1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include "internal.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/filemap.h> 47 48 /* 49 * FIXME: remove all knowledge of the buffer layer from the core VM 50 */ 51 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 52 53 #include <asm/mman.h> 54 55 /* 56 * Shared mappings implemented 30.11.1994. It's not fully working yet, 57 * though. 58 * 59 * Shared mappings now work. 15.8.1995 Bruno. 60 * 61 * finished 'unifying' the page and buffer cache and SMP-threaded the 62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 63 * 64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 65 */ 66 67 /* 68 * Lock ordering: 69 * 70 * ->i_mmap_rwsem (truncate_pagecache) 71 * ->private_lock (__free_pte->__set_page_dirty_buffers) 72 * ->swap_lock (exclusive_swap_page, others) 73 * ->i_pages lock 74 * 75 * ->i_mutex 76 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 77 * 78 * ->mmap_sem 79 * ->i_mmap_rwsem 80 * ->page_table_lock or pte_lock (various, mainly in memory.c) 81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 82 * 83 * ->mmap_sem 84 * ->lock_page (access_process_vm) 85 * 86 * ->i_mutex (generic_perform_write) 87 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 88 * 89 * bdi->wb.list_lock 90 * sb_lock (fs/fs-writeback.c) 91 * ->i_pages lock (__sync_single_inode) 92 * 93 * ->i_mmap_rwsem 94 * ->anon_vma.lock (vma_adjust) 95 * 96 * ->anon_vma.lock 97 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 98 * 99 * ->page_table_lock or pte_lock 100 * ->swap_lock (try_to_unmap_one) 101 * ->private_lock (try_to_unmap_one) 102 * ->i_pages lock (try_to_unmap_one) 103 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 105 * ->private_lock (page_remove_rmap->set_page_dirty) 106 * ->i_pages lock (page_remove_rmap->set_page_dirty) 107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 108 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 111 * ->inode->i_lock (zap_pte_range->set_page_dirty) 112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 113 * 114 * ->i_mmap_rwsem 115 * ->tasklist_lock (memory_failure, collect_procs_ao) 116 */ 117 118 static void page_cache_delete(struct address_space *mapping, 119 struct page *page, void *shadow) 120 { 121 XA_STATE(xas, &mapping->i_pages, page->index); 122 unsigned int nr = 1; 123 124 mapping_set_update(&xas, mapping); 125 126 /* hugetlb pages are represented by a single entry in the xarray */ 127 if (!PageHuge(page)) { 128 xas_set_order(&xas, page->index, compound_order(page)); 129 nr = 1U << compound_order(page); 130 } 131 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE(PageTail(page), page); 134 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 135 136 xas_store(&xas, shadow); 137 xas_init_marks(&xas); 138 139 page->mapping = NULL; 140 /* Leave page->index set: truncation lookup relies upon it */ 141 142 if (shadow) { 143 mapping->nrexceptional += nr; 144 /* 145 * Make sure the nrexceptional update is committed before 146 * the nrpages update so that final truncate racing 147 * with reclaim does not see both counters 0 at the 148 * same time and miss a shadow entry. 149 */ 150 smp_wmb(); 151 } 152 mapping->nrpages -= nr; 153 } 154 155 static void unaccount_page_cache_page(struct address_space *mapping, 156 struct page *page) 157 { 158 int nr; 159 160 /* 161 * if we're uptodate, flush out into the cleancache, otherwise 162 * invalidate any existing cleancache entries. We can't leave 163 * stale data around in the cleancache once our page is gone 164 */ 165 if (PageUptodate(page) && PageMappedToDisk(page)) 166 cleancache_put_page(page); 167 else 168 cleancache_invalidate_page(mapping, page); 169 170 VM_BUG_ON_PAGE(PageTail(page), page); 171 VM_BUG_ON_PAGE(page_mapped(page), page); 172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 173 int mapcount; 174 175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 176 current->comm, page_to_pfn(page)); 177 dump_page(page, "still mapped when deleted"); 178 dump_stack(); 179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 180 181 mapcount = page_mapcount(page); 182 if (mapping_exiting(mapping) && 183 page_count(page) >= mapcount + 2) { 184 /* 185 * All vmas have already been torn down, so it's 186 * a good bet that actually the page is unmapped, 187 * and we'd prefer not to leak it: if we're wrong, 188 * some other bad page check should catch it later. 189 */ 190 page_mapcount_reset(page); 191 page_ref_sub(page, mapcount); 192 } 193 } 194 195 /* hugetlb pages do not participate in page cache accounting. */ 196 if (PageHuge(page)) 197 return; 198 199 nr = hpage_nr_pages(page); 200 201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 202 if (PageSwapBacked(page)) { 203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 204 if (PageTransHuge(page)) 205 __dec_node_page_state(page, NR_SHMEM_THPS); 206 } else { 207 VM_BUG_ON_PAGE(PageTransHuge(page), page); 208 } 209 210 /* 211 * At this point page must be either written or cleaned by 212 * truncate. Dirty page here signals a bug and loss of 213 * unwritten data. 214 * 215 * This fixes dirty accounting after removing the page entirely 216 * but leaves PageDirty set: it has no effect for truncated 217 * page and anyway will be cleared before returning page into 218 * buddy allocator. 219 */ 220 if (WARN_ON_ONCE(PageDirty(page))) 221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 222 } 223 224 /* 225 * Delete a page from the page cache and free it. Caller has to make 226 * sure the page is locked and that nobody else uses it - or that usage 227 * is safe. The caller must hold the i_pages lock. 228 */ 229 void __delete_from_page_cache(struct page *page, void *shadow) 230 { 231 struct address_space *mapping = page->mapping; 232 233 trace_mm_filemap_delete_from_page_cache(page); 234 235 unaccount_page_cache_page(mapping, page); 236 page_cache_delete(mapping, page, shadow); 237 } 238 239 static void page_cache_free_page(struct address_space *mapping, 240 struct page *page) 241 { 242 void (*freepage)(struct page *); 243 244 freepage = mapping->a_ops->freepage; 245 if (freepage) 246 freepage(page); 247 248 if (PageTransHuge(page) && !PageHuge(page)) { 249 page_ref_sub(page, HPAGE_PMD_NR); 250 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 251 } else { 252 put_page(page); 253 } 254 } 255 256 /** 257 * delete_from_page_cache - delete page from page cache 258 * @page: the page which the kernel is trying to remove from page cache 259 * 260 * This must be called only on pages that have been verified to be in the page 261 * cache and locked. It will never put the page into the free list, the caller 262 * has a reference on the page. 263 */ 264 void delete_from_page_cache(struct page *page) 265 { 266 struct address_space *mapping = page_mapping(page); 267 unsigned long flags; 268 269 BUG_ON(!PageLocked(page)); 270 xa_lock_irqsave(&mapping->i_pages, flags); 271 __delete_from_page_cache(page, NULL); 272 xa_unlock_irqrestore(&mapping->i_pages, flags); 273 274 page_cache_free_page(mapping, page); 275 } 276 EXPORT_SYMBOL(delete_from_page_cache); 277 278 /* 279 * page_cache_delete_batch - delete several pages from page cache 280 * @mapping: the mapping to which pages belong 281 * @pvec: pagevec with pages to delete 282 * 283 * The function walks over mapping->i_pages and removes pages passed in @pvec 284 * from the mapping. The function expects @pvec to be sorted by page index. 285 * It tolerates holes in @pvec (mapping entries at those indices are not 286 * modified). The function expects only THP head pages to be present in the 287 * @pvec and takes care to delete all corresponding tail pages from the 288 * mapping as well. 289 * 290 * The function expects the i_pages lock to be held. 291 */ 292 static void page_cache_delete_batch(struct address_space *mapping, 293 struct pagevec *pvec) 294 { 295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 296 int total_pages = 0; 297 int i = 0, tail_pages = 0; 298 struct page *page; 299 300 mapping_set_update(&xas, mapping); 301 xas_for_each(&xas, page, ULONG_MAX) { 302 if (i >= pagevec_count(pvec) && !tail_pages) 303 break; 304 if (xa_is_value(page)) 305 continue; 306 if (!tail_pages) { 307 /* 308 * Some page got inserted in our range? Skip it. We 309 * have our pages locked so they are protected from 310 * being removed. 311 */ 312 if (page != pvec->pages[i]) { 313 VM_BUG_ON_PAGE(page->index > 314 pvec->pages[i]->index, page); 315 continue; 316 } 317 WARN_ON_ONCE(!PageLocked(page)); 318 if (PageTransHuge(page) && !PageHuge(page)) 319 tail_pages = HPAGE_PMD_NR - 1; 320 page->mapping = NULL; 321 /* 322 * Leave page->index set: truncation lookup relies 323 * upon it 324 */ 325 i++; 326 } else { 327 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages 328 != pvec->pages[i]->index, page); 329 tail_pages--; 330 } 331 xas_store(&xas, NULL); 332 total_pages++; 333 } 334 mapping->nrpages -= total_pages; 335 } 336 337 void delete_from_page_cache_batch(struct address_space *mapping, 338 struct pagevec *pvec) 339 { 340 int i; 341 unsigned long flags; 342 343 if (!pagevec_count(pvec)) 344 return; 345 346 xa_lock_irqsave(&mapping->i_pages, flags); 347 for (i = 0; i < pagevec_count(pvec); i++) { 348 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 349 350 unaccount_page_cache_page(mapping, pvec->pages[i]); 351 } 352 page_cache_delete_batch(mapping, pvec); 353 xa_unlock_irqrestore(&mapping->i_pages, flags); 354 355 for (i = 0; i < pagevec_count(pvec); i++) 356 page_cache_free_page(mapping, pvec->pages[i]); 357 } 358 359 int filemap_check_errors(struct address_space *mapping) 360 { 361 int ret = 0; 362 /* Check for outstanding write errors */ 363 if (test_bit(AS_ENOSPC, &mapping->flags) && 364 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 365 ret = -ENOSPC; 366 if (test_bit(AS_EIO, &mapping->flags) && 367 test_and_clear_bit(AS_EIO, &mapping->flags)) 368 ret = -EIO; 369 return ret; 370 } 371 EXPORT_SYMBOL(filemap_check_errors); 372 373 static int filemap_check_and_keep_errors(struct address_space *mapping) 374 { 375 /* Check for outstanding write errors */ 376 if (test_bit(AS_EIO, &mapping->flags)) 377 return -EIO; 378 if (test_bit(AS_ENOSPC, &mapping->flags)) 379 return -ENOSPC; 380 return 0; 381 } 382 383 /** 384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 385 * @mapping: address space structure to write 386 * @start: offset in bytes where the range starts 387 * @end: offset in bytes where the range ends (inclusive) 388 * @sync_mode: enable synchronous operation 389 * 390 * Start writeback against all of a mapping's dirty pages that lie 391 * within the byte offsets <start, end> inclusive. 392 * 393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 394 * opposed to a regular memory cleansing writeback. The difference between 395 * these two operations is that if a dirty page/buffer is encountered, it must 396 * be waited upon, and not just skipped over. 397 * 398 * Return: %0 on success, negative error code otherwise. 399 */ 400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 401 loff_t end, int sync_mode) 402 { 403 int ret; 404 struct writeback_control wbc = { 405 .sync_mode = sync_mode, 406 .nr_to_write = LONG_MAX, 407 .range_start = start, 408 .range_end = end, 409 }; 410 411 if (!mapping_cap_writeback_dirty(mapping)) 412 return 0; 413 414 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 415 ret = do_writepages(mapping, &wbc); 416 wbc_detach_inode(&wbc); 417 return ret; 418 } 419 420 static inline int __filemap_fdatawrite(struct address_space *mapping, 421 int sync_mode) 422 { 423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 424 } 425 426 int filemap_fdatawrite(struct address_space *mapping) 427 { 428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 429 } 430 EXPORT_SYMBOL(filemap_fdatawrite); 431 432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 433 loff_t end) 434 { 435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite_range); 438 439 /** 440 * filemap_flush - mostly a non-blocking flush 441 * @mapping: target address_space 442 * 443 * This is a mostly non-blocking flush. Not suitable for data-integrity 444 * purposes - I/O may not be started against all dirty pages. 445 * 446 * Return: %0 on success, negative error code otherwise. 447 */ 448 int filemap_flush(struct address_space *mapping) 449 { 450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 451 } 452 EXPORT_SYMBOL(filemap_flush); 453 454 /** 455 * filemap_range_has_page - check if a page exists in range. 456 * @mapping: address space within which to check 457 * @start_byte: offset in bytes where the range starts 458 * @end_byte: offset in bytes where the range ends (inclusive) 459 * 460 * Find at least one page in the range supplied, usually used to check if 461 * direct writing in this range will trigger a writeback. 462 * 463 * Return: %true if at least one page exists in the specified range, 464 * %false otherwise. 465 */ 466 bool filemap_range_has_page(struct address_space *mapping, 467 loff_t start_byte, loff_t end_byte) 468 { 469 struct page *page; 470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 471 pgoff_t max = end_byte >> PAGE_SHIFT; 472 473 if (end_byte < start_byte) 474 return false; 475 476 rcu_read_lock(); 477 for (;;) { 478 page = xas_find(&xas, max); 479 if (xas_retry(&xas, page)) 480 continue; 481 /* Shadow entries don't count */ 482 if (xa_is_value(page)) 483 continue; 484 /* 485 * We don't need to try to pin this page; we're about to 486 * release the RCU lock anyway. It is enough to know that 487 * there was a page here recently. 