1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 if (end_byte < start_byte) 510 return; 511 512 pagevec_init(&pvec); 513 while (index <= end) { 514 unsigned i; 515 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 517 end, PAGECACHE_TAG_WRITEBACK); 518 if (!nr_pages) 519 break; 520 521 for (i = 0; i < nr_pages; i++) { 522 struct page *page = pvec.pages[i]; 523 524 wait_on_page_writeback(page); 525 ClearPageError(page); 526 } 527 pagevec_release(&pvec); 528 cond_resched(); 529 } 530 } 531 532 /** 533 * filemap_fdatawait_range - wait for writeback to complete 534 * @mapping: address space structure to wait for 535 * @start_byte: offset in bytes where the range starts 536 * @end_byte: offset in bytes where the range ends (inclusive) 537 * 538 * Walk the list of under-writeback pages of the given address space 539 * in the given range and wait for all of them. Check error status of 540 * the address space and return it. 541 * 542 * Since the error status of the address space is cleared by this function, 543 * callers are responsible for checking the return value and handling and/or 544 * reporting the error. 545 * 546 * Return: error status of the address space. 547 */ 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 549 loff_t end_byte) 550 { 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 552 return filemap_check_errors(mapping); 553 } 554 EXPORT_SYMBOL(filemap_fdatawait_range); 555 556 /** 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 558 * @mapping: address space structure to wait for 559 * @start_byte: offset in bytes where the range starts 560 * @end_byte: offset in bytes where the range ends (inclusive) 561 * 562 * Walk the list of under-writeback pages of the given address space in the 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 564 * this function does not clear error status of the address space. 565 * 566 * Use this function if callers don't handle errors themselves. Expected 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 568 * fsfreeze(8) 569 */ 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 571 loff_t start_byte, loff_t end_byte) 572 { 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 574 return filemap_check_and_keep_errors(mapping); 575 } 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 577 578 /** 579 * file_fdatawait_range - wait for writeback to complete 580 * @file: file pointing to address space structure to wait for 581 * @start_byte: offset in bytes where the range starts 582 * @end_byte: offset in bytes where the range ends (inclusive) 583 * 584 * Walk the list of under-writeback pages of the address space that file 585 * refers to, in the given range and wait for all of them. Check error 586 * status of the address space vs. the file->f_wb_err cursor and return it. 587 * 588 * Since the error status of the file is advanced by this function, 589 * callers are responsible for checking the return value and handling and/or 590 * reporting the error. 591 * 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 593 */ 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 595 { 596 struct address_space *mapping = file->f_mapping; 597 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 599 return file_check_and_advance_wb_err(file); 600 } 601 EXPORT_SYMBOL(file_fdatawait_range); 602 603 /** 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 605 * @mapping: address space structure to wait for 606 * 607 * Walk the list of under-writeback pages of the given address space 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 609 * does not clear error status of the address space. 610 * 611 * Use this function if callers don't handle errors themselves. Expected 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 613 * fsfreeze(8) 614 * 615 * Return: error status of the address space. 616 */ 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 618 { 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 620 return filemap_check_and_keep_errors(mapping); 621 } 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 623 624 /* Returns true if writeback might be needed or already in progress. */ 625 static bool mapping_needs_writeback(struct address_space *mapping) 626 { 627 return mapping->nrpages; 628 } 629 630 bool filemap_range_has_writeback(struct address_space *mapping, 631 loff_t start_byte, loff_t end_byte) 632 { 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 634 pgoff_t max = end_byte >> PAGE_SHIFT; 635 struct page *page; 636 637 if (end_byte < start_byte) 638 return false; 639 640 rcu_read_lock(); 641 xas_for_each(&xas, page, max) { 642 if (xas_retry(&xas, page)) 643 continue; 644 if (xa_is_value(page)) 645 continue; 646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 647 break; 648 } 649 rcu_read_unlock(); 650 return page != NULL; 651 } 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 653 654 /** 655 * filemap_write_and_wait_range - write out & wait on a file range 656 * @mapping: the address_space for the pages 657 * @lstart: offset in bytes where the range starts 658 * @lend: offset in bytes where the range ends (inclusive) 659 * 660 * Write out and wait upon file offsets lstart->lend, inclusive. 661 * 662 * Note that @lend is inclusive (describes the last byte to be written) so 663 * that this function can be used to write to the very end-of-file (end = -1). 664 * 665 * Return: error status of the address space. 666 */ 667 int filemap_write_and_wait_range(struct address_space *mapping, 668 loff_t lstart, loff_t lend) 669 { 670 int err = 0; 671 672 if (mapping_needs_writeback(mapping)) { 673 err = __filemap_fdatawrite_range(mapping, lstart, lend, 674 WB_SYNC_ALL); 675 /* 676 * Even if the above returned error, the pages may be 677 * written partially (e.g. -ENOSPC), so we wait for it. 678 * But the -EIO is special case, it may indicate the worst 679 * thing (e.g. bug) happened, so we avoid waiting for it. 680 */ 681 if (err != -EIO) { 682 int err2 = filemap_fdatawait_range(mapping, 683 lstart, lend); 684 if (!err) 685 err = err2; 686 } else { 687 /* Clear any previously stored errors */ 688 filemap_check_errors(mapping); 689 } 690 } else { 691 err = filemap_check_errors(mapping); 692 } 693 return err; 694 } 695 EXPORT_SYMBOL(filemap_write_and_wait_range); 696 697 void __filemap_set_wb_err(struct address_space *mapping, int err) 698 { 699 errseq_t eseq = errseq_set(&mapping->wb_err, err); 700 701 trace_filemap_set_wb_err(mapping, eseq); 702 } 703 EXPORT_SYMBOL(__filemap_set_wb_err); 704 705 /** 706 * file_check_and_advance_wb_err - report wb error (if any) that was previously 707 * and advance wb_err to current one 708 * @file: struct file on which the error is being reported 709 * 710 * When userland calls fsync (or something like nfsd does the equivalent), we 711 * want to report any writeback errors that occurred since the last fsync (or 712 * since the file was opened if there haven't been any). 713 * 714 * Grab the wb_err from the mapping. If it matches what we have in the file, 715 * then just quickly return 0. The file is all caught up. 716 * 717 * If it doesn't match, then take the mapping value, set the "seen" flag in 718 * it and try to swap it into place. If it works, or another task beat us 719 * to it with the new value, then update the f_wb_err and return the error 720 * portion. The error at this point must be reported via proper channels 721 * (a'la fsync, or NFS COMMIT operation, etc.). 722 * 723 * While we handle mapping->wb_err with atomic operations, the f_wb_err 724 * value is protected by the f_lock since we must ensure that it reflects 725 * the latest value swapped in for this file descriptor. 726 * 727 * Return: %0 on success, negative error code otherwise. 728 */ 729 int file_check_and_advance_wb_err(struct file *file) 730 { 731 int err = 0; 732 errseq_t old = READ_ONCE(file->f_wb_err); 733 struct address_space *mapping = file->f_mapping; 734 735 /* Locklessly handle the common case where nothing has changed */ 736 if (errseq_check(&mapping->wb_err, old)) { 737 /* Something changed, must use slow path */ 738 spin_lock(&file->f_lock); 739 old = file->f_wb_err; 740 err = errseq_check_and_advance(&mapping->wb_err, 741 &file->f_wb_err); 742 trace_file_check_and_advance_wb_err(file, old); 743 spin_unlock(&file->f_lock); 744 } 745 746 /* 747 * We're mostly using this function as a drop in replacement for 748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 749 * that the legacy code would have had on these flags. 750 */ 751 clear_bit(AS_EIO, &mapping->flags); 752 clear_bit(AS_ENOSPC, &mapping->flags); 753 return err; 754 } 755 EXPORT_SYMBOL(file_check_and_advance_wb_err); 756 757 /** 758 * file_write_and_wait_range - write out & wait on a file range 759 * @file: file pointing to address_space with pages 760 * @lstart: offset in bytes where the range starts 761 * @lend: offset in bytes where the range ends (inclusive) 762 * 763 * Write out and wait upon file offsets lstart->lend, inclusive. 764 * 765 * Note that @lend is inclusive (describes the last byte to be written) so 766 * that this function can be used to write to the very end-of-file (end = -1). 767 * 768 * After writing out and waiting on the data, we check and advance the 769 * f_wb_err cursor to the latest value, and return any errors detected there. 770 * 771 * Return: %0 on success, negative error code otherwise. 772 */ 773 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 774 { 775 int err = 0, err2; 776 struct address_space *mapping = file->f_mapping; 777 778 if (mapping_needs_writeback(mapping)) { 779 err = __filemap_fdatawrite_range(mapping, lstart, lend, 780 WB_SYNC_ALL); 781 /* See comment of filemap_write_and_wait() */ 782 if (err != -EIO) 783 __filemap_fdatawait_range(mapping, lstart, lend); 784 } 785 err2 = file_check_and_advance_wb_err(file); 786 if (!err) 787 err = err2; 788 return err; 789 } 790 EXPORT_SYMBOL(file_write_and_wait_range); 791 792 /** 793 * replace_page_cache_page - replace a pagecache page with a new one 794 * @old: page to be replaced 795 * @new: page to replace with 796 * 797 * This function replaces a page in the pagecache with a new one. On 798 * success it acquires the pagecache reference for the new page and 799 * drops it for the old page. Both the old and new pages must be 800 * locked. This function does not add the new page to the LRU, the 801 * caller must do that. 802 * 803 * The remove + add is atomic. This function cannot fail. 804 */ 805 void replace_page_cache_page(struct page *old, struct page *new) 806 { 807 struct folio *fold = page_folio(old); 808 struct folio *fnew = page_folio(new); 809 struct address_space *mapping = old->mapping; 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 811 pgoff_t offset = old->index; 812 XA_STATE(xas, &mapping->i_pages, offset); 813 814 VM_BUG_ON_PAGE(!PageLocked(old), old); 815 VM_BUG_ON_PAGE(!PageLocked(new), new); 816 VM_BUG_ON_PAGE(new->mapping, new); 817 818 get_page(new); 819 new->mapping = mapping; 820 new->index = offset; 821 822 mem_cgroup_migrate(fold, fnew); 823 824 xas_lock_irq(&xas); 825 xas_store(&xas, new); 826 827 old->mapping = NULL; 828 /* hugetlb pages do not participate in page cache accounting. */ 829 if (!PageHuge(old)) 830 __dec_lruvec_page_state(old, NR_FILE_PAGES); 831 if (!PageHuge(new)) 832 __inc_lruvec_page_state(new, NR_FILE_PAGES); 833 if (PageSwapBacked(old)) 834 __dec_lruvec_page_state(old, NR_SHMEM); 835 if (PageSwapBacked(new)) 836 __inc_lruvec_page_state(new, NR_SHMEM); 837 xas_unlock_irq(&xas); 838 if (free_folio) 839 free_folio(fold); 840 folio_put(fold); 841 } 842 EXPORT_SYMBOL_GPL(replace_page_cache_page); 843 844 noinline int __filemap_add_folio(struct address_space *mapping, 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 846 { 847 XA_STATE(xas, &mapping->i_pages, index); 848 int huge = folio_test_hugetlb(folio); 849 bool charged = false; 850 long nr = 1; 851 852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 854 mapping_set_update(&xas, mapping); 855 856 if (!huge) { 857 int error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 return error; 861 charged = true; 862 xas_set_order(&xas, index, folio_order(folio)); 863 nr = folio_nr_pages(folio); 864 } 865 866 gfp &= GFP_RECLAIM_MASK; 867 folio_ref_add(folio, nr); 868 folio->mapping = mapping; 869 folio->index = xas.xa_index; 870 871 do { 872 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 873 void *entry, *old = NULL; 874 875 if (order > folio_order(folio)) 876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 877 order, gfp); 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 } 886 887 if (old) { 888 if (shadowp) 889 *shadowp = old; 890 /* entry may have been split before we acquired lock */ 891 order = xa_get_order(xas.xa, xas.xa_index); 892 if (order > folio_order(folio)) { 893 /* How to handle large swap entries? */ 894 BUG_ON(shmem_mapping(mapping)); 895 xas_split(&xas, old, order); 896 xas_reset(&xas); 897 } 898 } 899 900 xas_store(&xas, folio); 901 if (xas_error(&xas)) 902 goto unlock; 903 904 mapping->nrpages += nr; 905 906 /* hugetlb pages do not participate in page cache accounting */ 907 if (!huge) { 908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 909 if (folio_test_pmd_mappable(folio)) 910 __lruvec_stat_mod_folio(folio, 911 NR_FILE_THPS, nr); 912 } 913 unlock: 914 xas_unlock_irq(&xas); 915 } while (xas_nomem(&xas, gfp)); 916 917 if (xas_error(&xas)) 918 goto error; 919 920 trace_mm_filemap_add_to_page_cache(folio); 921 return 0; 922 error: 923 if (charged) 924 mem_cgroup_uncharge(folio); 925 folio->mapping = NULL; 926 /* Leave page->index set: truncation relies upon it */ 927 folio_put_refs(folio, nr); 928 return xas_error(&xas); 929 } 930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 931 932 /** 933 * add_to_page_cache_locked - add a locked page to the pagecache 934 * @page: page to add 935 * @mapping: the page's address_space 936 * @offset: page index 937 * @gfp_mask: page allocation mode 938 * 939 * This function is used to add a page to the pagecache. It must be locked. 