1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 if (end_byte < start_byte) 510 return; 511 512 pagevec_init(&pvec); 513 while (index <= end) { 514 unsigned i; 515 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 517 end, PAGECACHE_TAG_WRITEBACK); 518 if (!nr_pages) 519 break; 520 521 for (i = 0; i < nr_pages; i++) { 522 struct page *page = pvec.pages[i]; 523 524 wait_on_page_writeback(page); 525 ClearPageError(page); 526 } 527 pagevec_release(&pvec); 528 cond_resched(); 529 } 530 } 531 532 /** 533 * filemap_fdatawait_range - wait for writeback to complete 534 * @mapping: address space structure to wait for 535 * @start_byte: offset in bytes where the range starts 536 * @end_byte: offset in bytes where the range ends (inclusive) 537 * 538 * Walk the list of under-writeback pages of the given address space 539 * in the given range and wait for all of them. Check error status of 540 * the address space and return it. 541 * 542 * Since the error status of the address space is cleared by this function, 543 * callers are responsible for checking the return value and handling and/or 544 * reporting the error. 545 * 546 * Return: error status of the address space. 547 */ 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 549 loff_t end_byte) 550 { 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 552 return filemap_check_errors(mapping); 553 } 554 EXPORT_SYMBOL(filemap_fdatawait_range); 555 556 /** 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 558 * @mapping: address space structure to wait for 559 * @start_byte: offset in bytes where the range starts 560 * @end_byte: offset in bytes where the range ends (inclusive) 561 * 562 * Walk the list of under-writeback pages of the given address space in the 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 564 * this function does not clear error status of the address space. 565 * 566 * Use this function if callers don't handle errors themselves. Expected 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 568 * fsfreeze(8) 569 */ 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 571 loff_t start_byte, loff_t end_byte) 572 { 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 574 return filemap_check_and_keep_errors(mapping); 575 } 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 577 578 /** 579 * file_fdatawait_range - wait for writeback to complete 580 * @file: file pointing to address space structure to wait for 581 * @start_byte: offset in bytes where the range starts 582 * @end_byte: offset in bytes where the range ends (inclusive) 583 * 584 * Walk the list of under-writeback pages of the address space that file 585 * refers to, in the given range and wait for all of them. Check error 586 * status of the address space vs. the file->f_wb_err cursor and return it. 587 * 588 * Since the error status of the file is advanced by this function, 589 * callers are responsible for checking the return value and handling and/or 590 * reporting the error. 591 * 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 593 */ 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 595 { 596 struct address_space *mapping = file->f_mapping; 597 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 599 return file_check_and_advance_wb_err(file); 600 } 601 EXPORT_SYMBOL(file_fdatawait_range); 602 603 /** 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 605 * @mapping: address space structure to wait for 606 * 607 * Walk the list of under-writeback pages of the given address space 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 609 * does not clear error status of the address space. 610 * 611 * Use this function if callers don't handle errors themselves. Expected 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 613 * fsfreeze(8) 614 * 615 * Return: error status of the address space. 616 */ 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 618 { 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 620 return filemap_check_and_keep_errors(mapping); 621 } 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 623 624 /* Returns true if writeback might be needed or already in progress. */ 625 static bool mapping_needs_writeback(struct address_space *mapping) 626 { 627 return mapping->nrpages; 628 } 629 630 bool filemap_range_has_writeback(struct address_space *mapping, 631 loff_t start_byte, loff_t end_byte) 632 { 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 634 pgoff_t max = end_byte >> PAGE_SHIFT; 635 struct folio *folio; 636 637 if (end_byte < start_byte) 638 return false; 639 640 rcu_read_lock(); 641 xas_for_each(&xas, folio, max) { 642 if (xas_retry(&xas, folio)) 643 continue; 644 if (xa_is_value(folio)) 645 continue; 646 if (folio_test_dirty(folio) || folio_test_locked(folio) || 647 folio_test_writeback(folio)) 648 break; 649 } 650 rcu_read_unlock(); 651 return folio != NULL; 652 } 653 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 654 655 /** 656 * filemap_write_and_wait_range - write out & wait on a file range 657 * @mapping: the address_space for the pages 658 * @lstart: offset in bytes where the range starts 659 * @lend: offset in bytes where the range ends (inclusive) 660 * 661 * Write out and wait upon file offsets lstart->lend, inclusive. 662 * 663 * Note that @lend is inclusive (describes the last byte to be written) so 664 * that this function can be used to write to the very end-of-file (end = -1). 665 * 666 * Return: error status of the address space. 667 */ 668 int filemap_write_and_wait_range(struct address_space *mapping, 669 loff_t lstart, loff_t lend) 670 { 671 int err = 0, err2; 672 673 if (mapping_needs_writeback(mapping)) { 674 err = __filemap_fdatawrite_range(mapping, lstart, lend, 675 WB_SYNC_ALL); 676 /* 677 * Even if the above returned error, the pages may be 678 * written partially (e.g. -ENOSPC), so we wait for it. 679 * But the -EIO is special case, it may indicate the worst 680 * thing (e.g. bug) happened, so we avoid waiting for it. 681 */ 682 if (err != -EIO) 683 __filemap_fdatawait_range(mapping, lstart, lend); 684 } 685 err2 = filemap_check_errors(mapping); 686 if (!err) 687 err = err2; 688 return err; 689 } 690 EXPORT_SYMBOL(filemap_write_and_wait_range); 691 692 void __filemap_set_wb_err(struct address_space *mapping, int err) 693 { 694 errseq_t eseq = errseq_set(&mapping->wb_err, err); 695 696 trace_filemap_set_wb_err(mapping, eseq); 697 } 698 EXPORT_SYMBOL(__filemap_set_wb_err); 699 700 /** 701 * file_check_and_advance_wb_err - report wb error (if any) that was previously 702 * and advance wb_err to current one 703 * @file: struct file on which the error is being reported 704 * 705 * When userland calls fsync (or something like nfsd does the equivalent), we 706 * want to report any writeback errors that occurred since the last fsync (or 707 * since the file was opened if there haven't been any). 708 * 709 * Grab the wb_err from the mapping. If it matches what we have in the file, 710 * then just quickly return 0. The file is all caught up. 711 * 712 * If it doesn't match, then take the mapping value, set the "seen" flag in 713 * it and try to swap it into place. If it works, or another task beat us 714 * to it with the new value, then update the f_wb_err and return the error 715 * portion. The error at this point must be reported via proper channels 716 * (a'la fsync, or NFS COMMIT operation, etc.). 717 * 718 * While we handle mapping->wb_err with atomic operations, the f_wb_err 719 * value is protected by the f_lock since we must ensure that it reflects 720 * the latest value swapped in for this file descriptor. 721 * 722 * Return: %0 on success, negative error code otherwise. 723 */ 724 int file_check_and_advance_wb_err(struct file *file) 725 { 726 int err = 0; 727 errseq_t old = READ_ONCE(file->f_wb_err); 728 struct address_space *mapping = file->f_mapping; 729 730 /* Locklessly handle the common case where nothing has changed */ 731 if (errseq_check(&mapping->wb_err, old)) { 732 /* Something changed, must use slow path */ 733 spin_lock(&file->f_lock); 734 old = file->f_wb_err; 735 err = errseq_check_and_advance(&mapping->wb_err, 736 &file->f_wb_err); 737 trace_file_check_and_advance_wb_err(file, old); 738 spin_unlock(&file->f_lock); 739 } 740 741 /* 742 * We're mostly using this function as a drop in replacement for 743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 744 * that the legacy code would have had on these flags. 745 */ 746 clear_bit(AS_EIO, &mapping->flags); 747 clear_bit(AS_ENOSPC, &mapping->flags); 748 return err; 749 } 750 EXPORT_SYMBOL(file_check_and_advance_wb_err); 751 752 /** 753 * file_write_and_wait_range - write out & wait on a file range 754 * @file: file pointing to address_space with pages 755 * @lstart: offset in bytes where the range starts 756 * @lend: offset in bytes where the range ends (inclusive) 757 * 758 * Write out and wait upon file offsets lstart->lend, inclusive. 759 * 760 * Note that @lend is inclusive (describes the last byte to be written) so 761 * that this function can be used to write to the very end-of-file (end = -1). 762 * 763 * After writing out and waiting on the data, we check and advance the 764 * f_wb_err cursor to the latest value, and return any errors detected there. 765 * 766 * Return: %0 on success, negative error code otherwise. 767 */ 768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 769 { 770 int err = 0, err2; 771 struct address_space *mapping = file->f_mapping; 772 773 if (mapping_needs_writeback(mapping)) { 774 err = __filemap_fdatawrite_range(mapping, lstart, lend, 775 WB_SYNC_ALL); 776 /* See comment of filemap_write_and_wait() */ 777 if (err != -EIO) 778 __filemap_fdatawait_range(mapping, lstart, lend); 779 } 780 err2 = file_check_and_advance_wb_err(file); 781 if (!err) 782 err = err2; 783 return err; 784 } 785 EXPORT_SYMBOL(file_write_and_wait_range); 786 787 /** 788 * replace_page_cache_page - replace a pagecache page with a new one 789 * @old: page to be replaced 790 * @new: page to replace with 791 * 792 * This function replaces a page in the pagecache with a new one. On 793 * success it acquires the pagecache reference for the new page and 794 * drops it for the old page. Both the old and new pages must be 795 * locked. This function does not add the new page to the LRU, the 796 * caller must do that. 797 * 798 * The remove + add is atomic. This function cannot fail. 799 */ 800 void replace_page_cache_page(struct page *old, struct page *new) 801 { 802 struct folio *fold = page_folio(old); 803 struct folio *fnew = page_folio(new); 804 struct address_space *mapping = old->mapping; 805 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 806 pgoff_t offset = old->index; 807 XA_STATE(xas, &mapping->i_pages, offset); 808 809 VM_BUG_ON_PAGE(!PageLocked(old), old); 810 VM_BUG_ON_PAGE(!PageLocked(new), new); 811 VM_BUG_ON_PAGE(new->mapping, new); 812 813 get_page(new); 814 new->mapping = mapping; 815 new->index = offset; 816 817 mem_cgroup_migrate(fold, fnew); 818 819 xas_lock_irq(&xas); 820 xas_store(&xas, new); 821 822 old->mapping = NULL; 823 /* hugetlb pages do not participate in page cache accounting. */ 824 if (!PageHuge(old)) 825 __dec_lruvec_page_state(old, NR_FILE_PAGES); 826 if (!PageHuge(new)) 827 __inc_lruvec_page_state(new, NR_FILE_PAGES); 828 if (PageSwapBacked(old)) 829 __dec_lruvec_page_state(old, NR_SHMEM); 830 if (PageSwapBacked(new)) 831 __inc_lruvec_page_state(new, NR_SHMEM); 832 xas_unlock_irq(&xas); 833 if (free_folio) 834 free_folio(fold); 835 folio_put(fold); 836 } 837 EXPORT_SYMBOL_GPL(replace_page_cache_page); 838 839 noinline int __filemap_add_folio(struct address_space *mapping, 840 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 841 { 842 XA_STATE(xas, &mapping->i_pages, index); 843 int huge = folio_test_hugetlb(folio); 844 bool charged = false; 845 long nr = 1; 846 847 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 848 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 849 mapping_set_update(&xas, mapping); 850 851 if (!huge) { 852 int error = mem_cgroup_charge(folio, NULL, gfp); 853 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 854 if (error) 855 return error; 856 charged = true; 857 xas_set_order(&xas, index, folio_order(folio)); 858 nr = folio_nr_pages(folio); 859 } 860 861 gfp &= GFP_RECLAIM_MASK; 862 folio_ref_add(folio, nr); 863 folio->mapping = mapping; 864 folio->index = xas.xa_index; 865 866 do { 867 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 868 void *entry, *old = NULL; 869 870 if (order > folio_order(folio)) 871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 872 order, gfp); 873 xas_lock_irq(&xas); 874 xas_for_each_conflict(&xas, entry) { 875 old = entry; 876 if (!xa_is_value(entry)) { 877 xas_set_err(&xas, -EEXIST); 878 goto unlock; 879 } 880 } 881 882 if (old) { 883 if (shadowp) 884 *shadowp = old; 885 /* entry may have been split before we acquired lock */ 886 order = xa_get_order(xas.xa, xas.xa_index); 887 if (order > folio_order(folio)) { 888 /* How to handle large swap entries? */ 889 BUG_ON(shmem_mapping(mapping)); 890 xas_split(&xas, old, order); 891 xas_reset(&xas); 892 } 893 } 894 895 xas_store(&xas, folio); 896 if (xas_error(&xas)) 897 goto unlock; 898 899 mapping->nrpages += nr; 900 901 /* hugetlb pages do not participate in page cache accounting */ 902 if (!huge) { 903 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 904 if (folio_test_pmd_mappable(folio)) 905 __lruvec_stat_mod_folio(folio, 906 NR_FILE_THPS, nr); 907 } 908 unlock: 909 xas_unlock_irq(&xas); 910 } while (xas_nomem(&xas, gfp)); 911 912 if (xas_error(&xas)) 913 goto error; 914 915 trace_mm_filemap_add_to_page_cache(folio); 916 return 0; 917 error: 918 if (charged) 919 mem_cgroup_uncharge(folio); 920 folio->mapping = NULL; 921 /* Leave page->index set: truncation relies upon it */ 922 folio_put_refs(folio, nr); 923 return xas_error(&xas); 924 } 925 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 926 927 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 928 pgoff_t index, gfp_t gfp) 929 { 930 void *shadow = NULL; 931 int ret; 932 933 __folio_set_locked(folio); 934 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 935 if (unlikely(ret)) 936 __folio_clear_locked(folio); 937 else { 938 /* 939 * The folio might have been evicted from cache only 940 * recently, in which case it should be activated like 941 * any other repeatedly accessed folio. 