xref: /openbmc/linux/mm/filemap.c (revision de3a9980)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_mutex
80  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->lock_page		(access_process_vm)
89  *
90  *  ->i_mutex			(generic_perform_write)
91  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
92  *
93  *  bdi->wb.list_lock
94  *    sb_lock			(fs/fs-writeback.c)
95  *    ->i_pages lock		(__sync_single_inode)
96  *
97  *  ->i_mmap_rwsem
98  *    ->anon_vma.lock		(vma_adjust)
99  *
100  *  ->anon_vma.lock
101  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
102  *
103  *  ->page_table_lock or pte_lock
104  *    ->swap_lock		(try_to_unmap_one)
105  *    ->private_lock		(try_to_unmap_one)
106  *    ->i_pages lock		(try_to_unmap_one)
107  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
108  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
109  *    ->private_lock		(page_remove_rmap->set_page_dirty)
110  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
116  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
117  *
118  * ->i_mmap_rwsem
119  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
120  */
121 
122 static void page_cache_delete(struct address_space *mapping,
123 				   struct page *page, void *shadow)
124 {
125 	XA_STATE(xas, &mapping->i_pages, page->index);
126 	unsigned int nr = 1;
127 
128 	mapping_set_update(&xas, mapping);
129 
130 	/* hugetlb pages are represented by a single entry in the xarray */
131 	if (!PageHuge(page)) {
132 		xas_set_order(&xas, page->index, compound_order(page));
133 		nr = compound_nr(page);
134 	}
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageTail(page), page);
138 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	page->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 
146 	if (shadow) {
147 		mapping->nrexceptional += nr;
148 		/*
149 		 * Make sure the nrexceptional update is committed before
150 		 * the nrpages update so that final truncate racing
151 		 * with reclaim does not see both counters 0 at the
152 		 * same time and miss a shadow entry.
153 		 */
154 		smp_wmb();
155 	}
156 	mapping->nrpages -= nr;
157 }
158 
159 static void unaccount_page_cache_page(struct address_space *mapping,
160 				      struct page *page)
161 {
162 	int nr;
163 
164 	/*
165 	 * if we're uptodate, flush out into the cleancache, otherwise
166 	 * invalidate any existing cleancache entries.  We can't leave
167 	 * stale data around in the cleancache once our page is gone
168 	 */
169 	if (PageUptodate(page) && PageMappedToDisk(page))
170 		cleancache_put_page(page);
171 	else
172 		cleancache_invalidate_page(mapping, page);
173 
174 	VM_BUG_ON_PAGE(PageTail(page), page);
175 	VM_BUG_ON_PAGE(page_mapped(page), page);
176 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 		int mapcount;
178 
179 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
180 			 current->comm, page_to_pfn(page));
181 		dump_page(page, "still mapped when deleted");
182 		dump_stack();
183 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184 
185 		mapcount = page_mapcount(page);
186 		if (mapping_exiting(mapping) &&
187 		    page_count(page) >= mapcount + 2) {
188 			/*
189 			 * All vmas have already been torn down, so it's
190 			 * a good bet that actually the page is unmapped,
191 			 * and we'd prefer not to leak it: if we're wrong,
192 			 * some other bad page check should catch it later.
193 			 */
194 			page_mapcount_reset(page);
195 			page_ref_sub(page, mapcount);
196 		}
197 	}
198 
199 	/* hugetlb pages do not participate in page cache accounting. */
200 	if (PageHuge(page))
201 		return;
202 
203 	nr = thp_nr_pages(page);
204 
205 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206 	if (PageSwapBacked(page)) {
207 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
208 		if (PageTransHuge(page))
209 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
210 	} else if (PageTransHuge(page)) {
211 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
212 		filemap_nr_thps_dec(mapping);
213 	}
214 
215 	/*
216 	 * At this point page must be either written or cleaned by
217 	 * truncate.  Dirty page here signals a bug and loss of
218 	 * unwritten data.
219 	 *
220 	 * This fixes dirty accounting after removing the page entirely
221 	 * but leaves PageDirty set: it has no effect for truncated
222 	 * page and anyway will be cleared before returning page into
223 	 * buddy allocator.
224 	 */
225 	if (WARN_ON_ONCE(PageDirty(page)))
226 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227 }
228 
229 /*
230  * Delete a page from the page cache and free it. Caller has to make
231  * sure the page is locked and that nobody else uses it - or that usage
232  * is safe.  The caller must hold the i_pages lock.
233  */
234 void __delete_from_page_cache(struct page *page, void *shadow)
235 {
236 	struct address_space *mapping = page->mapping;
237 
238 	trace_mm_filemap_delete_from_page_cache(page);
239 
240 	unaccount_page_cache_page(mapping, page);
241 	page_cache_delete(mapping, page, shadow);
242 }
243 
244 static void page_cache_free_page(struct address_space *mapping,
245 				struct page *page)
246 {
247 	void (*freepage)(struct page *);
248 
249 	freepage = mapping->a_ops->freepage;
250 	if (freepage)
251 		freepage(page);
252 
253 	if (PageTransHuge(page) && !PageHuge(page)) {
254 		page_ref_sub(page, thp_nr_pages(page));
255 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 	} else {
257 		put_page(page);
258 	}
259 }
260 
261 /**
262  * delete_from_page_cache - delete page from page cache
263  * @page: the page which the kernel is trying to remove from page cache
264  *
265  * This must be called only on pages that have been verified to be in the page
266  * cache and locked.  It will never put the page into the free list, the caller
267  * has a reference on the page.
268  */
269 void delete_from_page_cache(struct page *page)
270 {
271 	struct address_space *mapping = page_mapping(page);
272 	unsigned long flags;
273 
274 	BUG_ON(!PageLocked(page));
275 	xa_lock_irqsave(&mapping->i_pages, flags);
276 	__delete_from_page_cache(page, NULL);
277 	xa_unlock_irqrestore(&mapping->i_pages, flags);
278 
279 	page_cache_free_page(mapping, page);
280 }
281 EXPORT_SYMBOL(delete_from_page_cache);
282 
283 /*
284  * page_cache_delete_batch - delete several pages from page cache
285  * @mapping: the mapping to which pages belong
286  * @pvec: pagevec with pages to delete
287  *
288  * The function walks over mapping->i_pages and removes pages passed in @pvec
289  * from the mapping. The function expects @pvec to be sorted by page index
290  * and is optimised for it to be dense.
291  * It tolerates holes in @pvec (mapping entries at those indices are not
292  * modified). The function expects only THP head pages to be present in the
293  * @pvec.
294  *
295  * The function expects the i_pages lock to be held.
296  */
297 static void page_cache_delete_batch(struct address_space *mapping,
298 			     struct pagevec *pvec)
299 {
300 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
301 	int total_pages = 0;
302 	int i = 0;
303 	struct page *page;
304 
305 	mapping_set_update(&xas, mapping);
306 	xas_for_each(&xas, page, ULONG_MAX) {
307 		if (i >= pagevec_count(pvec))
308 			break;
309 
310 		/* A swap/dax/shadow entry got inserted? Skip it. */
311 		if (xa_is_value(page))
312 			continue;
313 		/*
314 		 * A page got inserted in our range? Skip it. We have our
315 		 * pages locked so they are protected from being removed.
316 		 * If we see a page whose index is higher than ours, it
317 		 * means our page has been removed, which shouldn't be
318 		 * possible because we're holding the PageLock.
319 		 */
320 		if (page != pvec->pages[i]) {
321 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 					page);
323 			continue;
324 		}
325 
326 		WARN_ON_ONCE(!PageLocked(page));
327 
328 		if (page->index == xas.xa_index)
329 			page->mapping = NULL;
330 		/* Leave page->index set: truncation lookup relies on it */
331 
332 		/*
333 		 * Move to the next page in the vector if this is a regular
334 		 * page or the index is of the last sub-page of this compound
335 		 * page.
336 		 */
337 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
338 			i++;
339 		xas_store(&xas, NULL);
340 		total_pages++;
341 	}
342 	mapping->nrpages -= total_pages;
343 }
344 
345 void delete_from_page_cache_batch(struct address_space *mapping,
346 				  struct pagevec *pvec)
347 {
348 	int i;
349 	unsigned long flags;
350 
351 	if (!pagevec_count(pvec))
352 		return;
353 
354 	xa_lock_irqsave(&mapping->i_pages, flags);
355 	for (i = 0; i < pagevec_count(pvec); i++) {
356 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357 
358 		unaccount_page_cache_page(mapping, pvec->pages[i]);
359 	}
360 	page_cache_delete_batch(mapping, pvec);
361 	xa_unlock_irqrestore(&mapping->i_pages, flags);
362 
363 	for (i = 0; i < pagevec_count(pvec); i++)
364 		page_cache_free_page(mapping, pvec->pages[i]);
365 }
366 
367 int filemap_check_errors(struct address_space *mapping)
368 {
369 	int ret = 0;
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
373 		ret = -ENOSPC;
374 	if (test_bit(AS_EIO, &mapping->flags) &&
375 	    test_and_clear_bit(AS_EIO, &mapping->flags))
376 		ret = -EIO;
377 	return ret;
378 }
379 EXPORT_SYMBOL(filemap_check_errors);
380 
381 static int filemap_check_and_keep_errors(struct address_space *mapping)
382 {
383 	/* Check for outstanding write errors */
384 	if (test_bit(AS_EIO, &mapping->flags))
385 		return -EIO;
386 	if (test_bit(AS_ENOSPC, &mapping->flags))
387 		return -ENOSPC;
388 	return 0;
389 }
390 
391 /**
392  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393  * @mapping:	address space structure to write
394  * @start:	offset in bytes where the range starts
395  * @end:	offset in bytes where the range ends (inclusive)
396  * @sync_mode:	enable synchronous operation
397  *
398  * Start writeback against all of a mapping's dirty pages that lie
399  * within the byte offsets <start, end> inclusive.
400  *
401  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402  * opposed to a regular memory cleansing writeback.  The difference between
403  * these two operations is that if a dirty page/buffer is encountered, it must
404  * be waited upon, and not just skipped over.
405  *
406  * Return: %0 on success, negative error code otherwise.
407  */
408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 				loff_t end, int sync_mode)
410 {
411 	int ret;
412 	struct writeback_control wbc = {
413 		.sync_mode = sync_mode,
414 		.nr_to_write = LONG_MAX,
415 		.range_start = start,
416 		.range_end = end,
417 	};
418 
419 	if (!mapping_can_writeback(mapping) ||
420 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 		return 0;
422 
423 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
424 	ret = do_writepages(mapping, &wbc);
425 	wbc_detach_inode(&wbc);
426 	return ret;
427 }
428 
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 	int sync_mode)
431 {
432 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434 
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440 
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 				loff_t end)
443 {
444 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 
448 /**
449  * filemap_flush - mostly a non-blocking flush
450  * @mapping:	target address_space
451  *
452  * This is a mostly non-blocking flush.  Not suitable for data-integrity
453  * purposes - I/O may not be started against all dirty pages.
454  *
455  * Return: %0 on success, negative error code otherwise.
456  */
457 int filemap_flush(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462 
463 /**
464  * filemap_range_has_page - check if a page exists in range.
465  * @mapping:           address space within which to check
466  * @start_byte:        offset in bytes where the range starts
467  * @end_byte:          offset in bytes where the range ends (inclusive)
468  *
469  * Find at least one page in the range supplied, usually used to check if
470  * direct writing in this range will trigger a writeback.
471  *
472  * Return: %true if at least one page exists in the specified range,
473  * %false otherwise.
474  */
475 bool filemap_range_has_page(struct address_space *mapping,
476 			   loff_t start_byte, loff_t end_byte)
477 {
478 	struct page *page;
479 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 	pgoff_t max = end_byte >> PAGE_SHIFT;
481 
482 	if (end_byte < start_byte)
483 		return false;
484 
485 	rcu_read_lock();
486 	for (;;) {
487 		page = xas_find(&xas, max);
488 		if (xas_retry(&xas, page))
489 			continue;
490 		/* Shadow entries don't count */
491 		if (xa_is_value(page))
492 			continue;
493 		/*
494 		 * We don't need to try to pin this page; we're about to
495 		 * release the RCU lock anyway.  It is enough to know that
496 		 * there was a page here recently.
497 		 */
498 		break;
499 	}
500 	rcu_read_unlock();
501 
502 	return page != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505 
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 				     loff_t start_byte, loff_t end_byte)
508 {
509 	pgoff_t index = start_byte >> PAGE_SHIFT;
510 	pgoff_t end = end_byte >> PAGE_SHIFT;
511 	struct pagevec pvec;
512 	int nr_pages;
513 
514 	if (end_byte < start_byte)
515 		return;
516 
517 	pagevec_init(&pvec);
518 	while (index <= end) {
519 		unsigned i;
520 
521 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522 				end, PAGECACHE_TAG_WRITEBACK);
523 		if (!nr_pages)
524 			break;
525 
526 		for (i = 0; i < nr_pages; i++) {
527 			struct page *page = pvec.pages[i];
528 
529 			wait_on_page_writeback(page);
530 			ClearPageError(page);
531 		}
532 		pagevec_release(&pvec);
533 		cond_resched();
534 	}
535 }
536 
537 /**
538  * filemap_fdatawait_range - wait for writeback to complete
539  * @mapping:		address space structure to wait for
540  * @start_byte:		offset in bytes where the range starts
541  * @end_byte:		offset in bytes where the range ends (inclusive)
542  *
543  * Walk the list of under-writeback pages of the given address space
544  * in the given range and wait for all of them.  Check error status of
545  * the address space and return it.
546  *
547  * Since the error status of the address space is cleared by this function,
548  * callers are responsible for checking the return value and handling and/or
549  * reporting the error.
550  *
551  * Return: error status of the address space.
552  */
553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 			    loff_t end_byte)
555 {
556 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
557 	return filemap_check_errors(mapping);
558 }
559 EXPORT_SYMBOL(filemap_fdatawait_range);
560 
561 /**
562  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563  * @mapping:		address space structure to wait for
564  * @start_byte:		offset in bytes where the range starts
565  * @end_byte:		offset in bytes where the range ends (inclusive)
566  *
567  * Walk the list of under-writeback pages of the given address space in the
568  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
569  * this function does not clear error status of the address space.
570  *
571  * Use this function if callers don't handle errors themselves.  Expected
572  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573  * fsfreeze(8)
574  */
575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 		loff_t start_byte, loff_t end_byte)
577 {
578 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
579 	return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582 
583 /**
584  * file_fdatawait_range - wait for writeback to complete
585  * @file:		file pointing to address space structure to wait for
586  * @start_byte:		offset in bytes where the range starts
587  * @end_byte:		offset in bytes where the range ends (inclusive)
588  *
589  * Walk the list of under-writeback pages of the address space that file
590  * refers to, in the given range and wait for all of them.  Check error
591  * status of the address space vs. the file->f_wb_err cursor and return it.