940 * This function does not add the page to the LRU. The caller must do that. 941 * 942 * Return: %0 on success, negative error code otherwise. 943 */ 944 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 945 pgoff_t offset, gfp_t gfp_mask) 946 { 947 return __filemap_add_folio(mapping, page_folio(page), offset, 948 gfp_mask, NULL); 949 } 950 EXPORT_SYMBOL(add_to_page_cache_locked); 951 952 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 953 pgoff_t index, gfp_t gfp) 954 { 955 void *shadow = NULL; 956 int ret; 957 958 __folio_set_locked(folio); 959 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 960 if (unlikely(ret)) 961 __folio_clear_locked(folio); 962 else { 963 /* 964 * The folio might have been evicted from cache only 965 * recently, in which case it should be activated like 966 * any other repeatedly accessed folio. 967 * The exception is folios getting rewritten; evicting other 968 * data from the working set, only to cache data that will 969 * get overwritten with something else, is a waste of memory. 970 */ 971 WARN_ON_ONCE(folio_test_active(folio)); 972 if (!(gfp & __GFP_WRITE) && shadow) 973 workingset_refault(folio, shadow); 974 folio_add_lru(folio); 975 } 976 return ret; 977 } 978 EXPORT_SYMBOL_GPL(filemap_add_folio); 979 980 #ifdef CONFIG_NUMA 981 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 982 { 983 int n; 984 struct folio *folio; 985 986 if (cpuset_do_page_mem_spread()) { 987 unsigned int cpuset_mems_cookie; 988 do { 989 cpuset_mems_cookie = read_mems_allowed_begin(); 990 n = cpuset_mem_spread_node(); 991 folio = __folio_alloc_node(gfp, order, n); 992 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 993 994 return folio; 995 } 996 return folio_alloc(gfp, order); 997 } 998 EXPORT_SYMBOL(filemap_alloc_folio); 999 #endif 1000 1001 /* 1002 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1003 * 1004 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1005 * 1006 * @mapping1: the first mapping to lock 1007 * @mapping2: the second mapping to lock 1008 */ 1009 void filemap_invalidate_lock_two(struct address_space *mapping1, 1010 struct address_space *mapping2) 1011 { 1012 if (mapping1 > mapping2) 1013 swap(mapping1, mapping2); 1014 if (mapping1) 1015 down_write(&mapping1->invalidate_lock); 1016 if (mapping2 && mapping1 != mapping2) 1017 down_write_nested(&mapping2->invalidate_lock, 1); 1018 } 1019 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1020 1021 /* 1022 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1023 * 1024 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1025 * 1026 * @mapping1: the first mapping to unlock 1027 * @mapping2: the second mapping to unlock 1028 */ 1029 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1030 struct address_space *mapping2) 1031 { 1032 if (mapping1) 1033 up_write(&mapping1->invalidate_lock); 1034 if (mapping2 && mapping1 != mapping2) 1035 up_write(&mapping2->invalidate_lock); 1036 } 1037 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1038 1039 /* 1040 * In order to wait for pages to become available there must be 1041 * waitqueues associated with pages. By using a hash table of 1042 * waitqueues where the bucket discipline is to maintain all 1043 * waiters on the same queue and wake all when any of the pages 1044 * become available, and for the woken contexts to check to be 1045 * sure the appropriate page became available, this saves space 1046 * at a cost of "thundering herd" phenomena during rare hash 1047 * collisions. 1048 */ 1049 #define PAGE_WAIT_TABLE_BITS 8 1050 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1051 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1052 1053 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1054 { 1055 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1056 } 1057 1058 void __init pagecache_init(void) 1059 { 1060 int i; 1061 1062 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1063 init_waitqueue_head(&folio_wait_table[i]); 1064 1065 page_writeback_init(); 1066 } 1067 1068 /* 1069 * The page wait code treats the "wait->flags" somewhat unusually, because 1070 * we have multiple different kinds of waits, not just the usual "exclusive" 1071 * one. 1072 * 1073 * We have: 1074 * 1075 * (a) no special bits set: 1076 * 1077 * We're just waiting for the bit to be released, and when a waker 1078 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1079 * and remove it from the wait queue. 1080 * 1081 * Simple and straightforward. 1082 * 1083 * (b) WQ_FLAG_EXCLUSIVE: 1084 * 1085 * The waiter is waiting to get the lock, and only one waiter should 1086 * be woken up to avoid any thundering herd behavior. We'll set the 1087 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1088 * 1089 * This is the traditional exclusive wait. 1090 * 1091 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1092 * 1093 * The waiter is waiting to get the bit, and additionally wants the 1094 * lock to be transferred to it for fair lock behavior. If the lock 1095 * cannot be taken, we stop walking the wait queue without waking 1096 * the waiter. 1097 * 1098 * This is the "fair lock handoff" case, and in addition to setting 1099 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1100 * that it now has the lock. 1101 */ 1102 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1103 { 1104 unsigned int flags; 1105 struct wait_page_key *key = arg; 1106 struct wait_page_queue *wait_page 1107 = container_of(wait, struct wait_page_queue, wait); 1108 1109 if (!wake_page_match(wait_page, key)) 1110 return 0; 1111 1112 /* 1113 * If it's a lock handoff wait, we get the bit for it, and 1114 * stop walking (and do not wake it up) if we can't. 1115 */ 1116 flags = wait->flags; 1117 if (flags & WQ_FLAG_EXCLUSIVE) { 1118 if (test_bit(key->bit_nr, &key->folio->flags)) 1119 return -1; 1120 if (flags & WQ_FLAG_CUSTOM) { 1121 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1122 return -1; 1123 flags |= WQ_FLAG_DONE; 1124 } 1125 } 1126 1127 /* 1128 * We are holding the wait-queue lock, but the waiter that 1129 * is waiting for this will be checking the flags without 1130 * any locking. 1131 * 1132 * So update the flags atomically, and wake up the waiter 1133 * afterwards to avoid any races. This store-release pairs 1134 * with the load-acquire in folio_wait_bit_common(). 1135 */ 1136 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1137 wake_up_state(wait->private, mode); 1138 1139 /* 1140 * Ok, we have successfully done what we're waiting for, 1141 * and we can unconditionally remove the wait entry. 1142 * 1143 * Note that this pairs with the "finish_wait()" in the 1144 * waiter, and has to be the absolute last thing we do. 1145 * After this list_del_init(&wait->entry) the wait entry 1146 * might be de-allocated and the process might even have 1147 * exited. 1148 */ 1149 list_del_init_careful(&wait->entry); 1150 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1151 } 1152 1153 static void folio_wake_bit(struct folio *folio, int bit_nr) 1154 { 1155 wait_queue_head_t *q = folio_waitqueue(folio); 1156 struct wait_page_key key; 1157 unsigned long flags; 1158 wait_queue_entry_t bookmark; 1159 1160 key.folio = folio; 1161 key.bit_nr = bit_nr; 1162 key.page_match = 0; 1163 1164 bookmark.flags = 0; 1165 bookmark.private = NULL; 1166 bookmark.func = NULL; 1167 INIT_LIST_HEAD(&bookmark.entry); 1168 1169 spin_lock_irqsave(&q->lock, flags); 1170 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1171 1172 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1173 /* 1174 * Take a breather from holding the lock, 1175 * allow pages that finish wake up asynchronously 1176 * to acquire the lock and remove themselves 1177 * from wait queue 1178 */ 1179 spin_unlock_irqrestore(&q->lock, flags); 1180 cpu_relax(); 1181 spin_lock_irqsave(&q->lock, flags); 1182 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1183 } 1184 1185 /* 1186 * It's possible to miss clearing waiters here, when we woke our page 1187 * waiters, but the hashed waitqueue has waiters for other pages on it. 1188 * That's okay, it's a rare case. The next waker will clear it. 1189 * 1190 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1191 * other), the flag may be cleared in the course of freeing the page; 1192 * but that is not required for correctness. 1193 */ 1194 if (!waitqueue_active(q) || !key.page_match) 1195 folio_clear_waiters(folio); 1196 1197 spin_unlock_irqrestore(&q->lock, flags); 1198 } 1199 1200 static void folio_wake(struct folio *folio, int bit) 1201 { 1202 if (!folio_test_waiters(folio)) 1203 return; 1204 folio_wake_bit(folio, bit); 1205 } 1206 1207 /* 1208 * A choice of three behaviors for folio_wait_bit_common(): 1209 */ 1210 enum behavior { 1211 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1212 * __folio_lock() waiting on then setting PG_locked. 1213 */ 1214 SHARED, /* Hold ref to page and check the bit when woken, like 1215 * folio_wait_writeback() waiting on PG_writeback. 1216 */ 1217 DROP, /* Drop ref to page before wait, no check when woken, 1218 * like folio_put_wait_locked() on PG_locked. 1219 */ 1220 }; 1221 1222 /* 1223 * Attempt to check (or get) the folio flag, and mark us done 1224 * if successful. 1225 */ 1226 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1227 struct wait_queue_entry *wait) 1228 { 1229 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1230 if (test_and_set_bit(bit_nr, &folio->flags)) 1231 return false; 1232 } else if (test_bit(bit_nr, &folio->flags)) 1233 return false; 1234 1235 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1236 return true; 1237 } 1238 1239 /* How many times do we accept lock stealing from under a waiter? */ 1240 int sysctl_page_lock_unfairness = 5; 1241 1242 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1243 int state, enum behavior behavior) 1244 { 1245 wait_queue_head_t *q = folio_waitqueue(folio); 1246 int unfairness = sysctl_page_lock_unfairness; 1247 struct wait_page_queue wait_page; 1248 wait_queue_entry_t *wait = &wait_page.wait; 1249 bool thrashing = false; 1250 bool delayacct = false; 1251 unsigned long pflags; 1252 1253 if (bit_nr == PG_locked && 1254 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1255 if (!folio_test_swapbacked(folio)) { 1256 delayacct_thrashing_start(); 1257 delayacct = true; 1258 } 1259 psi_memstall_enter(&pflags); 1260 thrashing = true; 1261 } 1262 1263 init_wait(wait); 1264 wait->func = wake_page_function; 1265 wait_page.folio = folio; 1266 wait_page.bit_nr = bit_nr; 1267 1268 repeat: 1269 wait->flags = 0; 1270 if (behavior == EXCLUSIVE) { 1271 wait->flags = WQ_FLAG_EXCLUSIVE; 1272 if (--unfairness < 0) 1273 wait->flags |= WQ_FLAG_CUSTOM; 1274 } 1275 1276 /* 1277 * Do one last check whether we can get the 1278 * page bit synchronously. 1279 * 1280 * Do the folio_set_waiters() marking before that 1281 * to let any waker we _just_ missed know they 1282 * need to wake us up (otherwise they'll never 1283 * even go to the slow case that looks at the 1284 * page queue), and add ourselves to the wait 1285 * queue if we need to sleep. 1286 * 1287 * This part needs to be done under the queue 1288 * lock to avoid races. 1289 */ 1290 spin_lock_irq(&q->lock); 1291 folio_set_waiters(folio); 1292 if (!folio_trylock_flag(folio, bit_nr, wait)) 1293 __add_wait_queue_entry_tail(q, wait); 1294 spin_unlock_irq(&q->lock); 1295 1296 /* 1297 * From now on, all the logic will be based on 1298 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1299 * see whether the page bit testing has already 1300 * been done by the wake function. 1301 * 1302 * We can drop our reference to the folio. 1303 */ 1304 if (behavior == DROP) 1305 folio_put(folio); 1306 1307 /* 1308 * Note that until the "finish_wait()", or until 1309 * we see the WQ_FLAG_WOKEN flag, we need to 1310 * be very careful with the 'wait->flags', because 1311 * we may race with a waker that sets them. 1312 */ 1313 for (;;) { 1314 unsigned int flags; 1315 1316 set_current_state(state); 1317 1318 /* Loop until we've been woken or interrupted */ 1319 flags = smp_load_acquire(&wait->flags); 1320 if (!(flags & WQ_FLAG_WOKEN)) { 1321 if (signal_pending_state(state, current)) 1322 break; 1323 1324 io_schedule(); 1325 continue; 1326 } 1327 1328 /* If we were non-exclusive, we're done */ 1329 if (behavior != EXCLUSIVE) 1330 break; 1331 1332 /* If the waker got the lock for us, we're done */ 1333 if (flags & WQ_FLAG_DONE) 1334 break; 1335 1336 /* 1337 * Otherwise, if we're getting the lock, we need to 1338 * try to get it ourselves. 1339 * 1340 * And if that fails, we'll have to retry this all. 1341 */ 1342 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1343 goto repeat; 1344 1345 wait->flags |= WQ_FLAG_DONE; 1346 break; 1347 } 1348 1349 /* 1350 * If a signal happened, this 'finish_wait()' may remove the last 1351 * waiter from the wait-queues, but the folio waiters bit will remain 1352 * set. That's ok. The next wakeup will take care of it, and trying 1353 * to do it here would be difficult and prone to races. 