942 * The exception is folios getting rewritten; evicting other 943 * data from the working set, only to cache data that will 944 * get overwritten with something else, is a waste of memory. 945 */ 946 WARN_ON_ONCE(folio_test_active(folio)); 947 if (!(gfp & __GFP_WRITE) && shadow) 948 workingset_refault(folio, shadow); 949 folio_add_lru(folio); 950 } 951 return ret; 952 } 953 EXPORT_SYMBOL_GPL(filemap_add_folio); 954 955 #ifdef CONFIG_NUMA 956 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 957 { 958 int n; 959 struct folio *folio; 960 961 if (cpuset_do_page_mem_spread()) { 962 unsigned int cpuset_mems_cookie; 963 do { 964 cpuset_mems_cookie = read_mems_allowed_begin(); 965 n = cpuset_mem_spread_node(); 966 folio = __folio_alloc_node(gfp, order, n); 967 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 968 969 return folio; 970 } 971 return folio_alloc(gfp, order); 972 } 973 EXPORT_SYMBOL(filemap_alloc_folio); 974 #endif 975 976 /* 977 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 978 * 979 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 980 * 981 * @mapping1: the first mapping to lock 982 * @mapping2: the second mapping to lock 983 */ 984 void filemap_invalidate_lock_two(struct address_space *mapping1, 985 struct address_space *mapping2) 986 { 987 if (mapping1 > mapping2) 988 swap(mapping1, mapping2); 989 if (mapping1) 990 down_write(&mapping1->invalidate_lock); 991 if (mapping2 && mapping1 != mapping2) 992 down_write_nested(&mapping2->invalidate_lock, 1); 993 } 994 EXPORT_SYMBOL(filemap_invalidate_lock_two); 995 996 /* 997 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 998 * 999 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1000 * 1001 * @mapping1: the first mapping to unlock 1002 * @mapping2: the second mapping to unlock 1003 */ 1004 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1005 struct address_space *mapping2) 1006 { 1007 if (mapping1) 1008 up_write(&mapping1->invalidate_lock); 1009 if (mapping2 && mapping1 != mapping2) 1010 up_write(&mapping2->invalidate_lock); 1011 } 1012 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1013 1014 /* 1015 * In order to wait for pages to become available there must be 1016 * waitqueues associated with pages. By using a hash table of 1017 * waitqueues where the bucket discipline is to maintain all 1018 * waiters on the same queue and wake all when any of the pages 1019 * become available, and for the woken contexts to check to be 1020 * sure the appropriate page became available, this saves space 1021 * at a cost of "thundering herd" phenomena during rare hash 1022 * collisions. 1023 */ 1024 #define PAGE_WAIT_TABLE_BITS 8 1025 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1026 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1027 1028 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1029 { 1030 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1031 } 1032 1033 void __init pagecache_init(void) 1034 { 1035 int i; 1036 1037 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1038 init_waitqueue_head(&folio_wait_table[i]); 1039 1040 page_writeback_init(); 1041 } 1042 1043 /* 1044 * The page wait code treats the "wait->flags" somewhat unusually, because 1045 * we have multiple different kinds of waits, not just the usual "exclusive" 1046 * one. 1047 * 1048 * We have: 1049 * 1050 * (a) no special bits set: 1051 * 1052 * We're just waiting for the bit to be released, and when a waker 1053 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1054 * and remove it from the wait queue. 1055 * 1056 * Simple and straightforward. 1057 * 1058 * (b) WQ_FLAG_EXCLUSIVE: 1059 * 1060 * The waiter is waiting to get the lock, and only one waiter should 1061 * be woken up to avoid any thundering herd behavior. We'll set the 1062 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1063 * 1064 * This is the traditional exclusive wait. 1065 * 1066 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1067 * 1068 * The waiter is waiting to get the bit, and additionally wants the 1069 * lock to be transferred to it for fair lock behavior. If the lock 1070 * cannot be taken, we stop walking the wait queue without waking 1071 * the waiter. 1072 * 1073 * This is the "fair lock handoff" case, and in addition to setting 1074 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1075 * that it now has the lock. 1076 */ 1077 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1078 { 1079 unsigned int flags; 1080 struct wait_page_key *key = arg; 1081 struct wait_page_queue *wait_page 1082 = container_of(wait, struct wait_page_queue, wait); 1083 1084 if (!wake_page_match(wait_page, key)) 1085 return 0; 1086 1087 /* 1088 * If it's a lock handoff wait, we get the bit for it, and 1089 * stop walking (and do not wake it up) if we can't. 1090 */ 1091 flags = wait->flags; 1092 if (flags & WQ_FLAG_EXCLUSIVE) { 1093 if (test_bit(key->bit_nr, &key->folio->flags)) 1094 return -1; 1095 if (flags & WQ_FLAG_CUSTOM) { 1096 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1097 return -1; 1098 flags |= WQ_FLAG_DONE; 1099 } 1100 } 1101 1102 /* 1103 * We are holding the wait-queue lock, but the waiter that 1104 * is waiting for this will be checking the flags without 1105 * any locking. 1106 * 1107 * So update the flags atomically, and wake up the waiter 1108 * afterwards to avoid any races. This store-release pairs 1109 * with the load-acquire in folio_wait_bit_common(). 1110 */ 1111 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1112 wake_up_state(wait->private, mode); 1113 1114 /* 1115 * Ok, we have successfully done what we're waiting for, 1116 * and we can unconditionally remove the wait entry. 1117 * 1118 * Note that this pairs with the "finish_wait()" in the 1119 * waiter, and has to be the absolute last thing we do. 1120 * After this list_del_init(&wait->entry) the wait entry 1121 * might be de-allocated and the process might even have 1122 * exited. 1123 */ 1124 list_del_init_careful(&wait->entry); 1125 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1126 } 1127 1128 static void folio_wake_bit(struct folio *folio, int bit_nr) 1129 { 1130 wait_queue_head_t *q = folio_waitqueue(folio); 1131 struct wait_page_key key; 1132 unsigned long flags; 1133 wait_queue_entry_t bookmark; 1134 1135 key.folio = folio; 1136 key.bit_nr = bit_nr; 1137 key.page_match = 0; 1138 1139 bookmark.flags = 0; 1140 bookmark.private = NULL; 1141 bookmark.func = NULL; 1142 INIT_LIST_HEAD(&bookmark.entry); 1143 1144 spin_lock_irqsave(&q->lock, flags); 1145 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1146 1147 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1148 /* 1149 * Take a breather from holding the lock, 1150 * allow pages that finish wake up asynchronously 1151 * to acquire the lock and remove themselves 1152 * from wait queue 1153 */ 1154 spin_unlock_irqrestore(&q->lock, flags); 1155 cpu_relax(); 1156 spin_lock_irqsave(&q->lock, flags); 1157 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1158 } 1159 1160 /* 1161 * It's possible to miss clearing waiters here, when we woke our page 1162 * waiters, but the hashed waitqueue has waiters for other pages on it. 1163 * That's okay, it's a rare case. The next waker will clear it. 1164 * 1165 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1166 * other), the flag may be cleared in the course of freeing the page; 1167 * but that is not required for correctness. 1168 */ 1169 if (!waitqueue_active(q) || !key.page_match) 1170 folio_clear_waiters(folio); 1171 1172 spin_unlock_irqrestore(&q->lock, flags); 1173 } 1174 1175 static void folio_wake(struct folio *folio, int bit) 1176 { 1177 if (!folio_test_waiters(folio)) 1178 return; 1179 folio_wake_bit(folio, bit); 1180 } 1181 1182 /* 1183 * A choice of three behaviors for folio_wait_bit_common(): 1184 */ 1185 enum behavior { 1186 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1187 * __folio_lock() waiting on then setting PG_locked. 1188 */ 1189 SHARED, /* Hold ref to page and check the bit when woken, like 1190 * folio_wait_writeback() waiting on PG_writeback. 1191 */ 1192 DROP, /* Drop ref to page before wait, no check when woken, 1193 * like folio_put_wait_locked() on PG_locked. 1194 */ 1195 }; 1196 1197 /* 1198 * Attempt to check (or get) the folio flag, and mark us done 1199 * if successful. 1200 */ 1201 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1202 struct wait_queue_entry *wait) 1203 { 1204 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1205 if (test_and_set_bit(bit_nr, &folio->flags)) 1206 return false; 1207 } else if (test_bit(bit_nr, &folio->flags)) 1208 return false; 1209 1210 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1211 return true; 1212 } 1213 1214 /* How many times do we accept lock stealing from under a waiter? */ 1215 int sysctl_page_lock_unfairness = 5; 1216 1217 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1218 int state, enum behavior behavior) 1219 { 1220 wait_queue_head_t *q = folio_waitqueue(folio); 1221 int unfairness = sysctl_page_lock_unfairness; 1222 struct wait_page_queue wait_page; 1223 wait_queue_entry_t *wait = &wait_page.wait; 1224 bool thrashing = false; 1225 unsigned long pflags; 1226 bool in_thrashing; 1227 1228 if (bit_nr == PG_locked && 1229 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1230 delayacct_thrashing_start(&in_thrashing); 1231 psi_memstall_enter(&pflags); 1232 thrashing = true; 1233 } 1234 1235 init_wait(wait); 1236 wait->func = wake_page_function; 1237 wait_page.folio = folio; 1238 wait_page.bit_nr = bit_nr; 1239 1240 repeat: 1241 wait->flags = 0; 1242 if (behavior == EXCLUSIVE) { 1243 wait->flags = WQ_FLAG_EXCLUSIVE; 1244 if (--unfairness < 0) 1245 wait->flags |= WQ_FLAG_CUSTOM; 1246 } 1247 1248 /* 1249 * Do one last check whether we can get the 1250 * page bit synchronously. 1251 * 1252 * Do the folio_set_waiters() marking before that 1253 * to let any waker we _just_ missed know they 1254 * need to wake us up (otherwise they'll never 1255 * even go to the slow case that looks at the 1256 * page queue), and add ourselves to the wait 1257 * queue if we need to sleep. 1258 * 1259 * This part needs to be done under the queue 1260 * lock to avoid races. 1261 */ 1262 spin_lock_irq(&q->lock); 1263 folio_set_waiters(folio); 1264 if (!folio_trylock_flag(folio, bit_nr, wait)) 1265 __add_wait_queue_entry_tail(q, wait); 1266 spin_unlock_irq(&q->lock); 1267 1268 /* 1269 * From now on, all the logic will be based on 1270 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1271 * see whether the page bit testing has already 1272 * been done by the wake function. 1273 * 1274 * We can drop our reference to the folio. 1275 */ 1276 if (behavior == DROP) 1277 folio_put(folio); 1278 1279 /* 1280 * Note that until the "finish_wait()", or until 1281 * we see the WQ_FLAG_WOKEN flag, we need to 1282 * be very careful with the 'wait->flags', because 1283 * we may race with a waker that sets them. 1284 */ 1285 for (;;) { 1286 unsigned int flags; 1287 1288 set_current_state(state); 1289 1290 /* Loop until we've been woken or interrupted */ 1291 flags = smp_load_acquire(&wait->flags); 1292 if (!(flags & WQ_FLAG_WOKEN)) { 1293 if (signal_pending_state(state, current)) 1294 break; 1295 1296 io_schedule(); 1297 continue; 1298 } 1299 1300 /* If we were non-exclusive, we're done */ 1301 if (behavior != EXCLUSIVE) 1302 break; 1303 1304 /* If the waker got the lock for us, we're done */ 1305 if (flags & WQ_FLAG_DONE) 1306 break; 1307 1308 /* 1309 * Otherwise, if we're getting the lock, we need to 1310 * try to get it ourselves. 1311 * 1312 * And if that fails, we'll have to retry this all. 1313 */ 1314 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1315 goto repeat; 1316 1317 wait->flags |= WQ_FLAG_DONE; 1318 break; 1319 } 1320 1321 /* 1322 * If a signal happened, this 'finish_wait()' may remove the last 1323 * waiter from the wait-queues, but the folio waiters bit will remain 1324 * set. That's ok. The next wakeup will take care of it, and trying 1325 * to do it here would be difficult and prone to races. 1326 */ 1327 finish_wait(q, wait); 1328 1329 if (thrashing) { 1330 delayacct_thrashing_end(&in_thrashing); 1331 psi_memstall_leave(&pflags); 1332 } 1333 1334 /* 1335 * NOTE! The wait->flags weren't stable until we've done the 1336 * 'finish_wait()', and we could have exited the loop above due 1337 * to a signal, and had a wakeup event happen after the signal 1338 * test but before the 'finish_wait()'. 