 wait->func = wake_page_function; 1194 wait_page.page = page; 1195 wait_page.bit_nr = bit_nr; 1196 1197 repeat: 1198 wait->flags = 0; 1199 if (behavior == EXCLUSIVE) { 1200 wait->flags = WQ_FLAG_EXCLUSIVE; 1201 if (--unfairness < 0) 1202 wait->flags |= WQ_FLAG_CUSTOM; 1203 } 1204 1205 /* 1206 * Do one last check whether we can get the 1207 * page bit synchronously. 1208 * 1209 * Do the SetPageWaiters() marking before that 1210 * to let any waker we _just_ missed know they 1211 * need to wake us up (otherwise they'll never 1212 * even go to the slow case that looks at the 1213 * page queue), and add ourselves to the wait 1214 * queue if we need to sleep. 1215 * 1216 * This part needs to be done under the queue 1217 * lock to avoid races. 1218 */ 1219 spin_lock_irq(&q->lock); 1220 SetPageWaiters(page); 1221 if (!trylock_page_bit_common(page, bit_nr, wait)) 1222 __add_wait_queue_entry_tail(q, wait); 1223 spin_unlock_irq(&q->lock); 1224 1225 /* 1226 * From now on, all the logic will be based on 1227 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1228 * see whether the page bit testing has already 1229 * been done by the wake function. 1230 * 1231 * We can drop our reference to the page. 1232 */ 1233 if (behavior == DROP) 1234 put_page(page); 1235 1236 /* 1237 * Note that until the "finish_wait()", or until 1238 * we see the WQ_FLAG_WOKEN flag, we need to 1239 * be very careful with the 'wait->flags', because 1240 * we may race with a waker that sets them. 1241 */ 1242 for (;;) { 1243 unsigned int flags; 1244 1245 set_current_state(state); 1246 1247 /* Loop until we've been woken or interrupted */ 1248 flags = smp_load_acquire(&wait->flags); 1249 if (!(flags & WQ_FLAG_WOKEN)) { 1250 if (signal_pending_state(state, current)) 1251 break; 1252 1253 io_schedule(); 1254 continue; 1255 } 1256 1257 /* If we were non-exclusive, we're done */ 1258 if (behavior != EXCLUSIVE) 1259 break; 1260 1261 /* If the waker got the lock for us, we're done */ 1262 if (flags & WQ_FLAG_DONE) 1263 break; 1264 1265 /* 1266 * Otherwise, if we're getting the lock, we need to 1267 * try to get it ourselves. 1268 * 1269 * And if that fails, we'll have to retry this all. 1270 */ 1271 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1272 goto repeat; 1273 1274 wait->flags |= WQ_FLAG_DONE; 1275 break; 1276 } 1277 1278 /* 1279 * If a signal happened, this 'finish_wait()' may remove the last 1280 * waiter from the wait-queues, but the PageWaiters bit will remain 1281 * set. That's ok. The next wakeup will take care of it, and trying 1282 * to do it here would be difficult and prone to races. 1283 */ 1284 finish_wait(q, wait); 1285 1286 if (thrashing) { 1287 if (delayacct) 1288 delayacct_thrashing_end(); 1289 psi_memstall_leave(&pflags); 1290 } 1291 1292 /* 1293 * NOTE! The wait->flags weren't stable until we've done the 1294 * 'finish_wait()', and we could have exited the loop above due 1295 * to a signal, and had a wakeup event happen after the signal 1296 * test but before the 'finish_wait()'. 1297 * 1298 * So only after the finish_wait() can we reliably determine 1299 * if we got woken up or not, so we can now figure out the final 1300 * return value based on that state without races. 1301 * 1302 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1303 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1304 */ 1305 if (behavior == EXCLUSIVE) 1306 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1307 1308 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1309 } 1310 1311 void wait_on_page_bit(struct page *page, int bit_nr) 1312 { 1313 wait_queue_head_t *q = page_waitqueue(page); 1314 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1315 } 1316 EXPORT_SYMBOL(wait_on_page_bit); 1317 1318 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1319 { 1320 wait_queue_head_t *q = page_waitqueue(page); 1321 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1322 } 1323 EXPORT_SYMBOL(wait_on_page_bit_killable); 1324 1325 static int __wait_on_page_locked_async(struct page *page, 1326 struct wait_page_queue *wait, bool set) 1327 { 1328 struct wait_queue_head *q = page_waitqueue(page); 1329 int ret = 0; 1330 1331 wait->page = page; 1332 wait->bit_nr = PG_locked; 1333 1334 spin_lock_irq(&q->lock); 1335 __add_wait_queue_entry_tail(q, &wait->wait); 1336 SetPageWaiters(page); 1337 if (set) 1338 ret = !trylock_page(page); 1339 else 1340 ret = PageLocked(page); 1341 /* 1342 * If we were succesful now, we know we're still on the 1343 * waitqueue as we're still under the lock. This means it's 1344 * safe to remove and return success, we know the callback 1345 * isn't going to trigger. 1346 */ 1347 if (!ret) 1348 __remove_wait_queue(q, &wait->wait); 1349 else 1350 ret = -EIOCBQUEUED; 1351 spin_unlock_irq(&q->lock); 1352 return ret; 1353 } 1354 1355 static int wait_on_page_locked_async(struct page *page, 1356 struct wait_page_queue *wait) 1357 { 1358 if (!PageLocked(page)) 1359 return 0; 1360 return __wait_on_page_locked_async(compound_head(page), wait, false); 1361 } 1362 1363 /** 1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1365 * @page: The page to wait for. 1366 * 1367 * The caller should hold a reference on @page. They expect the page to 1368 * become unlocked relatively soon, but do not wish to hold up migration 1369 * (for example) by holding the reference while waiting for the page to 1370 * come unlocked. After this function returns, the caller should not 1371 * dereference @page. 1372 */ 1373 void put_and_wait_on_page_locked(struct page *page) 1374 { 1375 wait_queue_head_t *q; 1376 1377 page = compound_head(page); 1378 q = page_waitqueue(page); 1379 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1380 } 1381 1382 /** 1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1384 * @page: Page defining the wait queue of interest 1385 * @waiter: Waiter to add to the queue 1386 * 1387 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1388 */ 1389 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1390 { 1391 wait_queue_head_t *q = page_waitqueue(page); 1392 unsigned long flags; 1393 1394 spin_lock_irqsave(&q->lock, flags); 1395 __add_wait_queue_entry_tail(q, waiter); 1396 SetPageWaiters(page); 1397 spin_unlock_irqrestore(&q->lock, flags); 1398 } 1399 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1400 1401 #ifndef clear_bit_unlock_is_negative_byte 1402 1403 /* 1404 * PG_waiters is the high bit in the same byte as PG_lock. 1405 * 1406 * On x86 (and on many other architectures), we can clear PG_lock and 1407 * test the sign bit at the same time. But if the architecture does 1408 * not support that special operation, we just do this all by hand 1409 * instead. 1410 * 1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1412 * being cleared, but a memory barrier should be unnecessary since it is 1413 * in the same byte as PG_locked. 1414 */ 1415 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1416 { 1417 clear_bit_unlock(nr, mem); 1418 /* smp_mb__after_atomic(); */ 1419 return test_bit(PG_waiters, mem); 1420 } 1421 1422 #endif 1423 1424 /** 1425 * unlock_page - unlock a locked page 1426 * @page: the page 1427 * 1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1430 * mechanism between PageLocked pages and PageWriteback pages is shared. 1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1432 * 1433 * Note that this depends on PG_waiters being the sign bit in the byte 1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1435 * clear the PG_locked bit and test PG_waiters at the same time fairly 1436 * portably (architectures that do LL/SC can test any bit, while x86 can 1437 * test the sign bit). 1438 */ 1439 void unlock_page(struct page *page) 1440 { 1441 BUILD_BUG_ON(PG_waiters != 7); 1442 page = compound_head(page); 1443 VM_BUG_ON_PAGE(!PageLocked(page), page); 1444 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1445 wake_up_page_bit(page, PG_locked); 1446 } 1447 EXPORT_SYMBOL(unlock_page); 1448 1449 /** 1450 * end_page_writeback - end writeback against a page 1451 * @page: the page 1452 */ 1453 void end_page_writeback(struct page *page) 1454 { 1455 /* 1456 * TestClearPageReclaim could be used here but it is an atomic 1457 * operation and overkill in this particular case. Failing to 1458 * shuffle a page marked for immediate reclaim is too mild to 1459 * justify taking an atomic operation penalty at the end of 1460 * ever page writeback. 1461 */ 1462 if (PageReclaim(page)) { 1463 ClearPageReclaim(page); 1464 rotate_reclaimable_page(page); 1465 } 1466 1467 if (!test_clear_page_writeback(page)) 1468 BUG(); 1469 1470 smp_mb__after_atomic(); 1471 wake_up_page(page, PG_writeback); 1472 } 1473 EXPORT_SYMBOL(end_page_writeback); 1474 1475 /* 1476 * After completing I/O on a page, call this routine to update the page 1477 * flags appropriately 1478 */ 1479 void page_endio(struct page *page, bool is_write, int err) 1480 { 1481 if (!is_write) { 1482 if (!err) { 1483 SetPageUptodate(page); 1484 } else { 1485 ClearPageUptodate(page); 1486 SetPageError(page); 1487 } 1488 unlock_page(page); 1489 } else { 1490 if (err) { 1491 struct address_space *mapping; 1492 1493 SetPageError(page); 1494 mapping = page_mapping(page); 1495 if (mapping) 1496 mapping_set_error(mapping, err); 1497 } 1498 end_page_writeback(page); 1499 } 1500 } 1501 EXPORT_SYMBOL_GPL(page_endio); 1502 1503 /** 1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1505 * @__page: the page to lock 1506 */ 1507 void __lock_page(struct page *__page) 1508 { 1509 struct page *page = compound_head(__page); 1510 wait_queue_head_t *q = page_waitqueue(page); 1511 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1512 EXCLUSIVE); 1513 } 1514 EXPORT_SYMBOL(__lock_page); 1515 1516 int __lock_page_killable(struct page *__page) 1517 { 1518 struct page *page = compound_head(__page); 1519 wait_queue_head_t *q = page_waitqueue(page); 1520 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1521 EXCLUSIVE); 1522 } 1523 EXPORT_SYMBOL_GPL(__lock_page_killable); 1524 1525 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1526 { 1527 return __wait_on_page_locked_async(page, wait, true); 1528 } 1529 1530 /* 1531 * Return values: 1532 * 1 - page is locked; mmap_lock is still held. 1533 * 0 - page is not locked. 