1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 if (end_byte < start_byte) 510 return; 511 512 pagevec_init(&pvec); 513 while (index <= end) { 514 unsigned i; 515 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 517 end, PAGECACHE_TAG_WRITEBACK); 518 if (!nr_pages) 519 break; 520 521 for (i = 0; i < nr_pages; i++) { 522 struct page *page = pvec.pages[i]; 523 524 wait_on_page_writeback(page); 525 ClearPageError(page); 526 } 527 pagevec_release(&pvec); 528 cond_resched(); 529 } 530 } 531 532 /** 533 * filemap_fdatawait_range - wait for writeback to complete 534 * @mapping: address space structure to wait for 535 * @start_byte: offset in bytes where the range starts 536 * @end_byte: offset in bytes where the range ends (inclusive) 537 * 538 * Walk the list of under-writeback pages of the given address space 539 * in the given range and wait for all of them. Check error status of 540 * the address space and return it. 541 * 542 * Since the error status of the address space is cleared by this function, 543 * callers are responsible for checking the return value and handling and/or 544 * reporting the error. 545 * 546 * Return: error status of the address space. 547 */ 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 549 loff_t end_byte) 550 { 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 552 return filemap_check_errors(mapping); 553 } 554 EXPORT_SYMBOL(filemap_fdatawait_range); 555 556 /** 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 558 * @mapping: address space structure to wait for 559 * @start_byte: offset in bytes where the range starts 560 * @end_byte: offset in bytes where the range ends (inclusive) 561 * 562 * Walk the list of under-writeback pages of the given address space in the 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 564 * this function does not clear error status of the address space. 565 * 566 * Use this function if callers don't handle errors themselves. Expected 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 568 * fsfreeze(8) 569 */ 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 571 loff_t start_byte, loff_t end_byte) 572 { 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 574 return filemap_check_and_keep_errors(mapping); 575 } 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 577 578 /** 579 * file_fdatawait_range - wait for writeback to complete 580 * @file: file pointing to address space structure to wait for 581 * @start_byte: offset in bytes where the range starts 582 * @end_byte: offset in bytes where the range ends (inclusive) 583 * 584 * Walk the list of under-writeback pages of the address space that file 585 * refers to, in the given range and wait for all of them. Check error 586 * status of the address space vs. the file->f_wb_err cursor and return it. 587 * 588 * Since the error status of the file is advanced by this function, 589 * callers are responsible for checking the return value and handling and/or 590 * reporting the error. 591 * 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 593 */ 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 595 { 596 struct address_space *mapping = file->f_mapping; 597 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 599 return file_check_and_advance_wb_err(file); 600 } 601 EXPORT_SYMBOL(file_fdatawait_range); 602 603 /** 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 605 * @mapping: address space structure to wait for 606 * 607 * Walk the list of under-writeback pages of the given address space 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 609 * does not clear error status of the address space. 610 * 611 * Use this function if callers don't handle errors themselves. Expected 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 613 * fsfreeze(8) 614 * 615 * Return: error status of the address space. 616 */ 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 618 { 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 620 return filemap_check_and_keep_errors(mapping); 621 } 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 623 624 /* Returns true if writeback might be needed or already in progress. */ 625 static bool mapping_needs_writeback(struct address_space *mapping) 626 { 627 return mapping->nrpages; 628 } 629 630 bool filemap_range_has_writeback(struct address_space *mapping, 631 loff_t start_byte, loff_t end_byte) 632 { 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 634 pgoff_t max = end_byte >> PAGE_SHIFT; 635 struct page *page; 636 637 if (end_byte < start_byte) 638 return false; 639 640 rcu_read_lock(); 641 xas_for_each(&xas, page, max) { 642 if (xas_retry(&xas, page)) 643 continue; 644 if (xa_is_value(page)) 645 continue; 646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 647 break; 648 } 649 rcu_read_unlock(); 650 return page != NULL; 651 } 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 653 654 /** 655 * filemap_write_and_wait_range - write out & wait on a file range 656 * @mapping: the address_space for the pages 657 * @lstart: offset in bytes where the range starts 658 * @lend: offset in bytes where the range ends (inclusive) 659 * 660 * Write out and wait upon file offsets lstart->lend, inclusive. 