1339 * 1340 * So only after the finish_wait() can we reliably determine 1341 * if we got woken up or not, so we can now figure out the final 1342 * return value based on that state without races. 1343 * 1344 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1345 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1346 */ 1347 if (behavior == EXCLUSIVE) 1348 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1349 1350 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1351 } 1352 1353 #ifdef CONFIG_MIGRATION 1354 /** 1355 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1356 * @entry: migration swap entry. 1357 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1358 * for pte entries, pass NULL for pmd entries. 1359 * @ptl: already locked ptl. This function will drop the lock. 1360 * 1361 * Wait for a migration entry referencing the given page to be removed. This is 1362 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1363 * this can be called without taking a reference on the page. Instead this 1364 * should be called while holding the ptl for the migration entry referencing 1365 * the page. 1366 * 1367 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1368 * 1369 * This follows the same logic as folio_wait_bit_common() so see the comments 1370 * there. 1371 */ 1372 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1373 spinlock_t *ptl) 1374 { 1375 struct wait_page_queue wait_page; 1376 wait_queue_entry_t *wait = &wait_page.wait; 1377 bool thrashing = false; 1378 unsigned long pflags; 1379 bool in_thrashing; 1380 wait_queue_head_t *q; 1381 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1382 1383 q = folio_waitqueue(folio); 1384 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1385 delayacct_thrashing_start(&in_thrashing); 1386 psi_memstall_enter(&pflags); 1387 thrashing = true; 1388 } 1389 1390 init_wait(wait); 1391 wait->func = wake_page_function; 1392 wait_page.folio = folio; 1393 wait_page.bit_nr = PG_locked; 1394 wait->flags = 0; 1395 1396 spin_lock_irq(&q->lock); 1397 folio_set_waiters(folio); 1398 if (!folio_trylock_flag(folio, PG_locked, wait)) 1399 __add_wait_queue_entry_tail(q, wait); 1400 spin_unlock_irq(&q->lock); 1401 1402 /* 1403 * If a migration entry exists for the page the migration path must hold 1404 * a valid reference to the page, and it must take the ptl to remove the 1405 * migration entry. So the page is valid until the ptl is dropped. 1406 */ 1407 if (ptep) 1408 pte_unmap_unlock(ptep, ptl); 1409 else 1410 spin_unlock(ptl); 1411 1412 for (;;) { 1413 unsigned int flags; 1414 1415 set_current_state(TASK_UNINTERRUPTIBLE); 1416 1417 /* Loop until we've been woken or interrupted */ 1418 flags = smp_load_acquire(&wait->flags); 1419 if (!(flags & WQ_FLAG_WOKEN)) { 1420 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1421 break; 1422 1423 io_schedule(); 1424 continue; 1425 } 1426 break; 1427 } 1428 1429 finish_wait(q, wait); 1430 1431 if (thrashing) { 1432 delayacct_thrashing_end(&in_thrashing); 1433 psi_memstall_leave(&pflags); 1434 } 1435 } 1436 #endif 1437 1438 void folio_wait_bit(struct folio *folio, int bit_nr) 1439 { 1440 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1441 } 1442 EXPORT_SYMBOL(folio_wait_bit); 1443 1444 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1445 { 1446 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1447 } 1448 EXPORT_SYMBOL(folio_wait_bit_killable); 1449 1450 /** 1451 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1452 * @folio: The folio to wait for. 1453 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1454 * 1455 * The caller should hold a reference on @folio. They expect the page to 1456 * become unlocked relatively soon, but do not wish to hold up migration 1457 * (for example) by holding the reference while waiting for the folio to 1458 * come unlocked. After this function returns, the caller should not 1459 * dereference @folio. 1460 * 1461 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1462 */ 1463 static int folio_put_wait_locked(struct folio *folio, int state) 1464 { 1465 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1466 } 1467 1468 /** 1469 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1470 * @folio: Folio defining the wait queue of interest 1471 * @waiter: Waiter to add to the queue 1472 * 1473 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1474 */ 1475 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1476 { 1477 wait_queue_head_t *q = folio_waitqueue(folio); 1478 unsigned long flags; 1479 1480 spin_lock_irqsave(&q->lock, flags); 1481 __add_wait_queue_entry_tail(q, waiter); 1482 folio_set_waiters(folio); 1483 spin_unlock_irqrestore(&q->lock, flags); 1484 } 1485 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1486 1487 #ifndef clear_bit_unlock_is_negative_byte 1488 1489 /* 1490 * PG_waiters is the high bit in the same byte as PG_lock. 1491 * 1492 * On x86 (and on many other architectures), we can clear PG_lock and 1493 * test the sign bit at the same time. But if the architecture does 1494 * not support that special operation, we just do this all by hand 1495 * instead. 1496 * 1497 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1498 * being cleared, but a memory barrier should be unnecessary since it is 1499 * in the same byte as PG_locked. 1500 */ 1501 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1502 { 1503 clear_bit_unlock(nr, mem); 1504 /* smp_mb__after_atomic(); */ 1505 return test_bit(PG_waiters, mem); 1506 } 1507 1508 #endif 1509 1510 /** 1511 * folio_unlock - Unlock a locked folio. 1512 * @folio: The folio. 1513 * 1514 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1515 * 1516 * Context: May be called from interrupt or process context. May not be 1517 * called from NMI context. 1518 */ 1519 void folio_unlock(struct folio *folio) 1520 { 1521 /* Bit 7 allows x86 to check the byte's sign bit */ 1522 BUILD_BUG_ON(PG_waiters != 7); 1523 BUILD_BUG_ON(PG_locked > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1526 folio_wake_bit(folio, PG_locked); 1527 } 1528 EXPORT_SYMBOL(folio_unlock); 1529 1530 /** 1531 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1532 * @folio: The folio. 1533 * 1534 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1535 * it. The folio reference held for PG_private_2 being set is released. 1536 * 1537 * This is, for example, used when a netfs folio is being written to a local 1538 * disk cache, thereby allowing writes to the cache for the same folio to be 1539 * serialised. 1540 */ 1541 void folio_end_private_2(struct folio *folio) 1542 { 1543 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1544 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1545 folio_wake_bit(folio, PG_private_2); 1546 folio_put(folio); 1547 } 1548 EXPORT_SYMBOL(folio_end_private_2); 1549 1550 /** 1551 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1552 * @folio: The folio to wait on. 1553 * 1554 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1555 */ 1556 void folio_wait_private_2(struct folio *folio) 1557 { 1558 while (folio_test_private_2(folio)) 1559 folio_wait_bit(folio, PG_private_2); 1560 } 1561 EXPORT_SYMBOL(folio_wait_private_2); 1562 1563 /** 1564 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1565 * @folio: The folio to wait on. 1566 * 1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1568 * fatal signal is received by the calling task. 1569 * 1570 * Return: 1571 * - 0 if successful. 1572 * - -EINTR if a fatal signal was encountered. 1573 */ 1574 int folio_wait_private_2_killable(struct folio *folio) 1575 { 1576 int ret = 0; 1577 1578 while (folio_test_private_2(folio)) { 1579 ret = folio_wait_bit_killable(folio, PG_private_2); 1580 if (ret < 0) 1581 break; 1582 } 1583 1584 return ret; 1585 } 1586 EXPORT_SYMBOL(folio_wait_private_2_killable); 1587 1588 /** 1589 * folio_end_writeback - End writeback against a folio. 1590 * @folio: The folio. 1591 */ 1592 void folio_end_writeback(struct folio *folio) 1593 { 1594 /* 1595 * folio_test_clear_reclaim() could be used here but it is an 1596 * atomic operation and overkill in this particular case. Failing 1597 * to shuffle a folio marked for immediate reclaim is too mild 1598 * a gain to justify taking an atomic operation penalty at the 1599 * end of every folio writeback. 1600 */ 1601 if (folio_test_reclaim(folio)) { 1602 folio_clear_reclaim(folio); 1603 folio_rotate_reclaimable(folio); 1604 } 1605 1606 /* 1607 * Writeback does not hold a folio reference of its own, relying 1608 * on truncation to wait for the clearing of PG_writeback. 1609 * But here we must make sure that the folio is not freed and 1610 * reused before the folio_wake(). 1611 */ 1612 folio_get(folio); 1613 if (!__folio_end_writeback(folio)) 1614 BUG(); 1615 1616 smp_mb__after_atomic(); 1617 folio_wake(folio, PG_writeback); 1618 acct_reclaim_writeback(folio); 1619 folio_put(folio); 1620 } 1621 EXPORT_SYMBOL(folio_end_writeback); 1622 1623 /* 1624 * After completing I/O on a page, call this routine to update the page 1625 * flags appropriately 1626 */ 1627 void page_endio(struct page *page, bool is_write, int err) 1628 { 1629 struct folio *folio = page_folio(page); 1630 1631 if (!is_write) { 1632 if (!err) { 1633 folio_mark_uptodate(folio); 1634 } else { 1635 folio_clear_uptodate(folio); 1636 folio_set_error(folio); 1637 } 1638 folio_unlock(folio); 1639 } else { 1640 if (err) { 1641 struct address_space *mapping; 1642 1643 folio_set_error(folio); 1644 mapping = folio_mapping(folio); 1645 if (mapping) 1646 mapping_set_error(mapping, err); 1647 } 1648 folio_end_writeback(folio); 1649 } 1650 } 1651 EXPORT_SYMBOL_GPL(page_endio); 1652 1653 /** 1654 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1655 * @folio: The folio to lock 1656 */ 1657 void __folio_lock(struct folio *folio) 1658 { 1659 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1660 EXCLUSIVE); 1661 } 1662 EXPORT_SYMBOL(__folio_lock); 1663 1664 int __folio_lock_killable(struct folio *folio) 1665 { 1666 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1667 EXCLUSIVE); 1668 } 1669 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1670 1671 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1672 { 1673 struct wait_queue_head *q = folio_waitqueue(folio); 1674 int ret = 0; 1675 1676 wait->folio = folio; 1677 wait->bit_nr = PG_locked; 1678 1679 spin_lock_irq(&q->lock); 1680 __add_wait_queue_entry_tail(q, &wait->wait); 1681 folio_set_waiters(folio); 1682 ret = !folio_trylock(folio); 1683 /* 1684 * If we were successful now, we know we're still on the 1685 * waitqueue as we're still under the lock. This means it's 1686 * safe to remove and return success, we know the callback 1687 * isn't going to trigger. 1688 */ 1689 if (!ret) 1690 __remove_wait_queue(q, &wait->wait); 1691 else 1692 ret = -EIOCBQUEUED; 1693 spin_unlock_irq(&q->lock); 1694 return ret; 1695 } 1696 1697 /* 1698 * Return values: 1699 * true - folio is locked; mmap_lock is still held. 1700 * false - folio is not locked. 1701 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1702 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1703 * which case mmap_lock is still held. 1704 * 1705 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1706 * with the folio locked and the mmap_lock unperturbed. 1707 */ 1708 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1709 unsigned int flags) 1710 { 1711 if (fault_flag_allow_retry_first(flags)) { 1712 /* 1713 * CAUTION! In this case, mmap_lock is not released 1714 * even though return 0. 1715 */ 1716 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1717 return false; 1718 1719 mmap_read_unlock(mm); 1720 if (flags & FAULT_FLAG_KILLABLE) 1721 folio_wait_locked_killable(folio); 1722 else 1723 folio_wait_locked(folio); 1724 return false; 1725 } 1726 if (flags & FAULT_FLAG_KILLABLE) { 1727 bool ret; 1728 1729 ret = __folio_lock_killable(folio); 1730 if (ret) { 1731 mmap_read_unlock(mm); 1732 return false; 1733 } 1734 } else { 1735 __folio_lock(folio); 1736 } 1737 1738 return true; 1739 } 1740 1741 /** 1742 * page_cache_next_miss() - Find the next gap in the page cache. 1743 * @mapping: Mapping. 1744 * @index: Index. 1745 * @max_scan: Maximum range to search. 1746 * 1747 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1748 * gap with the lowest index. 1749 * 1750 * This function may be called under the rcu_read_lock. However, this will 1751 * not atomically search a snapshot of the cache at a single point in time. 1752 * For example, if a gap is created at index 5, then subsequently a gap is 1753 * created at index 10, page_cache_next_miss covering both indices may 1754 * return 10 if called under the rcu_read_lock. 1755 * 1756 * Return: The index of the gap if found, otherwise an index outside the 1757 * range specified (in which case 'return - index >= max_scan' will be true). 1758 * In the rare case of index wrap-around, 0 will be returned. 1759 */ 1760 pgoff_t page_cache_next_miss(struct address_space *mapping, 1761 pgoff_t index, unsigned long max_scan) 1762 { 1763 XA_STATE(xas, &mapping->i_pages, index); 1764 1765 while (max_scan--) { 1766 void *entry = xas_next(&xas); 1767 if (!entry || xa_is_value(entry)) 1768 break; 1769 if (xas.xa_index == 0) 1770 break; 1771 } 1772 1773 return xas.xa_index; 1774 } 1775 EXPORT_SYMBOL(page_cache_next_miss); 1776 1777 /** 1778 * page_cache_prev_miss() - Find the previous gap in the page cache. 1779 * @mapping: Mapping. 1780 * @index: Index. 1781 * @max_scan: Maximum range to search. 