xref: /openbmc/linux/mm/filemap.c (revision d8eabc37)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
45 
46 /*
47  * FIXME: remove all knowledge of the buffer layer from the core VM
48  */
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50 
51 #include <asm/mman.h>
52 
53 /*
54  * Shared mappings implemented 30.11.1994. It's not fully working yet,
55  * though.
56  *
57  * Shared mappings now work. 15.8.1995  Bruno.
58  *
59  * finished 'unifying' the page and buffer cache and SMP-threaded the
60  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61  *
62  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63  */
64 
65 /*
66  * Lock ordering:
67  *
68  *  ->i_mmap_rwsem		(truncate_pagecache)
69  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
70  *      ->swap_lock		(exclusive_swap_page, others)
71  *        ->i_pages lock
72  *
73  *  ->i_mutex
74  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
75  *
76  *  ->mmap_sem
77  *    ->i_mmap_rwsem
78  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
79  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
80  *
81  *  ->mmap_sem
82  *    ->lock_page		(access_process_vm)
83  *
84  *  ->i_mutex			(generic_perform_write)
85  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
86  *
87  *  bdi->wb.list_lock
88  *    sb_lock			(fs/fs-writeback.c)
89  *    ->i_pages lock		(__sync_single_inode)
90  *
91  *  ->i_mmap_rwsem
92  *    ->anon_vma.lock		(vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock		(try_to_unmap_one)
99  *    ->private_lock		(try_to_unmap_one)
100  *    ->i_pages lock		(try_to_unmap_one)
101  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
102  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
103  *    ->private_lock		(page_remove_rmap->set_page_dirty)
104  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
105  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
106  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
107  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
108  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
109  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
110  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
111  *
112  * ->i_mmap_rwsem
113  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
114  */
115 
116 static void page_cache_delete(struct address_space *mapping,
117 				   struct page *page, void *shadow)
118 {
119 	XA_STATE(xas, &mapping->i_pages, page->index);
120 	unsigned int nr = 1;
121 
122 	mapping_set_update(&xas, mapping);
123 
124 	/* hugetlb pages are represented by a single entry in the xarray */
125 	if (!PageHuge(page)) {
126 		xas_set_order(&xas, page->index, compound_order(page));
127 		nr = 1U << compound_order(page);
128 	}
129 
130 	VM_BUG_ON_PAGE(!PageLocked(page), page);
131 	VM_BUG_ON_PAGE(PageTail(page), page);
132 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
133 
134 	xas_store(&xas, shadow);
135 	xas_init_marks(&xas);
136 
137 	page->mapping = NULL;
138 	/* Leave page->index set: truncation lookup relies upon it */
139 
140 	if (shadow) {
141 		mapping->nrexceptional += nr;
142 		/*
143 		 * Make sure the nrexceptional update is committed before
144 		 * the nrpages update so that final truncate racing
145 		 * with reclaim does not see both counters 0 at the
146 		 * same time and miss a shadow entry.
147 		 */
148 		smp_wmb();
149 	}
150 	mapping->nrpages -= nr;
151 }
152 
153 static void unaccount_page_cache_page(struct address_space *mapping,
154 				      struct page *page)
155 {
156 	int nr;
157 
158 	/*
159 	 * if we're uptodate, flush out into the cleancache, otherwise
160 	 * invalidate any existing cleancache entries.  We can't leave
161 	 * stale data around in the cleancache once our page is gone
162 	 */
163 	if (PageUptodate(page) && PageMappedToDisk(page))
164 		cleancache_put_page(page);
165 	else
166 		cleancache_invalidate_page(mapping, page);
167 
168 	VM_BUG_ON_PAGE(PageTail(page), page);
169 	VM_BUG_ON_PAGE(page_mapped(page), page);
170 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 		int mapcount;
172 
173 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
174 			 current->comm, page_to_pfn(page));
175 		dump_page(page, "still mapped when deleted");
176 		dump_stack();
177 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178 
179 		mapcount = page_mapcount(page);
180 		if (mapping_exiting(mapping) &&
181 		    page_count(page) >= mapcount + 2) {
182 			/*
183 			 * All vmas have already been torn down, so it's
184 			 * a good bet that actually the page is unmapped,
185 			 * and we'd prefer not to leak it: if we're wrong,
186 			 * some other bad page check should catch it later.
187 			 */
188 			page_mapcount_reset(page);
189 			page_ref_sub(page, mapcount);
190 		}
191 	}
192 
193 	/* hugetlb pages do not participate in page cache accounting. */
194 	if (PageHuge(page))
195 		return;
196 
197 	nr = hpage_nr_pages(page);
198 
199 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 	if (PageSwapBacked(page)) {
201 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 		if (PageTransHuge(page))
203 			__dec_node_page_state(page, NR_SHMEM_THPS);
204 	} else {
205 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
206 	}
207 
208 	/*
209 	 * At this point page must be either written or cleaned by
210 	 * truncate.  Dirty page here signals a bug and loss of
211 	 * unwritten data.
212 	 *
213 	 * This fixes dirty accounting after removing the page entirely
214 	 * but leaves PageDirty set: it has no effect for truncated
215 	 * page and anyway will be cleared before returning page into
216 	 * buddy allocator.
217 	 */
218 	if (WARN_ON_ONCE(PageDirty(page)))
219 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220 }
221 
222 /*
223  * Delete a page from the page cache and free it. Caller has to make
224  * sure the page is locked and that nobody else uses it - or that usage
225  * is safe.  The caller must hold the i_pages lock.
226  */
227 void __delete_from_page_cache(struct page *page, void *shadow)
228 {
229 	struct address_space *mapping = page->mapping;
230 
231 	trace_mm_filemap_delete_from_page_cache(page);
232 
233 	unaccount_page_cache_page(mapping, page);
234 	page_cache_delete(mapping, page, shadow);
235 }
236 
237 static void page_cache_free_page(struct address_space *mapping,
238 				struct page *page)
239 {
240 	void (*freepage)(struct page *);
241 
242 	freepage = mapping->a_ops->freepage;
243 	if (freepage)
244 		freepage(page);
245 
246 	if (PageTransHuge(page) && !PageHuge(page)) {
247 		page_ref_sub(page, HPAGE_PMD_NR);
248 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 	} else {
250 		put_page(page);
251 	}
252 }
253 
254 /**
255  * delete_from_page_cache - delete page from page cache
256  * @page: the page which the kernel is trying to remove from page cache
257  *
258  * This must be called only on pages that have been verified to be in the page
259  * cache and locked.  It will never put the page into the free list, the caller
260  * has a reference on the page.
261  */
262 void delete_from_page_cache(struct page *page)
263 {
264 	struct address_space *mapping = page_mapping(page);
265 	unsigned long flags;
266 
267 	BUG_ON(!PageLocked(page));
268 	xa_lock_irqsave(&mapping->i_pages, flags);
269 	__delete_from_page_cache(page, NULL);
270 	xa_unlock_irqrestore(&mapping->i_pages, flags);
271 
272 	page_cache_free_page(mapping, page);
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275 
276 /*
277  * page_cache_delete_batch - delete several pages from page cache
278  * @mapping: the mapping to which pages belong
279  * @pvec: pagevec with pages to delete
280  *
281  * The function walks over mapping->i_pages and removes pages passed in @pvec
282  * from the mapping. The function expects @pvec to be sorted by page index.
283  * It tolerates holes in @pvec (mapping entries at those indices are not
284  * modified). The function expects only THP head pages to be present in the
285  * @pvec and takes care to delete all corresponding tail pages from the
286  * mapping as well.
287  *
288  * The function expects the i_pages lock to be held.
289  */
290 static void page_cache_delete_batch(struct address_space *mapping,
291 			     struct pagevec *pvec)
292 {
293 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 	int total_pages = 0;
295 	int i = 0, tail_pages = 0;
296 	struct page *page;
297 
298 	mapping_set_update(&xas, mapping);
299 	xas_for_each(&xas, page, ULONG_MAX) {
300 		if (i >= pagevec_count(pvec) && !tail_pages)
301 			break;
302 		if (xa_is_value(page))
303 			continue;
304 		if (!tail_pages) {
305 			/*
306 			 * Some page got inserted in our range? Skip it. We
307 			 * have our pages locked so they are protected from
308 			 * being removed.
309 			 */
310 			if (page != pvec->pages[i]) {
311 				VM_BUG_ON_PAGE(page->index >
312 						pvec->pages[i]->index, page);
313 				continue;
314 			}
315 			WARN_ON_ONCE(!PageLocked(page));
316 			if (PageTransHuge(page) && !PageHuge(page))
317 				tail_pages = HPAGE_PMD_NR - 1;
318 			page->mapping = NULL;
319 			/*
320 			 * Leave page->index set: truncation lookup relies
321 			 * upon it
322 			 */
323 			i++;
324 		} else {
325 			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
326 					!= pvec->pages[i]->index, page);
327 			tail_pages--;
328 		}
329 		xas_store(&xas, NULL);
330 		total_pages++;
331 	}
332 	mapping->nrpages -= total_pages;
333 }
334 
335 void delete_from_page_cache_batch(struct address_space *mapping,
336 				  struct pagevec *pvec)
337 {
338 	int i;
339 	unsigned long flags;
340 
341 	if (!pagevec_count(pvec))
342 		return;
343 
344 	xa_lock_irqsave(&mapping->i_pages, flags);
345 	for (i = 0; i < pagevec_count(pvec); i++) {
346 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347 
348 		unaccount_page_cache_page(mapping, pvec->pages[i]);
349 	}
350 	page_cache_delete_batch(mapping, pvec);
351 	xa_unlock_irqrestore(&mapping->i_pages, flags);
352 
353 	for (i = 0; i < pagevec_count(pvec); i++)
354 		page_cache_free_page(mapping, pvec->pages[i]);
355 }
356 
357 int filemap_check_errors(struct address_space *mapping)
358 {
359 	int ret = 0;
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363 		ret = -ENOSPC;
364 	if (test_bit(AS_EIO, &mapping->flags) &&
365 	    test_and_clear_bit(AS_EIO, &mapping->flags))
366 		ret = -EIO;
367 	return ret;
368 }
369 EXPORT_SYMBOL(filemap_check_errors);
370 
371 static int filemap_check_and_keep_errors(struct address_space *mapping)
372 {
373 	/* Check for outstanding write errors */
374 	if (test_bit(AS_EIO, &mapping->flags))
375 		return -EIO;
376 	if (test_bit(AS_ENOSPC, &mapping->flags))
377 		return -ENOSPC;
378 	return 0;
379 }
380 
381 /**
382  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383  * @mapping:	address space structure to write
384  * @start:	offset in bytes where the range starts
385  * @end:	offset in bytes where the range ends (inclusive)
386  * @sync_mode:	enable synchronous operation
387  *
388  * Start writeback against all of a mapping's dirty pages that lie
389  * within the byte offsets <start, end> inclusive.
390  *
391  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392  * opposed to a regular memory cleansing writeback.  The difference between
393  * these two operations is that if a dirty page/buffer is encountered, it must
394  * be waited upon, and not just skipped over.
395  */
396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
397 				loff_t end, int sync_mode)
398 {
399 	int ret;
400 	struct writeback_control wbc = {
401 		.sync_mode = sync_mode,
402 		.nr_to_write = LONG_MAX,
403 		.range_start = start,
404 		.range_end = end,
405 	};
406 
407 	if (!mapping_cap_writeback_dirty(mapping))
408 		return 0;
409 
410 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
411 	ret = do_writepages(mapping, &wbc);
412 	wbc_detach_inode(&wbc);
413 	return ret;
414 }
415 
416 static inline int __filemap_fdatawrite(struct address_space *mapping,
417 	int sync_mode)
418 {
419 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
420 }
421 
422 int filemap_fdatawrite(struct address_space *mapping)
423 {
424 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
425 }
426 EXPORT_SYMBOL(filemap_fdatawrite);
427 
428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429 				loff_t end)
430 {
431 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite_range);
434 
435 /**
436  * filemap_flush - mostly a non-blocking flush
437  * @mapping:	target address_space
438  *
439  * This is a mostly non-blocking flush.  Not suitable for data-integrity
440  * purposes - I/O may not be started against all dirty pages.
441  */
442 int filemap_flush(struct address_space *mapping)
443 {
444 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
445 }
446 EXPORT_SYMBOL(filemap_flush);
447 
448 /**
449  * filemap_range_has_page - check if a page exists in range.
450  * @mapping:           address space within which to check
451  * @start_byte:        offset in bytes where the range starts
452  * @end_byte:          offset in bytes where the range ends (inclusive)
453  *
454  * Find at least one page in the range supplied, usually used to check if
455  * direct writing in this range will trigger a writeback.
456  */
457 bool filemap_range_has_page(struct address_space *mapping,
458 			   loff_t start_byte, loff_t end_byte)
459 {
460 	struct page *page;
461 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
462 	pgoff_t max = end_byte >> PAGE_SHIFT;
463 
464 	if (end_byte < start_byte)
465 		return false;
466 
467 	rcu_read_lock();
468 	for (;;) {
469 		page = xas_find(&xas, max);
470 		if (xas_retry(&xas, page))
471 			continue;
472 		/* Shadow entries don't count */
473 		if (xa_is_value(page))
474 			continue;
475 		/*
476 		 * We don't need to try to pin this page; we're about to
477 		 * release the RCU lock anyway.  It is enough to know that
478 		 * there was a page here recently.