488 */ 489 break; 490 } 491 rcu_read_unlock(); 492 493 return page != NULL; 494 } 495 EXPORT_SYMBOL(filemap_range_has_page); 496 497 static void __filemap_fdatawait_range(struct address_space *mapping, 498 loff_t start_byte, loff_t end_byte) 499 { 500 pgoff_t index = start_byte >> PAGE_SHIFT; 501 pgoff_t end = end_byte >> PAGE_SHIFT; 502 struct pagevec pvec; 503 int nr_pages; 504 505 if (end_byte < start_byte) 506 return; 507 508 pagevec_init(&pvec); 509 while (index <= end) { 510 unsigned i; 511 512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 513 end, PAGECACHE_TAG_WRITEBACK); 514 if (!nr_pages) 515 break; 516 517 for (i = 0; i < nr_pages; i++) { 518 struct page *page = pvec.pages[i]; 519 520 wait_on_page_writeback(page); 521 ClearPageError(page); 522 } 523 pagevec_release(&pvec); 524 cond_resched(); 525 } 526 } 527 528 /** 529 * filemap_fdatawait_range - wait for writeback to complete 530 * @mapping: address space structure to wait for 531 * @start_byte: offset in bytes where the range starts 532 * @end_byte: offset in bytes where the range ends (inclusive) 533 * 534 * Walk the list of under-writeback pages of the given address space 535 * in the given range and wait for all of them. Check error status of 536 * the address space and return it. 537 * 538 * Since the error status of the address space is cleared by this function, 539 * callers are responsible for checking the return value and handling and/or 540 * reporting the error. 541 * 542 * Return: error status of the address space. 543 */ 544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 545 loff_t end_byte) 546 { 547 __filemap_fdatawait_range(mapping, start_byte, end_byte); 548 return filemap_check_errors(mapping); 549 } 550 EXPORT_SYMBOL(filemap_fdatawait_range); 551 552 /** 553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 554 * @mapping: address space structure to wait for 555 * @start_byte: offset in bytes where the range starts 556 * @end_byte: offset in bytes where the range ends (inclusive) 557 * 558 * Walk the list of under-writeback pages of the given address space in the 559 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 560 * this function does not clear error status of the address space. 561 * 562 * Use this function if callers don't handle errors themselves. Expected 563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 564 * fsfreeze(8) 565 */ 566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 567 loff_t start_byte, loff_t end_byte) 568 { 569 __filemap_fdatawait_range(mapping, start_byte, end_byte); 570 return filemap_check_and_keep_errors(mapping); 571 } 572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 573 574 /** 575 * file_fdatawait_range - wait for writeback to complete 576 * @file: file pointing to address space structure to wait for 577 * @start_byte: offset in bytes where the range starts 578 * @end_byte: offset in bytes where the range ends (inclusive) 579 * 580 * Walk the list of under-writeback pages of the address space that file 581 * refers to, in the given range and wait for all of them. Check error 582 * status of the address space vs. the file->f_wb_err cursor and return it. 583 * 584 * Since the error status of the file is advanced by this function, 585 * callers are responsible for checking the return value and handling and/or 586 * reporting the error. 587 * 588 * Return: error status of the address space vs. the file->f_wb_err cursor. 589 */ 590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 591 { 592 struct address_space *mapping = file->f_mapping; 593 594 __filemap_fdatawait_range(mapping, start_byte, end_byte); 595 return file_check_and_advance_wb_err(file); 596 } 597 EXPORT_SYMBOL(file_fdatawait_range); 598 599 /** 600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 601 * @mapping: address space structure to wait for 602 * 603 * Walk the list of under-writeback pages of the given address space 604 * and wait for all of them. Unlike filemap_fdatawait(), this function 605 * does not clear error status of the address space. 606 * 607 * Use this function if callers don't handle errors themselves. Expected 608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 609 * fsfreeze(8) 610 * 611 * Return: error status of the address space. 612 */ 613 int filemap_fdatawait_keep_errors(struct address_space *mapping) 614 { 615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 616 return filemap_check_and_keep_errors(mapping); 617 } 618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 619 620 static bool mapping_needs_writeback(struct address_space *mapping) 621 { 622 return (!dax_mapping(mapping) && mapping->nrpages) || 623 (dax_mapping(mapping) && mapping->nrexceptional); 624 } 625 626 int filemap_write_and_wait(struct address_space *mapping) 627 { 628 int err = 0; 629 630 if (mapping_needs_writeback(mapping)) { 631 err = filemap_fdatawrite(mapping); 632 /* 633 * Even if the above returned error, the pages may be 634 * written partially (e.g. -ENOSPC), so we wait for it. 635 * But the -EIO is special case, it may indicate the worst 636 * thing (e.g. bug) happened, so we avoid waiting for it. 637 */ 638 if (err != -EIO) { 639 int err2 = filemap_fdatawait(mapping); 640 if (!err) 641 err = err2; 642 } else { 643 /* Clear any previously stored errors */ 644 filemap_check_errors(mapping); 645 } 646 } else { 647 err = filemap_check_errors(mapping); 648 } 649 return err; 650 } 651 EXPORT_SYMBOL(filemap_write_and_wait); 652 653 /** 654 * filemap_write_and_wait_range - write out & wait on a file range 655 * @mapping: the address_space for the pages 656 * @lstart: offset in bytes where the range starts 657 * @lend: offset in bytes where the range ends (inclusive) 658 * 659 * Write out and wait upon file offsets lstart->lend, inclusive. 660 * 661 * Note that @lend is inclusive (describes the last byte to be written) so 662 * that this function can be used to write to the very end-of-file (end = -1). 663 * 664 * Return: error status of the address space. 665 */ 666 int filemap_write_and_wait_range(struct address_space *mapping, 667 loff_t lstart, loff_t lend) 668 { 669 int err = 0; 670 671 if (mapping_needs_writeback(mapping)) { 672 err = __filemap_fdatawrite_range(mapping, lstart, lend, 673 WB_SYNC_ALL); 674 /* See comment of filemap_write_and_wait() */ 675 if (err != -EIO) { 676 int err2 = filemap_fdatawait_range(mapping, 677 lstart, lend); 678 if (!err) 679 err = err2; 680 } else { 681 /* Clear any previously stored errors */ 682 filemap_check_errors(mapping); 683 } 684 } else { 685 err = filemap_check_errors(mapping); 686 } 687 return err; 688 } 689 EXPORT_SYMBOL(filemap_write_and_wait_range); 690 691 void __filemap_set_wb_err(struct address_space *mapping, int err) 692 { 693 errseq_t eseq = errseq_set(&mapping->wb_err, err); 694 695 trace_filemap_set_wb_err(mapping, eseq); 696 } 697 EXPORT_SYMBOL(__filemap_set_wb_err); 698 699 /** 700 * file_check_and_advance_wb_err - report wb error (if any) that was previously 701 * and advance wb_err to current one 702 * @file: struct file on which the error is being reported 703 * 704 * When userland calls fsync (or something like nfsd does the equivalent), we 705 * want to report any writeback errors that occurred since the last fsync (or 706 * since the file was opened if there haven't been any). 707 * 708 * Grab the wb_err from the mapping. If it matches what we have in the file, 709 * then just quickly return 0. The file is all caught up. 710 * 711 * If it doesn't match, then take the mapping value, set the "seen" flag in 712 * it and try to swap it into place. If it works, or another task beat us 713 * to it with the new value, then update the f_wb_err and return the error 714 * portion. The error at this point must be reported via proper channels 715 * (a'la fsync, or NFS COMMIT operation, etc.). 716 * 717 * While we handle mapping->wb_err with atomic operations, the f_wb_err 718 * value is protected by the f_lock since we must ensure that it reflects 719 * the latest value swapped in for this file descriptor. 720 * 721 * Return: %0 on success, negative error code otherwise. 722 */ 723 int file_check_and_advance_wb_err(struct file *file) 724 { 725 int err = 0; 726 errseq_t old = READ_ONCE(file->f_wb_err); 727 struct address_space *mapping = file->f_mapping; 728 729 /* Locklessly handle the common case where nothing has changed */ 730 if (errseq_check(&mapping->wb_err, old)) { 731 /* Something changed, must use slow path */ 732 spin_lock(&file->f_lock); 733 old = file->f_wb_err; 734 err = errseq_check_and_advance(&mapping->wb_err, 735 &file->f_wb_err); 736 trace_file_check_and_advance_wb_err(file, old); 737 spin_unlock(&file->f_lock); 738 } 739 740 /* 741 * We're mostly using this function as a drop in replacement for 742 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 743 * that the legacy code would have had on these flags. 744 */ 745 clear_bit(AS_EIO, &mapping->flags); 746 clear_bit(AS_ENOSPC, &mapping->flags); 747 return err; 748 } 749 EXPORT_SYMBOL(file_check_and_advance_wb_err); 750 751 /** 752 * file_write_and_wait_range - write out & wait on a file range 753 * @file: file pointing to address_space with pages 754 * @lstart: offset in bytes where the range starts 755 * @lend: offset in bytes where the range ends (inclusive) 756 * 757 * Write out and wait upon file offsets lstart->lend, inclusive. 758 * 759 * Note that @lend is inclusive (describes the last byte to be written) so 760 * that this function can be used to write to the very end-of-file (end = -1). 761 * 762 * After writing out and waiting on the data, we check and advance the 763 * f_wb_err cursor to the latest value, and return any errors detected there. 764 * 765 * Return: %0 on success, negative error code otherwise. 766 */ 767 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 768 { 769 int err = 0, err2; 770 struct address_space *mapping = file->f_mapping; 771 772 if (mapping_needs_writeback(mapping)) { 773 err = __filemap_fdatawrite_range(mapping, lstart, lend, 774 WB_SYNC_ALL); 775 /* See comment of filemap_write_and_wait() */ 776 if (err != -EIO) 777 __filemap_fdatawait_range(mapping, lstart, lend); 778 } 779 err2 = file_check_and_advance_wb_err(file); 780 if (!err) 781 err = err2; 782 return err; 783 } 784 EXPORT_SYMBOL(file_write_and_wait_range); 785 786 /** 787 * replace_page_cache_page - replace a pagecache page with a new one 788 * @old: page to be replaced 789 * @new: page to replace with 790 * @gfp_mask: allocation mode 791 * 792 * This function replaces a page in the pagecache with a new one. On 793 * success it acquires the pagecache reference for the new page and 794 * drops it for the old page. Both the old and new pages must be 795 * locked. This function does not add the new page to the LRU, the 796 * caller must do that. 797 * 798 * The remove + add is atomic. This function cannot fail. 799 * 800 * Return: %0 801 */ 802 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 803 { 804 struct address_space *mapping = old->mapping; 805 void (*freepage)(struct page *) = mapping->a_ops->freepage; 806 pgoff_t offset = old->index; 807 XA_STATE(xas, &mapping->i_pages, offset); 808 unsigned long flags; 809 810 VM_BUG_ON_PAGE(!PageLocked(old), old); 811 VM_BUG_ON_PAGE(!PageLocked(new), new); 812 VM_BUG_ON_PAGE(new->mapping, new); 813 814 get_page(new); 815 new->mapping = mapping; 816 new->index = offset; 817 818 xas_lock_irqsave(&xas, flags); 819 xas_store(&xas, new); 820 821 old->mapping = NULL; 822 /* hugetlb pages do not participate in page cache accounting. */ 823 if (!PageHuge(old)) 824 __dec_node_page_state(new, NR_FILE_PAGES); 825 if (!PageHuge(new)) 826 __inc_node_page_state(new, NR_FILE_PAGES); 827 if (PageSwapBacked(old)) 828 __dec_node_page_state(new, NR_SHMEM); 829 if (PageSwapBacked(new)) 830 __inc_node_page_state(new, NR_SHMEM); 831 xas_unlock_irqrestore(&xas, flags); 832 mem_cgroup_migrate(old, new); 833 if (freepage) 834 freepage(old); 835 put_page(old); 836 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(replace_page_cache_page); 840 841 static int __add_to_page_cache_locked(struct page *page, 842 struct address_space *mapping, 843 pgoff_t offset, gfp_t gfp_mask, 844 void **shadowp) 845 { 846 XA_STATE(xas, &mapping->i_pages, offset); 847 int huge = PageHuge(page); 848 struct mem_cgroup *memcg; 849 int error; 850 void *old; 851 852 VM_BUG_ON_PAGE(!PageLocked(page), page); 853 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 854 mapping_set_update(&xas, mapping); 855 856 if (!huge) { 857 error = mem_cgroup_try_charge(page, current->mm, 858 gfp_mask, &memcg, false); 859 if (error) 860 return error; 861 } 862 863 get_page(page); 864 page->mapping = mapping; 865 page->index = offset; 866 867 do { 868 xas_lock_irq(&xas); 869 old = xas_load(&xas); 870 if (old && !xa_is_value(old)) 871 xas_set_err(&xas, -EEXIST); 872 xas_store(&xas, page); 873 if (xas_error(&xas)) 874 goto unlock; 875 876 if (xa_is_value(old)) { 877 mapping->nrexceptional--; 878 if (shadowp) 879 *shadowp = old; 880 } 881 mapping->nrpages++; 882 883 /* hugetlb pages do not participate in page cache accounting */ 884 if (!huge) 885 __inc_node_page_state(page, NR_FILE_PAGES); 886 unlock: 887 xas_unlock_irq(&xas); 888 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 889 890 if (xas_error(&xas)) 891 goto error; 892 893 if (!huge) 894 mem_cgroup_commit_charge(page, memcg, false, false); 895 trace_mm_filemap_add_to_page_cache(page); 896 return 0; 897 error: 898 page->mapping = NULL; 899 /* Leave page->index set: truncation relies upon it */ 900 if (!huge) 901 mem_cgroup_cancel_charge(page, memcg, false); 902 put_page(page); 903 return xas_error(&xas); 904 } 905 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 906 907 /** 908 * add_to_page_cache_locked - add a locked page to the pagecache 909 * @page: page to add 910 * @mapping: the page's address_space 911 * @offset: page index 912 * @gfp_mask: page allocation mode 913 * 914 * This function is used to add a page to the pagecache. It must be locked. 