592  *
593  * Since the error status of the file is advanced by this function,
594  * callers are responsible for checking the return value and handling and/or
595  * reporting the error.
596  *
597  * Return: error status of the address space vs. the file->f_wb_err cursor.
598  */
599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600 {
601 	struct address_space *mapping = file->f_mapping;
602 
603 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
604 	return file_check_and_advance_wb_err(file);
605 }
606 EXPORT_SYMBOL(file_fdatawait_range);
607 
608 /**
609  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610  * @mapping: address space structure to wait for
611  *
612  * Walk the list of under-writeback pages of the given address space
613  * and wait for all of them.  Unlike filemap_fdatawait(), this function
614  * does not clear error status of the address space.
615  *
616  * Use this function if callers don't handle errors themselves.  Expected
617  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618  * fsfreeze(8)
619  *
620  * Return: error status of the address space.
621  */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 	return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628 
629 /* Returns true if writeback might be needed or already in progress. */
630 static bool mapping_needs_writeback(struct address_space *mapping)
631 {
632 	if (dax_mapping(mapping))
633 		return mapping->nrexceptional;
634 
635 	return mapping->nrpages;
636 }
637 
638 /**
639  * filemap_write_and_wait_range - write out & wait on a file range
640  * @mapping:	the address_space for the pages
641  * @lstart:	offset in bytes where the range starts
642  * @lend:	offset in bytes where the range ends (inclusive)
643  *
644  * Write out and wait upon file offsets lstart->lend, inclusive.
645  *
646  * Note that @lend is inclusive (describes the last byte to be written) so
647  * that this function can be used to write to the very end-of-file (end = -1).
648  *
649  * Return: error status of the address space.
650  */
651 int filemap_write_and_wait_range(struct address_space *mapping,
652 				 loff_t lstart, loff_t lend)
653 {
654 	int err = 0;
655 
656 	if (mapping_needs_writeback(mapping)) {
657 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 						 WB_SYNC_ALL);
659 		/*
660 		 * Even if the above returned error, the pages may be
661 		 * written partially (e.g. -ENOSPC), so we wait for it.
662 		 * But the -EIO is special case, it may indicate the worst
663 		 * thing (e.g. bug) happened, so we avoid waiting for it.
664 		 */
665 		if (err != -EIO) {
666 			int err2 = filemap_fdatawait_range(mapping,
667 						lstart, lend);
668 			if (!err)
669 				err = err2;
670 		} else {
671 			/* Clear any previously stored errors */
672 			filemap_check_errors(mapping);
673 		}
674 	} else {
675 		err = filemap_check_errors(mapping);
676 	}
677 	return err;
678 }
679 EXPORT_SYMBOL(filemap_write_and_wait_range);
680 
681 void __filemap_set_wb_err(struct address_space *mapping, int err)
682 {
683 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
684 
685 	trace_filemap_set_wb_err(mapping, eseq);
686 }
687 EXPORT_SYMBOL(__filemap_set_wb_err);
688 
689 /**
690  * file_check_and_advance_wb_err - report wb error (if any) that was previously
691  * 				   and advance wb_err to current one
692  * @file: struct file on which the error is being reported
693  *
694  * When userland calls fsync (or something like nfsd does the equivalent), we
695  * want to report any writeback errors that occurred since the last fsync (or
696  * since the file was opened if there haven't been any).
697  *
698  * Grab the wb_err from the mapping. If it matches what we have in the file,
699  * then just quickly return 0. The file is all caught up.
700  *
701  * If it doesn't match, then take the mapping value, set the "seen" flag in
702  * it and try to swap it into place. If it works, or another task beat us
703  * to it with the new value, then update the f_wb_err and return the error
704  * portion. The error at this point must be reported via proper channels
705  * (a'la fsync, or NFS COMMIT operation, etc.).
706  *
707  * While we handle mapping->wb_err with atomic operations, the f_wb_err
708  * value is protected by the f_lock since we must ensure that it reflects
709  * the latest value swapped in for this file descriptor.
710  *
711  * Return: %0 on success, negative error code otherwise.
712  */
713 int file_check_and_advance_wb_err(struct file *file)
714 {
715 	int err = 0;
716 	errseq_t old = READ_ONCE(file->f_wb_err);
717 	struct address_space *mapping = file->f_mapping;
718 
719 	/* Locklessly handle the common case where nothing has changed */
720 	if (errseq_check(&mapping->wb_err, old)) {
721 		/* Something changed, must use slow path */
722 		spin_lock(&file->f_lock);
723 		old = file->f_wb_err;
724 		err = errseq_check_and_advance(&mapping->wb_err,
725 						&file->f_wb_err);
726 		trace_file_check_and_advance_wb_err(file, old);
727 		spin_unlock(&file->f_lock);
728 	}
729 
730 	/*
731 	 * We're mostly using this function as a drop in replacement for
732 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 	 * that the legacy code would have had on these flags.
734 	 */
735 	clear_bit(AS_EIO, &mapping->flags);
736 	clear_bit(AS_ENOSPC, &mapping->flags);
737 	return err;
738 }
739 EXPORT_SYMBOL(file_check_and_advance_wb_err);
740 
741 /**
742  * file_write_and_wait_range - write out & wait on a file range
743  * @file:	file pointing to address_space with pages
744  * @lstart:	offset in bytes where the range starts
745  * @lend:	offset in bytes where the range ends (inclusive)
746  *
747  * Write out and wait upon file offsets lstart->lend, inclusive.
748  *
749  * Note that @lend is inclusive (describes the last byte to be written) so
750  * that this function can be used to write to the very end-of-file (end = -1).
751  *
752  * After writing out and waiting on the data, we check and advance the
753  * f_wb_err cursor to the latest value, and return any errors detected there.
754  *
755  * Return: %0 on success, negative error code otherwise.
756  */
757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758 {
759 	int err = 0, err2;
760 	struct address_space *mapping = file->f_mapping;
761 
762 	if (mapping_needs_writeback(mapping)) {
763 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 						 WB_SYNC_ALL);
765 		/* See comment of filemap_write_and_wait() */
766 		if (err != -EIO)
767 			__filemap_fdatawait_range(mapping, lstart, lend);
768 	}
769 	err2 = file_check_and_advance_wb_err(file);
770 	if (!err)
771 		err = err2;
772 	return err;
773 }
774 EXPORT_SYMBOL(file_write_and_wait_range);
775 
776 /**
777  * replace_page_cache_page - replace a pagecache page with a new one
778  * @old:	page to be replaced
779  * @new:	page to replace with
780  *
781  * This function replaces a page in the pagecache with a new one.  On
782  * success it acquires the pagecache reference for the new page and
783  * drops it for the old page.  Both the old and new pages must be
784  * locked.  This function does not add the new page to the LRU, the
785  * caller must do that.
786  *
787  * The remove + add is atomic.  This function cannot fail.
788  */
789 void replace_page_cache_page(struct page *old, struct page *new)
790 {
791 	struct address_space *mapping = old->mapping;
792 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 	pgoff_t offset = old->index;
794 	XA_STATE(xas, &mapping->i_pages, offset);
795 	unsigned long flags;
796 
797 	VM_BUG_ON_PAGE(!PageLocked(old), old);
798 	VM_BUG_ON_PAGE(!PageLocked(new), new);
799 	VM_BUG_ON_PAGE(new->mapping, new);
800 
801 	get_page(new);
802 	new->mapping = mapping;
803 	new->index = offset;
804 
805 	mem_cgroup_migrate(old, new);
806 
807 	xas_lock_irqsave(&xas, flags);
808 	xas_store(&xas, new);
809 
810 	old->mapping = NULL;
811 	/* hugetlb pages do not participate in page cache accounting. */
812 	if (!PageHuge(old))
813 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814 	if (!PageHuge(new))
815 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816 	if (PageSwapBacked(old))
817 		__dec_lruvec_page_state(old, NR_SHMEM);
818 	if (PageSwapBacked(new))
819 		__inc_lruvec_page_state(new, NR_SHMEM);
820 	xas_unlock_irqrestore(&xas, flags);
821 	if (freepage)
822 		freepage(old);
823 	put_page(old);
824 }
825 EXPORT_SYMBOL_GPL(replace_page_cache_page);
826 
827 noinline int __add_to_page_cache_locked(struct page *page,
828 					struct address_space *mapping,
829 					pgoff_t offset, gfp_t gfp,
830 					void **shadowp)
831 {
832 	XA_STATE(xas, &mapping->i_pages, offset);
833 	int huge = PageHuge(page);
834 	int error;
835 	bool charged = false;
836 
837 	VM_BUG_ON_PAGE(!PageLocked(page), page);
838 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839 	mapping_set_update(&xas, mapping);
840 
841 	get_page(page);
842 	page->mapping = mapping;
843 	page->index = offset;
844 
845 	if (!huge) {
846 		error = mem_cgroup_charge(page, current->mm, gfp);
847 		if (error)
848 			goto error;
849 		charged = true;
850 	}
851 
852 	gfp &= GFP_RECLAIM_MASK;
853 
854 	do {
855 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 		void *entry, *old = NULL;
857 
858 		if (order > thp_order(page))
859 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 					order, gfp);
861 		xas_lock_irq(&xas);
862 		xas_for_each_conflict(&xas, entry) {
863 			old = entry;
864 			if (!xa_is_value(entry)) {
865 				xas_set_err(&xas, -EEXIST);
866 				goto unlock;
867 			}
868 		}
869 
870 		if (old) {
871 			if (shadowp)
872 				*shadowp = old;
873 			/* entry may have been split before we acquired lock */
874 			order = xa_get_order(xas.xa, xas.xa_index);
875 			if (order > thp_order(page)) {
876 				xas_split(&xas, old, order);
877 				xas_reset(&xas);
878 			}
879 		}
880 
881 		xas_store(&xas, page);
882 		if (xas_error(&xas))
883 			goto unlock;
884 
885 		if (old)
886 			mapping->nrexceptional--;
887 		mapping->nrpages++;
888 
889 		/* hugetlb pages do not participate in page cache accounting */
890 		if (!huge)
891 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
892 unlock:
893 		xas_unlock_irq(&xas);
894 	} while (xas_nomem(&xas, gfp));
895 
896 	if (xas_error(&xas)) {
897 		error = xas_error(&xas);
898 		if (charged)
899 			mem_cgroup_uncharge(page);
900 		goto error;
901 	}
902 
903 	trace_mm_filemap_add_to_page_cache(page);
904 	return 0;
905 error:
906 	page->mapping = NULL;
907 	/* Leave page->index set: truncation relies upon it */
908 	put_page(page);
909 	return error;
910 }
911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
912 
913 /**
914  * add_to_page_cache_locked - add a locked page to the pagecache
915  * @page:	page to add
916  * @mapping:	the page's address_space
917  * @offset:	page index
918  * @gfp_mask:	page allocation mode
919  *
920  * This function is used to add a page to the pagecache. It must be locked.
921  * This function does not add the page to the LRU.  The caller must do that.
922  *
923  * Return: %0 on success, negative error code otherwise.
924  */
925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 		pgoff_t offset, gfp_t gfp_mask)
927 {
928 	return __add_to_page_cache_locked(page, mapping, offset,
929 					  gfp_mask, NULL);
930 }
931 EXPORT_SYMBOL(add_to_page_cache_locked);
932 
933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
934 				pgoff_t offset, gfp_t gfp_mask)
935 {
936 	void *shadow = NULL;
937 	int ret;
938 
939 	__SetPageLocked(page);
940 	ret = __add_to_page_cache_locked(page, mapping, offset,
941 					 gfp_mask, &shadow);
942 	if (unlikely(ret))
943 		__ClearPageLocked(page);
944 	else {
945 		/*
946 		 * The page might have been evicted from cache only
947 		 * recently, in which case it should be activated like
948 		 * any other repeatedly accessed page.
949 		 * The exception is pages getting rewritten; evicting other
950 		 * data from the working set, only to cache data that will
951 		 * get overwritten with something else, is a waste of memory.
952 		 */
953 		WARN_ON_ONCE(PageActive(page));
954 		if (!(gfp_mask & __GFP_WRITE) && shadow)
955 			workingset_refault(page, shadow);
956 		lru_cache_add(page);
957 	}
958 	return ret;
959 }
960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
961 
962 #ifdef CONFIG_NUMA
963 struct page *__page_cache_alloc(gfp_t gfp)
964 {
965 	int n;
966 	struct page *page;
967 
968 	if (cpuset_do_page_mem_spread()) {
969 		unsigned int cpuset_mems_cookie;
970 		do {
971 			cpuset_mems_cookie = read_mems_allowed_begin();
972 			n = cpuset_mem_spread_node();
973 			page = __alloc_pages_node(n, gfp, 0);
974 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
975 
976 		return page;
977 	}
978 	return alloc_pages(gfp, 0);
979 }
980 EXPORT_SYMBOL(__page_cache_alloc);
981 #endif
982 
983 /*
984  * In order to wait for pages to become available there must be
985  * waitqueues associated with pages. By using a hash table of
986  * waitqueues where the bucket discipline is to maintain all
987  * waiters on the same queue and wake all when any of the pages
988  * become available, and for the woken contexts to check to be
989  * sure the appropriate page became available, this saves space
990  * at a cost of "thundering herd" phenomena during rare hash
991  * collisions.
992  */
993 #define PAGE_WAIT_TABLE_BITS 8
994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996 
997 static wait_queue_head_t *page_waitqueue(struct page *page)
998 {
999 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1000 }
1001 
1002 void __init pagecache_init(void)
1003 {
1004 	int i;
1005 
1006 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 		init_waitqueue_head(&page_wait_table[i]);
1008 
1009 	page_writeback_init();
1010 }
1011 
1012 /*
1013  * The page wait code treats the "wait->flags" somewhat unusually, because
1014  * we have multiple different kinds of waits, not just the usual "exclusive"
1015  * one.
1016  *
1017  * We have:
1018  *
1019  *  (a) no special bits set:
1020  *
1021  *	We're just waiting for the bit to be released, and when a waker
1022  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023  *	and remove it from the wait queue.
1024  *
1025  *	Simple and straightforward.
1026  *
1027  *  (b) WQ_FLAG_EXCLUSIVE:
1028  *
1029  *	The waiter is waiting to get the lock, and only one waiter should
1030  *	be woken up to avoid any thundering herd behavior. We'll set the
1031  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032  *
1033  *	This is the traditional exclusive wait.
1034  *
1035  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1036  *
1037  *	The waiter is waiting to get the bit, and additionally wants the
1038  *	lock to be transferred to it for fair lock behavior. If the lock
1039  *	cannot be taken, we stop walking the wait queue without waking
1040  *	the waiter.
1041  *
1042  *	This is the "fair lock handoff" case, and in addition to setting
1043  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044  *	that it now has the lock.