479 		 */
480 		break;
481 	}
482 	rcu_read_unlock();
483 
484 	return page != NULL;
485 }
486 EXPORT_SYMBOL(filemap_range_has_page);
487 
488 static void __filemap_fdatawait_range(struct address_space *mapping,
489 				     loff_t start_byte, loff_t end_byte)
490 {
491 	pgoff_t index = start_byte >> PAGE_SHIFT;
492 	pgoff_t end = end_byte >> PAGE_SHIFT;
493 	struct pagevec pvec;
494 	int nr_pages;
495 
496 	if (end_byte < start_byte)
497 		return;
498 
499 	pagevec_init(&pvec);
500 	while (index <= end) {
501 		unsigned i;
502 
503 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
504 				end, PAGECACHE_TAG_WRITEBACK);
505 		if (!nr_pages)
506 			break;
507 
508 		for (i = 0; i < nr_pages; i++) {
509 			struct page *page = pvec.pages[i];
510 
511 			wait_on_page_writeback(page);
512 			ClearPageError(page);
513 		}
514 		pagevec_release(&pvec);
515 		cond_resched();
516 	}
517 }
518 
519 /**
520  * filemap_fdatawait_range - wait for writeback to complete
521  * @mapping:		address space structure to wait for
522  * @start_byte:		offset in bytes where the range starts
523  * @end_byte:		offset in bytes where the range ends (inclusive)
524  *
525  * Walk the list of under-writeback pages of the given address space
526  * in the given range and wait for all of them.  Check error status of
527  * the address space and return it.
528  *
529  * Since the error status of the address space is cleared by this function,
530  * callers are responsible for checking the return value and handling and/or
531  * reporting the error.
532  */
533 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
534 			    loff_t end_byte)
535 {
536 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
537 	return filemap_check_errors(mapping);
538 }
539 EXPORT_SYMBOL(filemap_fdatawait_range);
540 
541 /**
542  * file_fdatawait_range - wait for writeback to complete
543  * @file:		file pointing to address space structure to wait for
544  * @start_byte:		offset in bytes where the range starts
545  * @end_byte:		offset in bytes where the range ends (inclusive)
546  *
547  * Walk the list of under-writeback pages of the address space that file
548  * refers to, in the given range and wait for all of them.  Check error
549  * status of the address space vs. the file->f_wb_err cursor and return it.
550  *
551  * Since the error status of the file is advanced by this function,
552  * callers are responsible for checking the return value and handling and/or
553  * reporting the error.
554  */
555 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
556 {
557 	struct address_space *mapping = file->f_mapping;
558 
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return file_check_and_advance_wb_err(file);
561 }
562 EXPORT_SYMBOL(file_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
566  * @mapping: address space structure to wait for
567  *
568  * Walk the list of under-writeback pages of the given address space
569  * and wait for all of them.  Unlike filemap_fdatawait(), this function
570  * does not clear error status of the address space.
571  *
572  * Use this function if callers don't handle errors themselves.  Expected
573  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
574  * fsfreeze(8)
575  */
576 int filemap_fdatawait_keep_errors(struct address_space *mapping)
577 {
578 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
579 	return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
582 
583 static bool mapping_needs_writeback(struct address_space *mapping)
584 {
585 	return (!dax_mapping(mapping) && mapping->nrpages) ||
586 	    (dax_mapping(mapping) && mapping->nrexceptional);
587 }
588 
589 int filemap_write_and_wait(struct address_space *mapping)
590 {
591 	int err = 0;
592 
593 	if (mapping_needs_writeback(mapping)) {
594 		err = filemap_fdatawrite(mapping);
595 		/*
596 		 * Even if the above returned error, the pages may be
597 		 * written partially (e.g. -ENOSPC), so we wait for it.
598 		 * But the -EIO is special case, it may indicate the worst
599 		 * thing (e.g. bug) happened, so we avoid waiting for it.
600 		 */
601 		if (err != -EIO) {
602 			int err2 = filemap_fdatawait(mapping);
603 			if (!err)
604 				err = err2;
605 		} else {
606 			/* Clear any previously stored errors */
607 			filemap_check_errors(mapping);
608 		}
609 	} else {
610 		err = filemap_check_errors(mapping);
611 	}
612 	return err;
613 }
614 EXPORT_SYMBOL(filemap_write_and_wait);
615 
616 /**
617  * filemap_write_and_wait_range - write out & wait on a file range
618  * @mapping:	the address_space for the pages
619  * @lstart:	offset in bytes where the range starts
620  * @lend:	offset in bytes where the range ends (inclusive)
621  *
622  * Write out and wait upon file offsets lstart->lend, inclusive.
623  *
624  * Note that @lend is inclusive (describes the last byte to be written) so
625  * that this function can be used to write to the very end-of-file (end = -1).
626  */
627 int filemap_write_and_wait_range(struct address_space *mapping,
628 				 loff_t lstart, loff_t lend)
629 {
630 	int err = 0;
631 
632 	if (mapping_needs_writeback(mapping)) {
633 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
634 						 WB_SYNC_ALL);
635 		/* See comment of filemap_write_and_wait() */
636 		if (err != -EIO) {
637 			int err2 = filemap_fdatawait_range(mapping,
638 						lstart, lend);
639 			if (!err)
640 				err = err2;
641 		} else {
642 			/* Clear any previously stored errors */
643 			filemap_check_errors(mapping);
644 		}
645 	} else {
646 		err = filemap_check_errors(mapping);
647 	}
648 	return err;
649 }
650 EXPORT_SYMBOL(filemap_write_and_wait_range);
651 
652 void __filemap_set_wb_err(struct address_space *mapping, int err)
653 {
654 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
655 
656 	trace_filemap_set_wb_err(mapping, eseq);
657 }
658 EXPORT_SYMBOL(__filemap_set_wb_err);
659 
660 /**
661  * file_check_and_advance_wb_err - report wb error (if any) that was previously
662  * 				   and advance wb_err to current one
663  * @file: struct file on which the error is being reported
664  *
665  * When userland calls fsync (or something like nfsd does the equivalent), we
666  * want to report any writeback errors that occurred since the last fsync (or
667  * since the file was opened if there haven't been any).
668  *
669  * Grab the wb_err from the mapping. If it matches what we have in the file,
670  * then just quickly return 0. The file is all caught up.
671  *
672  * If it doesn't match, then take the mapping value, set the "seen" flag in
673  * it and try to swap it into place. If it works, or another task beat us
674  * to it with the new value, then update the f_wb_err and return the error
675  * portion. The error at this point must be reported via proper channels
676  * (a'la fsync, or NFS COMMIT operation, etc.).
677  *
678  * While we handle mapping->wb_err with atomic operations, the f_wb_err
679  * value is protected by the f_lock since we must ensure that it reflects
680  * the latest value swapped in for this file descriptor.
681  */
682 int file_check_and_advance_wb_err(struct file *file)
683 {
684 	int err = 0;
685 	errseq_t old = READ_ONCE(file->f_wb_err);
686 	struct address_space *mapping = file->f_mapping;
687 
688 	/* Locklessly handle the common case where nothing has changed */
689 	if (errseq_check(&mapping->wb_err, old)) {
690 		/* Something changed, must use slow path */
691 		spin_lock(&file->f_lock);
692 		old = file->f_wb_err;
693 		err = errseq_check_and_advance(&mapping->wb_err,
694 						&file->f_wb_err);
695 		trace_file_check_and_advance_wb_err(file, old);
696 		spin_unlock(&file->f_lock);
697 	}
698 
699 	/*
700 	 * We're mostly using this function as a drop in replacement for
701 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
702 	 * that the legacy code would have had on these flags.
703 	 */
704 	clear_bit(AS_EIO, &mapping->flags);
705 	clear_bit(AS_ENOSPC, &mapping->flags);
706 	return err;
707 }
708 EXPORT_SYMBOL(file_check_and_advance_wb_err);
709 
710 /**
711  * file_write_and_wait_range - write out & wait on a file range
712  * @file:	file pointing to address_space with pages
713  * @lstart:	offset in bytes where the range starts
714  * @lend:	offset in bytes where the range ends (inclusive)
715  *
716  * Write out and wait upon file offsets lstart->lend, inclusive.
717  *
718  * Note that @lend is inclusive (describes the last byte to be written) so
719  * that this function can be used to write to the very end-of-file (end = -1).
720  *
721  * After writing out and waiting on the data, we check and advance the
722  * f_wb_err cursor to the latest value, and return any errors detected there.
723  */
724 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
725 {
726 	int err = 0, err2;
727 	struct address_space *mapping = file->f_mapping;
728 
729 	if (mapping_needs_writeback(mapping)) {
730 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
731 						 WB_SYNC_ALL);
732 		/* See comment of filemap_write_and_wait() */
733 		if (err != -EIO)
734 			__filemap_fdatawait_range(mapping, lstart, lend);
735 	}
736 	err2 = file_check_and_advance_wb_err(file);
737 	if (!err)
738 		err = err2;
739 	return err;
740 }
741 EXPORT_SYMBOL(file_write_and_wait_range);
742 
743 /**
744  * replace_page_cache_page - replace a pagecache page with a new one
745  * @old:	page to be replaced
746  * @new:	page to replace with
747  * @gfp_mask:	allocation mode
748  *
749  * This function replaces a page in the pagecache with a new one.  On
750  * success it acquires the pagecache reference for the new page and
751  * drops it for the old page.  Both the old and new pages must be
752  * locked.  This function does not add the new page to the LRU, the
753  * caller must do that.
754  *
755  * The remove + add is atomic.  This function cannot fail.
756  */
757 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
758 {
759 	struct address_space *mapping = old->mapping;
760 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
761 	pgoff_t offset = old->index;
762 	XA_STATE(xas, &mapping->i_pages, offset);
763 	unsigned long flags;
764 
765 	VM_BUG_ON_PAGE(!PageLocked(old), old);
766 	VM_BUG_ON_PAGE(!PageLocked(new), new);
767 	VM_BUG_ON_PAGE(new->mapping, new);
768 
769 	get_page(new);
770 	new->mapping = mapping;
771 	new->index = offset;
772 
773 	xas_lock_irqsave(&xas, flags);
774 	xas_store(&xas, new);
775 
776 	old->mapping = NULL;
777 	/* hugetlb pages do not participate in page cache accounting. */
778 	if (!PageHuge(old))
779 		__dec_node_page_state(new, NR_FILE_PAGES);
780 	if (!PageHuge(new))
781 		__inc_node_page_state(new, NR_FILE_PAGES);
782 	if (PageSwapBacked(old))
783 		__dec_node_page_state(new, NR_SHMEM);
784 	if (PageSwapBacked(new))
785 		__inc_node_page_state(new, NR_SHMEM);
786 	xas_unlock_irqrestore(&xas, flags);
787 	mem_cgroup_migrate(old, new);
788 	if (freepage)
789 		freepage(old);
790 	put_page(old);
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(replace_page_cache_page);
795 
796 static int __add_to_page_cache_locked(struct page *page,
797 				      struct address_space *mapping,
798 				      pgoff_t offset, gfp_t gfp_mask,
799 				      void **shadowp)
800 {
801 	XA_STATE(xas, &mapping->i_pages, offset);
802 	int huge = PageHuge(page);
803 	struct mem_cgroup *memcg;
804 	int error;
805 	void *old;
806 
807 	VM_BUG_ON_PAGE(!PageLocked(page), page);
808 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
809 	mapping_set_update(&xas, mapping);
810 
811 	if (!huge) {
812 		error = mem_cgroup_try_charge(page, current->mm,
813 					      gfp_mask, &memcg, false);
814 		if (error)
815 			return error;
816 	}
817 
818 	get_page(page);
819 	page->mapping = mapping;
820 	page->index = offset;
821 
822 	do {
823 		xas_lock_irq(&xas);
824 		old = xas_load(&xas);
825 		if (old && !xa_is_value(old))
826 			xas_set_err(&xas, -EEXIST);
827 		xas_store(&xas, page);
828 		if (xas_error(&xas))
829 			goto unlock;
830 
831 		if (xa_is_value(old)) {
832 			mapping->nrexceptional--;
833 			if (shadowp)
834 				*shadowp = old;
835 		}
836 		mapping->nrpages++;
837 
838 		/* hugetlb pages do not participate in page cache accounting */
839 		if (!huge)
840 			__inc_node_page_state(page, NR_FILE_PAGES);
841 unlock:
842 		xas_unlock_irq(&xas);
843 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
844 
845 	if (xas_error(&xas))
846 		goto error;
847 
848 	if (!huge)
849 		mem_cgroup_commit_charge(page, memcg, false, false);
850 	trace_mm_filemap_add_to_page_cache(page);
851 	return 0;
852 error:
853 	page->mapping = NULL;
854 	/* Leave page->index set: truncation relies upon it */
855 	if (!huge)
856 		mem_cgroup_cancel_charge(page, memcg, false);
857 	put_page(page);
858 	return xas_error(&xas);
859 }
860 
861 /**
862  * add_to_page_cache_locked - add a locked page to the pagecache
863  * @page:	page to add
864  * @mapping:	the page's address_space
865  * @offset:	page index
866  * @gfp_mask:	page allocation mode
867  *
868  * This function is used to add a page to the pagecache. It must be locked.
869  * This function does not add the page to the LRU.  The caller must do that.
870  */
871 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
872 		pgoff_t offset, gfp_t gfp_mask)
873 {
874 	return __add_to_page_cache_locked(page, mapping, offset,
875 					  gfp_mask, NULL);
876 }
877 EXPORT_SYMBOL(add_to_page_cache_locked);
878 
879 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
880 				pgoff_t offset, gfp_t gfp_mask)
881 {
882 	void *shadow = NULL;
883 	int ret;
884 
885 	__SetPageLocked(page);
886 	ret = __add_to_page_cache_locked(page, mapping, offset,
887 					 gfp_mask, &shadow);
888 	if (unlikely(ret))
889 		__ClearPageLocked(page);
890 	else {
891 		/*
892 		 * The page might have been evicted from cache only
893 		 * recently, in which case it should be activated like
894 		 * any other repeatedly accessed page.