1354 */ 1355 finish_wait(q, wait); 1356 1357 if (thrashing) { 1358 if (delayacct) 1359 delayacct_thrashing_end(); 1360 psi_memstall_leave(&pflags); 1361 } 1362 1363 /* 1364 * NOTE! The wait->flags weren't stable until we've done the 1365 * 'finish_wait()', and we could have exited the loop above due 1366 * to a signal, and had a wakeup event happen after the signal 1367 * test but before the 'finish_wait()'. 1368 * 1369 * So only after the finish_wait() can we reliably determine 1370 * if we got woken up or not, so we can now figure out the final 1371 * return value based on that state without races. 1372 * 1373 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1374 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1375 */ 1376 if (behavior == EXCLUSIVE) 1377 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1378 1379 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1380 } 1381 1382 #ifdef CONFIG_MIGRATION 1383 /** 1384 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1385 * @entry: migration swap entry. 1386 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1387 * for pte entries, pass NULL for pmd entries. 1388 * @ptl: already locked ptl. This function will drop the lock. 1389 * 1390 * Wait for a migration entry referencing the given page to be removed. This is 1391 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1392 * this can be called without taking a reference on the page. Instead this 1393 * should be called while holding the ptl for the migration entry referencing 1394 * the page. 1395 * 1396 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1397 * 1398 * This follows the same logic as folio_wait_bit_common() so see the comments 1399 * there. 1400 */ 1401 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1402 spinlock_t *ptl) 1403 { 1404 struct wait_page_queue wait_page; 1405 wait_queue_entry_t *wait = &wait_page.wait; 1406 bool thrashing = false; 1407 bool delayacct = false; 1408 unsigned long pflags; 1409 wait_queue_head_t *q; 1410 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1411 1412 q = folio_waitqueue(folio); 1413 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1414 if (!folio_test_swapbacked(folio)) { 1415 delayacct_thrashing_start(); 1416 delayacct = true; 1417 } 1418 psi_memstall_enter(&pflags); 1419 thrashing = true; 1420 } 1421 1422 init_wait(wait); 1423 wait->func = wake_page_function; 1424 wait_page.folio = folio; 1425 wait_page.bit_nr = PG_locked; 1426 wait->flags = 0; 1427 1428 spin_lock_irq(&q->lock); 1429 folio_set_waiters(folio); 1430 if (!folio_trylock_flag(folio, PG_locked, wait)) 1431 __add_wait_queue_entry_tail(q, wait); 1432 spin_unlock_irq(&q->lock); 1433 1434 /* 1435 * If a migration entry exists for the page the migration path must hold 1436 * a valid reference to the page, and it must take the ptl to remove the 1437 * migration entry. So the page is valid until the ptl is dropped. 1438 */ 1439 if (ptep) 1440 pte_unmap_unlock(ptep, ptl); 1441 else 1442 spin_unlock(ptl); 1443 1444 for (;;) { 1445 unsigned int flags; 1446 1447 set_current_state(TASK_UNINTERRUPTIBLE); 1448 1449 /* Loop until we've been woken or interrupted */ 1450 flags = smp_load_acquire(&wait->flags); 1451 if (!(flags & WQ_FLAG_WOKEN)) { 1452 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1453 break; 1454 1455 io_schedule(); 1456 continue; 1457 } 1458 break; 1459 } 1460 1461 finish_wait(q, wait); 1462 1463 if (thrashing) { 1464 if (delayacct) 1465 delayacct_thrashing_end(); 1466 psi_memstall_leave(&pflags); 1467 } 1468 } 1469 #endif 1470 1471 void folio_wait_bit(struct folio *folio, int bit_nr) 1472 { 1473 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1474 } 1475 EXPORT_SYMBOL(folio_wait_bit); 1476 1477 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1478 { 1479 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1480 } 1481 EXPORT_SYMBOL(folio_wait_bit_killable); 1482 1483 /** 1484 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1485 * @folio: The folio to wait for. 1486 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1487 * 1488 * The caller should hold a reference on @folio. They expect the page to 1489 * become unlocked relatively soon, but do not wish to hold up migration 1490 * (for example) by holding the reference while waiting for the folio to 1491 * come unlocked. After this function returns, the caller should not 1492 * dereference @folio. 1493 * 1494 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1495 */ 1496 int folio_put_wait_locked(struct folio *folio, int state) 1497 { 1498 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1499 } 1500 1501 /** 1502 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1503 * @folio: Folio defining the wait queue of interest 1504 * @waiter: Waiter to add to the queue 1505 * 1506 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1507 */ 1508 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1509 { 1510 wait_queue_head_t *q = folio_waitqueue(folio); 1511 unsigned long flags; 1512 1513 spin_lock_irqsave(&q->lock, flags); 1514 __add_wait_queue_entry_tail(q, waiter); 1515 folio_set_waiters(folio); 1516 spin_unlock_irqrestore(&q->lock, flags); 1517 } 1518 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1519 1520 #ifndef clear_bit_unlock_is_negative_byte 1521 1522 /* 1523 * PG_waiters is the high bit in the same byte as PG_lock. 1524 * 1525 * On x86 (and on many other architectures), we can clear PG_lock and 1526 * test the sign bit at the same time. But if the architecture does 1527 * not support that special operation, we just do this all by hand 1528 * instead. 1529 * 1530 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1531 * being cleared, but a memory barrier should be unnecessary since it is 1532 * in the same byte as PG_locked. 1533 */ 1534 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1535 { 1536 clear_bit_unlock(nr, mem); 1537 /* smp_mb__after_atomic(); */ 1538 return test_bit(PG_waiters, mem); 1539 } 1540 1541 #endif 1542 1543 /** 1544 * folio_unlock - Unlock a locked folio. 1545 * @folio: The folio. 1546 * 1547 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1548 * 1549 * Context: May be called from interrupt or process context. May not be 1550 * called from NMI context. 1551 */ 1552 void folio_unlock(struct folio *folio) 1553 { 1554 /* Bit 7 allows x86 to check the byte's sign bit */ 1555 BUILD_BUG_ON(PG_waiters != 7); 1556 BUILD_BUG_ON(PG_locked > 7); 1557 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1558 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1559 folio_wake_bit(folio, PG_locked); 1560 } 1561 EXPORT_SYMBOL(folio_unlock); 1562 1563 /** 1564 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1565 * @folio: The folio. 1566 * 1567 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1568 * it. The folio reference held for PG_private_2 being set is released. 1569 * 1570 * This is, for example, used when a netfs folio is being written to a local 1571 * disk cache, thereby allowing writes to the cache for the same folio to be 1572 * serialised. 1573 */ 1574 void folio_end_private_2(struct folio *folio) 1575 { 1576 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1577 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1578 folio_wake_bit(folio, PG_private_2); 1579 folio_put(folio); 1580 } 1581 EXPORT_SYMBOL(folio_end_private_2); 1582 1583 /** 1584 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1585 * @folio: The folio to wait on. 1586 * 1587 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1588 */ 1589 void folio_wait_private_2(struct folio *folio) 1590 { 1591 while (folio_test_private_2(folio)) 1592 folio_wait_bit(folio, PG_private_2); 1593 } 1594 EXPORT_SYMBOL(folio_wait_private_2); 1595 1596 /** 1597 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1598 * @folio: The folio to wait on. 1599 * 1600 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1601 * fatal signal is received by the calling task. 1602 * 1603 * Return: 1604 * - 0 if successful. 1605 * - -EINTR if a fatal signal was encountered. 1606 */ 1607 int folio_wait_private_2_killable(struct folio *folio) 1608 { 1609 int ret = 0; 1610 1611 while (folio_test_private_2(folio)) { 1612 ret = folio_wait_bit_killable(folio, PG_private_2); 1613 if (ret < 0) 1614 break; 1615 } 1616 1617 return ret; 1618 } 1619 EXPORT_SYMBOL(folio_wait_private_2_killable); 1620 1621 /** 1622 * folio_end_writeback - End writeback against a folio. 1623 * @folio: The folio. 1624 */ 1625 void folio_end_writeback(struct folio *folio) 1626 { 1627 /* 1628 * folio_test_clear_reclaim() could be used here but it is an 1629 * atomic operation and overkill in this particular case. Failing 1630 * to shuffle a folio marked for immediate reclaim is too mild 1631 * a gain to justify taking an atomic operation penalty at the 1632 * end of every folio writeback. 1633 */ 1634 if (folio_test_reclaim(folio)) { 1635 folio_clear_reclaim(folio); 1636 folio_rotate_reclaimable(folio); 1637 } 1638 1639 /* 1640 * Writeback does not hold a folio reference of its own, relying 1641 * on truncation to wait for the clearing of PG_writeback. 1642 * But here we must make sure that the folio is not freed and 1643 * reused before the folio_wake(). 1644 */ 1645 folio_get(folio); 1646 if (!__folio_end_writeback(folio)) 1647 BUG(); 1648 1649 smp_mb__after_atomic(); 1650 folio_wake(folio, PG_writeback); 1651 acct_reclaim_writeback(folio); 1652 folio_put(folio); 1653 } 1654 EXPORT_SYMBOL(folio_end_writeback); 1655 1656 /* 1657 * After completing I/O on a page, call this routine to update the page 1658 * flags appropriately 1659 */ 1660 void page_endio(struct page *page, bool is_write, int err) 1661 { 1662 if (!is_write) { 1663 if (!err) { 1664 SetPageUptodate(page); 1665 } else { 1666 ClearPageUptodate(page); 1667 SetPageError(page); 1668 } 1669 unlock_page(page); 1670 } else { 1671 if (err) { 1672 struct address_space *mapping; 1673 1674 SetPageError(page); 1675 mapping = page_mapping(page); 1676 if (mapping) 1677 mapping_set_error(mapping, err); 1678 } 1679 end_page_writeback(page); 1680 } 1681 } 1682 EXPORT_SYMBOL_GPL(page_endio); 1683 1684 /** 1685 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1686 * @folio: The folio to lock 1687 */ 1688 void __folio_lock(struct folio *folio) 1689 { 1690 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1691 EXCLUSIVE); 1692 } 1693 EXPORT_SYMBOL(__folio_lock); 1694 1695 int __folio_lock_killable(struct folio *folio) 1696 { 1697 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1698 EXCLUSIVE); 1699 } 1700 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1701 1702 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1703 { 1704 struct wait_queue_head *q = folio_waitqueue(folio); 1705 int ret = 0; 1706 1707 wait->folio = folio; 1708 wait->bit_nr = PG_locked; 1709 1710 spin_lock_irq(&q->lock); 1711 __add_wait_queue_entry_tail(q, &wait->wait); 1712 folio_set_waiters(folio); 1713 ret = !folio_trylock(folio); 1714 /* 1715 * If we were successful now, we know we're still on the 1716 * waitqueue as we're still under the lock. This means it's 1717 * safe to remove and return success, we know the callback 1718 * isn't going to trigger. 1719 */ 1720 if (!ret) 1721 __remove_wait_queue(q, &wait->wait); 1722 else 1723 ret = -EIOCBQUEUED; 1724 spin_unlock_irq(&q->lock); 1725 return ret; 1726 } 1727 1728 /* 1729 * Return values: 1730 * true - folio is locked; mmap_lock is still held. 1731 * false - folio is not locked. 1732 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1733 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1734 * which case mmap_lock is still held. 1735 * 1736 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1737 * with the folio locked and the mmap_lock unperturbed. 1738 */ 1739 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1740 unsigned int flags) 1741 { 1742 if (fault_flag_allow_retry_first(flags)) { 1743 /* 1744 * CAUTION! In this case, mmap_lock is not released 1745 * even though return 0. 1746 */ 1747 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1748 return false; 1749 1750 mmap_read_unlock(mm); 1751 if (flags & FAULT_FLAG_KILLABLE) 1752 folio_wait_locked_killable(folio); 1753 else 1754 folio_wait_locked(folio); 1755 return false; 1756 } 1757 if (flags & FAULT_FLAG_KILLABLE) { 1758 bool ret; 1759 1760 ret = __folio_lock_killable(folio); 1761 if (ret) { 1762 mmap_read_unlock(mm); 1763 return false; 1764 } 1765 } else { 1766 __folio_lock(folio); 1767 } 1768 1769 return true; 1770 } 1771 1772 /** 1773 * page_cache_next_miss() - Find the next gap in the page cache. 1774 * @mapping: Mapping. 1775 * @index: Index. 1776 * @max_scan: Maximum range to search. 1777 * 1778 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1779 * gap with the lowest index. 1780 * 1781 * This function may be called under the rcu_read_lock. However, this will 1782 * not atomically search a snapshot of the cache at a single point in time. 1783 * For example, if a gap is created at index 5, then subsequently a gap is 1784 * created at index 10, page_cache_next_miss covering both indices may 1785 * return 10 if called under the rcu_read_lock. 1786 * 1787 * Return: The index of the gap if found, otherwise an index outside the 1788 * range specified (in which case 'return - index >= max_scan' will be true). 