1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_mutex 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->lock_page (access_process_vm) 89 * 90 * ->i_mutex (generic_perform_write) 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 92 * 93 * bdi->wb.list_lock 94 * sb_lock (fs/fs-writeback.c) 95 * ->i_pages lock (__sync_single_inode) 96 * 97 * ->i_mmap_rwsem 98 * ->anon_vma.lock (vma_adjust) 99 * 100 * ->anon_vma.lock 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 102 * 103 * ->page_table_lock or pte_lock 104 * ->swap_lock (try_to_unmap_one) 105 * ->private_lock (try_to_unmap_one) 106 * ->i_pages lock (try_to_unmap_one) 107 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 109 * ->private_lock (page_remove_rmap->set_page_dirty) 110 * ->i_pages lock (page_remove_rmap->set_page_dirty) 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 115 * ->inode->i_lock (zap_pte_range->set_page_dirty) 116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 117 * 118 * ->i_mmap_rwsem 119 * ->tasklist_lock (memory_failure, collect_procs_ao) 120 */ 121 122 static void page_cache_delete(struct address_space *mapping, 123 struct page *page, void *shadow) 124 { 125 XA_STATE(xas, &mapping->i_pages, page->index); 126 unsigned int nr = 1; 127 128 mapping_set_update(&xas, mapping); 129 130 /* hugetlb pages are represented by a single entry in the xarray */ 131 if (!PageHuge(page)) { 132 xas_set_order(&xas, page->index, compound_order(page)); 133 nr = compound_nr(page); 134 } 135 136 VM_BUG_ON_PAGE(!PageLocked(page), page); 137 VM_BUG_ON_PAGE(PageTail(page), page); 138 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 page->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 146 if (shadow) { 147 mapping->nrexceptional += nr; 148 /* 149 * Make sure the nrexceptional update is committed before 150 * the nrpages update so that final truncate racing 151 * with reclaim does not see both counters 0 at the 152 * same time and miss a shadow entry. 153 */ 154 smp_wmb(); 155 } 156 mapping->nrpages -= nr; 157 } 158 159 static void unaccount_page_cache_page(struct address_space *mapping, 160 struct page *page) 161 { 162 int nr; 163 164 /* 165 * if we're uptodate, flush out into the cleancache, otherwise 166 * invalidate any existing cleancache entries. We can't leave 167 * stale data around in the cleancache once our page is gone 168 */ 169 if (PageUptodate(page) && PageMappedToDisk(page)) 170 cleancache_put_page(page); 171 else 172 cleancache_invalidate_page(mapping, page); 173 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 VM_BUG_ON_PAGE(page_mapped(page), page); 176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 177 int mapcount; 178 179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 180 current->comm, page_to_pfn(page)); 181 dump_page(page, "still mapped when deleted"); 182 dump_stack(); 183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 184 185 mapcount = page_mapcount(page); 186 if (mapping_exiting(mapping) && 187 page_count(page) >= mapcount + 2) { 188 /* 189 * All vmas have already been torn down, so it's 190 * a good bet that actually the page is unmapped, 191 * and we'd prefer not to leak it: if we're wrong, 192 * some other bad page check should catch it later. 193 */ 194 page_mapcount_reset(page); 195 page_ref_sub(page, mapcount); 196 } 197 } 198 199 /* hugetlb pages do not participate in page cache accounting. */ 200 if (PageHuge(page)) 201 return; 202 203 nr = thp_nr_pages(page); 204 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 206 if (PageSwapBacked(page)) { 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 208 if (PageTransHuge(page)) 209 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 210 } else if (PageTransHuge(page)) { 211 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 212 filemap_nr_thps_dec(mapping); 213 } 214 215 /* 216 * At this point page must be either written or cleaned by 217 * truncate. Dirty page here signals a bug and loss of 218 * unwritten data. 219 * 220 * This fixes dirty accounting after removing the page entirely 221 * but leaves PageDirty set: it has no effect for truncated 222 * page and anyway will be cleared before returning page into 223 * buddy allocator. 224 */ 225 if (WARN_ON_ONCE(PageDirty(page))) 226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 227 } 228 229 /* 230 * Delete a page from the page cache and free it. Caller has to make 231 * sure the page is locked and that nobody else uses it - or that usage 232 * is safe. The caller must hold the i_pages lock. 233 */ 234 void __delete_from_page_cache(struct page *page, void *shadow) 235 { 236 struct address_space *mapping = page->mapping; 237 238 trace_mm_filemap_delete_from_page_cache(page); 239 240 unaccount_page_cache_page(mapping, page); 241 page_cache_delete(mapping, page, shadow); 242 } 243 244 static void page_cache_free_page(struct address_space *mapping, 245 struct page *page) 246 { 247 void (*freepage)(struct page *); 248 249 freepage = mapping->a_ops->freepage; 250 if (freepage) 251 freepage(page); 252 253 if (PageTransHuge(page) && !PageHuge(page)) { 254 page_ref_sub(page, thp_nr_pages(page)); 255 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 256 } else { 257 put_page(page); 258 } 259 } 260 261 /** 262 * delete_from_page_cache - delete page from page cache 263 * @page: the page which the kernel is trying to remove from page cache 264 * 265 * This must be called only on pages that have been verified to be in the page 266 * cache and locked. It will never put the page into the free list, the caller 267 * has a reference on the page. 268 */ 269 void delete_from_page_cache(struct page *page) 270 { 271 struct address_space *mapping = page_mapping(page); 272 unsigned long flags; 273 274 BUG_ON(!PageLocked(page)); 275 xa_lock_irqsave(&mapping->i_pages, flags); 276 __delete_from_page_cache(page, NULL); 277 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 279 page_cache_free_page(mapping, page); 280 } 281 EXPORT_SYMBOL(delete_from_page_cache); 282 283 /* 284 * page_cache_delete_batch - delete several pages from page cache 285 * @mapping: the mapping to which pages belong 286 * @pvec: pagevec with pages to delete 287 * 288 * The function walks over mapping->i_pages and removes pages passed in @pvec 289 * from the mapping. The function expects @pvec to be sorted by page index 290 * and is optimised for it to be dense. 291 * It tolerates holes in @pvec (mapping entries at those indices are not 292 * modified). The function expects only THP head pages to be present in the 293 * @pvec. 294 * 295 * The function expects the i_pages lock to be held. 296 */ 297 static void page_cache_delete_batch(struct address_space *mapping, 298 struct pagevec *pvec) 299 { 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 301 int total_pages = 0; 302 int i = 0; 303 struct page *page; 304 305 mapping_set_update(&xas, mapping); 306 xas_for_each(&xas, page, ULONG_MAX) { 307 if (i >= pagevec_count(pvec)) 308 break; 309 310 /* A swap/dax/shadow entry got inserted? Skip it. */ 311 if (xa_is_value(page)) 312 continue; 313 /* 314 * A page got inserted in our range? Skip it. We have our 315 * pages locked so they are protected from being removed. 316 * If we see a page whose index is higher than ours, it 317 * means our page has been removed, which shouldn't be 318 * possible because we're holding the PageLock. 319 */ 320 if (page != pvec->pages[i]) { 321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 322 page); 323 continue; 324 } 325 326 WARN_ON_ONCE(!PageLocked(page)); 327 328 if (page->index == xas.xa_index) 329 page->mapping = NULL; 330 /* Leave page->index set: truncation lookup relies on it */ 331 332 /* 333 * Move to the next page in the vector if this is a regular 334 * page or the index is of the last sub-page of this compound 335 * page. 336 */ 337 if (page->index + compound_nr(page) - 1 == xas.xa_index) 338 i++; 339 xas_store(&xas, NULL); 340 total_pages++; 341 } 342 mapping->nrpages -= total_pages; 343 } 344 345 void delete_from_page_cache_batch(struct address_space *mapping, 346 struct pagevec *pvec) 347 { 348 int i; 349 unsigned long flags; 350 351 if (!pagevec_count(pvec)) 352 return; 353 354 xa_lock_irqsave(&mapping->i_pages, flags); 355 for (i = 0; i < pagevec_count(pvec); i++) { 356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 357 358 unaccount_page_cache_page(mapping, pvec->pages[i]); 359 } 360 page_cache_delete_batch(mapping, pvec); 361 xa_unlock_irqrestore(&mapping->i_pages, flags); 362 363 for (i = 0; i < pagevec_count(pvec); i++) 364 page_cache_free_page(mapping, pvec->pages[i]); 365 } 366 367 int filemap_check_errors(struct address_space *mapping) 368 { 369 int ret = 0; 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_ENOSPC, &mapping->flags) && 372 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 373 ret = -ENOSPC; 374 if (test_bit(AS_EIO, &mapping->flags) && 375 test_and_clear_bit(AS_EIO, &mapping->flags)) 376 ret = -EIO; 377 return ret; 378 } 379 EXPORT_SYMBOL(filemap_check_errors); 380 381 static int filemap_check_and_keep_errors(struct address_space *mapping) 382 { 383 /* Check for outstanding write errors */ 384 if (test_bit(AS_EIO, &mapping->flags)) 385 return -EIO; 386 if (test_bit(AS_ENOSPC, &mapping->flags)) 387 return -ENOSPC; 388 return 0; 389 } 390 391 /** 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 393 * @mapping: address space structure to write 394 * @start: offset in bytes where the range starts 395 * @end: offset in bytes where the range ends (inclusive) 396 * @sync_mode: enable synchronous operation 397 * 398 * Start writeback against all of a mapping's dirty pages that lie 399 * within the byte offsets <start, end> inclusive. 400 * 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 402 * opposed to a regular memory cleansing writeback. The difference between 403 * these two operations is that if a dirty page/buffer is encountered, it must 404 * be waited upon, and not just skipped over. 405 * 406 * Return: %0 on success, negative error code otherwise. 407 */ 408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 409 loff_t end, int sync_mode) 410 { 411 int ret; 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 if (!mapping_can_writeback(mapping) || 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 421 return 0; 422 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 424 ret = do_writepages(mapping, &wbc); 425 wbc_detach_inode(&wbc); 426 return ret; 427 } 428 429 static inline int __filemap_fdatawrite(struct address_space *mapping, 430 int sync_mode) 431 { 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 433 } 434 435 int filemap_fdatawrite(struct address_space *mapping) 436 { 437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite); 440 441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 442 loff_t end) 443 { 444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 445 } 446 EXPORT_SYMBOL(filemap_fdatawrite_range); 447 448 /** 449 * filemap_flush - mostly a non-blocking flush 450 * @mapping: target address_space 451 * 452 * This is a mostly non-blocking flush. Not suitable for data-integrity 453 * purposes - I/O may not be started against all dirty pages. 454 * 455 * Return: %0 on success, negative error code otherwise. 456 */ 457 int filemap_flush(struct address_space *mapping) 458 { 459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 460 } 461 EXPORT_SYMBOL(filemap_flush); 462 463 /** 464 * filemap_range_has_page - check if a page exists in range. 465 * @mapping: address space within which to check 466 * @start_byte: offset in bytes where the range starts 467 * @end_byte: offset in bytes where the range ends (inclusive) 468 * 469 * Find at least one page in the range supplied, usually used to check if 470 * direct writing in this range will trigger a writeback. 471 * 472 * Return: %true if at least one page exists in the specified range, 473 * %false otherwise. 474 */ 475 bool filemap_range_has_page(struct address_space *mapping, 476 loff_t start_byte, loff_t end_byte) 477 { 478 struct page *page; 479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 480 pgoff_t max = end_byte >> PAGE_SHIFT; 481 482 if (end_byte < start_byte) 483 return false; 484 485 rcu_read_lock(); 486 for (;;) { 487 page = xas_find(&xas, max); 488 if (xas_retry(&xas, page)) 489 continue; 490 /* Shadow entries don't count */ 491 if (xa_is_value(page)) 492 continue; 493 /* 494 * We don't need to try to pin this page; we're about to 495 * release the RCU lock anyway. It is enough to know that 496 * there was a page here recently. 497 */ 498 break; 499 } 500 rcu_read_unlock(); 501 502 return page != NULL; 503 } 504 EXPORT_SYMBOL(filemap_range_has_page); 505 506 static void __filemap_fdatawait_range(struct address_space *mapping, 507 loff_t start_byte, loff_t end_byte) 508 { 509 pgoff_t index = start_byte >> PAGE_SHIFT; 510 pgoff_t end = end_byte >> PAGE_SHIFT; 511 struct pagevec pvec; 512 int nr_pages; 513 514 if (end_byte < start_byte) 515 return; 516 517 pagevec_init(&pvec); 518 while (index <= end) { 519 unsigned i; 520 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 522 end, PAGECACHE_TAG_WRITEBACK); 523 if (!nr_pages) 524 break; 525 526 for (i = 0; i < nr_pages; i++) { 527 struct page *page = pvec.pages[i]; 528 529 wait_on_page_writeback(page); 530 ClearPageError(page); 531 } 532 pagevec_release(&pvec); 533 cond_resched(); 534 } 535 } 536 537 /** 538 * filemap_fdatawait_range - wait for writeback to complete 539 * @mapping: address space structure to wait for 540 * @start_byte: offset in bytes where the range starts 541 * @end_byte: offset in bytes where the range ends (inclusive) 542 * 543 * Walk the list of under-writeback pages of the given address space 544 * in the given range and wait for all of them. Check error status of 545 * the address space and return it. 546 * 547 * Since the error status of the address space is cleared by this function, 548 * callers are responsible for checking the return value and handling and/or 549 * reporting the error. 550 * 551 * Return: error status of the address space. 