1782 * 1783 * Search the range [max(index - max_scan + 1, 0), index] for the 1784 * gap with the highest index. 1785 * 1786 * This function may be called under the rcu_read_lock. However, this will 1787 * not atomically search a snapshot of the cache at a single point in time. 1788 * For example, if a gap is created at index 10, then subsequently a gap is 1789 * created at index 5, page_cache_prev_miss() covering both indices may 1790 * return 5 if called under the rcu_read_lock. 1791 * 1792 * Return: The index of the gap if found, otherwise an index outside the 1793 * range specified (in which case 'index - return >= max_scan' will be true). 1794 * In the rare case of wrap-around, ULONG_MAX will be returned. 1795 */ 1796 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1797 pgoff_t index, unsigned long max_scan) 1798 { 1799 XA_STATE(xas, &mapping->i_pages, index); 1800 1801 while (max_scan--) { 1802 void *entry = xas_prev(&xas); 1803 if (!entry || xa_is_value(entry)) 1804 break; 1805 if (xas.xa_index == ULONG_MAX) 1806 break; 1807 } 1808 1809 return xas.xa_index; 1810 } 1811 EXPORT_SYMBOL(page_cache_prev_miss); 1812 1813 /* 1814 * Lockless page cache protocol: 1815 * On the lookup side: 1816 * 1. Load the folio from i_pages 1817 * 2. Increment the refcount if it's not zero 1818 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1819 * 1820 * On the removal side: 1821 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1822 * B. Remove the page from i_pages 1823 * C. Return the page to the page allocator 1824 * 1825 * This means that any page may have its reference count temporarily 1826 * increased by a speculative page cache (or fast GUP) lookup as it can 1827 * be allocated by another user before the RCU grace period expires. 1828 * Because the refcount temporarily acquired here may end up being the 1829 * last refcount on the page, any page allocation must be freeable by 1830 * folio_put(). 1831 */ 1832 1833 /* 1834 * mapping_get_entry - Get a page cache entry. 1835 * @mapping: the address_space to search 1836 * @index: The page cache index. 1837 * 1838 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1839 * it is returned with an increased refcount. If it is a shadow entry 1840 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1841 * it is returned without further action. 1842 * 1843 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1844 */ 1845 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1846 { 1847 XA_STATE(xas, &mapping->i_pages, index); 1848 struct folio *folio; 1849 1850 rcu_read_lock(); 1851 repeat: 1852 xas_reset(&xas); 1853 folio = xas_load(&xas); 1854 if (xas_retry(&xas, folio)) 1855 goto repeat; 1856 /* 1857 * A shadow entry of a recently evicted page, or a swap entry from 1858 * shmem/tmpfs. Return it without attempting to raise page count. 1859 */ 1860 if (!folio || xa_is_value(folio)) 1861 goto out; 1862 1863 if (!folio_try_get_rcu(folio)) 1864 goto repeat; 1865 1866 if (unlikely(folio != xas_reload(&xas))) { 1867 folio_put(folio); 1868 goto repeat; 1869 } 1870 out: 1871 rcu_read_unlock(); 1872 1873 return folio; 1874 } 1875 1876 /** 1877 * __filemap_get_folio - Find and get a reference to a folio. 1878 * @mapping: The address_space to search. 1879 * @index: The page index. 1880 * @fgp_flags: %FGP flags modify how the folio is returned. 1881 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1882 * 1883 * Looks up the page cache entry at @mapping & @index. 1884 * 1885 * @fgp_flags can be zero or more of these flags: 1886 * 1887 * * %FGP_ACCESSED - The folio will be marked accessed. 1888 * * %FGP_LOCK - The folio is returned locked. 1889 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1890 * instead of allocating a new folio to replace it. 1891 * * %FGP_CREAT - If no page is present then a new page is allocated using 1892 * @gfp and added to the page cache and the VM's LRU list. 1893 * The page is returned locked and with an increased refcount. 1894 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1895 * page is already in cache. If the page was allocated, unlock it before 1896 * returning so the caller can do the same dance. 1897 * * %FGP_WRITE - The page will be written to by the caller. 1898 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1899 * * %FGP_NOWAIT - Don't get blocked by page lock. 1900 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1901 * 1902 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1903 * if the %GFP flags specified for %FGP_CREAT are atomic. 1904 * 1905 * If there is a page cache page, it is returned with an increased refcount. 1906 * 1907 * Return: The found folio or %NULL otherwise. 1908 */ 1909 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1910 int fgp_flags, gfp_t gfp) 1911 { 1912 struct folio *folio; 1913 1914 repeat: 1915 folio = mapping_get_entry(mapping, index); 1916 if (xa_is_value(folio)) { 1917 if (fgp_flags & FGP_ENTRY) 1918 return folio; 1919 folio = NULL; 1920 } 1921 if (!folio) 1922 goto no_page; 1923 1924 if (fgp_flags & FGP_LOCK) { 1925 if (fgp_flags & FGP_NOWAIT) { 1926 if (!folio_trylock(folio)) { 1927 folio_put(folio); 1928 return NULL; 1929 } 1930 } else { 1931 folio_lock(folio); 1932 } 1933 1934 /* Has the page been truncated? */ 1935 if (unlikely(folio->mapping != mapping)) { 1936 folio_unlock(folio); 1937 folio_put(folio); 1938 goto repeat; 1939 } 1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1941 } 1942 1943 if (fgp_flags & FGP_ACCESSED) 1944 folio_mark_accessed(folio); 1945 else if (fgp_flags & FGP_WRITE) { 1946 /* Clear idle flag for buffer write */ 1947 if (folio_test_idle(folio)) 1948 folio_clear_idle(folio); 1949 } 1950 1951 if (fgp_flags & FGP_STABLE) 1952 folio_wait_stable(folio); 1953 no_page: 1954 if (!folio && (fgp_flags & FGP_CREAT)) { 1955 int err; 1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1957 gfp |= __GFP_WRITE; 1958 if (fgp_flags & FGP_NOFS) 1959 gfp &= ~__GFP_FS; 1960 if (fgp_flags & FGP_NOWAIT) { 1961 gfp &= ~GFP_KERNEL; 1962 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1963 } 1964 1965 folio = filemap_alloc_folio(gfp, 0); 1966 if (!folio) 1967 return NULL; 1968 1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1970 fgp_flags |= FGP_LOCK; 1971 1972 /* Init accessed so avoid atomic mark_page_accessed later */ 1973 if (fgp_flags & FGP_ACCESSED) 1974 __folio_set_referenced(folio); 1975 1976 err = filemap_add_folio(mapping, folio, index, gfp); 1977 if (unlikely(err)) { 1978 folio_put(folio); 1979 folio = NULL; 1980 if (err == -EEXIST) 1981 goto repeat; 1982 } 1983 1984 /* 1985 * filemap_add_folio locks the page, and for mmap 1986 * we expect an unlocked page. 1987 */ 1988 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1989 folio_unlock(folio); 1990 } 1991 1992 return folio; 1993 } 1994 EXPORT_SYMBOL(__filemap_get_folio); 1995 1996 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1997 xa_mark_t mark) 1998 { 1999 struct folio *folio; 2000 2001 retry: 2002 if (mark == XA_PRESENT) 2003 folio = xas_find(xas, max); 2004 else 2005 folio = xas_find_marked(xas, max, mark); 2006 2007 if (xas_retry(xas, folio)) 2008 goto retry; 2009 /* 2010 * A shadow entry of a recently evicted page, a swap 2011 * entry from shmem/tmpfs or a DAX entry. Return it 2012 * without attempting to raise page count. 2013 */ 2014 if (!folio || xa_is_value(folio)) 2015 return folio; 2016 2017 if (!folio_try_get_rcu(folio)) 2018 goto reset; 2019 2020 if (unlikely(folio != xas_reload(xas))) { 2021 folio_put(folio); 2022 goto reset; 2023 } 2024 2025 return folio; 2026 reset: 2027 xas_reset(xas); 2028 goto retry; 2029 } 2030 2031 /** 2032 * find_get_entries - gang pagecache lookup 2033 * @mapping: The address_space to search 2034 * @start: The starting page cache index 2035 * @end: The final page index (inclusive). 2036 * @fbatch: Where the resulting entries are placed. 2037 * @indices: The cache indices corresponding to the entries in @entries 2038 * 2039 * find_get_entries() will search for and return a batch of entries in 2040 * the mapping. The entries are placed in @fbatch. find_get_entries() 2041 * takes a reference on any actual folios it returns. 2042 * 2043 * The entries have ascending indexes. The indices may not be consecutive 2044 * due to not-present entries or large folios. 2045 * 2046 * Any shadow entries of evicted folios, or swap entries from 2047 * shmem/tmpfs, are included in the returned array. 2048 * 2049 * Return: The number of entries which were found. 2050 */ 2051 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2052 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2053 { 2054 XA_STATE(xas, &mapping->i_pages, start); 2055 struct folio *folio; 2056 2057 rcu_read_lock(); 2058 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2059 indices[fbatch->nr] = xas.xa_index; 2060 if (!folio_batch_add(fbatch, folio)) 2061 break; 2062 } 2063 rcu_read_unlock(); 2064 2065 return folio_batch_count(fbatch); 2066 } 2067 2068 /** 2069 * find_lock_entries - Find a batch of pagecache entries. 2070 * @mapping: The address_space to search. 2071 * @start: The starting page cache index. 2072 * @end: The final page index (inclusive). 2073 * @fbatch: Where the resulting entries are placed. 2074 * @indices: The cache indices of the entries in @fbatch. 2075 * 2076 * find_lock_entries() will return a batch of entries from @mapping. 2077 * Swap, shadow and DAX entries are included. Folios are returned 2078 * locked and with an incremented refcount. Folios which are locked 2079 * by somebody else or under writeback are skipped. Folios which are 2080 * partially outside the range are not returned. 2081 * 2082 * The entries have ascending indexes. The indices may not be consecutive 2083 * due to not-present entries, large folios, folios which could not be 2084 * locked or folios under writeback. 2085 * 2086 * Return: The number of entries which were found. 2087 */ 2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2089 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2090 { 2091 XA_STATE(xas, &mapping->i_pages, start); 2092 struct folio *folio; 2093 2094 rcu_read_lock(); 2095 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2096 if (!xa_is_value(folio)) { 2097 if (folio->index < start) 2098 goto put; 2099 if (folio->index + folio_nr_pages(folio) - 1 > end) 2100 goto put; 2101 if (!folio_trylock(folio)) 2102 goto put; 2103 if (folio->mapping != mapping || 2104 folio_test_writeback(folio)) 2105 goto unlock; 2106 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2107 folio); 2108 } 2109 indices[fbatch->nr] = xas.xa_index; 2110 if (!folio_batch_add(fbatch, folio)) 2111 break; 2112 continue; 2113 unlock: 2114 folio_unlock(folio); 2115 put: 2116 folio_put(folio); 2117 } 2118 rcu_read_unlock(); 2119 2120 return folio_batch_count(fbatch); 2121 } 2122 2123 /** 2124 * filemap_get_folios - Get a batch of folios 2125 * @mapping: The address_space to search 2126 * @start: The starting page index 2127 * @end: The final page index (inclusive) 2128 * @fbatch: The batch to fill. 2129 * 2130 * Search for and return a batch of folios in the mapping starting at 2131 * index @start and up to index @end (inclusive). The folios are returned 2132 * in @fbatch with an elevated reference count. 2133 * 2134 * The first folio may start before @start; if it does, it will contain 2135 * @start. The final folio may extend beyond @end; if it does, it will 2136 * contain @end. The folios have ascending indices. There may be gaps 2137 * between the folios if there are indices which have no folio in the 2138 * page cache. If folios are added to or removed from the page cache 2139 * while this is running, they may or may not be found by this call. 2140 * 2141 * Return: The number of folios which were found. 2142 * We also update @start to index the next folio for the traversal. 2143 */ 2144 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2145 pgoff_t end, struct folio_batch *fbatch) 2146 { 2147 XA_STATE(xas, &mapping->i_pages, *start); 2148 struct folio *folio; 2149 2150 rcu_read_lock(); 2151 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2152 /* Skip over shadow, swap and DAX entries */ 2153 if (xa_is_value(folio)) 2154 continue; 2155 if (!folio_batch_add(fbatch, folio)) { 2156 unsigned long nr = folio_nr_pages(folio); 2157 2158 if (folio_test_hugetlb(folio)) 2159 nr = 1; 2160 *start = folio->index + nr; 2161 goto out; 2162 } 2163 } 2164 2165 /* 2166 * We come here when there is no page beyond @end. We take care to not 2167 * overflow the index @start as it confuses some of the callers. This 2168 * breaks the iteration when there is a page at index -1 but that is 2169 * already broken anyway. 2170 */ 2171 if (end == (pgoff_t)-1) 2172 *start = (pgoff_t)-1; 2173 else 2174 *start = end + 1; 2175 out: 2176 rcu_read_unlock(); 2177 2178 return folio_batch_count(fbatch); 2179 } 2180 EXPORT_SYMBOL(filemap_get_folios); 2181 2182 static inline 2183 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2184 { 2185 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2186 return false; 2187 if (index >= max) 2188 return false; 2189 return index < folio->index + folio_nr_pages(folio) - 1; 2190 } 2191 2192 /** 2193 * filemap_get_folios_contig - Get a batch of contiguous folios 2194 * @mapping: The address_space to search 2195 * @start: The starting page index 2196 * @end: The final page index (inclusive) 2197 * @fbatch: The batch to fill 2198 * 2199 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2200 * except the returned folios are guaranteed to be contiguous. This may 2201 * not return all contiguous folios if the batch gets filled up. 2202 * 2203 * Return: The number of folios found. 