1789 * In the rare case of index wrap-around, 0 will be returned. 1790 */ 1791 pgoff_t page_cache_next_miss(struct address_space *mapping, 1792 pgoff_t index, unsigned long max_scan) 1793 { 1794 XA_STATE(xas, &mapping->i_pages, index); 1795 1796 while (max_scan--) { 1797 void *entry = xas_next(&xas); 1798 if (!entry || xa_is_value(entry)) 1799 break; 1800 if (xas.xa_index == 0) 1801 break; 1802 } 1803 1804 return xas.xa_index; 1805 } 1806 EXPORT_SYMBOL(page_cache_next_miss); 1807 1808 /** 1809 * page_cache_prev_miss() - Find the previous gap in the page cache. 1810 * @mapping: Mapping. 1811 * @index: Index. 1812 * @max_scan: Maximum range to search. 1813 * 1814 * Search the range [max(index - max_scan + 1, 0), index] for the 1815 * gap with the highest index. 1816 * 1817 * This function may be called under the rcu_read_lock. However, this will 1818 * not atomically search a snapshot of the cache at a single point in time. 1819 * For example, if a gap is created at index 10, then subsequently a gap is 1820 * created at index 5, page_cache_prev_miss() covering both indices may 1821 * return 5 if called under the rcu_read_lock. 1822 * 1823 * Return: The index of the gap if found, otherwise an index outside the 1824 * range specified (in which case 'index - return >= max_scan' will be true). 1825 * In the rare case of wrap-around, ULONG_MAX will be returned. 1826 */ 1827 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1828 pgoff_t index, unsigned long max_scan) 1829 { 1830 XA_STATE(xas, &mapping->i_pages, index); 1831 1832 while (max_scan--) { 1833 void *entry = xas_prev(&xas); 1834 if (!entry || xa_is_value(entry)) 1835 break; 1836 if (xas.xa_index == ULONG_MAX) 1837 break; 1838 } 1839 1840 return xas.xa_index; 1841 } 1842 EXPORT_SYMBOL(page_cache_prev_miss); 1843 1844 /* 1845 * Lockless page cache protocol: 1846 * On the lookup side: 1847 * 1. Load the folio from i_pages 1848 * 2. Increment the refcount if it's not zero 1849 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1850 * 1851 * On the removal side: 1852 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1853 * B. Remove the page from i_pages 1854 * C. Return the page to the page allocator 1855 * 1856 * This means that any page may have its reference count temporarily 1857 * increased by a speculative page cache (or fast GUP) lookup as it can 1858 * be allocated by another user before the RCU grace period expires. 1859 * Because the refcount temporarily acquired here may end up being the 1860 * last refcount on the page, any page allocation must be freeable by 1861 * folio_put(). 1862 */ 1863 1864 /* 1865 * mapping_get_entry - Get a page cache entry. 1866 * @mapping: the address_space to search 1867 * @index: The page cache index. 1868 * 1869 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1870 * it is returned with an increased refcount. If it is a shadow entry 1871 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1872 * it is returned without further action. 1873 * 1874 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1875 */ 1876 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1877 { 1878 XA_STATE(xas, &mapping->i_pages, index); 1879 struct folio *folio; 1880 1881 rcu_read_lock(); 1882 repeat: 1883 xas_reset(&xas); 1884 folio = xas_load(&xas); 1885 if (xas_retry(&xas, folio)) 1886 goto repeat; 1887 /* 1888 * A shadow entry of a recently evicted page, or a swap entry from 1889 * shmem/tmpfs. Return it without attempting to raise page count. 1890 */ 1891 if (!folio || xa_is_value(folio)) 1892 goto out; 1893 1894 if (!folio_try_get_rcu(folio)) 1895 goto repeat; 1896 1897 if (unlikely(folio != xas_reload(&xas))) { 1898 folio_put(folio); 1899 goto repeat; 1900 } 1901 out: 1902 rcu_read_unlock(); 1903 1904 return folio; 1905 } 1906 1907 /** 1908 * __filemap_get_folio - Find and get a reference to a folio. 1909 * @mapping: The address_space to search. 1910 * @index: The page index. 1911 * @fgp_flags: %FGP flags modify how the folio is returned. 1912 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1913 * 1914 * Looks up the page cache entry at @mapping & @index. 1915 * 1916 * @fgp_flags can be zero or more of these flags: 1917 * 1918 * * %FGP_ACCESSED - The folio will be marked accessed. 1919 * * %FGP_LOCK - The folio is returned locked. 1920 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1921 * instead of allocating a new folio to replace it. 1922 * * %FGP_CREAT - If no page is present then a new page is allocated using 1923 * @gfp and added to the page cache and the VM's LRU list. 1924 * The page is returned locked and with an increased refcount. 1925 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1926 * page is already in cache. If the page was allocated, unlock it before 1927 * returning so the caller can do the same dance. 1928 * * %FGP_WRITE - The page will be written to by the caller. 1929 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1930 * * %FGP_NOWAIT - Don't get blocked by page lock. 1931 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1932 * 1933 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1934 * if the %GFP flags specified for %FGP_CREAT are atomic. 1935 * 1936 * If there is a page cache page, it is returned with an increased refcount. 1937 * 1938 * Return: The found folio or %NULL otherwise. 1939 */ 1940 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1941 int fgp_flags, gfp_t gfp) 1942 { 1943 struct folio *folio; 1944 1945 repeat: 1946 folio = mapping_get_entry(mapping, index); 1947 if (xa_is_value(folio)) { 1948 if (fgp_flags & FGP_ENTRY) 1949 return folio; 1950 folio = NULL; 1951 } 1952 if (!folio) 1953 goto no_page; 1954 1955 if (fgp_flags & FGP_LOCK) { 1956 if (fgp_flags & FGP_NOWAIT) { 1957 if (!folio_trylock(folio)) { 1958 folio_put(folio); 1959 return NULL; 1960 } 1961 } else { 1962 folio_lock(folio); 1963 } 1964 1965 /* Has the page been truncated? */ 1966 if (unlikely(folio->mapping != mapping)) { 1967 folio_unlock(folio); 1968 folio_put(folio); 1969 goto repeat; 1970 } 1971 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1972 } 1973 1974 if (fgp_flags & FGP_ACCESSED) 1975 folio_mark_accessed(folio); 1976 else if (fgp_flags & FGP_WRITE) { 1977 /* Clear idle flag for buffer write */ 1978 if (folio_test_idle(folio)) 1979 folio_clear_idle(folio); 1980 } 1981 1982 if (fgp_flags & FGP_STABLE) 1983 folio_wait_stable(folio); 1984 no_page: 1985 if (!folio && (fgp_flags & FGP_CREAT)) { 1986 int err; 1987 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1988 gfp |= __GFP_WRITE; 1989 if (fgp_flags & FGP_NOFS) 1990 gfp &= ~__GFP_FS; 1991 1992 folio = filemap_alloc_folio(gfp, 0); 1993 if (!folio) 1994 return NULL; 1995 1996 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1997 fgp_flags |= FGP_LOCK; 1998 1999 /* Init accessed so avoid atomic mark_page_accessed later */ 2000 if (fgp_flags & FGP_ACCESSED) 2001 __folio_set_referenced(folio); 2002 2003 err = filemap_add_folio(mapping, folio, index, gfp); 2004 if (unlikely(err)) { 2005 folio_put(folio); 2006 folio = NULL; 2007 if (err == -EEXIST) 2008 goto repeat; 2009 } 2010 2011 /* 2012 * filemap_add_folio locks the page, and for mmap 2013 * we expect an unlocked page. 2014 */ 2015 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2016 folio_unlock(folio); 2017 } 2018 2019 return folio; 2020 } 2021 EXPORT_SYMBOL(__filemap_get_folio); 2022 2023 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2024 xa_mark_t mark) 2025 { 2026 struct folio *folio; 2027 2028 retry: 2029 if (mark == XA_PRESENT) 2030 folio = xas_find(xas, max); 2031 else 2032 folio = xas_find_marked(xas, max, mark); 2033 2034 if (xas_retry(xas, folio)) 2035 goto retry; 2036 /* 2037 * A shadow entry of a recently evicted page, a swap 2038 * entry from shmem/tmpfs or a DAX entry. Return it 2039 * without attempting to raise page count. 2040 */ 2041 if (!folio || xa_is_value(folio)) 2042 return folio; 2043 2044 if (!folio_try_get_rcu(folio)) 2045 goto reset; 2046 2047 if (unlikely(folio != xas_reload(xas))) { 2048 folio_put(folio); 2049 goto reset; 2050 } 2051 2052 return folio; 2053 reset: 2054 xas_reset(xas); 2055 goto retry; 2056 } 2057 2058 /** 2059 * find_get_entries - gang pagecache lookup 2060 * @mapping: The address_space to search 2061 * @start: The starting page cache index 2062 * @end: The final page index (inclusive). 2063 * @fbatch: Where the resulting entries are placed. 2064 * @indices: The cache indices corresponding to the entries in @entries 2065 * 2066 * find_get_entries() will search for and return a batch of entries in 2067 * the mapping. The entries are placed in @fbatch. find_get_entries() 2068 * takes a reference on any actual folios it returns. 2069 * 2070 * The entries have ascending indexes. The indices may not be consecutive 2071 * due to not-present entries or large folios. 2072 * 2073 * Any shadow entries of evicted folios, or swap entries from 2074 * shmem/tmpfs, are included in the returned array. 2075 * 2076 * Return: The number of entries which were found. 2077 */ 2078 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2079 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2080 { 2081 XA_STATE(xas, &mapping->i_pages, start); 2082 struct folio *folio; 2083 2084 rcu_read_lock(); 2085 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2086 indices[fbatch->nr] = xas.xa_index; 2087 if (!folio_batch_add(fbatch, folio)) 2088 break; 2089 } 2090 rcu_read_unlock(); 2091 2092 return folio_batch_count(fbatch); 2093 } 2094 2095 /** 2096 * find_lock_entries - Find a batch of pagecache entries. 2097 * @mapping: The address_space to search. 2098 * @start: The starting page cache index. 2099 * @end: The final page index (inclusive). 2100 * @fbatch: Where the resulting entries are placed. 2101 * @indices: The cache indices of the entries in @fbatch. 2102 * 2103 * find_lock_entries() will return a batch of entries from @mapping. 2104 * Swap, shadow and DAX entries are included. Folios are returned 2105 * locked and with an incremented refcount. Folios which are locked 2106 * by somebody else or under writeback are skipped. Folios which are 2107 * partially outside the range are not returned. 2108 * 2109 * The entries have ascending indexes. The indices may not be consecutive 2110 * due to not-present entries, large folios, folios which could not be 2111 * locked or folios under writeback. 2112 * 2113 * Return: The number of entries which were found. 2114 */ 2115 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2116 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2117 { 2118 XA_STATE(xas, &mapping->i_pages, start); 2119 struct folio *folio; 2120 2121 rcu_read_lock(); 2122 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2123 if (!xa_is_value(folio)) { 2124 if (folio->index < start) 2125 goto put; 2126 if (folio->index + folio_nr_pages(folio) - 1 > end) 2127 goto put; 2128 if (!folio_trylock(folio)) 2129 goto put; 2130 if (folio->mapping != mapping || 2131 folio_test_writeback(folio)) 2132 goto unlock; 2133 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2134 folio); 2135 } 2136 indices[fbatch->nr] = xas.xa_index; 2137 if (!folio_batch_add(fbatch, folio)) 2138 break; 2139 continue; 2140 unlock: 2141 folio_unlock(folio); 2142 put: 2143 folio_put(folio); 2144 } 2145 rcu_read_unlock(); 2146 2147 return folio_batch_count(fbatch); 2148 } 2149 2150 static inline 2151 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2152 { 2153 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2154 return false; 2155 if (index >= max) 2156 return false; 2157 return index < folio->index + folio_nr_pages(folio) - 1; 2158 } 2159 2160 /** 2161 * find_get_pages_range - gang pagecache lookup 2162 * @mapping: The address_space to search 2163 * @start: The starting page index 2164 * @end: The final page index (inclusive) 2165 * @nr_pages: The maximum number of pages 2166 * @pages: Where the resulting pages are placed 2167 * 2168 * find_get_pages_range() will search for and return a group of up to @nr_pages 2169 * pages in the mapping starting at index @start and up to index @end 2170 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2171 * a reference against the returned pages. 2172 * 2173 * The search returns a group of mapping-contiguous pages with ascending 2174 * indexes. There may be holes in the indices due to not-present pages. 2175 * We also update @start to index the next page for the traversal. 2176 * 2177 * Return: the number of pages which were found. If this number is 2178 * smaller than @nr_pages, the end of specified range has been 2179 * reached. 2180 */ 2181 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2182 pgoff_t end, unsigned int nr_pages, 2183 struct page **pages) 2184 { 2185 XA_STATE(xas, &mapping->i_pages, *start); 2186 struct folio *folio; 2187 unsigned ret = 0; 2188 2189 if (unlikely(!nr_pages)) 2190 return 0; 2191 2192 rcu_read_lock(); 2193 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2194 /* Skip over shadow, swap and DAX entries */ 2195 if (xa_is_value(folio)) 2196 continue; 2197 2198 again: 2199 pages[ret] = folio_file_page(folio, xas.xa_index); 2200 if (++ret == nr_pages) { 2201 *start = xas.xa_index + 1; 2202 goto out; 2203 } 2204 if (folio_more_pages(folio, xas.xa_index, end)) { 2205 xas.xa_index++; 2206 folio_ref_inc(folio); 2207 goto again; 2208 } 2209 } 2210 2211 /* 2212 * We come here when there is no page beyond @end. We take care to not 2213 * overflow the index @start as it confuses some of the callers. This 2214 * breaks the iteration when there is a page at index -1 but that is 2215 * already broken anyway. 