895 		 * The exception is pages getting rewritten; evicting other
896 		 * data from the working set, only to cache data that will
897 		 * get overwritten with something else, is a waste of memory.
898 		 */
899 		WARN_ON_ONCE(PageActive(page));
900 		if (!(gfp_mask & __GFP_WRITE) && shadow)
901 			workingset_refault(page, shadow);
902 		lru_cache_add(page);
903 	}
904 	return ret;
905 }
906 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
907 
908 #ifdef CONFIG_NUMA
909 struct page *__page_cache_alloc(gfp_t gfp)
910 {
911 	int n;
912 	struct page *page;
913 
914 	if (cpuset_do_page_mem_spread()) {
915 		unsigned int cpuset_mems_cookie;
916 		do {
917 			cpuset_mems_cookie = read_mems_allowed_begin();
918 			n = cpuset_mem_spread_node();
919 			page = __alloc_pages_node(n, gfp, 0);
920 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
921 
922 		return page;
923 	}
924 	return alloc_pages(gfp, 0);
925 }
926 EXPORT_SYMBOL(__page_cache_alloc);
927 #endif
928 
929 /*
930  * In order to wait for pages to become available there must be
931  * waitqueues associated with pages. By using a hash table of
932  * waitqueues where the bucket discipline is to maintain all
933  * waiters on the same queue and wake all when any of the pages
934  * become available, and for the woken contexts to check to be
935  * sure the appropriate page became available, this saves space
936  * at a cost of "thundering herd" phenomena during rare hash
937  * collisions.
938  */
939 #define PAGE_WAIT_TABLE_BITS 8
940 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
941 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
942 
943 static wait_queue_head_t *page_waitqueue(struct page *page)
944 {
945 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
946 }
947 
948 void __init pagecache_init(void)
949 {
950 	int i;
951 
952 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
953 		init_waitqueue_head(&page_wait_table[i]);
954 
955 	page_writeback_init();
956 }
957 
958 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
959 struct wait_page_key {
960 	struct page *page;
961 	int bit_nr;
962 	int page_match;
963 };
964 
965 struct wait_page_queue {
966 	struct page *page;
967 	int bit_nr;
968 	wait_queue_entry_t wait;
969 };
970 
971 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
972 {
973 	struct wait_page_key *key = arg;
974 	struct wait_page_queue *wait_page
975 		= container_of(wait, struct wait_page_queue, wait);
976 
977 	if (wait_page->page != key->page)
978 	       return 0;
979 	key->page_match = 1;
980 
981 	if (wait_page->bit_nr != key->bit_nr)
982 		return 0;
983 
984 	/*
985 	 * Stop walking if it's locked.
986 	 * Is this safe if put_and_wait_on_page_locked() is in use?
987 	 * Yes: the waker must hold a reference to this page, and if PG_locked
988 	 * has now already been set by another task, that task must also hold
989 	 * a reference to the *same usage* of this page; so there is no need
990 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
991 	 */
992 	if (test_bit(key->bit_nr, &key->page->flags))
993 		return -1;
994 
995 	return autoremove_wake_function(wait, mode, sync, key);
996 }
997 
998 static void wake_up_page_bit(struct page *page, int bit_nr)
999 {
1000 	wait_queue_head_t *q = page_waitqueue(page);
1001 	struct wait_page_key key;
1002 	unsigned long flags;
1003 	wait_queue_entry_t bookmark;
1004 
1005 	key.page = page;
1006 	key.bit_nr = bit_nr;
1007 	key.page_match = 0;
1008 
1009 	bookmark.flags = 0;
1010 	bookmark.private = NULL;
1011 	bookmark.func = NULL;
1012 	INIT_LIST_HEAD(&bookmark.entry);
1013 
1014 	spin_lock_irqsave(&q->lock, flags);
1015 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1016 
1017 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1018 		/*
1019 		 * Take a breather from holding the lock,
1020 		 * allow pages that finish wake up asynchronously
1021 		 * to acquire the lock and remove themselves
1022 		 * from wait queue
1023 		 */
1024 		spin_unlock_irqrestore(&q->lock, flags);
1025 		cpu_relax();
1026 		spin_lock_irqsave(&q->lock, flags);
1027 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1028 	}
1029 
1030 	/*
1031 	 * It is possible for other pages to have collided on the waitqueue
1032 	 * hash, so in that case check for a page match. That prevents a long-
1033 	 * term waiter
1034 	 *
1035 	 * It is still possible to miss a case here, when we woke page waiters
1036 	 * and removed them from the waitqueue, but there are still other
1037 	 * page waiters.
1038 	 */
1039 	if (!waitqueue_active(q) || !key.page_match) {
1040 		ClearPageWaiters(page);
1041 		/*
1042 		 * It's possible to miss clearing Waiters here, when we woke
1043 		 * our page waiters, but the hashed waitqueue has waiters for
1044 		 * other pages on it.
1045 		 *
1046 		 * That's okay, it's a rare case. The next waker will clear it.
1047 		 */
1048 	}
1049 	spin_unlock_irqrestore(&q->lock, flags);
1050 }
1051 
1052 static void wake_up_page(struct page *page, int bit)
1053 {
1054 	if (!PageWaiters(page))
1055 		return;
1056 	wake_up_page_bit(page, bit);
1057 }
1058 
1059 /*
1060  * A choice of three behaviors for wait_on_page_bit_common():
1061  */
1062 enum behavior {
1063 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1064 			 * __lock_page() waiting on then setting PG_locked.
1065 			 */
1066 	SHARED,		/* Hold ref to page and check the bit when woken, like
1067 			 * wait_on_page_writeback() waiting on PG_writeback.
1068 			 */
1069 	DROP,		/* Drop ref to page before wait, no check when woken,
1070 			 * like put_and_wait_on_page_locked() on PG_locked.
1071 			 */
1072 };
1073 
1074 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075 	struct page *page, int bit_nr, int state, enum behavior behavior)
1076 {
1077 	struct wait_page_queue wait_page;
1078 	wait_queue_entry_t *wait = &wait_page.wait;
1079 	bool bit_is_set;
1080 	bool thrashing = false;
1081 	bool delayacct = false;
1082 	unsigned long pflags;
1083 	int ret = 0;
1084 
1085 	if (bit_nr == PG_locked &&
1086 	    !PageUptodate(page) && PageWorkingset(page)) {
1087 		if (!PageSwapBacked(page)) {
1088 			delayacct_thrashing_start();
1089 			delayacct = true;
1090 		}
1091 		psi_memstall_enter(&pflags);
1092 		thrashing = true;
1093 	}
1094 
1095 	init_wait(wait);
1096 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1097 	wait->func = wake_page_function;
1098 	wait_page.page = page;
1099 	wait_page.bit_nr = bit_nr;
1100 
1101 	for (;;) {
1102 		spin_lock_irq(&q->lock);
1103 
1104 		if (likely(list_empty(&wait->entry))) {
1105 			__add_wait_queue_entry_tail(q, wait);
1106 			SetPageWaiters(page);
1107 		}
1108 
1109 		set_current_state(state);
1110 
1111 		spin_unlock_irq(&q->lock);
1112 
1113 		bit_is_set = test_bit(bit_nr, &page->flags);
1114 		if (behavior == DROP)
1115 			put_page(page);
1116 
1117 		if (likely(bit_is_set))
1118 			io_schedule();
1119 
1120 		if (behavior == EXCLUSIVE) {
1121 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1122 				break;
1123 		} else if (behavior == SHARED) {
1124 			if (!test_bit(bit_nr, &page->flags))
1125 				break;
1126 		}
1127 
1128 		if (signal_pending_state(state, current)) {
1129 			ret = -EINTR;
1130 			break;
1131 		}
1132 
1133 		if (behavior == DROP) {
1134 			/*
1135 			 * We can no longer safely access page->flags:
1136 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1137 			 * there is a risk of waiting forever on a page reused
1138 			 * for something that keeps it locked indefinitely.
1139 			 * But best check for -EINTR above before breaking.
1140 			 */
1141 			break;
1142 		}
1143 	}
1144 
1145 	finish_wait(q, wait);
1146 
1147 	if (thrashing) {
1148 		if (delayacct)
1149 			delayacct_thrashing_end();
1150 		psi_memstall_leave(&pflags);
1151 	}
1152 
1153 	/*
1154 	 * A signal could leave PageWaiters set. Clearing it here if
1155 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1156 	 * but still fail to catch it in the case of wait hash collision. We
1157 	 * already can fail to clear wait hash collision cases, so don't
1158 	 * bother with signals either.
1159 	 */
1160 
1161 	return ret;
1162 }
1163 
1164 void wait_on_page_bit(struct page *page, int bit_nr)
1165 {
1166 	wait_queue_head_t *q = page_waitqueue(page);
1167 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1168 }
1169 EXPORT_SYMBOL(wait_on_page_bit);
1170 
1171 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1172 {
1173 	wait_queue_head_t *q = page_waitqueue(page);
1174 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1175 }
1176 EXPORT_SYMBOL(wait_on_page_bit_killable);
1177 
1178 /**
1179  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1180  * @page: The page to wait for.
1181  *
1182  * The caller should hold a reference on @page.  They expect the page to
1183  * become unlocked relatively soon, but do not wish to hold up migration
1184  * (for example) by holding the reference while waiting for the page to
1185  * come unlocked.  After this function returns, the caller should not
1186  * dereference @page.
1187  */
1188 void put_and_wait_on_page_locked(struct page *page)
1189 {
1190 	wait_queue_head_t *q;
1191 
1192 	page = compound_head(page);
1193 	q = page_waitqueue(page);
1194 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1195 }
1196 
1197 /**
1198  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1199  * @page: Page defining the wait queue of interest
1200  * @waiter: Waiter to add to the queue
1201  *
1202  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1203  */
1204 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1205 {
1206 	wait_queue_head_t *q = page_waitqueue(page);
1207 	unsigned long flags;
1208 
1209 	spin_lock_irqsave(&q->lock, flags);
1210 	__add_wait_queue_entry_tail(q, waiter);
1211 	SetPageWaiters(page);
1212 	spin_unlock_irqrestore(&q->lock, flags);
1213 }
1214 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1215 
1216 #ifndef clear_bit_unlock_is_negative_byte
1217 
1218 /*
1219  * PG_waiters is the high bit in the same byte as PG_lock.
1220  *
1221  * On x86 (and on many other architectures), we can clear PG_lock and
1222  * test the sign bit at the same time. But if the architecture does
1223  * not support that special operation, we just do this all by hand
1224  * instead.
1225  *
1226  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1227  * being cleared, but a memory barrier should be unneccssary since it is
1228  * in the same byte as PG_locked.
1229  */
1230 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1231 {
1232 	clear_bit_unlock(nr, mem);
1233 	/* smp_mb__after_atomic(); */
1234 	return test_bit(PG_waiters, mem);
1235 }
1236 
1237 #endif
1238 
1239 /**
1240  * unlock_page - unlock a locked page
1241  * @page: the page
1242  *
1243  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1244  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1245  * mechanism between PageLocked pages and PageWriteback pages is shared.
1246  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1247  *
1248  * Note that this depends on PG_waiters being the sign bit in the byte
1249  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1250  * clear the PG_locked bit and test PG_waiters at the same time fairly
1251  * portably (architectures that do LL/SC can test any bit, while x86 can
1252  * test the sign bit).
1253  */
1254 void unlock_page(struct page *page)
1255 {
1256 	BUILD_BUG_ON(PG_waiters != 7);
1257 	page = compound_head(page);
1258 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1259 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1260 		wake_up_page_bit(page, PG_locked);
1261 }
1262 EXPORT_SYMBOL(unlock_page);
1263 
1264 /**
1265  * end_page_writeback - end writeback against a page
1266  * @page: the page
1267  */
1268 void end_page_writeback(struct page *page)
1269 {
1270 	/*
1271 	 * TestClearPageReclaim could be used here but it is an atomic
1272 	 * operation and overkill in this particular case. Failing to
1273 	 * shuffle a page marked for immediate reclaim is too mild to
1274 	 * justify taking an atomic operation penalty at the end of
1275 	 * ever page writeback.
1276 	 */
1277 	if (PageReclaim(page)) {
1278 		ClearPageReclaim(page);
1279 		rotate_reclaimable_page(page);
1280 	}
1281 
1282 	if (!test_clear_page_writeback(page))
1283 		BUG();
1284 
1285 	smp_mb__after_atomic();
1286 	wake_up_page(page, PG_writeback);
1287 }
1288 EXPORT_SYMBOL(end_page_writeback);
1289 
1290 /*
1291  * After completing I/O on a page, call this routine to update the page
1292  * flags appropriately
1293  */
1294 void page_endio(struct page *page, bool is_write, int err)
1295 {
1296 	if (!is_write) {
1297 		if (!err) {
1298 			SetPageUptodate(page);
1299 		} else {
1300 			ClearPageUptodate(page);
1301 			SetPageError(page);
1302 		}
1303 		unlock_page(page);
1304 	} else {
1305 		if (err) {
1306 			struct address_space *mapping;
1307 
1308 			SetPageError(page);
1309 			mapping = page_mapping(page);
1310 			if (mapping)
1311 				mapping_set_error(mapping, err);
1312 		}
1313 		end_page_writeback(page);
1314 	}
1315 }
1316 EXPORT_SYMBOL_GPL(page_endio);
1317 
1318 /**
1319  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1320  * @__page: the page to lock
1321  */
1322 void __lock_page(struct page *__page)
1323 {
1324 	struct page *page = compound_head(__page);
1325 	wait_queue_head_t *q = page_waitqueue(page);
1326 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1327 				EXCLUSIVE);
1328 }
1329 EXPORT_SYMBOL(__lock_page);
1330 
1331 int __lock_page_killable(struct page *__page)
1332 {
1333 	struct page *page = compound_head(__page);
1334 	wait_queue_head_t *q = page_waitqueue(page);
1335 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1336 					EXCLUSIVE);
1337 }
1338 EXPORT_SYMBOL_GPL(__lock_page_killable);
1339 
1340 /*
1341  * Return values:
1342  * 1 - page is locked; mmap_sem is still held.