1534 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1535 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1536 * which case mmap_lock is still held. 1537 * 1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1539 * with the page locked and the mmap_lock unperturbed. 1540 */ 1541 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1542 unsigned int flags) 1543 { 1544 if (fault_flag_allow_retry_first(flags)) { 1545 /* 1546 * CAUTION! In this case, mmap_lock is not released 1547 * even though return 0. 1548 */ 1549 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1550 return 0; 1551 1552 mmap_read_unlock(mm); 1553 if (flags & FAULT_FLAG_KILLABLE) 1554 wait_on_page_locked_killable(page); 1555 else 1556 wait_on_page_locked(page); 1557 return 0; 1558 } else { 1559 if (flags & FAULT_FLAG_KILLABLE) { 1560 int ret; 1561 1562 ret = __lock_page_killable(page); 1563 if (ret) { 1564 mmap_read_unlock(mm); 1565 return 0; 1566 } 1567 } else 1568 __lock_page(page); 1569 return 1; 1570 } 1571 } 1572 1573 /** 1574 * page_cache_next_miss() - Find the next gap in the page cache. 1575 * @mapping: Mapping. 1576 * @index: Index. 1577 * @max_scan: Maximum range to search. 1578 * 1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1580 * gap with the lowest index. 1581 * 1582 * This function may be called under the rcu_read_lock. However, this will 1583 * not atomically search a snapshot of the cache at a single point in time. 1584 * For example, if a gap is created at index 5, then subsequently a gap is 1585 * created at index 10, page_cache_next_miss covering both indices may 1586 * return 10 if called under the rcu_read_lock. 1587 * 1588 * Return: The index of the gap if found, otherwise an index outside the 1589 * range specified (in which case 'return - index >= max_scan' will be true). 1590 * In the rare case of index wrap-around, 0 will be returned. 1591 */ 1592 pgoff_t page_cache_next_miss(struct address_space *mapping, 1593 pgoff_t index, unsigned long max_scan) 1594 { 1595 XA_STATE(xas, &mapping->i_pages, index); 1596 1597 while (max_scan--) { 1598 void *entry = xas_next(&xas); 1599 if (!entry || xa_is_value(entry)) 1600 break; 1601 if (xas.xa_index == 0) 1602 break; 1603 } 1604 1605 return xas.xa_index; 1606 } 1607 EXPORT_SYMBOL(page_cache_next_miss); 1608 1609 /** 1610 * page_cache_prev_miss() - Find the previous gap in the page cache. 1611 * @mapping: Mapping. 1612 * @index: Index. 1613 * @max_scan: Maximum range to search. 1614 * 1615 * Search the range [max(index - max_scan + 1, 0), index] for the 1616 * gap with the highest index. 1617 * 1618 * This function may be called under the rcu_read_lock. However, this will 1619 * not atomically search a snapshot of the cache at a single point in time. 1620 * For example, if a gap is created at index 10, then subsequently a gap is 1621 * created at index 5, page_cache_prev_miss() covering both indices may 1622 * return 5 if called under the rcu_read_lock. 1623 * 1624 * Return: The index of the gap if found, otherwise an index outside the 1625 * range specified (in which case 'index - return >= max_scan' will be true). 1626 * In the rare case of wrap-around, ULONG_MAX will be returned. 1627 */ 1628 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1629 pgoff_t index, unsigned long max_scan) 1630 { 1631 XA_STATE(xas, &mapping->i_pages, index); 1632 1633 while (max_scan--) { 1634 void *entry = xas_prev(&xas); 1635 if (!entry || xa_is_value(entry)) 1636 break; 1637 if (xas.xa_index == ULONG_MAX) 1638 break; 1639 } 1640 1641 return xas.xa_index; 1642 } 1643 EXPORT_SYMBOL(page_cache_prev_miss); 1644 1645 /** 1646 * find_get_entry - find and get a page cache entry 1647 * @mapping: the address_space to search 1648 * @offset: the page cache index 1649 * 1650 * Looks up the page cache slot at @mapping & @offset. If there is a 1651 * page cache page, it is returned with an increased refcount. 1652 * 1653 * If the slot holds a shadow entry of a previously evicted page, or a 1654 * swap entry from shmem/tmpfs, it is returned. 1655 * 1656 * Return: the found page or shadow entry, %NULL if nothing is found. 1657 */ 1658 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1659 { 1660 XA_STATE(xas, &mapping->i_pages, offset); 1661 struct page *page; 1662 1663 rcu_read_lock(); 1664 repeat: 1665 xas_reset(&xas); 1666 page = xas_load(&xas); 1667 if (xas_retry(&xas, page)) 1668 goto repeat; 1669 /* 1670 * A shadow entry of a recently evicted page, or a swap entry from 1671 * shmem/tmpfs. Return it without attempting to raise page count. 1672 */ 1673 if (!page || xa_is_value(page)) 1674 goto out; 1675 1676 if (!page_cache_get_speculative(page)) 1677 goto repeat; 1678 1679 /* 1680 * Has the page moved or been split? 1681 * This is part of the lockless pagecache protocol. See 1682 * include/linux/pagemap.h for details. 1683 */ 1684 if (unlikely(page != xas_reload(&xas))) { 1685 put_page(page); 1686 goto repeat; 1687 } 1688 page = find_subpage(page, offset); 1689 out: 1690 rcu_read_unlock(); 1691 1692 return page; 1693 } 1694 1695 /** 1696 * find_lock_entry - locate, pin and lock a page cache entry 1697 * @mapping: the address_space to search 1698 * @offset: the page cache index 1699 * 1700 * Looks up the page cache slot at @mapping & @offset. If there is a 1701 * page cache page, it is returned locked and with an increased 1702 * refcount. 1703 * 1704 * If the slot holds a shadow entry of a previously evicted page, or a 1705 * swap entry from shmem/tmpfs, it is returned. 1706 * 1707 * find_lock_entry() may sleep. 1708 * 1709 * Return: the found page or shadow entry, %NULL if nothing is found. 1710 */ 1711 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1712 { 1713 struct page *page; 1714 1715 repeat: 1716 page = find_get_entry(mapping, offset); 1717 if (page && !xa_is_value(page)) { 1718 lock_page(page); 1719 /* Has the page been truncated? */ 1720 if (unlikely(page_mapping(page) != mapping)) { 1721 unlock_page(page); 1722 put_page(page); 1723 goto repeat; 1724 } 1725 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1726 } 1727 return page; 1728 } 1729 EXPORT_SYMBOL(find_lock_entry); 1730 1731 /** 1732 * pagecache_get_page - Find and get a reference to a page. 1733 * @mapping: The address_space to search. 1734 * @index: The page index. 1735 * @fgp_flags: %FGP flags modify how the page is returned. 1736 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1737 * 1738 * Looks up the page cache entry at @mapping & @index. 1739 * 1740 * @fgp_flags can be zero or more of these flags: 1741 * 1742 * * %FGP_ACCESSED - The page will be marked accessed. 1743 * * %FGP_LOCK - The page is returned locked. 1744 * * %FGP_CREAT - If no page is present then a new page is allocated using 1745 * @gfp_mask and added to the page cache and the VM's LRU list. 1746 * The page is returned locked and with an increased refcount. 1747 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1748 * page is already in cache. If the page was allocated, unlock it before 1749 * returning so the caller can do the same dance. 1750 * * %FGP_WRITE - The page will be written 1751 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1752 * * %FGP_NOWAIT - Don't get blocked by page lock 1753 * 1754 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1755 * if the %GFP flags specified for %FGP_CREAT are atomic. 1756 * 1757 * If there is a page cache page, it is returned with an increased refcount. 1758 * 1759 * Return: The found page or %NULL otherwise. 1760 */ 1761 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1762 int fgp_flags, gfp_t gfp_mask) 1763 { 1764 struct page *page; 1765 1766 repeat: 1767 page = find_get_entry(mapping, index); 1768 if (xa_is_value(page)) 1769 page = NULL; 1770 if (!page) 1771 goto no_page; 1772 1773 if (fgp_flags & FGP_LOCK) { 1774 if (fgp_flags & FGP_NOWAIT) { 1775 if (!trylock_page(page)) { 1776 put_page(page); 1777 return NULL; 1778 } 1779 } else { 1780 lock_page(page); 1781 } 1782 1783 /* Has the page been truncated? */ 1784 if (unlikely(compound_head(page)->mapping != mapping)) { 1785 unlock_page(page); 1786 put_page(page); 1787 goto repeat; 1788 } 1789 VM_BUG_ON_PAGE(page->index != index, page); 1790 } 1791 1792 if (fgp_flags & FGP_ACCESSED) 1793 mark_page_accessed(page); 1794 else if (fgp_flags & FGP_WRITE) { 1795 /* Clear idle flag for buffer write */ 1796 if (page_is_idle(page)) 1797 clear_page_idle(page); 1798 } 1799 1800 no_page: 1801 if (!page && (fgp_flags & FGP_CREAT)) { 1802 int err; 1803 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1804 gfp_mask |= __GFP_WRITE; 1805 if (fgp_flags & FGP_NOFS) 1806 gfp_mask &= ~__GFP_FS; 1807 1808 page = __page_cache_alloc(gfp_mask); 1809 if (!page) 1810 return NULL; 1811 1812 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1813 fgp_flags |= FGP_LOCK; 1814 1815 /* Init accessed so avoid atomic mark_page_accessed later */ 1816 if (fgp_flags & FGP_ACCESSED) 1817 __SetPageReferenced(page); 1818 1819 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1820 if (unlikely(err)) { 1821 put_page(page); 1822 page = NULL; 1823 if (err == -EEXIST) 1824 goto repeat; 1825 } 1826 1827 /* 1828 * add_to_page_cache_lru locks the page, and for mmap we expect 1829 * an unlocked page. 1830 */ 1831 if (page && (fgp_flags & FGP_FOR_MMAP)) 1832 unlock_page(page); 1833 } 1834 1835 return page; 1836 } 1837 EXPORT_SYMBOL(pagecache_get_page); 1838 1839 /** 1840 * find_get_entries - gang pagecache lookup 1841 * @mapping: The address_space to search 1842 * @start: The starting page cache index 1843 * @nr_entries: The maximum number of entries 1844 * @entries: Where the resulting entries are placed 1845 * @indices: The cache indices corresponding to the entries in @entries 1846 * 1847 * find_get_entries() will search for and return a group of up to 1848 * @nr_entries entries in the mapping. The entries are placed at 1849 * @entries. find_get_entries() takes a reference against any actual 1850 * pages it returns. 