2204 * Also update @start to be positioned for traversal of the next folio. 2205 */ 2206 2207 unsigned filemap_get_folios_contig(struct address_space *mapping, 2208 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2209 { 2210 XA_STATE(xas, &mapping->i_pages, *start); 2211 unsigned long nr; 2212 struct folio *folio; 2213 2214 rcu_read_lock(); 2215 2216 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2217 folio = xas_next(&xas)) { 2218 if (xas_retry(&xas, folio)) 2219 continue; 2220 /* 2221 * If the entry has been swapped out, we can stop looking. 2222 * No current caller is looking for DAX entries. 2223 */ 2224 if (xa_is_value(folio)) 2225 goto update_start; 2226 2227 if (!folio_try_get_rcu(folio)) 2228 goto retry; 2229 2230 if (unlikely(folio != xas_reload(&xas))) 2231 goto put_folio; 2232 2233 if (!folio_batch_add(fbatch, folio)) { 2234 nr = folio_nr_pages(folio); 2235 2236 if (folio_test_hugetlb(folio)) 2237 nr = 1; 2238 *start = folio->index + nr; 2239 goto out; 2240 } 2241 continue; 2242 put_folio: 2243 folio_put(folio); 2244 2245 retry: 2246 xas_reset(&xas); 2247 } 2248 2249 update_start: 2250 nr = folio_batch_count(fbatch); 2251 2252 if (nr) { 2253 folio = fbatch->folios[nr - 1]; 2254 if (folio_test_hugetlb(folio)) 2255 *start = folio->index + 1; 2256 else 2257 *start = folio->index + folio_nr_pages(folio); 2258 } 2259 out: 2260 rcu_read_unlock(); 2261 return folio_batch_count(fbatch); 2262 } 2263 EXPORT_SYMBOL(filemap_get_folios_contig); 2264 2265 /** 2266 * find_get_pages_range_tag - Find and return head pages matching @tag. 2267 * @mapping: the address_space to search 2268 * @index: the starting page index 2269 * @end: The final page index (inclusive) 2270 * @tag: the tag index 2271 * @nr_pages: the maximum number of pages 2272 * @pages: where the resulting pages are placed 2273 * 2274 * Like find_get_pages_range(), except we only return head pages which are 2275 * tagged with @tag. @index is updated to the index immediately after the 2276 * last page we return, ready for the next iteration. 2277 * 2278 * Return: the number of pages which were found. 2279 */ 2280 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2281 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2282 struct page **pages) 2283 { 2284 XA_STATE(xas, &mapping->i_pages, *index); 2285 struct folio *folio; 2286 unsigned ret = 0; 2287 2288 if (unlikely(!nr_pages)) 2289 return 0; 2290 2291 rcu_read_lock(); 2292 while ((folio = find_get_entry(&xas, end, tag))) { 2293 /* 2294 * Shadow entries should never be tagged, but this iteration 2295 * is lockless so there is a window for page reclaim to evict 2296 * a page we saw tagged. Skip over it. 2297 */ 2298 if (xa_is_value(folio)) 2299 continue; 2300 2301 pages[ret] = &folio->page; 2302 if (++ret == nr_pages) { 2303 *index = folio->index + folio_nr_pages(folio); 2304 goto out; 2305 } 2306 } 2307 2308 /* 2309 * We come here when we got to @end. We take care to not overflow the 2310 * index @index as it confuses some of the callers. This breaks the 2311 * iteration when there is a page at index -1 but that is already 2312 * broken anyway. 2313 */ 2314 if (end == (pgoff_t)-1) 2315 *index = (pgoff_t)-1; 2316 else 2317 *index = end + 1; 2318 out: 2319 rcu_read_unlock(); 2320 2321 return ret; 2322 } 2323 EXPORT_SYMBOL(find_get_pages_range_tag); 2324 2325 /* 2326 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2327 * a _large_ part of the i/o request. Imagine the worst scenario: 2328 * 2329 * ---R__________________________________________B__________ 2330 * ^ reading here ^ bad block(assume 4k) 2331 * 2332 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2333 * => failing the whole request => read(R) => read(R+1) => 2334 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2335 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2336 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2337 * 2338 * It is going insane. Fix it by quickly scaling down the readahead size. 2339 */ 2340 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2341 { 2342 ra->ra_pages /= 4; 2343 } 2344 2345 /* 2346 * filemap_get_read_batch - Get a batch of folios for read 2347 * 2348 * Get a batch of folios which represent a contiguous range of bytes in 2349 * the file. No exceptional entries will be returned. If @index is in 2350 * the middle of a folio, the entire folio will be returned. The last 2351 * folio in the batch may have the readahead flag set or the uptodate flag 2352 * clear so that the caller can take the appropriate action. 2353 */ 2354 static void filemap_get_read_batch(struct address_space *mapping, 2355 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2356 { 2357 XA_STATE(xas, &mapping->i_pages, index); 2358 struct folio *folio; 2359 2360 rcu_read_lock(); 2361 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2362 if (xas_retry(&xas, folio)) 2363 continue; 2364 if (xas.xa_index > max || xa_is_value(folio)) 2365 break; 2366 if (xa_is_sibling(folio)) 2367 break; 2368 if (!folio_try_get_rcu(folio)) 2369 goto retry; 2370 2371 if (unlikely(folio != xas_reload(&xas))) 2372 goto put_folio; 2373 2374 if (!folio_batch_add(fbatch, folio)) 2375 break; 2376 if (!folio_test_uptodate(folio)) 2377 break; 2378 if (folio_test_readahead(folio)) 2379 break; 2380 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2381 continue; 2382 put_folio: 2383 folio_put(folio); 2384 retry: 2385 xas_reset(&xas); 2386 } 2387 rcu_read_unlock(); 2388 } 2389 2390 static int filemap_read_folio(struct file *file, filler_t filler, 2391 struct folio *folio) 2392 { 2393 bool workingset = folio_test_workingset(folio); 2394 unsigned long pflags; 2395 int error; 2396 2397 /* 2398 * A previous I/O error may have been due to temporary failures, 2399 * eg. multipath errors. PG_error will be set again if read_folio 2400 * fails. 2401 */ 2402 folio_clear_error(folio); 2403 2404 /* Start the actual read. The read will unlock the page. */ 2405 if (unlikely(workingset)) 2406 psi_memstall_enter(&pflags); 2407 error = filler(file, folio); 2408 if (unlikely(workingset)) 2409 psi_memstall_leave(&pflags); 2410 if (error) 2411 return error; 2412 2413 error = folio_wait_locked_killable(folio); 2414 if (error) 2415 return error; 2416 if (folio_test_uptodate(folio)) 2417 return 0; 2418 if (file) 2419 shrink_readahead_size_eio(&file->f_ra); 2420 return -EIO; 2421 } 2422 2423 static bool filemap_range_uptodate(struct address_space *mapping, 2424 loff_t pos, struct iov_iter *iter, struct folio *folio) 2425 { 2426 int count; 2427 2428 if (folio_test_uptodate(folio)) 2429 return true; 2430 /* pipes can't handle partially uptodate pages */ 2431 if (iov_iter_is_pipe(iter)) 2432 return false; 2433 if (!mapping->a_ops->is_partially_uptodate) 2434 return false; 2435 if (mapping->host->i_blkbits >= folio_shift(folio)) 2436 return false; 2437 2438 count = iter->count; 2439 if (folio_pos(folio) > pos) { 2440 count -= folio_pos(folio) - pos; 2441 pos = 0; 2442 } else { 2443 pos -= folio_pos(folio); 2444 } 2445 2446 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2447 } 2448 2449 static int filemap_update_page(struct kiocb *iocb, 2450 struct address_space *mapping, struct iov_iter *iter, 2451 struct folio *folio) 2452 { 2453 int error; 2454 2455 if (iocb->ki_flags & IOCB_NOWAIT) { 2456 if (!filemap_invalidate_trylock_shared(mapping)) 2457 return -EAGAIN; 2458 } else { 2459 filemap_invalidate_lock_shared(mapping); 2460 } 2461 2462 if (!folio_trylock(folio)) { 2463 error = -EAGAIN; 2464 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2465 goto unlock_mapping; 2466 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2467 filemap_invalidate_unlock_shared(mapping); 2468 /* 2469 * This is where we usually end up waiting for a 2470 * previously submitted readahead to finish. 2471 */ 2472 folio_put_wait_locked(folio, TASK_KILLABLE); 2473 return AOP_TRUNCATED_PAGE; 2474 } 2475 error = __folio_lock_async(folio, iocb->ki_waitq); 2476 if (error) 2477 goto unlock_mapping; 2478 } 2479 2480 error = AOP_TRUNCATED_PAGE; 2481 if (!folio->mapping) 2482 goto unlock; 2483 2484 error = 0; 2485 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2486 goto unlock; 2487 2488 error = -EAGAIN; 2489 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2490 goto unlock; 2491 2492 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2493 folio); 2494 goto unlock_mapping; 2495 unlock: 2496 folio_unlock(folio); 2497 unlock_mapping: 2498 filemap_invalidate_unlock_shared(mapping); 2499 if (error == AOP_TRUNCATED_PAGE) 2500 folio_put(folio); 2501 return error; 2502 } 2503 2504 static int filemap_create_folio(struct file *file, 2505 struct address_space *mapping, pgoff_t index, 2506 struct folio_batch *fbatch) 2507 { 2508 struct folio *folio; 2509 int error; 2510 2511 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2512 if (!folio) 2513 return -ENOMEM; 2514 2515 /* 2516 * Protect against truncate / hole punch. Grabbing invalidate_lock 2517 * here assures we cannot instantiate and bring uptodate new 2518 * pagecache folios after evicting page cache during truncate 2519 * and before actually freeing blocks. Note that we could 2520 * release invalidate_lock after inserting the folio into 2521 * the page cache as the locked folio would then be enough to 2522 * synchronize with hole punching. But there are code paths 2523 * such as filemap_update_page() filling in partially uptodate 2524 * pages or ->readahead() that need to hold invalidate_lock 2525 * while mapping blocks for IO so let's hold the lock here as 2526 * well to keep locking rules simple. 2527 */ 2528 filemap_invalidate_lock_shared(mapping); 2529 error = filemap_add_folio(mapping, folio, index, 2530 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2531 if (error == -EEXIST) 2532 error = AOP_TRUNCATED_PAGE; 2533 if (error) 2534 goto error; 2535 2536 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2537 if (error) 2538 goto error; 2539 2540 filemap_invalidate_unlock_shared(mapping); 2541 folio_batch_add(fbatch, folio); 2542 return 0; 2543 error: 2544 filemap_invalidate_unlock_shared(mapping); 2545 folio_put(folio); 2546 return error; 2547 } 2548 2549 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2550 struct address_space *mapping, struct folio *folio, 2551 pgoff_t last_index) 2552 { 2553 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2554 2555 if (iocb->ki_flags & IOCB_NOIO) 2556 return -EAGAIN; 2557 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2558 return 0; 2559 } 2560 2561 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2562 struct folio_batch *fbatch) 2563 { 2564 struct file *filp = iocb->ki_filp; 2565 struct address_space *mapping = filp->f_mapping; 2566 struct file_ra_state *ra = &filp->f_ra; 2567 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2568 pgoff_t last_index; 2569 struct folio *folio; 2570 int err = 0; 2571 2572 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2573 retry: 2574 if (fatal_signal_pending(current)) 2575 return -EINTR; 2576 2577 filemap_get_read_batch(mapping, index, last_index, fbatch); 2578 if (!folio_batch_count(fbatch)) { 2579 if (iocb->ki_flags & IOCB_NOIO) 2580 return -EAGAIN; 2581 page_cache_sync_readahead(mapping, ra, filp, index, 2582 last_index - index); 2583 filemap_get_read_batch(mapping, index, last_index, fbatch); 2584 } 2585 if (!folio_batch_count(fbatch)) { 2586 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2587 return -EAGAIN; 2588 err = filemap_create_folio(filp, mapping, 2589 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2590 if (err == AOP_TRUNCATED_PAGE) 2591 goto retry; 2592 return err; 2593 } 2594 2595 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2596 if (folio_test_readahead(folio)) { 2597 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2598 if (err) 2599 goto err; 2600 } 2601 if (!folio_test_uptodate(folio)) { 2602 if ((iocb->ki_flags & IOCB_WAITQ) && 2603 folio_batch_count(fbatch) > 1) 2604 iocb->ki_flags |= IOCB_NOWAIT; 2605 err = filemap_update_page(iocb, mapping, iter, folio); 2606 if (err) 2607 goto err; 2608 } 2609 2610 return 0; 2611 err: 2612 if (err < 0) 2613 folio_put(folio); 2614 if (likely(--fbatch->nr)) 2615 return 0; 2616 if (err == AOP_TRUNCATED_PAGE) 2617 goto retry; 2618 return err; 2619 } 2620 2621 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2622 { 2623 unsigned int shift = folio_shift(folio); 2624 2625 return (pos1 >> shift == pos2 >> shift); 2626 } 2627 2628 /** 2629 * filemap_read - Read data from the page cache. 2630 * @iocb: The iocb to read. 2631 * @iter: Destination for the data. 2632 * @already_read: Number of bytes already read by the caller. 2633 * 2634 * Copies data from the page cache. If the data is not currently present, 2635 * uses the readahead and read_folio address_space operations to fetch it. 2636 * 2637 * Return: Total number of bytes copied, including those already read by 2638 * the caller. If an error happens before any bytes are copied, returns 2639 * a negative error number. 