1343  * 0 - page is not locked.
1344  *     mmap_sem has been released (up_read()), unless flags had both
1345  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1346  *     which case mmap_sem is still held.
1347  *
1348  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1349  * with the page locked and the mmap_sem unperturbed.
1350  */
1351 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1352 			 unsigned int flags)
1353 {
1354 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1355 		/*
1356 		 * CAUTION! In this case, mmap_sem is not released
1357 		 * even though return 0.
1358 		 */
1359 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1360 			return 0;
1361 
1362 		up_read(&mm->mmap_sem);
1363 		if (flags & FAULT_FLAG_KILLABLE)
1364 			wait_on_page_locked_killable(page);
1365 		else
1366 			wait_on_page_locked(page);
1367 		return 0;
1368 	} else {
1369 		if (flags & FAULT_FLAG_KILLABLE) {
1370 			int ret;
1371 
1372 			ret = __lock_page_killable(page);
1373 			if (ret) {
1374 				up_read(&mm->mmap_sem);
1375 				return 0;
1376 			}
1377 		} else
1378 			__lock_page(page);
1379 		return 1;
1380 	}
1381 }
1382 
1383 /**
1384  * page_cache_next_miss() - Find the next gap in the page cache.
1385  * @mapping: Mapping.
1386  * @index: Index.
1387  * @max_scan: Maximum range to search.
1388  *
1389  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1390  * gap with the lowest index.
1391  *
1392  * This function may be called under the rcu_read_lock.  However, this will
1393  * not atomically search a snapshot of the cache at a single point in time.
1394  * For example, if a gap is created at index 5, then subsequently a gap is
1395  * created at index 10, page_cache_next_miss covering both indices may
1396  * return 10 if called under the rcu_read_lock.
1397  *
1398  * Return: The index of the gap if found, otherwise an index outside the
1399  * range specified (in which case 'return - index >= max_scan' will be true).
1400  * In the rare case of index wrap-around, 0 will be returned.
1401  */
1402 pgoff_t page_cache_next_miss(struct address_space *mapping,
1403 			     pgoff_t index, unsigned long max_scan)
1404 {
1405 	XA_STATE(xas, &mapping->i_pages, index);
1406 
1407 	while (max_scan--) {
1408 		void *entry = xas_next(&xas);
1409 		if (!entry || xa_is_value(entry))
1410 			break;
1411 		if (xas.xa_index == 0)
1412 			break;
1413 	}
1414 
1415 	return xas.xa_index;
1416 }
1417 EXPORT_SYMBOL(page_cache_next_miss);
1418 
1419 /**
1420  * page_cache_prev_miss() - Find the next gap in the page cache.
1421  * @mapping: Mapping.
1422  * @index: Index.
1423  * @max_scan: Maximum range to search.
1424  *
1425  * Search the range [max(index - max_scan + 1, 0), index] for the
1426  * gap with the highest index.
1427  *
1428  * This function may be called under the rcu_read_lock.  However, this will
1429  * not atomically search a snapshot of the cache at a single point in time.
1430  * For example, if a gap is created at index 10, then subsequently a gap is
1431  * created at index 5, page_cache_prev_miss() covering both indices may
1432  * return 5 if called under the rcu_read_lock.
1433  *
1434  * Return: The index of the gap if found, otherwise an index outside the
1435  * range specified (in which case 'index - return >= max_scan' will be true).
1436  * In the rare case of wrap-around, ULONG_MAX will be returned.
1437  */
1438 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1439 			     pgoff_t index, unsigned long max_scan)
1440 {
1441 	XA_STATE(xas, &mapping->i_pages, index);
1442 
1443 	while (max_scan--) {
1444 		void *entry = xas_prev(&xas);
1445 		if (!entry || xa_is_value(entry))
1446 			break;
1447 		if (xas.xa_index == ULONG_MAX)
1448 			break;
1449 	}
1450 
1451 	return xas.xa_index;
1452 }
1453 EXPORT_SYMBOL(page_cache_prev_miss);
1454 
1455 /**
1456  * find_get_entry - find and get a page cache entry
1457  * @mapping: the address_space to search
1458  * @offset: the page cache index
1459  *
1460  * Looks up the page cache slot at @mapping & @offset.  If there is a
1461  * page cache page, it is returned with an increased refcount.
1462  *
1463  * If the slot holds a shadow entry of a previously evicted page, or a
1464  * swap entry from shmem/tmpfs, it is returned.
1465  *
1466  * Otherwise, %NULL is returned.
1467  */
1468 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1469 {
1470 	XA_STATE(xas, &mapping->i_pages, offset);
1471 	struct page *head, *page;
1472 
1473 	rcu_read_lock();
1474 repeat:
1475 	xas_reset(&xas);
1476 	page = xas_load(&xas);
1477 	if (xas_retry(&xas, page))
1478 		goto repeat;
1479 	/*
1480 	 * A shadow entry of a recently evicted page, or a swap entry from
1481 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1482 	 */
1483 	if (!page || xa_is_value(page))
1484 		goto out;
1485 
1486 	head = compound_head(page);
1487 	if (!page_cache_get_speculative(head))
1488 		goto repeat;
1489 
1490 	/* The page was split under us? */
1491 	if (compound_head(page) != head) {
1492 		put_page(head);
1493 		goto repeat;
1494 	}
1495 
1496 	/*
1497 	 * Has the page moved?
1498 	 * This is part of the lockless pagecache protocol. See
1499 	 * include/linux/pagemap.h for details.
1500 	 */
1501 	if (unlikely(page != xas_reload(&xas))) {
1502 		put_page(head);
1503 		goto repeat;
1504 	}
1505 out:
1506 	rcu_read_unlock();
1507 
1508 	return page;
1509 }
1510 EXPORT_SYMBOL(find_get_entry);
1511 
1512 /**
1513  * find_lock_entry - locate, pin and lock a page cache entry
1514  * @mapping: the address_space to search
1515  * @offset: the page cache index
1516  *
1517  * Looks up the page cache slot at @mapping & @offset.  If there is a
1518  * page cache page, it is returned locked and with an increased
1519  * refcount.
1520  *
1521  * If the slot holds a shadow entry of a previously evicted page, or a
1522  * swap entry from shmem/tmpfs, it is returned.
1523  *
1524  * Otherwise, %NULL is returned.
1525  *
1526  * find_lock_entry() may sleep.
1527  */
1528 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1529 {
1530 	struct page *page;
1531 
1532 repeat:
1533 	page = find_get_entry(mapping, offset);
1534 	if (page && !xa_is_value(page)) {
1535 		lock_page(page);
1536 		/* Has the page been truncated? */
1537 		if (unlikely(page_mapping(page) != mapping)) {
1538 			unlock_page(page);
1539 			put_page(page);
1540 			goto repeat;
1541 		}
1542 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1543 	}
1544 	return page;
1545 }
1546 EXPORT_SYMBOL(find_lock_entry);
1547 
1548 /**
1549  * pagecache_get_page - find and get a page reference
1550  * @mapping: the address_space to search
1551  * @offset: the page index
1552  * @fgp_flags: PCG flags
1553  * @gfp_mask: gfp mask to use for the page cache data page allocation
1554  *
1555  * Looks up the page cache slot at @mapping & @offset.
1556  *
1557  * PCG flags modify how the page is returned.
1558  *
1559  * @fgp_flags can be:
1560  *
1561  * - FGP_ACCESSED: the page will be marked accessed
1562  * - FGP_LOCK: Page is return locked
1563  * - FGP_CREAT: If page is not present then a new page is allocated using
1564  *   @gfp_mask and added to the page cache and the VM's LRU
1565  *   list. The page is returned locked and with an increased
1566  *   refcount. Otherwise, NULL is returned.
1567  *
1568  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1569  * if the GFP flags specified for FGP_CREAT are atomic.
1570  *
1571  * If there is a page cache page, it is returned with an increased refcount.
1572  */
1573 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1574 	int fgp_flags, gfp_t gfp_mask)
1575 {
1576 	struct page *page;
1577 
1578 repeat:
1579 	page = find_get_entry(mapping, offset);
1580 	if (xa_is_value(page))
1581 		page = NULL;
1582 	if (!page)
1583 		goto no_page;
1584 
1585 	if (fgp_flags & FGP_LOCK) {
1586 		if (fgp_flags & FGP_NOWAIT) {
1587 			if (!trylock_page(page)) {
1588 				put_page(page);
1589 				return NULL;
1590 			}
1591 		} else {
1592 			lock_page(page);
1593 		}
1594 
1595 		/* Has the page been truncated? */
1596 		if (unlikely(page->mapping != mapping)) {
1597 			unlock_page(page);
1598 			put_page(page);
1599 			goto repeat;
1600 		}
1601 		VM_BUG_ON_PAGE(page->index != offset, page);
1602 	}
1603 
1604 	if (fgp_flags & FGP_ACCESSED)
1605 		mark_page_accessed(page);
1606 
1607 no_page:
1608 	if (!page && (fgp_flags & FGP_CREAT)) {
1609 		int err;
1610 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1611 			gfp_mask |= __GFP_WRITE;
1612 		if (fgp_flags & FGP_NOFS)
1613 			gfp_mask &= ~__GFP_FS;
1614 
1615 		page = __page_cache_alloc(gfp_mask);
1616 		if (!page)
1617 			return NULL;
1618 
1619 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1620 			fgp_flags |= FGP_LOCK;
1621 
1622 		/* Init accessed so avoid atomic mark_page_accessed later */
1623 		if (fgp_flags & FGP_ACCESSED)
1624 			__SetPageReferenced(page);
1625 
1626 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1627 		if (unlikely(err)) {
1628 			put_page(page);
1629 			page = NULL;
1630 			if (err == -EEXIST)
1631 				goto repeat;
1632 		}
1633 	}
1634 
1635 	return page;
1636 }
1637 EXPORT_SYMBOL(pagecache_get_page);
1638 
1639 /**
1640  * find_get_entries - gang pagecache lookup
1641  * @mapping:	The address_space to search
1642  * @start:	The starting page cache index
1643  * @nr_entries:	The maximum number of entries
1644  * @entries:	Where the resulting entries are placed
1645  * @indices:	The cache indices corresponding to the entries in @entries
1646  *
1647  * find_get_entries() will search for and return a group of up to
1648  * @nr_entries entries in the mapping.  The entries are placed at
1649  * @entries.  find_get_entries() takes a reference against any actual
1650  * pages it returns.
1651  *
1652  * The search returns a group of mapping-contiguous page cache entries
1653  * with ascending indexes.  There may be holes in the indices due to
1654  * not-present pages.
1655  *
1656  * Any shadow entries of evicted pages, or swap entries from
1657  * shmem/tmpfs, are included in the returned array.
1658  *
1659  * find_get_entries() returns the number of pages and shadow entries
1660  * which were found.
1661  */
1662 unsigned find_get_entries(struct address_space *mapping,
1663 			  pgoff_t start, unsigned int nr_entries,
1664 			  struct page **entries, pgoff_t *indices)
1665 {
1666 	XA_STATE(xas, &mapping->i_pages, start);
1667 	struct page *page;
1668 	unsigned int ret = 0;
1669 
1670 	if (!nr_entries)
1671 		return 0;
1672 
1673 	rcu_read_lock();
1674 	xas_for_each(&xas, page, ULONG_MAX) {
1675 		struct page *head;
1676 		if (xas_retry(&xas, page))
1677 			continue;
1678 		/*
1679 		 * A shadow entry of a recently evicted page, a swap
1680 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1681 		 * without attempting to raise page count.
1682 		 */
1683 		if (xa_is_value(page))
1684 			goto export;
1685 
1686 		head = compound_head(page);
1687 		if (!page_cache_get_speculative(head))
1688 			goto retry;
1689 
1690 		/* The page was split under us? */
1691 		if (compound_head(page) != head)
1692 			goto put_page;
1693 
1694 		/* Has the page moved? */
1695 		if (unlikely(page != xas_reload(&xas)))
1696 			goto put_page;
1697 
1698 export:
1699 		indices[ret] = xas.xa_index;
1700 		entries[ret] = page;
1701 		if (++ret == nr_entries)
1702 			break;
1703 		continue;
1704 put_page:
1705 		put_page(head);
1706 retry:
1707 		xas_reset(&xas);
1708 	}
1709 	rcu_read_unlock();
1710 	return ret;
1711 }
1712 
1713 /**
1714  * find_get_pages_range - gang pagecache lookup
1715  * @mapping:	The address_space to search
1716  * @start:	The starting page index
1717  * @end:	The final page index (inclusive)
1718  * @nr_pages:	The maximum number of pages
1719  * @pages:	Where the resulting pages are placed
1720  *
1721  * find_get_pages_range() will search for and return a group of up to @nr_pages
1722  * pages in the mapping starting at index @start and up to index @end
1723  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1724  * a reference against the returned pages.
1725  *
1726  * The search returns a group of mapping-contiguous pages with ascending
1727  * indexes.  There may be holes in the indices due to not-present pages.
1728  * We also update @start to index the next page for the traversal.
1729  *
1730  * find_get_pages_range() returns the number of pages which were found. If this
1731  * number is smaller than @nr_pages, the end of specified range has been
1732  * reached.