1851 * 1852 * The search returns a group of mapping-contiguous page cache entries 1853 * with ascending indexes. There may be holes in the indices due to 1854 * not-present pages. 1855 * 1856 * Any shadow entries of evicted pages, or swap entries from 1857 * shmem/tmpfs, are included in the returned array. 1858 * 1859 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1860 * stops at that page: the caller is likely to have a better way to handle 1861 * the compound page as a whole, and then skip its extent, than repeatedly 1862 * calling find_get_entries() to return all its tails. 1863 * 1864 * Return: the number of pages and shadow entries which were found. 1865 */ 1866 unsigned find_get_entries(struct address_space *mapping, 1867 pgoff_t start, unsigned int nr_entries, 1868 struct page **entries, pgoff_t *indices) 1869 { 1870 XA_STATE(xas, &mapping->i_pages, start); 1871 struct page *page; 1872 unsigned int ret = 0; 1873 1874 if (!nr_entries) 1875 return 0; 1876 1877 rcu_read_lock(); 1878 xas_for_each(&xas, page, ULONG_MAX) { 1879 if (xas_retry(&xas, page)) 1880 continue; 1881 /* 1882 * A shadow entry of a recently evicted page, a swap 1883 * entry from shmem/tmpfs or a DAX entry. Return it 1884 * without attempting to raise page count. 1885 */ 1886 if (xa_is_value(page)) 1887 goto export; 1888 1889 if (!page_cache_get_speculative(page)) 1890 goto retry; 1891 1892 /* Has the page moved or been split? */ 1893 if (unlikely(page != xas_reload(&xas))) 1894 goto put_page; 1895 1896 /* 1897 * Terminate early on finding a THP, to allow the caller to 1898 * handle it all at once; but continue if this is hugetlbfs. 1899 */ 1900 if (PageTransHuge(page) && !PageHuge(page)) { 1901 page = find_subpage(page, xas.xa_index); 1902 nr_entries = ret + 1; 1903 } 1904 export: 1905 indices[ret] = xas.xa_index; 1906 entries[ret] = page; 1907 if (++ret == nr_entries) 1908 break; 1909 continue; 1910 put_page: 1911 put_page(page); 1912 retry: 1913 xas_reset(&xas); 1914 } 1915 rcu_read_unlock(); 1916 return ret; 1917 } 1918 1919 /** 1920 * find_get_pages_range - gang pagecache lookup 1921 * @mapping: The address_space to search 1922 * @start: The starting page index 1923 * @end: The final page index (inclusive) 1924 * @nr_pages: The maximum number of pages 1925 * @pages: Where the resulting pages are placed 1926 * 1927 * find_get_pages_range() will search for and return a group of up to @nr_pages 1928 * pages in the mapping starting at index @start and up to index @end 1929 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1930 * a reference against the returned pages. 1931 * 1932 * The search returns a group of mapping-contiguous pages with ascending 1933 * indexes. There may be holes in the indices due to not-present pages. 1934 * We also update @start to index the next page for the traversal. 1935 * 1936 * Return: the number of pages which were found. If this number is 1937 * smaller than @nr_pages, the end of specified range has been 1938 * reached. 1939 */ 1940 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1941 pgoff_t end, unsigned int nr_pages, 1942 struct page **pages) 1943 { 1944 XA_STATE(xas, &mapping->i_pages, *start); 1945 struct page *page; 1946 unsigned ret = 0; 1947 1948 if (unlikely(!nr_pages)) 1949 return 0; 1950 1951 rcu_read_lock(); 1952 xas_for_each(&xas, page, end) { 1953 if (xas_retry(&xas, page)) 1954 continue; 1955 /* Skip over shadow, swap and DAX entries */ 1956 if (xa_is_value(page)) 1957 continue; 1958 1959 if (!page_cache_get_speculative(page)) 1960 goto retry; 1961 1962 /* Has the page moved or been split? */ 1963 if (unlikely(page != xas_reload(&xas))) 1964 goto put_page; 1965 1966 pages[ret] = find_subpage(page, xas.xa_index); 1967 if (++ret == nr_pages) { 1968 *start = xas.xa_index + 1; 1969 goto out; 1970 } 1971 continue; 1972 put_page: 1973 put_page(page); 1974 retry: 1975 xas_reset(&xas); 1976 } 1977 1978 /* 1979 * We come here when there is no page beyond @end. We take care to not 1980 * overflow the index @start as it confuses some of the callers. This 1981 * breaks the iteration when there is a page at index -1 but that is 1982 * already broken anyway. 1983 */ 1984 if (end == (pgoff_t)-1) 1985 *start = (pgoff_t)-1; 1986 else 1987 *start = end + 1; 1988 out: 1989 rcu_read_unlock(); 1990 1991 return ret; 1992 } 1993 1994 /** 1995 * find_get_pages_contig - gang contiguous pagecache lookup 1996 * @mapping: The address_space to search 1997 * @index: The starting page index 1998 * @nr_pages: The maximum number of pages 1999 * @pages: Where the resulting pages are placed 2000 * 2001 * find_get_pages_contig() works exactly like find_get_pages(), except 2002 * that the returned number of pages are guaranteed to be contiguous. 2003 * 2004 * Return: the number of pages which were found. 2005 */ 2006 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2007 unsigned int nr_pages, struct page **pages) 2008 { 2009 XA_STATE(xas, &mapping->i_pages, index); 2010 struct page *page; 2011 unsigned int ret = 0; 2012 2013 if (unlikely(!nr_pages)) 2014 return 0; 2015 2016 rcu_read_lock(); 2017 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2018 if (xas_retry(&xas, page)) 2019 continue; 2020 /* 2021 * If the entry has been swapped out, we can stop looking. 2022 * No current caller is looking for DAX entries. 2023 */ 2024 if (xa_is_value(page)) 2025 break; 2026 2027 if (!page_cache_get_speculative(page)) 2028 goto retry; 2029 2030 /* Has the page moved or been split? */ 2031 if (unlikely(page != xas_reload(&xas))) 2032 goto put_page; 2033 2034 pages[ret] = find_subpage(page, xas.xa_index); 2035 if (++ret == nr_pages) 2036 break; 2037 continue; 2038 put_page: 2039 put_page(page); 2040 retry: 2041 xas_reset(&xas); 2042 } 2043 rcu_read_unlock(); 2044 return ret; 2045 } 2046 EXPORT_SYMBOL(find_get_pages_contig); 2047 2048 /** 2049 * find_get_pages_range_tag - find and return pages in given range matching @tag 2050 * @mapping: the address_space to search 2051 * @index: the starting page index 2052 * @end: The final page index (inclusive) 2053 * @tag: the tag index 2054 * @nr_pages: the maximum number of pages 2055 * @pages: where the resulting pages are placed 2056 * 2057 * Like find_get_pages, except we only return pages which are tagged with 2058 * @tag. We update @index to index the next page for the traversal. 2059 * 2060 * Return: the number of pages which were found. 2061 */ 2062 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2063 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2064 struct page **pages) 2065 { 2066 XA_STATE(xas, &mapping->i_pages, *index); 2067 struct page *page; 2068 unsigned ret = 0; 2069 2070 if (unlikely(!nr_pages)) 2071 return 0; 2072 2073 rcu_read_lock(); 2074 xas_for_each_marked(&xas, page, end, tag) { 2075 if (xas_retry(&xas, page)) 2076 continue; 2077 /* 2078 * Shadow entries should never be tagged, but this iteration 2079 * is lockless so there is a window for page reclaim to evict 2080 * a page we saw tagged. Skip over it. 2081 */ 2082 if (xa_is_value(page)) 2083 continue; 2084 2085 if (!page_cache_get_speculative(page)) 2086 goto retry; 2087 2088 /* Has the page moved or been split? */ 2089 if (unlikely(page != xas_reload(&xas))) 2090 goto put_page; 2091 2092 pages[ret] = find_subpage(page, xas.xa_index); 2093 if (++ret == nr_pages) { 2094 *index = xas.xa_index + 1; 2095 goto out; 2096 } 2097 continue; 2098 put_page: 2099 put_page(page); 2100 retry: 2101 xas_reset(&xas); 2102 } 2103 2104 /* 2105 * We come here when we got to @end. We take care to not overflow the 2106 * index @index as it confuses some of the callers. This breaks the 2107 * iteration when there is a page at index -1 but that is already 2108 * broken anyway. 2109 */ 2110 if (end == (pgoff_t)-1) 2111 *index = (pgoff_t)-1; 2112 else 2113 *index = end + 1; 2114 out: 2115 rcu_read_unlock(); 2116 2117 return ret; 2118 } 2119 EXPORT_SYMBOL(find_get_pages_range_tag); 2120 2121 /* 2122 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2123 * a _large_ part of the i/o request. Imagine the worst scenario: 2124 * 2125 * ---R__________________________________________B__________ 2126 * ^ reading here ^ bad block(assume 4k) 2127 * 2128 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2129 * => failing the whole request => read(R) => read(R+1) => 2130 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2131 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2132 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2133 * 2134 * It is going insane. Fix it by quickly scaling down the readahead size. 2135 */ 2136 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2137 { 2138 ra->ra_pages /= 4; 2139 } 2140 2141 /** 2142 * generic_file_buffered_read - generic file read routine 2143 * @iocb: the iocb to read 2144 * @iter: data destination 2145 * @written: already copied 2146 * 2147 * This is a generic file read routine, and uses the 2148 * mapping->a_ops->readpage() function for the actual low-level stuff. 