552 */ 553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 554 loff_t end_byte) 555 { 556 __filemap_fdatawait_range(mapping, start_byte, end_byte); 557 return filemap_check_errors(mapping); 558 } 559 EXPORT_SYMBOL(filemap_fdatawait_range); 560 561 /** 562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 563 * @mapping: address space structure to wait for 564 * @start_byte: offset in bytes where the range starts 565 * @end_byte: offset in bytes where the range ends (inclusive) 566 * 567 * Walk the list of under-writeback pages of the given address space in the 568 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 569 * this function does not clear error status of the address space. 570 * 571 * Use this function if callers don't handle errors themselves. Expected 572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 573 * fsfreeze(8) 574 */ 575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 576 loff_t start_byte, loff_t end_byte) 577 { 578 __filemap_fdatawait_range(mapping, start_byte, end_byte); 579 return filemap_check_and_keep_errors(mapping); 580 } 581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 582 583 /** 584 * file_fdatawait_range - wait for writeback to complete 585 * @file: file pointing to address space structure to wait for 586 * @start_byte: offset in bytes where the range starts 587 * @end_byte: offset in bytes where the range ends (inclusive) 588 * 589 * Walk the list of under-writeback pages of the address space that file 590 * refers to, in the given range and wait for all of them. Check error 591 * status of the address space vs. the file->f_wb_err cursor and return it. 592 * 593 * Since the error status of the file is advanced by this function, 594 * callers are responsible for checking the return value and handling and/or 595 * reporting the error. 596 * 597 * Return: error status of the address space vs. the file->f_wb_err cursor. 598 */ 599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 600 { 601 struct address_space *mapping = file->f_mapping; 602 603 __filemap_fdatawait_range(mapping, start_byte, end_byte); 604 return file_check_and_advance_wb_err(file); 605 } 606 EXPORT_SYMBOL(file_fdatawait_range); 607 608 /** 609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 610 * @mapping: address space structure to wait for 611 * 612 * Walk the list of under-writeback pages of the given address space 613 * and wait for all of them. Unlike filemap_fdatawait(), this function 614 * does not clear error status of the address space. 615 * 616 * Use this function if callers don't handle errors themselves. Expected 617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 618 * fsfreeze(8) 619 * 620 * Return: error status of the address space. 621 */ 622 int filemap_fdatawait_keep_errors(struct address_space *mapping) 623 { 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 625 return filemap_check_and_keep_errors(mapping); 626 } 627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 628 629 /* Returns true if writeback might be needed or already in progress. */ 630 static bool mapping_needs_writeback(struct address_space *mapping) 631 { 632 if (dax_mapping(mapping)) 633 return mapping->nrexceptional; 634 635 return mapping->nrpages; 636 } 637 638 /** 639 * filemap_write_and_wait_range - write out & wait on a file range 640 * @mapping: the address_space for the pages 641 * @lstart: offset in bytes where the range starts 642 * @lend: offset in bytes where the range ends (inclusive) 643 * 644 * Write out and wait upon file offsets lstart->lend, inclusive. 645 * 646 * Note that @lend is inclusive (describes the last byte to be written) so 647 * that this function can be used to write to the very end-of-file (end = -1). 648 * 649 * Return: error status of the address space. 650 */ 651 int filemap_write_and_wait_range(struct address_space *mapping, 652 loff_t lstart, loff_t lend) 653 { 654 int err = 0; 655 656 if (mapping_needs_writeback(mapping)) { 657 err = __filemap_fdatawrite_range(mapping, lstart, lend, 658 WB_SYNC_ALL); 659 /* 660 * Even if the above returned error, the pages may be 661 * written partially (e.g. -ENOSPC), so we wait for it. 662 * But the -EIO is special case, it may indicate the worst 663 * thing (e.g. bug) happened, so we avoid waiting for it. 664 */ 665 if (err != -EIO) { 666 int err2 = filemap_fdatawait_range(mapping, 667 lstart, lend); 668 if (!err) 669 err = err2; 670 } else { 671 /* Clear any previously stored errors */ 672 filemap_check_errors(mapping); 673 } 674 } else { 675 err = filemap_check_errors(mapping); 676 } 677 return err; 678 } 679 EXPORT_SYMBOL(filemap_write_and_wait_range); 680 681 void __filemap_set_wb_err(struct address_space *mapping, int err) 682 { 683 errseq_t eseq = errseq_set(&mapping->wb_err, err); 684 685 trace_filemap_set_wb_err(mapping, eseq); 686 } 687 EXPORT_SYMBOL(__filemap_set_wb_err); 688 689 /** 690 * file_check_and_advance_wb_err - report wb error (if any) that was previously 691 * and advance wb_err to current one 692 * @file: struct file on which the error is being reported 693 * 694 * When userland calls fsync (or something like nfsd does the equivalent), we 695 * want to report any writeback errors that occurred since the last fsync (or 696 * since the file was opened if there haven't been any). 697 * 698 * Grab the wb_err from the mapping. If it matches what we have in the file, 699 * then just quickly return 0. The file is all caught up. 700 * 701 * If it doesn't match, then take the mapping value, set the "seen" flag in 702 * it and try to swap it into place. If it works, or another task beat us 703 * to it with the new value, then update the f_wb_err and return the error 704 * portion. The error at this point must be reported via proper channels 705 * (a'la fsync, or NFS COMMIT operation, etc.). 706 * 707 * While we handle mapping->wb_err with atomic operations, the f_wb_err 708 * value is protected by the f_lock since we must ensure that it reflects 709 * the latest value swapped in for this file descriptor. 710 * 711 * Return: %0 on success, negative error code otherwise. 712 */ 713 int file_check_and_advance_wb_err(struct file *file) 714 { 715 int err = 0; 716 errseq_t old = READ_ONCE(file->f_wb_err); 717 struct address_space *mapping = file->f_mapping; 718 719 /* Locklessly handle the common case where nothing has changed */ 720 if (errseq_check(&mapping->wb_err, old)) { 721 /* Something changed, must use slow path */ 722 spin_lock(&file->f_lock); 723 old = file->f_wb_err; 724 err = errseq_check_and_advance(&mapping->wb_err, 725 &file->f_wb_err); 726 trace_file_check_and_advance_wb_err(file, old); 727 spin_unlock(&file->f_lock); 728 } 729 730 /* 731 * We're mostly using this function as a drop in replacement for 732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 733 * that the legacy code would have had on these flags. 734 */ 735 clear_bit(AS_EIO, &mapping->flags); 736 clear_bit(AS_ENOSPC, &mapping->flags); 737 return err; 738 } 739 EXPORT_SYMBOL(file_check_and_advance_wb_err); 740 741 /** 742 * file_write_and_wait_range - write out & wait on a file range 743 * @file: file pointing to address_space with pages 744 * @lstart: offset in bytes where the range starts 745 * @lend: offset in bytes where the range ends (inclusive) 746 * 747 * Write out and wait upon file offsets lstart->lend, inclusive. 748 * 749 * Note that @lend is inclusive (describes the last byte to be written) so 750 * that this function can be used to write to the very end-of-file (end = -1). 751 * 752 * After writing out and waiting on the data, we check and advance the 753 * f_wb_err cursor to the latest value, and return any errors detected there. 754 * 755 * Return: %0 on success, negative error code otherwise. 756 */ 757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 758 { 759 int err = 0, err2; 760 struct address_space *mapping = file->f_mapping; 761 762 if (mapping_needs_writeback(mapping)) { 763 err = __filemap_fdatawrite_range(mapping, lstart, lend, 764 WB_SYNC_ALL); 765 /* See comment of filemap_write_and_wait() */ 766 if (err != -EIO) 767 __filemap_fdatawait_range(mapping, lstart, lend); 768 } 769 err2 = file_check_and_advance_wb_err(file); 770 if (!err) 771 err = err2; 772 return err; 773 } 774 EXPORT_SYMBOL(file_write_and_wait_range); 775 776 /** 777 * replace_page_cache_page - replace a pagecache page with a new one 778 * @old: page to be replaced 779 * @new: page to replace with 780 * 781 * This function replaces a page in the pagecache with a new one. On 782 * success it acquires the pagecache reference for the new page and 783 * drops it for the old page. Both the old and new pages must be 784 * locked. This function does not add the new page to the LRU, the 785 * caller must do that. 786 * 787 * The remove + add is atomic. This function cannot fail. 788 */ 789 void replace_page_cache_page(struct page *old, struct page *new) 790 { 791 struct address_space *mapping = old->mapping; 792 void (*freepage)(struct page *) = mapping->a_ops->freepage; 793 pgoff_t offset = old->index; 794 XA_STATE(xas, &mapping->i_pages, offset); 795 unsigned long flags; 796 797 VM_BUG_ON_PAGE(!PageLocked(old), old); 798 VM_BUG_ON_PAGE(!PageLocked(new), new); 799 VM_BUG_ON_PAGE(new->mapping, new); 800 801 get_page(new); 802 new->mapping = mapping; 803 new->index = offset; 804 805 mem_cgroup_migrate(old, new); 806 807 xas_lock_irqsave(&xas, flags); 808 xas_store(&xas, new); 809 810 old->mapping = NULL; 811 /* hugetlb pages do not participate in page cache accounting. */ 812 if (!PageHuge(old)) 813 __dec_lruvec_page_state(old, NR_FILE_PAGES); 814 if (!PageHuge(new)) 815 __inc_lruvec_page_state(new, NR_FILE_PAGES); 816 if (PageSwapBacked(old)) 817 __dec_lruvec_page_state(old, NR_SHMEM); 818 if (PageSwapBacked(new)) 819 __inc_lruvec_page_state(new, NR_SHMEM); 820 xas_unlock_irqrestore(&xas, flags); 821 if (freepage) 822 freepage(old); 823 put_page(old); 824 } 825 EXPORT_SYMBOL_GPL(replace_page_cache_page); 826 827 noinline int __add_to_page_cache_locked(struct page *page, 828 struct address_space *mapping, 829 pgoff_t offset, gfp_t gfp, 830 void **shadowp) 831 { 832 XA_STATE(xas, &mapping->i_pages, offset); 833 int huge = PageHuge(page); 834 int error; 835 bool charged = false; 836 837 VM_BUG_ON_PAGE(!PageLocked(page), page); 838 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 839 mapping_set_update(&xas, mapping); 840 841 get_page(page); 842 page->mapping = mapping; 843 page->index = offset; 844 845 if (!huge) { 846 error = mem_cgroup_charge(page, current->mm, gfp); 847 if (error) 848 goto error; 849 charged = true; 850 } 851 852 gfp &= GFP_RECLAIM_MASK; 853 854 do { 855 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 856 void *entry, *old = NULL; 857 858 if (order > thp_order(page)) 859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 860 order, gfp); 861 xas_lock_irq(&xas); 862 xas_for_each_conflict(&xas, entry) { 863 old = entry; 864 if (!xa_is_value(entry)) { 865 xas_set_err(&xas, -EEXIST); 866 goto unlock; 867 } 868 } 869 870 if (old) { 871 if (shadowp) 872 *shadowp = old; 873 /* entry may have been split before we acquired lock */ 874 order = xa_get_order(xas.xa, xas.xa_index); 875 if (order > thp_order(page)) { 876 xas_split(&xas, old, order); 877 xas_reset(&xas); 878 } 879 } 880 881 xas_store(&xas, page); 882 if (xas_error(&xas)) 883 goto unlock; 884 885 if (old) 886 mapping->nrexceptional--; 887 mapping->nrpages++; 888 889 /* hugetlb pages do not participate in page cache accounting */ 890 if (!huge) 891 __inc_lruvec_page_state(page, NR_FILE_PAGES); 892 unlock: 893 xas_unlock_irq(&xas); 894 } while (xas_nomem(&xas, gfp)); 895 896 if (xas_error(&xas)) { 897 error = xas_error(&xas); 898 if (charged) 899 mem_cgroup_uncharge(page); 900 goto error; 901 } 902 903 trace_mm_filemap_add_to_page_cache(page); 904 return 0; 905 error: 906 page->mapping = NULL; 907 /* Leave page->index set: truncation relies upon it */ 908 put_page(page); 909 return error; 910 } 911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 912 913 /** 914 * add_to_page_cache_locked - add a locked page to the pagecache 915 * @page: page to add 916 * @mapping: the page's address_space 917 * @offset: page index 918 * @gfp_mask: page allocation mode 919 * 920 * This function is used to add a page to the pagecache. It must be locked. 921 * This function does not add the page to the LRU. The caller must do that. 922 * 923 * Return: %0 on success, negative error code otherwise. 924 */ 925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 926 pgoff_t offset, gfp_t gfp_mask) 927 { 928 return __add_to_page_cache_locked(page, mapping, offset, 929 gfp_mask, NULL); 930 } 931 EXPORT_SYMBOL(add_to_page_cache_locked); 932 933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 934 pgoff_t offset, gfp_t gfp_mask) 935 { 936 void *shadow = NULL; 937 int ret; 938 939 __SetPageLocked(page); 940 ret = __add_to_page_cache_locked(page, mapping, offset, 941 gfp_mask, &shadow); 942 if (unlikely(ret)) 943 __ClearPageLocked(page); 944 else { 945 /* 946 * The page might have been evicted from cache only 947 * recently, in which case it should be activated like 948 * any other repeatedly accessed page. 949 * The exception is pages getting rewritten; evicting other 950 * data from the working set, only to cache data that will 951 * get overwritten with something else, is a waste of memory. 952 */ 953 WARN_ON_ONCE(PageActive(page)); 954 if (!(gfp_mask & __GFP_WRITE) && shadow) 955 workingset_refault(page, shadow); 956 lru_cache_add(page); 957 } 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 961 962 #ifdef CONFIG_NUMA 963 struct page *__page_cache_alloc(gfp_t gfp) 964 { 965 int n; 966 struct page *page; 967 968 if (cpuset_do_page_mem_spread()) { 969 unsigned int cpuset_mems_cookie; 970 do { 971 cpuset_mems_cookie = read_mems_allowed_begin(); 972 n = cpuset_mem_spread_node(); 973 page = __alloc_pages_node(n, gfp, 0); 974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 975 976 return page; 977 } 978 return alloc_pages(gfp, 0); 979 } 980 EXPORT_SYMBOL(__page_cache_alloc); 981 #endif 982 983 /* 984 * In order to wait for pages to become available there must be 985 * waitqueues associated with pages. By using a hash table of 986 * waitqueues where the bucket discipline is to maintain all 987 * waiters on the same queue and wake all when any of the pages 988 * become available, and for the woken contexts to check to be 989 * sure the appropriate page became available, this saves space 990 * at a cost of "thundering herd" phenomena during rare hash 991 * collisions. 