915 * This function does not add the page to the LRU. The caller must do that. 916 * 917 * Return: %0 on success, negative error code otherwise. 918 */ 919 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 920 pgoff_t offset, gfp_t gfp_mask) 921 { 922 return __add_to_page_cache_locked(page, mapping, offset, 923 gfp_mask, NULL); 924 } 925 EXPORT_SYMBOL(add_to_page_cache_locked); 926 927 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 928 pgoff_t offset, gfp_t gfp_mask) 929 { 930 void *shadow = NULL; 931 int ret; 932 933 __SetPageLocked(page); 934 ret = __add_to_page_cache_locked(page, mapping, offset, 935 gfp_mask, &shadow); 936 if (unlikely(ret)) 937 __ClearPageLocked(page); 938 else { 939 /* 940 * The page might have been evicted from cache only 941 * recently, in which case it should be activated like 942 * any other repeatedly accessed page. 943 * The exception is pages getting rewritten; evicting other 944 * data from the working set, only to cache data that will 945 * get overwritten with something else, is a waste of memory. 946 */ 947 WARN_ON_ONCE(PageActive(page)); 948 if (!(gfp_mask & __GFP_WRITE) && shadow) 949 workingset_refault(page, shadow); 950 lru_cache_add(page); 951 } 952 return ret; 953 } 954 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 955 956 #ifdef CONFIG_NUMA 957 struct page *__page_cache_alloc(gfp_t gfp) 958 { 959 int n; 960 struct page *page; 961 962 if (cpuset_do_page_mem_spread()) { 963 unsigned int cpuset_mems_cookie; 964 do { 965 cpuset_mems_cookie = read_mems_allowed_begin(); 966 n = cpuset_mem_spread_node(); 967 page = __alloc_pages_node(n, gfp, 0); 968 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 969 970 return page; 971 } 972 return alloc_pages(gfp, 0); 973 } 974 EXPORT_SYMBOL(__page_cache_alloc); 975 #endif 976 977 /* 978 * In order to wait for pages to become available there must be 979 * waitqueues associated with pages. By using a hash table of 980 * waitqueues where the bucket discipline is to maintain all 981 * waiters on the same queue and wake all when any of the pages 982 * become available, and for the woken contexts to check to be 983 * sure the appropriate page became available, this saves space 984 * at a cost of "thundering herd" phenomena during rare hash 985 * collisions. 986 */ 987 #define PAGE_WAIT_TABLE_BITS 8 988 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 989 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 990 991 static wait_queue_head_t *page_waitqueue(struct page *page) 992 { 993 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 994 } 995 996 void __init pagecache_init(void) 997 { 998 int i; 999 1000 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1001 init_waitqueue_head(&page_wait_table[i]); 1002 1003 page_writeback_init(); 1004 } 1005 1006 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 1007 struct wait_page_key { 1008 struct page *page; 1009 int bit_nr; 1010 int page_match; 1011 }; 1012 1013 struct wait_page_queue { 1014 struct page *page; 1015 int bit_nr; 1016 wait_queue_entry_t wait; 1017 }; 1018 1019 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1020 { 1021 struct wait_page_key *key = arg; 1022 struct wait_page_queue *wait_page 1023 = container_of(wait, struct wait_page_queue, wait); 1024 1025 if (wait_page->page != key->page) 1026 return 0; 1027 key->page_match = 1; 1028 1029 if (wait_page->bit_nr != key->bit_nr) 1030 return 0; 1031 1032 /* 1033 * Stop walking if it's locked. 1034 * Is this safe if put_and_wait_on_page_locked() is in use? 1035 * Yes: the waker must hold a reference to this page, and if PG_locked 1036 * has now already been set by another task, that task must also hold 1037 * a reference to the *same usage* of this page; so there is no need 1038 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1039 */ 1040 if (test_bit(key->bit_nr, &key->page->flags)) 1041 return -1; 1042 1043 return autoremove_wake_function(wait, mode, sync, key); 1044 } 1045 1046 static void wake_up_page_bit(struct page *page, int bit_nr) 1047 { 1048 wait_queue_head_t *q = page_waitqueue(page); 1049 struct wait_page_key key; 1050 unsigned long flags; 1051 wait_queue_entry_t bookmark; 1052 1053 key.page = page; 1054 key.bit_nr = bit_nr; 1055 key.page_match = 0; 1056 1057 bookmark.flags = 0; 1058 bookmark.private = NULL; 1059 bookmark.func = NULL; 1060 INIT_LIST_HEAD(&bookmark.entry); 1061 1062 spin_lock_irqsave(&q->lock, flags); 1063 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1064 1065 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1066 /* 1067 * Take a breather from holding the lock, 1068 * allow pages that finish wake up asynchronously 1069 * to acquire the lock and remove themselves 1070 * from wait queue 1071 */ 1072 spin_unlock_irqrestore(&q->lock, flags); 1073 cpu_relax(); 1074 spin_lock_irqsave(&q->lock, flags); 1075 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1076 } 1077 1078 /* 1079 * It is possible for other pages to have collided on the waitqueue 1080 * hash, so in that case check for a page match. That prevents a long- 1081 * term waiter 1082 * 1083 * It is still possible to miss a case here, when we woke page waiters 1084 * and removed them from the waitqueue, but there are still other 1085 * page waiters. 1086 */ 1087 if (!waitqueue_active(q) || !key.page_match) { 1088 ClearPageWaiters(page); 1089 /* 1090 * It's possible to miss clearing Waiters here, when we woke 1091 * our page waiters, but the hashed waitqueue has waiters for 1092 * other pages on it. 1093 * 1094 * That's okay, it's a rare case. The next waker will clear it. 1095 */ 1096 } 1097 spin_unlock_irqrestore(&q->lock, flags); 1098 } 1099 1100 static void wake_up_page(struct page *page, int bit) 1101 { 1102 if (!PageWaiters(page)) 1103 return; 1104 wake_up_page_bit(page, bit); 1105 } 1106 1107 /* 1108 * A choice of three behaviors for wait_on_page_bit_common(): 1109 */ 1110 enum behavior { 1111 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1112 * __lock_page() waiting on then setting PG_locked. 1113 */ 1114 SHARED, /* Hold ref to page and check the bit when woken, like 1115 * wait_on_page_writeback() waiting on PG_writeback. 1116 */ 1117 DROP, /* Drop ref to page before wait, no check when woken, 1118 * like put_and_wait_on_page_locked() on PG_locked. 1119 */ 1120 }; 1121 1122 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1123 struct page *page, int bit_nr, int state, enum behavior behavior) 1124 { 1125 struct wait_page_queue wait_page; 1126 wait_queue_entry_t *wait = &wait_page.wait; 1127 bool bit_is_set; 1128 bool thrashing = false; 1129 bool delayacct = false; 1130 unsigned long pflags; 1131 int ret = 0; 1132 1133 if (bit_nr == PG_locked && 1134 !PageUptodate(page) && PageWorkingset(page)) { 1135 if (!PageSwapBacked(page)) { 1136 delayacct_thrashing_start(); 1137 delayacct = true; 1138 } 1139 psi_memstall_enter(&pflags); 1140 thrashing = true; 1141 } 1142 1143 init_wait(wait); 1144 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1145 wait->func = wake_page_function; 1146 wait_page.page = page; 1147 wait_page.bit_nr = bit_nr; 1148 1149 for (;;) { 1150 spin_lock_irq(&q->lock); 1151 1152 if (likely(list_empty(&wait->entry))) { 1153 __add_wait_queue_entry_tail(q, wait); 1154 SetPageWaiters(page); 1155 } 1156 1157 set_current_state(state); 1158 1159 spin_unlock_irq(&q->lock); 1160 1161 bit_is_set = test_bit(bit_nr, &page->flags); 1162 if (behavior == DROP) 1163 put_page(page); 1164 1165 if (likely(bit_is_set)) 1166 io_schedule(); 1167 1168 if (behavior == EXCLUSIVE) { 1169 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1170 break; 1171 } else if (behavior == SHARED) { 1172 if (!test_bit(bit_nr, &page->flags)) 1173 break; 1174 } 1175 1176 if (signal_pending_state(state, current)) { 1177 ret = -EINTR; 1178 break; 1179 } 1180 1181 if (behavior == DROP) { 1182 /* 1183 * We can no longer safely access page->flags: 1184 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1185 * there is a risk of waiting forever on a page reused 1186 * for something that keeps it locked indefinitely. 1187 * But best check for -EINTR above before breaking. 1188 */ 1189 break; 1190 } 1191 } 1192 1193 finish_wait(q, wait); 1194 1195 if (thrashing) { 1196 if (delayacct) 1197 delayacct_thrashing_end(); 1198 psi_memstall_leave(&pflags); 1199 } 1200 1201 /* 1202 * A signal could leave PageWaiters set. Clearing it here if 1203 * !waitqueue_active would be possible (by open-coding finish_wait), 1204 * but still fail to catch it in the case of wait hash collision. We 1205 * already can fail to clear wait hash collision cases, so don't 1206 * bother with signals either. 1207 */ 1208 1209 return ret; 1210 } 1211 1212 void wait_on_page_bit(struct page *page, int bit_nr) 1213 { 1214 wait_queue_head_t *q = page_waitqueue(page); 1215 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1216 } 1217 EXPORT_SYMBOL(wait_on_page_bit); 1218 1219 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1220 { 1221 wait_queue_head_t *q = page_waitqueue(page); 1222 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1223 } 1224 EXPORT_SYMBOL(wait_on_page_bit_killable); 1225 1226 /** 1227 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1228 * @page: The page to wait for. 1229 * 1230 * The caller should hold a reference on @page. They expect the page to 1231 * become unlocked relatively soon, but do not wish to hold up migration 1232 * (for example) by holding the reference while waiting for the page to 1233 * come unlocked. After this function returns, the caller should not 1234 * dereference @page. 1235 */ 1236 void put_and_wait_on_page_locked(struct page *page) 1237 { 1238 wait_queue_head_t *q; 1239 1240 page = compound_head(page); 1241 q = page_waitqueue(page); 1242 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1243 } 1244 1245 /** 1246 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1247 * @page: Page defining the wait queue of interest 1248 * @waiter: Waiter to add to the queue 1249 * 1250 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1251 */ 1252 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1253 { 1254 wait_queue_head_t *q = page_waitqueue(page); 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&q->lock, flags); 1258 __add_wait_queue_entry_tail(q, waiter); 1259 SetPageWaiters(page); 1260 spin_unlock_irqrestore(&q->lock, flags); 1261 } 1262 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1263 1264 #ifndef clear_bit_unlock_is_negative_byte 1265 1266 /* 1267 * PG_waiters is the high bit in the same byte as PG_lock. 1268 * 1269 * On x86 (and on many other architectures), we can clear PG_lock and 1270 * test the sign bit at the same time. But if the architecture does 1271 * not support that special operation, we just do this all by hand 1272 * instead. 1273 * 1274 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1275 * being cleared, but a memory barrier should be unneccssary since it is 1276 * in the same byte as PG_locked. 1277 */ 1278 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1279 { 1280 clear_bit_unlock(nr, mem); 1281 /* smp_mb__after_atomic(); */ 1282 return test_bit(PG_waiters, mem); 1283 } 1284 1285 #endif 1286 1287 /** 1288 * unlock_page - unlock a locked page 1289 * @page: the page 1290 * 1291 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1292 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1293 * mechanism between PageLocked pages and PageWriteback pages is shared. 1294 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1295 * 1296 * Note that this depends on PG_waiters being the sign bit in the byte 1297 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1298 * clear the PG_locked bit and test PG_waiters at the same time fairly 1299 * portably (architectures that do LL/SC can test any bit, while x86 can 1300 * test the sign bit). 1301 */ 1302 void unlock_page(struct page *page) 1303 { 1304 BUILD_BUG_ON(PG_waiters != 7); 1305 page = compound_head(page); 1306 VM_BUG_ON_PAGE(!PageLocked(page), page); 1307 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1308 wake_up_page_bit(page, PG_locked); 1309 } 1310 EXPORT_SYMBOL(unlock_page); 1311 1312 /** 1313 * end_page_writeback - end writeback against a page 1314 * @page: the page 1315 */ 1316 void end_page_writeback(struct page *page) 1317 { 1318 /* 1319 * TestClearPageReclaim could be used here but it is an atomic 1320 * operation and overkill in this particular case. Failing to 1321 * shuffle a page marked for immediate reclaim is too mild to 1322 * justify taking an atomic operation penalty at the end of 1323 * ever page writeback. 