2216 */ 2217 if (end == (pgoff_t)-1) 2218 *start = (pgoff_t)-1; 2219 else 2220 *start = end + 1; 2221 out: 2222 rcu_read_unlock(); 2223 2224 return ret; 2225 } 2226 2227 /** 2228 * find_get_pages_contig - gang contiguous pagecache lookup 2229 * @mapping: The address_space to search 2230 * @index: The starting page index 2231 * @nr_pages: The maximum number of pages 2232 * @pages: Where the resulting pages are placed 2233 * 2234 * find_get_pages_contig() works exactly like find_get_pages_range(), 2235 * except that the returned number of pages are guaranteed to be 2236 * contiguous. 2237 * 2238 * Return: the number of pages which were found. 2239 */ 2240 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2241 unsigned int nr_pages, struct page **pages) 2242 { 2243 XA_STATE(xas, &mapping->i_pages, index); 2244 struct folio *folio; 2245 unsigned int ret = 0; 2246 2247 if (unlikely(!nr_pages)) 2248 return 0; 2249 2250 rcu_read_lock(); 2251 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2252 if (xas_retry(&xas, folio)) 2253 continue; 2254 /* 2255 * If the entry has been swapped out, we can stop looking. 2256 * No current caller is looking for DAX entries. 2257 */ 2258 if (xa_is_value(folio)) 2259 break; 2260 2261 if (!folio_try_get_rcu(folio)) 2262 goto retry; 2263 2264 if (unlikely(folio != xas_reload(&xas))) 2265 goto put_page; 2266 2267 again: 2268 pages[ret] = folio_file_page(folio, xas.xa_index); 2269 if (++ret == nr_pages) 2270 break; 2271 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2272 xas.xa_index++; 2273 folio_ref_inc(folio); 2274 goto again; 2275 } 2276 continue; 2277 put_page: 2278 folio_put(folio); 2279 retry: 2280 xas_reset(&xas); 2281 } 2282 rcu_read_unlock(); 2283 return ret; 2284 } 2285 EXPORT_SYMBOL(find_get_pages_contig); 2286 2287 /** 2288 * find_get_pages_range_tag - Find and return head pages matching @tag. 2289 * @mapping: the address_space to search 2290 * @index: the starting page index 2291 * @end: The final page index (inclusive) 2292 * @tag: the tag index 2293 * @nr_pages: the maximum number of pages 2294 * @pages: where the resulting pages are placed 2295 * 2296 * Like find_get_pages_range(), except we only return head pages which are 2297 * tagged with @tag. @index is updated to the index immediately after the 2298 * last page we return, ready for the next iteration. 2299 * 2300 * Return: the number of pages which were found. 2301 */ 2302 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2303 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2304 struct page **pages) 2305 { 2306 XA_STATE(xas, &mapping->i_pages, *index); 2307 struct folio *folio; 2308 unsigned ret = 0; 2309 2310 if (unlikely(!nr_pages)) 2311 return 0; 2312 2313 rcu_read_lock(); 2314 while ((folio = find_get_entry(&xas, end, tag))) { 2315 /* 2316 * Shadow entries should never be tagged, but this iteration 2317 * is lockless so there is a window for page reclaim to evict 2318 * a page we saw tagged. Skip over it. 2319 */ 2320 if (xa_is_value(folio)) 2321 continue; 2322 2323 pages[ret] = &folio->page; 2324 if (++ret == nr_pages) { 2325 *index = folio->index + folio_nr_pages(folio); 2326 goto out; 2327 } 2328 } 2329 2330 /* 2331 * We come here when we got to @end. We take care to not overflow the 2332 * index @index as it confuses some of the callers. This breaks the 2333 * iteration when there is a page at index -1 but that is already 2334 * broken anyway. 2335 */ 2336 if (end == (pgoff_t)-1) 2337 *index = (pgoff_t)-1; 2338 else 2339 *index = end + 1; 2340 out: 2341 rcu_read_unlock(); 2342 2343 return ret; 2344 } 2345 EXPORT_SYMBOL(find_get_pages_range_tag); 2346 2347 /* 2348 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2349 * a _large_ part of the i/o request. Imagine the worst scenario: 2350 * 2351 * ---R__________________________________________B__________ 2352 * ^ reading here ^ bad block(assume 4k) 2353 * 2354 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2355 * => failing the whole request => read(R) => read(R+1) => 2356 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2357 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2358 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2359 * 2360 * It is going insane. Fix it by quickly scaling down the readahead size. 2361 */ 2362 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2363 { 2364 ra->ra_pages /= 4; 2365 } 2366 2367 /* 2368 * filemap_get_read_batch - Get a batch of folios for read 2369 * 2370 * Get a batch of folios which represent a contiguous range of bytes in 2371 * the file. No exceptional entries will be returned. If @index is in 2372 * the middle of a folio, the entire folio will be returned. The last 2373 * folio in the batch may have the readahead flag set or the uptodate flag 2374 * clear so that the caller can take the appropriate action. 2375 */ 2376 static void filemap_get_read_batch(struct address_space *mapping, 2377 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2378 { 2379 XA_STATE(xas, &mapping->i_pages, index); 2380 struct folio *folio; 2381 2382 rcu_read_lock(); 2383 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2384 if (xas_retry(&xas, folio)) 2385 continue; 2386 if (xas.xa_index > max || xa_is_value(folio)) 2387 break; 2388 if (!folio_try_get_rcu(folio)) 2389 goto retry; 2390 2391 if (unlikely(folio != xas_reload(&xas))) 2392 goto put_folio; 2393 2394 if (!folio_batch_add(fbatch, folio)) 2395 break; 2396 if (!folio_test_uptodate(folio)) 2397 break; 2398 if (folio_test_readahead(folio)) 2399 break; 2400 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2401 continue; 2402 put_folio: 2403 folio_put(folio); 2404 retry: 2405 xas_reset(&xas); 2406 } 2407 rcu_read_unlock(); 2408 } 2409 2410 static int filemap_read_folio(struct file *file, struct address_space *mapping, 2411 struct folio *folio) 2412 { 2413 int error; 2414 2415 /* 2416 * A previous I/O error may have been due to temporary failures, 2417 * eg. multipath errors. PG_error will be set again if read_folio 2418 * fails. 2419 */ 2420 folio_clear_error(folio); 2421 /* Start the actual read. The read will unlock the page. */ 2422 error = mapping->a_ops->read_folio(file, folio); 2423 if (error) 2424 return error; 2425 2426 error = folio_wait_locked_killable(folio); 2427 if (error) 2428 return error; 2429 if (folio_test_uptodate(folio)) 2430 return 0; 2431 shrink_readahead_size_eio(&file->f_ra); 2432 return -EIO; 2433 } 2434 2435 static bool filemap_range_uptodate(struct address_space *mapping, 2436 loff_t pos, struct iov_iter *iter, struct folio *folio) 2437 { 2438 int count; 2439 2440 if (folio_test_uptodate(folio)) 2441 return true; 2442 /* pipes can't handle partially uptodate pages */ 2443 if (iov_iter_is_pipe(iter)) 2444 return false; 2445 if (!mapping->a_ops->is_partially_uptodate) 2446 return false; 2447 if (mapping->host->i_blkbits >= folio_shift(folio)) 2448 return false; 2449 2450 count = iter->count; 2451 if (folio_pos(folio) > pos) { 2452 count -= folio_pos(folio) - pos; 2453 pos = 0; 2454 } else { 2455 pos -= folio_pos(folio); 2456 } 2457 2458 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2459 } 2460 2461 static int filemap_update_page(struct kiocb *iocb, 2462 struct address_space *mapping, struct iov_iter *iter, 2463 struct folio *folio) 2464 { 2465 int error; 2466 2467 if (iocb->ki_flags & IOCB_NOWAIT) { 2468 if (!filemap_invalidate_trylock_shared(mapping)) 2469 return -EAGAIN; 2470 } else { 2471 filemap_invalidate_lock_shared(mapping); 2472 } 2473 2474 if (!folio_trylock(folio)) { 2475 error = -EAGAIN; 2476 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2477 goto unlock_mapping; 2478 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2479 filemap_invalidate_unlock_shared(mapping); 2480 /* 2481 * This is where we usually end up waiting for a 2482 * previously submitted readahead to finish. 2483 */ 2484 folio_put_wait_locked(folio, TASK_KILLABLE); 2485 return AOP_TRUNCATED_PAGE; 2486 } 2487 error = __folio_lock_async(folio, iocb->ki_waitq); 2488 if (error) 2489 goto unlock_mapping; 2490 } 2491 2492 error = AOP_TRUNCATED_PAGE; 2493 if (!folio->mapping) 2494 goto unlock; 2495 2496 error = 0; 2497 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2498 goto unlock; 2499 2500 error = -EAGAIN; 2501 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2502 goto unlock; 2503 2504 error = filemap_read_folio(iocb->ki_filp, mapping, folio); 2505 goto unlock_mapping; 2506 unlock: 2507 folio_unlock(folio); 2508 unlock_mapping: 2509 filemap_invalidate_unlock_shared(mapping); 2510 if (error == AOP_TRUNCATED_PAGE) 2511 folio_put(folio); 2512 return error; 2513 } 2514 2515 static int filemap_create_folio(struct file *file, 2516 struct address_space *mapping, pgoff_t index, 2517 struct folio_batch *fbatch) 2518 { 2519 struct folio *folio; 2520 int error; 2521 2522 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2523 if (!folio) 2524 return -ENOMEM; 2525 2526 /* 2527 * Protect against truncate / hole punch. Grabbing invalidate_lock 2528 * here assures we cannot instantiate and bring uptodate new 2529 * pagecache folios after evicting page cache during truncate 2530 * and before actually freeing blocks. Note that we could 2531 * release invalidate_lock after inserting the folio into 2532 * the page cache as the locked folio would then be enough to 2533 * synchronize with hole punching. But there are code paths 2534 * such as filemap_update_page() filling in partially uptodate 2535 * pages or ->readahead() that need to hold invalidate_lock 2536 * while mapping blocks for IO so let's hold the lock here as 2537 * well to keep locking rules simple. 2538 */ 2539 filemap_invalidate_lock_shared(mapping); 2540 error = filemap_add_folio(mapping, folio, index, 2541 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2542 if (error == -EEXIST) 2543 error = AOP_TRUNCATED_PAGE; 2544 if (error) 2545 goto error; 2546 2547 error = filemap_read_folio(file, mapping, folio); 2548 if (error) 2549 goto error; 2550 2551 filemap_invalidate_unlock_shared(mapping); 2552 folio_batch_add(fbatch, folio); 2553 return 0; 2554 error: 2555 filemap_invalidate_unlock_shared(mapping); 2556 folio_put(folio); 2557 return error; 2558 } 2559 2560 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2561 struct address_space *mapping, struct folio *folio, 2562 pgoff_t last_index) 2563 { 2564 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2565 2566 if (iocb->ki_flags & IOCB_NOIO) 2567 return -EAGAIN; 2568 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2569 return 0; 2570 } 2571 2572 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2573 struct folio_batch *fbatch) 2574 { 2575 struct file *filp = iocb->ki_filp; 2576 struct address_space *mapping = filp->f_mapping; 2577 struct file_ra_state *ra = &filp->f_ra; 2578 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2579 pgoff_t last_index; 2580 struct folio *folio; 2581 int err = 0; 2582 2583 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2584 retry: 2585 if (fatal_signal_pending(current)) 2586 return -EINTR; 2587 2588 filemap_get_read_batch(mapping, index, last_index, fbatch); 2589 if (!folio_batch_count(fbatch)) { 2590 if (iocb->ki_flags & IOCB_NOIO) 2591 return -EAGAIN; 2592 page_cache_sync_readahead(mapping, ra, filp, index, 2593 last_index - index); 2594 filemap_get_read_batch(mapping, index, last_index, fbatch); 2595 } 2596 if (!folio_batch_count(fbatch)) { 2597 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2598 return -EAGAIN; 2599 err = filemap_create_folio(filp, mapping, 2600 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2601 if (err == AOP_TRUNCATED_PAGE) 2602 goto retry; 2603 return err; 2604 } 2605 2606 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2607 if (folio_test_readahead(folio)) { 2608 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2609 if (err) 2610 goto err; 2611 } 2612 if (!folio_test_uptodate(folio)) { 2613 if ((iocb->ki_flags & IOCB_WAITQ) && 2614 folio_batch_count(fbatch) > 1) 2615 iocb->ki_flags |= IOCB_NOWAIT; 2616 err = filemap_update_page(iocb, mapping, iter, folio); 2617 if (err) 2618 goto err; 2619 } 2620 2621 return 0; 2622 err: 2623 if (err < 0) 2624 folio_put(folio); 2625 if (likely(--fbatch->nr)) 2626 return 0; 2627 if (err == AOP_TRUNCATED_PAGE) 2628 goto retry; 2629 return err; 2630 } 2631 2632 /** 2633 * filemap_read - Read data from the page cache. 2634 * @iocb: The iocb to read. 2635 * @iter: Destination for the data. 2636 * @already_read: Number of bytes already read by the caller. 2637 * 2638 * Copies data from the page cache. If the data is not currently present, 2639 * uses the readahead and read_folio address_space operations to fetch it. 2640 * 2641 * Return: Total number of bytes copied, including those already read by 2642 * the caller. If an error happens before any bytes are copied, returns 2643 * a negative error number. 2644 */ 2645 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2646 ssize_t already_read) 2647 { 2648 struct file *filp = iocb->ki_filp; 2649 struct file_ra_state *ra = &filp->f_ra; 2650 struct address_space *mapping = filp->f_mapping; 2651 struct inode *inode = mapping->host; 2652 struct folio_batch fbatch; 2653 int i, error = 0; 2654 bool writably_mapped; 2655 loff_t isize, end_offset; 2656 2657 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2658 return 0; 2659 if (unlikely(!iov_iter_count(iter))) 2660 return 0; 2661 2662 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2663 folio_batch_init(&fbatch); 2664 2665 do { 2666 cond_resched(); 2667 2668 /* 2669 * If we've already successfully copied some data, then we 2670 * can no longer safely return -EIOCBQUEUED. Hence mark 2671 * an async read NOWAIT at that point. 