992 */ 993 #define PAGE_WAIT_TABLE_BITS 8 994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 996 997 static wait_queue_head_t *page_waitqueue(struct page *page) 998 { 999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1000 } 1001 1002 void __init pagecache_init(void) 1003 { 1004 int i; 1005 1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1007 init_waitqueue_head(&page_wait_table[i]); 1008 1009 page_writeback_init(); 1010 } 1011 1012 /* 1013 * The page wait code treats the "wait->flags" somewhat unusually, because 1014 * we have multiple different kinds of waits, not just the usual "exclusive" 1015 * one. 1016 * 1017 * We have: 1018 * 1019 * (a) no special bits set: 1020 * 1021 * We're just waiting for the bit to be released, and when a waker 1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1023 * and remove it from the wait queue. 1024 * 1025 * Simple and straightforward. 1026 * 1027 * (b) WQ_FLAG_EXCLUSIVE: 1028 * 1029 * The waiter is waiting to get the lock, and only one waiter should 1030 * be woken up to avoid any thundering herd behavior. We'll set the 1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1032 * 1033 * This is the traditional exclusive wait. 1034 * 1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1036 * 1037 * The waiter is waiting to get the bit, and additionally wants the 1038 * lock to be transferred to it for fair lock behavior. If the lock 1039 * cannot be taken, we stop walking the wait queue without waking 1040 * the waiter. 1041 * 1042 * This is the "fair lock handoff" case, and in addition to setting 1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1044 * that it now has the lock. 1045 */ 1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1047 { 1048 unsigned int flags; 1049 struct wait_page_key *key = arg; 1050 struct wait_page_queue *wait_page 1051 = container_of(wait, struct wait_page_queue, wait); 1052 1053 if (!wake_page_match(wait_page, key)) 1054 return 0; 1055 1056 /* 1057 * If it's a lock handoff wait, we get the bit for it, and 1058 * stop walking (and do not wake it up) if we can't. 1059 */ 1060 flags = wait->flags; 1061 if (flags & WQ_FLAG_EXCLUSIVE) { 1062 if (test_bit(key->bit_nr, &key->page->flags)) 1063 return -1; 1064 if (flags & WQ_FLAG_CUSTOM) { 1065 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1066 return -1; 1067 flags |= WQ_FLAG_DONE; 1068 } 1069 } 1070 1071 /* 1072 * We are holding the wait-queue lock, but the waiter that 1073 * is waiting for this will be checking the flags without 1074 * any locking. 1075 * 1076 * So update the flags atomically, and wake up the waiter 1077 * afterwards to avoid any races. This store-release pairs 1078 * with the load-acquire in wait_on_page_bit_common(). 1079 */ 1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1081 wake_up_state(wait->private, mode); 1082 1083 /* 1084 * Ok, we have successfully done what we're waiting for, 1085 * and we can unconditionally remove the wait entry. 1086 * 1087 * Note that this pairs with the "finish_wait()" in the 1088 * waiter, and has to be the absolute last thing we do. 1089 * After this list_del_init(&wait->entry) the wait entry 1090 * might be de-allocated and the process might even have 1091 * exited. 1092 */ 1093 list_del_init_careful(&wait->entry); 1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1095 } 1096 1097 static void wake_up_page_bit(struct page *page, int bit_nr) 1098 { 1099 wait_queue_head_t *q = page_waitqueue(page); 1100 struct wait_page_key key; 1101 unsigned long flags; 1102 wait_queue_entry_t bookmark; 1103 1104 key.page = page; 1105 key.bit_nr = bit_nr; 1106 key.page_match = 0; 1107 1108 bookmark.flags = 0; 1109 bookmark.private = NULL; 1110 bookmark.func = NULL; 1111 INIT_LIST_HEAD(&bookmark.entry); 1112 1113 spin_lock_irqsave(&q->lock, flags); 1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1115 1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1117 /* 1118 * Take a breather from holding the lock, 1119 * allow pages that finish wake up asynchronously 1120 * to acquire the lock and remove themselves 1121 * from wait queue 1122 */ 1123 spin_unlock_irqrestore(&q->lock, flags); 1124 cpu_relax(); 1125 spin_lock_irqsave(&q->lock, flags); 1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1127 } 1128 1129 /* 1130 * It is possible for other pages to have collided on the waitqueue 1131 * hash, so in that case check for a page match. That prevents a long- 1132 * term waiter 1133 * 1134 * It is still possible to miss a case here, when we woke page waiters 1135 * and removed them from the waitqueue, but there are still other 1136 * page waiters. 1137 */ 1138 if (!waitqueue_active(q) || !key.page_match) { 1139 ClearPageWaiters(page); 1140 /* 1141 * It's possible to miss clearing Waiters here, when we woke 1142 * our page waiters, but the hashed waitqueue has waiters for 1143 * other pages on it. 1144 * 1145 * That's okay, it's a rare case. The next waker will clear it. 1146 */ 1147 } 1148 spin_unlock_irqrestore(&q->lock, flags); 1149 } 1150 1151 static void wake_up_page(struct page *page, int bit) 1152 { 1153 if (!PageWaiters(page)) 1154 return; 1155 wake_up_page_bit(page, bit); 1156 } 1157 1158 /* 1159 * A choice of three behaviors for wait_on_page_bit_common(): 1160 */ 1161 enum behavior { 1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1163 * __lock_page() waiting on then setting PG_locked. 1164 */ 1165 SHARED, /* Hold ref to page and check the bit when woken, like 1166 * wait_on_page_writeback() waiting on PG_writeback. 1167 */ 1168 DROP, /* Drop ref to page before wait, no check when woken, 1169 * like put_and_wait_on_page_locked() on PG_locked. 1170 */ 1171 }; 1172 1173 /* 1174 * Attempt to check (or get) the page bit, and mark us done 1175 * if successful. 1176 */ 1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1178 struct wait_queue_entry *wait) 1179 { 1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1181 if (test_and_set_bit(bit_nr, &page->flags)) 1182 return false; 1183 } else if (test_bit(bit_nr, &page->flags)) 1184 return false; 1185 1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1187 return true; 1188 } 1189 1190 /* How many times do we accept lock stealing from under a waiter? */ 1191 int sysctl_page_lock_unfairness = 5; 1192 1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1194 struct page *page, int bit_nr, int state, enum behavior behavior) 1195 { 1196 int unfairness = sysctl_page_lock_unfairness; 1197 struct wait_page_queue wait_page; 1198 wait_queue_entry_t *wait = &wait_page.wait; 1199 bool thrashing = false; 1200 bool delayacct = false; 1201 unsigned long pflags; 1202 1203 if (bit_nr == PG_locked && 1204 !PageUptodate(page) && PageWorkingset(page)) { 1205 if (!PageSwapBacked(page)) { 1206 delayacct_thrashing_start(); 1207 delayacct = true; 1208 } 1209 psi_memstall_enter(&pflags); 1210 thrashing = true; 1211 } 1212 1213 init_wait(wait); 1214 wait->func = wake_page_function; 1215 wait_page.page = page; 1216 wait_page.bit_nr = bit_nr; 1217 1218 repeat: 1219 wait->flags = 0; 1220 if (behavior == EXCLUSIVE) { 1221 wait->flags = WQ_FLAG_EXCLUSIVE; 1222 if (--unfairness < 0) 1223 wait->flags |= WQ_FLAG_CUSTOM; 1224 } 1225 1226 /* 1227 * Do one last check whether we can get the 1228 * page bit synchronously. 1229 * 1230 * Do the SetPageWaiters() marking before that 1231 * to let any waker we _just_ missed know they 1232 * need to wake us up (otherwise they'll never 1233 * even go to the slow case that looks at the 1234 * page queue), and add ourselves to the wait 1235 * queue if we need to sleep. 1236 * 1237 * This part needs to be done under the queue 1238 * lock to avoid races. 1239 */ 1240 spin_lock_irq(&q->lock); 1241 SetPageWaiters(page); 1242 if (!trylock_page_bit_common(page, bit_nr, wait)) 1243 __add_wait_queue_entry_tail(q, wait); 1244 spin_unlock_irq(&q->lock); 1245 1246 /* 1247 * From now on, all the logic will be based on 1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1249 * see whether the page bit testing has already 1250 * been done by the wake function. 1251 * 1252 * We can drop our reference to the page. 1253 */ 1254 if (behavior == DROP) 1255 put_page(page); 1256 1257 /* 1258 * Note that until the "finish_wait()", or until 1259 * we see the WQ_FLAG_WOKEN flag, we need to 1260 * be very careful with the 'wait->flags', because 1261 * we may race with a waker that sets them. 1262 */ 1263 for (;;) { 1264 unsigned int flags; 1265 1266 set_current_state(state); 1267 1268 /* Loop until we've been woken or interrupted */ 1269 flags = smp_load_acquire(&wait->flags); 1270 if (!(flags & WQ_FLAG_WOKEN)) { 1271 if (signal_pending_state(state, current)) 1272 break; 1273 1274 io_schedule(); 1275 continue; 1276 } 1277 1278 /* If we were non-exclusive, we're done */ 1279 if (behavior != EXCLUSIVE) 1280 break; 1281 1282 /* If the waker got the lock for us, we're done */ 1283 if (flags & WQ_FLAG_DONE) 1284 break; 1285 1286 /* 1287 * Otherwise, if we're getting the lock, we need to 1288 * try to get it ourselves. 1289 * 1290 * And if that fails, we'll have to retry this all. 1291 */ 1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1293 goto repeat; 1294 1295 wait->flags |= WQ_FLAG_DONE; 1296 break; 1297 } 1298 1299 /* 1300 * If a signal happened, this 'finish_wait()' may remove the last 1301 * waiter from the wait-queues, but the PageWaiters bit will remain 1302 * set. That's ok. The next wakeup will take care of it, and trying 1303 * to do it here would be difficult and prone to races. 1304 */ 1305 finish_wait(q, wait); 1306 1307 if (thrashing) { 1308 if (delayacct) 1309 delayacct_thrashing_end(); 1310 psi_memstall_leave(&pflags); 1311 } 1312 1313 /* 1314 * NOTE! The wait->flags weren't stable until we've done the 1315 * 'finish_wait()', and we could have exited the loop above due 1316 * to a signal, and had a wakeup event happen after the signal 1317 * test but before the 'finish_wait()'. 1318 * 1319 * So only after the finish_wait() can we reliably determine 1320 * if we got woken up or not, so we can now figure out the final 1321 * return value based on that state without races. 1322 * 1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1324 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1325 */ 1326 if (behavior == EXCLUSIVE) 1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1328 1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1330 } 1331 1332 void wait_on_page_bit(struct page *page, int bit_nr) 1333 { 1334 wait_queue_head_t *q = page_waitqueue(page); 1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1336 } 1337 EXPORT_SYMBOL(wait_on_page_bit); 1338 1339 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1340 { 1341 wait_queue_head_t *q = page_waitqueue(page); 1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1343 } 1344 EXPORT_SYMBOL(wait_on_page_bit_killable); 1345 1346 /** 1347 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1348 * @page: The page to wait for. 1349 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1350 * 1351 * The caller should hold a reference on @page. They expect the page to 1352 * become unlocked relatively soon, but do not wish to hold up migration 1353 * (for example) by holding the reference while waiting for the page to 1354 * come unlocked. After this function returns, the caller should not 1355 * dereference @page. 1356 * 1357 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1358 */ 1359 int put_and_wait_on_page_locked(struct page *page, int state) 1360 { 1361 wait_queue_head_t *q; 1362 1363 page = compound_head(page); 1364 q = page_waitqueue(page); 1365 return wait_on_page_bit_common(q, page, PG_locked, state, DROP); 1366 } 1367 1368 /** 1369 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1370 * @page: Page defining the wait queue of interest 1371 * @waiter: Waiter to add to the queue 1372 * 1373 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1374 */ 1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1376 { 1377 wait_queue_head_t *q = page_waitqueue(page); 1378 unsigned long flags; 1379 1380 spin_lock_irqsave(&q->lock, flags); 1381 __add_wait_queue_entry_tail(q, waiter); 1382 SetPageWaiters(page); 1383 spin_unlock_irqrestore(&q->lock, flags); 1384 } 1385 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1386 1387 #ifndef clear_bit_unlock_is_negative_byte 1388 1389 /* 1390 * PG_waiters is the high bit in the same byte as PG_lock. 1391 * 1392 * On x86 (and on many other architectures), we can clear PG_lock and 1393 * test the sign bit at the same time. But if the architecture does 1394 * not support that special operation, we just do this all by hand 1395 * instead. 1396 * 1397 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1398 * being cleared, but a memory barrier should be unnecessary since it is 1399 * in the same byte as PG_locked. 1400 */ 1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1402 { 1403 clear_bit_unlock(nr, mem); 1404 /* smp_mb__after_atomic(); */ 1405 return test_bit(PG_waiters, mem); 1406 } 1407 1408 #endif 1409 1410 /** 1411 * unlock_page - unlock a locked page 1412 * @page: the page 1413 * 1414 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1415 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1416 * mechanism between PageLocked pages and PageWriteback pages is shared. 1417 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1418 * 1419 * Note that this depends on PG_waiters being the sign bit in the byte 1420 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1421 * clear the PG_locked bit and test PG_waiters at the same time fairly 1422 * portably (architectures that do LL/SC can test any bit, while x86 can 1423 * test the sign bit). 1424 */ 1425 void unlock_page(struct page *page) 1426 { 1427 BUILD_BUG_ON(PG_waiters != 7); 1428 page = compound_head(page); 1429 VM_BUG_ON_PAGE(!PageLocked(page), page); 1430 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1431 wake_up_page_bit(page, PG_locked); 1432 } 1433 EXPORT_SYMBOL(unlock_page); 1434 1435 /** 1436 * end_page_writeback - end writeback against a page 1437 * @page: the page 1438 */ 1439 void end_page_writeback(struct page *page) 1440 { 1441 /* 1442 * TestClearPageReclaim could be used here but it is an atomic 1443 * operation and overkill in this particular case. Failing to 1444 * shuffle a page marked for immediate reclaim is too mild to 1445 * justify taking an atomic operation penalty at the end of 1446 * ever page writeback. 