1045  */
1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1047 {
1048 	unsigned int flags;
1049 	struct wait_page_key *key = arg;
1050 	struct wait_page_queue *wait_page
1051 		= container_of(wait, struct wait_page_queue, wait);
1052 
1053 	if (!wake_page_match(wait_page, key))
1054 		return 0;
1055 
1056 	/*
1057 	 * If it's a lock handoff wait, we get the bit for it, and
1058 	 * stop walking (and do not wake it up) if we can't.
1059 	 */
1060 	flags = wait->flags;
1061 	if (flags & WQ_FLAG_EXCLUSIVE) {
1062 		if (test_bit(key->bit_nr, &key->page->flags))
1063 			return -1;
1064 		if (flags & WQ_FLAG_CUSTOM) {
1065 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 				return -1;
1067 			flags |= WQ_FLAG_DONE;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * We are holding the wait-queue lock, but the waiter that
1073 	 * is waiting for this will be checking the flags without
1074 	 * any locking.
1075 	 *
1076 	 * So update the flags atomically, and wake up the waiter
1077 	 * afterwards to avoid any races. This store-release pairs
1078 	 * with the load-acquire in wait_on_page_bit_common().
1079 	 */
1080 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1081 	wake_up_state(wait->private, mode);
1082 
1083 	/*
1084 	 * Ok, we have successfully done what we're waiting for,
1085 	 * and we can unconditionally remove the wait entry.
1086 	 *
1087 	 * Note that this pairs with the "finish_wait()" in the
1088 	 * waiter, and has to be the absolute last thing we do.
1089 	 * After this list_del_init(&wait->entry) the wait entry
1090 	 * might be de-allocated and the process might even have
1091 	 * exited.
1092 	 */
1093 	list_del_init_careful(&wait->entry);
1094 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1095 }
1096 
1097 static void wake_up_page_bit(struct page *page, int bit_nr)
1098 {
1099 	wait_queue_head_t *q = page_waitqueue(page);
1100 	struct wait_page_key key;
1101 	unsigned long flags;
1102 	wait_queue_entry_t bookmark;
1103 
1104 	key.page = page;
1105 	key.bit_nr = bit_nr;
1106 	key.page_match = 0;
1107 
1108 	bookmark.flags = 0;
1109 	bookmark.private = NULL;
1110 	bookmark.func = NULL;
1111 	INIT_LIST_HEAD(&bookmark.entry);
1112 
1113 	spin_lock_irqsave(&q->lock, flags);
1114 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115 
1116 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 		/*
1118 		 * Take a breather from holding the lock,
1119 		 * allow pages that finish wake up asynchronously
1120 		 * to acquire the lock and remove themselves
1121 		 * from wait queue
1122 		 */
1123 		spin_unlock_irqrestore(&q->lock, flags);
1124 		cpu_relax();
1125 		spin_lock_irqsave(&q->lock, flags);
1126 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 	}
1128 
1129 	/*
1130 	 * It is possible for other pages to have collided on the waitqueue
1131 	 * hash, so in that case check for a page match. That prevents a long-
1132 	 * term waiter
1133 	 *
1134 	 * It is still possible to miss a case here, when we woke page waiters
1135 	 * and removed them from the waitqueue, but there are still other
1136 	 * page waiters.
1137 	 */
1138 	if (!waitqueue_active(q) || !key.page_match) {
1139 		ClearPageWaiters(page);
1140 		/*
1141 		 * It's possible to miss clearing Waiters here, when we woke
1142 		 * our page waiters, but the hashed waitqueue has waiters for
1143 		 * other pages on it.
1144 		 *
1145 		 * That's okay, it's a rare case. The next waker will clear it.
1146 		 */
1147 	}
1148 	spin_unlock_irqrestore(&q->lock, flags);
1149 }
1150 
1151 static void wake_up_page(struct page *page, int bit)
1152 {
1153 	if (!PageWaiters(page))
1154 		return;
1155 	wake_up_page_bit(page, bit);
1156 }
1157 
1158 /*
1159  * A choice of three behaviors for wait_on_page_bit_common():
1160  */
1161 enum behavior {
1162 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1163 			 * __lock_page() waiting on then setting PG_locked.
1164 			 */
1165 	SHARED,		/* Hold ref to page and check the bit when woken, like
1166 			 * wait_on_page_writeback() waiting on PG_writeback.
1167 			 */
1168 	DROP,		/* Drop ref to page before wait, no check when woken,
1169 			 * like put_and_wait_on_page_locked() on PG_locked.
1170 			 */
1171 };
1172 
1173 /*
1174  * Attempt to check (or get) the page bit, and mark us done
1175  * if successful.
1176  */
1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 					struct wait_queue_entry *wait)
1179 {
1180 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 		if (test_and_set_bit(bit_nr, &page->flags))
1182 			return false;
1183 	} else if (test_bit(bit_nr, &page->flags))
1184 		return false;
1185 
1186 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1187 	return true;
1188 }
1189 
1190 /* How many times do we accept lock stealing from under a waiter? */
1191 int sysctl_page_lock_unfairness = 5;
1192 
1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1194 	struct page *page, int bit_nr, int state, enum behavior behavior)
1195 {
1196 	int unfairness = sysctl_page_lock_unfairness;
1197 	struct wait_page_queue wait_page;
1198 	wait_queue_entry_t *wait = &wait_page.wait;
1199 	bool thrashing = false;
1200 	bool delayacct = false;
1201 	unsigned long pflags;
1202 
1203 	if (bit_nr == PG_locked &&
1204 	    !PageUptodate(page) && PageWorkingset(page)) {
1205 		if (!PageSwapBacked(page)) {
1206 			delayacct_thrashing_start();
1207 			delayacct = true;
1208 		}
1209 		psi_memstall_enter(&pflags);
1210 		thrashing = true;
1211 	}
1212 
1213 	init_wait(wait);
1214 	wait->func = wake_page_function;
1215 	wait_page.page = page;
1216 	wait_page.bit_nr = bit_nr;
1217 
1218 repeat:
1219 	wait->flags = 0;
1220 	if (behavior == EXCLUSIVE) {
1221 		wait->flags = WQ_FLAG_EXCLUSIVE;
1222 		if (--unfairness < 0)
1223 			wait->flags |= WQ_FLAG_CUSTOM;
1224 	}
1225 
1226 	/*
1227 	 * Do one last check whether we can get the
1228 	 * page bit synchronously.
1229 	 *
1230 	 * Do the SetPageWaiters() marking before that
1231 	 * to let any waker we _just_ missed know they
1232 	 * need to wake us up (otherwise they'll never
1233 	 * even go to the slow case that looks at the
1234 	 * page queue), and add ourselves to the wait
1235 	 * queue if we need to sleep.
1236 	 *
1237 	 * This part needs to be done under the queue
1238 	 * lock to avoid races.
1239 	 */
1240 	spin_lock_irq(&q->lock);
1241 	SetPageWaiters(page);
1242 	if (!trylock_page_bit_common(page, bit_nr, wait))
1243 		__add_wait_queue_entry_tail(q, wait);
1244 	spin_unlock_irq(&q->lock);
1245 
1246 	/*
1247 	 * From now on, all the logic will be based on
1248 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 	 * see whether the page bit testing has already
1250 	 * been done by the wake function.
1251 	 *
1252 	 * We can drop our reference to the page.
1253 	 */
1254 	if (behavior == DROP)
1255 		put_page(page);
1256 
1257 	/*
1258 	 * Note that until the "finish_wait()", or until
1259 	 * we see the WQ_FLAG_WOKEN flag, we need to
1260 	 * be very careful with the 'wait->flags', because
1261 	 * we may race with a waker that sets them.
1262 	 */
1263 	for (;;) {
1264 		unsigned int flags;
1265 
1266 		set_current_state(state);
1267 
1268 		/* Loop until we've been woken or interrupted */
1269 		flags = smp_load_acquire(&wait->flags);
1270 		if (!(flags & WQ_FLAG_WOKEN)) {
1271 			if (signal_pending_state(state, current))
1272 				break;
1273 
1274 			io_schedule();
1275 			continue;
1276 		}
1277 
1278 		/* If we were non-exclusive, we're done */
1279 		if (behavior != EXCLUSIVE)
1280 			break;
1281 
1282 		/* If the waker got the lock for us, we're done */
1283 		if (flags & WQ_FLAG_DONE)
1284 			break;
1285 
1286 		/*
1287 		 * Otherwise, if we're getting the lock, we need to
1288 		 * try to get it ourselves.
1289 		 *
1290 		 * And if that fails, we'll have to retry this all.
1291 		 */
1292 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 			goto repeat;
1294 
1295 		wait->flags |= WQ_FLAG_DONE;
1296 		break;
1297 	}
1298 
1299 	/*
1300 	 * If a signal happened, this 'finish_wait()' may remove the last
1301 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 	 * set. That's ok. The next wakeup will take care of it, and trying
1303 	 * to do it here would be difficult and prone to races.
1304 	 */
1305 	finish_wait(q, wait);
1306 
1307 	if (thrashing) {
1308 		if (delayacct)
1309 			delayacct_thrashing_end();
1310 		psi_memstall_leave(&pflags);
1311 	}
1312 
1313 	/*
1314 	 * NOTE! The wait->flags weren't stable until we've done the
1315 	 * 'finish_wait()', and we could have exited the loop above due
1316 	 * to a signal, and had a wakeup event happen after the signal
1317 	 * test but before the 'finish_wait()'.
1318 	 *
1319 	 * So only after the finish_wait() can we reliably determine
1320 	 * if we got woken up or not, so we can now figure out the final
1321 	 * return value based on that state without races.
1322 	 *
1323 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1325 	 */
1326 	if (behavior == EXCLUSIVE)
1327 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1328 
1329 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1330 }
1331 
1332 void wait_on_page_bit(struct page *page, int bit_nr)
1333 {
1334 	wait_queue_head_t *q = page_waitqueue(page);
1335 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1336 }
1337 EXPORT_SYMBOL(wait_on_page_bit);
1338 
1339 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340 {
1341 	wait_queue_head_t *q = page_waitqueue(page);
1342 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1343 }
1344 EXPORT_SYMBOL(wait_on_page_bit_killable);
1345 
1346 /**
1347  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348  * @page: The page to wait for.
1349  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1350  *
1351  * The caller should hold a reference on @page.  They expect the page to
1352  * become unlocked relatively soon, but do not wish to hold up migration
1353  * (for example) by holding the reference while waiting for the page to
1354  * come unlocked.  After this function returns, the caller should not
1355  * dereference @page.
1356  *
1357  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1358  */
1359 int put_and_wait_on_page_locked(struct page *page, int state)
1360 {
1361 	wait_queue_head_t *q;
1362 
1363 	page = compound_head(page);
1364 	q = page_waitqueue(page);
1365 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1366 }
1367 
1368 /**
1369  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1370  * @page: Page defining the wait queue of interest
1371  * @waiter: Waiter to add to the queue
1372  *
1373  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1374  */
1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1376 {
1377 	wait_queue_head_t *q = page_waitqueue(page);
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&q->lock, flags);
1381 	__add_wait_queue_entry_tail(q, waiter);
1382 	SetPageWaiters(page);
1383 	spin_unlock_irqrestore(&q->lock, flags);
1384 }
1385 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1386 
1387 #ifndef clear_bit_unlock_is_negative_byte
1388 
1389 /*
1390  * PG_waiters is the high bit in the same byte as PG_lock.
1391  *
1392  * On x86 (and on many other architectures), we can clear PG_lock and
1393  * test the sign bit at the same time. But if the architecture does
1394  * not support that special operation, we just do this all by hand
1395  * instead.
1396  *
1397  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1398  * being cleared, but a memory barrier should be unnecessary since it is
1399  * in the same byte as PG_locked.
1400  */
1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1402 {
1403 	clear_bit_unlock(nr, mem);
1404 	/* smp_mb__after_atomic(); */
1405 	return test_bit(PG_waiters, mem);
1406 }
1407 
1408 #endif
1409 
1410 /**
1411  * unlock_page - unlock a locked page
1412  * @page: the page
1413  *
1414  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1415  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1416  * mechanism between PageLocked pages and PageWriteback pages is shared.
1417  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1418  *
1419  * Note that this depends on PG_waiters being the sign bit in the byte
1420  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421  * clear the PG_locked bit and test PG_waiters at the same time fairly
1422  * portably (architectures that do LL/SC can test any bit, while x86 can
1423  * test the sign bit).
1424  */
1425 void unlock_page(struct page *page)
1426 {
1427 	BUILD_BUG_ON(PG_waiters != 7);
1428 	page = compound_head(page);
1429 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1430 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 		wake_up_page_bit(page, PG_locked);
1432 }
1433 EXPORT_SYMBOL(unlock_page);
1434 
1435 /**
1436  * end_page_writeback - end writeback against a page
1437  * @page: the page
1438  */
1439 void end_page_writeback(struct page *page)
1440 {
1441 	/*
1442 	 * TestClearPageReclaim could be used here but it is an atomic
1443 	 * operation and overkill in this particular case. Failing to
1444 	 * shuffle a page marked for immediate reclaim is too mild to
1445 	 * justify taking an atomic operation penalty at the end of
1446 	 * ever page writeback.
1447 	 */
1448 	if (PageReclaim(page)) {
1449 		ClearPageReclaim(page);
1450 		rotate_reclaimable_page(page);
1451 	}
1452 
1453 	/*
1454 	 * Writeback does not hold a page reference of its own, relying
1455 	 * on truncation to wait for the clearing of PG_writeback.
1456 	 * But here we must make sure that the page is not freed and
1457 	 * reused before the wake_up_page().
1458 	 */
1459 	get_page(page);
1460 	if (!test_clear_page_writeback(page))
1461 		BUG();
1462 
1463 	smp_mb__after_atomic();
1464 	wake_up_page(page, PG_writeback);
1465 	put_page(page);
1466 }
1467 EXPORT_SYMBOL(end_page_writeback);
1468 
1469 /*
1470  * After completing I/O on a page, call this routine to update the page
1471  * flags appropriately
1472  */
1473 void page_endio(struct page *page, bool is_write, int err)
1474 {
1475 	if (!is_write) {
1476 		if (!err) {
1477 			SetPageUptodate(page);
1478 		} else {
1479 			ClearPageUptodate(page);
1480 			SetPageError(page);
1481 		}
1482 		unlock_page(page);
1483 	} else {
1484 		if (err) {
1485 			struct address_space *mapping;
1486 
1487 			SetPageError(page);
1488 			mapping = page_mapping(page);
1489 			if (mapping)
1490 				mapping_set_error(mapping, err);
1491 		}
1492 		end_page_writeback(page);
1493 	}
1494 }
1495 EXPORT_SYMBOL_GPL(page_endio);
1496 
1497 /**
1498  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1499  * @__page: the page to lock
1500  */
1501 void __lock_page(struct page *__page)
1502 {
1503 	struct page *page = compound_head(__page);
1504 	wait_queue_head_t *q = page_waitqueue(page);
1505 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1506 				EXCLUSIVE);
1507 }
1508 EXPORT_SYMBOL(__lock_page);
1509 
1510 int __lock_page_killable(struct page *__page)
1511 {
1512 	struct page *page = compound_head(__page);
1513 	wait_queue_head_t *q = page_waitqueue(page);
1514 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1515 					EXCLUSIVE);
1516 }
1517 EXPORT_SYMBOL_GPL(__lock_page_killable);
1518 
1519 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1520 {
1521 	struct wait_queue_head *q = page_waitqueue(page);
1522 	int ret = 0;
1523 
1524 	wait->page = page;
1525 	wait->bit_nr = PG_locked;
1526 
1527 	spin_lock_irq(&q->lock);
1528 	__add_wait_queue_entry_tail(q, &wait->wait);
1529 	SetPageWaiters(page);
1530 	ret = !trylock_page(page);
1531 	/*
1532 	 * If we were successful now, we know we're still on the
1533 	 * waitqueue as we're still under the lock. This means it's
1534 	 * safe to remove and return success, we know the callback
1535 	 * isn't going to trigger.