2640 */ 2641 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2642 ssize_t already_read) 2643 { 2644 struct file *filp = iocb->ki_filp; 2645 struct file_ra_state *ra = &filp->f_ra; 2646 struct address_space *mapping = filp->f_mapping; 2647 struct inode *inode = mapping->host; 2648 struct folio_batch fbatch; 2649 int i, error = 0; 2650 bool writably_mapped; 2651 loff_t isize, end_offset; 2652 2653 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2654 return 0; 2655 if (unlikely(!iov_iter_count(iter))) 2656 return 0; 2657 2658 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2659 folio_batch_init(&fbatch); 2660 2661 do { 2662 cond_resched(); 2663 2664 /* 2665 * If we've already successfully copied some data, then we 2666 * can no longer safely return -EIOCBQUEUED. Hence mark 2667 * an async read NOWAIT at that point. 2668 */ 2669 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2670 iocb->ki_flags |= IOCB_NOWAIT; 2671 2672 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2673 break; 2674 2675 error = filemap_get_pages(iocb, iter, &fbatch); 2676 if (error < 0) 2677 break; 2678 2679 /* 2680 * i_size must be checked after we know the pages are Uptodate. 2681 * 2682 * Checking i_size after the check allows us to calculate 2683 * the correct value for "nr", which means the zero-filled 2684 * part of the page is not copied back to userspace (unless 2685 * another truncate extends the file - this is desired though). 2686 */ 2687 isize = i_size_read(inode); 2688 if (unlikely(iocb->ki_pos >= isize)) 2689 goto put_folios; 2690 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2691 2692 /* 2693 * Once we start copying data, we don't want to be touching any 2694 * cachelines that might be contended: 2695 */ 2696 writably_mapped = mapping_writably_mapped(mapping); 2697 2698 /* 2699 * When a read accesses the same folio several times, only 2700 * mark it as accessed the first time. 2701 */ 2702 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2703 fbatch.folios[0])) 2704 folio_mark_accessed(fbatch.folios[0]); 2705 2706 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2707 struct folio *folio = fbatch.folios[i]; 2708 size_t fsize = folio_size(folio); 2709 size_t offset = iocb->ki_pos & (fsize - 1); 2710 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2711 fsize - offset); 2712 size_t copied; 2713 2714 if (end_offset < folio_pos(folio)) 2715 break; 2716 if (i > 0) 2717 folio_mark_accessed(folio); 2718 /* 2719 * If users can be writing to this folio using arbitrary 2720 * virtual addresses, take care of potential aliasing 2721 * before reading the folio on the kernel side. 2722 */ 2723 if (writably_mapped) 2724 flush_dcache_folio(folio); 2725 2726 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2727 2728 already_read += copied; 2729 iocb->ki_pos += copied; 2730 ra->prev_pos = iocb->ki_pos; 2731 2732 if (copied < bytes) { 2733 error = -EFAULT; 2734 break; 2735 } 2736 } 2737 put_folios: 2738 for (i = 0; i < folio_batch_count(&fbatch); i++) 2739 folio_put(fbatch.folios[i]); 2740 folio_batch_init(&fbatch); 2741 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2742 2743 file_accessed(filp); 2744 2745 return already_read ? already_read : error; 2746 } 2747 EXPORT_SYMBOL_GPL(filemap_read); 2748 2749 /** 2750 * generic_file_read_iter - generic filesystem read routine 2751 * @iocb: kernel I/O control block 2752 * @iter: destination for the data read 2753 * 2754 * This is the "read_iter()" routine for all filesystems 2755 * that can use the page cache directly. 2756 * 2757 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2758 * be returned when no data can be read without waiting for I/O requests 2759 * to complete; it doesn't prevent readahead. 2760 * 2761 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2762 * requests shall be made for the read or for readahead. When no data 2763 * can be read, -EAGAIN shall be returned. When readahead would be 2764 * triggered, a partial, possibly empty read shall be returned. 2765 * 2766 * Return: 2767 * * number of bytes copied, even for partial reads 2768 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2769 */ 2770 ssize_t 2771 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2772 { 2773 size_t count = iov_iter_count(iter); 2774 ssize_t retval = 0; 2775 2776 if (!count) 2777 return 0; /* skip atime */ 2778 2779 if (iocb->ki_flags & IOCB_DIRECT) { 2780 struct file *file = iocb->ki_filp; 2781 struct address_space *mapping = file->f_mapping; 2782 struct inode *inode = mapping->host; 2783 2784 if (iocb->ki_flags & IOCB_NOWAIT) { 2785 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2786 iocb->ki_pos + count - 1)) 2787 return -EAGAIN; 2788 } else { 2789 retval = filemap_write_and_wait_range(mapping, 2790 iocb->ki_pos, 2791 iocb->ki_pos + count - 1); 2792 if (retval < 0) 2793 return retval; 2794 } 2795 2796 file_accessed(file); 2797 2798 retval = mapping->a_ops->direct_IO(iocb, iter); 2799 if (retval >= 0) { 2800 iocb->ki_pos += retval; 2801 count -= retval; 2802 } 2803 if (retval != -EIOCBQUEUED) 2804 iov_iter_revert(iter, count - iov_iter_count(iter)); 2805 2806 /* 2807 * Btrfs can have a short DIO read if we encounter 2808 * compressed extents, so if there was an error, or if 2809 * we've already read everything we wanted to, or if 2810 * there was a short read because we hit EOF, go ahead 2811 * and return. Otherwise fallthrough to buffered io for 2812 * the rest of the read. Buffered reads will not work for 2813 * DAX files, so don't bother trying. 2814 */ 2815 if (retval < 0 || !count || IS_DAX(inode)) 2816 return retval; 2817 if (iocb->ki_pos >= i_size_read(inode)) 2818 return retval; 2819 } 2820 2821 return filemap_read(iocb, iter, retval); 2822 } 2823 EXPORT_SYMBOL(generic_file_read_iter); 2824 2825 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2826 struct address_space *mapping, struct folio *folio, 2827 loff_t start, loff_t end, bool seek_data) 2828 { 2829 const struct address_space_operations *ops = mapping->a_ops; 2830 size_t offset, bsz = i_blocksize(mapping->host); 2831 2832 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2833 return seek_data ? start : end; 2834 if (!ops->is_partially_uptodate) 2835 return seek_data ? end : start; 2836 2837 xas_pause(xas); 2838 rcu_read_unlock(); 2839 folio_lock(folio); 2840 if (unlikely(folio->mapping != mapping)) 2841 goto unlock; 2842 2843 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2844 2845 do { 2846 if (ops->is_partially_uptodate(folio, offset, bsz) == 2847 seek_data) 2848 break; 2849 start = (start + bsz) & ~(bsz - 1); 2850 offset += bsz; 2851 } while (offset < folio_size(folio)); 2852 unlock: 2853 folio_unlock(folio); 2854 rcu_read_lock(); 2855 return start; 2856 } 2857 2858 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2859 { 2860 if (xa_is_value(folio)) 2861 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2862 return folio_size(folio); 2863 } 2864 2865 /** 2866 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2867 * @mapping: Address space to search. 2868 * @start: First byte to consider. 2869 * @end: Limit of search (exclusive). 2870 * @whence: Either SEEK_HOLE or SEEK_DATA. 2871 * 2872 * If the page cache knows which blocks contain holes and which blocks 2873 * contain data, your filesystem can use this function to implement 2874 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2875 * entirely memory-based such as tmpfs, and filesystems which support 2876 * unwritten extents. 2877 * 2878 * Return: The requested offset on success, or -ENXIO if @whence specifies 2879 * SEEK_DATA and there is no data after @start. There is an implicit hole 2880 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2881 * and @end contain data. 2882 */ 2883 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2884 loff_t end, int whence) 2885 { 2886 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2887 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2888 bool seek_data = (whence == SEEK_DATA); 2889 struct folio *folio; 2890 2891 if (end <= start) 2892 return -ENXIO; 2893 2894 rcu_read_lock(); 2895 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2896 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2897 size_t seek_size; 2898 2899 if (start < pos) { 2900 if (!seek_data) 2901 goto unlock; 2902 start = pos; 2903 } 2904 2905 seek_size = seek_folio_size(&xas, folio); 2906 pos = round_up((u64)pos + 1, seek_size); 2907 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2908 seek_data); 2909 if (start < pos) 2910 goto unlock; 2911 if (start >= end) 2912 break; 2913 if (seek_size > PAGE_SIZE) 2914 xas_set(&xas, pos >> PAGE_SHIFT); 2915 if (!xa_is_value(folio)) 2916 folio_put(folio); 2917 } 2918 if (seek_data) 2919 start = -ENXIO; 2920 unlock: 2921 rcu_read_unlock(); 2922 if (folio && !xa_is_value(folio)) 2923 folio_put(folio); 2924 if (start > end) 2925 return end; 2926 return start; 2927 } 2928 2929 #ifdef CONFIG_MMU 2930 #define MMAP_LOTSAMISS (100) 2931 /* 2932 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2933 * @vmf - the vm_fault for this fault. 2934 * @folio - the folio to lock. 2935 * @fpin - the pointer to the file we may pin (or is already pinned). 2936 * 2937 * This works similar to lock_folio_or_retry in that it can drop the 2938 * mmap_lock. It differs in that it actually returns the folio locked 2939 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2940 * to drop the mmap_lock then fpin will point to the pinned file and 2941 * needs to be fput()'ed at a later point. 2942 */ 2943 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2944 struct file **fpin) 2945 { 2946 if (folio_trylock(folio)) 2947 return 1; 2948 2949 /* 2950 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2951 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2952 * is supposed to work. We have way too many special cases.. 2953 */ 2954 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2955 return 0; 2956 2957 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2958 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2959 if (__folio_lock_killable(folio)) { 2960 /* 2961 * We didn't have the right flags to drop the mmap_lock, 2962 * but all fault_handlers only check for fatal signals 2963 * if we return VM_FAULT_RETRY, so we need to drop the 2964 * mmap_lock here and return 0 if we don't have a fpin. 2965 */ 2966 if (*fpin == NULL) 2967 mmap_read_unlock(vmf->vma->vm_mm); 2968 return 0; 2969 } 2970 } else 2971 __folio_lock(folio); 2972 2973 return 1; 2974 } 2975 2976 /* 2977 * Synchronous readahead happens when we don't even find a page in the page 2978 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2979 * to drop the mmap sem we return the file that was pinned in order for us to do 2980 * that. If we didn't pin a file then we return NULL. The file that is 2981 * returned needs to be fput()'ed when we're done with it. 2982 */ 2983 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2984 { 2985 struct file *file = vmf->vma->vm_file; 2986 struct file_ra_state *ra = &file->f_ra; 2987 struct address_space *mapping = file->f_mapping; 2988 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2989 struct file *fpin = NULL; 2990 unsigned long vm_flags = vmf->vma->vm_flags; 2991 unsigned int mmap_miss; 2992 2993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2994 /* Use the readahead code, even if readahead is disabled */ 2995 if (vm_flags & VM_HUGEPAGE) { 2996 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2997 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 2998 ra->size = HPAGE_PMD_NR; 2999 /* 3000 * Fetch two PMD folios, so we get the chance to actually 3001 * readahead, unless we've been told not to. 3002 */ 3003 if (!(vm_flags & VM_RAND_READ)) 3004 ra->size *= 2; 3005 ra->async_size = HPAGE_PMD_NR; 3006 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3007 return fpin; 3008 } 3009 #endif 3010 3011 /* If we don't want any read-ahead, don't bother */ 3012 if (vm_flags & VM_RAND_READ) 3013 return fpin; 3014 if (!ra->ra_pages) 3015 return fpin; 3016 3017 if (vm_flags & VM_SEQ_READ) { 3018 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3019 page_cache_sync_ra(&ractl, ra->ra_pages); 3020 return fpin; 3021 } 3022 3023 /* Avoid banging the cache line if not needed */ 3024 mmap_miss = READ_ONCE(ra->mmap_miss); 3025 if (mmap_miss < MMAP_LOTSAMISS * 10) 3026 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3027 3028 /* 3029 * Do we miss much more than hit in this file? If so, 3030 * stop bothering with read-ahead. It will only hurt. 3031 */ 3032 if (mmap_miss > MMAP_LOTSAMISS) 3033 return fpin; 3034 3035 /* 3036 * mmap read-around 3037 */ 3038 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3039 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3040 ra->size = ra->ra_pages; 3041 ra->async_size = ra->ra_pages / 4; 3042 ractl._index = ra->start; 3043 page_cache_ra_order(&ractl, ra, 0); 3044 return fpin; 3045 } 3046 3047 /* 3048 * Asynchronous readahead happens when we find the page and PG_readahead, 3049 * so we want to possibly extend the readahead further. We return the file that 3050 * was pinned if we have to drop the mmap_lock in order to do IO. 3051 */ 3052 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3053 struct folio *folio) 3054 { 3055 struct file *file = vmf->vma->vm_file; 3056 struct file_ra_state *ra = &file->f_ra; 3057 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3058 struct file *fpin = NULL; 3059 unsigned int mmap_miss; 3060 3061 /* If we don't want any read-ahead, don't bother */ 3062 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3063 return fpin; 3064 3065 mmap_miss = READ_ONCE(ra->mmap_miss); 3066 if (mmap_miss) 3067 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3068 3069 if (folio_test_readahead(folio)) { 3070 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3071 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3072 } 3073 return fpin; 3074 } 3075 3076 /** 3077 * filemap_fault - read in file data for page fault handling 3078 * @vmf: struct vm_fault containing details of the fault 3079 * 3080 * filemap_fault() is invoked via the vma operations vector for a 3081 * mapped memory region to read in file data during a page fault. 