1447 */ 1448 if (PageReclaim(page)) { 1449 ClearPageReclaim(page); 1450 rotate_reclaimable_page(page); 1451 } 1452 1453 /* 1454 * Writeback does not hold a page reference of its own, relying 1455 * on truncation to wait for the clearing of PG_writeback. 1456 * But here we must make sure that the page is not freed and 1457 * reused before the wake_up_page(). 1458 */ 1459 get_page(page); 1460 if (!test_clear_page_writeback(page)) 1461 BUG(); 1462 1463 smp_mb__after_atomic(); 1464 wake_up_page(page, PG_writeback); 1465 put_page(page); 1466 } 1467 EXPORT_SYMBOL(end_page_writeback); 1468 1469 /* 1470 * After completing I/O on a page, call this routine to update the page 1471 * flags appropriately 1472 */ 1473 void page_endio(struct page *page, bool is_write, int err) 1474 { 1475 if (!is_write) { 1476 if (!err) { 1477 SetPageUptodate(page); 1478 } else { 1479 ClearPageUptodate(page); 1480 SetPageError(page); 1481 } 1482 unlock_page(page); 1483 } else { 1484 if (err) { 1485 struct address_space *mapping; 1486 1487 SetPageError(page); 1488 mapping = page_mapping(page); 1489 if (mapping) 1490 mapping_set_error(mapping, err); 1491 } 1492 end_page_writeback(page); 1493 } 1494 } 1495 EXPORT_SYMBOL_GPL(page_endio); 1496 1497 /** 1498 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1499 * @__page: the page to lock 1500 */ 1501 void __lock_page(struct page *__page) 1502 { 1503 struct page *page = compound_head(__page); 1504 wait_queue_head_t *q = page_waitqueue(page); 1505 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1506 EXCLUSIVE); 1507 } 1508 EXPORT_SYMBOL(__lock_page); 1509 1510 int __lock_page_killable(struct page *__page) 1511 { 1512 struct page *page = compound_head(__page); 1513 wait_queue_head_t *q = page_waitqueue(page); 1514 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1515 EXCLUSIVE); 1516 } 1517 EXPORT_SYMBOL_GPL(__lock_page_killable); 1518 1519 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1520 { 1521 struct wait_queue_head *q = page_waitqueue(page); 1522 int ret = 0; 1523 1524 wait->page = page; 1525 wait->bit_nr = PG_locked; 1526 1527 spin_lock_irq(&q->lock); 1528 __add_wait_queue_entry_tail(q, &wait->wait); 1529 SetPageWaiters(page); 1530 ret = !trylock_page(page); 1531 /* 1532 * If we were successful now, we know we're still on the 1533 * waitqueue as we're still under the lock. This means it's 1534 * safe to remove and return success, we know the callback 1535 * isn't going to trigger. 1536 */ 1537 if (!ret) 1538 __remove_wait_queue(q, &wait->wait); 1539 else 1540 ret = -EIOCBQUEUED; 1541 spin_unlock_irq(&q->lock); 1542 return ret; 1543 } 1544 1545 /* 1546 * Return values: 1547 * 1 - page is locked; mmap_lock is still held. 1548 * 0 - page is not locked. 1549 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1550 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1551 * which case mmap_lock is still held. 1552 * 1553 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1554 * with the page locked and the mmap_lock unperturbed. 1555 */ 1556 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1557 unsigned int flags) 1558 { 1559 if (fault_flag_allow_retry_first(flags)) { 1560 /* 1561 * CAUTION! In this case, mmap_lock is not released 1562 * even though return 0. 1563 */ 1564 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1565 return 0; 1566 1567 mmap_read_unlock(mm); 1568 if (flags & FAULT_FLAG_KILLABLE) 1569 wait_on_page_locked_killable(page); 1570 else 1571 wait_on_page_locked(page); 1572 return 0; 1573 } 1574 if (flags & FAULT_FLAG_KILLABLE) { 1575 int ret; 1576 1577 ret = __lock_page_killable(page); 1578 if (ret) { 1579 mmap_read_unlock(mm); 1580 return 0; 1581 } 1582 } else { 1583 __lock_page(page); 1584 } 1585 return 1; 1586 1587 } 1588 1589 /** 1590 * page_cache_next_miss() - Find the next gap in the page cache. 1591 * @mapping: Mapping. 1592 * @index: Index. 1593 * @max_scan: Maximum range to search. 1594 * 1595 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1596 * gap with the lowest index. 1597 * 1598 * This function may be called under the rcu_read_lock. However, this will 1599 * not atomically search a snapshot of the cache at a single point in time. 1600 * For example, if a gap is created at index 5, then subsequently a gap is 1601 * created at index 10, page_cache_next_miss covering both indices may 1602 * return 10 if called under the rcu_read_lock. 1603 * 1604 * Return: The index of the gap if found, otherwise an index outside the 1605 * range specified (in which case 'return - index >= max_scan' will be true). 1606 * In the rare case of index wrap-around, 0 will be returned. 1607 */ 1608 pgoff_t page_cache_next_miss(struct address_space *mapping, 1609 pgoff_t index, unsigned long max_scan) 1610 { 1611 XA_STATE(xas, &mapping->i_pages, index); 1612 1613 while (max_scan--) { 1614 void *entry = xas_next(&xas); 1615 if (!entry || xa_is_value(entry)) 1616 break; 1617 if (xas.xa_index == 0) 1618 break; 1619 } 1620 1621 return xas.xa_index; 1622 } 1623 EXPORT_SYMBOL(page_cache_next_miss); 1624 1625 /** 1626 * page_cache_prev_miss() - Find the previous gap in the page cache. 1627 * @mapping: Mapping. 1628 * @index: Index. 1629 * @max_scan: Maximum range to search. 1630 * 1631 * Search the range [max(index - max_scan + 1, 0), index] for the 1632 * gap with the highest index. 1633 * 1634 * This function may be called under the rcu_read_lock. However, this will 1635 * not atomically search a snapshot of the cache at a single point in time. 1636 * For example, if a gap is created at index 10, then subsequently a gap is 1637 * created at index 5, page_cache_prev_miss() covering both indices may 1638 * return 5 if called under the rcu_read_lock. 1639 * 1640 * Return: The index of the gap if found, otherwise an index outside the 1641 * range specified (in which case 'index - return >= max_scan' will be true). 1642 * In the rare case of wrap-around, ULONG_MAX will be returned. 1643 */ 1644 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1645 pgoff_t index, unsigned long max_scan) 1646 { 1647 XA_STATE(xas, &mapping->i_pages, index); 1648 1649 while (max_scan--) { 1650 void *entry = xas_prev(&xas); 1651 if (!entry || xa_is_value(entry)) 1652 break; 1653 if (xas.xa_index == ULONG_MAX) 1654 break; 1655 } 1656 1657 return xas.xa_index; 1658 } 1659 EXPORT_SYMBOL(page_cache_prev_miss); 1660 1661 /* 1662 * mapping_get_entry - Get a page cache entry. 1663 * @mapping: the address_space to search 1664 * @index: The page cache index. 1665 * 1666 * Looks up the page cache slot at @mapping & @offset. If there is a 1667 * page cache page, the head page is returned with an increased refcount. 1668 * 1669 * If the slot holds a shadow entry of a previously evicted page, or a 1670 * swap entry from shmem/tmpfs, it is returned. 1671 * 1672 * Return: The head page or shadow entry, %NULL if nothing is found. 1673 */ 1674 static struct page *mapping_get_entry(struct address_space *mapping, 1675 pgoff_t index) 1676 { 1677 XA_STATE(xas, &mapping->i_pages, index); 1678 struct page *page; 1679 1680 rcu_read_lock(); 1681 repeat: 1682 xas_reset(&xas); 1683 page = xas_load(&xas); 1684 if (xas_retry(&xas, page)) 1685 goto repeat; 1686 /* 1687 * A shadow entry of a recently evicted page, or a swap entry from 1688 * shmem/tmpfs. Return it without attempting to raise page count. 1689 */ 1690 if (!page || xa_is_value(page)) 1691 goto out; 1692 1693 if (!page_cache_get_speculative(page)) 1694 goto repeat; 1695 1696 /* 1697 * Has the page moved or been split? 1698 * This is part of the lockless pagecache protocol. See 1699 * include/linux/pagemap.h for details. 1700 */ 1701 if (unlikely(page != xas_reload(&xas))) { 1702 put_page(page); 1703 goto repeat; 1704 } 1705 out: 1706 rcu_read_unlock(); 1707 1708 return page; 1709 } 1710 1711 /** 1712 * pagecache_get_page - Find and get a reference to a page. 1713 * @mapping: The address_space to search. 1714 * @index: The page index. 1715 * @fgp_flags: %FGP flags modify how the page is returned. 1716 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1717 * 1718 * Looks up the page cache entry at @mapping & @index. 1719 * 1720 * @fgp_flags can be zero or more of these flags: 1721 * 1722 * * %FGP_ACCESSED - The page will be marked accessed. 1723 * * %FGP_LOCK - The page is returned locked. 1724 * * %FGP_HEAD - If the page is present and a THP, return the head page 1725 * rather than the exact page specified by the index. 1726 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1727 * instead of allocating a new page to replace it. 1728 * * %FGP_CREAT - If no page is present then a new page is allocated using 1729 * @gfp_mask and added to the page cache and the VM's LRU list. 1730 * The page is returned locked and with an increased refcount. 1731 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1732 * page is already in cache. If the page was allocated, unlock it before 1733 * returning so the caller can do the same dance. 1734 * * %FGP_WRITE - The page will be written 1735 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1736 * * %FGP_NOWAIT - Don't get blocked by page lock 1737 * 1738 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1739 * if the %GFP flags specified for %FGP_CREAT are atomic. 1740 * 1741 * If there is a page cache page, it is returned with an increased refcount. 1742 * 1743 * Return: The found page or %NULL otherwise. 1744 */ 1745 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1746 int fgp_flags, gfp_t gfp_mask) 1747 { 1748 struct page *page; 1749 1750 repeat: 1751 page = mapping_get_entry(mapping, index); 1752 if (xa_is_value(page)) { 1753 if (fgp_flags & FGP_ENTRY) 1754 return page; 1755 page = NULL; 1756 } 1757 if (!page) 1758 goto no_page; 1759 1760 if (fgp_flags & FGP_LOCK) { 1761 if (fgp_flags & FGP_NOWAIT) { 1762 if (!trylock_page(page)) { 1763 put_page(page); 1764 return NULL; 1765 } 1766 } else { 1767 lock_page(page); 1768 } 1769 1770 /* Has the page been truncated? */ 1771 if (unlikely(page->mapping != mapping)) { 1772 unlock_page(page); 1773 put_page(page); 1774 goto repeat; 1775 } 1776 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1777 } 1778 1779 if (fgp_flags & FGP_ACCESSED) 1780 mark_page_accessed(page); 1781 else if (fgp_flags & FGP_WRITE) { 1782 /* Clear idle flag for buffer write */ 1783 if (page_is_idle(page)) 1784 clear_page_idle(page); 1785 } 1786 if (!(fgp_flags & FGP_HEAD)) 1787 page = find_subpage(page, index); 1788 1789 no_page: 1790 if (!page && (fgp_flags & FGP_CREAT)) { 1791 int err; 1792 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1793 gfp_mask |= __GFP_WRITE; 1794 if (fgp_flags & FGP_NOFS) 1795 gfp_mask &= ~__GFP_FS; 1796 1797 page = __page_cache_alloc(gfp_mask); 1798 if (!page) 1799 return NULL; 1800 1801 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1802 fgp_flags |= FGP_LOCK; 1803 1804 /* Init accessed so avoid atomic mark_page_accessed later */ 1805 if (fgp_flags & FGP_ACCESSED) 1806 __SetPageReferenced(page); 1807 1808 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1809 if (unlikely(err)) { 1810 put_page(page); 1811 page = NULL; 1812 if (err == -EEXIST) 1813 goto repeat; 1814 } 1815 1816 /* 1817 * add_to_page_cache_lru locks the page, and for mmap we expect 1818 * an unlocked page. 1819 */ 1820 if (page && (fgp_flags & FGP_FOR_MMAP)) 1821 unlock_page(page); 1822 } 1823 1824 return page; 1825 } 1826 EXPORT_SYMBOL(pagecache_get_page); 1827 1828 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1829 xa_mark_t mark) 1830 { 1831 struct page *page; 1832 1833 retry: 1834 if (mark == XA_PRESENT) 1835 page = xas_find(xas, max); 1836 else 1837 page = xas_find_marked(xas, max, mark); 1838 1839 if (xas_retry(xas, page)) 1840 goto retry; 1841 /* 1842 * A shadow entry of a recently evicted page, a swap 1843 * entry from shmem/tmpfs or a DAX entry. Return it 1844 * without attempting to raise page count. 1845 */ 1846 if (!page || xa_is_value(page)) 1847 return page; 1848 1849 if (!page_cache_get_speculative(page)) 1850 goto reset; 1851 1852 /* Has the page moved or been split? */ 1853 if (unlikely(page != xas_reload(xas))) { 1854 put_page(page); 1855 goto reset; 1856 } 1857 1858 return page; 1859 reset: 1860 xas_reset(xas); 1861 goto retry; 1862 } 1863 1864 /** 1865 * find_get_entries - gang pagecache lookup 1866 * @mapping: The address_space to search 1867 * @start: The starting page cache index 1868 * @end: The final page index (inclusive). 1869 * @pvec: Where the resulting entries are placed. 1870 * @indices: The cache indices corresponding to the entries in @entries 1871 * 1872 * find_get_entries() will search for and return a batch of entries in 1873 * the mapping. The entries are placed in @pvec. find_get_entries() 1874 * takes a reference on any actual pages it returns. 1875 * 1876 * The search returns a group of mapping-contiguous page cache entries 1877 * with ascending indexes. There may be holes in the indices due to 1878 * not-present pages. 1879 * 1880 * Any shadow entries of evicted pages, or swap entries from 1881 * shmem/tmpfs, are included in the returned array. 1882 * 1883 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1884 * stops at that page: the caller is likely to have a better way to handle 1885 * the compound page as a whole, and then skip its extent, than repeatedly 1886 * calling find_get_entries() to return all its tails. 1887 * 1888 * Return: the number of pages and shadow entries which were found. 1889 */ 1890 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 1891 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 1892 { 1893 XA_STATE(xas, &mapping->i_pages, start); 1894 struct page *page; 1895 unsigned int ret = 0; 1896 unsigned nr_entries = PAGEVEC_SIZE; 1897 1898 rcu_read_lock(); 1899 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 1900 /* 1901 * Terminate early on finding a THP, to allow the caller to 1902 * handle it all at once; but continue if this is hugetlbfs. 