1324 */ 1325 if (PageReclaim(page)) { 1326 ClearPageReclaim(page); 1327 rotate_reclaimable_page(page); 1328 } 1329 1330 if (!test_clear_page_writeback(page)) 1331 BUG(); 1332 1333 smp_mb__after_atomic(); 1334 wake_up_page(page, PG_writeback); 1335 } 1336 EXPORT_SYMBOL(end_page_writeback); 1337 1338 /* 1339 * After completing I/O on a page, call this routine to update the page 1340 * flags appropriately 1341 */ 1342 void page_endio(struct page *page, bool is_write, int err) 1343 { 1344 if (!is_write) { 1345 if (!err) { 1346 SetPageUptodate(page); 1347 } else { 1348 ClearPageUptodate(page); 1349 SetPageError(page); 1350 } 1351 unlock_page(page); 1352 } else { 1353 if (err) { 1354 struct address_space *mapping; 1355 1356 SetPageError(page); 1357 mapping = page_mapping(page); 1358 if (mapping) 1359 mapping_set_error(mapping, err); 1360 } 1361 end_page_writeback(page); 1362 } 1363 } 1364 EXPORT_SYMBOL_GPL(page_endio); 1365 1366 /** 1367 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1368 * @__page: the page to lock 1369 */ 1370 void __lock_page(struct page *__page) 1371 { 1372 struct page *page = compound_head(__page); 1373 wait_queue_head_t *q = page_waitqueue(page); 1374 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1375 EXCLUSIVE); 1376 } 1377 EXPORT_SYMBOL(__lock_page); 1378 1379 int __lock_page_killable(struct page *__page) 1380 { 1381 struct page *page = compound_head(__page); 1382 wait_queue_head_t *q = page_waitqueue(page); 1383 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1384 EXCLUSIVE); 1385 } 1386 EXPORT_SYMBOL_GPL(__lock_page_killable); 1387 1388 /* 1389 * Return values: 1390 * 1 - page is locked; mmap_sem is still held. 1391 * 0 - page is not locked. 1392 * mmap_sem has been released (up_read()), unless flags had both 1393 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1394 * which case mmap_sem is still held. 1395 * 1396 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1397 * with the page locked and the mmap_sem unperturbed. 1398 */ 1399 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1400 unsigned int flags) 1401 { 1402 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1403 /* 1404 * CAUTION! In this case, mmap_sem is not released 1405 * even though return 0. 1406 */ 1407 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1408 return 0; 1409 1410 up_read(&mm->mmap_sem); 1411 if (flags & FAULT_FLAG_KILLABLE) 1412 wait_on_page_locked_killable(page); 1413 else 1414 wait_on_page_locked(page); 1415 return 0; 1416 } else { 1417 if (flags & FAULT_FLAG_KILLABLE) { 1418 int ret; 1419 1420 ret = __lock_page_killable(page); 1421 if (ret) { 1422 up_read(&mm->mmap_sem); 1423 return 0; 1424 } 1425 } else 1426 __lock_page(page); 1427 return 1; 1428 } 1429 } 1430 1431 /** 1432 * page_cache_next_miss() - Find the next gap in the page cache. 1433 * @mapping: Mapping. 1434 * @index: Index. 1435 * @max_scan: Maximum range to search. 1436 * 1437 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1438 * gap with the lowest index. 1439 * 1440 * This function may be called under the rcu_read_lock. However, this will 1441 * not atomically search a snapshot of the cache at a single point in time. 1442 * For example, if a gap is created at index 5, then subsequently a gap is 1443 * created at index 10, page_cache_next_miss covering both indices may 1444 * return 10 if called under the rcu_read_lock. 1445 * 1446 * Return: The index of the gap if found, otherwise an index outside the 1447 * range specified (in which case 'return - index >= max_scan' will be true). 1448 * In the rare case of index wrap-around, 0 will be returned. 1449 */ 1450 pgoff_t page_cache_next_miss(struct address_space *mapping, 1451 pgoff_t index, unsigned long max_scan) 1452 { 1453 XA_STATE(xas, &mapping->i_pages, index); 1454 1455 while (max_scan--) { 1456 void *entry = xas_next(&xas); 1457 if (!entry || xa_is_value(entry)) 1458 break; 1459 if (xas.xa_index == 0) 1460 break; 1461 } 1462 1463 return xas.xa_index; 1464 } 1465 EXPORT_SYMBOL(page_cache_next_miss); 1466 1467 /** 1468 * page_cache_prev_miss() - Find the previous gap in the page cache. 1469 * @mapping: Mapping. 1470 * @index: Index. 1471 * @max_scan: Maximum range to search. 1472 * 1473 * Search the range [max(index - max_scan + 1, 0), index] for the 1474 * gap with the highest index. 1475 * 1476 * This function may be called under the rcu_read_lock. However, this will 1477 * not atomically search a snapshot of the cache at a single point in time. 1478 * For example, if a gap is created at index 10, then subsequently a gap is 1479 * created at index 5, page_cache_prev_miss() covering both indices may 1480 * return 5 if called under the rcu_read_lock. 1481 * 1482 * Return: The index of the gap if found, otherwise an index outside the 1483 * range specified (in which case 'index - return >= max_scan' will be true). 1484 * In the rare case of wrap-around, ULONG_MAX will be returned. 1485 */ 1486 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1487 pgoff_t index, unsigned long max_scan) 1488 { 1489 XA_STATE(xas, &mapping->i_pages, index); 1490 1491 while (max_scan--) { 1492 void *entry = xas_prev(&xas); 1493 if (!entry || xa_is_value(entry)) 1494 break; 1495 if (xas.xa_index == ULONG_MAX) 1496 break; 1497 } 1498 1499 return xas.xa_index; 1500 } 1501 EXPORT_SYMBOL(page_cache_prev_miss); 1502 1503 /** 1504 * find_get_entry - find and get a page cache entry 1505 * @mapping: the address_space to search 1506 * @offset: the page cache index 1507 * 1508 * Looks up the page cache slot at @mapping & @offset. If there is a 1509 * page cache page, it is returned with an increased refcount. 1510 * 1511 * If the slot holds a shadow entry of a previously evicted page, or a 1512 * swap entry from shmem/tmpfs, it is returned. 1513 * 1514 * Return: the found page or shadow entry, %NULL if nothing is found. 1515 */ 1516 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1517 { 1518 XA_STATE(xas, &mapping->i_pages, offset); 1519 struct page *head, *page; 1520 1521 rcu_read_lock(); 1522 repeat: 1523 xas_reset(&xas); 1524 page = xas_load(&xas); 1525 if (xas_retry(&xas, page)) 1526 goto repeat; 1527 /* 1528 * A shadow entry of a recently evicted page, or a swap entry from 1529 * shmem/tmpfs. Return it without attempting to raise page count. 1530 */ 1531 if (!page || xa_is_value(page)) 1532 goto out; 1533 1534 head = compound_head(page); 1535 if (!page_cache_get_speculative(head)) 1536 goto repeat; 1537 1538 /* The page was split under us? */ 1539 if (compound_head(page) != head) { 1540 put_page(head); 1541 goto repeat; 1542 } 1543 1544 /* 1545 * Has the page moved? 1546 * This is part of the lockless pagecache protocol. See 1547 * include/linux/pagemap.h for details. 1548 */ 1549 if (unlikely(page != xas_reload(&xas))) { 1550 put_page(head); 1551 goto repeat; 1552 } 1553 out: 1554 rcu_read_unlock(); 1555 1556 return page; 1557 } 1558 EXPORT_SYMBOL(find_get_entry); 1559 1560 /** 1561 * find_lock_entry - locate, pin and lock a page cache entry 1562 * @mapping: the address_space to search 1563 * @offset: the page cache index 1564 * 1565 * Looks up the page cache slot at @mapping & @offset. If there is a 1566 * page cache page, it is returned locked and with an increased 1567 * refcount. 1568 * 1569 * If the slot holds a shadow entry of a previously evicted page, or a 1570 * swap entry from shmem/tmpfs, it is returned. 1571 * 1572 * find_lock_entry() may sleep. 1573 * 1574 * Return: the found page or shadow entry, %NULL if nothing is found. 1575 */ 1576 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1577 { 1578 struct page *page; 1579 1580 repeat: 1581 page = find_get_entry(mapping, offset); 1582 if (page && !xa_is_value(page)) { 1583 lock_page(page); 1584 /* Has the page been truncated? */ 1585 if (unlikely(page_mapping(page) != mapping)) { 1586 unlock_page(page); 1587 put_page(page); 1588 goto repeat; 1589 } 1590 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1591 } 1592 return page; 1593 } 1594 EXPORT_SYMBOL(find_lock_entry); 1595 1596 /** 1597 * pagecache_get_page - find and get a page reference 1598 * @mapping: the address_space to search 1599 * @offset: the page index 1600 * @fgp_flags: PCG flags 1601 * @gfp_mask: gfp mask to use for the page cache data page allocation 1602 * 1603 * Looks up the page cache slot at @mapping & @offset. 1604 * 1605 * PCG flags modify how the page is returned. 1606 * 1607 * @fgp_flags can be: 1608 * 1609 * - FGP_ACCESSED: the page will be marked accessed 1610 * - FGP_LOCK: Page is return locked 1611 * - FGP_CREAT: If page is not present then a new page is allocated using 1612 * @gfp_mask and added to the page cache and the VM's LRU 1613 * list. The page is returned locked and with an increased 1614 * refcount. 1615 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do 1616 * its own locking dance if the page is already in cache, or unlock the page 1617 * before returning if we had to add the page to pagecache. 1618 * 1619 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1620 * if the GFP flags specified for FGP_CREAT are atomic. 1621 * 1622 * If there is a page cache page, it is returned with an increased refcount. 1623 * 1624 * Return: the found page or %NULL otherwise. 1625 */ 1626 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1627 int fgp_flags, gfp_t gfp_mask) 1628 { 1629 struct page *page; 1630 1631 repeat: 1632 page = find_get_entry(mapping, offset); 1633 if (xa_is_value(page)) 1634 page = NULL; 1635 if (!page) 1636 goto no_page; 1637 1638 if (fgp_flags & FGP_LOCK) { 1639 if (fgp_flags & FGP_NOWAIT) { 1640 if (!trylock_page(page)) { 1641 put_page(page); 1642 return NULL; 1643 } 1644 } else { 1645 lock_page(page); 1646 } 1647 1648 /* Has the page been truncated? */ 1649 if (unlikely(page->mapping != mapping)) { 1650 unlock_page(page); 1651 put_page(page); 1652 goto repeat; 1653 } 1654 VM_BUG_ON_PAGE(page->index != offset, page); 1655 } 1656 1657 if (fgp_flags & FGP_ACCESSED) 1658 mark_page_accessed(page); 1659 1660 no_page: 1661 if (!page && (fgp_flags & FGP_CREAT)) { 1662 int err; 1663 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1664 gfp_mask |= __GFP_WRITE; 1665 if (fgp_flags & FGP_NOFS) 1666 gfp_mask &= ~__GFP_FS; 1667 1668 page = __page_cache_alloc(gfp_mask); 1669 if (!page) 1670 return NULL; 1671 1672 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1673 fgp_flags |= FGP_LOCK; 1674 1675 /* Init accessed so avoid atomic mark_page_accessed later */ 1676 if (fgp_flags & FGP_ACCESSED) 1677 __SetPageReferenced(page); 1678 1679 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1680 if (unlikely(err)) { 1681 put_page(page); 1682 page = NULL; 1683 if (err == -EEXIST) 1684 goto repeat; 1685 } 1686 1687 /* 1688 * add_to_page_cache_lru locks the page, and for mmap we expect 1689 * an unlocked page. 1690 */ 1691 if (page && (fgp_flags & FGP_FOR_MMAP)) 1692 unlock_page(page); 1693 } 1694 1695 return page; 1696 } 1697 EXPORT_SYMBOL(pagecache_get_page); 1698 1699 /** 1700 * find_get_entries - gang pagecache lookup 1701 * @mapping: The address_space to search 1702 * @start: The starting page cache index 1703 * @nr_entries: The maximum number of entries 1704 * @entries: Where the resulting entries are placed 1705 * @indices: The cache indices corresponding to the entries in @entries 1706 * 1707 * find_get_entries() will search for and return a group of up to 1708 * @nr_entries entries in the mapping. The entries are placed at 1709 * @entries. find_get_entries() takes a reference against any actual 1710 * pages it returns. 1711 * 1712 * The search returns a group of mapping-contiguous page cache entries 1713 * with ascending indexes. There may be holes in the indices due to 1714 * not-present pages. 1715 * 1716 * Any shadow entries of evicted pages, or swap entries from 1717 * shmem/tmpfs, are included in the returned array. 1718 * 1719 * Return: the number of pages and shadow entries which were found. 1720 */ 1721 unsigned find_get_entries(struct address_space *mapping, 1722 pgoff_t start, unsigned int nr_entries, 1723 struct page **entries, pgoff_t *indices) 1724 { 1725 XA_STATE(xas, &mapping->i_pages, start); 1726 struct page *page; 1727 unsigned int ret = 0; 1728 1729 if (!nr_entries) 1730 return 0; 1731 1732 rcu_read_lock(); 1733 xas_for_each(&xas, page, ULONG_MAX) { 1734 struct page *head; 1735 if (xas_retry(&xas, page)) 1736 continue; 1737 /* 1738 * A shadow entry of a recently evicted page, a swap 1739 * entry from shmem/tmpfs or a DAX entry. Return it 1740 * without attempting to raise page count. 