661 * 662 * Note that @lend is inclusive (describes the last byte to be written) so 663 * that this function can be used to write to the very end-of-file (end = -1). 664 * 665 * Return: error status of the address space. 666 */ 667 int filemap_write_and_wait_range(struct address_space *mapping, 668 loff_t lstart, loff_t lend) 669 { 670 int err = 0; 671 672 if (mapping_needs_writeback(mapping)) { 673 err = __filemap_fdatawrite_range(mapping, lstart, lend, 674 WB_SYNC_ALL); 675 /* 676 * Even if the above returned error, the pages may be 677 * written partially (e.g. -ENOSPC), so we wait for it. 678 * But the -EIO is special case, it may indicate the worst 679 * thing (e.g. bug) happened, so we avoid waiting for it. 680 */ 681 if (err != -EIO) { 682 int err2 = filemap_fdatawait_range(mapping, 683 lstart, lend); 684 if (!err) 685 err = err2; 686 } else { 687 /* Clear any previously stored errors */ 688 filemap_check_errors(mapping); 689 } 690 } else { 691 err = filemap_check_errors(mapping); 692 } 693 return err; 694 } 695 EXPORT_SYMBOL(filemap_write_and_wait_range); 696 697 void __filemap_set_wb_err(struct address_space *mapping, int err) 698 { 699 errseq_t eseq = errseq_set(&mapping->wb_err, err); 700 701 trace_filemap_set_wb_err(mapping, eseq); 702 } 703 EXPORT_SYMBOL(__filemap_set_wb_err); 704 705 /** 706 * file_check_and_advance_wb_err - report wb error (if any) that was previously 707 * and advance wb_err to current one 708 * @file: struct file on which the error is being reported 709 * 710 * When userland calls fsync (or something like nfsd does the equivalent), we 711 * want to report any writeback errors that occurred since the last fsync (or 712 * since the file was opened if there haven't been any). 713 * 714 * Grab the wb_err from the mapping. If it matches what we have in the file, 715 * then just quickly return 0. The file is all caught up. 716 * 717 * If it doesn't match, then take the mapping value, set the "seen" flag in 718 * it and try to swap it into place. If it works, or another task beat us 719 * to it with the new value, then update the f_wb_err and return the error 720 * portion. The error at this point must be reported via proper channels 721 * (a'la fsync, or NFS COMMIT operation, etc.). 722 * 723 * While we handle mapping->wb_err with atomic operations, the f_wb_err 724 * value is protected by the f_lock since we must ensure that it reflects 725 * the latest value swapped in for this file descriptor. 726 * 727 * Return: %0 on success, negative error code otherwise. 728 */ 729 int file_check_and_advance_wb_err(struct file *file) 730 { 731 int err = 0; 732 errseq_t old = READ_ONCE(file->f_wb_err); 733 struct address_space *mapping = file->f_mapping; 734 735 /* Locklessly handle the common case where nothing has changed */ 736 if (errseq_check(&mapping->wb_err, old)) { 737 /* Something changed, must use slow path */ 738 spin_lock(&file->f_lock); 739 old = file->f_wb_err; 740 err = errseq_check_and_advance(&mapping->wb_err, 741 &file->f_wb_err); 742 trace_file_check_and_advance_wb_err(file, old); 743 spin_unlock(&file->f_lock); 744 } 745 746 /* 747 * We're mostly using this function as a drop in replacement for 748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 749 * that the legacy code would have had on these flags. 750 */ 751 clear_bit(AS_EIO, &mapping->flags); 752 clear_bit(AS_ENOSPC, &mapping->flags); 753 return err; 754 } 755 EXPORT_SYMBOL(file_check_and_advance_wb_err); 756 757 /** 758 * file_write_and_wait_range - write out & wait on a file range 759 * @file: file pointing to address_space with pages 760 * @lstart: offset in bytes where the range starts 761 * @lend: offset in bytes where the range ends (inclusive) 762 * 763 * Write out and wait upon file offsets lstart->lend, inclusive. 764 * 765 * Note that @lend is inclusive (describes the last byte to be written) so 766 * that this function can be used to write to the very end-of-file (end = -1). 767 * 768 * After writing out and waiting on the data, we check and advance the 769 * f_wb_err cursor to the latest value, and return any errors detected there. 770 * 771 * Return: %0 on success, negative error code otherwise. 