1903 */ 1904 if (!xa_is_value(page) && PageTransHuge(page) && 1905 !PageHuge(page)) { 1906 page = find_subpage(page, xas.xa_index); 1907 nr_entries = ret + 1; 1908 } 1909 1910 indices[ret] = xas.xa_index; 1911 pvec->pages[ret] = page; 1912 if (++ret == nr_entries) 1913 break; 1914 } 1915 rcu_read_unlock(); 1916 1917 pvec->nr = ret; 1918 return ret; 1919 } 1920 1921 /** 1922 * find_lock_entries - Find a batch of pagecache entries. 1923 * @mapping: The address_space to search. 1924 * @start: The starting page cache index. 1925 * @end: The final page index (inclusive). 1926 * @pvec: Where the resulting entries are placed. 1927 * @indices: The cache indices of the entries in @pvec. 1928 * 1929 * find_lock_entries() will return a batch of entries from @mapping. 1930 * Swap, shadow and DAX entries are included. Pages are returned 1931 * locked and with an incremented refcount. Pages which are locked by 1932 * somebody else or under writeback are skipped. Only the head page of 1933 * a THP is returned. Pages which are partially outside the range are 1934 * not returned. 1935 * 1936 * The entries have ascending indexes. The indices may not be consecutive 1937 * due to not-present entries, THP pages, pages which could not be locked 1938 * or pages under writeback. 1939 * 1940 * Return: The number of entries which were found. 1941 */ 1942 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 1943 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 1944 { 1945 XA_STATE(xas, &mapping->i_pages, start); 1946 struct page *page; 1947 1948 rcu_read_lock(); 1949 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 1950 if (!xa_is_value(page)) { 1951 if (page->index < start) 1952 goto put; 1953 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1954 if (page->index + thp_nr_pages(page) - 1 > end) 1955 goto put; 1956 if (!trylock_page(page)) 1957 goto put; 1958 if (page->mapping != mapping || PageWriteback(page)) 1959 goto unlock; 1960 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 1961 page); 1962 } 1963 indices[pvec->nr] = xas.xa_index; 1964 if (!pagevec_add(pvec, page)) 1965 break; 1966 goto next; 1967 unlock: 1968 unlock_page(page); 1969 put: 1970 put_page(page); 1971 next: 1972 if (!xa_is_value(page) && PageTransHuge(page)) 1973 xas_set(&xas, page->index + thp_nr_pages(page)); 1974 } 1975 rcu_read_unlock(); 1976 1977 return pagevec_count(pvec); 1978 } 1979 1980 /** 1981 * find_get_pages_range - gang pagecache lookup 1982 * @mapping: The address_space to search 1983 * @start: The starting page index 1984 * @end: The final page index (inclusive) 1985 * @nr_pages: The maximum number of pages 1986 * @pages: Where the resulting pages are placed 1987 * 1988 * find_get_pages_range() will search for and return a group of up to @nr_pages 1989 * pages in the mapping starting at index @start and up to index @end 1990 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1991 * a reference against the returned pages. 1992 * 1993 * The search returns a group of mapping-contiguous pages with ascending 1994 * indexes. There may be holes in the indices due to not-present pages. 1995 * We also update @start to index the next page for the traversal. 1996 * 1997 * Return: the number of pages which were found. If this number is 1998 * smaller than @nr_pages, the end of specified range has been 1999 * reached. 2000 */ 2001 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2002 pgoff_t end, unsigned int nr_pages, 2003 struct page **pages) 2004 { 2005 XA_STATE(xas, &mapping->i_pages, *start); 2006 struct page *page; 2007 unsigned ret = 0; 2008 2009 if (unlikely(!nr_pages)) 2010 return 0; 2011 2012 rcu_read_lock(); 2013 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2014 /* Skip over shadow, swap and DAX entries */ 2015 if (xa_is_value(page)) 2016 continue; 2017 2018 pages[ret] = find_subpage(page, xas.xa_index); 2019 if (++ret == nr_pages) { 2020 *start = xas.xa_index + 1; 2021 goto out; 2022 } 2023 } 2024 2025 /* 2026 * We come here when there is no page beyond @end. We take care to not 2027 * overflow the index @start as it confuses some of the callers. This 2028 * breaks the iteration when there is a page at index -1 but that is 2029 * already broken anyway. 2030 */ 2031 if (end == (pgoff_t)-1) 2032 *start = (pgoff_t)-1; 2033 else 2034 *start = end + 1; 2035 out: 2036 rcu_read_unlock(); 2037 2038 return ret; 2039 } 2040 2041 /** 2042 * find_get_pages_contig - gang contiguous pagecache lookup 2043 * @mapping: The address_space to search 2044 * @index: The starting page index 2045 * @nr_pages: The maximum number of pages 2046 * @pages: Where the resulting pages are placed 2047 * 2048 * find_get_pages_contig() works exactly like find_get_pages(), except 2049 * that the returned number of pages are guaranteed to be contiguous. 2050 * 2051 * Return: the number of pages which were found. 2052 */ 2053 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2054 unsigned int nr_pages, struct page **pages) 2055 { 2056 XA_STATE(xas, &mapping->i_pages, index); 2057 struct page *page; 2058 unsigned int ret = 0; 2059 2060 if (unlikely(!nr_pages)) 2061 return 0; 2062 2063 rcu_read_lock(); 2064 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2065 if (xas_retry(&xas, page)) 2066 continue; 2067 /* 2068 * If the entry has been swapped out, we can stop looking. 2069 * No current caller is looking for DAX entries. 2070 */ 2071 if (xa_is_value(page)) 2072 break; 2073 2074 if (!page_cache_get_speculative(page)) 2075 goto retry; 2076 2077 /* Has the page moved or been split? */ 2078 if (unlikely(page != xas_reload(&xas))) 2079 goto put_page; 2080 2081 pages[ret] = find_subpage(page, xas.xa_index); 2082 if (++ret == nr_pages) 2083 break; 2084 continue; 2085 put_page: 2086 put_page(page); 2087 retry: 2088 xas_reset(&xas); 2089 } 2090 rcu_read_unlock(); 2091 return ret; 2092 } 2093 EXPORT_SYMBOL(find_get_pages_contig); 2094 2095 /** 2096 * find_get_pages_range_tag - Find and return head pages matching @tag. 2097 * @mapping: the address_space to search 2098 * @index: the starting page index 2099 * @end: The final page index (inclusive) 2100 * @tag: the tag index 2101 * @nr_pages: the maximum number of pages 2102 * @pages: where the resulting pages are placed 2103 * 2104 * Like find_get_pages(), except we only return head pages which are tagged 2105 * with @tag. @index is updated to the index immediately after the last 2106 * page we return, ready for the next iteration. 2107 * 2108 * Return: the number of pages which were found. 2109 */ 2110 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2111 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2112 struct page **pages) 2113 { 2114 XA_STATE(xas, &mapping->i_pages, *index); 2115 struct page *page; 2116 unsigned ret = 0; 2117 2118 if (unlikely(!nr_pages)) 2119 return 0; 2120 2121 rcu_read_lock(); 2122 while ((page = find_get_entry(&xas, end, tag))) { 2123 /* 2124 * Shadow entries should never be tagged, but this iteration 2125 * is lockless so there is a window for page reclaim to evict 2126 * a page we saw tagged. Skip over it. 2127 */ 2128 if (xa_is_value(page)) 2129 continue; 2130 2131 pages[ret] = page; 2132 if (++ret == nr_pages) { 2133 *index = page->index + thp_nr_pages(page); 2134 goto out; 2135 } 2136 } 2137 2138 /* 2139 * We come here when we got to @end. We take care to not overflow the 2140 * index @index as it confuses some of the callers. This breaks the 2141 * iteration when there is a page at index -1 but that is already 2142 * broken anyway. 2143 */ 2144 if (end == (pgoff_t)-1) 2145 *index = (pgoff_t)-1; 2146 else 2147 *index = end + 1; 2148 out: 2149 rcu_read_unlock(); 2150 2151 return ret; 2152 } 2153 EXPORT_SYMBOL(find_get_pages_range_tag); 2154 2155 /* 2156 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2157 * a _large_ part of the i/o request. Imagine the worst scenario: 2158 * 2159 * ---R__________________________________________B__________ 2160 * ^ reading here ^ bad block(assume 4k) 2161 * 2162 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2163 * => failing the whole request => read(R) => read(R+1) => 2164 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2165 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2166 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2167 * 2168 * It is going insane. Fix it by quickly scaling down the readahead size. 2169 */ 2170 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2171 { 2172 ra->ra_pages /= 4; 2173 } 2174 2175 /* 2176 * filemap_get_read_batch - Get a batch of pages for read 2177 * 2178 * Get a batch of pages which represent a contiguous range of bytes 2179 * in the file. No tail pages will be returned. If @index is in the 2180 * middle of a THP, the entire THP will be returned. The last page in 2181 * the batch may have Readahead set or be not Uptodate so that the 2182 * caller can take the appropriate action. 2183 */ 2184 static void filemap_get_read_batch(struct address_space *mapping, 2185 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2186 { 2187 XA_STATE(xas, &mapping->i_pages, index); 2188 struct page *head; 2189 2190 rcu_read_lock(); 2191 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2192 if (xas_retry(&xas, head)) 2193 continue; 2194 if (xas.xa_index > max || xa_is_value(head)) 2195 break; 2196 if (!page_cache_get_speculative(head)) 2197 goto retry; 2198 2199 /* Has the page moved or been split? */ 2200 if (unlikely(head != xas_reload(&xas))) 2201 goto put_page; 2202 2203 if (!pagevec_add(pvec, head)) 2204 break; 2205 if (!PageUptodate(head)) 2206 break; 2207 if (PageReadahead(head)) 2208 break; 2209 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2210 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2211 continue; 2212 put_page: 2213 put_page(head); 2214 retry: 2215 xas_reset(&xas); 2216 } 2217 rcu_read_unlock(); 2218 } 2219 2220 static int filemap_read_page(struct file *file, struct address_space *mapping, 2221 struct page *page) 2222 { 2223 int error; 2224 2225 /* 2226 * A previous I/O error may have been due to temporary failures, 2227 * eg. multipath errors. PG_error will be set again if readpage 2228 * fails. 2229 */ 2230 ClearPageError(page); 2231 /* Start the actual read. The read will unlock the page. */ 2232 error = mapping->a_ops->readpage(file, page); 2233 if (error) 2234 return error; 2235 2236 error = wait_on_page_locked_killable(page); 2237 if (error) 2238 return error; 2239 if (PageUptodate(page)) 2240 return 0; 2241 if (!page->mapping) /* page truncated */ 2242 return AOP_TRUNCATED_PAGE; 2243 shrink_readahead_size_eio(&file->f_ra); 2244 return -EIO; 2245 } 2246 2247 static bool filemap_range_uptodate(struct address_space *mapping, 2248 loff_t pos, struct iov_iter *iter, struct page *page) 2249 { 2250 int count; 2251 2252 if (PageUptodate(page)) 2253 return true; 2254 /* pipes can't handle partially uptodate pages */ 2255 if (iov_iter_is_pipe(iter)) 2256 return false; 2257 if (!mapping->a_ops->is_partially_uptodate) 2258 return false; 2259 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2260 return false; 2261 2262 count = iter->count; 2263 if (page_offset(page) > pos) { 2264 count -= page_offset(page) - pos; 2265 pos = 0; 2266 } else { 2267 pos -= page_offset(page); 2268 } 2269 2270 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2271 } 2272 2273 static int filemap_update_page(struct kiocb *iocb, 2274 struct address_space *mapping, struct iov_iter *iter, 2275 struct page *page) 2276 { 2277 int error; 2278 2279 if (!trylock_page(page)) { 2280 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2281 return -EAGAIN; 2282 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2283 put_and_wait_on_page_locked(page, TASK_KILLABLE); 2284 return AOP_TRUNCATED_PAGE; 2285 } 2286 error = __lock_page_async(page, iocb->ki_waitq); 2287 if (error) 2288 return error; 2289 } 2290 2291 if (!page->mapping) 2292 goto truncated; 2293 2294 error = 0; 2295 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) 2296 goto unlock; 2297 2298 error = -EAGAIN; 2299 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2300 goto unlock; 2301 2302 error = filemap_read_page(iocb->ki_filp, mapping, page); 2303 if (error == AOP_TRUNCATED_PAGE) 2304 put_page(page); 2305 return error; 2306 truncated: 2307 unlock_page(page); 2308 put_page(page); 2309 return AOP_TRUNCATED_PAGE; 2310 unlock: 2311 unlock_page(page); 2312 return error; 2313 } 2314 2315 static int filemap_create_page(struct file *file, 2316 struct address_space *mapping, pgoff_t index, 2317 struct pagevec *pvec) 2318 { 2319 struct page *page; 2320 int error; 2321 2322 page = page_cache_alloc(mapping); 2323 if (!page) 2324 return -ENOMEM; 2325 2326 error = add_to_page_cache_lru(page, mapping, index, 2327 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2328 if (error == -EEXIST) 2329 error = AOP_TRUNCATED_PAGE; 2330 if (error) 2331 goto error; 2332 2333 error = filemap_read_page(file, mapping, page); 2334 if (error) 2335 goto error; 2336 2337 pagevec_add(pvec, page); 2338 return 0; 2339 error: 2340 put_page(page); 2341 return error; 2342 } 2343 2344 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2345 struct address_space *mapping, struct page *page, 2346 pgoff_t last_index) 2347 { 2348 if (iocb->ki_flags & IOCB_NOIO) 2349 return -EAGAIN; 2350 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2351 page->index, last_index - page->index); 2352 return 0; 2353 } 2354 2355 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2356 struct pagevec *pvec) 2357 { 2358 struct file *filp = iocb->ki_filp; 2359 struct address_space *mapping = filp->f_mapping; 2360 struct file_ra_state *ra = &filp->f_ra; 2361 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2362 pgoff_t last_index; 2363 struct page *page; 2364 int err = 0; 2365 2366 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2367 retry: 2368 if (fatal_signal_pending(current)) 2369 return -EINTR; 2370 2371 filemap_get_read_batch(mapping, index, last_index, pvec); 2372 if (!pagevec_count(pvec)) { 2373 if (iocb->ki_flags & IOCB_NOIO) 2374 return -EAGAIN; 2375 page_cache_sync_readahead(mapping, ra, filp, index, 2376 last_index - index); 2377 filemap_get_read_batch(mapping, index, last_index, pvec); 2378 } 2379 if (!pagevec_count(pvec)) { 2380 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2381 return -EAGAIN; 2382 err = filemap_create_page(filp, mapping, 2383 iocb->ki_pos >> PAGE_SHIFT, pvec); 2384 if (err == AOP_TRUNCATED_PAGE) 2385 goto retry; 2386 return err; 2387 } 2388 2389 page = pvec->pages[pagevec_count(pvec) - 1]; 2390 if (PageReadahead(page)) { 2391 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2392 if (err) 2393 goto err; 2394 } 2395 if (!PageUptodate(page)) { 2396 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2397 iocb->ki_flags |= IOCB_NOWAIT; 2398 err = filemap_update_page(iocb, mapping, iter, page); 2399 if (err) 2400 goto err; 2401 } 2402 2403 return 0; 2404 err: 2405 if (err < 0) 2406 put_page(page); 2407 if (likely(--pvec->nr)) 2408 return 0; 2409 if (err == AOP_TRUNCATED_PAGE) 2410 goto retry; 2411 return err; 2412 } 2413 2414 /** 2415 * filemap_read - Read data from the page cache. 