2149 * 2150 * This is really ugly. But the goto's actually try to clarify some 2151 * of the logic when it comes to error handling etc. 2152 * 2153 * Return: 2154 * * total number of bytes copied, including those the were already @written 2155 * * negative error code if nothing was copied 2156 */ 2157 ssize_t generic_file_buffered_read(struct kiocb *iocb, 2158 struct iov_iter *iter, ssize_t written) 2159 { 2160 struct file *filp = iocb->ki_filp; 2161 struct address_space *mapping = filp->f_mapping; 2162 struct inode *inode = mapping->host; 2163 struct file_ra_state *ra = &filp->f_ra; 2164 loff_t *ppos = &iocb->ki_pos; 2165 pgoff_t index; 2166 pgoff_t last_index; 2167 pgoff_t prev_index; 2168 unsigned long offset; /* offset into pagecache page */ 2169 unsigned int prev_offset; 2170 int error = 0; 2171 2172 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2173 return 0; 2174 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2175 2176 index = *ppos >> PAGE_SHIFT; 2177 prev_index = ra->prev_pos >> PAGE_SHIFT; 2178 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2179 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2180 offset = *ppos & ~PAGE_MASK; 2181 2182 for (;;) { 2183 struct page *page; 2184 pgoff_t end_index; 2185 loff_t isize; 2186 unsigned long nr, ret; 2187 2188 cond_resched(); 2189 find_page: 2190 if (fatal_signal_pending(current)) { 2191 error = -EINTR; 2192 goto out; 2193 } 2194 2195 page = find_get_page(mapping, index); 2196 if (!page) { 2197 if (iocb->ki_flags & IOCB_NOIO) 2198 goto would_block; 2199 page_cache_sync_readahead(mapping, 2200 ra, filp, 2201 index, last_index - index); 2202 page = find_get_page(mapping, index); 2203 if (unlikely(page == NULL)) 2204 goto no_cached_page; 2205 } 2206 if (PageReadahead(page)) { 2207 if (iocb->ki_flags & IOCB_NOIO) { 2208 put_page(page); 2209 goto out; 2210 } 2211 page_cache_async_readahead(mapping, 2212 ra, filp, page, 2213 index, last_index - index); 2214 } 2215 if (!PageUptodate(page)) { 2216 /* 2217 * See comment in do_read_cache_page on why 2218 * wait_on_page_locked is used to avoid unnecessarily 2219 * serialisations and why it's safe. 2220 */ 2221 if (iocb->ki_flags & IOCB_WAITQ) { 2222 if (written) { 2223 put_page(page); 2224 goto out; 2225 } 2226 error = wait_on_page_locked_async(page, 2227 iocb->ki_waitq); 2228 } else { 2229 if (iocb->ki_flags & IOCB_NOWAIT) { 2230 put_page(page); 2231 goto would_block; 2232 } 2233 error = wait_on_page_locked_killable(page); 2234 } 2235 if (unlikely(error)) 2236 goto readpage_error; 2237 if (PageUptodate(page)) 2238 goto page_ok; 2239 2240 if (inode->i_blkbits == PAGE_SHIFT || 2241 !mapping->a_ops->is_partially_uptodate) 2242 goto page_not_up_to_date; 2243 /* pipes can't handle partially uptodate pages */ 2244 if (unlikely(iov_iter_is_pipe(iter))) 2245 goto page_not_up_to_date; 2246 if (!trylock_page(page)) 2247 goto page_not_up_to_date; 2248 /* Did it get truncated before we got the lock? */ 2249 if (!page->mapping) 2250 goto page_not_up_to_date_locked; 2251 if (!mapping->a_ops->is_partially_uptodate(page, 2252 offset, iter->count)) 2253 goto page_not_up_to_date_locked; 2254 unlock_page(page); 2255 } 2256 page_ok: 2257 /* 2258 * i_size must be checked after we know the page is Uptodate. 2259 * 2260 * Checking i_size after the check allows us to calculate 2261 * the correct value for "nr", which means the zero-filled 2262 * part of the page is not copied back to userspace (unless 2263 * another truncate extends the file - this is desired though). 2264 */ 2265 2266 isize = i_size_read(inode); 2267 end_index = (isize - 1) >> PAGE_SHIFT; 2268 if (unlikely(!isize || index > end_index)) { 2269 put_page(page); 2270 goto out; 2271 } 2272 2273 /* nr is the maximum number of bytes to copy from this page */ 2274 nr = PAGE_SIZE; 2275 if (index == end_index) { 2276 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2277 if (nr <= offset) { 2278 put_page(page); 2279 goto out; 2280 } 2281 } 2282 nr = nr - offset; 2283 2284 /* If users can be writing to this page using arbitrary 2285 * virtual addresses, take care about potential aliasing 2286 * before reading the page on the kernel side. 2287 */ 2288 if (mapping_writably_mapped(mapping)) 2289 flush_dcache_page(page); 2290 2291 /* 2292 * When a sequential read accesses a page several times, 2293 * only mark it as accessed the first time. 2294 */ 2295 if (prev_index != index || offset != prev_offset) 2296 mark_page_accessed(page); 2297 prev_index = index; 2298 2299 /* 2300 * Ok, we have the page, and it's up-to-date, so 2301 * now we can copy it to user space... 2302 */ 2303 2304 ret = copy_page_to_iter(page, offset, nr, iter); 2305 offset += ret; 2306 index += offset >> PAGE_SHIFT; 2307 offset &= ~PAGE_MASK; 2308 prev_offset = offset; 2309 2310 put_page(page); 2311 written += ret; 2312 if (!iov_iter_count(iter)) 2313 goto out; 2314 if (ret < nr) { 2315 error = -EFAULT; 2316 goto out; 2317 } 2318 continue; 2319 2320 page_not_up_to_date: 2321 /* Get exclusive access to the page ... */ 2322 if (iocb->ki_flags & IOCB_WAITQ) 2323 error = lock_page_async(page, iocb->ki_waitq); 2324 else 2325 error = lock_page_killable(page); 2326 if (unlikely(error)) 2327 goto readpage_error; 2328 2329 page_not_up_to_date_locked: 2330 /* Did it get truncated before we got the lock? */ 2331 if (!page->mapping) { 2332 unlock_page(page); 2333 put_page(page); 2334 continue; 2335 } 2336 2337 /* Did somebody else fill it already? */ 2338 if (PageUptodate(page)) { 2339 unlock_page(page); 2340 goto page_ok; 2341 } 2342 2343 readpage: 2344 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { 2345 unlock_page(page); 2346 put_page(page); 2347 goto would_block; 2348 } 2349 /* 2350 * A previous I/O error may have been due to temporary 2351 * failures, eg. multipath errors. 2352 * PG_error will be set again if readpage fails. 2353 */ 2354 ClearPageError(page); 2355 /* Start the actual read. The read will unlock the page. */ 2356 error = mapping->a_ops->readpage(filp, page); 2357 2358 if (unlikely(error)) { 2359 if (error == AOP_TRUNCATED_PAGE) { 2360 put_page(page); 2361 error = 0; 2362 goto find_page; 2363 } 2364 goto readpage_error; 2365 } 2366 2367 if (!PageUptodate(page)) { 2368 error = lock_page_killable(page); 2369 if (unlikely(error)) 2370 goto readpage_error; 2371 if (!PageUptodate(page)) { 2372 if (page->mapping == NULL) { 2373 /* 2374 * invalidate_mapping_pages got it 2375 */ 2376 unlock_page(page); 2377 put_page(page); 2378 goto find_page; 2379 } 2380 unlock_page(page); 2381 shrink_readahead_size_eio(ra); 2382 error = -EIO; 2383 goto readpage_error; 2384 } 2385 unlock_page(page); 2386 } 2387 2388 goto page_ok; 2389 2390 readpage_error: 2391 /* UHHUH! A synchronous read error occurred. Report it */ 2392 put_page(page); 2393 goto out; 2394 2395 no_cached_page: 2396 /* 2397 * Ok, it wasn't cached, so we need to create a new 2398 * page.. 2399 */ 2400 page = page_cache_alloc(mapping); 2401 if (!page) { 2402 error = -ENOMEM; 2403 goto out; 2404 } 2405 error = add_to_page_cache_lru(page, mapping, index, 2406 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2407 if (error) { 2408 put_page(page); 2409 if (error == -EEXIST) { 2410 error = 0; 2411 goto find_page; 2412 } 2413 goto out; 2414 } 2415 goto readpage; 2416 } 2417 2418 would_block: 2419 error = -EAGAIN; 2420 out: 2421 ra->prev_pos = prev_index; 2422 ra->prev_pos <<= PAGE_SHIFT; 2423 ra->prev_pos |= prev_offset; 2424 2425 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2426 file_accessed(filp); 2427 return written ? written : error; 2428 } 2429 EXPORT_SYMBOL_GPL(generic_file_buffered_read); 2430 2431 /** 2432 * generic_file_read_iter - generic filesystem read routine 2433 * @iocb: kernel I/O control block 2434 * @iter: destination for the data read 2435 * 2436 * This is the "read_iter()" routine for all filesystems 2437 * that can use the page cache directly. 2438 * 2439 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2440 * be returned when no data can be read without waiting for I/O requests 2441 * to complete; it doesn't prevent readahead. 2442 * 2443 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2444 * requests shall be made for the read or for readahead. When no data 2445 * can be read, -EAGAIN shall be returned. When readahead would be 2446 * triggered, a partial, possibly empty read shall be returned. 