1536 	 */
1537 	if (!ret)
1538 		__remove_wait_queue(q, &wait->wait);
1539 	else
1540 		ret = -EIOCBQUEUED;
1541 	spin_unlock_irq(&q->lock);
1542 	return ret;
1543 }
1544 
1545 /*
1546  * Return values:
1547  * 1 - page is locked; mmap_lock is still held.
1548  * 0 - page is not locked.
1549  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1550  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1551  *     which case mmap_lock is still held.
1552  *
1553  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1554  * with the page locked and the mmap_lock unperturbed.
1555  */
1556 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1557 			 unsigned int flags)
1558 {
1559 	if (fault_flag_allow_retry_first(flags)) {
1560 		/*
1561 		 * CAUTION! In this case, mmap_lock is not released
1562 		 * even though return 0.
1563 		 */
1564 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1565 			return 0;
1566 
1567 		mmap_read_unlock(mm);
1568 		if (flags & FAULT_FLAG_KILLABLE)
1569 			wait_on_page_locked_killable(page);
1570 		else
1571 			wait_on_page_locked(page);
1572 		return 0;
1573 	}
1574 	if (flags & FAULT_FLAG_KILLABLE) {
1575 		int ret;
1576 
1577 		ret = __lock_page_killable(page);
1578 		if (ret) {
1579 			mmap_read_unlock(mm);
1580 			return 0;
1581 		}
1582 	} else {
1583 		__lock_page(page);
1584 	}
1585 	return 1;
1586 
1587 }
1588 
1589 /**
1590  * page_cache_next_miss() - Find the next gap in the page cache.
1591  * @mapping: Mapping.
1592  * @index: Index.
1593  * @max_scan: Maximum range to search.
1594  *
1595  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1596  * gap with the lowest index.
1597  *
1598  * This function may be called under the rcu_read_lock.  However, this will
1599  * not atomically search a snapshot of the cache at a single point in time.
1600  * For example, if a gap is created at index 5, then subsequently a gap is
1601  * created at index 10, page_cache_next_miss covering both indices may
1602  * return 10 if called under the rcu_read_lock.
1603  *
1604  * Return: The index of the gap if found, otherwise an index outside the
1605  * range specified (in which case 'return - index >= max_scan' will be true).
1606  * In the rare case of index wrap-around, 0 will be returned.
1607  */
1608 pgoff_t page_cache_next_miss(struct address_space *mapping,
1609 			     pgoff_t index, unsigned long max_scan)
1610 {
1611 	XA_STATE(xas, &mapping->i_pages, index);
1612 
1613 	while (max_scan--) {
1614 		void *entry = xas_next(&xas);
1615 		if (!entry || xa_is_value(entry))
1616 			break;
1617 		if (xas.xa_index == 0)
1618 			break;
1619 	}
1620 
1621 	return xas.xa_index;
1622 }
1623 EXPORT_SYMBOL(page_cache_next_miss);
1624 
1625 /**
1626  * page_cache_prev_miss() - Find the previous gap in the page cache.
1627  * @mapping: Mapping.
1628  * @index: Index.
1629  * @max_scan: Maximum range to search.
1630  *
1631  * Search the range [max(index - max_scan + 1, 0), index] for the
1632  * gap with the highest index.
1633  *
1634  * This function may be called under the rcu_read_lock.  However, this will
1635  * not atomically search a snapshot of the cache at a single point in time.
1636  * For example, if a gap is created at index 10, then subsequently a gap is
1637  * created at index 5, page_cache_prev_miss() covering both indices may
1638  * return 5 if called under the rcu_read_lock.
1639  *
1640  * Return: The index of the gap if found, otherwise an index outside the
1641  * range specified (in which case 'index - return >= max_scan' will be true).
1642  * In the rare case of wrap-around, ULONG_MAX will be returned.
1643  */
1644 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1645 			     pgoff_t index, unsigned long max_scan)
1646 {
1647 	XA_STATE(xas, &mapping->i_pages, index);
1648 
1649 	while (max_scan--) {
1650 		void *entry = xas_prev(&xas);
1651 		if (!entry || xa_is_value(entry))
1652 			break;
1653 		if (xas.xa_index == ULONG_MAX)
1654 			break;
1655 	}
1656 
1657 	return xas.xa_index;
1658 }
1659 EXPORT_SYMBOL(page_cache_prev_miss);
1660 
1661 /*
1662  * mapping_get_entry - Get a page cache entry.
1663  * @mapping: the address_space to search
1664  * @index: The page cache index.
1665  *
1666  * Looks up the page cache slot at @mapping & @offset.  If there is a
1667  * page cache page, the head page is returned with an increased refcount.
1668  *
1669  * If the slot holds a shadow entry of a previously evicted page, or a
1670  * swap entry from shmem/tmpfs, it is returned.
1671  *
1672  * Return: The head page or shadow entry, %NULL if nothing is found.
1673  */
1674 static struct page *mapping_get_entry(struct address_space *mapping,
1675 		pgoff_t index)
1676 {
1677 	XA_STATE(xas, &mapping->i_pages, index);
1678 	struct page *page;
1679 
1680 	rcu_read_lock();
1681 repeat:
1682 	xas_reset(&xas);
1683 	page = xas_load(&xas);
1684 	if (xas_retry(&xas, page))
1685 		goto repeat;
1686 	/*
1687 	 * A shadow entry of a recently evicted page, or a swap entry from
1688 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1689 	 */
1690 	if (!page || xa_is_value(page))
1691 		goto out;
1692 
1693 	if (!page_cache_get_speculative(page))
1694 		goto repeat;
1695 
1696 	/*
1697 	 * Has the page moved or been split?
1698 	 * This is part of the lockless pagecache protocol. See
1699 	 * include/linux/pagemap.h for details.
1700 	 */
1701 	if (unlikely(page != xas_reload(&xas))) {
1702 		put_page(page);
1703 		goto repeat;
1704 	}
1705 out:
1706 	rcu_read_unlock();
1707 
1708 	return page;
1709 }
1710 
1711 /**
1712  * pagecache_get_page - Find and get a reference to a page.
1713  * @mapping: The address_space to search.
1714  * @index: The page index.
1715  * @fgp_flags: %FGP flags modify how the page is returned.
1716  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1717  *
1718  * Looks up the page cache entry at @mapping & @index.
1719  *
1720  * @fgp_flags can be zero or more of these flags:
1721  *
1722  * * %FGP_ACCESSED - The page will be marked accessed.
1723  * * %FGP_LOCK - The page is returned locked.
1724  * * %FGP_HEAD - If the page is present and a THP, return the head page
1725  *   rather than the exact page specified by the index.
1726  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1727  *   instead of allocating a new page to replace it.
1728  * * %FGP_CREAT - If no page is present then a new page is allocated using
1729  *   @gfp_mask and added to the page cache and the VM's LRU list.
1730  *   The page is returned locked and with an increased refcount.
1731  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1732  *   page is already in cache.  If the page was allocated, unlock it before
1733  *   returning so the caller can do the same dance.
1734  * * %FGP_WRITE - The page will be written
1735  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1736  * * %FGP_NOWAIT - Don't get blocked by page lock
1737  *
1738  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1739  * if the %GFP flags specified for %FGP_CREAT are atomic.
1740  *
1741  * If there is a page cache page, it is returned with an increased refcount.
1742  *
1743  * Return: The found page or %NULL otherwise.
1744  */
1745 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1746 		int fgp_flags, gfp_t gfp_mask)
1747 {
1748 	struct page *page;
1749 
1750 repeat:
1751 	page = mapping_get_entry(mapping, index);
1752 	if (xa_is_value(page)) {
1753 		if (fgp_flags & FGP_ENTRY)
1754 			return page;
1755 		page = NULL;
1756 	}
1757 	if (!page)
1758 		goto no_page;
1759 
1760 	if (fgp_flags & FGP_LOCK) {
1761 		if (fgp_flags & FGP_NOWAIT) {
1762 			if (!trylock_page(page)) {
1763 				put_page(page);
1764 				return NULL;
1765 			}
1766 		} else {
1767 			lock_page(page);
1768 		}
1769 
1770 		/* Has the page been truncated? */
1771 		if (unlikely(page->mapping != mapping)) {
1772 			unlock_page(page);
1773 			put_page(page);
1774 			goto repeat;
1775 		}
1776 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1777 	}
1778 
1779 	if (fgp_flags & FGP_ACCESSED)
1780 		mark_page_accessed(page);
1781 	else if (fgp_flags & FGP_WRITE) {
1782 		/* Clear idle flag for buffer write */
1783 		if (page_is_idle(page))
1784 			clear_page_idle(page);
1785 	}
1786 	if (!(fgp_flags & FGP_HEAD))
1787 		page = find_subpage(page, index);
1788 
1789 no_page:
1790 	if (!page && (fgp_flags & FGP_CREAT)) {
1791 		int err;
1792 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1793 			gfp_mask |= __GFP_WRITE;
1794 		if (fgp_flags & FGP_NOFS)
1795 			gfp_mask &= ~__GFP_FS;
1796 
1797 		page = __page_cache_alloc(gfp_mask);
1798 		if (!page)
1799 			return NULL;
1800 
1801 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1802 			fgp_flags |= FGP_LOCK;
1803 
1804 		/* Init accessed so avoid atomic mark_page_accessed later */
1805 		if (fgp_flags & FGP_ACCESSED)
1806 			__SetPageReferenced(page);
1807 
1808 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1809 		if (unlikely(err)) {
1810 			put_page(page);
1811 			page = NULL;
1812 			if (err == -EEXIST)
1813 				goto repeat;
1814 		}
1815 
1816 		/*
1817 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1818 		 * an unlocked page.
1819 		 */
1820 		if (page && (fgp_flags & FGP_FOR_MMAP))
1821 			unlock_page(page);
1822 	}
1823 
1824 	return page;
1825 }
1826 EXPORT_SYMBOL(pagecache_get_page);
1827 
1828 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1829 		xa_mark_t mark)
1830 {
1831 	struct page *page;
1832 
1833 retry:
1834 	if (mark == XA_PRESENT)
1835 		page = xas_find(xas, max);
1836 	else
1837 		page = xas_find_marked(xas, max, mark);
1838 
1839 	if (xas_retry(xas, page))
1840 		goto retry;
1841 	/*
1842 	 * A shadow entry of a recently evicted page, a swap
1843 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1844 	 * without attempting to raise page count.
1845 	 */
1846 	if (!page || xa_is_value(page))
1847 		return page;
1848 
1849 	if (!page_cache_get_speculative(page))
1850 		goto reset;
1851 
1852 	/* Has the page moved or been split? */
1853 	if (unlikely(page != xas_reload(xas))) {
1854 		put_page(page);
1855 		goto reset;
1856 	}
1857 
1858 	return page;
1859 reset:
1860 	xas_reset(xas);
1861 	goto retry;
1862 }
1863 
1864 /**
1865  * find_get_entries - gang pagecache lookup
1866  * @mapping:	The address_space to search
1867  * @start:	The starting page cache index
1868  * @end:	The final page index (inclusive).
1869  * @pvec:	Where the resulting entries are placed.
1870  * @indices:	The cache indices corresponding to the entries in @entries
1871  *
1872  * find_get_entries() will search for and return a batch of entries in
1873  * the mapping.  The entries are placed in @pvec.  find_get_entries()
1874  * takes a reference on any actual pages it returns.
1875  *
1876  * The search returns a group of mapping-contiguous page cache entries
1877  * with ascending indexes.  There may be holes in the indices due to
1878  * not-present pages.
1879  *
1880  * Any shadow entries of evicted pages, or swap entries from
1881  * shmem/tmpfs, are included in the returned array.
1882  *
1883  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1884  * stops at that page: the caller is likely to have a better way to handle
1885  * the compound page as a whole, and then skip its extent, than repeatedly
1886  * calling find_get_entries() to return all its tails.
1887  *
1888  * Return: the number of pages and shadow entries which were found.
1889  */
1890 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1891 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1892 {
1893 	XA_STATE(xas, &mapping->i_pages, start);
1894 	struct page *page;
1895 	unsigned int ret = 0;
1896 	unsigned nr_entries = PAGEVEC_SIZE;
1897 
1898 	rcu_read_lock();
1899 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1900 		/*
1901 		 * Terminate early on finding a THP, to allow the caller to
1902 		 * handle it all at once; but continue if this is hugetlbfs.
1903 		 */
1904 		if (!xa_is_value(page) && PageTransHuge(page) &&
1905 				!PageHuge(page)) {
1906 			page = find_subpage(page, xas.xa_index);
1907 			nr_entries = ret + 1;
1908 		}
1909 
1910 		indices[ret] = xas.xa_index;
1911 		pvec->pages[ret] = page;
1912 		if (++ret == nr_entries)
1913 			break;
1914 	}
1915 	rcu_read_unlock();
1916 
1917 	pvec->nr = ret;
1918 	return ret;
1919 }
1920 
1921 /**
1922  * find_lock_entries - Find a batch of pagecache entries.
1923  * @mapping:	The address_space to search.
1924  * @start:	The starting page cache index.
1925  * @end:	The final page index (inclusive).
1926  * @pvec:	Where the resulting entries are placed.
1927  * @indices:	The cache indices of the entries in @pvec.
1928  *
1929  * find_lock_entries() will return a batch of entries from @mapping.
1930  * Swap, shadow and DAX entries are included.  Pages are returned
1931  * locked and with an incremented refcount.  Pages which are locked by
1932  * somebody else or under writeback are skipped.  Only the head page of
1933  * a THP is returned.  Pages which are partially outside the range are
1934  * not returned.
1935  *
1936  * The entries have ascending indexes.  The indices may not be consecutive
1937  * due to not-present entries, THP pages, pages which could not be locked
1938  * or pages under writeback.