2416 * @iocb: The iocb to read. 2417 * @iter: Destination for the data. 2418 * @already_read: Number of bytes already read by the caller. 2419 * 2420 * Copies data from the page cache. If the data is not currently present, 2421 * uses the readahead and readpage address_space operations to fetch it. 2422 * 2423 * Return: Total number of bytes copied, including those already read by 2424 * the caller. If an error happens before any bytes are copied, returns 2425 * a negative error number. 2426 */ 2427 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2428 ssize_t already_read) 2429 { 2430 struct file *filp = iocb->ki_filp; 2431 struct file_ra_state *ra = &filp->f_ra; 2432 struct address_space *mapping = filp->f_mapping; 2433 struct inode *inode = mapping->host; 2434 struct pagevec pvec; 2435 int i, error = 0; 2436 bool writably_mapped; 2437 loff_t isize, end_offset; 2438 2439 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2440 return 0; 2441 if (unlikely(!iov_iter_count(iter))) 2442 return 0; 2443 2444 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2445 pagevec_init(&pvec); 2446 2447 do { 2448 cond_resched(); 2449 2450 /* 2451 * If we've already successfully copied some data, then we 2452 * can no longer safely return -EIOCBQUEUED. Hence mark 2453 * an async read NOWAIT at that point. 2454 */ 2455 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2456 iocb->ki_flags |= IOCB_NOWAIT; 2457 2458 error = filemap_get_pages(iocb, iter, &pvec); 2459 if (error < 0) 2460 break; 2461 2462 /* 2463 * i_size must be checked after we know the pages are Uptodate. 2464 * 2465 * Checking i_size after the check allows us to calculate 2466 * the correct value for "nr", which means the zero-filled 2467 * part of the page is not copied back to userspace (unless 2468 * another truncate extends the file - this is desired though). 2469 */ 2470 isize = i_size_read(inode); 2471 if (unlikely(iocb->ki_pos >= isize)) 2472 goto put_pages; 2473 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2474 2475 /* 2476 * Once we start copying data, we don't want to be touching any 2477 * cachelines that might be contended: 2478 */ 2479 writably_mapped = mapping_writably_mapped(mapping); 2480 2481 /* 2482 * When a sequential read accesses a page several times, only 2483 * mark it as accessed the first time. 2484 */ 2485 if (iocb->ki_pos >> PAGE_SHIFT != 2486 ra->prev_pos >> PAGE_SHIFT) 2487 mark_page_accessed(pvec.pages[0]); 2488 2489 for (i = 0; i < pagevec_count(&pvec); i++) { 2490 struct page *page = pvec.pages[i]; 2491 size_t page_size = thp_size(page); 2492 size_t offset = iocb->ki_pos & (page_size - 1); 2493 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2494 page_size - offset); 2495 size_t copied; 2496 2497 if (end_offset < page_offset(page)) 2498 break; 2499 if (i > 0) 2500 mark_page_accessed(page); 2501 /* 2502 * If users can be writing to this page using arbitrary 2503 * virtual addresses, take care about potential aliasing 2504 * before reading the page on the kernel side. 2505 */ 2506 if (writably_mapped) { 2507 int j; 2508 2509 for (j = 0; j < thp_nr_pages(page); j++) 2510 flush_dcache_page(page + j); 2511 } 2512 2513 copied = copy_page_to_iter(page, offset, bytes, iter); 2514 2515 already_read += copied; 2516 iocb->ki_pos += copied; 2517 ra->prev_pos = iocb->ki_pos; 2518 2519 if (copied < bytes) { 2520 error = -EFAULT; 2521 break; 2522 } 2523 } 2524 put_pages: 2525 for (i = 0; i < pagevec_count(&pvec); i++) 2526 put_page(pvec.pages[i]); 2527 pagevec_reinit(&pvec); 2528 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2529 2530 file_accessed(filp); 2531 2532 return already_read ? already_read : error; 2533 } 2534 EXPORT_SYMBOL_GPL(filemap_read); 2535 2536 /** 2537 * generic_file_read_iter - generic filesystem read routine 2538 * @iocb: kernel I/O control block 2539 * @iter: destination for the data read 2540 * 2541 * This is the "read_iter()" routine for all filesystems 2542 * that can use the page cache directly. 2543 * 2544 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2545 * be returned when no data can be read without waiting for I/O requests 2546 * to complete; it doesn't prevent readahead. 2547 * 2548 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2549 * requests shall be made for the read or for readahead. When no data 2550 * can be read, -EAGAIN shall be returned. When readahead would be 2551 * triggered, a partial, possibly empty read shall be returned. 2552 * 2553 * Return: 2554 * * number of bytes copied, even for partial reads 2555 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2556 */ 2557 ssize_t 2558 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2559 { 2560 size_t count = iov_iter_count(iter); 2561 ssize_t retval = 0; 2562 2563 if (!count) 2564 return 0; /* skip atime */ 2565 2566 if (iocb->ki_flags & IOCB_DIRECT) { 2567 struct file *file = iocb->ki_filp; 2568 struct address_space *mapping = file->f_mapping; 2569 struct inode *inode = mapping->host; 2570 loff_t size; 2571 2572 size = i_size_read(inode); 2573 if (iocb->ki_flags & IOCB_NOWAIT) { 2574 if (filemap_range_has_page(mapping, iocb->ki_pos, 2575 iocb->ki_pos + count - 1)) 2576 return -EAGAIN; 2577 } else { 2578 retval = filemap_write_and_wait_range(mapping, 2579 iocb->ki_pos, 2580 iocb->ki_pos + count - 1); 2581 if (retval < 0) 2582 return retval; 2583 } 2584 2585 file_accessed(file); 2586 2587 retval = mapping->a_ops->direct_IO(iocb, iter); 2588 if (retval >= 0) { 2589 iocb->ki_pos += retval; 2590 count -= retval; 2591 } 2592 if (retval != -EIOCBQUEUED) 2593 iov_iter_revert(iter, count - iov_iter_count(iter)); 2594 2595 /* 2596 * Btrfs can have a short DIO read if we encounter 2597 * compressed extents, so if there was an error, or if 2598 * we've already read everything we wanted to, or if 2599 * there was a short read because we hit EOF, go ahead 2600 * and return. Otherwise fallthrough to buffered io for 2601 * the rest of the read. Buffered reads will not work for 2602 * DAX files, so don't bother trying. 2603 */ 2604 if (retval < 0 || !count || iocb->ki_pos >= size || 2605 IS_DAX(inode)) 2606 return retval; 2607 } 2608 2609 return filemap_read(iocb, iter, retval); 2610 } 2611 EXPORT_SYMBOL(generic_file_read_iter); 2612 2613 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2614 struct address_space *mapping, struct page *page, 2615 loff_t start, loff_t end, bool seek_data) 2616 { 2617 const struct address_space_operations *ops = mapping->a_ops; 2618 size_t offset, bsz = i_blocksize(mapping->host); 2619 2620 if (xa_is_value(page) || PageUptodate(page)) 2621 return seek_data ? start : end; 2622 if (!ops->is_partially_uptodate) 2623 return seek_data ? end : start; 2624 2625 xas_pause(xas); 2626 rcu_read_unlock(); 2627 lock_page(page); 2628 if (unlikely(page->mapping != mapping)) 2629 goto unlock; 2630 2631 offset = offset_in_thp(page, start) & ~(bsz - 1); 2632 2633 do { 2634 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2635 break; 2636 start = (start + bsz) & ~(bsz - 1); 2637 offset += bsz; 2638 } while (offset < thp_size(page)); 2639 unlock: 2640 unlock_page(page); 2641 rcu_read_lock(); 2642 return start; 2643 } 2644 2645 static inline 2646 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2647 { 2648 if (xa_is_value(page)) 2649 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2650 return thp_size(page); 2651 } 2652 2653 /** 2654 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2655 * @mapping: Address space to search. 2656 * @start: First byte to consider. 2657 * @end: Limit of search (exclusive). 2658 * @whence: Either SEEK_HOLE or SEEK_DATA. 2659 * 2660 * If the page cache knows which blocks contain holes and which blocks 2661 * contain data, your filesystem can use this function to implement 2662 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2663 * entirely memory-based such as tmpfs, and filesystems which support 2664 * unwritten extents. 2665 * 2666 * Return: The requested offset on successs, or -ENXIO if @whence specifies 2667 * SEEK_DATA and there is no data after @start. There is an implicit hole 2668 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2669 * and @end contain data. 2670 */ 2671 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2672 loff_t end, int whence) 2673 { 2674 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2675 pgoff_t max = (end - 1) / PAGE_SIZE; 2676 bool seek_data = (whence == SEEK_DATA); 2677 struct page *page; 2678 2679 if (end <= start) 2680 return -ENXIO; 2681 2682 rcu_read_lock(); 2683 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2684 loff_t pos = xas.xa_index * PAGE_SIZE; 2685 2686 if (start < pos) { 2687 if (!seek_data) 2688 goto unlock; 2689 start = pos; 2690 } 2691 2692 pos += seek_page_size(&xas, page); 2693 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2694 seek_data); 2695 if (start < pos) 2696 goto unlock; 2697 if (!xa_is_value(page)) 2698 put_page(page); 2699 } 2700 rcu_read_unlock(); 2701 2702 if (seek_data) 2703 return -ENXIO; 2704 goto out; 2705 2706 unlock: 2707 rcu_read_unlock(); 2708 if (!xa_is_value(page)) 2709 put_page(page); 2710 out: 2711 if (start > end) 2712 return end; 2713 return start; 2714 } 2715 2716 #ifdef CONFIG_MMU 2717 #define MMAP_LOTSAMISS (100) 2718 /* 2719 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2720 * @vmf - the vm_fault for this fault. 2721 * @page - the page to lock. 2722 * @fpin - the pointer to the file we may pin (or is already pinned). 2723 * 2724 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2725 * It differs in that it actually returns the page locked if it returns 1 and 0 2726 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2727 * will point to the pinned file and needs to be fput()'ed at a later point. 2728 */ 2729 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2730 struct file **fpin) 2731 { 2732 if (trylock_page(page)) 2733 return 1; 2734 2735 /* 2736 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2737 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2738 * is supposed to work. We have way too many special cases.. 2739 */ 2740 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2741 return 0; 2742 2743 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2744 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2745 if (__lock_page_killable(page)) { 2746 /* 2747 * We didn't have the right flags to drop the mmap_lock, 2748 * but all fault_handlers only check for fatal signals 2749 * if we return VM_FAULT_RETRY, so we need to drop the 2750 * mmap_lock here and return 0 if we don't have a fpin. 2751 */ 2752 if (*fpin == NULL) 2753 mmap_read_unlock(vmf->vma->vm_mm); 2754 return 0; 2755 } 2756 } else 2757 __lock_page(page); 2758 return 1; 2759 } 2760 2761 2762 /* 2763 * Synchronous readahead happens when we don't even find a page in the page 2764 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2765 * to drop the mmap sem we return the file that was pinned in order for us to do 2766 * that. If we didn't pin a file then we return NULL. The file that is 2767 * returned needs to be fput()'ed when we're done with it. 2768 */ 2769 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2770 { 2771 struct file *file = vmf->vma->vm_file; 2772 struct file_ra_state *ra = &file->f_ra; 2773 struct address_space *mapping = file->f_mapping; 2774 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff); 2775 struct file *fpin = NULL; 2776 unsigned int mmap_miss; 2777 2778 /* If we don't want any read-ahead, don't bother */ 2779 if (vmf->vma->vm_flags & VM_RAND_READ) 2780 return fpin; 2781 if (!ra->ra_pages) 2782 return fpin; 2783 2784 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2785 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2786 page_cache_sync_ra(&ractl, ra, ra->ra_pages); 2787 return fpin; 2788 } 2789 2790 /* Avoid banging the cache line if not needed */ 2791 mmap_miss = READ_ONCE(ra->mmap_miss); 2792 if (mmap_miss < MMAP_LOTSAMISS * 10) 2793 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2794 2795 /* 2796 * Do we miss much more than hit in this file? If so, 2797 * stop bothering with read-ahead. It will only hurt. 2798 */ 2799 if (mmap_miss > MMAP_LOTSAMISS) 2800 return fpin; 2801 2802 /* 2803 * mmap read-around 2804 */ 2805 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2806 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2807 ra->size = ra->ra_pages; 2808 ra->async_size = ra->ra_pages / 4; 2809 ractl._index = ra->start; 2810 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2811 return fpin; 2812 } 2813 2814 /* 2815 * Asynchronous readahead happens when we find the page and PG_readahead, 2816 * so we want to possibly extend the readahead further. We return the file that 2817 * was pinned if we have to drop the mmap_lock in order to do IO. 2818 */ 2819 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2820 struct page *page) 2821 { 2822 struct file *file = vmf->vma->vm_file; 2823 struct file_ra_state *ra = &file->f_ra; 2824 struct address_space *mapping = file->f_mapping; 2825 struct file *fpin = NULL; 2826 unsigned int mmap_miss; 2827 pgoff_t offset = vmf->pgoff; 2828 2829 /* If we don't want any read-ahead, don't bother */ 2830 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2831 return fpin; 2832 mmap_miss = READ_ONCE(ra->mmap_miss); 2833 if (mmap_miss) 2834 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2835 if (PageReadahead(page)) { 2836 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2837 page_cache_async_readahead(mapping, ra, file, 2838 page, offset, ra->ra_pages); 2839 } 2840 return fpin; 2841 } 2842 2843 /** 2844 * filemap_fault - read in file data for page fault handling 2845 * @vmf: struct vm_fault containing details of the fault 2846 * 2847 * filemap_fault() is invoked via the vma operations vector for a 2848 * mapped memory region to read in file data during a page fault. 