1733  */
1734 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1735 			      pgoff_t end, unsigned int nr_pages,
1736 			      struct page **pages)
1737 {
1738 	XA_STATE(xas, &mapping->i_pages, *start);
1739 	struct page *page;
1740 	unsigned ret = 0;
1741 
1742 	if (unlikely(!nr_pages))
1743 		return 0;
1744 
1745 	rcu_read_lock();
1746 	xas_for_each(&xas, page, end) {
1747 		struct page *head;
1748 		if (xas_retry(&xas, page))
1749 			continue;
1750 		/* Skip over shadow, swap and DAX entries */
1751 		if (xa_is_value(page))
1752 			continue;
1753 
1754 		head = compound_head(page);
1755 		if (!page_cache_get_speculative(head))
1756 			goto retry;
1757 
1758 		/* The page was split under us? */
1759 		if (compound_head(page) != head)
1760 			goto put_page;
1761 
1762 		/* Has the page moved? */
1763 		if (unlikely(page != xas_reload(&xas)))
1764 			goto put_page;
1765 
1766 		pages[ret] = page;
1767 		if (++ret == nr_pages) {
1768 			*start = page->index + 1;
1769 			goto out;
1770 		}
1771 		continue;
1772 put_page:
1773 		put_page(head);
1774 retry:
1775 		xas_reset(&xas);
1776 	}
1777 
1778 	/*
1779 	 * We come here when there is no page beyond @end. We take care to not
1780 	 * overflow the index @start as it confuses some of the callers. This
1781 	 * breaks the iteration when there is a page at index -1 but that is
1782 	 * already broken anyway.
1783 	 */
1784 	if (end == (pgoff_t)-1)
1785 		*start = (pgoff_t)-1;
1786 	else
1787 		*start = end + 1;
1788 out:
1789 	rcu_read_unlock();
1790 
1791 	return ret;
1792 }
1793 
1794 /**
1795  * find_get_pages_contig - gang contiguous pagecache lookup
1796  * @mapping:	The address_space to search
1797  * @index:	The starting page index
1798  * @nr_pages:	The maximum number of pages
1799  * @pages:	Where the resulting pages are placed
1800  *
1801  * find_get_pages_contig() works exactly like find_get_pages(), except
1802  * that the returned number of pages are guaranteed to be contiguous.
1803  *
1804  * find_get_pages_contig() returns the number of pages which were found.
1805  */
1806 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1807 			       unsigned int nr_pages, struct page **pages)
1808 {
1809 	XA_STATE(xas, &mapping->i_pages, index);
1810 	struct page *page;
1811 	unsigned int ret = 0;
1812 
1813 	if (unlikely(!nr_pages))
1814 		return 0;
1815 
1816 	rcu_read_lock();
1817 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1818 		struct page *head;
1819 		if (xas_retry(&xas, page))
1820 			continue;
1821 		/*
1822 		 * If the entry has been swapped out, we can stop looking.
1823 		 * No current caller is looking for DAX entries.
1824 		 */
1825 		if (xa_is_value(page))
1826 			break;
1827 
1828 		head = compound_head(page);
1829 		if (!page_cache_get_speculative(head))
1830 			goto retry;
1831 
1832 		/* The page was split under us? */
1833 		if (compound_head(page) != head)
1834 			goto put_page;
1835 
1836 		/* Has the page moved? */
1837 		if (unlikely(page != xas_reload(&xas)))
1838 			goto put_page;
1839 
1840 		/*
1841 		 * must check mapping and index after taking the ref.
1842 		 * otherwise we can get both false positives and false
1843 		 * negatives, which is just confusing to the caller.
1844 		 */
1845 		if (!page->mapping || page_to_pgoff(page) != xas.xa_index) {
1846 			put_page(page);
1847 			break;
1848 		}
1849 
1850 		pages[ret] = page;
1851 		if (++ret == nr_pages)
1852 			break;
1853 		continue;
1854 put_page:
1855 		put_page(head);
1856 retry:
1857 		xas_reset(&xas);
1858 	}
1859 	rcu_read_unlock();
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL(find_get_pages_contig);
1863 
1864 /**
1865  * find_get_pages_range_tag - find and return pages in given range matching @tag
1866  * @mapping:	the address_space to search
1867  * @index:	the starting page index
1868  * @end:	The final page index (inclusive)
1869  * @tag:	the tag index
1870  * @nr_pages:	the maximum number of pages
1871  * @pages:	where the resulting pages are placed
1872  *
1873  * Like find_get_pages, except we only return pages which are tagged with
1874  * @tag.   We update @index to index the next page for the traversal.
1875  */
1876 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1877 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1878 			struct page **pages)
1879 {
1880 	XA_STATE(xas, &mapping->i_pages, *index);
1881 	struct page *page;
1882 	unsigned ret = 0;
1883 
1884 	if (unlikely(!nr_pages))
1885 		return 0;
1886 
1887 	rcu_read_lock();
1888 	xas_for_each_marked(&xas, page, end, tag) {
1889 		struct page *head;
1890 		if (xas_retry(&xas, page))
1891 			continue;
1892 		/*
1893 		 * Shadow entries should never be tagged, but this iteration
1894 		 * is lockless so there is a window for page reclaim to evict
1895 		 * a page we saw tagged.  Skip over it.
1896 		 */
1897 		if (xa_is_value(page))
1898 			continue;
1899 
1900 		head = compound_head(page);
1901 		if (!page_cache_get_speculative(head))
1902 			goto retry;
1903 
1904 		/* The page was split under us? */
1905 		if (compound_head(page) != head)
1906 			goto put_page;
1907 
1908 		/* Has the page moved? */
1909 		if (unlikely(page != xas_reload(&xas)))
1910 			goto put_page;
1911 
1912 		pages[ret] = page;
1913 		if (++ret == nr_pages) {
1914 			*index = page->index + 1;
1915 			goto out;
1916 		}
1917 		continue;
1918 put_page:
1919 		put_page(head);
1920 retry:
1921 		xas_reset(&xas);
1922 	}
1923 
1924 	/*
1925 	 * We come here when we got to @end. We take care to not overflow the
1926 	 * index @index as it confuses some of the callers. This breaks the
1927 	 * iteration when there is a page at index -1 but that is already
1928 	 * broken anyway.
1929 	 */
1930 	if (end == (pgoff_t)-1)
1931 		*index = (pgoff_t)-1;
1932 	else
1933 		*index = end + 1;
1934 out:
1935 	rcu_read_unlock();
1936 
1937 	return ret;
1938 }
1939 EXPORT_SYMBOL(find_get_pages_range_tag);
1940 
1941 /**
1942  * find_get_entries_tag - find and return entries that match @tag
1943  * @mapping:	the address_space to search
1944  * @start:	the starting page cache index
1945  * @tag:	the tag index
1946  * @nr_entries:	the maximum number of entries
1947  * @entries:	where the resulting entries are placed
1948  * @indices:	the cache indices corresponding to the entries in @entries
1949  *
1950  * Like find_get_entries, except we only return entries which are tagged with
1951  * @tag.
1952  */
1953 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1954 			xa_mark_t tag, unsigned int nr_entries,
1955 			struct page **entries, pgoff_t *indices)
1956 {
1957 	XA_STATE(xas, &mapping->i_pages, start);
1958 	struct page *page;
1959 	unsigned int ret = 0;
1960 
1961 	if (!nr_entries)
1962 		return 0;
1963 
1964 	rcu_read_lock();
1965 	xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
1966 		struct page *head;
1967 		if (xas_retry(&xas, page))
1968 			continue;
1969 		/*
1970 		 * A shadow entry of a recently evicted page, a swap
1971 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1972 		 * without attempting to raise page count.
1973 		 */
1974 		if (xa_is_value(page))
1975 			goto export;
1976 
1977 		head = compound_head(page);
1978 		if (!page_cache_get_speculative(head))
1979 			goto retry;
1980 
1981 		/* The page was split under us? */
1982 		if (compound_head(page) != head)
1983 			goto put_page;
1984 
1985 		/* Has the page moved? */
1986 		if (unlikely(page != xas_reload(&xas)))
1987 			goto put_page;
1988 
1989 export:
1990 		indices[ret] = xas.xa_index;
1991 		entries[ret] = page;
1992 		if (++ret == nr_entries)
1993 			break;
1994 		continue;
1995 put_page:
1996 		put_page(head);
1997 retry:
1998 		xas_reset(&xas);
1999 	}
2000 	rcu_read_unlock();
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL(find_get_entries_tag);
2004 
2005 /*
2006  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2007  * a _large_ part of the i/o request. Imagine the worst scenario:
2008  *
2009  *      ---R__________________________________________B__________
2010  *         ^ reading here                             ^ bad block(assume 4k)
2011  *
2012  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2013  * => failing the whole request => read(R) => read(R+1) =>
2014  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2015  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2016  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2017  *
2018  * It is going insane. Fix it by quickly scaling down the readahead size.
2019  */
2020 static void shrink_readahead_size_eio(struct file *filp,
2021 					struct file_ra_state *ra)
2022 {
2023 	ra->ra_pages /= 4;
2024 }
2025 
2026 /**
2027  * generic_file_buffered_read - generic file read routine
2028  * @iocb:	the iocb to read
2029  * @iter:	data destination
2030  * @written:	already copied
2031  *
2032  * This is a generic file read routine, and uses the
2033  * mapping->a_ops->readpage() function for the actual low-level stuff.
2034  *
2035  * This is really ugly. But the goto's actually try to clarify some
2036  * of the logic when it comes to error handling etc.
2037  */
2038 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2039 		struct iov_iter *iter, ssize_t written)
2040 {
2041 	struct file *filp = iocb->ki_filp;
2042 	struct address_space *mapping = filp->f_mapping;
2043 	struct inode *inode = mapping->host;
2044 	struct file_ra_state *ra = &filp->f_ra;
2045 	loff_t *ppos = &iocb->ki_pos;
2046 	pgoff_t index;
2047 	pgoff_t last_index;
2048 	pgoff_t prev_index;
2049 	unsigned long offset;      /* offset into pagecache page */
2050 	unsigned int prev_offset;
2051 	int error = 0;
2052 
2053 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2054 		return 0;
2055 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2056 
2057 	index = *ppos >> PAGE_SHIFT;
2058 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2059 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2060 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2061 	offset = *ppos & ~PAGE_MASK;
2062 
2063 	for (;;) {
2064 		struct page *page;
2065 		pgoff_t end_index;
2066 		loff_t isize;
2067 		unsigned long nr, ret;
2068 
2069 		cond_resched();
2070 find_page:
2071 		if (fatal_signal_pending(current)) {
2072 			error = -EINTR;
2073 			goto out;
2074 		}
2075 
2076 		page = find_get_page(mapping, index);
2077 		if (!page) {
2078 			if (iocb->ki_flags & IOCB_NOWAIT)
2079 				goto would_block;
2080 			page_cache_sync_readahead(mapping,
2081 					ra, filp,
2082 					index, last_index - index);
2083 			page = find_get_page(mapping, index);
2084 			if (unlikely(page == NULL))
2085 				goto no_cached_page;
2086 		}
2087 		if (PageReadahead(page)) {
2088 			page_cache_async_readahead(mapping,
2089 					ra, filp, page,
2090 					index, last_index - index);
2091 		}
2092 		if (!PageUptodate(page)) {
2093 			if (iocb->ki_flags & IOCB_NOWAIT) {
2094 				put_page(page);
2095 				goto would_block;
2096 			}
2097 
2098 			/*
2099 			 * See comment in do_read_cache_page on why
2100 			 * wait_on_page_locked is used to avoid unnecessarily
2101 			 * serialisations and why it's safe.
2102 			 */
2103 			error = wait_on_page_locked_killable(page);
2104 			if (unlikely(error))
2105 				goto readpage_error;
2106 			if (PageUptodate(page))
2107 				goto page_ok;
2108 
2109 			if (inode->i_blkbits == PAGE_SHIFT ||
2110 					!mapping->a_ops->is_partially_uptodate)
2111 				goto page_not_up_to_date;
2112 			/* pipes can't handle partially uptodate pages */
2113 			if (unlikely(iov_iter_is_pipe(iter)))
2114 				goto page_not_up_to_date;
2115 			if (!trylock_page(page))
2116 				goto page_not_up_to_date;
2117 			/* Did it get truncated before we got the lock? */
2118 			if (!page->mapping)
2119 				goto page_not_up_to_date_locked;
2120 			if (!mapping->a_ops->is_partially_uptodate(page,
2121 							offset, iter->count))
2122 				goto page_not_up_to_date_locked;
2123 			unlock_page(page);
2124 		}
2125 page_ok:
2126 		/*
2127 		 * i_size must be checked after we know the page is Uptodate.
2128 		 *
2129 		 * Checking i_size after the check allows us to calculate
2130 		 * the correct value for "nr", which means the zero-filled
2131 		 * part of the page is not copied back to userspace (unless
2132 		 * another truncate extends the file - this is desired though).
2133 		 */
2134 
2135 		isize = i_size_read(inode);
2136 		end_index = (isize - 1) >> PAGE_SHIFT;
2137 		if (unlikely(!isize || index > end_index)) {
2138 			put_page(page);
2139 			goto out;
2140 		}
2141 
2142 		/* nr is the maximum number of bytes to copy from this page */
2143 		nr = PAGE_SIZE;
2144 		if (index == end_index) {
2145 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2146 			if (nr <= offset) {
2147 				put_page(page);
2148 				goto out;
2149 			}
2150 		}
2151 		nr = nr - offset;
2152 
2153 		/* If users can be writing to this page using arbitrary
2154 		 * virtual addresses, take care about potential aliasing
2155 		 * before reading the page on the kernel side.
2156 		 */
2157 		if (mapping_writably_mapped(mapping))
2158 			flush_dcache_page(page);
2159 
2160 		/*
2161 		 * When a sequential read accesses a page several times,
2162 		 * only mark it as accessed the first time.
2163 		 */
2164 		if (prev_index != index || offset != prev_offset)
2165 			mark_page_accessed(page);
2166 		prev_index = index;
2167 
2168 		/*
2169 		 * Ok, we have the page, and it's up-to-date, so
2170 		 * now we can copy it to user space...