1939  *
1940  * Return: The number of entries which were found.
1941  */
1942 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
1943 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1944 {
1945 	XA_STATE(xas, &mapping->i_pages, start);
1946 	struct page *page;
1947 
1948 	rcu_read_lock();
1949 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1950 		if (!xa_is_value(page)) {
1951 			if (page->index < start)
1952 				goto put;
1953 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1954 			if (page->index + thp_nr_pages(page) - 1 > end)
1955 				goto put;
1956 			if (!trylock_page(page))
1957 				goto put;
1958 			if (page->mapping != mapping || PageWriteback(page))
1959 				goto unlock;
1960 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
1961 					page);
1962 		}
1963 		indices[pvec->nr] = xas.xa_index;
1964 		if (!pagevec_add(pvec, page))
1965 			break;
1966 		goto next;
1967 unlock:
1968 		unlock_page(page);
1969 put:
1970 		put_page(page);
1971 next:
1972 		if (!xa_is_value(page) && PageTransHuge(page))
1973 			xas_set(&xas, page->index + thp_nr_pages(page));
1974 	}
1975 	rcu_read_unlock();
1976 
1977 	return pagevec_count(pvec);
1978 }
1979 
1980 /**
1981  * find_get_pages_range - gang pagecache lookup
1982  * @mapping:	The address_space to search
1983  * @start:	The starting page index
1984  * @end:	The final page index (inclusive)
1985  * @nr_pages:	The maximum number of pages
1986  * @pages:	Where the resulting pages are placed
1987  *
1988  * find_get_pages_range() will search for and return a group of up to @nr_pages
1989  * pages in the mapping starting at index @start and up to index @end
1990  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1991  * a reference against the returned pages.
1992  *
1993  * The search returns a group of mapping-contiguous pages with ascending
1994  * indexes.  There may be holes in the indices due to not-present pages.
1995  * We also update @start to index the next page for the traversal.
1996  *
1997  * Return: the number of pages which were found. If this number is
1998  * smaller than @nr_pages, the end of specified range has been
1999  * reached.
2000  */
2001 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2002 			      pgoff_t end, unsigned int nr_pages,
2003 			      struct page **pages)
2004 {
2005 	XA_STATE(xas, &mapping->i_pages, *start);
2006 	struct page *page;
2007 	unsigned ret = 0;
2008 
2009 	if (unlikely(!nr_pages))
2010 		return 0;
2011 
2012 	rcu_read_lock();
2013 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2014 		/* Skip over shadow, swap and DAX entries */
2015 		if (xa_is_value(page))
2016 			continue;
2017 
2018 		pages[ret] = find_subpage(page, xas.xa_index);
2019 		if (++ret == nr_pages) {
2020 			*start = xas.xa_index + 1;
2021 			goto out;
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * We come here when there is no page beyond @end. We take care to not
2027 	 * overflow the index @start as it confuses some of the callers. This
2028 	 * breaks the iteration when there is a page at index -1 but that is
2029 	 * already broken anyway.
2030 	 */
2031 	if (end == (pgoff_t)-1)
2032 		*start = (pgoff_t)-1;
2033 	else
2034 		*start = end + 1;
2035 out:
2036 	rcu_read_unlock();
2037 
2038 	return ret;
2039 }
2040 
2041 /**
2042  * find_get_pages_contig - gang contiguous pagecache lookup
2043  * @mapping:	The address_space to search
2044  * @index:	The starting page index
2045  * @nr_pages:	The maximum number of pages
2046  * @pages:	Where the resulting pages are placed
2047  *
2048  * find_get_pages_contig() works exactly like find_get_pages(), except
2049  * that the returned number of pages are guaranteed to be contiguous.
2050  *
2051  * Return: the number of pages which were found.
2052  */
2053 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2054 			       unsigned int nr_pages, struct page **pages)
2055 {
2056 	XA_STATE(xas, &mapping->i_pages, index);
2057 	struct page *page;
2058 	unsigned int ret = 0;
2059 
2060 	if (unlikely(!nr_pages))
2061 		return 0;
2062 
2063 	rcu_read_lock();
2064 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2065 		if (xas_retry(&xas, page))
2066 			continue;
2067 		/*
2068 		 * If the entry has been swapped out, we can stop looking.
2069 		 * No current caller is looking for DAX entries.
2070 		 */
2071 		if (xa_is_value(page))
2072 			break;
2073 
2074 		if (!page_cache_get_speculative(page))
2075 			goto retry;
2076 
2077 		/* Has the page moved or been split? */
2078 		if (unlikely(page != xas_reload(&xas)))
2079 			goto put_page;
2080 
2081 		pages[ret] = find_subpage(page, xas.xa_index);
2082 		if (++ret == nr_pages)
2083 			break;
2084 		continue;
2085 put_page:
2086 		put_page(page);
2087 retry:
2088 		xas_reset(&xas);
2089 	}
2090 	rcu_read_unlock();
2091 	return ret;
2092 }
2093 EXPORT_SYMBOL(find_get_pages_contig);
2094 
2095 /**
2096  * find_get_pages_range_tag - Find and return head pages matching @tag.
2097  * @mapping:	the address_space to search
2098  * @index:	the starting page index
2099  * @end:	The final page index (inclusive)
2100  * @tag:	the tag index
2101  * @nr_pages:	the maximum number of pages
2102  * @pages:	where the resulting pages are placed
2103  *
2104  * Like find_get_pages(), except we only return head pages which are tagged
2105  * with @tag.  @index is updated to the index immediately after the last
2106  * page we return, ready for the next iteration.
2107  *
2108  * Return: the number of pages which were found.
2109  */
2110 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2111 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2112 			struct page **pages)
2113 {
2114 	XA_STATE(xas, &mapping->i_pages, *index);
2115 	struct page *page;
2116 	unsigned ret = 0;
2117 
2118 	if (unlikely(!nr_pages))
2119 		return 0;
2120 
2121 	rcu_read_lock();
2122 	while ((page = find_get_entry(&xas, end, tag))) {
2123 		/*
2124 		 * Shadow entries should never be tagged, but this iteration
2125 		 * is lockless so there is a window for page reclaim to evict
2126 		 * a page we saw tagged.  Skip over it.
2127 		 */
2128 		if (xa_is_value(page))
2129 			continue;
2130 
2131 		pages[ret] = page;
2132 		if (++ret == nr_pages) {
2133 			*index = page->index + thp_nr_pages(page);
2134 			goto out;
2135 		}
2136 	}
2137 
2138 	/*
2139 	 * We come here when we got to @end. We take care to not overflow the
2140 	 * index @index as it confuses some of the callers. This breaks the
2141 	 * iteration when there is a page at index -1 but that is already
2142 	 * broken anyway.
2143 	 */
2144 	if (end == (pgoff_t)-1)
2145 		*index = (pgoff_t)-1;
2146 	else
2147 		*index = end + 1;
2148 out:
2149 	rcu_read_unlock();
2150 
2151 	return ret;
2152 }
2153 EXPORT_SYMBOL(find_get_pages_range_tag);
2154 
2155 /*
2156  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2157  * a _large_ part of the i/o request. Imagine the worst scenario:
2158  *
2159  *      ---R__________________________________________B__________
2160  *         ^ reading here                             ^ bad block(assume 4k)
2161  *
2162  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2163  * => failing the whole request => read(R) => read(R+1) =>
2164  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2165  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2166  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2167  *
2168  * It is going insane. Fix it by quickly scaling down the readahead size.
2169  */
2170 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2171 {
2172 	ra->ra_pages /= 4;
2173 }
2174 
2175 /*
2176  * filemap_get_read_batch - Get a batch of pages for read
2177  *
2178  * Get a batch of pages which represent a contiguous range of bytes
2179  * in the file.  No tail pages will be returned.  If @index is in the
2180  * middle of a THP, the entire THP will be returned.  The last page in
2181  * the batch may have Readahead set or be not Uptodate so that the
2182  * caller can take the appropriate action.
2183  */
2184 static void filemap_get_read_batch(struct address_space *mapping,
2185 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2186 {
2187 	XA_STATE(xas, &mapping->i_pages, index);
2188 	struct page *head;
2189 
2190 	rcu_read_lock();
2191 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2192 		if (xas_retry(&xas, head))
2193 			continue;
2194 		if (xas.xa_index > max || xa_is_value(head))
2195 			break;
2196 		if (!page_cache_get_speculative(head))
2197 			goto retry;
2198 
2199 		/* Has the page moved or been split? */
2200 		if (unlikely(head != xas_reload(&xas)))
2201 			goto put_page;
2202 
2203 		if (!pagevec_add(pvec, head))
2204 			break;
2205 		if (!PageUptodate(head))
2206 			break;
2207 		if (PageReadahead(head))
2208 			break;
2209 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2210 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2211 		continue;
2212 put_page:
2213 		put_page(head);
2214 retry:
2215 		xas_reset(&xas);
2216 	}
2217 	rcu_read_unlock();
2218 }
2219 
2220 static int filemap_read_page(struct file *file, struct address_space *mapping,
2221 		struct page *page)
2222 {
2223 	int error;
2224 
2225 	/*
2226 	 * A previous I/O error may have been due to temporary failures,
2227 	 * eg. multipath errors.  PG_error will be set again if readpage
2228 	 * fails.
2229 	 */
2230 	ClearPageError(page);
2231 	/* Start the actual read. The read will unlock the page. */
2232 	error = mapping->a_ops->readpage(file, page);
2233 	if (error)
2234 		return error;
2235 
2236 	error = wait_on_page_locked_killable(page);
2237 	if (error)
2238 		return error;
2239 	if (PageUptodate(page))
2240 		return 0;
2241 	if (!page->mapping)	/* page truncated */
2242 		return AOP_TRUNCATED_PAGE;
2243 	shrink_readahead_size_eio(&file->f_ra);
2244 	return -EIO;
2245 }
2246 
2247 static bool filemap_range_uptodate(struct address_space *mapping,
2248 		loff_t pos, struct iov_iter *iter, struct page *page)
2249 {
2250 	int count;
2251 
2252 	if (PageUptodate(page))
2253 		return true;
2254 	/* pipes can't handle partially uptodate pages */
2255 	if (iov_iter_is_pipe(iter))
2256 		return false;
2257 	if (!mapping->a_ops->is_partially_uptodate)
2258 		return false;
2259 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2260 		return false;
2261 
2262 	count = iter->count;
2263 	if (page_offset(page) > pos) {
2264 		count -= page_offset(page) - pos;
2265 		pos = 0;
2266 	} else {
2267 		pos -= page_offset(page);
2268 	}
2269 
2270 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2271 }
2272 
2273 static int filemap_update_page(struct kiocb *iocb,
2274 		struct address_space *mapping, struct iov_iter *iter,
2275 		struct page *page)
2276 {
2277 	int error;
2278 
2279 	if (!trylock_page(page)) {
2280 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2281 			return -EAGAIN;
2282 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2283 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2284 			return AOP_TRUNCATED_PAGE;
2285 		}
2286 		error = __lock_page_async(page, iocb->ki_waitq);
2287 		if (error)
2288 			return error;
2289 	}
2290 
2291 	if (!page->mapping)
2292 		goto truncated;
2293 
2294 	error = 0;
2295 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2296 		goto unlock;
2297 
2298 	error = -EAGAIN;
2299 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2300 		goto unlock;
2301 
2302 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2303 	if (error == AOP_TRUNCATED_PAGE)
2304 		put_page(page);
2305 	return error;
2306 truncated:
2307 	unlock_page(page);
2308 	put_page(page);
2309 	return AOP_TRUNCATED_PAGE;
2310 unlock:
2311 	unlock_page(page);
2312 	return error;
2313 }
2314 
2315 static int filemap_create_page(struct file *file,
2316 		struct address_space *mapping, pgoff_t index,
2317 		struct pagevec *pvec)
2318 {
2319 	struct page *page;
2320 	int error;
2321 
2322 	page = page_cache_alloc(mapping);
2323 	if (!page)
2324 		return -ENOMEM;
2325 
2326 	error = add_to_page_cache_lru(page, mapping, index,
2327 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2328 	if (error == -EEXIST)
2329 		error = AOP_TRUNCATED_PAGE;
2330 	if (error)
2331 		goto error;
2332 
2333 	error = filemap_read_page(file, mapping, page);
2334 	if (error)
2335 		goto error;
2336 
2337 	pagevec_add(pvec, page);
2338 	return 0;
2339 error:
2340 	put_page(page);
2341 	return error;
2342 }
2343 
2344 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2345 		struct address_space *mapping, struct page *page,
2346 		pgoff_t last_index)
2347 {
2348 	if (iocb->ki_flags & IOCB_NOIO)
2349 		return -EAGAIN;
2350 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2351 			page->index, last_index - page->index);
2352 	return 0;
2353 }
2354 
2355 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2356 		struct pagevec *pvec)
2357 {
2358 	struct file *filp = iocb->ki_filp;
2359 	struct address_space *mapping = filp->f_mapping;
2360 	struct file_ra_state *ra = &filp->f_ra;
2361 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2362 	pgoff_t last_index;
2363 	struct page *page;
2364 	int err = 0;
2365 
2366 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2367 retry:
2368 	if (fatal_signal_pending(current))
2369 		return -EINTR;
2370 
2371 	filemap_get_read_batch(mapping, index, last_index, pvec);
2372 	if (!pagevec_count(pvec)) {
2373 		if (iocb->ki_flags & IOCB_NOIO)
2374 			return -EAGAIN;
2375 		page_cache_sync_readahead(mapping, ra, filp, index,
2376 				last_index - index);
2377 		filemap_get_read_batch(mapping, index, last_index, pvec);
2378 	}
2379 	if (!pagevec_count(pvec)) {
2380 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2381 			return -EAGAIN;
2382 		err = filemap_create_page(filp, mapping,
2383 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2384 		if (err == AOP_TRUNCATED_PAGE)
2385 			goto retry;
2386 		return err;
2387 	}
2388 
2389 	page = pvec->pages[pagevec_count(pvec) - 1];
2390 	if (PageReadahead(page)) {
2391 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2392 		if (err)
2393 			goto err;
2394 	}
2395 	if (!PageUptodate(page)) {
2396 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2397 			iocb->ki_flags |= IOCB_NOWAIT;
2398 		err = filemap_update_page(iocb, mapping, iter, page);
2399 		if (err)
2400 			goto err;
2401 	}
2402 
2403 	return 0;
2404 err:
2405 	if (err < 0)
2406 		put_page(page);
2407 	if (likely(--pvec->nr))
2408 		return 0;
2409 	if (err == AOP_TRUNCATED_PAGE)
2410 		goto retry;
2411 	return err;
2412 }
2413 
2414 /**
2415  * filemap_read - Read data from the page cache.
2416  * @iocb: The iocb to read.
2417  * @iter: Destination for the data.