1741 */ 1742 if (xa_is_value(page)) 1743 goto export; 1744 1745 head = compound_head(page); 1746 if (!page_cache_get_speculative(head)) 1747 goto retry; 1748 1749 /* The page was split under us? */ 1750 if (compound_head(page) != head) 1751 goto put_page; 1752 1753 /* Has the page moved? */ 1754 if (unlikely(page != xas_reload(&xas))) 1755 goto put_page; 1756 1757 export: 1758 indices[ret] = xas.xa_index; 1759 entries[ret] = page; 1760 if (++ret == nr_entries) 1761 break; 1762 continue; 1763 put_page: 1764 put_page(head); 1765 retry: 1766 xas_reset(&xas); 1767 } 1768 rcu_read_unlock(); 1769 return ret; 1770 } 1771 1772 /** 1773 * find_get_pages_range - gang pagecache lookup 1774 * @mapping: The address_space to search 1775 * @start: The starting page index 1776 * @end: The final page index (inclusive) 1777 * @nr_pages: The maximum number of pages 1778 * @pages: Where the resulting pages are placed 1779 * 1780 * find_get_pages_range() will search for and return a group of up to @nr_pages 1781 * pages in the mapping starting at index @start and up to index @end 1782 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1783 * a reference against the returned pages. 1784 * 1785 * The search returns a group of mapping-contiguous pages with ascending 1786 * indexes. There may be holes in the indices due to not-present pages. 1787 * We also update @start to index the next page for the traversal. 1788 * 1789 * Return: the number of pages which were found. If this number is 1790 * smaller than @nr_pages, the end of specified range has been 1791 * reached. 1792 */ 1793 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1794 pgoff_t end, unsigned int nr_pages, 1795 struct page **pages) 1796 { 1797 XA_STATE(xas, &mapping->i_pages, *start); 1798 struct page *page; 1799 unsigned ret = 0; 1800 1801 if (unlikely(!nr_pages)) 1802 return 0; 1803 1804 rcu_read_lock(); 1805 xas_for_each(&xas, page, end) { 1806 struct page *head; 1807 if (xas_retry(&xas, page)) 1808 continue; 1809 /* Skip over shadow, swap and DAX entries */ 1810 if (xa_is_value(page)) 1811 continue; 1812 1813 head = compound_head(page); 1814 if (!page_cache_get_speculative(head)) 1815 goto retry; 1816 1817 /* The page was split under us? */ 1818 if (compound_head(page) != head) 1819 goto put_page; 1820 1821 /* Has the page moved? */ 1822 if (unlikely(page != xas_reload(&xas))) 1823 goto put_page; 1824 1825 pages[ret] = page; 1826 if (++ret == nr_pages) { 1827 *start = xas.xa_index + 1; 1828 goto out; 1829 } 1830 continue; 1831 put_page: 1832 put_page(head); 1833 retry: 1834 xas_reset(&xas); 1835 } 1836 1837 /* 1838 * We come here when there is no page beyond @end. We take care to not 1839 * overflow the index @start as it confuses some of the callers. This 1840 * breaks the iteration when there is a page at index -1 but that is 1841 * already broken anyway. 1842 */ 1843 if (end == (pgoff_t)-1) 1844 *start = (pgoff_t)-1; 1845 else 1846 *start = end + 1; 1847 out: 1848 rcu_read_unlock(); 1849 1850 return ret; 1851 } 1852 1853 /** 1854 * find_get_pages_contig - gang contiguous pagecache lookup 1855 * @mapping: The address_space to search 1856 * @index: The starting page index 1857 * @nr_pages: The maximum number of pages 1858 * @pages: Where the resulting pages are placed 1859 * 1860 * find_get_pages_contig() works exactly like find_get_pages(), except 1861 * that the returned number of pages are guaranteed to be contiguous. 1862 * 1863 * Return: the number of pages which were found. 1864 */ 1865 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1866 unsigned int nr_pages, struct page **pages) 1867 { 1868 XA_STATE(xas, &mapping->i_pages, index); 1869 struct page *page; 1870 unsigned int ret = 0; 1871 1872 if (unlikely(!nr_pages)) 1873 return 0; 1874 1875 rcu_read_lock(); 1876 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1877 struct page *head; 1878 if (xas_retry(&xas, page)) 1879 continue; 1880 /* 1881 * If the entry has been swapped out, we can stop looking. 1882 * No current caller is looking for DAX entries. 1883 */ 1884 if (xa_is_value(page)) 1885 break; 1886 1887 head = compound_head(page); 1888 if (!page_cache_get_speculative(head)) 1889 goto retry; 1890 1891 /* The page was split under us? */ 1892 if (compound_head(page) != head) 1893 goto put_page; 1894 1895 /* Has the page moved? */ 1896 if (unlikely(page != xas_reload(&xas))) 1897 goto put_page; 1898 1899 pages[ret] = page; 1900 if (++ret == nr_pages) 1901 break; 1902 continue; 1903 put_page: 1904 put_page(head); 1905 retry: 1906 xas_reset(&xas); 1907 } 1908 rcu_read_unlock(); 1909 return ret; 1910 } 1911 EXPORT_SYMBOL(find_get_pages_contig); 1912 1913 /** 1914 * find_get_pages_range_tag - find and return pages in given range matching @tag 1915 * @mapping: the address_space to search 1916 * @index: the starting page index 1917 * @end: The final page index (inclusive) 1918 * @tag: the tag index 1919 * @nr_pages: the maximum number of pages 1920 * @pages: where the resulting pages are placed 1921 * 1922 * Like find_get_pages, except we only return pages which are tagged with 1923 * @tag. We update @index to index the next page for the traversal. 1924 * 1925 * Return: the number of pages which were found. 1926 */ 1927 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1928 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1929 struct page **pages) 1930 { 1931 XA_STATE(xas, &mapping->i_pages, *index); 1932 struct page *page; 1933 unsigned ret = 0; 1934 1935 if (unlikely(!nr_pages)) 1936 return 0; 1937 1938 rcu_read_lock(); 1939 xas_for_each_marked(&xas, page, end, tag) { 1940 struct page *head; 1941 if (xas_retry(&xas, page)) 1942 continue; 1943 /* 1944 * Shadow entries should never be tagged, but this iteration 1945 * is lockless so there is a window for page reclaim to evict 1946 * a page we saw tagged. Skip over it. 1947 */ 1948 if (xa_is_value(page)) 1949 continue; 1950 1951 head = compound_head(page); 1952 if (!page_cache_get_speculative(head)) 1953 goto retry; 1954 1955 /* The page was split under us? */ 1956 if (compound_head(page) != head) 1957 goto put_page; 1958 1959 /* Has the page moved? */ 1960 if (unlikely(page != xas_reload(&xas))) 1961 goto put_page; 1962 1963 pages[ret] = page; 1964 if (++ret == nr_pages) { 1965 *index = xas.xa_index + 1; 1966 goto out; 1967 } 1968 continue; 1969 put_page: 1970 put_page(head); 1971 retry: 1972 xas_reset(&xas); 1973 } 1974 1975 /* 1976 * We come here when we got to @end. We take care to not overflow the 1977 * index @index as it confuses some of the callers. This breaks the 1978 * iteration when there is a page at index -1 but that is already 1979 * broken anyway. 1980 */ 1981 if (end == (pgoff_t)-1) 1982 *index = (pgoff_t)-1; 1983 else 1984 *index = end + 1; 1985 out: 1986 rcu_read_unlock(); 1987 1988 return ret; 1989 } 1990 EXPORT_SYMBOL(find_get_pages_range_tag); 1991 1992 /* 1993 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1994 * a _large_ part of the i/o request. Imagine the worst scenario: 1995 * 1996 * ---R__________________________________________B__________ 1997 * ^ reading here ^ bad block(assume 4k) 1998 * 1999 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2000 * => failing the whole request => read(R) => read(R+1) => 2001 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2002 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2003 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2004 * 2005 * It is going insane. Fix it by quickly scaling down the readahead size. 2006 */ 2007 static void shrink_readahead_size_eio(struct file *filp, 2008 struct file_ra_state *ra) 2009 { 2010 ra->ra_pages /= 4; 2011 } 2012 2013 /** 2014 * generic_file_buffered_read - generic file read routine 2015 * @iocb: the iocb to read 2016 * @iter: data destination 2017 * @written: already copied 2018 * 2019 * This is a generic file read routine, and uses the 2020 * mapping->a_ops->readpage() function for the actual low-level stuff. 2021 * 2022 * This is really ugly. But the goto's actually try to clarify some 2023 * of the logic when it comes to error handling etc. 2024 * 2025 * Return: 2026 * * total number of bytes copied, including those the were already @written 2027 * * negative error code if nothing was copied 2028 */ 2029 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2030 struct iov_iter *iter, ssize_t written) 2031 { 2032 struct file *filp = iocb->ki_filp; 2033 struct address_space *mapping = filp->f_mapping; 2034 struct inode *inode = mapping->host; 2035 struct file_ra_state *ra = &filp->f_ra; 2036 loff_t *ppos = &iocb->ki_pos; 2037 pgoff_t index; 2038 pgoff_t last_index; 2039 pgoff_t prev_index; 2040 unsigned long offset; /* offset into pagecache page */ 2041 unsigned int prev_offset; 2042 int error = 0; 2043 2044 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2045 return 0; 2046 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2047 2048 index = *ppos >> PAGE_SHIFT; 2049 prev_index = ra->prev_pos >> PAGE_SHIFT; 2050 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2051 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2052 offset = *ppos & ~PAGE_MASK; 2053 2054 for (;;) { 2055 struct page *page; 2056 pgoff_t end_index; 2057 loff_t isize; 2058 unsigned long nr, ret; 2059 2060 cond_resched(); 2061 find_page: 2062 if (fatal_signal_pending(current)) { 2063 error = -EINTR; 2064 goto out; 2065 } 2066 2067 page = find_get_page(mapping, index); 2068 if (!page) { 2069 if (iocb->ki_flags & IOCB_NOWAIT) 2070 goto would_block; 2071 page_cache_sync_readahead(mapping, 2072 ra, filp, 2073 index, last_index - index); 2074 page = find_get_page(mapping, index); 2075 if (unlikely(page == NULL)) 2076 goto no_cached_page; 2077 } 2078 if (PageReadahead(page)) { 2079 page_cache_async_readahead(mapping, 2080 ra, filp, page, 2081 index, last_index - index); 2082 } 2083 if (!PageUptodate(page)) { 2084 if (iocb->ki_flags & IOCB_NOWAIT) { 2085 put_page(page); 2086 goto would_block; 2087 } 2088 2089 /* 2090 * See comment in do_read_cache_page on why 2091 * wait_on_page_locked is used to avoid unnecessarily 2092 * serialisations and why it's safe. 2093 */ 2094 error = wait_on_page_locked_killable(page); 2095 if (unlikely(error)) 2096 goto readpage_error; 2097 if (PageUptodate(page)) 2098 goto page_ok; 2099 2100 if (inode->i_blkbits == PAGE_SHIFT || 2101 !mapping->a_ops->is_partially_uptodate) 2102 goto page_not_up_to_date; 2103 /* pipes can't handle partially uptodate pages */ 2104 if (unlikely(iov_iter_is_pipe(iter))) 2105 goto page_not_up_to_date; 2106 if (!trylock_page(page)) 2107 goto page_not_up_to_date; 2108 /* Did it get truncated before we got the lock? */ 2109 if (!page->mapping) 2110 goto page_not_up_to_date_locked; 2111 if (!mapping->a_ops->is_partially_uptodate(page, 2112 offset, iter->count)) 2113 goto page_not_up_to_date_locked; 2114 unlock_page(page); 2115 } 2116 page_ok: 2117 /* 2118 * i_size must be checked after we know the page is Uptodate. 2119 * 2120 * Checking i_size after the check allows us to calculate 2121 * the correct value for "nr", which means the zero-filled 2122 * part of the page is not copied back to userspace (unless 2123 * another truncate extends the file - this is desired though). 2124 */ 2125 2126 isize = i_size_read(inode); 2127 end_index = (isize - 1) >> PAGE_SHIFT; 2128 if (unlikely(!isize || index > end_index)) { 2129 put_page(page); 2130 goto out; 2131 } 2132 2133 /* nr is the maximum number of bytes to copy from this page */ 2134 nr = PAGE_SIZE; 2135 if (index == end_index) { 2136 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2137 if (nr <= offset) { 2138 put_page(page); 2139 goto out; 2140 } 2141 } 2142 nr = nr - offset; 2143 2144 /* If users can be writing to this page using arbitrary 2145 * virtual addresses, take care about potential aliasing 2146 * before reading the page on the kernel side. 2147 */ 2148 if (mapping_writably_mapped(mapping)) 2149 flush_dcache_page(page); 2150 2151 /* 2152 * When a sequential read accesses a page several times, 2153 * only mark it as accessed the first time. 2154 */ 2155 if (prev_index != index || offset != prev_offset) 2156 mark_page_accessed(page); 2157 prev_index = index; 2158 2159 /* 2160 * Ok, we have the page, and it's up-to-date, so 2161 * now we can copy it to user space... 2162 */ 2163 2164 ret = copy_page_to_iter(page, offset, nr, iter); 2165 offset += ret; 2166 index += offset >> PAGE_SHIFT; 2167 offset &= ~PAGE_MASK; 2168 prev_offset = offset; 2169 2170 put_page(page); 2171 written += ret; 2172 if (!iov_iter_count(iter)) 2173 goto out; 2174 if (ret < nr) { 2175 error = -EFAULT; 2176 goto out; 2177 } 2178 continue; 2179 2180 page_not_up_to_date: 2181 /* Get exclusive access to the page ... */ 2182 error = lock_page_killable(page); 2183 if (unlikely(error)) 2184 goto readpage_error; 2185 2186 page_not_up_to_date_locked: 2187 /* Did it get truncated before we got the lock? */ 2188 if (!page->mapping) { 2189 unlock_page(page); 2190 put_page(page); 2191 continue; 2192 } 2193 2194 /* Did somebody else fill it already? */ 2195 if (PageUptodate(page)) { 2196 unlock_page(page); 2197 goto page_ok; 2198 } 2199 2200 readpage: 2201 /* 2202 * A previous I/O error may have been due to temporary 2203 * failures, eg. multipath errors. 2204 * PG_error will be set again if readpage fails. 