3082 * 3083 * The goto's are kind of ugly, but this streamlines the normal case of having 3084 * it in the page cache, and handles the special cases reasonably without 3085 * having a lot of duplicated code. 3086 * 3087 * vma->vm_mm->mmap_lock must be held on entry. 3088 * 3089 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3090 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3091 * 3092 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3093 * has not been released. 3094 * 3095 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3096 * 3097 * Return: bitwise-OR of %VM_FAULT_ codes. 3098 */ 3099 vm_fault_t filemap_fault(struct vm_fault *vmf) 3100 { 3101 int error; 3102 struct file *file = vmf->vma->vm_file; 3103 struct file *fpin = NULL; 3104 struct address_space *mapping = file->f_mapping; 3105 struct inode *inode = mapping->host; 3106 pgoff_t max_idx, index = vmf->pgoff; 3107 struct folio *folio; 3108 vm_fault_t ret = 0; 3109 bool mapping_locked = false; 3110 3111 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3112 if (unlikely(index >= max_idx)) 3113 return VM_FAULT_SIGBUS; 3114 3115 /* 3116 * Do we have something in the page cache already? 3117 */ 3118 folio = filemap_get_folio(mapping, index); 3119 if (likely(folio)) { 3120 /* 3121 * We found the page, so try async readahead before waiting for 3122 * the lock. 3123 */ 3124 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3125 fpin = do_async_mmap_readahead(vmf, folio); 3126 if (unlikely(!folio_test_uptodate(folio))) { 3127 filemap_invalidate_lock_shared(mapping); 3128 mapping_locked = true; 3129 } 3130 } else { 3131 /* No page in the page cache at all */ 3132 count_vm_event(PGMAJFAULT); 3133 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3134 ret = VM_FAULT_MAJOR; 3135 fpin = do_sync_mmap_readahead(vmf); 3136 retry_find: 3137 /* 3138 * See comment in filemap_create_folio() why we need 3139 * invalidate_lock 3140 */ 3141 if (!mapping_locked) { 3142 filemap_invalidate_lock_shared(mapping); 3143 mapping_locked = true; 3144 } 3145 folio = __filemap_get_folio(mapping, index, 3146 FGP_CREAT|FGP_FOR_MMAP, 3147 vmf->gfp_mask); 3148 if (!folio) { 3149 if (fpin) 3150 goto out_retry; 3151 filemap_invalidate_unlock_shared(mapping); 3152 return VM_FAULT_OOM; 3153 } 3154 } 3155 3156 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3157 goto out_retry; 3158 3159 /* Did it get truncated? */ 3160 if (unlikely(folio->mapping != mapping)) { 3161 folio_unlock(folio); 3162 folio_put(folio); 3163 goto retry_find; 3164 } 3165 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3166 3167 /* 3168 * We have a locked page in the page cache, now we need to check 3169 * that it's up-to-date. If not, it is going to be due to an error. 3170 */ 3171 if (unlikely(!folio_test_uptodate(folio))) { 3172 /* 3173 * The page was in cache and uptodate and now it is not. 3174 * Strange but possible since we didn't hold the page lock all 3175 * the time. Let's drop everything get the invalidate lock and 3176 * try again. 3177 */ 3178 if (!mapping_locked) { 3179 folio_unlock(folio); 3180 folio_put(folio); 3181 goto retry_find; 3182 } 3183 goto page_not_uptodate; 3184 } 3185 3186 /* 3187 * We've made it this far and we had to drop our mmap_lock, now is the 3188 * time to return to the upper layer and have it re-find the vma and 3189 * redo the fault. 3190 */ 3191 if (fpin) { 3192 folio_unlock(folio); 3193 goto out_retry; 3194 } 3195 if (mapping_locked) 3196 filemap_invalidate_unlock_shared(mapping); 3197 3198 /* 3199 * Found the page and have a reference on it. 3200 * We must recheck i_size under page lock. 3201 */ 3202 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3203 if (unlikely(index >= max_idx)) { 3204 folio_unlock(folio); 3205 folio_put(folio); 3206 return VM_FAULT_SIGBUS; 3207 } 3208 3209 vmf->page = folio_file_page(folio, index); 3210 return ret | VM_FAULT_LOCKED; 3211 3212 page_not_uptodate: 3213 /* 3214 * Umm, take care of errors if the page isn't up-to-date. 3215 * Try to re-read it _once_. We do this synchronously, 3216 * because there really aren't any performance issues here 3217 * and we need to check for errors. 3218 */ 3219 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3220 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3221 if (fpin) 3222 goto out_retry; 3223 folio_put(folio); 3224 3225 if (!error || error == AOP_TRUNCATED_PAGE) 3226 goto retry_find; 3227 filemap_invalidate_unlock_shared(mapping); 3228 3229 return VM_FAULT_SIGBUS; 3230 3231 out_retry: 3232 /* 3233 * We dropped the mmap_lock, we need to return to the fault handler to 3234 * re-find the vma and come back and find our hopefully still populated 3235 * page. 3236 */ 3237 if (folio) 3238 folio_put(folio); 3239 if (mapping_locked) 3240 filemap_invalidate_unlock_shared(mapping); 3241 if (fpin) 3242 fput(fpin); 3243 return ret | VM_FAULT_RETRY; 3244 } 3245 EXPORT_SYMBOL(filemap_fault); 3246 3247 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3248 { 3249 struct mm_struct *mm = vmf->vma->vm_mm; 3250 3251 /* Huge page is mapped? No need to proceed. */ 3252 if (pmd_trans_huge(*vmf->pmd)) { 3253 unlock_page(page); 3254 put_page(page); 3255 return true; 3256 } 3257 3258 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3259 vm_fault_t ret = do_set_pmd(vmf, page); 3260 if (!ret) { 3261 /* The page is mapped successfully, reference consumed. */ 3262 unlock_page(page); 3263 return true; 3264 } 3265 } 3266 3267 if (pmd_none(*vmf->pmd)) 3268 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3269 3270 /* See comment in handle_pte_fault() */ 3271 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3272 unlock_page(page); 3273 put_page(page); 3274 return true; 3275 } 3276 3277 return false; 3278 } 3279 3280 static struct folio *next_uptodate_page(struct folio *folio, 3281 struct address_space *mapping, 3282 struct xa_state *xas, pgoff_t end_pgoff) 3283 { 3284 unsigned long max_idx; 3285 3286 do { 3287 if (!folio) 3288 return NULL; 3289 if (xas_retry(xas, folio)) 3290 continue; 3291 if (xa_is_value(folio)) 3292 continue; 3293 if (folio_test_locked(folio)) 3294 continue; 3295 if (!folio_try_get_rcu(folio)) 3296 continue; 3297 /* Has the page moved or been split? */ 3298 if (unlikely(folio != xas_reload(xas))) 3299 goto skip; 3300 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3301 goto skip; 3302 if (!folio_trylock(folio)) 3303 goto skip; 3304 if (folio->mapping != mapping) 3305 goto unlock; 3306 if (!folio_test_uptodate(folio)) 3307 goto unlock; 3308 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3309 if (xas->xa_index >= max_idx) 3310 goto unlock; 3311 return folio; 3312 unlock: 3313 folio_unlock(folio); 3314 skip: 3315 folio_put(folio); 3316 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3317 3318 return NULL; 3319 } 3320 3321 static inline struct folio *first_map_page(struct address_space *mapping, 3322 struct xa_state *xas, 3323 pgoff_t end_pgoff) 3324 { 3325 return next_uptodate_page(xas_find(xas, end_pgoff), 3326 mapping, xas, end_pgoff); 3327 } 3328 3329 static inline struct folio *next_map_page(struct address_space *mapping, 3330 struct xa_state *xas, 3331 pgoff_t end_pgoff) 3332 { 3333 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3334 mapping, xas, end_pgoff); 3335 } 3336 3337 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3338 pgoff_t start_pgoff, pgoff_t end_pgoff) 3339 { 3340 struct vm_area_struct *vma = vmf->vma; 3341 struct file *file = vma->vm_file; 3342 struct address_space *mapping = file->f_mapping; 3343 pgoff_t last_pgoff = start_pgoff; 3344 unsigned long addr; 3345 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3346 struct folio *folio; 3347 struct page *page; 3348 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3349 vm_fault_t ret = 0; 3350 3351 rcu_read_lock(); 3352 folio = first_map_page(mapping, &xas, end_pgoff); 3353 if (!folio) 3354 goto out; 3355 3356 if (filemap_map_pmd(vmf, &folio->page)) { 3357 ret = VM_FAULT_NOPAGE; 3358 goto out; 3359 } 3360 3361 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3362 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3363 do { 3364 again: 3365 page = folio_file_page(folio, xas.xa_index); 3366 if (PageHWPoison(page)) 3367 goto unlock; 3368 3369 if (mmap_miss > 0) 3370 mmap_miss--; 3371 3372 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3373 vmf->pte += xas.xa_index - last_pgoff; 3374 last_pgoff = xas.xa_index; 3375 3376 /* 3377 * NOTE: If there're PTE markers, we'll leave them to be 3378 * handled in the specific fault path, and it'll prohibit the 3379 * fault-around logic. 3380 */ 3381 if (!pte_none(*vmf->pte)) 3382 goto unlock; 3383 3384 /* We're about to handle the fault */ 3385 if (vmf->address == addr) 3386 ret = VM_FAULT_NOPAGE; 3387 3388 do_set_pte(vmf, page, addr); 3389 /* no need to invalidate: a not-present page won't be cached */ 3390 update_mmu_cache(vma, addr, vmf->pte); 3391 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3392 xas.xa_index++; 3393 folio_ref_inc(folio); 3394 goto again; 3395 } 3396 folio_unlock(folio); 3397 continue; 3398 unlock: 3399 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3400 xas.xa_index++; 3401 goto again; 3402 } 3403 folio_unlock(folio); 3404 folio_put(folio); 3405 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3406 pte_unmap_unlock(vmf->pte, vmf->ptl); 3407 out: 3408 rcu_read_unlock(); 3409 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3410 return ret; 3411 } 3412 EXPORT_SYMBOL(filemap_map_pages); 3413 3414 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3415 { 3416 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3417 struct folio *folio = page_folio(vmf->page); 3418 vm_fault_t ret = VM_FAULT_LOCKED; 3419 3420 sb_start_pagefault(mapping->host->i_sb); 3421 file_update_time(vmf->vma->vm_file); 3422 folio_lock(folio); 3423 if (folio->mapping != mapping) { 3424 folio_unlock(folio); 3425 ret = VM_FAULT_NOPAGE; 3426 goto out; 3427 } 3428 /* 3429 * We mark the folio dirty already here so that when freeze is in 3430 * progress, we are guaranteed that writeback during freezing will 3431 * see the dirty folio and writeprotect it again. 3432 */ 3433 folio_mark_dirty(folio); 3434 folio_wait_stable(folio); 3435 out: 3436 sb_end_pagefault(mapping->host->i_sb); 3437 return ret; 3438 } 3439 3440 const struct vm_operations_struct generic_file_vm_ops = { 3441 .fault = filemap_fault, 3442 .map_pages = filemap_map_pages, 3443 .page_mkwrite = filemap_page_mkwrite, 3444 }; 3445 3446 /* This is used for a general mmap of a disk file */ 3447 3448 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3449 { 3450 struct address_space *mapping = file->f_mapping; 3451 3452 if (!mapping->a_ops->read_folio) 3453 return -ENOEXEC; 3454 file_accessed(file); 3455 vma->vm_ops = &generic_file_vm_ops; 3456 return 0; 3457 } 3458 3459 /* 3460 * This is for filesystems which do not implement ->writepage. 3461 */ 3462 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3463 { 3464 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3465 return -EINVAL; 3466 return generic_file_mmap(file, vma); 3467 } 3468 #else 3469 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3470 { 3471 return VM_FAULT_SIGBUS; 3472 } 3473 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3474 { 3475 return -ENOSYS; 3476 } 3477 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3478 { 3479 return -ENOSYS; 3480 } 3481 #endif /* CONFIG_MMU */ 3482 3483 EXPORT_SYMBOL(filemap_page_mkwrite); 3484 EXPORT_SYMBOL(generic_file_mmap); 3485 EXPORT_SYMBOL(generic_file_readonly_mmap); 3486 3487 static struct folio *do_read_cache_folio(struct address_space *mapping, 3488 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3489 { 3490 struct folio *folio; 3491 int err; 3492 3493 if (!filler) 3494 filler = mapping->a_ops->read_folio; 3495 repeat: 3496 folio = filemap_get_folio(mapping, index); 3497 if (!folio) { 3498 folio = filemap_alloc_folio(gfp, 0); 3499 if (!folio) 3500 return ERR_PTR(-ENOMEM); 3501 err = filemap_add_folio(mapping, folio, index, gfp); 3502 if (unlikely(err)) { 3503 folio_put(folio); 3504 if (err == -EEXIST) 3505 goto repeat; 3506 /* Presumably ENOMEM for xarray node */ 3507 return ERR_PTR(err); 3508 } 3509 3510 goto filler; 3511 } 3512 if (folio_test_uptodate(folio)) 3513 goto out; 3514 3515 if (!folio_trylock(folio)) { 3516 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3517 goto repeat; 3518 } 3519 3520 /* Folio was truncated from mapping */ 3521 if (!folio->mapping) { 3522 folio_unlock(folio); 3523 folio_put(folio); 3524 goto repeat; 3525 } 3526 3527 /* Someone else locked and filled the page in a very small window */ 3528 if (folio_test_uptodate(folio)) { 3529 folio_unlock(folio); 3530 goto out; 3531 } 3532 3533 filler: 3534 err = filemap_read_folio(file, filler, folio); 3535 if (err) { 3536 folio_put(folio); 3537 if (err == AOP_TRUNCATED_PAGE) 3538 goto repeat; 3539 return ERR_PTR(err); 3540 } 3541 3542 out: 3543 folio_mark_accessed(folio); 3544 return folio; 3545 } 3546 3547 /** 3548 * read_cache_folio - Read into page cache, fill it if needed. 