2418  * @already_read: Number of bytes already read by the caller.
2419  *
2420  * Copies data from the page cache.  If the data is not currently present,
2421  * uses the readahead and readpage address_space operations to fetch it.
2422  *
2423  * Return: Total number of bytes copied, including those already read by
2424  * the caller.  If an error happens before any bytes are copied, returns
2425  * a negative error number.
2426  */
2427 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2428 		ssize_t already_read)
2429 {
2430 	struct file *filp = iocb->ki_filp;
2431 	struct file_ra_state *ra = &filp->f_ra;
2432 	struct address_space *mapping = filp->f_mapping;
2433 	struct inode *inode = mapping->host;
2434 	struct pagevec pvec;
2435 	int i, error = 0;
2436 	bool writably_mapped;
2437 	loff_t isize, end_offset;
2438 
2439 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2440 		return 0;
2441 	if (unlikely(!iov_iter_count(iter)))
2442 		return 0;
2443 
2444 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2445 	pagevec_init(&pvec);
2446 
2447 	do {
2448 		cond_resched();
2449 
2450 		/*
2451 		 * If we've already successfully copied some data, then we
2452 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2453 		 * an async read NOWAIT at that point.
2454 		 */
2455 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2456 			iocb->ki_flags |= IOCB_NOWAIT;
2457 
2458 		error = filemap_get_pages(iocb, iter, &pvec);
2459 		if (error < 0)
2460 			break;
2461 
2462 		/*
2463 		 * i_size must be checked after we know the pages are Uptodate.
2464 		 *
2465 		 * Checking i_size after the check allows us to calculate
2466 		 * the correct value for "nr", which means the zero-filled
2467 		 * part of the page is not copied back to userspace (unless
2468 		 * another truncate extends the file - this is desired though).
2469 		 */
2470 		isize = i_size_read(inode);
2471 		if (unlikely(iocb->ki_pos >= isize))
2472 			goto put_pages;
2473 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2474 
2475 		/*
2476 		 * Once we start copying data, we don't want to be touching any
2477 		 * cachelines that might be contended:
2478 		 */
2479 		writably_mapped = mapping_writably_mapped(mapping);
2480 
2481 		/*
2482 		 * When a sequential read accesses a page several times, only
2483 		 * mark it as accessed the first time.
2484 		 */
2485 		if (iocb->ki_pos >> PAGE_SHIFT !=
2486 		    ra->prev_pos >> PAGE_SHIFT)
2487 			mark_page_accessed(pvec.pages[0]);
2488 
2489 		for (i = 0; i < pagevec_count(&pvec); i++) {
2490 			struct page *page = pvec.pages[i];
2491 			size_t page_size = thp_size(page);
2492 			size_t offset = iocb->ki_pos & (page_size - 1);
2493 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2494 					     page_size - offset);
2495 			size_t copied;
2496 
2497 			if (end_offset < page_offset(page))
2498 				break;
2499 			if (i > 0)
2500 				mark_page_accessed(page);
2501 			/*
2502 			 * If users can be writing to this page using arbitrary
2503 			 * virtual addresses, take care about potential aliasing
2504 			 * before reading the page on the kernel side.
2505 			 */
2506 			if (writably_mapped) {
2507 				int j;
2508 
2509 				for (j = 0; j < thp_nr_pages(page); j++)
2510 					flush_dcache_page(page + j);
2511 			}
2512 
2513 			copied = copy_page_to_iter(page, offset, bytes, iter);
2514 
2515 			already_read += copied;
2516 			iocb->ki_pos += copied;
2517 			ra->prev_pos = iocb->ki_pos;
2518 
2519 			if (copied < bytes) {
2520 				error = -EFAULT;
2521 				break;
2522 			}
2523 		}
2524 put_pages:
2525 		for (i = 0; i < pagevec_count(&pvec); i++)
2526 			put_page(pvec.pages[i]);
2527 		pagevec_reinit(&pvec);
2528 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2529 
2530 	file_accessed(filp);
2531 
2532 	return already_read ? already_read : error;
2533 }
2534 EXPORT_SYMBOL_GPL(filemap_read);
2535 
2536 /**
2537  * generic_file_read_iter - generic filesystem read routine
2538  * @iocb:	kernel I/O control block
2539  * @iter:	destination for the data read
2540  *
2541  * This is the "read_iter()" routine for all filesystems
2542  * that can use the page cache directly.
2543  *
2544  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2545  * be returned when no data can be read without waiting for I/O requests
2546  * to complete; it doesn't prevent readahead.
2547  *
2548  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2549  * requests shall be made for the read or for readahead.  When no data
2550  * can be read, -EAGAIN shall be returned.  When readahead would be
2551  * triggered, a partial, possibly empty read shall be returned.
2552  *
2553  * Return:
2554  * * number of bytes copied, even for partial reads
2555  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2556  */
2557 ssize_t
2558 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2559 {
2560 	size_t count = iov_iter_count(iter);
2561 	ssize_t retval = 0;
2562 
2563 	if (!count)
2564 		return 0; /* skip atime */
2565 
2566 	if (iocb->ki_flags & IOCB_DIRECT) {
2567 		struct file *file = iocb->ki_filp;
2568 		struct address_space *mapping = file->f_mapping;
2569 		struct inode *inode = mapping->host;
2570 		loff_t size;
2571 
2572 		size = i_size_read(inode);
2573 		if (iocb->ki_flags & IOCB_NOWAIT) {
2574 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2575 						   iocb->ki_pos + count - 1))
2576 				return -EAGAIN;
2577 		} else {
2578 			retval = filemap_write_and_wait_range(mapping,
2579 						iocb->ki_pos,
2580 					        iocb->ki_pos + count - 1);
2581 			if (retval < 0)
2582 				return retval;
2583 		}
2584 
2585 		file_accessed(file);
2586 
2587 		retval = mapping->a_ops->direct_IO(iocb, iter);
2588 		if (retval >= 0) {
2589 			iocb->ki_pos += retval;
2590 			count -= retval;
2591 		}
2592 		if (retval != -EIOCBQUEUED)
2593 			iov_iter_revert(iter, count - iov_iter_count(iter));
2594 
2595 		/*
2596 		 * Btrfs can have a short DIO read if we encounter
2597 		 * compressed extents, so if there was an error, or if
2598 		 * we've already read everything we wanted to, or if
2599 		 * there was a short read because we hit EOF, go ahead
2600 		 * and return.  Otherwise fallthrough to buffered io for
2601 		 * the rest of the read.  Buffered reads will not work for
2602 		 * DAX files, so don't bother trying.
2603 		 */
2604 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2605 		    IS_DAX(inode))
2606 			return retval;
2607 	}
2608 
2609 	return filemap_read(iocb, iter, retval);
2610 }
2611 EXPORT_SYMBOL(generic_file_read_iter);
2612 
2613 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2614 		struct address_space *mapping, struct page *page,
2615 		loff_t start, loff_t end, bool seek_data)
2616 {
2617 	const struct address_space_operations *ops = mapping->a_ops;
2618 	size_t offset, bsz = i_blocksize(mapping->host);
2619 
2620 	if (xa_is_value(page) || PageUptodate(page))
2621 		return seek_data ? start : end;
2622 	if (!ops->is_partially_uptodate)
2623 		return seek_data ? end : start;
2624 
2625 	xas_pause(xas);
2626 	rcu_read_unlock();
2627 	lock_page(page);
2628 	if (unlikely(page->mapping != mapping))
2629 		goto unlock;
2630 
2631 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2632 
2633 	do {
2634 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2635 			break;
2636 		start = (start + bsz) & ~(bsz - 1);
2637 		offset += bsz;
2638 	} while (offset < thp_size(page));
2639 unlock:
2640 	unlock_page(page);
2641 	rcu_read_lock();
2642 	return start;
2643 }
2644 
2645 static inline
2646 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2647 {
2648 	if (xa_is_value(page))
2649 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2650 	return thp_size(page);
2651 }
2652 
2653 /**
2654  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2655  * @mapping: Address space to search.
2656  * @start: First byte to consider.
2657  * @end: Limit of search (exclusive).
2658  * @whence: Either SEEK_HOLE or SEEK_DATA.
2659  *
2660  * If the page cache knows which blocks contain holes and which blocks
2661  * contain data, your filesystem can use this function to implement
2662  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2663  * entirely memory-based such as tmpfs, and filesystems which support
2664  * unwritten extents.
2665  *
2666  * Return: The requested offset on successs, or -ENXIO if @whence specifies
2667  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2668  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2669  * and @end contain data.
2670  */
2671 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2672 		loff_t end, int whence)
2673 {
2674 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2675 	pgoff_t max = (end - 1) / PAGE_SIZE;
2676 	bool seek_data = (whence == SEEK_DATA);
2677 	struct page *page;
2678 
2679 	if (end <= start)
2680 		return -ENXIO;
2681 
2682 	rcu_read_lock();
2683 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2684 		loff_t pos = xas.xa_index * PAGE_SIZE;
2685 
2686 		if (start < pos) {
2687 			if (!seek_data)
2688 				goto unlock;
2689 			start = pos;
2690 		}
2691 
2692 		pos += seek_page_size(&xas, page);
2693 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2694 				seek_data);
2695 		if (start < pos)
2696 			goto unlock;
2697 		if (!xa_is_value(page))
2698 			put_page(page);
2699 	}
2700 	rcu_read_unlock();
2701 
2702 	if (seek_data)
2703 		return -ENXIO;
2704 	goto out;
2705 
2706 unlock:
2707 	rcu_read_unlock();
2708 	if (!xa_is_value(page))
2709 		put_page(page);
2710 out:
2711 	if (start > end)
2712 		return end;
2713 	return start;
2714 }
2715 
2716 #ifdef CONFIG_MMU
2717 #define MMAP_LOTSAMISS  (100)
2718 /*
2719  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2720  * @vmf - the vm_fault for this fault.
2721  * @page - the page to lock.
2722  * @fpin - the pointer to the file we may pin (or is already pinned).
2723  *
2724  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2725  * It differs in that it actually returns the page locked if it returns 1 and 0
2726  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2727  * will point to the pinned file and needs to be fput()'ed at a later point.
2728  */
2729 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2730 				     struct file **fpin)
2731 {
2732 	if (trylock_page(page))
2733 		return 1;
2734 
2735 	/*
2736 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2737 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2738 	 * is supposed to work. We have way too many special cases..
2739 	 */
2740 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2741 		return 0;
2742 
2743 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2744 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2745 		if (__lock_page_killable(page)) {
2746 			/*
2747 			 * We didn't have the right flags to drop the mmap_lock,
2748 			 * but all fault_handlers only check for fatal signals
2749 			 * if we return VM_FAULT_RETRY, so we need to drop the
2750 			 * mmap_lock here and return 0 if we don't have a fpin.
2751 			 */
2752 			if (*fpin == NULL)
2753 				mmap_read_unlock(vmf->vma->vm_mm);
2754 			return 0;
2755 		}
2756 	} else
2757 		__lock_page(page);
2758 	return 1;
2759 }
2760 
2761 
2762 /*
2763  * Synchronous readahead happens when we don't even find a page in the page
2764  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2765  * to drop the mmap sem we return the file that was pinned in order for us to do
2766  * that.  If we didn't pin a file then we return NULL.  The file that is
2767  * returned needs to be fput()'ed when we're done with it.
2768  */
2769 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2770 {
2771 	struct file *file = vmf->vma->vm_file;
2772 	struct file_ra_state *ra = &file->f_ra;
2773 	struct address_space *mapping = file->f_mapping;
2774 	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2775 	struct file *fpin = NULL;
2776 	unsigned int mmap_miss;
2777 
2778 	/* If we don't want any read-ahead, don't bother */
2779 	if (vmf->vma->vm_flags & VM_RAND_READ)
2780 		return fpin;
2781 	if (!ra->ra_pages)
2782 		return fpin;
2783 
2784 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2785 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2786 		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2787 		return fpin;
2788 	}
2789 
2790 	/* Avoid banging the cache line if not needed */
2791 	mmap_miss = READ_ONCE(ra->mmap_miss);
2792 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2793 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2794 
2795 	/*
2796 	 * Do we miss much more than hit in this file? If so,
2797 	 * stop bothering with read-ahead. It will only hurt.
2798 	 */
2799 	if (mmap_miss > MMAP_LOTSAMISS)
2800 		return fpin;
2801 
2802 	/*
2803 	 * mmap read-around
2804 	 */
2805 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2806 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2807 	ra->size = ra->ra_pages;
2808 	ra->async_size = ra->ra_pages / 4;
2809 	ractl._index = ra->start;
2810 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2811 	return fpin;
2812 }
2813 
2814 /*
2815  * Asynchronous readahead happens when we find the page and PG_readahead,
2816  * so we want to possibly extend the readahead further.  We return the file that
2817  * was pinned if we have to drop the mmap_lock in order to do IO.
2818  */
2819 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2820 					    struct page *page)
2821 {
2822 	struct file *file = vmf->vma->vm_file;
2823 	struct file_ra_state *ra = &file->f_ra;
2824 	struct address_space *mapping = file->f_mapping;
2825 	struct file *fpin = NULL;
2826 	unsigned int mmap_miss;
2827 	pgoff_t offset = vmf->pgoff;
2828 
2829 	/* If we don't want any read-ahead, don't bother */
2830 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2831 		return fpin;
2832 	mmap_miss = READ_ONCE(ra->mmap_miss);
2833 	if (mmap_miss)
2834 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2835 	if (PageReadahead(page)) {
2836 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2837 		page_cache_async_readahead(mapping, ra, file,
2838 					   page, offset, ra->ra_pages);
2839 	}
2840 	return fpin;
2841 }
2842 
2843 /**
2844  * filemap_fault - read in file data for page fault handling
2845  * @vmf:	struct vm_fault containing details of the fault
2846  *
2847  * filemap_fault() is invoked via the vma operations vector for a
2848  * mapped memory region to read in file data during a page fault.
2849  *
2850  * The goto's are kind of ugly, but this streamlines the normal case of having
2851  * it in the page cache, and handles the special cases reasonably without
2852  * having a lot of duplicated code.
2853  *
2854  * vma->vm_mm->mmap_lock must be held on entry.
2855  *
2856  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2857  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2858  *
2859  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2860  * has not been released.
2861  *
2862  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2863  *
2864  * Return: bitwise-OR of %VM_FAULT_ codes.
2865  */
2866 vm_fault_t filemap_fault(struct vm_fault *vmf)
2867 {
2868 	int error;
2869 	struct file *file = vmf->vma->vm_file;
2870 	struct file *fpin = NULL;
2871 	struct address_space *mapping = file->f_mapping;
2872 	struct file_ra_state *ra = &file->f_ra;
2873 	struct inode *inode = mapping->host;
2874 	pgoff_t offset = vmf->pgoff;
2875 	pgoff_t max_off;
2876 	struct page *page;
2877 	vm_fault_t ret = 0;
2878 
2879 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2880 	if (unlikely(offset >= max_off))
2881 		return VM_FAULT_SIGBUS;
2882 
2883 	/*
2884 	 * Do we have something in the page cache already?