2171 		 */
2172 
2173 		ret = copy_page_to_iter(page, offset, nr, iter);
2174 		offset += ret;
2175 		index += offset >> PAGE_SHIFT;
2176 		offset &= ~PAGE_MASK;
2177 		prev_offset = offset;
2178 
2179 		put_page(page);
2180 		written += ret;
2181 		if (!iov_iter_count(iter))
2182 			goto out;
2183 		if (ret < nr) {
2184 			error = -EFAULT;
2185 			goto out;
2186 		}
2187 		continue;
2188 
2189 page_not_up_to_date:
2190 		/* Get exclusive access to the page ... */
2191 		error = lock_page_killable(page);
2192 		if (unlikely(error))
2193 			goto readpage_error;
2194 
2195 page_not_up_to_date_locked:
2196 		/* Did it get truncated before we got the lock? */
2197 		if (!page->mapping) {
2198 			unlock_page(page);
2199 			put_page(page);
2200 			continue;
2201 		}
2202 
2203 		/* Did somebody else fill it already? */
2204 		if (PageUptodate(page)) {
2205 			unlock_page(page);
2206 			goto page_ok;
2207 		}
2208 
2209 readpage:
2210 		/*
2211 		 * A previous I/O error may have been due to temporary
2212 		 * failures, eg. multipath errors.
2213 		 * PG_error will be set again if readpage fails.
2214 		 */
2215 		ClearPageError(page);
2216 		/* Start the actual read. The read will unlock the page. */
2217 		error = mapping->a_ops->readpage(filp, page);
2218 
2219 		if (unlikely(error)) {
2220 			if (error == AOP_TRUNCATED_PAGE) {
2221 				put_page(page);
2222 				error = 0;
2223 				goto find_page;
2224 			}
2225 			goto readpage_error;
2226 		}
2227 
2228 		if (!PageUptodate(page)) {
2229 			error = lock_page_killable(page);
2230 			if (unlikely(error))
2231 				goto readpage_error;
2232 			if (!PageUptodate(page)) {
2233 				if (page->mapping == NULL) {
2234 					/*
2235 					 * invalidate_mapping_pages got it
2236 					 */
2237 					unlock_page(page);
2238 					put_page(page);
2239 					goto find_page;
2240 				}
2241 				unlock_page(page);
2242 				shrink_readahead_size_eio(filp, ra);
2243 				error = -EIO;
2244 				goto readpage_error;
2245 			}
2246 			unlock_page(page);
2247 		}
2248 
2249 		goto page_ok;
2250 
2251 readpage_error:
2252 		/* UHHUH! A synchronous read error occurred. Report it */
2253 		put_page(page);
2254 		goto out;
2255 
2256 no_cached_page:
2257 		/*
2258 		 * Ok, it wasn't cached, so we need to create a new
2259 		 * page..
2260 		 */
2261 		page = page_cache_alloc(mapping);
2262 		if (!page) {
2263 			error = -ENOMEM;
2264 			goto out;
2265 		}
2266 		error = add_to_page_cache_lru(page, mapping, index,
2267 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2268 		if (error) {
2269 			put_page(page);
2270 			if (error == -EEXIST) {
2271 				error = 0;
2272 				goto find_page;
2273 			}
2274 			goto out;
2275 		}
2276 		goto readpage;
2277 	}
2278 
2279 would_block:
2280 	error = -EAGAIN;
2281 out:
2282 	ra->prev_pos = prev_index;
2283 	ra->prev_pos <<= PAGE_SHIFT;
2284 	ra->prev_pos |= prev_offset;
2285 
2286 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2287 	file_accessed(filp);
2288 	return written ? written : error;
2289 }
2290 
2291 /**
2292  * generic_file_read_iter - generic filesystem read routine
2293  * @iocb:	kernel I/O control block
2294  * @iter:	destination for the data read
2295  *
2296  * This is the "read_iter()" routine for all filesystems
2297  * that can use the page cache directly.
2298  */
2299 ssize_t
2300 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2301 {
2302 	size_t count = iov_iter_count(iter);
2303 	ssize_t retval = 0;
2304 
2305 	if (!count)
2306 		goto out; /* skip atime */
2307 
2308 	if (iocb->ki_flags & IOCB_DIRECT) {
2309 		struct file *file = iocb->ki_filp;
2310 		struct address_space *mapping = file->f_mapping;
2311 		struct inode *inode = mapping->host;
2312 		loff_t size;
2313 
2314 		size = i_size_read(inode);
2315 		if (iocb->ki_flags & IOCB_NOWAIT) {
2316 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2317 						   iocb->ki_pos + count - 1))
2318 				return -EAGAIN;
2319 		} else {
2320 			retval = filemap_write_and_wait_range(mapping,
2321 						iocb->ki_pos,
2322 					        iocb->ki_pos + count - 1);
2323 			if (retval < 0)
2324 				goto out;
2325 		}
2326 
2327 		file_accessed(file);
2328 
2329 		retval = mapping->a_ops->direct_IO(iocb, iter);
2330 		if (retval >= 0) {
2331 			iocb->ki_pos += retval;
2332 			count -= retval;
2333 		}
2334 		iov_iter_revert(iter, count - iov_iter_count(iter));
2335 
2336 		/*
2337 		 * Btrfs can have a short DIO read if we encounter
2338 		 * compressed extents, so if there was an error, or if
2339 		 * we've already read everything we wanted to, or if
2340 		 * there was a short read because we hit EOF, go ahead
2341 		 * and return.  Otherwise fallthrough to buffered io for
2342 		 * the rest of the read.  Buffered reads will not work for
2343 		 * DAX files, so don't bother trying.
2344 		 */
2345 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2346 		    IS_DAX(inode))
2347 			goto out;
2348 	}
2349 
2350 	retval = generic_file_buffered_read(iocb, iter, retval);
2351 out:
2352 	return retval;
2353 }
2354 EXPORT_SYMBOL(generic_file_read_iter);
2355 
2356 #ifdef CONFIG_MMU
2357 /**
2358  * page_cache_read - adds requested page to the page cache if not already there
2359  * @file:	file to read
2360  * @offset:	page index
2361  * @gfp_mask:	memory allocation flags
2362  *
2363  * This adds the requested page to the page cache if it isn't already there,
2364  * and schedules an I/O to read in its contents from disk.
2365  */
2366 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2367 {
2368 	struct address_space *mapping = file->f_mapping;
2369 	struct page *page;
2370 	int ret;
2371 
2372 	do {
2373 		page = __page_cache_alloc(gfp_mask);
2374 		if (!page)
2375 			return -ENOMEM;
2376 
2377 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2378 		if (ret == 0)
2379 			ret = mapping->a_ops->readpage(file, page);
2380 		else if (ret == -EEXIST)
2381 			ret = 0; /* losing race to add is OK */
2382 
2383 		put_page(page);
2384 
2385 	} while (ret == AOP_TRUNCATED_PAGE);
2386 
2387 	return ret;
2388 }
2389 
2390 #define MMAP_LOTSAMISS  (100)
2391 
2392 /*
2393  * Synchronous readahead happens when we don't even find
2394  * a page in the page cache at all.
2395  */
2396 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2397 				   struct file_ra_state *ra,
2398 				   struct file *file,
2399 				   pgoff_t offset)
2400 {
2401 	struct address_space *mapping = file->f_mapping;
2402 
2403 	/* If we don't want any read-ahead, don't bother */
2404 	if (vma->vm_flags & VM_RAND_READ)
2405 		return;
2406 	if (!ra->ra_pages)
2407 		return;
2408 
2409 	if (vma->vm_flags & VM_SEQ_READ) {
2410 		page_cache_sync_readahead(mapping, ra, file, offset,
2411 					  ra->ra_pages);
2412 		return;
2413 	}
2414 
2415 	/* Avoid banging the cache line if not needed */
2416 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2417 		ra->mmap_miss++;
2418 
2419 	/*
2420 	 * Do we miss much more than hit in this file? If so,
2421 	 * stop bothering with read-ahead. It will only hurt.
2422 	 */
2423 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2424 		return;
2425 
2426 	/*
2427 	 * mmap read-around
2428 	 */
2429 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2430 	ra->size = ra->ra_pages;
2431 	ra->async_size = ra->ra_pages / 4;
2432 	ra_submit(ra, mapping, file);
2433 }
2434 
2435 /*
2436  * Asynchronous readahead happens when we find the page and PG_readahead,
2437  * so we want to possibly extend the readahead further..
2438  */
2439 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2440 				    struct file_ra_state *ra,
2441 				    struct file *file,
2442 				    struct page *page,
2443 				    pgoff_t offset)
2444 {
2445 	struct address_space *mapping = file->f_mapping;
2446 
2447 	/* If we don't want any read-ahead, don't bother */
2448 	if (vma->vm_flags & VM_RAND_READ)
2449 		return;
2450 	if (ra->mmap_miss > 0)
2451 		ra->mmap_miss--;
2452 	if (PageReadahead(page))
2453 		page_cache_async_readahead(mapping, ra, file,
2454 					   page, offset, ra->ra_pages);
2455 }
2456 
2457 /**
2458  * filemap_fault - read in file data for page fault handling
2459  * @vmf:	struct vm_fault containing details of the fault
2460  *
2461  * filemap_fault() is invoked via the vma operations vector for a
2462  * mapped memory region to read in file data during a page fault.
2463  *
2464  * The goto's are kind of ugly, but this streamlines the normal case of having
2465  * it in the page cache, and handles the special cases reasonably without
2466  * having a lot of duplicated code.
2467  *
2468  * vma->vm_mm->mmap_sem must be held on entry.
2469  *
2470  * If our return value has VM_FAULT_RETRY set, it's because
2471  * lock_page_or_retry() returned 0.
2472  * The mmap_sem has usually been released in this case.
2473  * See __lock_page_or_retry() for the exception.
2474  *
2475  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2476  * has not been released.
2477  *
2478  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2479  */
2480 vm_fault_t filemap_fault(struct vm_fault *vmf)
2481 {
2482 	int error;
2483 	struct file *file = vmf->vma->vm_file;
2484 	struct address_space *mapping = file->f_mapping;
2485 	struct file_ra_state *ra = &file->f_ra;
2486 	struct inode *inode = mapping->host;
2487 	pgoff_t offset = vmf->pgoff;
2488 	pgoff_t max_off;
2489 	struct page *page;
2490 	vm_fault_t ret = 0;
2491 
2492 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2493 	if (unlikely(offset >= max_off))
2494 		return VM_FAULT_SIGBUS;
2495 
2496 	/*
2497 	 * Do we have something in the page cache already?
2498 	 */
2499 	page = find_get_page(mapping, offset);
2500 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2501 		/*
2502 		 * We found the page, so try async readahead before
2503 		 * waiting for the lock.
2504 		 */
2505 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2506 	} else if (!page) {
2507 		/* No page in the page cache at all */
2508 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2509 		count_vm_event(PGMAJFAULT);
2510 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2511 		ret = VM_FAULT_MAJOR;
2512 retry_find:
2513 		page = find_get_page(mapping, offset);
2514 		if (!page)
2515 			goto no_cached_page;
2516 	}
2517 
2518 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2519 		put_page(page);
2520 		return ret | VM_FAULT_RETRY;
2521 	}
2522 
2523 	/* Did it get truncated? */
2524 	if (unlikely(page->mapping != mapping)) {
2525 		unlock_page(page);
2526 		put_page(page);
2527 		goto retry_find;
2528 	}
2529 	VM_BUG_ON_PAGE(page->index != offset, page);
2530 
2531 	/*
2532 	 * We have a locked page in the page cache, now we need to check
2533 	 * that it's up-to-date. If not, it is going to be due to an error.
2534 	 */
2535 	if (unlikely(!PageUptodate(page)))
2536 		goto page_not_uptodate;
2537 
2538 	/*
2539 	 * Found the page and have a reference on it.
2540 	 * We must recheck i_size under page lock.
2541 	 */
2542 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2543 	if (unlikely(offset >= max_off)) {
2544 		unlock_page(page);
2545 		put_page(page);
2546 		return VM_FAULT_SIGBUS;
2547 	}
2548 
2549 	vmf->page = page;
2550 	return ret | VM_FAULT_LOCKED;
2551 
2552 no_cached_page:
2553 	/*
2554 	 * We're only likely to ever get here if MADV_RANDOM is in
2555 	 * effect.
2556 	 */
2557 	error = page_cache_read(file, offset, vmf->gfp_mask);
2558 
2559 	/*
2560 	 * The page we want has now been added to the page cache.
2561 	 * In the unlikely event that someone removed it in the
2562 	 * meantime, we'll just come back here and read it again.
2563 	 */
2564 	if (error >= 0)
2565 		goto retry_find;
2566 
2567 	/*
2568 	 * An error return from page_cache_read can result if the
2569 	 * system is low on memory, or a problem occurs while trying
2570 	 * to schedule I/O.
2571 	 */
2572 	return vmf_error(error);
2573 
2574 page_not_uptodate:
2575 	/*
2576 	 * Umm, take care of errors if the page isn't up-to-date.
2577 	 * Try to re-read it _once_. We do this synchronously,
2578 	 * because there really aren't any performance issues here
2579 	 * and we need to check for errors.