2447 * 2448 * Return: 2449 * * number of bytes copied, even for partial reads 2450 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2451 */ 2452 ssize_t 2453 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2454 { 2455 size_t count = iov_iter_count(iter); 2456 ssize_t retval = 0; 2457 2458 if (!count) 2459 goto out; /* skip atime */ 2460 2461 if (iocb->ki_flags & IOCB_DIRECT) { 2462 struct file *file = iocb->ki_filp; 2463 struct address_space *mapping = file->f_mapping; 2464 struct inode *inode = mapping->host; 2465 loff_t size; 2466 2467 size = i_size_read(inode); 2468 if (iocb->ki_flags & IOCB_NOWAIT) { 2469 if (filemap_range_has_page(mapping, iocb->ki_pos, 2470 iocb->ki_pos + count - 1)) 2471 return -EAGAIN; 2472 } else { 2473 retval = filemap_write_and_wait_range(mapping, 2474 iocb->ki_pos, 2475 iocb->ki_pos + count - 1); 2476 if (retval < 0) 2477 goto out; 2478 } 2479 2480 file_accessed(file); 2481 2482 retval = mapping->a_ops->direct_IO(iocb, iter); 2483 if (retval >= 0) { 2484 iocb->ki_pos += retval; 2485 count -= retval; 2486 } 2487 iov_iter_revert(iter, count - iov_iter_count(iter)); 2488 2489 /* 2490 * Btrfs can have a short DIO read if we encounter 2491 * compressed extents, so if there was an error, or if 2492 * we've already read everything we wanted to, or if 2493 * there was a short read because we hit EOF, go ahead 2494 * and return. Otherwise fallthrough to buffered io for 2495 * the rest of the read. Buffered reads will not work for 2496 * DAX files, so don't bother trying. 2497 */ 2498 if (retval < 0 || !count || iocb->ki_pos >= size || 2499 IS_DAX(inode)) 2500 goto out; 2501 } 2502 2503 retval = generic_file_buffered_read(iocb, iter, retval); 2504 out: 2505 return retval; 2506 } 2507 EXPORT_SYMBOL(generic_file_read_iter); 2508 2509 #ifdef CONFIG_MMU 2510 #define MMAP_LOTSAMISS (100) 2511 /* 2512 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2513 * @vmf - the vm_fault for this fault. 2514 * @page - the page to lock. 2515 * @fpin - the pointer to the file we may pin (or is already pinned). 2516 * 2517 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2518 * It differs in that it actually returns the page locked if it returns 1 and 0 2519 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2520 * will point to the pinned file and needs to be fput()'ed at a later point. 2521 */ 2522 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2523 struct file **fpin) 2524 { 2525 if (trylock_page(page)) 2526 return 1; 2527 2528 /* 2529 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2530 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2531 * is supposed to work. We have way too many special cases.. 2532 */ 2533 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2534 return 0; 2535 2536 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2537 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2538 if (__lock_page_killable(page)) { 2539 /* 2540 * We didn't have the right flags to drop the mmap_lock, 2541 * but all fault_handlers only check for fatal signals 2542 * if we return VM_FAULT_RETRY, so we need to drop the 2543 * mmap_lock here and return 0 if we don't have a fpin. 2544 */ 2545 if (*fpin == NULL) 2546 mmap_read_unlock(vmf->vma->vm_mm); 2547 return 0; 2548 } 2549 } else 2550 __lock_page(page); 2551 return 1; 2552 } 2553 2554 2555 /* 2556 * Synchronous readahead happens when we don't even find a page in the page 2557 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2558 * to drop the mmap sem we return the file that was pinned in order for us to do 2559 * that. If we didn't pin a file then we return NULL. The file that is 2560 * returned needs to be fput()'ed when we're done with it. 2561 */ 2562 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2563 { 2564 struct file *file = vmf->vma->vm_file; 2565 struct file_ra_state *ra = &file->f_ra; 2566 struct address_space *mapping = file->f_mapping; 2567 struct file *fpin = NULL; 2568 pgoff_t offset = vmf->pgoff; 2569 unsigned int mmap_miss; 2570 2571 /* If we don't want any read-ahead, don't bother */ 2572 if (vmf->vma->vm_flags & VM_RAND_READ) 2573 return fpin; 2574 if (!ra->ra_pages) 2575 return fpin; 2576 2577 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2578 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2579 page_cache_sync_readahead(mapping, ra, file, offset, 2580 ra->ra_pages); 2581 return fpin; 2582 } 2583 2584 /* Avoid banging the cache line if not needed */ 2585 mmap_miss = READ_ONCE(ra->mmap_miss); 2586 if (mmap_miss < MMAP_LOTSAMISS * 10) 2587 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2588 2589 /* 2590 * Do we miss much more than hit in this file? If so, 2591 * stop bothering with read-ahead. It will only hurt. 2592 */ 2593 if (mmap_miss > MMAP_LOTSAMISS) 2594 return fpin; 2595 2596 /* 2597 * mmap read-around 2598 */ 2599 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2600 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2601 ra->size = ra->ra_pages; 2602 ra->async_size = ra->ra_pages / 4; 2603 ra_submit(ra, mapping, file); 2604 return fpin; 2605 } 2606 2607 /* 2608 * Asynchronous readahead happens when we find the page and PG_readahead, 2609 * so we want to possibly extend the readahead further. We return the file that 2610 * was pinned if we have to drop the mmap_lock in order to do IO. 2611 */ 2612 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2613 struct page *page) 2614 { 2615 struct file *file = vmf->vma->vm_file; 2616 struct file_ra_state *ra = &file->f_ra; 2617 struct address_space *mapping = file->f_mapping; 2618 struct file *fpin = NULL; 2619 unsigned int mmap_miss; 2620 pgoff_t offset = vmf->pgoff; 2621 2622 /* If we don't want any read-ahead, don't bother */ 2623 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2624 return fpin; 2625 mmap_miss = READ_ONCE(ra->mmap_miss); 2626 if (mmap_miss) 2627 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2628 if (PageReadahead(page)) { 2629 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2630 page_cache_async_readahead(mapping, ra, file, 2631 page, offset, ra->ra_pages); 2632 } 2633 return fpin; 2634 } 2635 2636 /** 2637 * filemap_fault - read in file data for page fault handling 2638 * @vmf: struct vm_fault containing details of the fault 2639 * 2640 * filemap_fault() is invoked via the vma operations vector for a 2641 * mapped memory region to read in file data during a page fault. 2642 * 2643 * The goto's are kind of ugly, but this streamlines the normal case of having 2644 * it in the page cache, and handles the special cases reasonably without 2645 * having a lot of duplicated code. 2646 * 2647 * vma->vm_mm->mmap_lock must be held on entry. 2648 * 2649 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2650 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2651 * 2652 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2653 * has not been released. 2654 * 2655 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2656 * 2657 * Return: bitwise-OR of %VM_FAULT_ codes. 2658 */ 2659 vm_fault_t filemap_fault(struct vm_fault *vmf) 2660 { 2661 int error; 2662 struct file *file = vmf->vma->vm_file; 2663 struct file *fpin = NULL; 2664 struct address_space *mapping = file->f_mapping; 2665 struct file_ra_state *ra = &file->f_ra; 2666 struct inode *inode = mapping->host; 2667 pgoff_t offset = vmf->pgoff; 2668 pgoff_t max_off; 2669 struct page *page; 2670 vm_fault_t ret = 0; 2671 2672 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2673 if (unlikely(offset >= max_off)) 2674 return VM_FAULT_SIGBUS; 2675 2676 /* 2677 * Do we have something in the page cache already? 2678 */ 2679 page = find_get_page(mapping, offset); 2680 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2681 /* 2682 * We found the page, so try async readahead before 2683 * waiting for the lock. 2684 */ 2685 fpin = do_async_mmap_readahead(vmf, page); 2686 } else if (!page) { 2687 /* No page in the page cache at all */ 2688 count_vm_event(PGMAJFAULT); 2689 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2690 ret = VM_FAULT_MAJOR; 2691 fpin = do_sync_mmap_readahead(vmf); 2692 retry_find: 2693 page = pagecache_get_page(mapping, offset, 2694 FGP_CREAT|FGP_FOR_MMAP, 2695 vmf->gfp_mask); 2696 if (!page) { 2697 if (fpin) 2698 goto out_retry; 2699 return VM_FAULT_OOM; 2700 } 2701 } 2702 2703 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2704 goto out_retry; 2705 2706 /* Did it get truncated? */ 2707 if (unlikely(compound_head(page)->mapping != mapping)) { 2708 unlock_page(page); 2709 put_page(page); 2710 goto retry_find; 2711 } 2712 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2713 2714 /* 2715 * We have a locked page in the page cache, now we need to check 2716 * that it's up-to-date. If not, it is going to be due to an error. 2717 */ 2718 if (unlikely(!PageUptodate(page))) 2719 goto page_not_uptodate; 2720 2721 /* 2722 * We've made it this far and we had to drop our mmap_lock, now is the 2723 * time to return to the upper layer and have it re-find the vma and 2724 * redo the fault. 2725 */ 2726 if (fpin) { 2727 unlock_page(page); 2728 goto out_retry; 2729 } 2730 2731 /* 2732 * Found the page and have a reference on it. 2733 * We must recheck i_size under page lock. 2734 */ 2735 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2736 if (unlikely(offset >= max_off)) { 2737 unlock_page(page); 2738 put_page(page); 2739 return VM_FAULT_SIGBUS; 2740 } 2741 2742 vmf->page = page; 2743 return ret | VM_FAULT_LOCKED; 2744 2745 page_not_uptodate: 2746 /* 2747 * Umm, take care of errors if the page isn't up-to-date. 2748 * Try to re-read it _once_. We do this synchronously, 2749 * because there really aren't any performance issues here 2750 * and we need to check for errors. 