2672 */ 2673 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2674 iocb->ki_flags |= IOCB_NOWAIT; 2675 2676 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2677 break; 2678 2679 error = filemap_get_pages(iocb, iter, &fbatch); 2680 if (error < 0) 2681 break; 2682 2683 /* 2684 * i_size must be checked after we know the pages are Uptodate. 2685 * 2686 * Checking i_size after the check allows us to calculate 2687 * the correct value for "nr", which means the zero-filled 2688 * part of the page is not copied back to userspace (unless 2689 * another truncate extends the file - this is desired though). 2690 */ 2691 isize = i_size_read(inode); 2692 if (unlikely(iocb->ki_pos >= isize)) 2693 goto put_folios; 2694 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2695 2696 /* 2697 * Once we start copying data, we don't want to be touching any 2698 * cachelines that might be contended: 2699 */ 2700 writably_mapped = mapping_writably_mapped(mapping); 2701 2702 /* 2703 * When a sequential read accesses a page several times, only 2704 * mark it as accessed the first time. 2705 */ 2706 if (iocb->ki_pos >> PAGE_SHIFT != 2707 ra->prev_pos >> PAGE_SHIFT) 2708 folio_mark_accessed(fbatch.folios[0]); 2709 2710 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2711 struct folio *folio = fbatch.folios[i]; 2712 size_t fsize = folio_size(folio); 2713 size_t offset = iocb->ki_pos & (fsize - 1); 2714 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2715 fsize - offset); 2716 size_t copied; 2717 2718 if (end_offset < folio_pos(folio)) 2719 break; 2720 if (i > 0) 2721 folio_mark_accessed(folio); 2722 /* 2723 * If users can be writing to this folio using arbitrary 2724 * virtual addresses, take care of potential aliasing 2725 * before reading the folio on the kernel side. 2726 */ 2727 if (writably_mapped) 2728 flush_dcache_folio(folio); 2729 2730 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2731 2732 already_read += copied; 2733 iocb->ki_pos += copied; 2734 ra->prev_pos = iocb->ki_pos; 2735 2736 if (copied < bytes) { 2737 error = -EFAULT; 2738 break; 2739 } 2740 } 2741 put_folios: 2742 for (i = 0; i < folio_batch_count(&fbatch); i++) 2743 folio_put(fbatch.folios[i]); 2744 folio_batch_init(&fbatch); 2745 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2746 2747 file_accessed(filp); 2748 2749 return already_read ? already_read : error; 2750 } 2751 EXPORT_SYMBOL_GPL(filemap_read); 2752 2753 /** 2754 * generic_file_read_iter - generic filesystem read routine 2755 * @iocb: kernel I/O control block 2756 * @iter: destination for the data read 2757 * 2758 * This is the "read_iter()" routine for all filesystems 2759 * that can use the page cache directly. 2760 * 2761 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2762 * be returned when no data can be read without waiting for I/O requests 2763 * to complete; it doesn't prevent readahead. 2764 * 2765 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2766 * requests shall be made for the read or for readahead. When no data 2767 * can be read, -EAGAIN shall be returned. When readahead would be 2768 * triggered, a partial, possibly empty read shall be returned. 2769 * 2770 * Return: 2771 * * number of bytes copied, even for partial reads 2772 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2773 */ 2774 ssize_t 2775 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2776 { 2777 size_t count = iov_iter_count(iter); 2778 ssize_t retval = 0; 2779 2780 if (!count) 2781 return 0; /* skip atime */ 2782 2783 if (iocb->ki_flags & IOCB_DIRECT) { 2784 struct file *file = iocb->ki_filp; 2785 struct address_space *mapping = file->f_mapping; 2786 struct inode *inode = mapping->host; 2787 2788 if (iocb->ki_flags & IOCB_NOWAIT) { 2789 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2790 iocb->ki_pos + count - 1)) 2791 return -EAGAIN; 2792 } else { 2793 retval = filemap_write_and_wait_range(mapping, 2794 iocb->ki_pos, 2795 iocb->ki_pos + count - 1); 2796 if (retval < 0) 2797 return retval; 2798 } 2799 2800 file_accessed(file); 2801 2802 retval = mapping->a_ops->direct_IO(iocb, iter); 2803 if (retval >= 0) { 2804 iocb->ki_pos += retval; 2805 count -= retval; 2806 } 2807 if (retval != -EIOCBQUEUED) 2808 iov_iter_revert(iter, count - iov_iter_count(iter)); 2809 2810 /* 2811 * Btrfs can have a short DIO read if we encounter 2812 * compressed extents, so if there was an error, or if 2813 * we've already read everything we wanted to, or if 2814 * there was a short read because we hit EOF, go ahead 2815 * and return. Otherwise fallthrough to buffered io for 2816 * the rest of the read. Buffered reads will not work for 2817 * DAX files, so don't bother trying. 2818 */ 2819 if (retval < 0 || !count || IS_DAX(inode)) 2820 return retval; 2821 if (iocb->ki_pos >= i_size_read(inode)) 2822 return retval; 2823 } 2824 2825 return filemap_read(iocb, iter, retval); 2826 } 2827 EXPORT_SYMBOL(generic_file_read_iter); 2828 2829 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2830 struct address_space *mapping, struct folio *folio, 2831 loff_t start, loff_t end, bool seek_data) 2832 { 2833 const struct address_space_operations *ops = mapping->a_ops; 2834 size_t offset, bsz = i_blocksize(mapping->host); 2835 2836 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2837 return seek_data ? start : end; 2838 if (!ops->is_partially_uptodate) 2839 return seek_data ? end : start; 2840 2841 xas_pause(xas); 2842 rcu_read_unlock(); 2843 folio_lock(folio); 2844 if (unlikely(folio->mapping != mapping)) 2845 goto unlock; 2846 2847 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2848 2849 do { 2850 if (ops->is_partially_uptodate(folio, offset, bsz) == 2851 seek_data) 2852 break; 2853 start = (start + bsz) & ~(bsz - 1); 2854 offset += bsz; 2855 } while (offset < folio_size(folio)); 2856 unlock: 2857 folio_unlock(folio); 2858 rcu_read_lock(); 2859 return start; 2860 } 2861 2862 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2863 { 2864 if (xa_is_value(folio)) 2865 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2866 return folio_size(folio); 2867 } 2868 2869 /** 2870 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2871 * @mapping: Address space to search. 2872 * @start: First byte to consider. 2873 * @end: Limit of search (exclusive). 2874 * @whence: Either SEEK_HOLE or SEEK_DATA. 2875 * 2876 * If the page cache knows which blocks contain holes and which blocks 2877 * contain data, your filesystem can use this function to implement 2878 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2879 * entirely memory-based such as tmpfs, and filesystems which support 2880 * unwritten extents. 2881 * 2882 * Return: The requested offset on success, or -ENXIO if @whence specifies 2883 * SEEK_DATA and there is no data after @start. There is an implicit hole 2884 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2885 * and @end contain data. 2886 */ 2887 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2888 loff_t end, int whence) 2889 { 2890 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2891 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2892 bool seek_data = (whence == SEEK_DATA); 2893 struct folio *folio; 2894 2895 if (end <= start) 2896 return -ENXIO; 2897 2898 rcu_read_lock(); 2899 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2900 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2901 size_t seek_size; 2902 2903 if (start < pos) { 2904 if (!seek_data) 2905 goto unlock; 2906 start = pos; 2907 } 2908 2909 seek_size = seek_folio_size(&xas, folio); 2910 pos = round_up((u64)pos + 1, seek_size); 2911 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2912 seek_data); 2913 if (start < pos) 2914 goto unlock; 2915 if (start >= end) 2916 break; 2917 if (seek_size > PAGE_SIZE) 2918 xas_set(&xas, pos >> PAGE_SHIFT); 2919 if (!xa_is_value(folio)) 2920 folio_put(folio); 2921 } 2922 if (seek_data) 2923 start = -ENXIO; 2924 unlock: 2925 rcu_read_unlock(); 2926 if (folio && !xa_is_value(folio)) 2927 folio_put(folio); 2928 if (start > end) 2929 return end; 2930 return start; 2931 } 2932 2933 #ifdef CONFIG_MMU 2934 #define MMAP_LOTSAMISS (100) 2935 /* 2936 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2937 * @vmf - the vm_fault for this fault. 2938 * @folio - the folio to lock. 2939 * @fpin - the pointer to the file we may pin (or is already pinned). 2940 * 2941 * This works similar to lock_folio_or_retry in that it can drop the 2942 * mmap_lock. It differs in that it actually returns the folio locked 2943 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2944 * to drop the mmap_lock then fpin will point to the pinned file and 2945 * needs to be fput()'ed at a later point. 2946 */ 2947 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2948 struct file **fpin) 2949 { 2950 if (folio_trylock(folio)) 2951 return 1; 2952 2953 /* 2954 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2955 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2956 * is supposed to work. We have way too many special cases.. 2957 */ 2958 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2959 return 0; 2960 2961 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2962 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2963 if (__folio_lock_killable(folio)) { 2964 /* 2965 * We didn't have the right flags to drop the mmap_lock, 2966 * but all fault_handlers only check for fatal signals 2967 * if we return VM_FAULT_RETRY, so we need to drop the 2968 * mmap_lock here and return 0 if we don't have a fpin. 2969 */ 2970 if (*fpin == NULL) 2971 mmap_read_unlock(vmf->vma->vm_mm); 2972 return 0; 2973 } 2974 } else 2975 __folio_lock(folio); 2976 2977 return 1; 2978 } 2979 2980 /* 2981 * Synchronous readahead happens when we don't even find a page in the page 2982 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2983 * to drop the mmap sem we return the file that was pinned in order for us to do 2984 * that. If we didn't pin a file then we return NULL. The file that is 2985 * returned needs to be fput()'ed when we're done with it. 2986 */ 2987 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2988 { 2989 struct file *file = vmf->vma->vm_file; 2990 struct file_ra_state *ra = &file->f_ra; 2991 struct address_space *mapping = file->f_mapping; 2992 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2993 struct file *fpin = NULL; 2994 unsigned long vm_flags = vmf->vma->vm_flags; 2995 unsigned int mmap_miss; 2996 2997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2998 /* Use the readahead code, even if readahead is disabled */ 2999 if (vm_flags & VM_HUGEPAGE) { 3000 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3001 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3002 ra->size = HPAGE_PMD_NR; 3003 /* 3004 * Fetch two PMD folios, so we get the chance to actually 3005 * readahead, unless we've been told not to. 3006 */ 3007 if (!(vm_flags & VM_RAND_READ)) 3008 ra->size *= 2; 3009 ra->async_size = HPAGE_PMD_NR; 3010 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3011 return fpin; 3012 } 3013 #endif 3014 3015 /* If we don't want any read-ahead, don't bother */ 3016 if (vm_flags & VM_RAND_READ) 3017 return fpin; 3018 if (!ra->ra_pages) 3019 return fpin; 3020 3021 if (vm_flags & VM_SEQ_READ) { 3022 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3023 page_cache_sync_ra(&ractl, ra->ra_pages); 3024 return fpin; 3025 } 3026 3027 /* Avoid banging the cache line if not needed */ 3028 mmap_miss = READ_ONCE(ra->mmap_miss); 3029 if (mmap_miss < MMAP_LOTSAMISS * 10) 3030 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3031 3032 /* 3033 * Do we miss much more than hit in this file? If so, 3034 * stop bothering with read-ahead. It will only hurt. 3035 */ 3036 if (mmap_miss > MMAP_LOTSAMISS) 3037 return fpin; 3038 3039 /* 3040 * mmap read-around 3041 */ 3042 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3043 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3044 ra->size = ra->ra_pages; 3045 ra->async_size = ra->ra_pages / 4; 3046 ractl._index = ra->start; 3047 page_cache_ra_order(&ractl, ra, 0); 3048 return fpin; 3049 } 3050 3051 /* 3052 * Asynchronous readahead happens when we find the page and PG_readahead, 3053 * so we want to possibly extend the readahead further. We return the file that 3054 * was pinned if we have to drop the mmap_lock in order to do IO. 3055 */ 3056 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3057 struct folio *folio) 3058 { 3059 struct file *file = vmf->vma->vm_file; 3060 struct file_ra_state *ra = &file->f_ra; 3061 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3062 struct file *fpin = NULL; 3063 unsigned int mmap_miss; 3064 3065 /* If we don't want any read-ahead, don't bother */ 3066 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3067 return fpin; 3068 3069 mmap_miss = READ_ONCE(ra->mmap_miss); 3070 if (mmap_miss) 3071 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3072 3073 if (folio_test_readahead(folio)) { 3074 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3075 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3076 } 3077 return fpin; 3078 } 3079 3080 /** 3081 * filemap_fault - read in file data for page fault handling 3082 * @vmf: struct vm_fault containing details of the fault 3083 * 3084 * filemap_fault() is invoked via the vma operations vector for a 3085 * mapped memory region to read in file data during a page fault. 