2205 */ 2206 ClearPageError(page); 2207 /* Start the actual read. The read will unlock the page. */ 2208 error = mapping->a_ops->readpage(filp, page); 2209 2210 if (unlikely(error)) { 2211 if (error == AOP_TRUNCATED_PAGE) { 2212 put_page(page); 2213 error = 0; 2214 goto find_page; 2215 } 2216 goto readpage_error; 2217 } 2218 2219 if (!PageUptodate(page)) { 2220 error = lock_page_killable(page); 2221 if (unlikely(error)) 2222 goto readpage_error; 2223 if (!PageUptodate(page)) { 2224 if (page->mapping == NULL) { 2225 /* 2226 * invalidate_mapping_pages got it 2227 */ 2228 unlock_page(page); 2229 put_page(page); 2230 goto find_page; 2231 } 2232 unlock_page(page); 2233 shrink_readahead_size_eio(filp, ra); 2234 error = -EIO; 2235 goto readpage_error; 2236 } 2237 unlock_page(page); 2238 } 2239 2240 goto page_ok; 2241 2242 readpage_error: 2243 /* UHHUH! A synchronous read error occurred. Report it */ 2244 put_page(page); 2245 goto out; 2246 2247 no_cached_page: 2248 /* 2249 * Ok, it wasn't cached, so we need to create a new 2250 * page.. 2251 */ 2252 page = page_cache_alloc(mapping); 2253 if (!page) { 2254 error = -ENOMEM; 2255 goto out; 2256 } 2257 error = add_to_page_cache_lru(page, mapping, index, 2258 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2259 if (error) { 2260 put_page(page); 2261 if (error == -EEXIST) { 2262 error = 0; 2263 goto find_page; 2264 } 2265 goto out; 2266 } 2267 goto readpage; 2268 } 2269 2270 would_block: 2271 error = -EAGAIN; 2272 out: 2273 ra->prev_pos = prev_index; 2274 ra->prev_pos <<= PAGE_SHIFT; 2275 ra->prev_pos |= prev_offset; 2276 2277 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2278 file_accessed(filp); 2279 return written ? written : error; 2280 } 2281 2282 /** 2283 * generic_file_read_iter - generic filesystem read routine 2284 * @iocb: kernel I/O control block 2285 * @iter: destination for the data read 2286 * 2287 * This is the "read_iter()" routine for all filesystems 2288 * that can use the page cache directly. 2289 * Return: 2290 * * number of bytes copied, even for partial reads 2291 * * negative error code if nothing was read 2292 */ 2293 ssize_t 2294 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2295 { 2296 size_t count = iov_iter_count(iter); 2297 ssize_t retval = 0; 2298 2299 if (!count) 2300 goto out; /* skip atime */ 2301 2302 if (iocb->ki_flags & IOCB_DIRECT) { 2303 struct file *file = iocb->ki_filp; 2304 struct address_space *mapping = file->f_mapping; 2305 struct inode *inode = mapping->host; 2306 loff_t size; 2307 2308 size = i_size_read(inode); 2309 if (iocb->ki_flags & IOCB_NOWAIT) { 2310 if (filemap_range_has_page(mapping, iocb->ki_pos, 2311 iocb->ki_pos + count - 1)) 2312 return -EAGAIN; 2313 } else { 2314 retval = filemap_write_and_wait_range(mapping, 2315 iocb->ki_pos, 2316 iocb->ki_pos + count - 1); 2317 if (retval < 0) 2318 goto out; 2319 } 2320 2321 file_accessed(file); 2322 2323 retval = mapping->a_ops->direct_IO(iocb, iter); 2324 if (retval >= 0) { 2325 iocb->ki_pos += retval; 2326 count -= retval; 2327 } 2328 iov_iter_revert(iter, count - iov_iter_count(iter)); 2329 2330 /* 2331 * Btrfs can have a short DIO read if we encounter 2332 * compressed extents, so if there was an error, or if 2333 * we've already read everything we wanted to, or if 2334 * there was a short read because we hit EOF, go ahead 2335 * and return. Otherwise fallthrough to buffered io for 2336 * the rest of the read. Buffered reads will not work for 2337 * DAX files, so don't bother trying. 2338 */ 2339 if (retval < 0 || !count || iocb->ki_pos >= size || 2340 IS_DAX(inode)) 2341 goto out; 2342 } 2343 2344 retval = generic_file_buffered_read(iocb, iter, retval); 2345 out: 2346 return retval; 2347 } 2348 EXPORT_SYMBOL(generic_file_read_iter); 2349 2350 #ifdef CONFIG_MMU 2351 #define MMAP_LOTSAMISS (100) 2352 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 2353 struct file *fpin) 2354 { 2355 int flags = vmf->flags; 2356 2357 if (fpin) 2358 return fpin; 2359 2360 /* 2361 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 2362 * anything, so we only pin the file and drop the mmap_sem if only 2363 * FAULT_FLAG_ALLOW_RETRY is set. 2364 */ 2365 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == 2366 FAULT_FLAG_ALLOW_RETRY) { 2367 fpin = get_file(vmf->vma->vm_file); 2368 up_read(&vmf->vma->vm_mm->mmap_sem); 2369 } 2370 return fpin; 2371 } 2372 2373 /* 2374 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 2375 * @vmf - the vm_fault for this fault. 2376 * @page - the page to lock. 2377 * @fpin - the pointer to the file we may pin (or is already pinned). 2378 * 2379 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 2380 * It differs in that it actually returns the page locked if it returns 1 and 0 2381 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 2382 * will point to the pinned file and needs to be fput()'ed at a later point. 2383 */ 2384 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2385 struct file **fpin) 2386 { 2387 if (trylock_page(page)) 2388 return 1; 2389 2390 /* 2391 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2392 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 2393 * is supposed to work. We have way too many special cases.. 2394 */ 2395 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2396 return 0; 2397 2398 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2399 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2400 if (__lock_page_killable(page)) { 2401 /* 2402 * We didn't have the right flags to drop the mmap_sem, 2403 * but all fault_handlers only check for fatal signals 2404 * if we return VM_FAULT_RETRY, so we need to drop the 2405 * mmap_sem here and return 0 if we don't have a fpin. 2406 */ 2407 if (*fpin == NULL) 2408 up_read(&vmf->vma->vm_mm->mmap_sem); 2409 return 0; 2410 } 2411 } else 2412 __lock_page(page); 2413 return 1; 2414 } 2415 2416 2417 /* 2418 * Synchronous readahead happens when we don't even find a page in the page 2419 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2420 * to drop the mmap sem we return the file that was pinned in order for us to do 2421 * that. If we didn't pin a file then we return NULL. The file that is 2422 * returned needs to be fput()'ed when we're done with it. 2423 */ 2424 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2425 { 2426 struct file *file = vmf->vma->vm_file; 2427 struct file_ra_state *ra = &file->f_ra; 2428 struct address_space *mapping = file->f_mapping; 2429 struct file *fpin = NULL; 2430 pgoff_t offset = vmf->pgoff; 2431 2432 /* If we don't want any read-ahead, don't bother */ 2433 if (vmf->vma->vm_flags & VM_RAND_READ) 2434 return fpin; 2435 if (!ra->ra_pages) 2436 return fpin; 2437 2438 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2439 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2440 page_cache_sync_readahead(mapping, ra, file, offset, 2441 ra->ra_pages); 2442 return fpin; 2443 } 2444 2445 /* Avoid banging the cache line if not needed */ 2446 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2447 ra->mmap_miss++; 2448 2449 /* 2450 * Do we miss much more than hit in this file? If so, 2451 * stop bothering with read-ahead. It will only hurt. 2452 */ 2453 if (ra->mmap_miss > MMAP_LOTSAMISS) 2454 return fpin; 2455 2456 /* 2457 * mmap read-around 2458 */ 2459 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2460 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2461 ra->size = ra->ra_pages; 2462 ra->async_size = ra->ra_pages / 4; 2463 ra_submit(ra, mapping, file); 2464 return fpin; 2465 } 2466 2467 /* 2468 * Asynchronous readahead happens when we find the page and PG_readahead, 2469 * so we want to possibly extend the readahead further. We return the file that 2470 * was pinned if we have to drop the mmap_sem in order to do IO. 2471 */ 2472 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2473 struct page *page) 2474 { 2475 struct file *file = vmf->vma->vm_file; 2476 struct file_ra_state *ra = &file->f_ra; 2477 struct address_space *mapping = file->f_mapping; 2478 struct file *fpin = NULL; 2479 pgoff_t offset = vmf->pgoff; 2480 2481 /* If we don't want any read-ahead, don't bother */ 2482 if (vmf->vma->vm_flags & VM_RAND_READ) 2483 return fpin; 2484 if (ra->mmap_miss > 0) 2485 ra->mmap_miss--; 2486 if (PageReadahead(page)) { 2487 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2488 page_cache_async_readahead(mapping, ra, file, 2489 page, offset, ra->ra_pages); 2490 } 2491 return fpin; 2492 } 2493 2494 /** 2495 * filemap_fault - read in file data for page fault handling 2496 * @vmf: struct vm_fault containing details of the fault 2497 * 2498 * filemap_fault() is invoked via the vma operations vector for a 2499 * mapped memory region to read in file data during a page fault. 2500 * 2501 * The goto's are kind of ugly, but this streamlines the normal case of having 2502 * it in the page cache, and handles the special cases reasonably without 2503 * having a lot of duplicated code. 2504 * 2505 * vma->vm_mm->mmap_sem must be held on entry. 2506 * 2507 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem 2508 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2509 * 2510 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2511 * has not been released. 2512 * 2513 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2514 * 2515 * Return: bitwise-OR of %VM_FAULT_ codes. 2516 */ 2517 vm_fault_t filemap_fault(struct vm_fault *vmf) 2518 { 2519 int error; 2520 struct file *file = vmf->vma->vm_file; 2521 struct file *fpin = NULL; 2522 struct address_space *mapping = file->f_mapping; 2523 struct file_ra_state *ra = &file->f_ra; 2524 struct inode *inode = mapping->host; 2525 pgoff_t offset = vmf->pgoff; 2526 pgoff_t max_off; 2527 struct page *page; 2528 vm_fault_t ret = 0; 2529 2530 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2531 if (unlikely(offset >= max_off)) 2532 return VM_FAULT_SIGBUS; 2533 2534 /* 2535 * Do we have something in the page cache already? 2536 */ 2537 page = find_get_page(mapping, offset); 2538 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2539 /* 2540 * We found the page, so try async readahead before 2541 * waiting for the lock. 2542 */ 2543 fpin = do_async_mmap_readahead(vmf, page); 2544 } else if (!page) { 2545 /* No page in the page cache at all */ 2546 count_vm_event(PGMAJFAULT); 2547 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2548 ret = VM_FAULT_MAJOR; 2549 fpin = do_sync_mmap_readahead(vmf); 2550 retry_find: 2551 page = pagecache_get_page(mapping, offset, 2552 FGP_CREAT|FGP_FOR_MMAP, 2553 vmf->gfp_mask); 2554 if (!page) { 2555 if (fpin) 2556 goto out_retry; 2557 return vmf_error(-ENOMEM); 2558 } 2559 } 2560 2561 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2562 goto out_retry; 2563 2564 /* Did it get truncated? */ 2565 if (unlikely(page->mapping != mapping)) { 2566 unlock_page(page); 2567 put_page(page); 2568 goto retry_find; 2569 } 2570 VM_BUG_ON_PAGE(page->index != offset, page); 2571 2572 /* 2573 * We have a locked page in the page cache, now we need to check 2574 * that it's up-to-date. If not, it is going to be due to an error. 2575 */ 2576 if (unlikely(!PageUptodate(page))) 2577 goto page_not_uptodate; 2578 2579 /* 2580 * We've made it this far and we had to drop our mmap_sem, now is the 2581 * time to return to the upper layer and have it re-find the vma and 2582 * redo the fault. 2583 */ 2584 if (fpin) { 2585 unlock_page(page); 2586 goto out_retry; 2587 } 2588 2589 /* 2590 * Found the page and have a reference on it. 2591 * We must recheck i_size under page lock. 2592 */ 2593 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2594 if (unlikely(offset >= max_off)) { 2595 unlock_page(page); 2596 put_page(page); 2597 return VM_FAULT_SIGBUS; 2598 } 2599 2600 vmf->page = page; 2601 return ret | VM_FAULT_LOCKED; 2602 2603 page_not_uptodate: 2604 /* 2605 * Umm, take care of errors if the page isn't up-to-date. 2606 * Try to re-read it _once_. We do this synchronously, 2607 * because there really aren't any performance issues here 2608 * and we need to check for errors. 2609 */ 2610 ClearPageError(page); 2611 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2612 error = mapping->a_ops->readpage(file, page); 2613 if (!error) { 2614 wait_on_page_locked(page); 2615 if (!PageUptodate(page)) 2616 error = -EIO; 2617 } 2618 if (fpin) 2619 goto out_retry; 2620 put_page(page); 2621 2622 if (!error || error == AOP_TRUNCATED_PAGE) 2623 goto retry_find; 2624 2625 /* Things didn't work out. Return zero to tell the mm layer so. */ 2626 shrink_readahead_size_eio(file, ra); 2627 return VM_FAULT_SIGBUS; 2628 2629 out_retry: 2630 /* 2631 * We dropped the mmap_sem, we need to return to the fault handler to 2632 * re-find the vma and come back and find our hopefully still populated 2633 * page. 2634 */ 2635 if (page) 2636 put_page(page); 2637 if (fpin) 2638 fput(fpin); 2639 return ret | VM_FAULT_RETRY; 2640 } 2641 EXPORT_SYMBOL(filemap_fault); 2642 2643 void filemap_map_pages(struct vm_fault *vmf, 2644 pgoff_t start_pgoff, pgoff_t end_pgoff) 2645 { 2646 struct file *file = vmf->vma->vm_file; 2647 struct address_space *mapping = file->f_mapping; 2648 pgoff_t last_pgoff = start_pgoff; 2649 unsigned long max_idx; 2650 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2651 struct page *head, *page; 2652 2653 rcu_read_lock(); 2654 xas_for_each(&xas, page, end_pgoff) { 2655 if (xas_retry(&xas, page)) 2656 continue; 2657 if (xa_is_value(page)) 2658 goto next; 2659 2660 head = compound_head(page); 2661 2662 /* 2663 * Check for a locked page first, as a speculative 2664 * reference may adversely influence page migration. 