2580 	 */
2581 	ClearPageError(page);
2582 	error = mapping->a_ops->readpage(file, page);
2583 	if (!error) {
2584 		wait_on_page_locked(page);
2585 		if (!PageUptodate(page))
2586 			error = -EIO;
2587 	}
2588 	put_page(page);
2589 
2590 	if (!error || error == AOP_TRUNCATED_PAGE)
2591 		goto retry_find;
2592 
2593 	/* Things didn't work out. Return zero to tell the mm layer so. */
2594 	shrink_readahead_size_eio(file, ra);
2595 	return VM_FAULT_SIGBUS;
2596 }
2597 EXPORT_SYMBOL(filemap_fault);
2598 
2599 void filemap_map_pages(struct vm_fault *vmf,
2600 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2601 {
2602 	struct file *file = vmf->vma->vm_file;
2603 	struct address_space *mapping = file->f_mapping;
2604 	pgoff_t last_pgoff = start_pgoff;
2605 	unsigned long max_idx;
2606 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2607 	struct page *head, *page;
2608 
2609 	rcu_read_lock();
2610 	xas_for_each(&xas, page, end_pgoff) {
2611 		if (xas_retry(&xas, page))
2612 			continue;
2613 		if (xa_is_value(page))
2614 			goto next;
2615 
2616 		head = compound_head(page);
2617 
2618 		/*
2619 		 * Check for a locked page first, as a speculative
2620 		 * reference may adversely influence page migration.
2621 		 */
2622 		if (PageLocked(head))
2623 			goto next;
2624 		if (!page_cache_get_speculative(head))
2625 			goto next;
2626 
2627 		/* The page was split under us? */
2628 		if (compound_head(page) != head)
2629 			goto skip;
2630 
2631 		/* Has the page moved? */
2632 		if (unlikely(page != xas_reload(&xas)))
2633 			goto skip;
2634 
2635 		if (!PageUptodate(page) ||
2636 				PageReadahead(page) ||
2637 				PageHWPoison(page))
2638 			goto skip;
2639 		if (!trylock_page(page))
2640 			goto skip;
2641 
2642 		if (page->mapping != mapping || !PageUptodate(page))
2643 			goto unlock;
2644 
2645 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2646 		if (page->index >= max_idx)
2647 			goto unlock;
2648 
2649 		if (file->f_ra.mmap_miss > 0)
2650 			file->f_ra.mmap_miss--;
2651 
2652 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2653 		if (vmf->pte)
2654 			vmf->pte += xas.xa_index - last_pgoff;
2655 		last_pgoff = xas.xa_index;
2656 		if (alloc_set_pte(vmf, NULL, page))
2657 			goto unlock;
2658 		unlock_page(page);
2659 		goto next;
2660 unlock:
2661 		unlock_page(page);
2662 skip:
2663 		put_page(page);
2664 next:
2665 		/* Huge page is mapped? No need to proceed. */
2666 		if (pmd_trans_huge(*vmf->pmd))
2667 			break;
2668 	}
2669 	rcu_read_unlock();
2670 }
2671 EXPORT_SYMBOL(filemap_map_pages);
2672 
2673 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2674 {
2675 	struct page *page = vmf->page;
2676 	struct inode *inode = file_inode(vmf->vma->vm_file);
2677 	vm_fault_t ret = VM_FAULT_LOCKED;
2678 
2679 	sb_start_pagefault(inode->i_sb);
2680 	file_update_time(vmf->vma->vm_file);
2681 	lock_page(page);
2682 	if (page->mapping != inode->i_mapping) {
2683 		unlock_page(page);
2684 		ret = VM_FAULT_NOPAGE;
2685 		goto out;
2686 	}
2687 	/*
2688 	 * We mark the page dirty already here so that when freeze is in
2689 	 * progress, we are guaranteed that writeback during freezing will
2690 	 * see the dirty page and writeprotect it again.
2691 	 */
2692 	set_page_dirty(page);
2693 	wait_for_stable_page(page);
2694 out:
2695 	sb_end_pagefault(inode->i_sb);
2696 	return ret;
2697 }
2698 
2699 const struct vm_operations_struct generic_file_vm_ops = {
2700 	.fault		= filemap_fault,
2701 	.map_pages	= filemap_map_pages,
2702 	.page_mkwrite	= filemap_page_mkwrite,
2703 };
2704 
2705 /* This is used for a general mmap of a disk file */
2706 
2707 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2708 {
2709 	struct address_space *mapping = file->f_mapping;
2710 
2711 	if (!mapping->a_ops->readpage)
2712 		return -ENOEXEC;
2713 	file_accessed(file);
2714 	vma->vm_ops = &generic_file_vm_ops;
2715 	return 0;
2716 }
2717 
2718 /*
2719  * This is for filesystems which do not implement ->writepage.
2720  */
2721 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2722 {
2723 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2724 		return -EINVAL;
2725 	return generic_file_mmap(file, vma);
2726 }
2727 #else
2728 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2729 {
2730 	return VM_FAULT_SIGBUS;
2731 }
2732 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2733 {
2734 	return -ENOSYS;
2735 }
2736 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2737 {
2738 	return -ENOSYS;
2739 }
2740 #endif /* CONFIG_MMU */
2741 
2742 EXPORT_SYMBOL(filemap_page_mkwrite);
2743 EXPORT_SYMBOL(generic_file_mmap);
2744 EXPORT_SYMBOL(generic_file_readonly_mmap);
2745 
2746 static struct page *wait_on_page_read(struct page *page)
2747 {
2748 	if (!IS_ERR(page)) {
2749 		wait_on_page_locked(page);
2750 		if (!PageUptodate(page)) {
2751 			put_page(page);
2752 			page = ERR_PTR(-EIO);
2753 		}
2754 	}
2755 	return page;
2756 }
2757 
2758 static struct page *do_read_cache_page(struct address_space *mapping,
2759 				pgoff_t index,
2760 				int (*filler)(void *, struct page *),
2761 				void *data,
2762 				gfp_t gfp)
2763 {
2764 	struct page *page;
2765 	int err;
2766 repeat:
2767 	page = find_get_page(mapping, index);
2768 	if (!page) {
2769 		page = __page_cache_alloc(gfp);
2770 		if (!page)
2771 			return ERR_PTR(-ENOMEM);
2772 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2773 		if (unlikely(err)) {
2774 			put_page(page);
2775 			if (err == -EEXIST)
2776 				goto repeat;
2777 			/* Presumably ENOMEM for xarray node */
2778 			return ERR_PTR(err);
2779 		}
2780 
2781 filler:
2782 		err = filler(data, page);
2783 		if (err < 0) {
2784 			put_page(page);
2785 			return ERR_PTR(err);
2786 		}
2787 
2788 		page = wait_on_page_read(page);
2789 		if (IS_ERR(page))
2790 			return page;
2791 		goto out;
2792 	}
2793 	if (PageUptodate(page))
2794 		goto out;
2795 
2796 	/*
2797 	 * Page is not up to date and may be locked due one of the following
2798 	 * case a: Page is being filled and the page lock is held
2799 	 * case b: Read/write error clearing the page uptodate status
2800 	 * case c: Truncation in progress (page locked)
2801 	 * case d: Reclaim in progress
2802 	 *
2803 	 * Case a, the page will be up to date when the page is unlocked.
2804 	 *    There is no need to serialise on the page lock here as the page
2805 	 *    is pinned so the lock gives no additional protection. Even if the
2806 	 *    the page is truncated, the data is still valid if PageUptodate as
2807 	 *    it's a race vs truncate race.
2808 	 * Case b, the page will not be up to date
2809 	 * Case c, the page may be truncated but in itself, the data may still
2810 	 *    be valid after IO completes as it's a read vs truncate race. The
2811 	 *    operation must restart if the page is not uptodate on unlock but
2812 	 *    otherwise serialising on page lock to stabilise the mapping gives
2813 	 *    no additional guarantees to the caller as the page lock is
2814 	 *    released before return.
2815 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2816 	 *    will be a race with remove_mapping that determines if the mapping
2817 	 *    is valid on unlock but otherwise the data is valid and there is
2818 	 *    no need to serialise with page lock.
2819 	 *
2820 	 * As the page lock gives no additional guarantee, we optimistically
2821 	 * wait on the page to be unlocked and check if it's up to date and
2822 	 * use the page if it is. Otherwise, the page lock is required to
2823 	 * distinguish between the different cases. The motivation is that we
2824 	 * avoid spurious serialisations and wakeups when multiple processes
2825 	 * wait on the same page for IO to complete.
2826 	 */
2827 	wait_on_page_locked(page);
2828 	if (PageUptodate(page))
2829 		goto out;
2830 
2831 	/* Distinguish between all the cases under the safety of the lock */
2832 	lock_page(page);
2833 
2834 	/* Case c or d, restart the operation */
2835 	if (!page->mapping) {
2836 		unlock_page(page);
2837 		put_page(page);
2838 		goto repeat;
2839 	}
2840 
2841 	/* Someone else locked and filled the page in a very small window */
2842 	if (PageUptodate(page)) {
2843 		unlock_page(page);
2844 		goto out;
2845 	}
2846 	goto filler;
2847 
2848 out:
2849 	mark_page_accessed(page);
2850 	return page;
2851 }
2852 
2853 /**
2854  * read_cache_page - read into page cache, fill it if needed
2855  * @mapping:	the page's address_space
2856  * @index:	the page index
2857  * @filler:	function to perform the read
2858  * @data:	first arg to filler(data, page) function, often left as NULL
2859  *
2860  * Read into the page cache. If a page already exists, and PageUptodate() is
2861  * not set, try to fill the page and wait for it to become unlocked.
2862  *
2863  * If the page does not get brought uptodate, return -EIO.
2864  */
2865 struct page *read_cache_page(struct address_space *mapping,
2866 				pgoff_t index,
2867 				int (*filler)(void *, struct page *),
2868 				void *data)
2869 {
2870 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2871 }
2872 EXPORT_SYMBOL(read_cache_page);
2873 
2874 /**
2875  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2876  * @mapping:	the page's address_space
2877  * @index:	the page index
2878  * @gfp:	the page allocator flags to use if allocating
2879  *
2880  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2881  * any new page allocations done using the specified allocation flags.
2882  *
2883  * If the page does not get brought uptodate, return -EIO.
2884  */
2885 struct page *read_cache_page_gfp(struct address_space *mapping,
2886 				pgoff_t index,
2887 				gfp_t gfp)
2888 {
2889 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2890 
2891 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2892 }
2893 EXPORT_SYMBOL(read_cache_page_gfp);
2894 
2895 /*
2896  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2897  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2898  * exceeds the limit we return -EFBIG.
2899  */
2900 static int generic_access_check_limits(struct file *file, loff_t pos,
2901 				       loff_t *count)
2902 {
2903 	struct inode *inode = file->f_mapping->host;
2904 	loff_t max_size = inode->i_sb->s_maxbytes;
2905 
2906 	if (!(file->f_flags & O_LARGEFILE))
2907 		max_size = MAX_NON_LFS;
2908 
2909 	if (unlikely(pos >= max_size))
2910 		return -EFBIG;
2911 	*count = min(*count, max_size - pos);
2912 	return 0;
2913 }
2914 
2915 static int generic_write_check_limits(struct file *file, loff_t pos,
2916 				      loff_t *count)
2917 {
2918 	loff_t limit = rlimit(RLIMIT_FSIZE);
2919 
2920 	if (limit != RLIM_INFINITY) {
2921 		if (pos >= limit) {
2922 			send_sig(SIGXFSZ, current, 0);
2923 			return -EFBIG;
2924 		}
2925 		*count = min(*count, limit - pos);
2926 	}
2927 
2928 	return generic_access_check_limits(file, pos, count);
2929 }
2930 
2931 /*
2932  * Performs necessary checks before doing a write
2933  *
2934  * Can adjust writing position or amount of bytes to write.
2935  * Returns appropriate error code that caller should return or
2936  * zero in case that write should be allowed.
2937  */
2938 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2939 {
2940 	struct file *file = iocb->ki_filp;
2941 	struct inode *inode = file->f_mapping->host;
2942 	loff_t count;
2943 	int ret;
2944 
2945 	if (!iov_iter_count(from))
2946 		return 0;
2947 
2948 	/* FIXME: this is for backwards compatibility with 2.4 */
2949 	if (iocb->ki_flags & IOCB_APPEND)
2950 		iocb->ki_pos = i_size_read(inode);
2951 
2952 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2953 		return -EINVAL;
2954 
2955 	count = iov_iter_count(from);
2956 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2957 	if (ret)
2958 		return ret;
2959 
2960 	iov_iter_truncate(from, count);
2961 	return iov_iter_count(from);
2962 }
2963 EXPORT_SYMBOL(generic_write_checks);
2964 
2965 /*
2966  * Performs necessary checks before doing a clone.
2967  *
2968  * Can adjust amount of bytes to clone.
2969  * Returns appropriate error code that caller should return or
2970  * zero in case the clone should be allowed.
2971  */
2972 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2973 			 struct file *file_out, loff_t pos_out,
2974 			 loff_t *req_count, unsigned int remap_flags)
2975 {
2976 	struct inode *inode_in = file_in->f_mapping->host;
2977 	struct inode *inode_out = file_out->f_mapping->host;
2978 	uint64_t count = *req_count;
2979 	uint64_t bcount;
2980 	loff_t size_in, size_out;
2981 	loff_t bs = inode_out->i_sb->s_blocksize;
2982 	int ret;
2983 
2984 	/* The start of both ranges must be aligned to an fs block. */
2985 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2986 		return -EINVAL;
2987 
2988 	/* Ensure offsets don't wrap. */
2989 	if (pos_in + count < pos_in || pos_out + count < pos_out)
2990 		return -EINVAL;
2991 
2992 	size_in = i_size_read(inode_in);
2993 	size_out = i_size_read(inode_out);
2994 
2995 	/* Dedupe requires both ranges to be within EOF. */
2996 	if ((remap_flags & REMAP_FILE_DEDUP) &&
2997 	    (pos_in >= size_in || pos_in + count > size_in ||
2998 	     pos_out >= size_out || pos_out + count > size_out))
2999 		return -EINVAL;
3000 
3001 	/* Ensure the infile range is within the infile. */
3002 	if (pos_in >= size_in)
3003 		return -EINVAL;
3004 	count = min(count, size_in - (uint64_t)pos_in);
3005 
3006 	ret = generic_access_check_limits(file_in, pos_in, &count);
3007 	if (ret)
3008 		return ret;
3009 
3010 	ret = generic_write_check_limits(file_out, pos_out, &count);
3011 	if (ret)
3012 		return ret;
3013 
3014 	/*
3015 	 * If the user wanted us to link to the infile's EOF, round up to the
3016 	 * next block boundary for this check.