2885 	 */
2886 	page = find_get_page(mapping, offset);
2887 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2888 		/*
2889 		 * We found the page, so try async readahead before
2890 		 * waiting for the lock.
2891 		 */
2892 		fpin = do_async_mmap_readahead(vmf, page);
2893 	} else if (!page) {
2894 		/* No page in the page cache at all */
2895 		count_vm_event(PGMAJFAULT);
2896 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2897 		ret = VM_FAULT_MAJOR;
2898 		fpin = do_sync_mmap_readahead(vmf);
2899 retry_find:
2900 		page = pagecache_get_page(mapping, offset,
2901 					  FGP_CREAT|FGP_FOR_MMAP,
2902 					  vmf->gfp_mask);
2903 		if (!page) {
2904 			if (fpin)
2905 				goto out_retry;
2906 			return VM_FAULT_OOM;
2907 		}
2908 	}
2909 
2910 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2911 		goto out_retry;
2912 
2913 	/* Did it get truncated? */
2914 	if (unlikely(compound_head(page)->mapping != mapping)) {
2915 		unlock_page(page);
2916 		put_page(page);
2917 		goto retry_find;
2918 	}
2919 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2920 
2921 	/*
2922 	 * We have a locked page in the page cache, now we need to check
2923 	 * that it's up-to-date. If not, it is going to be due to an error.
2924 	 */
2925 	if (unlikely(!PageUptodate(page)))
2926 		goto page_not_uptodate;
2927 
2928 	/*
2929 	 * We've made it this far and we had to drop our mmap_lock, now is the
2930 	 * time to return to the upper layer and have it re-find the vma and
2931 	 * redo the fault.
2932 	 */
2933 	if (fpin) {
2934 		unlock_page(page);
2935 		goto out_retry;
2936 	}
2937 
2938 	/*
2939 	 * Found the page and have a reference on it.
2940 	 * We must recheck i_size under page lock.
2941 	 */
2942 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2943 	if (unlikely(offset >= max_off)) {
2944 		unlock_page(page);
2945 		put_page(page);
2946 		return VM_FAULT_SIGBUS;
2947 	}
2948 
2949 	vmf->page = page;
2950 	return ret | VM_FAULT_LOCKED;
2951 
2952 page_not_uptodate:
2953 	/*
2954 	 * Umm, take care of errors if the page isn't up-to-date.
2955 	 * Try to re-read it _once_. We do this synchronously,
2956 	 * because there really aren't any performance issues here
2957 	 * and we need to check for errors.
2958 	 */
2959 	ClearPageError(page);
2960 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2961 	error = mapping->a_ops->readpage(file, page);
2962 	if (!error) {
2963 		wait_on_page_locked(page);
2964 		if (!PageUptodate(page))
2965 			error = -EIO;
2966 	}
2967 	if (fpin)
2968 		goto out_retry;
2969 	put_page(page);
2970 
2971 	if (!error || error == AOP_TRUNCATED_PAGE)
2972 		goto retry_find;
2973 
2974 	shrink_readahead_size_eio(ra);
2975 	return VM_FAULT_SIGBUS;
2976 
2977 out_retry:
2978 	/*
2979 	 * We dropped the mmap_lock, we need to return to the fault handler to
2980 	 * re-find the vma and come back and find our hopefully still populated
2981 	 * page.
2982 	 */
2983 	if (page)
2984 		put_page(page);
2985 	if (fpin)
2986 		fput(fpin);
2987 	return ret | VM_FAULT_RETRY;
2988 }
2989 EXPORT_SYMBOL(filemap_fault);
2990 
2991 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
2992 {
2993 	struct mm_struct *mm = vmf->vma->vm_mm;
2994 
2995 	/* Huge page is mapped? No need to proceed. */
2996 	if (pmd_trans_huge(*vmf->pmd)) {
2997 		unlock_page(page);
2998 		put_page(page);
2999 		return true;
3000 	}
3001 
3002 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3003 	    vm_fault_t ret = do_set_pmd(vmf, page);
3004 	    if (!ret) {
3005 		    /* The page is mapped successfully, reference consumed. */
3006 		    unlock_page(page);
3007 		    return true;
3008 	    }
3009 	}
3010 
3011 	if (pmd_none(*vmf->pmd)) {
3012 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3013 		if (likely(pmd_none(*vmf->pmd))) {
3014 			mm_inc_nr_ptes(mm);
3015 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3016 			vmf->prealloc_pte = NULL;
3017 		}
3018 		spin_unlock(vmf->ptl);
3019 	}
3020 
3021 	/* See comment in handle_pte_fault() */
3022 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3023 		unlock_page(page);
3024 		put_page(page);
3025 		return true;
3026 	}
3027 
3028 	return false;
3029 }
3030 
3031 static struct page *next_uptodate_page(struct page *page,
3032 				       struct address_space *mapping,
3033 				       struct xa_state *xas, pgoff_t end_pgoff)
3034 {
3035 	unsigned long max_idx;
3036 
3037 	do {
3038 		if (!page)
3039 			return NULL;
3040 		if (xas_retry(xas, page))
3041 			continue;
3042 		if (xa_is_value(page))
3043 			continue;
3044 		if (PageLocked(page))
3045 			continue;
3046 		if (!page_cache_get_speculative(page))
3047 			continue;
3048 		/* Has the page moved or been split? */
3049 		if (unlikely(page != xas_reload(xas)))
3050 			goto skip;
3051 		if (!PageUptodate(page) || PageReadahead(page))
3052 			goto skip;
3053 		if (PageHWPoison(page))
3054 			goto skip;
3055 		if (!trylock_page(page))
3056 			goto skip;
3057 		if (page->mapping != mapping)
3058 			goto unlock;
3059 		if (!PageUptodate(page))
3060 			goto unlock;
3061 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3062 		if (xas->xa_index >= max_idx)
3063 			goto unlock;
3064 		return page;
3065 unlock:
3066 		unlock_page(page);
3067 skip:
3068 		put_page(page);
3069 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3070 
3071 	return NULL;
3072 }
3073 
3074 static inline struct page *first_map_page(struct address_space *mapping,
3075 					  struct xa_state *xas,
3076 					  pgoff_t end_pgoff)
3077 {
3078 	return next_uptodate_page(xas_find(xas, end_pgoff),
3079 				  mapping, xas, end_pgoff);
3080 }
3081 
3082 static inline struct page *next_map_page(struct address_space *mapping,
3083 					 struct xa_state *xas,
3084 					 pgoff_t end_pgoff)
3085 {
3086 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3087 				  mapping, xas, end_pgoff);
3088 }
3089 
3090 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3091 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3092 {
3093 	struct vm_area_struct *vma = vmf->vma;
3094 	struct file *file = vma->vm_file;
3095 	struct address_space *mapping = file->f_mapping;
3096 	pgoff_t last_pgoff = start_pgoff;
3097 	unsigned long addr;
3098 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3099 	struct page *head, *page;
3100 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3101 	vm_fault_t ret = 0;
3102 
3103 	rcu_read_lock();
3104 	head = first_map_page(mapping, &xas, end_pgoff);
3105 	if (!head)
3106 		goto out;
3107 
3108 	if (filemap_map_pmd(vmf, head)) {
3109 		ret = VM_FAULT_NOPAGE;
3110 		goto out;
3111 	}
3112 
3113 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3114 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3115 	do {
3116 		page = find_subpage(head, xas.xa_index);
3117 		if (PageHWPoison(page))
3118 			goto unlock;
3119 
3120 		if (mmap_miss > 0)
3121 			mmap_miss--;
3122 
3123 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3124 		vmf->pte += xas.xa_index - last_pgoff;
3125 		last_pgoff = xas.xa_index;
3126 
3127 		if (!pte_none(*vmf->pte))
3128 			goto unlock;
3129 
3130 		/* We're about to handle the fault */
3131 		if (vmf->address == addr)
3132 			ret = VM_FAULT_NOPAGE;
3133 
3134 		do_set_pte(vmf, page, addr);
3135 		/* no need to invalidate: a not-present page won't be cached */
3136 		update_mmu_cache(vma, addr, vmf->pte);
3137 		unlock_page(head);
3138 		continue;
3139 unlock:
3140 		unlock_page(head);
3141 		put_page(head);
3142 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3143 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3144 out:
3145 	rcu_read_unlock();
3146 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL(filemap_map_pages);
3150 
3151 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3152 {
3153 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3154 	struct page *page = vmf->page;
3155 	vm_fault_t ret = VM_FAULT_LOCKED;
3156 
3157 	sb_start_pagefault(mapping->host->i_sb);
3158 	file_update_time(vmf->vma->vm_file);
3159 	lock_page(page);
3160 	if (page->mapping != mapping) {
3161 		unlock_page(page);
3162 		ret = VM_FAULT_NOPAGE;
3163 		goto out;
3164 	}
3165 	/*
3166 	 * We mark the page dirty already here so that when freeze is in
3167 	 * progress, we are guaranteed that writeback during freezing will
3168 	 * see the dirty page and writeprotect it again.
3169 	 */
3170 	set_page_dirty(page);
3171 	wait_for_stable_page(page);
3172 out:
3173 	sb_end_pagefault(mapping->host->i_sb);
3174 	return ret;
3175 }
3176 
3177 const struct vm_operations_struct generic_file_vm_ops = {
3178 	.fault		= filemap_fault,
3179 	.map_pages	= filemap_map_pages,
3180 	.page_mkwrite	= filemap_page_mkwrite,
3181 };
3182 
3183 /* This is used for a general mmap of a disk file */
3184 
3185 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3186 {
3187 	struct address_space *mapping = file->f_mapping;
3188 
3189 	if (!mapping->a_ops->readpage)
3190 		return -ENOEXEC;
3191 	file_accessed(file);
3192 	vma->vm_ops = &generic_file_vm_ops;
3193 	return 0;
3194 }
3195 
3196 /*
3197  * This is for filesystems which do not implement ->writepage.
3198  */
3199 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3200 {
3201 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3202 		return -EINVAL;
3203 	return generic_file_mmap(file, vma);
3204 }
3205 #else
3206 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3207 {
3208 	return VM_FAULT_SIGBUS;
3209 }
3210 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3211 {
3212 	return -ENOSYS;
3213 }
3214 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3215 {
3216 	return -ENOSYS;
3217 }
3218 #endif /* CONFIG_MMU */
3219 
3220 EXPORT_SYMBOL(filemap_page_mkwrite);
3221 EXPORT_SYMBOL(generic_file_mmap);
3222 EXPORT_SYMBOL(generic_file_readonly_mmap);
3223 
3224 static struct page *wait_on_page_read(struct page *page)
3225 {
3226 	if (!IS_ERR(page)) {
3227 		wait_on_page_locked(page);
3228 		if (!PageUptodate(page)) {
3229 			put_page(page);
3230 			page = ERR_PTR(-EIO);
3231 		}
3232 	}
3233 	return page;
3234 }
3235 
3236 static struct page *do_read_cache_page(struct address_space *mapping,
3237 				pgoff_t index,
3238 				int (*filler)(void *, struct page *),
3239 				void *data,
3240 				gfp_t gfp)
3241 {
3242 	struct page *page;
3243 	int err;
3244 repeat:
3245 	page = find_get_page(mapping, index);
3246 	if (!page) {
3247 		page = __page_cache_alloc(gfp);
3248 		if (!page)
3249 			return ERR_PTR(-ENOMEM);
3250 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3251 		if (unlikely(err)) {
3252 			put_page(page);
3253 			if (err == -EEXIST)
3254 				goto repeat;
3255 			/* Presumably ENOMEM for xarray node */
3256 			return ERR_PTR(err);
3257 		}
3258 
3259 filler:
3260 		if (filler)
3261 			err = filler(data, page);
3262 		else
3263 			err = mapping->a_ops->readpage(data, page);
3264 
3265 		if (err < 0) {
3266 			put_page(page);
3267 			return ERR_PTR(err);
3268 		}
3269 
3270 		page = wait_on_page_read(page);
3271 		if (IS_ERR(page))
3272 			return page;
3273 		goto out;
3274 	}
3275 	if (PageUptodate(page))
3276 		goto out;
3277 
3278 	/*
3279 	 * Page is not up to date and may be locked due to one of the following
3280 	 * case a: Page is being filled and the page lock is held
3281 	 * case b: Read/write error clearing the page uptodate status
3282 	 * case c: Truncation in progress (page locked)
3283 	 * case d: Reclaim in progress
3284 	 *
3285 	 * Case a, the page will be up to date when the page is unlocked.
3286 	 *    There is no need to serialise on the page lock here as the page
3287 	 *    is pinned so the lock gives no additional protection. Even if the
3288 	 *    page is truncated, the data is still valid if PageUptodate as
3289 	 *    it's a race vs truncate race.
3290 	 * Case b, the page will not be up to date
3291 	 * Case c, the page may be truncated but in itself, the data may still
3292 	 *    be valid after IO completes as it's a read vs truncate race. The
3293 	 *    operation must restart if the page is not uptodate on unlock but
3294 	 *    otherwise serialising on page lock to stabilise the mapping gives
3295 	 *    no additional guarantees to the caller as the page lock is
3296 	 *    released before return.
3297 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3298 	 *    will be a race with remove_mapping that determines if the mapping
3299 	 *    is valid on unlock but otherwise the data is valid and there is
3300 	 *    no need to serialise with page lock.
3301 	 *
3302 	 * As the page lock gives no additional guarantee, we optimistically
3303 	 * wait on the page to be unlocked and check if it's up to date and
3304 	 * use the page if it is. Otherwise, the page lock is required to
3305 	 * distinguish between the different cases. The motivation is that we
3306 	 * avoid spurious serialisations and wakeups when multiple processes
3307 	 * wait on the same page for IO to complete.
3308 	 */
3309 	wait_on_page_locked(page);
3310 	if (PageUptodate(page))
3311 		goto out;
3312 
3313 	/* Distinguish between all the cases under the safety of the lock */
3314 	lock_page(page);
3315 
3316 	/* Case c or d, restart the operation */
3317 	if (!page->mapping) {
3318 		unlock_page(page);
3319 		put_page(page);
3320 		goto repeat;
3321 	}
3322 
3323 	/* Someone else locked and filled the page in a very small window */
3324 	if (PageUptodate(page)) {
3325 		unlock_page(page);
3326 		goto out;
3327 	}
3328 
3329 	/*
3330 	 * A previous I/O error may have been due to temporary
3331 	 * failures.
3332 	 * Clear page error before actual read, PG_error will be
3333 	 * set again if read page fails.