2751 */ 2752 ClearPageError(page); 2753 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2754 error = mapping->a_ops->readpage(file, page); 2755 if (!error) { 2756 wait_on_page_locked(page); 2757 if (!PageUptodate(page)) 2758 error = -EIO; 2759 } 2760 if (fpin) 2761 goto out_retry; 2762 put_page(page); 2763 2764 if (!error || error == AOP_TRUNCATED_PAGE) 2765 goto retry_find; 2766 2767 shrink_readahead_size_eio(ra); 2768 return VM_FAULT_SIGBUS; 2769 2770 out_retry: 2771 /* 2772 * We dropped the mmap_lock, we need to return to the fault handler to 2773 * re-find the vma and come back and find our hopefully still populated 2774 * page. 2775 */ 2776 if (page) 2777 put_page(page); 2778 if (fpin) 2779 fput(fpin); 2780 return ret | VM_FAULT_RETRY; 2781 } 2782 EXPORT_SYMBOL(filemap_fault); 2783 2784 void filemap_map_pages(struct vm_fault *vmf, 2785 pgoff_t start_pgoff, pgoff_t end_pgoff) 2786 { 2787 struct file *file = vmf->vma->vm_file; 2788 struct address_space *mapping = file->f_mapping; 2789 pgoff_t last_pgoff = start_pgoff; 2790 unsigned long max_idx; 2791 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2792 struct page *page; 2793 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 2794 2795 rcu_read_lock(); 2796 xas_for_each(&xas, page, end_pgoff) { 2797 if (xas_retry(&xas, page)) 2798 continue; 2799 if (xa_is_value(page)) 2800 goto next; 2801 2802 /* 2803 * Check for a locked page first, as a speculative 2804 * reference may adversely influence page migration. 2805 */ 2806 if (PageLocked(page)) 2807 goto next; 2808 if (!page_cache_get_speculative(page)) 2809 goto next; 2810 2811 /* Has the page moved or been split? */ 2812 if (unlikely(page != xas_reload(&xas))) 2813 goto skip; 2814 page = find_subpage(page, xas.xa_index); 2815 2816 if (!PageUptodate(page) || 2817 PageReadahead(page) || 2818 PageHWPoison(page)) 2819 goto skip; 2820 if (!trylock_page(page)) 2821 goto skip; 2822 2823 if (page->mapping != mapping || !PageUptodate(page)) 2824 goto unlock; 2825 2826 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2827 if (page->index >= max_idx) 2828 goto unlock; 2829 2830 if (mmap_miss > 0) 2831 mmap_miss--; 2832 2833 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2834 if (vmf->pte) 2835 vmf->pte += xas.xa_index - last_pgoff; 2836 last_pgoff = xas.xa_index; 2837 if (alloc_set_pte(vmf, page)) 2838 goto unlock; 2839 unlock_page(page); 2840 goto next; 2841 unlock: 2842 unlock_page(page); 2843 skip: 2844 put_page(page); 2845 next: 2846 /* Huge page is mapped? No need to proceed. */ 2847 if (pmd_trans_huge(*vmf->pmd)) 2848 break; 2849 } 2850 rcu_read_unlock(); 2851 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 2852 } 2853 EXPORT_SYMBOL(filemap_map_pages); 2854 2855 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2856 { 2857 struct page *page = vmf->page; 2858 struct inode *inode = file_inode(vmf->vma->vm_file); 2859 vm_fault_t ret = VM_FAULT_LOCKED; 2860 2861 sb_start_pagefault(inode->i_sb); 2862 file_update_time(vmf->vma->vm_file); 2863 lock_page(page); 2864 if (page->mapping != inode->i_mapping) { 2865 unlock_page(page); 2866 ret = VM_FAULT_NOPAGE; 2867 goto out; 2868 } 2869 /* 2870 * We mark the page dirty already here so that when freeze is in 2871 * progress, we are guaranteed that writeback during freezing will 2872 * see the dirty page and writeprotect it again. 2873 */ 2874 set_page_dirty(page); 2875 wait_for_stable_page(page); 2876 out: 2877 sb_end_pagefault(inode->i_sb); 2878 return ret; 2879 } 2880 2881 const struct vm_operations_struct generic_file_vm_ops = { 2882 .fault = filemap_fault, 2883 .map_pages = filemap_map_pages, 2884 .page_mkwrite = filemap_page_mkwrite, 2885 }; 2886 2887 /* This is used for a general mmap of a disk file */ 2888 2889 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2890 { 2891 struct address_space *mapping = file->f_mapping; 2892 2893 if (!mapping->a_ops->readpage) 2894 return -ENOEXEC; 2895 file_accessed(file); 2896 vma->vm_ops = &generic_file_vm_ops; 2897 return 0; 2898 } 2899 2900 /* 2901 * This is for filesystems which do not implement ->writepage. 2902 */ 2903 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2904 { 2905 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2906 return -EINVAL; 2907 return generic_file_mmap(file, vma); 2908 } 2909 #else 2910 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2911 { 2912 return VM_FAULT_SIGBUS; 2913 } 2914 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2915 { 2916 return -ENOSYS; 2917 } 2918 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2919 { 2920 return -ENOSYS; 2921 } 2922 #endif /* CONFIG_MMU */ 2923 2924 EXPORT_SYMBOL(filemap_page_mkwrite); 2925 EXPORT_SYMBOL(generic_file_mmap); 2926 EXPORT_SYMBOL(generic_file_readonly_mmap); 2927 2928 static struct page *wait_on_page_read(struct page *page) 2929 { 2930 if (!IS_ERR(page)) { 2931 wait_on_page_locked(page); 2932 if (!PageUptodate(page)) { 2933 put_page(page); 2934 page = ERR_PTR(-EIO); 2935 } 2936 } 2937 return page; 2938 } 2939 2940 static struct page *do_read_cache_page(struct address_space *mapping, 2941 pgoff_t index, 2942 int (*filler)(void *, struct page *), 2943 void *data, 2944 gfp_t gfp) 2945 { 2946 struct page *page; 2947 int err; 2948 repeat: 2949 page = find_get_page(mapping, index); 2950 if (!page) { 2951 page = __page_cache_alloc(gfp); 2952 if (!page) 2953 return ERR_PTR(-ENOMEM); 2954 err = add_to_page_cache_lru(page, mapping, index, gfp); 2955 if (unlikely(err)) { 2956 put_page(page); 2957 if (err == -EEXIST) 2958 goto repeat; 2959 /* Presumably ENOMEM for xarray node */ 2960 return ERR_PTR(err); 2961 } 2962 2963 filler: 2964 if (filler) 2965 err = filler(data, page); 2966 else 2967 err = mapping->a_ops->readpage(data, page); 2968 2969 if (err < 0) { 2970 put_page(page); 2971 return ERR_PTR(err); 2972 } 2973 2974 page = wait_on_page_read(page); 2975 if (IS_ERR(page)) 2976 return page; 2977 goto out; 2978 } 2979 if (PageUptodate(page)) 2980 goto out; 2981 2982 /* 2983 * Page is not up to date and may be locked due one of the following 2984 * case a: Page is being filled and the page lock is held 2985 * case b: Read/write error clearing the page uptodate status 2986 * case c: Truncation in progress (page locked) 2987 * case d: Reclaim in progress 2988 * 2989 * Case a, the page will be up to date when the page is unlocked. 2990 * There is no need to serialise on the page lock here as the page 2991 * is pinned so the lock gives no additional protection. Even if the 2992 * page is truncated, the data is still valid if PageUptodate as 2993 * it's a race vs truncate race. 2994 * Case b, the page will not be up to date 2995 * Case c, the page may be truncated but in itself, the data may still 2996 * be valid after IO completes as it's a read vs truncate race. The 2997 * operation must restart if the page is not uptodate on unlock but 2998 * otherwise serialising on page lock to stabilise the mapping gives 2999 * no additional guarantees to the caller as the page lock is 3000 * released before return. 3001 * Case d, similar to truncation. If reclaim holds the page lock, it 3002 * will be a race with remove_mapping that determines if the mapping 3003 * is valid on unlock but otherwise the data is valid and there is 3004 * no need to serialise with page lock. 3005 * 3006 * As the page lock gives no additional guarantee, we optimistically 3007 * wait on the page to be unlocked and check if it's up to date and 3008 * use the page if it is. Otherwise, the page lock is required to 3009 * distinguish between the different cases. The motivation is that we 3010 * avoid spurious serialisations and wakeups when multiple processes 3011 * wait on the same page for IO to complete. 3012 */ 3013 wait_on_page_locked(page); 3014 if (PageUptodate(page)) 3015 goto out; 3016 3017 /* Distinguish between all the cases under the safety of the lock */ 3018 lock_page(page); 3019 3020 /* Case c or d, restart the operation */ 3021 if (!page->mapping) { 3022 unlock_page(page); 3023 put_page(page); 3024 goto repeat; 3025 } 3026 3027 /* Someone else locked and filled the page in a very small window */ 3028 if (PageUptodate(page)) { 3029 unlock_page(page); 3030 goto out; 3031 } 3032 3033 /* 3034 * A previous I/O error may have been due to temporary 3035 * failures. 3036 * Clear page error before actual read, PG_error will be 3037 * set again if read page fails. 3038 */ 3039 ClearPageError(page); 3040 goto filler; 3041 3042 out: 3043 mark_page_accessed(page); 3044 return page; 3045 } 3046 3047 /** 3048 * read_cache_page - read into page cache, fill it if needed 3049 * @mapping: the page's address_space 3050 * @index: the page index 3051 * @filler: function to perform the read 3052 * @data: first arg to filler(data, page) function, often left as NULL 3053 * 3054 * Read into the page cache. If a page already exists, and PageUptodate() is 3055 * not set, try to fill the page and wait for it to become unlocked. 3056 * 3057 * If the page does not get brought uptodate, return -EIO. 3058 * 3059 * Return: up to date page on success, ERR_PTR() on failure. 3060 */ 3061 struct page *read_cache_page(struct address_space *mapping, 3062 pgoff_t index, 3063 int (*filler)(void *, struct page *), 3064 void *data) 3065 { 3066 return do_read_cache_page(mapping, index, filler, data, 3067 mapping_gfp_mask(mapping)); 3068 } 3069 EXPORT_SYMBOL(read_cache_page); 3070 3071 /** 3072 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3073 * @mapping: the page's address_space 3074 * @index: the page index 3075 * @gfp: the page allocator flags to use if allocating 3076 * 3077 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3078 * any new page allocations done using the specified allocation flags. 3079 * 3080 * If the page does not get brought uptodate, return -EIO. 3081 * 3082 * Return: up to date page on success, ERR_PTR() on failure. 3083 */ 3084 struct page *read_cache_page_gfp(struct address_space *mapping, 3085 pgoff_t index, 3086 gfp_t gfp) 3087 { 3088 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3089 } 3090 EXPORT_SYMBOL(read_cache_page_gfp); 3091 3092 /* 3093 * Don't operate on ranges the page cache doesn't support, and don't exceed the 3094 * LFS limits. If pos is under the limit it becomes a short access. If it 3095 * exceeds the limit we return -EFBIG. 