3017 	 *
3018 	 * Otherwise, make sure the count is also block-aligned, having
3019 	 * already confirmed the starting offsets' block alignment.
3020 	 */
3021 	if (pos_in + count == size_in) {
3022 		bcount = ALIGN(size_in, bs) - pos_in;
3023 	} else {
3024 		if (!IS_ALIGNED(count, bs))
3025 			count = ALIGN_DOWN(count, bs);
3026 		bcount = count;
3027 	}
3028 
3029 	/* Don't allow overlapped cloning within the same file. */
3030 	if (inode_in == inode_out &&
3031 	    pos_out + bcount > pos_in &&
3032 	    pos_out < pos_in + bcount)
3033 		return -EINVAL;
3034 
3035 	/*
3036 	 * We shortened the request but the caller can't deal with that, so
3037 	 * bounce the request back to userspace.
3038 	 */
3039 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3040 		return -EINVAL;
3041 
3042 	*req_count = count;
3043 	return 0;
3044 }
3045 
3046 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3047 				loff_t pos, unsigned len, unsigned flags,
3048 				struct page **pagep, void **fsdata)
3049 {
3050 	const struct address_space_operations *aops = mapping->a_ops;
3051 
3052 	return aops->write_begin(file, mapping, pos, len, flags,
3053 							pagep, fsdata);
3054 }
3055 EXPORT_SYMBOL(pagecache_write_begin);
3056 
3057 int pagecache_write_end(struct file *file, struct address_space *mapping,
3058 				loff_t pos, unsigned len, unsigned copied,
3059 				struct page *page, void *fsdata)
3060 {
3061 	const struct address_space_operations *aops = mapping->a_ops;
3062 
3063 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3064 }
3065 EXPORT_SYMBOL(pagecache_write_end);
3066 
3067 ssize_t
3068 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3069 {
3070 	struct file	*file = iocb->ki_filp;
3071 	struct address_space *mapping = file->f_mapping;
3072 	struct inode	*inode = mapping->host;
3073 	loff_t		pos = iocb->ki_pos;
3074 	ssize_t		written;
3075 	size_t		write_len;
3076 	pgoff_t		end;
3077 
3078 	write_len = iov_iter_count(from);
3079 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3080 
3081 	if (iocb->ki_flags & IOCB_NOWAIT) {
3082 		/* If there are pages to writeback, return */
3083 		if (filemap_range_has_page(inode->i_mapping, pos,
3084 					   pos + write_len))
3085 			return -EAGAIN;
3086 	} else {
3087 		written = filemap_write_and_wait_range(mapping, pos,
3088 							pos + write_len - 1);
3089 		if (written)
3090 			goto out;
3091 	}
3092 
3093 	/*
3094 	 * After a write we want buffered reads to be sure to go to disk to get
3095 	 * the new data.  We invalidate clean cached page from the region we're
3096 	 * about to write.  We do this *before* the write so that we can return
3097 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3098 	 */
3099 	written = invalidate_inode_pages2_range(mapping,
3100 					pos >> PAGE_SHIFT, end);
3101 	/*
3102 	 * If a page can not be invalidated, return 0 to fall back
3103 	 * to buffered write.
3104 	 */
3105 	if (written) {
3106 		if (written == -EBUSY)
3107 			return 0;
3108 		goto out;
3109 	}
3110 
3111 	written = mapping->a_ops->direct_IO(iocb, from);
3112 
3113 	/*
3114 	 * Finally, try again to invalidate clean pages which might have been
3115 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3116 	 * if the source of the write was an mmap'ed region of the file
3117 	 * we're writing.  Either one is a pretty crazy thing to do,
3118 	 * so we don't support it 100%.  If this invalidation
3119 	 * fails, tough, the write still worked...
3120 	 *
3121 	 * Most of the time we do not need this since dio_complete() will do
3122 	 * the invalidation for us. However there are some file systems that
3123 	 * do not end up with dio_complete() being called, so let's not break
3124 	 * them by removing it completely
3125 	 */
3126 	if (mapping->nrpages)
3127 		invalidate_inode_pages2_range(mapping,
3128 					pos >> PAGE_SHIFT, end);
3129 
3130 	if (written > 0) {
3131 		pos += written;
3132 		write_len -= written;
3133 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3134 			i_size_write(inode, pos);
3135 			mark_inode_dirty(inode);
3136 		}
3137 		iocb->ki_pos = pos;
3138 	}
3139 	iov_iter_revert(from, write_len - iov_iter_count(from));
3140 out:
3141 	return written;
3142 }
3143 EXPORT_SYMBOL(generic_file_direct_write);
3144 
3145 /*
3146  * Find or create a page at the given pagecache position. Return the locked
3147  * page. This function is specifically for buffered writes.
3148  */
3149 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3150 					pgoff_t index, unsigned flags)
3151 {
3152 	struct page *page;
3153 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3154 
3155 	if (flags & AOP_FLAG_NOFS)
3156 		fgp_flags |= FGP_NOFS;
3157 
3158 	page = pagecache_get_page(mapping, index, fgp_flags,
3159 			mapping_gfp_mask(mapping));
3160 	if (page)
3161 		wait_for_stable_page(page);
3162 
3163 	return page;
3164 }
3165 EXPORT_SYMBOL(grab_cache_page_write_begin);
3166 
3167 ssize_t generic_perform_write(struct file *file,
3168 				struct iov_iter *i, loff_t pos)
3169 {
3170 	struct address_space *mapping = file->f_mapping;
3171 	const struct address_space_operations *a_ops = mapping->a_ops;
3172 	long status = 0;
3173 	ssize_t written = 0;
3174 	unsigned int flags = 0;
3175 
3176 	do {
3177 		struct page *page;
3178 		unsigned long offset;	/* Offset into pagecache page */
3179 		unsigned long bytes;	/* Bytes to write to page */
3180 		size_t copied;		/* Bytes copied from user */
3181 		void *fsdata;
3182 
3183 		offset = (pos & (PAGE_SIZE - 1));
3184 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3185 						iov_iter_count(i));
3186 
3187 again:
3188 		/*
3189 		 * Bring in the user page that we will copy from _first_.
3190 		 * Otherwise there's a nasty deadlock on copying from the
3191 		 * same page as we're writing to, without it being marked
3192 		 * up-to-date.
3193 		 *
3194 		 * Not only is this an optimisation, but it is also required
3195 		 * to check that the address is actually valid, when atomic
3196 		 * usercopies are used, below.
3197 		 */
3198 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3199 			status = -EFAULT;
3200 			break;
3201 		}
3202 
3203 		if (fatal_signal_pending(current)) {
3204 			status = -EINTR;
3205 			break;
3206 		}
3207 
3208 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3209 						&page, &fsdata);
3210 		if (unlikely(status < 0))
3211 			break;
3212 
3213 		if (mapping_writably_mapped(mapping))
3214 			flush_dcache_page(page);
3215 
3216 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3217 		flush_dcache_page(page);
3218 
3219 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3220 						page, fsdata);
3221 		if (unlikely(status < 0))
3222 			break;
3223 		copied = status;
3224 
3225 		cond_resched();
3226 
3227 		iov_iter_advance(i, copied);
3228 		if (unlikely(copied == 0)) {
3229 			/*
3230 			 * If we were unable to copy any data at all, we must
3231 			 * fall back to a single segment length write.
3232 			 *
3233 			 * If we didn't fallback here, we could livelock
3234 			 * because not all segments in the iov can be copied at
3235 			 * once without a pagefault.
3236 			 */
3237 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3238 						iov_iter_single_seg_count(i));
3239 			goto again;
3240 		}
3241 		pos += copied;
3242 		written += copied;
3243 
3244 		balance_dirty_pages_ratelimited(mapping);
3245 	} while (iov_iter_count(i));
3246 
3247 	return written ? written : status;
3248 }
3249 EXPORT_SYMBOL(generic_perform_write);
3250 
3251 /**
3252  * __generic_file_write_iter - write data to a file
3253  * @iocb:	IO state structure (file, offset, etc.)
3254  * @from:	iov_iter with data to write
3255  *
3256  * This function does all the work needed for actually writing data to a
3257  * file. It does all basic checks, removes SUID from the file, updates
3258  * modification times and calls proper subroutines depending on whether we
3259  * do direct IO or a standard buffered write.
3260  *
3261  * It expects i_mutex to be grabbed unless we work on a block device or similar
3262  * object which does not need locking at all.
3263  *
3264  * This function does *not* take care of syncing data in case of O_SYNC write.
3265  * A caller has to handle it. This is mainly due to the fact that we want to
3266  * avoid syncing under i_mutex.
3267  */
3268 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3269 {
3270 	struct file *file = iocb->ki_filp;
3271 	struct address_space * mapping = file->f_mapping;
3272 	struct inode 	*inode = mapping->host;
3273 	ssize_t		written = 0;
3274 	ssize_t		err;
3275 	ssize_t		status;
3276 
3277 	/* We can write back this queue in page reclaim */
3278 	current->backing_dev_info = inode_to_bdi(inode);
3279 	err = file_remove_privs(file);
3280 	if (err)
3281 		goto out;
3282 
3283 	err = file_update_time(file);
3284 	if (err)
3285 		goto out;
3286 
3287 	if (iocb->ki_flags & IOCB_DIRECT) {
3288 		loff_t pos, endbyte;
3289 
3290 		written = generic_file_direct_write(iocb, from);
3291 		/*
3292 		 * If the write stopped short of completing, fall back to
3293 		 * buffered writes.  Some filesystems do this for writes to
3294 		 * holes, for example.  For DAX files, a buffered write will
3295 		 * not succeed (even if it did, DAX does not handle dirty
3296 		 * page-cache pages correctly).
3297 		 */
3298 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3299 			goto out;
3300 
3301 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3302 		/*
3303 		 * If generic_perform_write() returned a synchronous error
3304 		 * then we want to return the number of bytes which were
3305 		 * direct-written, or the error code if that was zero.  Note
3306 		 * that this differs from normal direct-io semantics, which
3307 		 * will return -EFOO even if some bytes were written.
3308 		 */
3309 		if (unlikely(status < 0)) {
3310 			err = status;
3311 			goto out;
3312 		}
3313 		/*
3314 		 * We need to ensure that the page cache pages are written to
3315 		 * disk and invalidated to preserve the expected O_DIRECT
3316 		 * semantics.
3317 		 */
3318 		endbyte = pos + status - 1;
3319 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3320 		if (err == 0) {
3321 			iocb->ki_pos = endbyte + 1;
3322 			written += status;
3323 			invalidate_mapping_pages(mapping,
3324 						 pos >> PAGE_SHIFT,
3325 						 endbyte >> PAGE_SHIFT);
3326 		} else {
3327 			/*
3328 			 * We don't know how much we wrote, so just return
3329 			 * the number of bytes which were direct-written
3330 			 */
3331 		}
3332 	} else {
3333 		written = generic_perform_write(file, from, iocb->ki_pos);
3334 		if (likely(written > 0))
3335 			iocb->ki_pos += written;
3336 	}
3337 out:
3338 	current->backing_dev_info = NULL;
3339 	return written ? written : err;
3340 }
3341 EXPORT_SYMBOL(__generic_file_write_iter);
3342 
3343 /**
3344  * generic_file_write_iter - write data to a file
3345  * @iocb:	IO state structure
3346  * @from:	iov_iter with data to write
3347  *
3348  * This is a wrapper around __generic_file_write_iter() to be used by most
3349  * filesystems. It takes care of syncing the file in case of O_SYNC file
3350  * and acquires i_mutex as needed.
3351  */
3352 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3353 {
3354 	struct file *file = iocb->ki_filp;
3355 	struct inode *inode = file->f_mapping->host;
3356 	ssize_t ret;
3357 
3358 	inode_lock(inode);
3359 	ret = generic_write_checks(iocb, from);
3360 	if (ret > 0)
3361 		ret = __generic_file_write_iter(iocb, from);
3362 	inode_unlock(inode);
3363 
3364 	if (ret > 0)
3365 		ret = generic_write_sync(iocb, ret);
3366 	return ret;
3367 }
3368 EXPORT_SYMBOL(generic_file_write_iter);
3369 
3370 /**
3371  * try_to_release_page() - release old fs-specific metadata on a page
3372  *
3373  * @page: the page which the kernel is trying to free
3374  * @gfp_mask: memory allocation flags (and I/O mode)
3375  *
3376  * The address_space is to try to release any data against the page
3377  * (presumably at page->private).  If the release was successful, return '1'.
3378  * Otherwise return zero.
3379  *
3380  * This may also be called if PG_fscache is set on a page, indicating that the
3381  * page is known to the local caching routines.
3382  *
3383  * The @gfp_mask argument specifies whether I/O may be performed to release
3384  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3385  *
3386  */
3387 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3388 {
3389 	struct address_space * const mapping = page->mapping;
3390 
3391 	BUG_ON(!PageLocked(page));
3392 	if (PageWriteback(page))
3393 		return 0;
3394 
3395 	if (mapping && mapping->a_ops->releasepage)
3396 		return mapping->a_ops->releasepage(page, gfp_mask);
3397 	return try_to_free_buffers(page);
3398 }
3399 
3400 EXPORT_SYMBOL(try_to_release_page);
3401