2849 * 2850 * The goto's are kind of ugly, but this streamlines the normal case of having 2851 * it in the page cache, and handles the special cases reasonably without 2852 * having a lot of duplicated code. 2853 * 2854 * vma->vm_mm->mmap_lock must be held on entry. 2855 * 2856 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2857 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2858 * 2859 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2860 * has not been released. 2861 * 2862 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2863 * 2864 * Return: bitwise-OR of %VM_FAULT_ codes. 2865 */ 2866 vm_fault_t filemap_fault(struct vm_fault *vmf) 2867 { 2868 int error; 2869 struct file *file = vmf->vma->vm_file; 2870 struct file *fpin = NULL; 2871 struct address_space *mapping = file->f_mapping; 2872 struct file_ra_state *ra = &file->f_ra; 2873 struct inode *inode = mapping->host; 2874 pgoff_t offset = vmf->pgoff; 2875 pgoff_t max_off; 2876 struct page *page; 2877 vm_fault_t ret = 0; 2878 2879 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2880 if (unlikely(offset >= max_off)) 2881 return VM_FAULT_SIGBUS; 2882 2883 /* 2884 * Do we have something in the page cache already? 2885 */ 2886 page = find_get_page(mapping, offset); 2887 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2888 /* 2889 * We found the page, so try async readahead before 2890 * waiting for the lock. 2891 */ 2892 fpin = do_async_mmap_readahead(vmf, page); 2893 } else if (!page) { 2894 /* No page in the page cache at all */ 2895 count_vm_event(PGMAJFAULT); 2896 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2897 ret = VM_FAULT_MAJOR; 2898 fpin = do_sync_mmap_readahead(vmf); 2899 retry_find: 2900 page = pagecache_get_page(mapping, offset, 2901 FGP_CREAT|FGP_FOR_MMAP, 2902 vmf->gfp_mask); 2903 if (!page) { 2904 if (fpin) 2905 goto out_retry; 2906 return VM_FAULT_OOM; 2907 } 2908 } 2909 2910 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2911 goto out_retry; 2912 2913 /* Did it get truncated? */ 2914 if (unlikely(compound_head(page)->mapping != mapping)) { 2915 unlock_page(page); 2916 put_page(page); 2917 goto retry_find; 2918 } 2919 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2920 2921 /* 2922 * We have a locked page in the page cache, now we need to check 2923 * that it's up-to-date. If not, it is going to be due to an error. 2924 */ 2925 if (unlikely(!PageUptodate(page))) 2926 goto page_not_uptodate; 2927 2928 /* 2929 * We've made it this far and we had to drop our mmap_lock, now is the 2930 * time to return to the upper layer and have it re-find the vma and 2931 * redo the fault. 2932 */ 2933 if (fpin) { 2934 unlock_page(page); 2935 goto out_retry; 2936 } 2937 2938 /* 2939 * Found the page and have a reference on it. 2940 * We must recheck i_size under page lock. 2941 */ 2942 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2943 if (unlikely(offset >= max_off)) { 2944 unlock_page(page); 2945 put_page(page); 2946 return VM_FAULT_SIGBUS; 2947 } 2948 2949 vmf->page = page; 2950 return ret | VM_FAULT_LOCKED; 2951 2952 page_not_uptodate: 2953 /* 2954 * Umm, take care of errors if the page isn't up-to-date. 2955 * Try to re-read it _once_. We do this synchronously, 2956 * because there really aren't any performance issues here 2957 * and we need to check for errors. 2958 */ 2959 ClearPageError(page); 2960 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2961 error = mapping->a_ops->readpage(file, page); 2962 if (!error) { 2963 wait_on_page_locked(page); 2964 if (!PageUptodate(page)) 2965 error = -EIO; 2966 } 2967 if (fpin) 2968 goto out_retry; 2969 put_page(page); 2970 2971 if (!error || error == AOP_TRUNCATED_PAGE) 2972 goto retry_find; 2973 2974 shrink_readahead_size_eio(ra); 2975 return VM_FAULT_SIGBUS; 2976 2977 out_retry: 2978 /* 2979 * We dropped the mmap_lock, we need to return to the fault handler to 2980 * re-find the vma and come back and find our hopefully still populated 2981 * page. 2982 */ 2983 if (page) 2984 put_page(page); 2985 if (fpin) 2986 fput(fpin); 2987 return ret | VM_FAULT_RETRY; 2988 } 2989 EXPORT_SYMBOL(filemap_fault); 2990 2991 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 2992 { 2993 struct mm_struct *mm = vmf->vma->vm_mm; 2994 2995 /* Huge page is mapped? No need to proceed. */ 2996 if (pmd_trans_huge(*vmf->pmd)) { 2997 unlock_page(page); 2998 put_page(page); 2999 return true; 3000 } 3001 3002 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3003 vm_fault_t ret = do_set_pmd(vmf, page); 3004 if (!ret) { 3005 /* The page is mapped successfully, reference consumed. */ 3006 unlock_page(page); 3007 return true; 3008 } 3009 } 3010 3011 if (pmd_none(*vmf->pmd)) { 3012 vmf->ptl = pmd_lock(mm, vmf->pmd); 3013 if (likely(pmd_none(*vmf->pmd))) { 3014 mm_inc_nr_ptes(mm); 3015 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 3016 vmf->prealloc_pte = NULL; 3017 } 3018 spin_unlock(vmf->ptl); 3019 } 3020 3021 /* See comment in handle_pte_fault() */ 3022 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3023 unlock_page(page); 3024 put_page(page); 3025 return true; 3026 } 3027 3028 return false; 3029 } 3030 3031 static struct page *next_uptodate_page(struct page *page, 3032 struct address_space *mapping, 3033 struct xa_state *xas, pgoff_t end_pgoff) 3034 { 3035 unsigned long max_idx; 3036 3037 do { 3038 if (!page) 3039 return NULL; 3040 if (xas_retry(xas, page)) 3041 continue; 3042 if (xa_is_value(page)) 3043 continue; 3044 if (PageLocked(page)) 3045 continue; 3046 if (!page_cache_get_speculative(page)) 3047 continue; 3048 /* Has the page moved or been split? */ 3049 if (unlikely(page != xas_reload(xas))) 3050 goto skip; 3051 if (!PageUptodate(page) || PageReadahead(page)) 3052 goto skip; 3053 if (PageHWPoison(page)) 3054 goto skip; 3055 if (!trylock_page(page)) 3056 goto skip; 3057 if (page->mapping != mapping) 3058 goto unlock; 3059 if (!PageUptodate(page)) 3060 goto unlock; 3061 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3062 if (xas->xa_index >= max_idx) 3063 goto unlock; 3064 return page; 3065 unlock: 3066 unlock_page(page); 3067 skip: 3068 put_page(page); 3069 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3070 3071 return NULL; 3072 } 3073 3074 static inline struct page *first_map_page(struct address_space *mapping, 3075 struct xa_state *xas, 3076 pgoff_t end_pgoff) 3077 { 3078 return next_uptodate_page(xas_find(xas, end_pgoff), 3079 mapping, xas, end_pgoff); 3080 } 3081 3082 static inline struct page *next_map_page(struct address_space *mapping, 3083 struct xa_state *xas, 3084 pgoff_t end_pgoff) 3085 { 3086 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3087 mapping, xas, end_pgoff); 3088 } 3089 3090 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3091 pgoff_t start_pgoff, pgoff_t end_pgoff) 3092 { 3093 struct vm_area_struct *vma = vmf->vma; 3094 struct file *file = vma->vm_file; 3095 struct address_space *mapping = file->f_mapping; 3096 pgoff_t last_pgoff = start_pgoff; 3097 unsigned long addr; 3098 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3099 struct page *head, *page; 3100 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3101 vm_fault_t ret = 0; 3102 3103 rcu_read_lock(); 3104 head = first_map_page(mapping, &xas, end_pgoff); 3105 if (!head) 3106 goto out; 3107 3108 if (filemap_map_pmd(vmf, head)) { 3109 ret = VM_FAULT_NOPAGE; 3110 goto out; 3111 } 3112 3113 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3114 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3115 do { 3116 page = find_subpage(head, xas.xa_index); 3117 if (PageHWPoison(page)) 3118 goto unlock; 3119 3120 if (mmap_miss > 0) 3121 mmap_miss--; 3122 3123 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3124 vmf->pte += xas.xa_index - last_pgoff; 3125 last_pgoff = xas.xa_index; 3126 3127 if (!pte_none(*vmf->pte)) 3128 goto unlock; 3129 3130 /* We're about to handle the fault */ 3131 if (vmf->address == addr) 3132 ret = VM_FAULT_NOPAGE; 3133 3134 do_set_pte(vmf, page, addr); 3135 /* no need to invalidate: a not-present page won't be cached */ 3136 update_mmu_cache(vma, addr, vmf->pte); 3137 unlock_page(head); 3138 continue; 3139 unlock: 3140 unlock_page(head); 3141 put_page(head); 3142 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3143 pte_unmap_unlock(vmf->pte, vmf->ptl); 3144 out: 3145 rcu_read_unlock(); 3146 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3147 return ret; 3148 } 3149 EXPORT_SYMBOL(filemap_map_pages); 3150 3151 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3152 { 3153 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3154 struct page *page = vmf->page; 3155 vm_fault_t ret = VM_FAULT_LOCKED; 3156 3157 sb_start_pagefault(mapping->host->i_sb); 3158 file_update_time(vmf->vma->vm_file); 3159 lock_page(page); 3160 if (page->mapping != mapping) { 3161 unlock_page(page); 3162 ret = VM_FAULT_NOPAGE; 3163 goto out; 3164 } 3165 /* 3166 * We mark the page dirty already here so that when freeze is in 3167 * progress, we are guaranteed that writeback during freezing will 3168 * see the dirty page and writeprotect it again. 3169 */ 3170 set_page_dirty(page); 3171 wait_for_stable_page(page); 3172 out: 3173 sb_end_pagefault(mapping->host->i_sb); 3174 return ret; 3175 } 3176 3177 const struct vm_operations_struct generic_file_vm_ops = { 3178 .fault = filemap_fault, 3179 .map_pages = filemap_map_pages, 3180 .page_mkwrite = filemap_page_mkwrite, 3181 }; 3182 3183 /* This is used for a general mmap of a disk file */ 3184 3185 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3186 { 3187 struct address_space *mapping = file->f_mapping; 3188 3189 if (!mapping->a_ops->readpage) 3190 return -ENOEXEC; 3191 file_accessed(file); 3192 vma->vm_ops = &generic_file_vm_ops; 3193 return 0; 3194 } 3195 3196 /* 3197 * This is for filesystems which do not implement ->writepage. 3198 */ 3199 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3200 { 3201 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3202 return -EINVAL; 3203 return generic_file_mmap(file, vma); 3204 } 3205 #else 3206 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3207 { 3208 return VM_FAULT_SIGBUS; 3209 } 3210 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3211 { 3212 return -ENOSYS; 3213 } 3214 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3215 { 3216 return -ENOSYS; 3217 } 3218 #endif /* CONFIG_MMU */ 3219 3220 EXPORT_SYMBOL(filemap_page_mkwrite); 3221 EXPORT_SYMBOL(generic_file_mmap); 3222 EXPORT_SYMBOL(generic_file_readonly_mmap); 3223 3224 static struct page *wait_on_page_read(struct page *page) 3225 { 3226 if (!IS_ERR(page)) { 3227 wait_on_page_locked(page); 3228 if (!PageUptodate(page)) { 3229 put_page(page); 3230 page = ERR_PTR(-EIO); 3231 } 3232 } 3233 return page; 3234 } 3235 3236 static struct page *do_read_cache_page(struct address_space *mapping, 3237 pgoff_t index, 3238 int (*filler)(void *, struct page *), 3239 void *data, 3240 gfp_t gfp) 3241 { 3242 struct page *page; 3243 int err; 3244 repeat: 3245 page = find_get_page(mapping, index); 3246 if (!page) { 3247 page = __page_cache_alloc(gfp); 3248 if (!page) 3249 return ERR_PTR(-ENOMEM); 3250 err = add_to_page_cache_lru(page, mapping, index, gfp); 3251 if (unlikely(err)) { 3252 put_page(page); 3253 if (err == -EEXIST) 3254 goto repeat; 3255 /* Presumably ENOMEM for xarray node */ 3256 return ERR_PTR(err); 3257 } 3258 3259 filler: 3260 if (filler) 3261 err = filler(data, page); 3262 else 3263 err = mapping->a_ops->readpage(data, page); 3264 3265 if (err < 0) { 3266 put_page(page); 3267 return ERR_PTR(err); 3268 } 3269 3270 page = wait_on_page_read(page); 3271 if (IS_ERR(page)) 3272 return page; 3273 goto out; 3274 } 3275 if (PageUptodate(page)) 3276 goto out; 3277 3278 /* 3279 * Page is not up to date and may be locked due to one of the following 3280 * case a: Page is being filled and the page lock is held 3281 * case b: Read/write error clearing the page uptodate status 3282 * case c: Truncation in progress (page locked) 3283 * case d: Reclaim in progress 3284 * 3285 * Case a, the page will be up to date when the page is unlocked. 3286 * There is no need to serialise on the page lock here as the page 3287 * is pinned so the lock gives no additional protection. Even if the 3288 * page is truncated, the data is still valid if PageUptodate as 3289 * it's a race vs truncate race. 3290 * Case b, the page will not be up to date 3291 * Case c, the page may be truncated but in itself, the data may still 3292 * be valid after IO completes as it's a read vs truncate race. The 3293 * operation must restart if the page is not uptodate on unlock but 3294 * otherwise serialising on page lock to stabilise the mapping gives 3295 * no additional guarantees to the caller as the page lock is 3296 * released before return. 3297 * Case d, similar to truncation. If reclaim holds the page lock, it 3298 * will be a race with remove_mapping that determines if the mapping 3299 * is valid on unlock but otherwise the data is valid and there is 3300 * no need to serialise with page lock. 3301 * 3302 * As the page lock gives no additional guarantee, we optimistically 3303 * wait on the page to be unlocked and check if it's up to date and 3304 * use the page if it is. Otherwise, the page lock is required to 3305 * distinguish between the different cases. The motivation is that we 3306 * avoid spurious serialisations and wakeups when multiple processes 3307 * wait on the same page for IO to complete. 3308 */ 3309 wait_on_page_locked(page); 3310 if (PageUptodate(page)) 3311 goto out; 3312 3313 /* Distinguish between all the cases under the safety of the lock */ 3314 lock_page(page); 3315 3316 /* Case c or d, restart the operation */ 3317 if (!page->mapping) { 3318 unlock_page(page); 3319 put_page(page); 3320 goto repeat; 3321 } 3322 3323 /* Someone else locked and filled the page in a very small window */ 3324 if (PageUptodate(page)) { 3325 unlock_page(page); 3326 goto out; 3327 } 3328 3329 /* 3330 * A previous I/O error may have been due to temporary 3331 * failures. 