3086 * 3087 * The goto's are kind of ugly, but this streamlines the normal case of having 3088 * it in the page cache, and handles the special cases reasonably without 3089 * having a lot of duplicated code. 3090 * 3091 * vma->vm_mm->mmap_lock must be held on entry. 3092 * 3093 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3094 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3095 * 3096 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3097 * has not been released. 3098 * 3099 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3100 * 3101 * Return: bitwise-OR of %VM_FAULT_ codes. 3102 */ 3103 vm_fault_t filemap_fault(struct vm_fault *vmf) 3104 { 3105 int error; 3106 struct file *file = vmf->vma->vm_file; 3107 struct file *fpin = NULL; 3108 struct address_space *mapping = file->f_mapping; 3109 struct inode *inode = mapping->host; 3110 pgoff_t max_idx, index = vmf->pgoff; 3111 struct folio *folio; 3112 vm_fault_t ret = 0; 3113 bool mapping_locked = false; 3114 3115 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3116 if (unlikely(index >= max_idx)) 3117 return VM_FAULT_SIGBUS; 3118 3119 /* 3120 * Do we have something in the page cache already? 3121 */ 3122 folio = filemap_get_folio(mapping, index); 3123 if (likely(folio)) { 3124 /* 3125 * We found the page, so try async readahead before waiting for 3126 * the lock. 3127 */ 3128 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3129 fpin = do_async_mmap_readahead(vmf, folio); 3130 if (unlikely(!folio_test_uptodate(folio))) { 3131 filemap_invalidate_lock_shared(mapping); 3132 mapping_locked = true; 3133 } 3134 } else { 3135 /* No page in the page cache at all */ 3136 count_vm_event(PGMAJFAULT); 3137 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3138 ret = VM_FAULT_MAJOR; 3139 fpin = do_sync_mmap_readahead(vmf); 3140 retry_find: 3141 /* 3142 * See comment in filemap_create_folio() why we need 3143 * invalidate_lock 3144 */ 3145 if (!mapping_locked) { 3146 filemap_invalidate_lock_shared(mapping); 3147 mapping_locked = true; 3148 } 3149 folio = __filemap_get_folio(mapping, index, 3150 FGP_CREAT|FGP_FOR_MMAP, 3151 vmf->gfp_mask); 3152 if (!folio) { 3153 if (fpin) 3154 goto out_retry; 3155 filemap_invalidate_unlock_shared(mapping); 3156 return VM_FAULT_OOM; 3157 } 3158 } 3159 3160 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3161 goto out_retry; 3162 3163 /* Did it get truncated? */ 3164 if (unlikely(folio->mapping != mapping)) { 3165 folio_unlock(folio); 3166 folio_put(folio); 3167 goto retry_find; 3168 } 3169 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3170 3171 /* 3172 * We have a locked page in the page cache, now we need to check 3173 * that it's up-to-date. If not, it is going to be due to an error. 3174 */ 3175 if (unlikely(!folio_test_uptodate(folio))) { 3176 /* 3177 * The page was in cache and uptodate and now it is not. 3178 * Strange but possible since we didn't hold the page lock all 3179 * the time. Let's drop everything get the invalidate lock and 3180 * try again. 3181 */ 3182 if (!mapping_locked) { 3183 folio_unlock(folio); 3184 folio_put(folio); 3185 goto retry_find; 3186 } 3187 goto page_not_uptodate; 3188 } 3189 3190 /* 3191 * We've made it this far and we had to drop our mmap_lock, now is the 3192 * time to return to the upper layer and have it re-find the vma and 3193 * redo the fault. 3194 */ 3195 if (fpin) { 3196 folio_unlock(folio); 3197 goto out_retry; 3198 } 3199 if (mapping_locked) 3200 filemap_invalidate_unlock_shared(mapping); 3201 3202 /* 3203 * Found the page and have a reference on it. 3204 * We must recheck i_size under page lock. 3205 */ 3206 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3207 if (unlikely(index >= max_idx)) { 3208 folio_unlock(folio); 3209 folio_put(folio); 3210 return VM_FAULT_SIGBUS; 3211 } 3212 3213 vmf->page = folio_file_page(folio, index); 3214 return ret | VM_FAULT_LOCKED; 3215 3216 page_not_uptodate: 3217 /* 3218 * Umm, take care of errors if the page isn't up-to-date. 3219 * Try to re-read it _once_. We do this synchronously, 3220 * because there really aren't any performance issues here 3221 * and we need to check for errors. 3222 */ 3223 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3224 error = filemap_read_folio(file, mapping, folio); 3225 if (fpin) 3226 goto out_retry; 3227 folio_put(folio); 3228 3229 if (!error || error == AOP_TRUNCATED_PAGE) 3230 goto retry_find; 3231 filemap_invalidate_unlock_shared(mapping); 3232 3233 return VM_FAULT_SIGBUS; 3234 3235 out_retry: 3236 /* 3237 * We dropped the mmap_lock, we need to return to the fault handler to 3238 * re-find the vma and come back and find our hopefully still populated 3239 * page. 3240 */ 3241 if (folio) 3242 folio_put(folio); 3243 if (mapping_locked) 3244 filemap_invalidate_unlock_shared(mapping); 3245 if (fpin) 3246 fput(fpin); 3247 return ret | VM_FAULT_RETRY; 3248 } 3249 EXPORT_SYMBOL(filemap_fault); 3250 3251 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3252 { 3253 struct mm_struct *mm = vmf->vma->vm_mm; 3254 3255 /* Huge page is mapped? No need to proceed. */ 3256 if (pmd_trans_huge(*vmf->pmd)) { 3257 unlock_page(page); 3258 put_page(page); 3259 return true; 3260 } 3261 3262 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3263 vm_fault_t ret = do_set_pmd(vmf, page); 3264 if (!ret) { 3265 /* The page is mapped successfully, reference consumed. */ 3266 unlock_page(page); 3267 return true; 3268 } 3269 } 3270 3271 if (pmd_none(*vmf->pmd)) 3272 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3273 3274 /* See comment in handle_pte_fault() */ 3275 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3276 unlock_page(page); 3277 put_page(page); 3278 return true; 3279 } 3280 3281 return false; 3282 } 3283 3284 static struct folio *next_uptodate_page(struct folio *folio, 3285 struct address_space *mapping, 3286 struct xa_state *xas, pgoff_t end_pgoff) 3287 { 3288 unsigned long max_idx; 3289 3290 do { 3291 if (!folio) 3292 return NULL; 3293 if (xas_retry(xas, folio)) 3294 continue; 3295 if (xa_is_value(folio)) 3296 continue; 3297 if (folio_test_locked(folio)) 3298 continue; 3299 if (!folio_try_get_rcu(folio)) 3300 continue; 3301 /* Has the page moved or been split? */ 3302 if (unlikely(folio != xas_reload(xas))) 3303 goto skip; 3304 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3305 goto skip; 3306 if (!folio_trylock(folio)) 3307 goto skip; 3308 if (folio->mapping != mapping) 3309 goto unlock; 3310 if (!folio_test_uptodate(folio)) 3311 goto unlock; 3312 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3313 if (xas->xa_index >= max_idx) 3314 goto unlock; 3315 return folio; 3316 unlock: 3317 folio_unlock(folio); 3318 skip: 3319 folio_put(folio); 3320 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3321 3322 return NULL; 3323 } 3324 3325 static inline struct folio *first_map_page(struct address_space *mapping, 3326 struct xa_state *xas, 3327 pgoff_t end_pgoff) 3328 { 3329 return next_uptodate_page(xas_find(xas, end_pgoff), 3330 mapping, xas, end_pgoff); 3331 } 3332 3333 static inline struct folio *next_map_page(struct address_space *mapping, 3334 struct xa_state *xas, 3335 pgoff_t end_pgoff) 3336 { 3337 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3338 mapping, xas, end_pgoff); 3339 } 3340 3341 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3342 pgoff_t start_pgoff, pgoff_t end_pgoff) 3343 { 3344 struct vm_area_struct *vma = vmf->vma; 3345 struct file *file = vma->vm_file; 3346 struct address_space *mapping = file->f_mapping; 3347 pgoff_t last_pgoff = start_pgoff; 3348 unsigned long addr; 3349 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3350 struct folio *folio; 3351 struct page *page; 3352 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3353 vm_fault_t ret = 0; 3354 3355 rcu_read_lock(); 3356 folio = first_map_page(mapping, &xas, end_pgoff); 3357 if (!folio) 3358 goto out; 3359 3360 if (filemap_map_pmd(vmf, &folio->page)) { 3361 ret = VM_FAULT_NOPAGE; 3362 goto out; 3363 } 3364 3365 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3366 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3367 do { 3368 again: 3369 page = folio_file_page(folio, xas.xa_index); 3370 if (PageHWPoison(page)) 3371 goto unlock; 3372 3373 if (mmap_miss > 0) 3374 mmap_miss--; 3375 3376 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3377 vmf->pte += xas.xa_index - last_pgoff; 3378 last_pgoff = xas.xa_index; 3379 3380 /* 3381 * NOTE: If there're PTE markers, we'll leave them to be 3382 * handled in the specific fault path, and it'll prohibit the 3383 * fault-around logic. 3384 */ 3385 if (!pte_none(*vmf->pte)) 3386 goto unlock; 3387 3388 /* We're about to handle the fault */ 3389 if (vmf->address == addr) 3390 ret = VM_FAULT_NOPAGE; 3391 3392 do_set_pte(vmf, page, addr); 3393 /* no need to invalidate: a not-present page won't be cached */ 3394 update_mmu_cache(vma, addr, vmf->pte); 3395 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3396 xas.xa_index++; 3397 folio_ref_inc(folio); 3398 goto again; 3399 } 3400 folio_unlock(folio); 3401 continue; 3402 unlock: 3403 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3404 xas.xa_index++; 3405 goto again; 3406 } 3407 folio_unlock(folio); 3408 folio_put(folio); 3409 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3410 pte_unmap_unlock(vmf->pte, vmf->ptl); 3411 out: 3412 rcu_read_unlock(); 3413 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3414 return ret; 3415 } 3416 EXPORT_SYMBOL(filemap_map_pages); 3417 3418 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3419 { 3420 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3421 struct folio *folio = page_folio(vmf->page); 3422 vm_fault_t ret = VM_FAULT_LOCKED; 3423 3424 sb_start_pagefault(mapping->host->i_sb); 3425 file_update_time(vmf->vma->vm_file); 3426 folio_lock(folio); 3427 if (folio->mapping != mapping) { 3428 folio_unlock(folio); 3429 ret = VM_FAULT_NOPAGE; 3430 goto out; 3431 } 3432 /* 3433 * We mark the folio dirty already here so that when freeze is in 3434 * progress, we are guaranteed that writeback during freezing will 3435 * see the dirty folio and writeprotect it again. 3436 */ 3437 folio_mark_dirty(folio); 3438 folio_wait_stable(folio); 3439 out: 3440 sb_end_pagefault(mapping->host->i_sb); 3441 return ret; 3442 } 3443 3444 const struct vm_operations_struct generic_file_vm_ops = { 3445 .fault = filemap_fault, 3446 .map_pages = filemap_map_pages, 3447 .page_mkwrite = filemap_page_mkwrite, 3448 }; 3449 3450 /* This is used for a general mmap of a disk file */ 3451 3452 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3453 { 3454 struct address_space *mapping = file->f_mapping; 3455 3456 if (!mapping->a_ops->read_folio) 3457 return -ENOEXEC; 3458 file_accessed(file); 3459 vma->vm_ops = &generic_file_vm_ops; 3460 return 0; 3461 } 3462 3463 /* 3464 * This is for filesystems which do not implement ->writepage. 3465 */ 3466 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3467 { 3468 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3469 return -EINVAL; 3470 return generic_file_mmap(file, vma); 3471 } 3472 #else 3473 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3474 { 3475 return VM_FAULT_SIGBUS; 3476 } 3477 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3478 { 3479 return -ENOSYS; 3480 } 3481 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3482 { 3483 return -ENOSYS; 3484 } 3485 #endif /* CONFIG_MMU */ 3486 3487 EXPORT_SYMBOL(filemap_page_mkwrite); 3488 EXPORT_SYMBOL(generic_file_mmap); 3489 EXPORT_SYMBOL(generic_file_readonly_mmap); 3490 3491 static struct folio *do_read_cache_folio(struct address_space *mapping, 3492 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3493 { 3494 struct folio *folio; 3495 int err; 3496 3497 if (!filler) 3498 filler = mapping->a_ops->read_folio; 3499 repeat: 3500 folio = filemap_get_folio(mapping, index); 3501 if (!folio) { 3502 folio = filemap_alloc_folio(gfp, 0); 3503 if (!folio) 3504 return ERR_PTR(-ENOMEM); 3505 err = filemap_add_folio(mapping, folio, index, gfp); 3506 if (unlikely(err)) { 3507 folio_put(folio); 3508 if (err == -EEXIST) 3509 goto repeat; 3510 /* Presumably ENOMEM for xarray node */ 3511 return ERR_PTR(err); 3512 } 3513 3514 filler: 3515 err = filler(file, folio); 3516 if (err < 0) { 3517 folio_put(folio); 3518 return ERR_PTR(err); 3519 } 3520 3521 folio_wait_locked(folio); 3522 if (!folio_test_uptodate(folio)) { 3523 folio_put(folio); 3524 return ERR_PTR(-EIO); 3525 } 3526 3527 goto out; 3528 } 3529 if (folio_test_uptodate(folio)) 3530 goto out; 3531 3532 if (!folio_trylock(folio)) { 3533 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3534 goto repeat; 3535 } 3536 3537 /* Folio was truncated from mapping */ 3538 if (!folio->mapping) { 3539 folio_unlock(folio); 3540 folio_put(folio); 3541 goto repeat; 3542 } 3543 3544 /* Someone else locked and filled the page in a very small window */ 3545 if (folio_test_uptodate(folio)) { 3546 folio_unlock(folio); 3547 goto out; 3548 } 3549 3550 /* 3551 * A previous I/O error may have been due to temporary 3552 * failures. 3553 * Clear page error before actual read, PG_error will be 3554 * set again if read page fails. 