772 */ 773 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 774 { 775 int err = 0, err2; 776 struct address_space *mapping = file->f_mapping; 777 778 if (mapping_needs_writeback(mapping)) { 779 err = __filemap_fdatawrite_range(mapping, lstart, lend, 780 WB_SYNC_ALL); 781 /* See comment of filemap_write_and_wait() */ 782 if (err != -EIO) 783 __filemap_fdatawait_range(mapping, lstart, lend); 784 } 785 err2 = file_check_and_advance_wb_err(file); 786 if (!err) 787 err = err2; 788 return err; 789 } 790 EXPORT_SYMBOL(file_write_and_wait_range); 791 792 /** 793 * replace_page_cache_page - replace a pagecache page with a new one 794 * @old: page to be replaced 795 * @new: page to replace with 796 * 797 * This function replaces a page in the pagecache with a new one. On 798 * success it acquires the pagecache reference for the new page and 799 * drops it for the old page. Both the old and new pages must be 800 * locked. This function does not add the new page to the LRU, the 801 * caller must do that. 802 * 803 * The remove + add is atomic. This function cannot fail. 804 */ 805 void replace_page_cache_page(struct page *old, struct page *new) 806 { 807 struct folio *fold = page_folio(old); 808 struct folio *fnew = page_folio(new); 809 struct address_space *mapping = old->mapping; 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 811 pgoff_t offset = old->index; 812 XA_STATE(xas, &mapping->i_pages, offset); 813 814 VM_BUG_ON_PAGE(!PageLocked(old), old); 815 VM_BUG_ON_PAGE(!PageLocked(new), new); 816 VM_BUG_ON_PAGE(new->mapping, new); 817 818 get_page(new); 819 new->mapping = mapping; 820 new->index = offset; 821 822 mem_cgroup_migrate(fold, fnew); 823 824 xas_lock_irq(&xas); 825 xas_store(&xas, new); 826 827 old->mapping = NULL; 828 /* hugetlb pages do not participate in page cache accounting. */ 829 if (!PageHuge(old)) 830 __dec_lruvec_page_state(old, NR_FILE_PAGES); 831 if (!PageHuge(new)) 832 __inc_lruvec_page_state(new, NR_FILE_PAGES); 833 if (PageSwapBacked(old)) 834 __dec_lruvec_page_state(old, NR_SHMEM); 835 if (PageSwapBacked(new)) 836 __inc_lruvec_page_state(new, NR_SHMEM); 837 xas_unlock_irq(&xas); 838 if (free_folio) 839 free_folio(fold); 840 folio_put(fold); 841 } 842 EXPORT_SYMBOL_GPL(replace_page_cache_page); 843 844 noinline int __filemap_add_folio(struct address_space *mapping, 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 846 { 847 XA_STATE(xas, &mapping->i_pages, index); 848 int huge = folio_test_hugetlb(folio); 849 bool charged = false; 850 long nr = 1; 851 852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 854 mapping_set_update(&xas, mapping); 855 856 if (!huge) { 857 int error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 return error; 861 charged = true; 862 xas_set_order(&xas, index, folio_order(folio)); 863 nr = folio_nr_pages(folio); 864 } 865 866 gfp &= GFP_RECLAIM_MASK; 867 folio_ref_add(folio, nr); 868 folio->mapping = mapping; 869 folio->index = xas.xa_index; 870 871 do { 872 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 873 void *entry, *old = NULL; 874 875 if (order > folio_order(folio)) 876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 877 order, gfp); 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 } 886 887 if (old) { 888 if (shadowp) 889 *shadowp = old; 890 /* entry may have been split before we acquired lock */ 891 order = xa_get_order(xas.xa, xas.xa_index); 892 if (order > folio_order(folio)) { 893 /* How to handle large swap entries? */ 894 BUG_ON(shmem_mapping(mapping)); 895 xas_split(&xas, old, order); 896 xas_reset(&xas); 897 } 898 } 899 900 xas_store(&xas, folio); 901 if (xas_error(&xas)) 902 goto unlock; 903 904 mapping->nrpages += nr; 905 906 /* hugetlb pages do not participate in page cache accounting */ 907 if (!huge) { 908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 909 if (folio_test_pmd_mappable(folio)) 910 __lruvec_stat_mod_folio(folio, 911 NR_FILE_THPS, nr); 912 } 913 unlock: 914 xas_unlock_irq(&xas); 915 } while (xas_nomem(&xas, gfp)); 916 917 if (xas_error(&xas)) 918 goto error; 919 920 trace_mm_filemap_add_to_page_cache(folio); 921 return 0; 922 error: 923 if (charged) 924 mem_cgroup_uncharge(folio); 925 folio->mapping = NULL; 926 /* Leave page->index set: truncation relies upon it */ 927 folio_put_refs(folio, nr); 928 return xas_error(&xas); 929 } 930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 931 932 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 933 pgoff_t index, gfp_t gfp) 934 { 935 void *shadow = NULL; 936 int ret; 937 938 __folio_set_locked(folio); 939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 940 if (unlikely(ret)) 941 __folio_clear_locked(folio); 942 else { 943 /* 944 * The folio might have been evicted from cache only 945 * recently, in which case it should be activated like 946 * any other repeatedly accessed folio. 