2665 */ 2666 if (PageLocked(head)) 2667 goto next; 2668 if (!page_cache_get_speculative(head)) 2669 goto next; 2670 2671 /* The page was split under us? */ 2672 if (compound_head(page) != head) 2673 goto skip; 2674 2675 /* Has the page moved? */ 2676 if (unlikely(page != xas_reload(&xas))) 2677 goto skip; 2678 2679 if (!PageUptodate(page) || 2680 PageReadahead(page) || 2681 PageHWPoison(page)) 2682 goto skip; 2683 if (!trylock_page(page)) 2684 goto skip; 2685 2686 if (page->mapping != mapping || !PageUptodate(page)) 2687 goto unlock; 2688 2689 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2690 if (page->index >= max_idx) 2691 goto unlock; 2692 2693 if (file->f_ra.mmap_miss > 0) 2694 file->f_ra.mmap_miss--; 2695 2696 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2697 if (vmf->pte) 2698 vmf->pte += xas.xa_index - last_pgoff; 2699 last_pgoff = xas.xa_index; 2700 if (alloc_set_pte(vmf, NULL, page)) 2701 goto unlock; 2702 unlock_page(page); 2703 goto next; 2704 unlock: 2705 unlock_page(page); 2706 skip: 2707 put_page(page); 2708 next: 2709 /* Huge page is mapped? No need to proceed. */ 2710 if (pmd_trans_huge(*vmf->pmd)) 2711 break; 2712 } 2713 rcu_read_unlock(); 2714 } 2715 EXPORT_SYMBOL(filemap_map_pages); 2716 2717 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2718 { 2719 struct page *page = vmf->page; 2720 struct inode *inode = file_inode(vmf->vma->vm_file); 2721 vm_fault_t ret = VM_FAULT_LOCKED; 2722 2723 sb_start_pagefault(inode->i_sb); 2724 file_update_time(vmf->vma->vm_file); 2725 lock_page(page); 2726 if (page->mapping != inode->i_mapping) { 2727 unlock_page(page); 2728 ret = VM_FAULT_NOPAGE; 2729 goto out; 2730 } 2731 /* 2732 * We mark the page dirty already here so that when freeze is in 2733 * progress, we are guaranteed that writeback during freezing will 2734 * see the dirty page and writeprotect it again. 2735 */ 2736 set_page_dirty(page); 2737 wait_for_stable_page(page); 2738 out: 2739 sb_end_pagefault(inode->i_sb); 2740 return ret; 2741 } 2742 2743 const struct vm_operations_struct generic_file_vm_ops = { 2744 .fault = filemap_fault, 2745 .map_pages = filemap_map_pages, 2746 .page_mkwrite = filemap_page_mkwrite, 2747 }; 2748 2749 /* This is used for a general mmap of a disk file */ 2750 2751 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2752 { 2753 struct address_space *mapping = file->f_mapping; 2754 2755 if (!mapping->a_ops->readpage) 2756 return -ENOEXEC; 2757 file_accessed(file); 2758 vma->vm_ops = &generic_file_vm_ops; 2759 return 0; 2760 } 2761 2762 /* 2763 * This is for filesystems which do not implement ->writepage. 2764 */ 2765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2766 { 2767 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2768 return -EINVAL; 2769 return generic_file_mmap(file, vma); 2770 } 2771 #else 2772 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2773 { 2774 return VM_FAULT_SIGBUS; 2775 } 2776 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2777 { 2778 return -ENOSYS; 2779 } 2780 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2781 { 2782 return -ENOSYS; 2783 } 2784 #endif /* CONFIG_MMU */ 2785 2786 EXPORT_SYMBOL(filemap_page_mkwrite); 2787 EXPORT_SYMBOL(generic_file_mmap); 2788 EXPORT_SYMBOL(generic_file_readonly_mmap); 2789 2790 static struct page *wait_on_page_read(struct page *page) 2791 { 2792 if (!IS_ERR(page)) { 2793 wait_on_page_locked(page); 2794 if (!PageUptodate(page)) { 2795 put_page(page); 2796 page = ERR_PTR(-EIO); 2797 } 2798 } 2799 return page; 2800 } 2801 2802 static struct page *do_read_cache_page(struct address_space *mapping, 2803 pgoff_t index, 2804 int (*filler)(void *, struct page *), 2805 void *data, 2806 gfp_t gfp) 2807 { 2808 struct page *page; 2809 int err; 2810 repeat: 2811 page = find_get_page(mapping, index); 2812 if (!page) { 2813 page = __page_cache_alloc(gfp); 2814 if (!page) 2815 return ERR_PTR(-ENOMEM); 2816 err = add_to_page_cache_lru(page, mapping, index, gfp); 2817 if (unlikely(err)) { 2818 put_page(page); 2819 if (err == -EEXIST) 2820 goto repeat; 2821 /* Presumably ENOMEM for xarray node */ 2822 return ERR_PTR(err); 2823 } 2824 2825 filler: 2826 if (filler) 2827 err = filler(data, page); 2828 else 2829 err = mapping->a_ops->readpage(data, page); 2830 2831 if (err < 0) { 2832 put_page(page); 2833 return ERR_PTR(err); 2834 } 2835 2836 page = wait_on_page_read(page); 2837 if (IS_ERR(page)) 2838 return page; 2839 goto out; 2840 } 2841 if (PageUptodate(page)) 2842 goto out; 2843 2844 /* 2845 * Page is not up to date and may be locked due one of the following 2846 * case a: Page is being filled and the page lock is held 2847 * case b: Read/write error clearing the page uptodate status 2848 * case c: Truncation in progress (page locked) 2849 * case d: Reclaim in progress 2850 * 2851 * Case a, the page will be up to date when the page is unlocked. 2852 * There is no need to serialise on the page lock here as the page 2853 * is pinned so the lock gives no additional protection. Even if the 2854 * the page is truncated, the data is still valid if PageUptodate as 2855 * it's a race vs truncate race. 2856 * Case b, the page will not be up to date 2857 * Case c, the page may be truncated but in itself, the data may still 2858 * be valid after IO completes as it's a read vs truncate race. The 2859 * operation must restart if the page is not uptodate on unlock but 2860 * otherwise serialising on page lock to stabilise the mapping gives 2861 * no additional guarantees to the caller as the page lock is 2862 * released before return. 2863 * Case d, similar to truncation. If reclaim holds the page lock, it 2864 * will be a race with remove_mapping that determines if the mapping 2865 * is valid on unlock but otherwise the data is valid and there is 2866 * no need to serialise with page lock. 2867 * 2868 * As the page lock gives no additional guarantee, we optimistically 2869 * wait on the page to be unlocked and check if it's up to date and 2870 * use the page if it is. Otherwise, the page lock is required to 2871 * distinguish between the different cases. The motivation is that we 2872 * avoid spurious serialisations and wakeups when multiple processes 2873 * wait on the same page for IO to complete. 2874 */ 2875 wait_on_page_locked(page); 2876 if (PageUptodate(page)) 2877 goto out; 2878 2879 /* Distinguish between all the cases under the safety of the lock */ 2880 lock_page(page); 2881 2882 /* Case c or d, restart the operation */ 2883 if (!page->mapping) { 2884 unlock_page(page); 2885 put_page(page); 2886 goto repeat; 2887 } 2888 2889 /* Someone else locked and filled the page in a very small window */ 2890 if (PageUptodate(page)) { 2891 unlock_page(page); 2892 goto out; 2893 } 2894 goto filler; 2895 2896 out: 2897 mark_page_accessed(page); 2898 return page; 2899 } 2900 2901 /** 2902 * read_cache_page - read into page cache, fill it if needed 2903 * @mapping: the page's address_space 2904 * @index: the page index 2905 * @filler: function to perform the read 2906 * @data: first arg to filler(data, page) function, often left as NULL 2907 * 2908 * Read into the page cache. If a page already exists, and PageUptodate() is 2909 * not set, try to fill the page and wait for it to become unlocked. 2910 * 2911 * If the page does not get brought uptodate, return -EIO. 2912 * 2913 * Return: up to date page on success, ERR_PTR() on failure. 2914 */ 2915 struct page *read_cache_page(struct address_space *mapping, 2916 pgoff_t index, 2917 int (*filler)(void *, struct page *), 2918 void *data) 2919 { 2920 return do_read_cache_page(mapping, index, filler, data, 2921 mapping_gfp_mask(mapping)); 2922 } 2923 EXPORT_SYMBOL(read_cache_page); 2924 2925 /** 2926 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2927 * @mapping: the page's address_space 2928 * @index: the page index 2929 * @gfp: the page allocator flags to use if allocating 2930 * 2931 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2932 * any new page allocations done using the specified allocation flags. 2933 * 2934 * If the page does not get brought uptodate, return -EIO. 2935 * 2936 * Return: up to date page on success, ERR_PTR() on failure. 2937 */ 2938 struct page *read_cache_page_gfp(struct address_space *mapping, 2939 pgoff_t index, 2940 gfp_t gfp) 2941 { 2942 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 2943 } 2944 EXPORT_SYMBOL(read_cache_page_gfp); 2945 2946 /* 2947 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2948 * LFS limits. If pos is under the limit it becomes a short access. If it 2949 * exceeds the limit we return -EFBIG. 2950 */ 2951 static int generic_write_check_limits(struct file *file, loff_t pos, 2952 loff_t *count) 2953 { 2954 struct inode *inode = file->f_mapping->host; 2955 loff_t max_size = inode->i_sb->s_maxbytes; 2956 loff_t limit = rlimit(RLIMIT_FSIZE); 2957 2958 if (limit != RLIM_INFINITY) { 2959 if (pos >= limit) { 2960 send_sig(SIGXFSZ, current, 0); 2961 return -EFBIG; 2962 } 2963 *count = min(*count, limit - pos); 2964 } 2965 2966 if (!(file->f_flags & O_LARGEFILE)) 2967 max_size = MAX_NON_LFS; 2968 2969 if (unlikely(pos >= max_size)) 2970 return -EFBIG; 2971 2972 *count = min(*count, max_size - pos); 2973 2974 return 0; 2975 } 2976 2977 /* 2978 * Performs necessary checks before doing a write 2979 * 2980 * Can adjust writing position or amount of bytes to write. 2981 * Returns appropriate error code that caller should return or 2982 * zero in case that write should be allowed. 2983 */ 2984 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2985 { 2986 struct file *file = iocb->ki_filp; 2987 struct inode *inode = file->f_mapping->host; 2988 loff_t count; 2989 int ret; 2990 2991 if (!iov_iter_count(from)) 2992 return 0; 2993 2994 /* FIXME: this is for backwards compatibility with 2.4 */ 2995 if (iocb->ki_flags & IOCB_APPEND) 2996 iocb->ki_pos = i_size_read(inode); 2997 2998 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2999 return -EINVAL; 3000 3001 count = iov_iter_count(from); 3002 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 3003 if (ret) 3004 return ret; 3005 3006 iov_iter_truncate(from, count); 3007 return iov_iter_count(from); 3008 } 3009 EXPORT_SYMBOL(generic_write_checks); 3010 3011 /* 3012 * Performs necessary checks before doing a clone. 3013 * 3014 * Can adjust amount of bytes to clone via @req_count argument. 3015 * Returns appropriate error code that caller should return or 3016 * zero in case the clone should be allowed. 3017 */ 3018 int generic_remap_checks(struct file *file_in, loff_t pos_in, 3019 struct file *file_out, loff_t pos_out, 3020 loff_t *req_count, unsigned int remap_flags) 3021 { 3022 struct inode *inode_in = file_in->f_mapping->host; 3023 struct inode *inode_out = file_out->f_mapping->host; 3024 uint64_t count = *req_count; 3025 uint64_t bcount; 3026 loff_t size_in, size_out; 3027 loff_t bs = inode_out->i_sb->s_blocksize; 3028 int ret; 3029 3030 /* The start of both ranges must be aligned to an fs block. */ 3031 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3032 return -EINVAL; 3033 3034 /* Ensure offsets don't wrap. */ 3035 if (pos_in + count < pos_in || pos_out + count < pos_out) 3036 return -EINVAL; 3037 3038 size_in = i_size_read(inode_in); 3039 size_out = i_size_read(inode_out); 3040 3041 /* Dedupe requires both ranges to be within EOF. */ 3042 if ((remap_flags & REMAP_FILE_DEDUP) && 3043 (pos_in >= size_in || pos_in + count > size_in || 3044 pos_out >= size_out || pos_out + count > size_out)) 3045 return -EINVAL; 3046 3047 /* Ensure the infile range is within the infile. */ 3048 if (pos_in >= size_in) 3049 return -EINVAL; 3050 count = min(count, size_in - (uint64_t)pos_in); 3051 3052 ret = generic_write_check_limits(file_out, pos_out, &count); 3053 if (ret) 3054 return ret; 3055 3056 /* 3057 * If the user wanted us to link to the infile's EOF, round up to the 3058 * next block boundary for this check. 3059 * 3060 * Otherwise, make sure the count is also block-aligned, having 3061 * already confirmed the starting offsets' block alignment. 3062 */ 3063 if (pos_in + count == size_in) { 3064 bcount = ALIGN(size_in, bs) - pos_in; 3065 } else { 3066 if (!IS_ALIGNED(count, bs)) 3067 count = ALIGN_DOWN(count, bs); 3068 bcount = count; 3069 } 3070 3071 /* Don't allow overlapped cloning within the same file. */ 3072 if (inode_in == inode_out && 3073 pos_out + bcount > pos_in && 3074 pos_out < pos_in + bcount) 3075 return -EINVAL; 3076 3077 /* 3078 * We shortened the request but the caller can't deal with that, so 3079 * bounce the request back to userspace. 3080 */ 3081 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3082 return -EINVAL; 3083 3084 *req_count = count; 3085 return 0; 3086 } 3087 3088 3089 /* 3090 * Performs common checks before doing a file copy/clone 3091 * from @file_in to @file_out. 3092 */ 3093 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3094 { 3095 struct inode *inode_in = file_inode(file_in); 3096 struct inode *inode_out = file_inode(file_out); 3097 3098 /* Don't copy dirs, pipes, sockets... */ 3099 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3100 return -EISDIR; 3101 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3102 return -EINVAL; 3103 3104 if (!(file_in->f_mode & FMODE_READ) || 3105 !