3332 * Clear page error before actual read, PG_error will be 3333 * set again if read page fails. 3334 */ 3335 ClearPageError(page); 3336 goto filler; 3337 3338 out: 3339 mark_page_accessed(page); 3340 return page; 3341 } 3342 3343 /** 3344 * read_cache_page - read into page cache, fill it if needed 3345 * @mapping: the page's address_space 3346 * @index: the page index 3347 * @filler: function to perform the read 3348 * @data: first arg to filler(data, page) function, often left as NULL 3349 * 3350 * Read into the page cache. If a page already exists, and PageUptodate() is 3351 * not set, try to fill the page and wait for it to become unlocked. 3352 * 3353 * If the page does not get brought uptodate, return -EIO. 3354 * 3355 * Return: up to date page on success, ERR_PTR() on failure. 3356 */ 3357 struct page *read_cache_page(struct address_space *mapping, 3358 pgoff_t index, 3359 int (*filler)(void *, struct page *), 3360 void *data) 3361 { 3362 return do_read_cache_page(mapping, index, filler, data, 3363 mapping_gfp_mask(mapping)); 3364 } 3365 EXPORT_SYMBOL(read_cache_page); 3366 3367 /** 3368 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3369 * @mapping: the page's address_space 3370 * @index: the page index 3371 * @gfp: the page allocator flags to use if allocating 3372 * 3373 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3374 * any new page allocations done using the specified allocation flags. 3375 * 3376 * If the page does not get brought uptodate, return -EIO. 3377 * 3378 * Return: up to date page on success, ERR_PTR() on failure. 3379 */ 3380 struct page *read_cache_page_gfp(struct address_space *mapping, 3381 pgoff_t index, 3382 gfp_t gfp) 3383 { 3384 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3385 } 3386 EXPORT_SYMBOL(read_cache_page_gfp); 3387 3388 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3389 loff_t pos, unsigned len, unsigned flags, 3390 struct page **pagep, void **fsdata) 3391 { 3392 const struct address_space_operations *aops = mapping->a_ops; 3393 3394 return aops->write_begin(file, mapping, pos, len, flags, 3395 pagep, fsdata); 3396 } 3397 EXPORT_SYMBOL(pagecache_write_begin); 3398 3399 int pagecache_write_end(struct file *file, struct address_space *mapping, 3400 loff_t pos, unsigned len, unsigned copied, 3401 struct page *page, void *fsdata) 3402 { 3403 const struct address_space_operations *aops = mapping->a_ops; 3404 3405 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3406 } 3407 EXPORT_SYMBOL(pagecache_write_end); 3408 3409 /* 3410 * Warn about a page cache invalidation failure during a direct I/O write. 3411 */ 3412 void dio_warn_stale_pagecache(struct file *filp) 3413 { 3414 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3415 char pathname[128]; 3416 char *path; 3417 3418 errseq_set(&filp->f_mapping->wb_err, -EIO); 3419 if (__ratelimit(&_rs)) { 3420 path = file_path(filp, pathname, sizeof(pathname)); 3421 if (IS_ERR(path)) 3422 path = "(unknown)"; 3423 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3424 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3425 current->comm); 3426 } 3427 } 3428 3429 ssize_t 3430 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3431 { 3432 struct file *file = iocb->ki_filp; 3433 struct address_space *mapping = file->f_mapping; 3434 struct inode *inode = mapping->host; 3435 loff_t pos = iocb->ki_pos; 3436 ssize_t written; 3437 size_t write_len; 3438 pgoff_t end; 3439 3440 write_len = iov_iter_count(from); 3441 end = (pos + write_len - 1) >> PAGE_SHIFT; 3442 3443 if (iocb->ki_flags & IOCB_NOWAIT) { 3444 /* If there are pages to writeback, return */ 3445 if (filemap_range_has_page(file->f_mapping, pos, 3446 pos + write_len - 1)) 3447 return -EAGAIN; 3448 } else { 3449 written = filemap_write_and_wait_range(mapping, pos, 3450 pos + write_len - 1); 3451 if (written) 3452 goto out; 3453 } 3454 3455 /* 3456 * After a write we want buffered reads to be sure to go to disk to get 3457 * the new data. We invalidate clean cached page from the region we're 3458 * about to write. We do this *before* the write so that we can return 3459 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3460 */ 3461 written = invalidate_inode_pages2_range(mapping, 3462 pos >> PAGE_SHIFT, end); 3463 /* 3464 * If a page can not be invalidated, return 0 to fall back 3465 * to buffered write. 3466 */ 3467 if (written) { 3468 if (written == -EBUSY) 3469 return 0; 3470 goto out; 3471 } 3472 3473 written = mapping->a_ops->direct_IO(iocb, from); 3474 3475 /* 3476 * Finally, try again to invalidate clean pages which might have been 3477 * cached by non-direct readahead, or faulted in by get_user_pages() 3478 * if the source of the write was an mmap'ed region of the file 3479 * we're writing. Either one is a pretty crazy thing to do, 3480 * so we don't support it 100%. If this invalidation 3481 * fails, tough, the write still worked... 3482 * 3483 * Most of the time we do not need this since dio_complete() will do 3484 * the invalidation for us. However there are some file systems that 3485 * do not end up with dio_complete() being called, so let's not break 3486 * them by removing it completely. 3487 * 3488 * Noticeable example is a blkdev_direct_IO(). 3489 * 3490 * Skip invalidation for async writes or if mapping has no pages. 3491 */ 3492 if (written > 0 && mapping->nrpages && 3493 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3494 dio_warn_stale_pagecache(file); 3495 3496 if (written > 0) { 3497 pos += written; 3498 write_len -= written; 3499 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3500 i_size_write(inode, pos); 3501 mark_inode_dirty(inode); 3502 } 3503 iocb->ki_pos = pos; 3504 } 3505 if (written != -EIOCBQUEUED) 3506 iov_iter_revert(from, write_len - iov_iter_count(from)); 3507 out: 3508 return written; 3509 } 3510 EXPORT_SYMBOL(generic_file_direct_write); 3511 3512 /* 3513 * Find or create a page at the given pagecache position. Return the locked 3514 * page. This function is specifically for buffered writes. 3515 */ 3516 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3517 pgoff_t index, unsigned flags) 3518 { 3519 struct page *page; 3520 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3521 3522 if (flags & AOP_FLAG_NOFS) 3523 fgp_flags |= FGP_NOFS; 3524 3525 page = pagecache_get_page(mapping, index, fgp_flags, 3526 mapping_gfp_mask(mapping)); 3527 if (page) 3528 wait_for_stable_page(page); 3529 3530 return page; 3531 } 3532 EXPORT_SYMBOL(grab_cache_page_write_begin); 3533 3534 ssize_t generic_perform_write(struct file *file, 3535 struct iov_iter *i, loff_t pos) 3536 { 3537 struct address_space *mapping = file->f_mapping; 3538 const struct address_space_operations *a_ops = mapping->a_ops; 3539 long status = 0; 3540 ssize_t written = 0; 3541 unsigned int flags = 0; 3542 3543 do { 3544 struct page *page; 3545 unsigned long offset; /* Offset into pagecache page */ 3546 unsigned long bytes; /* Bytes to write to page */ 3547 size_t copied; /* Bytes copied from user */ 3548 void *fsdata; 3549 3550 offset = (pos & (PAGE_SIZE - 1)); 3551 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3552 iov_iter_count(i)); 3553 3554 again: 3555 /* 3556 * Bring in the user page that we will copy from _first_. 3557 * Otherwise there's a nasty deadlock on copying from the 3558 * same page as we're writing to, without it being marked 3559 * up-to-date. 3560 * 3561 * Not only is this an optimisation, but it is also required 3562 * to check that the address is actually valid, when atomic 3563 * usercopies are used, below. 3564 */ 3565 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3566 status = -EFAULT; 3567 break; 3568 } 3569 3570 if (fatal_signal_pending(current)) { 3571 status = -EINTR; 3572 break; 3573 } 3574 3575 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3576 &page, &fsdata); 3577 if (unlikely(status < 0)) 3578 break; 3579 3580 if (mapping_writably_mapped(mapping)) 3581 flush_dcache_page(page); 3582 3583 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3584 flush_dcache_page(page); 3585 3586 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3587 page, fsdata); 3588 if (unlikely(status < 0)) 3589 break; 3590 copied = status; 3591 3592 cond_resched(); 3593 3594 iov_iter_advance(i, copied); 3595 if (unlikely(copied == 0)) { 3596 /* 3597 * If we were unable to copy any data at all, we must 3598 * fall back to a single segment length write. 3599 * 3600 * If we didn't fallback here, we could livelock 3601 * because not all segments in the iov can be copied at 3602 * once without a pagefault. 3603 */ 3604 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3605 iov_iter_single_seg_count(i)); 3606 goto again; 3607 } 3608 pos += copied; 3609 written += copied; 3610 3611 balance_dirty_pages_ratelimited(mapping); 3612 } while (iov_iter_count(i)); 3613 3614 return written ? written : status; 3615 } 3616 EXPORT_SYMBOL(generic_perform_write); 3617 3618 /** 3619 * __generic_file_write_iter - write data to a file 3620 * @iocb: IO state structure (file, offset, etc.) 3621 * @from: iov_iter with data to write 3622 * 3623 * This function does all the work needed for actually writing data to a 3624 * file. It does all basic checks, removes SUID from the file, updates 3625 * modification times and calls proper subroutines depending on whether we 3626 * do direct IO or a standard buffered write. 3627 * 3628 * It expects i_mutex to be grabbed unless we work on a block device or similar 3629 * object which does not need locking at all. 3630 * 3631 * This function does *not* take care of syncing data in case of O_SYNC write. 3632 * A caller has to handle it. This is mainly due to the fact that we want to 3633 * avoid syncing under i_mutex. 3634 * 3635 * Return: 3636 * * number of bytes written, even for truncated writes 3637 * * negative error code if no data has been written at all 3638 */ 3639 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3640 { 3641 struct file *file = iocb->ki_filp; 3642 struct address_space * mapping = file->f_mapping; 3643 struct inode *inode = mapping->host; 3644 ssize_t written = 0; 3645 ssize_t err; 3646 ssize_t status; 3647 3648 /* We can write back this queue in page reclaim */ 3649 current->backing_dev_info = inode_to_bdi(inode); 3650 err = file_remove_privs(file); 3651 if (err) 3652 goto out; 3653 3654 err = file_update_time(file); 3655 if (err) 3656 goto out; 3657 3658 if (iocb->ki_flags & IOCB_DIRECT) { 3659 loff_t pos, endbyte; 3660 3661 written = generic_file_direct_write(iocb, from); 3662 /* 3663 * If the write stopped short of completing, fall back to 3664 * buffered writes. Some filesystems do this for writes to 3665 * holes, for example. For DAX files, a buffered write will 3666 * not succeed (even if it did, DAX does not handle dirty 3667 * page-cache pages correctly). 3668 */ 3669 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3670 goto out; 3671 3672 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3673 /* 3674 * If generic_perform_write() returned a synchronous error 3675 * then we want to return the number of bytes which were 3676 * direct-written, or the error code if that was zero. Note 3677 * that this differs from normal direct-io semantics, which 3678 * will return -EFOO even if some bytes were written. 3679 */ 3680 if (unlikely(status < 0)) { 3681 err = status; 3682 goto out; 3683 } 3684 /* 3685 * We need to ensure that the page cache pages are written to 3686 * disk and invalidated to preserve the expected O_DIRECT 3687 * semantics. 3688 */ 3689 endbyte = pos + status - 1; 3690 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3691 if (err == 0) { 3692 iocb->ki_pos = endbyte + 1; 3693 written += status; 3694 invalidate_mapping_pages(mapping, 3695 pos >> PAGE_SHIFT, 3696 endbyte >> PAGE_SHIFT); 3697 } else { 3698 /* 3699 * We don't know how much we wrote, so just return 3700 * the number of bytes which were direct-written 3701 */ 3702 } 3703 } else { 3704 written = generic_perform_write(file, from, iocb->ki_pos); 3705 if (likely(written > 0)) 3706 iocb->ki_pos += written; 3707 } 3708 out: 3709 current->backing_dev_info = NULL; 3710 return written ? written : err; 3711 } 3712 EXPORT_SYMBOL(__generic_file_write_iter); 3713 3714 /** 3715 * generic_file_write_iter - write data to a file 3716 * @iocb: IO state structure 3717 * @from: iov_iter with data to write 3718 * 3719 * This is a wrapper around __generic_file_write_iter() to be used by most 3720 * filesystems. It takes care of syncing the file in case of O_SYNC file 3721 * and acquires i_mutex as needed. 3722 * Return: 3723 * * negative error code if no data has been written at all of 3724 * vfs_fsync_range() failed for a synchronous write 3725 * * number of bytes written, even for truncated writes 3726 */ 3727 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3728 { 3729 struct file *file = iocb->ki_filp; 3730 struct inode *inode = file->f_mapping->host; 3731 ssize_t ret; 3732 3733 inode_lock(inode); 3734 ret = generic_write_checks(iocb, from); 3735 if (ret > 0) 3736 ret = __generic_file_write_iter(iocb, from); 3737 inode_unlock(inode); 3738 3739 if (ret > 0) 3740 ret = generic_write_sync(iocb, ret); 3741 return ret; 3742 } 3743 EXPORT_SYMBOL(generic_file_write_iter); 3744 3745 /** 3746 * try_to_release_page() - release old fs-specific metadata on a page 3747 * 3748 * @page: the page which the kernel is trying to free 3749 * @gfp_mask: memory allocation flags (and I/O mode) 3750 * 3751 * The address_space is to try to release any data against the page 3752 * (presumably at page->private). 3753 * 3754 * This may also be called if PG_fscache is set on a page, indicating that the 3755 * page is known to the local caching routines. 3756 * 3757 * The @gfp_mask argument specifies whether I/O may be performed to release 3758 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3759 * 3760 * Return: %1 if the release was successful, otherwise return zero. 3761 */ 3762 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3763 { 3764 struct address_space * const mapping = page->mapping; 3765 3766 BUG_ON(!PageLocked(page)); 3767 if (PageWriteback(page)) 3768 return 0; 3769 3770 if (mapping && mapping->a_ops->releasepage) 3771 return mapping->a_ops->releasepage(page, gfp_mask); 3772 return try_to_free_buffers(page); 3773 } 3774 3775 EXPORT_SYMBOL(try_to_release_page); 3776