3096 */ 3097 static int generic_write_check_limits(struct file *file, loff_t pos, 3098 loff_t *count) 3099 { 3100 struct inode *inode = file->f_mapping->host; 3101 loff_t max_size = inode->i_sb->s_maxbytes; 3102 loff_t limit = rlimit(RLIMIT_FSIZE); 3103 3104 if (limit != RLIM_INFINITY) { 3105 if (pos >= limit) { 3106 send_sig(SIGXFSZ, current, 0); 3107 return -EFBIG; 3108 } 3109 *count = min(*count, limit - pos); 3110 } 3111 3112 if (!(file->f_flags & O_LARGEFILE)) 3113 max_size = MAX_NON_LFS; 3114 3115 if (unlikely(pos >= max_size)) 3116 return -EFBIG; 3117 3118 *count = min(*count, max_size - pos); 3119 3120 return 0; 3121 } 3122 3123 /* 3124 * Performs necessary checks before doing a write 3125 * 3126 * Can adjust writing position or amount of bytes to write. 3127 * Returns appropriate error code that caller should return or 3128 * zero in case that write should be allowed. 3129 */ 3130 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 3131 { 3132 struct file *file = iocb->ki_filp; 3133 struct inode *inode = file->f_mapping->host; 3134 loff_t count; 3135 int ret; 3136 3137 if (IS_SWAPFILE(inode)) 3138 return -ETXTBSY; 3139 3140 if (!iov_iter_count(from)) 3141 return 0; 3142 3143 /* FIXME: this is for backwards compatibility with 2.4 */ 3144 if (iocb->ki_flags & IOCB_APPEND) 3145 iocb->ki_pos = i_size_read(inode); 3146 3147 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 3148 return -EINVAL; 3149 3150 count = iov_iter_count(from); 3151 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 3152 if (ret) 3153 return ret; 3154 3155 iov_iter_truncate(from, count); 3156 return iov_iter_count(from); 3157 } 3158 EXPORT_SYMBOL(generic_write_checks); 3159 3160 /* 3161 * Performs necessary checks before doing a clone. 3162 * 3163 * Can adjust amount of bytes to clone via @req_count argument. 3164 * Returns appropriate error code that caller should return or 3165 * zero in case the clone should be allowed. 3166 */ 3167 int generic_remap_checks(struct file *file_in, loff_t pos_in, 3168 struct file *file_out, loff_t pos_out, 3169 loff_t *req_count, unsigned int remap_flags) 3170 { 3171 struct inode *inode_in = file_in->f_mapping->host; 3172 struct inode *inode_out = file_out->f_mapping->host; 3173 uint64_t count = *req_count; 3174 uint64_t bcount; 3175 loff_t size_in, size_out; 3176 loff_t bs = inode_out->i_sb->s_blocksize; 3177 int ret; 3178 3179 /* The start of both ranges must be aligned to an fs block. */ 3180 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3181 return -EINVAL; 3182 3183 /* Ensure offsets don't wrap. */ 3184 if (pos_in + count < pos_in || pos_out + count < pos_out) 3185 return -EINVAL; 3186 3187 size_in = i_size_read(inode_in); 3188 size_out = i_size_read(inode_out); 3189 3190 /* Dedupe requires both ranges to be within EOF. */ 3191 if ((remap_flags & REMAP_FILE_DEDUP) && 3192 (pos_in >= size_in || pos_in + count > size_in || 3193 pos_out >= size_out || pos_out + count > size_out)) 3194 return -EINVAL; 3195 3196 /* Ensure the infile range is within the infile. */ 3197 if (pos_in >= size_in) 3198 return -EINVAL; 3199 count = min(count, size_in - (uint64_t)pos_in); 3200 3201 ret = generic_write_check_limits(file_out, pos_out, &count); 3202 if (ret) 3203 return ret; 3204 3205 /* 3206 * If the user wanted us to link to the infile's EOF, round up to the 3207 * next block boundary for this check. 3208 * 3209 * Otherwise, make sure the count is also block-aligned, having 3210 * already confirmed the starting offsets' block alignment. 3211 */ 3212 if (pos_in + count == size_in) { 3213 bcount = ALIGN(size_in, bs) - pos_in; 3214 } else { 3215 if (!IS_ALIGNED(count, bs)) 3216 count = ALIGN_DOWN(count, bs); 3217 bcount = count; 3218 } 3219 3220 /* Don't allow overlapped cloning within the same file. */ 3221 if (inode_in == inode_out && 3222 pos_out + bcount > pos_in && 3223 pos_out < pos_in + bcount) 3224 return -EINVAL; 3225 3226 /* 3227 * We shortened the request but the caller can't deal with that, so 3228 * bounce the request back to userspace. 3229 */ 3230 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3231 return -EINVAL; 3232 3233 *req_count = count; 3234 return 0; 3235 } 3236 3237 3238 /* 3239 * Performs common checks before doing a file copy/clone 3240 * from @file_in to @file_out. 3241 */ 3242 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3243 { 3244 struct inode *inode_in = file_inode(file_in); 3245 struct inode *inode_out = file_inode(file_out); 3246 3247 /* Don't copy dirs, pipes, sockets... */ 3248 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3249 return -EISDIR; 3250 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3251 return -EINVAL; 3252 3253 if (!(file_in->f_mode & FMODE_READ) || 3254 !(file_out->f_mode & FMODE_WRITE) || 3255 (file_out->f_flags & O_APPEND)) 3256 return -EBADF; 3257 3258 return 0; 3259 } 3260 3261 /* 3262 * Performs necessary checks before doing a file copy 3263 * 3264 * Can adjust amount of bytes to copy via @req_count argument. 3265 * Returns appropriate error code that caller should return or 3266 * zero in case the copy should be allowed. 3267 */ 3268 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3269 struct file *file_out, loff_t pos_out, 3270 size_t *req_count, unsigned int flags) 3271 { 3272 struct inode *inode_in = file_inode(file_in); 3273 struct inode *inode_out = file_inode(file_out); 3274 uint64_t count = *req_count; 3275 loff_t size_in; 3276 int ret; 3277 3278 ret = generic_file_rw_checks(file_in, file_out); 3279 if (ret) 3280 return ret; 3281 3282 /* Don't touch certain kinds of inodes */ 3283 if (IS_IMMUTABLE(inode_out)) 3284 return -EPERM; 3285 3286 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3287 return -ETXTBSY; 3288 3289 /* Ensure offsets don't wrap. */ 3290 if (pos_in + count < pos_in || pos_out + count < pos_out) 3291 return -EOVERFLOW; 3292 3293 /* Shorten the copy to EOF */ 3294 size_in = i_size_read(inode_in); 3295 if (pos_in >= size_in) 3296 count = 0; 3297 else 3298 count = min(count, size_in - (uint64_t)pos_in); 3299 3300 ret = generic_write_check_limits(file_out, pos_out, &count); 3301 if (ret) 3302 return ret; 3303 3304 /* Don't allow overlapped copying within the same file. */ 3305 if (inode_in == inode_out && 3306 pos_out + count > pos_in && 3307 pos_out < pos_in + count) 3308 return -EINVAL; 3309 3310 *req_count = count; 3311 return 0; 3312 } 3313 3314 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3315 loff_t pos, unsigned len, unsigned flags, 3316 struct page **pagep, void **fsdata) 3317 { 3318 const struct address_space_operations *aops = mapping->a_ops; 3319 3320 return aops->write_begin(file, mapping, pos, len, flags, 3321 pagep, fsdata); 3322 } 3323 EXPORT_SYMBOL(pagecache_write_begin); 3324 3325 int pagecache_write_end(struct file *file, struct address_space *mapping, 3326 loff_t pos, unsigned len, unsigned copied, 3327 struct page *page, void *fsdata) 3328 { 3329 const struct address_space_operations *aops = mapping->a_ops; 3330 3331 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3332 } 3333 EXPORT_SYMBOL(pagecache_write_end); 3334 3335 /* 3336 * Warn about a page cache invalidation failure during a direct I/O write. 3337 */ 3338 void dio_warn_stale_pagecache(struct file *filp) 3339 { 3340 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3341 char pathname[128]; 3342 struct inode *inode = file_inode(filp); 3343 char *path; 3344 3345 errseq_set(&inode->i_mapping->wb_err, -EIO); 3346 if (__ratelimit(&_rs)) { 3347 path = file_path(filp, pathname, sizeof(pathname)); 3348 if (IS_ERR(path)) 3349 path = "(unknown)"; 3350 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3351 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3352 current->comm); 3353 } 3354 } 3355 3356 ssize_t 3357 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3358 { 3359 struct file *file = iocb->ki_filp; 3360 struct address_space *mapping = file->f_mapping; 3361 struct inode *inode = mapping->host; 3362 loff_t pos = iocb->ki_pos; 3363 ssize_t written; 3364 size_t write_len; 3365 pgoff_t end; 3366 3367 write_len = iov_iter_count(from); 3368 end = (pos + write_len - 1) >> PAGE_SHIFT; 3369 3370 if (iocb->ki_flags & IOCB_NOWAIT) { 3371 /* If there are pages to writeback, return */ 3372 if (filemap_range_has_page(inode->i_mapping, pos, 3373 pos + write_len - 1)) 3374 return -EAGAIN; 3375 } else { 3376 written = filemap_write_and_wait_range(mapping, pos, 3377 pos + write_len - 1); 3378 if (written) 3379 goto out; 3380 } 3381 3382 /* 3383 * After a write we want buffered reads to be sure to go to disk to get 3384 * the new data. We invalidate clean cached page from the region we're 3385 * about to write. We do this *before* the write so that we can return 3386 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3387 */ 3388 written = invalidate_inode_pages2_range(mapping, 3389 pos >> PAGE_SHIFT, end); 3390 /* 3391 * If a page can not be invalidated, return 0 to fall back 3392 * to buffered write. 3393 */ 3394 if (written) { 3395 if (written == -EBUSY) 3396 return 0; 3397 goto out; 3398 } 3399 3400 written = mapping->a_ops->direct_IO(iocb, from); 3401 3402 /* 3403 * Finally, try again to invalidate clean pages which might have been 3404 * cached by non-direct readahead, or faulted in by get_user_pages() 3405 * if the source of the write was an mmap'ed region of the file 3406 * we're writing. Either one is a pretty crazy thing to do, 3407 * so we don't support it 100%. If this invalidation 3408 * fails, tough, the write still worked... 