(file_out->f_mode & FMODE_WRITE) || 3106 (file_out->f_flags & O_APPEND)) 3107 return -EBADF; 3108 3109 return 0; 3110 } 3111 3112 /* 3113 * Performs necessary checks before doing a file copy 3114 * 3115 * Can adjust amount of bytes to copy via @req_count argument. 3116 * Returns appropriate error code that caller should return or 3117 * zero in case the copy should be allowed. 3118 */ 3119 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3120 struct file *file_out, loff_t pos_out, 3121 size_t *req_count, unsigned int flags) 3122 { 3123 struct inode *inode_in = file_inode(file_in); 3124 struct inode *inode_out = file_inode(file_out); 3125 uint64_t count = *req_count; 3126 loff_t size_in; 3127 int ret; 3128 3129 ret = generic_file_rw_checks(file_in, file_out); 3130 if (ret) 3131 return ret; 3132 3133 /* Don't touch certain kinds of inodes */ 3134 if (IS_IMMUTABLE(inode_out)) 3135 return -EPERM; 3136 3137 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3138 return -ETXTBSY; 3139 3140 /* Ensure offsets don't wrap. */ 3141 if (pos_in + count < pos_in || pos_out + count < pos_out) 3142 return -EOVERFLOW; 3143 3144 /* Shorten the copy to EOF */ 3145 size_in = i_size_read(inode_in); 3146 if (pos_in >= size_in) 3147 count = 0; 3148 else 3149 count = min(count, size_in - (uint64_t)pos_in); 3150 3151 ret = generic_write_check_limits(file_out, pos_out, &count); 3152 if (ret) 3153 return ret; 3154 3155 /* Don't allow overlapped copying within the same file. */ 3156 if (inode_in == inode_out && 3157 pos_out + count > pos_in && 3158 pos_out < pos_in + count) 3159 return -EINVAL; 3160 3161 *req_count = count; 3162 return 0; 3163 } 3164 3165 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3166 loff_t pos, unsigned len, unsigned flags, 3167 struct page **pagep, void **fsdata) 3168 { 3169 const struct address_space_operations *aops = mapping->a_ops; 3170 3171 return aops->write_begin(file, mapping, pos, len, flags, 3172 pagep, fsdata); 3173 } 3174 EXPORT_SYMBOL(pagecache_write_begin); 3175 3176 int pagecache_write_end(struct file *file, struct address_space *mapping, 3177 loff_t pos, unsigned len, unsigned copied, 3178 struct page *page, void *fsdata) 3179 { 3180 const struct address_space_operations *aops = mapping->a_ops; 3181 3182 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3183 } 3184 EXPORT_SYMBOL(pagecache_write_end); 3185 3186 ssize_t 3187 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3188 { 3189 struct file *file = iocb->ki_filp; 3190 struct address_space *mapping = file->f_mapping; 3191 struct inode *inode = mapping->host; 3192 loff_t pos = iocb->ki_pos; 3193 ssize_t written; 3194 size_t write_len; 3195 pgoff_t end; 3196 3197 write_len = iov_iter_count(from); 3198 end = (pos + write_len - 1) >> PAGE_SHIFT; 3199 3200 if (iocb->ki_flags & IOCB_NOWAIT) { 3201 /* If there are pages to writeback, return */ 3202 if (filemap_range_has_page(inode->i_mapping, pos, 3203 pos + write_len - 1)) 3204 return -EAGAIN; 3205 } else { 3206 written = filemap_write_and_wait_range(mapping, pos, 3207 pos + write_len - 1); 3208 if (written) 3209 goto out; 3210 } 3211 3212 /* 3213 * After a write we want buffered reads to be sure to go to disk to get 3214 * the new data. We invalidate clean cached page from the region we're 3215 * about to write. We do this *before* the write so that we can return 3216 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3217 */ 3218 written = invalidate_inode_pages2_range(mapping, 3219 pos >> PAGE_SHIFT, end); 3220 /* 3221 * If a page can not be invalidated, return 0 to fall back 3222 * to buffered write. 3223 */ 3224 if (written) { 3225 if (written == -EBUSY) 3226 return 0; 3227 goto out; 3228 } 3229 3230 written = mapping->a_ops->direct_IO(iocb, from); 3231 3232 /* 3233 * Finally, try again to invalidate clean pages which might have been 3234 * cached by non-direct readahead, or faulted in by get_user_pages() 3235 * if the source of the write was an mmap'ed region of the file 3236 * we're writing. Either one is a pretty crazy thing to do, 3237 * so we don't support it 100%. If this invalidation 3238 * fails, tough, the write still worked... 3239 * 3240 * Most of the time we do not need this since dio_complete() will do 3241 * the invalidation for us. However there are some file systems that 3242 * do not end up with dio_complete() being called, so let's not break 3243 * them by removing it completely 3244 */ 3245 if (mapping->nrpages) 3246 invalidate_inode_pages2_range(mapping, 3247 pos >> PAGE_SHIFT, end); 3248 3249 if (written > 0) { 3250 pos += written; 3251 write_len -= written; 3252 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3253 i_size_write(inode, pos); 3254 mark_inode_dirty(inode); 3255 } 3256 iocb->ki_pos = pos; 3257 } 3258 iov_iter_revert(from, write_len - iov_iter_count(from)); 3259 out: 3260 return written; 3261 } 3262 EXPORT_SYMBOL(generic_file_direct_write); 3263 3264 /* 3265 * Find or create a page at the given pagecache position. Return the locked 3266 * page. This function is specifically for buffered writes. 3267 */ 3268 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3269 pgoff_t index, unsigned flags) 3270 { 3271 struct page *page; 3272 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3273 3274 if (flags & AOP_FLAG_NOFS) 3275 fgp_flags |= FGP_NOFS; 3276 3277 page = pagecache_get_page(mapping, index, fgp_flags, 3278 mapping_gfp_mask(mapping)); 3279 if (page) 3280 wait_for_stable_page(page); 3281 3282 return page; 3283 } 3284 EXPORT_SYMBOL(grab_cache_page_write_begin); 3285 3286 ssize_t generic_perform_write(struct file *file, 3287 struct iov_iter *i, loff_t pos) 3288 { 3289 struct address_space *mapping = file->f_mapping; 3290 const struct address_space_operations *a_ops = mapping->a_ops; 3291 long status = 0; 3292 ssize_t written = 0; 3293 unsigned int flags = 0; 3294 3295 do { 3296 struct page *page; 3297 unsigned long offset; /* Offset into pagecache page */ 3298 unsigned long bytes; /* Bytes to write to page */ 3299 size_t copied; /* Bytes copied from user */ 3300 void *fsdata; 3301 3302 offset = (pos & (PAGE_SIZE - 1)); 3303 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3304 iov_iter_count(i)); 3305 3306 again: 3307 /* 3308 * Bring in the user page that we will copy from _first_. 3309 * Otherwise there's a nasty deadlock on copying from the 3310 * same page as we're writing to, without it being marked 3311 * up-to-date. 3312 * 3313 * Not only is this an optimisation, but it is also required 3314 * to check that the address is actually valid, when atomic 3315 * usercopies are used, below. 3316 */ 3317 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3318 status = -EFAULT; 3319 break; 3320 } 3321 3322 if (fatal_signal_pending(current)) { 3323 status = -EINTR; 3324 break; 3325 } 3326 3327 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3328 &page, &fsdata); 3329 if (unlikely(status < 0)) 3330 break; 3331 3332 if (mapping_writably_mapped(mapping)) 3333 flush_dcache_page(page); 3334 3335 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3336 flush_dcache_page(page); 3337 3338 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3339 page, fsdata); 3340 if (unlikely(status < 0)) 3341 break; 3342 copied = status; 3343 3344 cond_resched(); 3345 3346 iov_iter_advance(i, copied); 3347 if (unlikely(copied == 0)) { 3348 /* 3349 * If we were unable to copy any data at all, we must 3350 * fall back to a single segment length write. 3351 * 3352 * If we didn't fallback here, we could livelock 3353 * because not all segments in the iov can be copied at 3354 * once without a pagefault. 3355 */ 3356 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3357 iov_iter_single_seg_count(i)); 3358 goto again; 3359 } 3360 pos += copied; 3361 written += copied; 3362 3363 balance_dirty_pages_ratelimited(mapping); 3364 } while (iov_iter_count(i)); 3365 3366 return written ? written : status; 3367 } 3368 EXPORT_SYMBOL(generic_perform_write); 3369 3370 /** 3371 * __generic_file_write_iter - write data to a file 3372 * @iocb: IO state structure (file, offset, etc.) 3373 * @from: iov_iter with data to write 3374 * 3375 * This function does all the work needed for actually writing data to a 3376 * file. It does all basic checks, removes SUID from the file, updates 3377 * modification times and calls proper subroutines depending on whether we 3378 * do direct IO or a standard buffered write. 3379 * 3380 * It expects i_mutex to be grabbed unless we work on a block device or similar 3381 * object which does not need locking at all. 3382 * 3383 * This function does *not* take care of syncing data in case of O_SYNC write. 3384 * A caller has to handle it. This is mainly due to the fact that we want to 3385 * avoid syncing under i_mutex. 3386 * 3387 * Return: 3388 * * number of bytes written, even for truncated writes 3389 * * negative error code if no data has been written at all 3390 */ 3391 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3392 { 3393 struct file *file = iocb->ki_filp; 3394 struct address_space * mapping = file->f_mapping; 3395 struct inode *inode = mapping->host; 3396 ssize_t written = 0; 3397 ssize_t err; 3398 ssize_t status; 3399 3400 /* We can write back this queue in page reclaim */ 3401 current->backing_dev_info = inode_to_bdi(inode); 3402 err = file_remove_privs(file); 3403 if (err) 3404 goto out; 3405 3406 err = file_update_time(file); 3407 if (err) 3408 goto out; 3409 3410 if (iocb->ki_flags & IOCB_DIRECT) { 3411 loff_t pos, endbyte; 3412 3413 written = generic_file_direct_write(iocb, from); 3414 /* 3415 * If the write stopped short of completing, fall back to 3416 * buffered writes. Some filesystems do this for writes to 3417 * holes, for example. For DAX files, a buffered write will 3418 * not succeed (even if it did, DAX does not handle dirty 3419 * page-cache pages correctly). 3420 */ 3421 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3422 goto out; 3423 3424 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3425 /* 3426 * If generic_perform_write() returned a synchronous error 3427 * then we want to return the number of bytes which were 3428 * direct-written, or the error code if that was zero. Note 3429 * that this differs from normal direct-io semantics, which 3430 * will return -EFOO even if some bytes were written. 3431 */ 3432 if (unlikely(status < 0)) { 3433 err = status; 3434 goto out; 3435 } 3436 /* 3437 * We need to ensure that the page cache pages are written to 3438 * disk and invalidated to preserve the expected O_DIRECT 3439 * semantics. 3440 */ 3441 endbyte = pos + status - 1; 3442 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3443 if (err == 0) { 3444 iocb->ki_pos = endbyte + 1; 3445 written += status; 3446 invalidate_mapping_pages(mapping, 3447 pos >> PAGE_SHIFT, 3448 endbyte >> PAGE_SHIFT); 3449 } else { 3450 /* 3451 * We don't know how much we wrote, so just return 3452 * the number of bytes which were direct-written 3453 */ 3454 } 3455 } else { 3456 written = generic_perform_write(file, from, iocb->ki_pos); 3457 if (likely(written > 0)) 3458 iocb->ki_pos += written; 3459 } 3460 out: 3461 current->backing_dev_info = NULL; 3462 return written ? written : err; 3463 } 3464 EXPORT_SYMBOL(__generic_file_write_iter); 3465 3466 /** 3467 * generic_file_write_iter - write data to a file 3468 * @iocb: IO state structure 3469 * @from: iov_iter with data to write 3470 * 3471 * This is a wrapper around __generic_file_write_iter() to be used by most 3472 * filesystems. It takes care of syncing the file in case of O_SYNC file 3473 * and acquires i_mutex as needed. 3474 * Return: 3475 * * negative error code if no data has been written at all of 3476 * vfs_fsync_range() failed for a synchronous write 3477 * * number of bytes written, even for truncated writes 3478 */ 3479 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3480 { 3481 struct file *file = iocb->ki_filp; 3482 struct inode *inode = file->f_mapping->host; 3483 ssize_t ret; 3484 3485 inode_lock(inode); 3486 ret = generic_write_checks(iocb, from); 3487 if (ret > 0) 3488 ret = __generic_file_write_iter(iocb, from); 3489 inode_unlock(inode); 3490 3491 if (ret > 0) 3492 ret = generic_write_sync(iocb, ret); 3493 return ret; 3494 } 3495 EXPORT_SYMBOL(generic_file_write_iter); 3496 3497 /** 3498 * try_to_release_page() - release old fs-specific metadata on a page 3499 * 3500 * @page: the page which the kernel is trying to free 3501 * @gfp_mask: memory allocation flags (and I/O mode) 3502 * 3503 * The address_space is to try to release any data against the page 3504 * (presumably at page->private). 3505 * 3506 * This may also be called if PG_fscache is set on a page, indicating that the 3507 * page is known to the local caching routines. 3508 * 3509 * The @gfp_mask argument specifies whether I/O may be performed to release 3510 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3511 * 3512 * Return: %1 if the release was successful, otherwise return zero. 3513 */ 3514 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3515 { 3516 struct address_space * const mapping = page->mapping; 3517 3518 BUG_ON(!PageLocked(page)); 3519 if (PageWriteback(page)) 3520 return 0; 3521 3522 if (mapping && mapping->a_ops->releasepage) 3523 return mapping->a_ops->releasepage(page, gfp_mask); 3524 return try_to_free_buffers(page); 3525 } 3526 3527 EXPORT_SYMBOL(try_to_release_page); 3528