3549 * @mapping: The address_space to read from. 3550 * @index: The index to read. 3551 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3552 * @file: Passed to filler function, may be NULL if not required. 3553 * 3554 * Read one page into the page cache. If it succeeds, the folio returned 3555 * will contain @index, but it may not be the first page of the folio. 3556 * 3557 * If the filler function returns an error, it will be returned to the 3558 * caller. 3559 * 3560 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3561 * Return: An uptodate folio on success, ERR_PTR() on failure. 3562 */ 3563 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3564 filler_t filler, struct file *file) 3565 { 3566 return do_read_cache_folio(mapping, index, filler, file, 3567 mapping_gfp_mask(mapping)); 3568 } 3569 EXPORT_SYMBOL(read_cache_folio); 3570 3571 static struct page *do_read_cache_page(struct address_space *mapping, 3572 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3573 { 3574 struct folio *folio; 3575 3576 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3577 if (IS_ERR(folio)) 3578 return &folio->page; 3579 return folio_file_page(folio, index); 3580 } 3581 3582 struct page *read_cache_page(struct address_space *mapping, 3583 pgoff_t index, filler_t *filler, struct file *file) 3584 { 3585 return do_read_cache_page(mapping, index, filler, file, 3586 mapping_gfp_mask(mapping)); 3587 } 3588 EXPORT_SYMBOL(read_cache_page); 3589 3590 /** 3591 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3592 * @mapping: the page's address_space 3593 * @index: the page index 3594 * @gfp: the page allocator flags to use if allocating 3595 * 3596 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3597 * any new page allocations done using the specified allocation flags. 3598 * 3599 * If the page does not get brought uptodate, return -EIO. 3600 * 3601 * The function expects mapping->invalidate_lock to be already held. 3602 * 3603 * Return: up to date page on success, ERR_PTR() on failure. 3604 */ 3605 struct page *read_cache_page_gfp(struct address_space *mapping, 3606 pgoff_t index, 3607 gfp_t gfp) 3608 { 3609 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3610 } 3611 EXPORT_SYMBOL(read_cache_page_gfp); 3612 3613 /* 3614 * Warn about a page cache invalidation failure during a direct I/O write. 3615 */ 3616 void dio_warn_stale_pagecache(struct file *filp) 3617 { 3618 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3619 char pathname[128]; 3620 char *path; 3621 3622 errseq_set(&filp->f_mapping->wb_err, -EIO); 3623 if (__ratelimit(&_rs)) { 3624 path = file_path(filp, pathname, sizeof(pathname)); 3625 if (IS_ERR(path)) 3626 path = "(unknown)"; 3627 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3628 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3629 current->comm); 3630 } 3631 } 3632 3633 ssize_t 3634 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3635 { 3636 struct file *file = iocb->ki_filp; 3637 struct address_space *mapping = file->f_mapping; 3638 struct inode *inode = mapping->host; 3639 loff_t pos = iocb->ki_pos; 3640 ssize_t written; 3641 size_t write_len; 3642 pgoff_t end; 3643 3644 write_len = iov_iter_count(from); 3645 end = (pos + write_len - 1) >> PAGE_SHIFT; 3646 3647 if (iocb->ki_flags & IOCB_NOWAIT) { 3648 /* If there are pages to writeback, return */ 3649 if (filemap_range_has_page(file->f_mapping, pos, 3650 pos + write_len - 1)) 3651 return -EAGAIN; 3652 } else { 3653 written = filemap_write_and_wait_range(mapping, pos, 3654 pos + write_len - 1); 3655 if (written) 3656 goto out; 3657 } 3658 3659 /* 3660 * After a write we want buffered reads to be sure to go to disk to get 3661 * the new data. We invalidate clean cached page from the region we're 3662 * about to write. We do this *before* the write so that we can return 3663 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3664 */ 3665 written = invalidate_inode_pages2_range(mapping, 3666 pos >> PAGE_SHIFT, end); 3667 /* 3668 * If a page can not be invalidated, return 0 to fall back 3669 * to buffered write. 3670 */ 3671 if (written) { 3672 if (written == -EBUSY) 3673 return 0; 3674 goto out; 3675 } 3676 3677 written = mapping->a_ops->direct_IO(iocb, from); 3678 3679 /* 3680 * Finally, try again to invalidate clean pages which might have been 3681 * cached by non-direct readahead, or faulted in by get_user_pages() 3682 * if the source of the write was an mmap'ed region of the file 3683 * we're writing. Either one is a pretty crazy thing to do, 3684 * so we don't support it 100%. If this invalidation 3685 * fails, tough, the write still worked... 3686 * 3687 * Most of the time we do not need this since dio_complete() will do 3688 * the invalidation for us. However there are some file systems that 3689 * do not end up with dio_complete() being called, so let's not break 3690 * them by removing it completely. 3691 * 3692 * Noticeable example is a blkdev_direct_IO(). 3693 * 3694 * Skip invalidation for async writes or if mapping has no pages. 3695 */ 3696 if (written > 0 && mapping->nrpages && 3697 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3698 dio_warn_stale_pagecache(file); 3699 3700 if (written > 0) { 3701 pos += written; 3702 write_len -= written; 3703 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3704 i_size_write(inode, pos); 3705 mark_inode_dirty(inode); 3706 } 3707 iocb->ki_pos = pos; 3708 } 3709 if (written != -EIOCBQUEUED) 3710 iov_iter_revert(from, write_len - iov_iter_count(from)); 3711 out: 3712 return written; 3713 } 3714 EXPORT_SYMBOL(generic_file_direct_write); 3715 3716 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3717 { 3718 struct file *file = iocb->ki_filp; 3719 loff_t pos = iocb->ki_pos; 3720 struct address_space *mapping = file->f_mapping; 3721 const struct address_space_operations *a_ops = mapping->a_ops; 3722 long status = 0; 3723 ssize_t written = 0; 3724 3725 do { 3726 struct page *page; 3727 unsigned long offset; /* Offset into pagecache page */ 3728 unsigned long bytes; /* Bytes to write to page */ 3729 size_t copied; /* Bytes copied from user */ 3730 void *fsdata = NULL; 3731 3732 offset = (pos & (PAGE_SIZE - 1)); 3733 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3734 iov_iter_count(i)); 3735 3736 again: 3737 /* 3738 * Bring in the user page that we will copy from _first_. 3739 * Otherwise there's a nasty deadlock on copying from the 3740 * same page as we're writing to, without it being marked 3741 * up-to-date. 3742 */ 3743 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3744 status = -EFAULT; 3745 break; 3746 } 3747 3748 if (fatal_signal_pending(current)) { 3749 status = -EINTR; 3750 break; 3751 } 3752 3753 status = a_ops->write_begin(file, mapping, pos, bytes, 3754 &page, &fsdata); 3755 if (unlikely(status < 0)) 3756 break; 3757 3758 if (mapping_writably_mapped(mapping)) 3759 flush_dcache_page(page); 3760 3761 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3762 flush_dcache_page(page); 3763 3764 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3765 page, fsdata); 3766 if (unlikely(status != copied)) { 3767 iov_iter_revert(i, copied - max(status, 0L)); 3768 if (unlikely(status < 0)) 3769 break; 3770 } 3771 cond_resched(); 3772 3773 if (unlikely(status == 0)) { 3774 /* 3775 * A short copy made ->write_end() reject the 3776 * thing entirely. Might be memory poisoning 3777 * halfway through, might be a race with munmap, 3778 * might be severe memory pressure. 3779 */ 3780 if (copied) 3781 bytes = copied; 3782 goto again; 3783 } 3784 pos += status; 3785 written += status; 3786 3787 balance_dirty_pages_ratelimited(mapping); 3788 } while (iov_iter_count(i)); 3789 3790 return written ? written : status; 3791 } 3792 EXPORT_SYMBOL(generic_perform_write); 3793 3794 /** 3795 * __generic_file_write_iter - write data to a file 3796 * @iocb: IO state structure (file, offset, etc.) 3797 * @from: iov_iter with data to write 3798 * 3799 * This function does all the work needed for actually writing data to a 3800 * file. It does all basic checks, removes SUID from the file, updates 3801 * modification times and calls proper subroutines depending on whether we 3802 * do direct IO or a standard buffered write. 3803 * 3804 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3805 * object which does not need locking at all. 3806 * 3807 * This function does *not* take care of syncing data in case of O_SYNC write. 3808 * A caller has to handle it. This is mainly due to the fact that we want to 3809 * avoid syncing under i_rwsem. 3810 * 3811 * Return: 3812 * * number of bytes written, even for truncated writes 3813 * * negative error code if no data has been written at all 3814 */ 3815 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3816 { 3817 struct file *file = iocb->ki_filp; 3818 struct address_space *mapping = file->f_mapping; 3819 struct inode *inode = mapping->host; 3820 ssize_t written = 0; 3821 ssize_t err; 3822 ssize_t status; 3823 3824 /* We can write back this queue in page reclaim */ 3825 current->backing_dev_info = inode_to_bdi(inode); 3826 err = file_remove_privs(file); 3827 if (err) 3828 goto out; 3829 3830 err = file_update_time(file); 3831 if (err) 3832 goto out; 3833 3834 if (iocb->ki_flags & IOCB_DIRECT) { 3835 loff_t pos, endbyte; 3836 3837 written = generic_file_direct_write(iocb, from); 3838 /* 3839 * If the write stopped short of completing, fall back to 3840 * buffered writes. Some filesystems do this for writes to 3841 * holes, for example. For DAX files, a buffered write will 3842 * not succeed (even if it did, DAX does not handle dirty 3843 * page-cache pages correctly). 3844 */ 3845 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3846 goto out; 3847 3848 pos = iocb->ki_pos; 3849 status = generic_perform_write(iocb, from); 3850 /* 3851 * If generic_perform_write() returned a synchronous error 3852 * then we want to return the number of bytes which were 3853 * direct-written, or the error code if that was zero. Note 3854 * that this differs from normal direct-io semantics, which 3855 * will return -EFOO even if some bytes were written. 3856 */ 3857 if (unlikely(status < 0)) { 3858 err = status; 3859 goto out; 3860 } 3861 /* 3862 * We need to ensure that the page cache pages are written to 3863 * disk and invalidated to preserve the expected O_DIRECT 3864 * semantics. 3865 */ 3866 endbyte = pos + status - 1; 3867 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3868 if (err == 0) { 3869 iocb->ki_pos = endbyte + 1; 3870 written += status; 3871 invalidate_mapping_pages(mapping, 3872 pos >> PAGE_SHIFT, 3873 endbyte >> PAGE_SHIFT); 3874 } else { 3875 /* 3876 * We don't know how much we wrote, so just return 3877 * the number of bytes which were direct-written 3878 */ 3879 } 3880 } else { 3881 written = generic_perform_write(iocb, from); 3882 if (likely(written > 0)) 3883 iocb->ki_pos += written; 3884 } 3885 out: 3886 current->backing_dev_info = NULL; 3887 return written ? written : err; 3888 } 3889 EXPORT_SYMBOL(__generic_file_write_iter); 3890 3891 /** 3892 * generic_file_write_iter - write data to a file 3893 * @iocb: IO state structure 3894 * @from: iov_iter with data to write 3895 * 3896 * This is a wrapper around __generic_file_write_iter() to be used by most 3897 * filesystems. It takes care of syncing the file in case of O_SYNC file 3898 * and acquires i_rwsem as needed. 3899 * Return: 3900 * * negative error code if no data has been written at all of 3901 * vfs_fsync_range() failed for a synchronous write 3902 * * number of bytes written, even for truncated writes 3903 */ 3904 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3905 { 3906 struct file *file = iocb->ki_filp; 3907 struct inode *inode = file->f_mapping->host; 3908 ssize_t ret; 3909 3910 inode_lock(inode); 3911 ret = generic_write_checks(iocb, from); 3912 if (ret > 0) 3913 ret = __generic_file_write_iter(iocb, from); 3914 inode_unlock(inode); 3915 3916 if (ret > 0) 3917 ret = generic_write_sync(iocb, ret); 3918 return ret; 3919 } 3920 EXPORT_SYMBOL(generic_file_write_iter); 3921 3922 /** 3923 * filemap_release_folio() - Release fs-specific metadata on a folio. 3924 * @folio: The folio which the kernel is trying to free. 3925 * @gfp: Memory allocation flags (and I/O mode). 3926 * 3927 * The address_space is trying to release any data attached to a folio 3928 * (presumably at folio->private). 3929 * 3930 * This will also be called if the private_2 flag is set on a page, 3931 * indicating that the folio has other metadata associated with it. 3932 * 3933 * The @gfp argument specifies whether I/O may be performed to release 3934 * this page (__GFP_IO), and whether the call may block 3935 * (__GFP_RECLAIM & __GFP_FS). 3936 * 3937 * Return: %true if the release was successful, otherwise %false. 3938 */ 3939 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3940 { 3941 struct address_space * const mapping = folio->mapping; 3942 3943 BUG_ON(!folio_test_locked(folio)); 3944 if (folio_test_writeback(folio)) 3945 return false; 3946 3947 if (mapping && mapping->a_ops->release_folio) 3948 return mapping->a_ops->release_folio(folio, gfp); 3949 return try_to_free_buffers(folio); 3950 } 3951 EXPORT_SYMBOL(filemap_release_folio); 3952