3334 	 */
3335 	ClearPageError(page);
3336 	goto filler;
3337 
3338 out:
3339 	mark_page_accessed(page);
3340 	return page;
3341 }
3342 
3343 /**
3344  * read_cache_page - read into page cache, fill it if needed
3345  * @mapping:	the page's address_space
3346  * @index:	the page index
3347  * @filler:	function to perform the read
3348  * @data:	first arg to filler(data, page) function, often left as NULL
3349  *
3350  * Read into the page cache. If a page already exists, and PageUptodate() is
3351  * not set, try to fill the page and wait for it to become unlocked.
3352  *
3353  * If the page does not get brought uptodate, return -EIO.
3354  *
3355  * Return: up to date page on success, ERR_PTR() on failure.
3356  */
3357 struct page *read_cache_page(struct address_space *mapping,
3358 				pgoff_t index,
3359 				int (*filler)(void *, struct page *),
3360 				void *data)
3361 {
3362 	return do_read_cache_page(mapping, index, filler, data,
3363 			mapping_gfp_mask(mapping));
3364 }
3365 EXPORT_SYMBOL(read_cache_page);
3366 
3367 /**
3368  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3369  * @mapping:	the page's address_space
3370  * @index:	the page index
3371  * @gfp:	the page allocator flags to use if allocating
3372  *
3373  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3374  * any new page allocations done using the specified allocation flags.
3375  *
3376  * If the page does not get brought uptodate, return -EIO.
3377  *
3378  * Return: up to date page on success, ERR_PTR() on failure.
3379  */
3380 struct page *read_cache_page_gfp(struct address_space *mapping,
3381 				pgoff_t index,
3382 				gfp_t gfp)
3383 {
3384 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3385 }
3386 EXPORT_SYMBOL(read_cache_page_gfp);
3387 
3388 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3389 				loff_t pos, unsigned len, unsigned flags,
3390 				struct page **pagep, void **fsdata)
3391 {
3392 	const struct address_space_operations *aops = mapping->a_ops;
3393 
3394 	return aops->write_begin(file, mapping, pos, len, flags,
3395 							pagep, fsdata);
3396 }
3397 EXPORT_SYMBOL(pagecache_write_begin);
3398 
3399 int pagecache_write_end(struct file *file, struct address_space *mapping,
3400 				loff_t pos, unsigned len, unsigned copied,
3401 				struct page *page, void *fsdata)
3402 {
3403 	const struct address_space_operations *aops = mapping->a_ops;
3404 
3405 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3406 }
3407 EXPORT_SYMBOL(pagecache_write_end);
3408 
3409 /*
3410  * Warn about a page cache invalidation failure during a direct I/O write.
3411  */
3412 void dio_warn_stale_pagecache(struct file *filp)
3413 {
3414 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3415 	char pathname[128];
3416 	char *path;
3417 
3418 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3419 	if (__ratelimit(&_rs)) {
3420 		path = file_path(filp, pathname, sizeof(pathname));
3421 		if (IS_ERR(path))
3422 			path = "(unknown)";
3423 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3424 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3425 			current->comm);
3426 	}
3427 }
3428 
3429 ssize_t
3430 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3431 {
3432 	struct file	*file = iocb->ki_filp;
3433 	struct address_space *mapping = file->f_mapping;
3434 	struct inode	*inode = mapping->host;
3435 	loff_t		pos = iocb->ki_pos;
3436 	ssize_t		written;
3437 	size_t		write_len;
3438 	pgoff_t		end;
3439 
3440 	write_len = iov_iter_count(from);
3441 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3442 
3443 	if (iocb->ki_flags & IOCB_NOWAIT) {
3444 		/* If there are pages to writeback, return */
3445 		if (filemap_range_has_page(file->f_mapping, pos,
3446 					   pos + write_len - 1))
3447 			return -EAGAIN;
3448 	} else {
3449 		written = filemap_write_and_wait_range(mapping, pos,
3450 							pos + write_len - 1);
3451 		if (written)
3452 			goto out;
3453 	}
3454 
3455 	/*
3456 	 * After a write we want buffered reads to be sure to go to disk to get
3457 	 * the new data.  We invalidate clean cached page from the region we're
3458 	 * about to write.  We do this *before* the write so that we can return
3459 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3460 	 */
3461 	written = invalidate_inode_pages2_range(mapping,
3462 					pos >> PAGE_SHIFT, end);
3463 	/*
3464 	 * If a page can not be invalidated, return 0 to fall back
3465 	 * to buffered write.
3466 	 */
3467 	if (written) {
3468 		if (written == -EBUSY)
3469 			return 0;
3470 		goto out;
3471 	}
3472 
3473 	written = mapping->a_ops->direct_IO(iocb, from);
3474 
3475 	/*
3476 	 * Finally, try again to invalidate clean pages which might have been
3477 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3478 	 * if the source of the write was an mmap'ed region of the file
3479 	 * we're writing.  Either one is a pretty crazy thing to do,
3480 	 * so we don't support it 100%.  If this invalidation
3481 	 * fails, tough, the write still worked...
3482 	 *
3483 	 * Most of the time we do not need this since dio_complete() will do
3484 	 * the invalidation for us. However there are some file systems that
3485 	 * do not end up with dio_complete() being called, so let's not break
3486 	 * them by removing it completely.
3487 	 *
3488 	 * Noticeable example is a blkdev_direct_IO().
3489 	 *
3490 	 * Skip invalidation for async writes or if mapping has no pages.
3491 	 */
3492 	if (written > 0 && mapping->nrpages &&
3493 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3494 		dio_warn_stale_pagecache(file);
3495 
3496 	if (written > 0) {
3497 		pos += written;
3498 		write_len -= written;
3499 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3500 			i_size_write(inode, pos);
3501 			mark_inode_dirty(inode);
3502 		}
3503 		iocb->ki_pos = pos;
3504 	}
3505 	if (written != -EIOCBQUEUED)
3506 		iov_iter_revert(from, write_len - iov_iter_count(from));
3507 out:
3508 	return written;
3509 }
3510 EXPORT_SYMBOL(generic_file_direct_write);
3511 
3512 /*
3513  * Find or create a page at the given pagecache position. Return the locked
3514  * page. This function is specifically for buffered writes.
3515  */
3516 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3517 					pgoff_t index, unsigned flags)
3518 {
3519 	struct page *page;
3520 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3521 
3522 	if (flags & AOP_FLAG_NOFS)
3523 		fgp_flags |= FGP_NOFS;
3524 
3525 	page = pagecache_get_page(mapping, index, fgp_flags,
3526 			mapping_gfp_mask(mapping));
3527 	if (page)
3528 		wait_for_stable_page(page);
3529 
3530 	return page;
3531 }
3532 EXPORT_SYMBOL(grab_cache_page_write_begin);
3533 
3534 ssize_t generic_perform_write(struct file *file,
3535 				struct iov_iter *i, loff_t pos)
3536 {
3537 	struct address_space *mapping = file->f_mapping;
3538 	const struct address_space_operations *a_ops = mapping->a_ops;
3539 	long status = 0;
3540 	ssize_t written = 0;
3541 	unsigned int flags = 0;
3542 
3543 	do {
3544 		struct page *page;
3545 		unsigned long offset;	/* Offset into pagecache page */
3546 		unsigned long bytes;	/* Bytes to write to page */
3547 		size_t copied;		/* Bytes copied from user */
3548 		void *fsdata;
3549 
3550 		offset = (pos & (PAGE_SIZE - 1));
3551 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3552 						iov_iter_count(i));
3553 
3554 again:
3555 		/*
3556 		 * Bring in the user page that we will copy from _first_.
3557 		 * Otherwise there's a nasty deadlock on copying from the
3558 		 * same page as we're writing to, without it being marked
3559 		 * up-to-date.
3560 		 *
3561 		 * Not only is this an optimisation, but it is also required
3562 		 * to check that the address is actually valid, when atomic
3563 		 * usercopies are used, below.
3564 		 */
3565 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3566 			status = -EFAULT;
3567 			break;
3568 		}
3569 
3570 		if (fatal_signal_pending(current)) {
3571 			status = -EINTR;
3572 			break;
3573 		}
3574 
3575 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3576 						&page, &fsdata);
3577 		if (unlikely(status < 0))
3578 			break;
3579 
3580 		if (mapping_writably_mapped(mapping))
3581 			flush_dcache_page(page);
3582 
3583 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3584 		flush_dcache_page(page);
3585 
3586 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3587 						page, fsdata);
3588 		if (unlikely(status < 0))
3589 			break;
3590 		copied = status;
3591 
3592 		cond_resched();
3593 
3594 		iov_iter_advance(i, copied);
3595 		if (unlikely(copied == 0)) {
3596 			/*
3597 			 * If we were unable to copy any data at all, we must
3598 			 * fall back to a single segment length write.
3599 			 *
3600 			 * If we didn't fallback here, we could livelock
3601 			 * because not all segments in the iov can be copied at
3602 			 * once without a pagefault.
3603 			 */
3604 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3605 						iov_iter_single_seg_count(i));
3606 			goto again;
3607 		}
3608 		pos += copied;
3609 		written += copied;
3610 
3611 		balance_dirty_pages_ratelimited(mapping);
3612 	} while (iov_iter_count(i));
3613 
3614 	return written ? written : status;
3615 }
3616 EXPORT_SYMBOL(generic_perform_write);
3617 
3618 /**
3619  * __generic_file_write_iter - write data to a file
3620  * @iocb:	IO state structure (file, offset, etc.)
3621  * @from:	iov_iter with data to write
3622  *
3623  * This function does all the work needed for actually writing data to a
3624  * file. It does all basic checks, removes SUID from the file, updates
3625  * modification times and calls proper subroutines depending on whether we
3626  * do direct IO or a standard buffered write.
3627  *
3628  * It expects i_mutex to be grabbed unless we work on a block device or similar
3629  * object which does not need locking at all.
3630  *
3631  * This function does *not* take care of syncing data in case of O_SYNC write.
3632  * A caller has to handle it. This is mainly due to the fact that we want to
3633  * avoid syncing under i_mutex.
3634  *
3635  * Return:
3636  * * number of bytes written, even for truncated writes
3637  * * negative error code if no data has been written at all
3638  */
3639 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3640 {
3641 	struct file *file = iocb->ki_filp;
3642 	struct address_space * mapping = file->f_mapping;
3643 	struct inode 	*inode = mapping->host;
3644 	ssize_t		written = 0;
3645 	ssize_t		err;
3646 	ssize_t		status;
3647 
3648 	/* We can write back this queue in page reclaim */
3649 	current->backing_dev_info = inode_to_bdi(inode);
3650 	err = file_remove_privs(file);
3651 	if (err)
3652 		goto out;
3653 
3654 	err = file_update_time(file);
3655 	if (err)
3656 		goto out;
3657 
3658 	if (iocb->ki_flags & IOCB_DIRECT) {
3659 		loff_t pos, endbyte;
3660 
3661 		written = generic_file_direct_write(iocb, from);
3662 		/*
3663 		 * If the write stopped short of completing, fall back to
3664 		 * buffered writes.  Some filesystems do this for writes to
3665 		 * holes, for example.  For DAX files, a buffered write will
3666 		 * not succeed (even if it did, DAX does not handle dirty
3667 		 * page-cache pages correctly).
3668 		 */
3669 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3670 			goto out;
3671 
3672 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3673 		/*
3674 		 * If generic_perform_write() returned a synchronous error
3675 		 * then we want to return the number of bytes which were
3676 		 * direct-written, or the error code if that was zero.  Note
3677 		 * that this differs from normal direct-io semantics, which
3678 		 * will return -EFOO even if some bytes were written.
3679 		 */
3680 		if (unlikely(status < 0)) {
3681 			err = status;
3682 			goto out;
3683 		}
3684 		/*
3685 		 * We need to ensure that the page cache pages are written to
3686 		 * disk and invalidated to preserve the expected O_DIRECT
3687 		 * semantics.
3688 		 */
3689 		endbyte = pos + status - 1;
3690 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3691 		if (err == 0) {
3692 			iocb->ki_pos = endbyte + 1;
3693 			written += status;
3694 			invalidate_mapping_pages(mapping,
3695 						 pos >> PAGE_SHIFT,
3696 						 endbyte >> PAGE_SHIFT);
3697 		} else {
3698 			/*
3699 			 * We don't know how much we wrote, so just return
3700 			 * the number of bytes which were direct-written
3701 			 */
3702 		}
3703 	} else {
3704 		written = generic_perform_write(file, from, iocb->ki_pos);
3705 		if (likely(written > 0))
3706 			iocb->ki_pos += written;
3707 	}
3708 out:
3709 	current->backing_dev_info = NULL;
3710 	return written ? written : err;
3711 }
3712 EXPORT_SYMBOL(__generic_file_write_iter);
3713 
3714 /**
3715  * generic_file_write_iter - write data to a file
3716  * @iocb:	IO state structure
3717  * @from:	iov_iter with data to write
3718  *
3719  * This is a wrapper around __generic_file_write_iter() to be used by most
3720  * filesystems. It takes care of syncing the file in case of O_SYNC file
3721  * and acquires i_mutex as needed.
3722  * Return:
3723  * * negative error code if no data has been written at all of
3724  *   vfs_fsync_range() failed for a synchronous write
3725  * * number of bytes written, even for truncated writes
3726  */
3727 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3728 {
3729 	struct file *file = iocb->ki_filp;
3730 	struct inode *inode = file->f_mapping->host;
3731 	ssize_t ret;
3732 
3733 	inode_lock(inode);
3734 	ret = generic_write_checks(iocb, from);
3735 	if (ret > 0)
3736 		ret = __generic_file_write_iter(iocb, from);
3737 	inode_unlock(inode);
3738 
3739 	if (ret > 0)
3740 		ret = generic_write_sync(iocb, ret);
3741 	return ret;
3742 }
3743 EXPORT_SYMBOL(generic_file_write_iter);
3744 
3745 /**
3746  * try_to_release_page() - release old fs-specific metadata on a page
3747  *
3748  * @page: the page which the kernel is trying to free
3749  * @gfp_mask: memory allocation flags (and I/O mode)
3750  *
3751  * The address_space is to try to release any data against the page
3752  * (presumably at page->private).
3753  *
3754  * This may also be called if PG_fscache is set on a page, indicating that the
3755  * page is known to the local caching routines.
3756  *
3757  * The @gfp_mask argument specifies whether I/O may be performed to release
3758  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3759  *
3760  * Return: %1 if the release was successful, otherwise return zero.
3761  */
3762 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3763 {
3764 	struct address_space * const mapping = page->mapping;
3765 
3766 	BUG_ON(!PageLocked(page));
3767 	if (PageWriteback(page))
3768 		return 0;
3769 
3770 	if (mapping && mapping->a_ops->releasepage)
3771 		return mapping->a_ops->releasepage(page, gfp_mask);
3772 	return try_to_free_buffers(page);
3773 }
3774 
3775 EXPORT_SYMBOL(try_to_release_page);
3776