3555 */ 3556 folio_clear_error(folio); 3557 goto filler; 3558 3559 out: 3560 folio_mark_accessed(folio); 3561 return folio; 3562 } 3563 3564 /** 3565 * read_cache_folio - Read into page cache, fill it if needed. 3566 * @mapping: The address_space to read from. 3567 * @index: The index to read. 3568 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3569 * @file: Passed to filler function, may be NULL if not required. 3570 * 3571 * Read one page into the page cache. If it succeeds, the folio returned 3572 * will contain @index, but it may not be the first page of the folio. 3573 * 3574 * If the filler function returns an error, it will be returned to the 3575 * caller. 3576 * 3577 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3578 * Return: An uptodate folio on success, ERR_PTR() on failure. 3579 */ 3580 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3581 filler_t filler, struct file *file) 3582 { 3583 return do_read_cache_folio(mapping, index, filler, file, 3584 mapping_gfp_mask(mapping)); 3585 } 3586 EXPORT_SYMBOL(read_cache_folio); 3587 3588 static struct page *do_read_cache_page(struct address_space *mapping, 3589 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3590 { 3591 struct folio *folio; 3592 3593 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3594 if (IS_ERR(folio)) 3595 return &folio->page; 3596 return folio_file_page(folio, index); 3597 } 3598 3599 struct page *read_cache_page(struct address_space *mapping, 3600 pgoff_t index, filler_t *filler, struct file *file) 3601 { 3602 return do_read_cache_page(mapping, index, filler, file, 3603 mapping_gfp_mask(mapping)); 3604 } 3605 EXPORT_SYMBOL(read_cache_page); 3606 3607 /** 3608 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3609 * @mapping: the page's address_space 3610 * @index: the page index 3611 * @gfp: the page allocator flags to use if allocating 3612 * 3613 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3614 * any new page allocations done using the specified allocation flags. 3615 * 3616 * If the page does not get brought uptodate, return -EIO. 3617 * 3618 * The function expects mapping->invalidate_lock to be already held. 3619 * 3620 * Return: up to date page on success, ERR_PTR() on failure. 3621 */ 3622 struct page *read_cache_page_gfp(struct address_space *mapping, 3623 pgoff_t index, 3624 gfp_t gfp) 3625 { 3626 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3627 } 3628 EXPORT_SYMBOL(read_cache_page_gfp); 3629 3630 /* 3631 * Warn about a page cache invalidation failure during a direct I/O write. 3632 */ 3633 void dio_warn_stale_pagecache(struct file *filp) 3634 { 3635 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3636 char pathname[128]; 3637 char *path; 3638 3639 errseq_set(&filp->f_mapping->wb_err, -EIO); 3640 if (__ratelimit(&_rs)) { 3641 path = file_path(filp, pathname, sizeof(pathname)); 3642 if (IS_ERR(path)) 3643 path = "(unknown)"; 3644 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3645 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3646 current->comm); 3647 } 3648 } 3649 3650 ssize_t 3651 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3652 { 3653 struct file *file = iocb->ki_filp; 3654 struct address_space *mapping = file->f_mapping; 3655 struct inode *inode = mapping->host; 3656 loff_t pos = iocb->ki_pos; 3657 ssize_t written; 3658 size_t write_len; 3659 pgoff_t end; 3660 3661 write_len = iov_iter_count(from); 3662 end = (pos + write_len - 1) >> PAGE_SHIFT; 3663 3664 if (iocb->ki_flags & IOCB_NOWAIT) { 3665 /* If there are pages to writeback, return */ 3666 if (filemap_range_has_page(file->f_mapping, pos, 3667 pos + write_len - 1)) 3668 return -EAGAIN; 3669 } else { 3670 written = filemap_write_and_wait_range(mapping, pos, 3671 pos + write_len - 1); 3672 if (written) 3673 goto out; 3674 } 3675 3676 /* 3677 * After a write we want buffered reads to be sure to go to disk to get 3678 * the new data. We invalidate clean cached page from the region we're 3679 * about to write. We do this *before* the write so that we can return 3680 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3681 */ 3682 written = invalidate_inode_pages2_range(mapping, 3683 pos >> PAGE_SHIFT, end); 3684 /* 3685 * If a page can not be invalidated, return 0 to fall back 3686 * to buffered write. 3687 */ 3688 if (written) { 3689 if (written == -EBUSY) 3690 return 0; 3691 goto out; 3692 } 3693 3694 written = mapping->a_ops->direct_IO(iocb, from); 3695 3696 /* 3697 * Finally, try again to invalidate clean pages which might have been 3698 * cached by non-direct readahead, or faulted in by get_user_pages() 3699 * if the source of the write was an mmap'ed region of the file 3700 * we're writing. Either one is a pretty crazy thing to do, 3701 * so we don't support it 100%. If this invalidation 3702 * fails, tough, the write still worked... 3703 * 3704 * Most of the time we do not need this since dio_complete() will do 3705 * the invalidation for us. However there are some file systems that 3706 * do not end up with dio_complete() being called, so let's not break 3707 * them by removing it completely. 3708 * 3709 * Noticeable example is a blkdev_direct_IO(). 3710 * 3711 * Skip invalidation for async writes or if mapping has no pages. 3712 */ 3713 if (written > 0 && mapping->nrpages && 3714 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3715 dio_warn_stale_pagecache(file); 3716 3717 if (written > 0) { 3718 pos += written; 3719 write_len -= written; 3720 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3721 i_size_write(inode, pos); 3722 mark_inode_dirty(inode); 3723 } 3724 iocb->ki_pos = pos; 3725 } 3726 if (written != -EIOCBQUEUED) 3727 iov_iter_revert(from, write_len - iov_iter_count(from)); 3728 out: 3729 return written; 3730 } 3731 EXPORT_SYMBOL(generic_file_direct_write); 3732 3733 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3734 { 3735 struct file *file = iocb->ki_filp; 3736 loff_t pos = iocb->ki_pos; 3737 struct address_space *mapping = file->f_mapping; 3738 const struct address_space_operations *a_ops = mapping->a_ops; 3739 long status = 0; 3740 ssize_t written = 0; 3741 3742 do { 3743 struct page *page; 3744 unsigned long offset; /* Offset into pagecache page */ 3745 unsigned long bytes; /* Bytes to write to page */ 3746 size_t copied; /* Bytes copied from user */ 3747 void *fsdata; 3748 3749 offset = (pos & (PAGE_SIZE - 1)); 3750 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3751 iov_iter_count(i)); 3752 3753 again: 3754 /* 3755 * Bring in the user page that we will copy from _first_. 3756 * Otherwise there's a nasty deadlock on copying from the 3757 * same page as we're writing to, without it being marked 3758 * up-to-date. 3759 */ 3760 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3761 status = -EFAULT; 3762 break; 3763 } 3764 3765 if (fatal_signal_pending(current)) { 3766 status = -EINTR; 3767 break; 3768 } 3769 3770 status = a_ops->write_begin(file, mapping, pos, bytes, 3771 &page, &fsdata); 3772 if (unlikely(status < 0)) 3773 break; 3774 3775 if (mapping_writably_mapped(mapping)) 3776 flush_dcache_page(page); 3777 3778 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3779 flush_dcache_page(page); 3780 3781 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3782 page, fsdata); 3783 if (unlikely(status != copied)) { 3784 iov_iter_revert(i, copied - max(status, 0L)); 3785 if (unlikely(status < 0)) 3786 break; 3787 } 3788 cond_resched(); 3789 3790 if (unlikely(status == 0)) { 3791 /* 3792 * A short copy made ->write_end() reject the 3793 * thing entirely. Might be memory poisoning 3794 * halfway through, might be a race with munmap, 3795 * might be severe memory pressure. 3796 */ 3797 if (copied) 3798 bytes = copied; 3799 goto again; 3800 } 3801 pos += status; 3802 written += status; 3803 3804 balance_dirty_pages_ratelimited(mapping); 3805 } while (iov_iter_count(i)); 3806 3807 return written ? written : status; 3808 } 3809 EXPORT_SYMBOL(generic_perform_write); 3810 3811 /** 3812 * __generic_file_write_iter - write data to a file 3813 * @iocb: IO state structure (file, offset, etc.) 3814 * @from: iov_iter with data to write 3815 * 3816 * This function does all the work needed for actually writing data to a 3817 * file. It does all basic checks, removes SUID from the file, updates 3818 * modification times and calls proper subroutines depending on whether we 3819 * do direct IO or a standard buffered write. 3820 * 3821 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3822 * object which does not need locking at all. 3823 * 3824 * This function does *not* take care of syncing data in case of O_SYNC write. 3825 * A caller has to handle it. This is mainly due to the fact that we want to 3826 * avoid syncing under i_rwsem. 3827 * 3828 * Return: 3829 * * number of bytes written, even for truncated writes 3830 * * negative error code if no data has been written at all 3831 */ 3832 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3833 { 3834 struct file *file = iocb->ki_filp; 3835 struct address_space *mapping = file->f_mapping; 3836 struct inode *inode = mapping->host; 3837 ssize_t written = 0; 3838 ssize_t err; 3839 ssize_t status; 3840 3841 /* We can write back this queue in page reclaim */ 3842 current->backing_dev_info = inode_to_bdi(inode); 3843 err = file_remove_privs(file); 3844 if (err) 3845 goto out; 3846 3847 err = file_update_time(file); 3848 if (err) 3849 goto out; 3850 3851 if (iocb->ki_flags & IOCB_DIRECT) { 3852 loff_t pos, endbyte; 3853 3854 written = generic_file_direct_write(iocb, from); 3855 /* 3856 * If the write stopped short of completing, fall back to 3857 * buffered writes. Some filesystems do this for writes to 3858 * holes, for example. For DAX files, a buffered write will 3859 * not succeed (even if it did, DAX does not handle dirty 3860 * page-cache pages correctly). 3861 */ 3862 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3863 goto out; 3864 3865 pos = iocb->ki_pos; 3866 status = generic_perform_write(iocb, from); 3867 /* 3868 * If generic_perform_write() returned a synchronous error 3869 * then we want to return the number of bytes which were 3870 * direct-written, or the error code if that was zero. Note 3871 * that this differs from normal direct-io semantics, which 3872 * will return -EFOO even if some bytes were written. 3873 */ 3874 if (unlikely(status < 0)) { 3875 err = status; 3876 goto out; 3877 } 3878 /* 3879 * We need to ensure that the page cache pages are written to 3880 * disk and invalidated to preserve the expected O_DIRECT 3881 * semantics. 3882 */ 3883 endbyte = pos + status - 1; 3884 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3885 if (err == 0) { 3886 iocb->ki_pos = endbyte + 1; 3887 written += status; 3888 invalidate_mapping_pages(mapping, 3889 pos >> PAGE_SHIFT, 3890 endbyte >> PAGE_SHIFT); 3891 } else { 3892 /* 3893 * We don't know how much we wrote, so just return 3894 * the number of bytes which were direct-written 3895 */ 3896 } 3897 } else { 3898 written = generic_perform_write(iocb, from); 3899 if (likely(written > 0)) 3900 iocb->ki_pos += written; 3901 } 3902 out: 3903 current->backing_dev_info = NULL; 3904 return written ? written : err; 3905 } 3906 EXPORT_SYMBOL(__generic_file_write_iter); 3907 3908 /** 3909 * generic_file_write_iter - write data to a file 3910 * @iocb: IO state structure 3911 * @from: iov_iter with data to write 3912 * 3913 * This is a wrapper around __generic_file_write_iter() to be used by most 3914 * filesystems. It takes care of syncing the file in case of O_SYNC file 3915 * and acquires i_rwsem as needed. 3916 * Return: 3917 * * negative error code if no data has been written at all of 3918 * vfs_fsync_range() failed for a synchronous write 3919 * * number of bytes written, even for truncated writes 3920 */ 3921 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3922 { 3923 struct file *file = iocb->ki_filp; 3924 struct inode *inode = file->f_mapping->host; 3925 ssize_t ret; 3926 3927 inode_lock(inode); 3928 ret = generic_write_checks(iocb, from); 3929 if (ret > 0) 3930 ret = __generic_file_write_iter(iocb, from); 3931 inode_unlock(inode); 3932 3933 if (ret > 0) 3934 ret = generic_write_sync(iocb, ret); 3935 return ret; 3936 } 3937 EXPORT_SYMBOL(generic_file_write_iter); 3938 3939 /** 3940 * filemap_release_folio() - Release fs-specific metadata on a folio. 3941 * @folio: The folio which the kernel is trying to free. 3942 * @gfp: Memory allocation flags (and I/O mode). 3943 * 3944 * The address_space is trying to release any data attached to a folio 3945 * (presumably at folio->private). 3946 * 3947 * This will also be called if the private_2 flag is set on a page, 3948 * indicating that the folio has other metadata associated with it. 3949 * 3950 * The @gfp argument specifies whether I/O may be performed to release 3951 * this page (__GFP_IO), and whether the call may block 3952 * (__GFP_RECLAIM & __GFP_FS). 3953 * 3954 * Return: %true if the release was successful, otherwise %false. 3955 */ 3956 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3957 { 3958 struct address_space * const mapping = folio->mapping; 3959 3960 BUG_ON(!folio_test_locked(folio)); 3961 if (folio_test_writeback(folio)) 3962 return false; 3963 3964 if (mapping && mapping->a_ops->release_folio) 3965 return mapping->a_ops->release_folio(folio, gfp); 3966 return try_to_free_buffers(folio); 3967 } 3968 EXPORT_SYMBOL(filemap_release_folio); 3969