3409 * 3410 * Most of the time we do not need this since dio_complete() will do 3411 * the invalidation for us. However there are some file systems that 3412 * do not end up with dio_complete() being called, so let's not break 3413 * them by removing it completely. 3414 * 3415 * Noticeable example is a blkdev_direct_IO(). 3416 * 3417 * Skip invalidation for async writes or if mapping has no pages. 3418 */ 3419 if (written > 0 && mapping->nrpages && 3420 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3421 dio_warn_stale_pagecache(file); 3422 3423 if (written > 0) { 3424 pos += written; 3425 write_len -= written; 3426 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3427 i_size_write(inode, pos); 3428 mark_inode_dirty(inode); 3429 } 3430 iocb->ki_pos = pos; 3431 } 3432 iov_iter_revert(from, write_len - iov_iter_count(from)); 3433 out: 3434 return written; 3435 } 3436 EXPORT_SYMBOL(generic_file_direct_write); 3437 3438 /* 3439 * Find or create a page at the given pagecache position. Return the locked 3440 * page. This function is specifically for buffered writes. 3441 */ 3442 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3443 pgoff_t index, unsigned flags) 3444 { 3445 struct page *page; 3446 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3447 3448 if (flags & AOP_FLAG_NOFS) 3449 fgp_flags |= FGP_NOFS; 3450 3451 page = pagecache_get_page(mapping, index, fgp_flags, 3452 mapping_gfp_mask(mapping)); 3453 if (page) 3454 wait_for_stable_page(page); 3455 3456 return page; 3457 } 3458 EXPORT_SYMBOL(grab_cache_page_write_begin); 3459 3460 ssize_t generic_perform_write(struct file *file, 3461 struct iov_iter *i, loff_t pos) 3462 { 3463 struct address_space *mapping = file->f_mapping; 3464 const struct address_space_operations *a_ops = mapping->a_ops; 3465 long status = 0; 3466 ssize_t written = 0; 3467 unsigned int flags = 0; 3468 3469 do { 3470 struct page *page; 3471 unsigned long offset; /* Offset into pagecache page */ 3472 unsigned long bytes; /* Bytes to write to page */ 3473 size_t copied; /* Bytes copied from user */ 3474 void *fsdata; 3475 3476 offset = (pos & (PAGE_SIZE - 1)); 3477 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3478 iov_iter_count(i)); 3479 3480 again: 3481 /* 3482 * Bring in the user page that we will copy from _first_. 3483 * Otherwise there's a nasty deadlock on copying from the 3484 * same page as we're writing to, without it being marked 3485 * up-to-date. 3486 * 3487 * Not only is this an optimisation, but it is also required 3488 * to check that the address is actually valid, when atomic 3489 * usercopies are used, below. 3490 */ 3491 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3492 status = -EFAULT; 3493 break; 3494 } 3495 3496 if (fatal_signal_pending(current)) { 3497 status = -EINTR; 3498 break; 3499 } 3500 3501 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3502 &page, &fsdata); 3503 if (unlikely(status < 0)) 3504 break; 3505 3506 if (mapping_writably_mapped(mapping)) 3507 flush_dcache_page(page); 3508 3509 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3510 flush_dcache_page(page); 3511 3512 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3513 page, fsdata); 3514 if (unlikely(status < 0)) 3515 break; 3516 copied = status; 3517 3518 cond_resched(); 3519 3520 iov_iter_advance(i, copied); 3521 if (unlikely(copied == 0)) { 3522 /* 3523 * If we were unable to copy any data at all, we must 3524 * fall back to a single segment length write. 3525 * 3526 * If we didn't fallback here, we could livelock 3527 * because not all segments in the iov can be copied at 3528 * once without a pagefault. 3529 */ 3530 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3531 iov_iter_single_seg_count(i)); 3532 goto again; 3533 } 3534 pos += copied; 3535 written += copied; 3536 3537 balance_dirty_pages_ratelimited(mapping); 3538 } while (iov_iter_count(i)); 3539 3540 return written ? written : status; 3541 } 3542 EXPORT_SYMBOL(generic_perform_write); 3543 3544 /** 3545 * __generic_file_write_iter - write data to a file 3546 * @iocb: IO state structure (file, offset, etc.) 3547 * @from: iov_iter with data to write 3548 * 3549 * This function does all the work needed for actually writing data to a 3550 * file. It does all basic checks, removes SUID from the file, updates 3551 * modification times and calls proper subroutines depending on whether we 3552 * do direct IO or a standard buffered write. 3553 * 3554 * It expects i_mutex to be grabbed unless we work on a block device or similar 3555 * object which does not need locking at all. 3556 * 3557 * This function does *not* take care of syncing data in case of O_SYNC write. 3558 * A caller has to handle it. This is mainly due to the fact that we want to 3559 * avoid syncing under i_mutex. 3560 * 3561 * Return: 3562 * * number of bytes written, even for truncated writes 3563 * * negative error code if no data has been written at all 3564 */ 3565 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3566 { 3567 struct file *file = iocb->ki_filp; 3568 struct address_space * mapping = file->f_mapping; 3569 struct inode *inode = mapping->host; 3570 ssize_t written = 0; 3571 ssize_t err; 3572 ssize_t status; 3573 3574 /* We can write back this queue in page reclaim */ 3575 current->backing_dev_info = inode_to_bdi(inode); 3576 err = file_remove_privs(file); 3577 if (err) 3578 goto out; 3579 3580 err = file_update_time(file); 3581 if (err) 3582 goto out; 3583 3584 if (iocb->ki_flags & IOCB_DIRECT) { 3585 loff_t pos, endbyte; 3586 3587 written = generic_file_direct_write(iocb, from); 3588 /* 3589 * If the write stopped short of completing, fall back to 3590 * buffered writes. Some filesystems do this for writes to 3591 * holes, for example. For DAX files, a buffered write will 3592 * not succeed (even if it did, DAX does not handle dirty 3593 * page-cache pages correctly). 3594 */ 3595 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3596 goto out; 3597 3598 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3599 /* 3600 * If generic_perform_write() returned a synchronous error 3601 * then we want to return the number of bytes which were 3602 * direct-written, or the error code if that was zero. Note 3603 * that this differs from normal direct-io semantics, which 3604 * will return -EFOO even if some bytes were written. 3605 */ 3606 if (unlikely(status < 0)) { 3607 err = status; 3608 goto out; 3609 } 3610 /* 3611 * We need to ensure that the page cache pages are written to 3612 * disk and invalidated to preserve the expected O_DIRECT 3613 * semantics. 3614 */ 3615 endbyte = pos + status - 1; 3616 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3617 if (err == 0) { 3618 iocb->ki_pos = endbyte + 1; 3619 written += status; 3620 invalidate_mapping_pages(mapping, 3621 pos >> PAGE_SHIFT, 3622 endbyte >> PAGE_SHIFT); 3623 } else { 3624 /* 3625 * We don't know how much we wrote, so just return 3626 * the number of bytes which were direct-written 3627 */ 3628 } 3629 } else { 3630 written = generic_perform_write(file, from, iocb->ki_pos); 3631 if (likely(written > 0)) 3632 iocb->ki_pos += written; 3633 } 3634 out: 3635 current->backing_dev_info = NULL; 3636 return written ? written : err; 3637 } 3638 EXPORT_SYMBOL(__generic_file_write_iter); 3639 3640 /** 3641 * generic_file_write_iter - write data to a file 3642 * @iocb: IO state structure 3643 * @from: iov_iter with data to write 3644 * 3645 * This is a wrapper around __generic_file_write_iter() to be used by most 3646 * filesystems. It takes care of syncing the file in case of O_SYNC file 3647 * and acquires i_mutex as needed. 3648 * Return: 3649 * * negative error code if no data has been written at all of 3650 * vfs_fsync_range() failed for a synchronous write 3651 * * number of bytes written, even for truncated writes 3652 */ 3653 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3654 { 3655 struct file *file = iocb->ki_filp; 3656 struct inode *inode = file->f_mapping->host; 3657 ssize_t ret; 3658 3659 inode_lock(inode); 3660 ret = generic_write_checks(iocb, from); 3661 if (ret > 0) 3662 ret = __generic_file_write_iter(iocb, from); 3663 inode_unlock(inode); 3664 3665 if (ret > 0) 3666 ret = generic_write_sync(iocb, ret); 3667 return ret; 3668 } 3669 EXPORT_SYMBOL(generic_file_write_iter); 3670 3671 /** 3672 * try_to_release_page() - release old fs-specific metadata on a page 3673 * 3674 * @page: the page which the kernel is trying to free 3675 * @gfp_mask: memory allocation flags (and I/O mode) 3676 * 3677 * The address_space is to try to release any data against the page 3678 * (presumably at page->private). 3679 * 3680 * This may also be called if PG_fscache is set on a page, indicating that the 3681 * page is known to the local caching routines. 3682 * 3683 * The @gfp_mask argument specifies whether I/O may be performed to release 3684 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3685 * 3686 * Return: %1 if the release was successful, otherwise return zero. 3687 */ 3688 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3689 { 3690 struct address_space * const mapping = page->mapping; 3691 3692 BUG_ON(!PageLocked(page)); 3693 if (PageWriteback(page)) 3694 return 0; 3695 3696 if (mapping && mapping->a_ops->releasepage) 3697 return mapping->a_ops->releasepage(page, gfp_mask); 3698 return try_to_free_buffers(page); 3699 } 3700 3701 EXPORT_SYMBOL(try_to_release_page); 3702