947 * The exception is folios getting rewritten; evicting other 948 * data from the working set, only to cache data that will 949 * get overwritten with something else, is a waste of memory. 950 */ 951 WARN_ON_ONCE(folio_test_active(folio)); 952 if (!(gfp & __GFP_WRITE) && shadow) 953 workingset_refault(folio, shadow); 954 folio_add_lru(folio); 955 } 956 return ret; 957 } 958 EXPORT_SYMBOL_GPL(filemap_add_folio); 959 960 #ifdef CONFIG_NUMA 961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 962 { 963 int n; 964 struct folio *folio; 965 966 if (cpuset_do_page_mem_spread()) { 967 unsigned int cpuset_mems_cookie; 968 do { 969 cpuset_mems_cookie = read_mems_allowed_begin(); 970 n = cpuset_mem_spread_node(); 971 folio = __folio_alloc_node(gfp, order, n); 972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 973 974 return folio; 975 } 976 return folio_alloc(gfp, order); 977 } 978 EXPORT_SYMBOL(filemap_alloc_folio); 979 #endif 980 981 /* 982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 983 * 984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 985 * 986 * @mapping1: the first mapping to lock 987 * @mapping2: the second mapping to lock 988 */ 989 void filemap_invalidate_lock_two(struct address_space *mapping1, 990 struct address_space *mapping2) 991 { 992 if (mapping1 > mapping2) 993 swap(mapping1, mapping2); 994 if (mapping1) 995 down_write(&mapping1->invalidate_lock); 996 if (mapping2 && mapping1 != mapping2) 997 down_write_nested(&mapping2->invalidate_lock, 1); 998 } 999 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1000 1001 /* 1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1003 * 1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1005 * 1006 * @mapping1: the first mapping to unlock 1007 * @mapping2: the second mapping to unlock 1008 */ 1009 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1010 struct address_space *mapping2) 1011 { 1012 if (mapping1) 1013 up_write(&mapping1->invalidate_lock); 1014 if (mapping2 && mapping1 != mapping2) 1015 up_write(&mapping2->invalidate_lock); 1016 } 1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1018 1019 /* 1020 * In order to wait for pages to become available there must be 1021 * waitqueues associated with pages. By using a hash table of 1022 * waitqueues where the bucket discipline is to maintain all 1023 * waiters on the same queue and wake all when any of the pages 1024 * become available, and for the woken contexts to check to be 1025 * sure the appropriate page became available, this saves space 1026 * at a cost of "thundering herd" phenomena during rare hash 1027 * collisions. 1028 */ 1029 #define PAGE_WAIT_TABLE_BITS 8 1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1032 1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1034 { 1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1036 } 1037 1038 void __init pagecache_init(void) 1039 { 1040 int i; 1041 1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1043 init_waitqueue_head(&folio_wait_table[i]); 1044 1045 page_writeback_init(); 1046 } 1047 1048 /* 1049 * The page wait code treats the "wait->flags" somewhat unusually, because 1050 * we have multiple different kinds of waits, not just the usual "exclusive" 1051 * one. 1052 * 1053 * We have: 1054 * 1055 * (a) no special bits set: 1056 * 1057 * We're just waiting for the bit to be released, and when a waker 1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1059 * and remove it from the wait queue. 1060 * 1061 * Simple and straightforward. 1062 * 1063 * (b) WQ_FLAG_EXCLUSIVE: 1064 * 1065 * The waiter is waiting to get the lock, and only one waiter should 1066 * be woken up to avoid any thundering herd behavior. We'll set the 1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1068 * 1069 * This is the traditional exclusive wait. 1070 * 1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1072 * 1073 * The waiter is waiting to get the bit, and additionally wants the 1074 * lock to be transferred to it for fair lock behavior. If the lock 1075 * cannot be taken, we stop walking the wait queue without waking 1076 * the waiter. 1077 * 1078 * This is the "fair lock handoff" case, and in addition to setting 1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1080 * that it now has the lock. 1081 */ 1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1083 { 1084 unsigned int flags; 1085 struct wait_page_key *key = arg; 1086 struct wait_page_queue *wait_page 1087 = container_of(wait, struct wait_page_queue, wait); 1088 1089 if (!wake_page_match(wait_page, key)) 1090 return 0; 1091 1092 /* 1093 * If it's a lock handoff wait, we get the bit for it, and 1094 * stop walking (and do not wake it up) if we can't. 1095 */ 1096 flags = wait->flags; 1097 if (flags & WQ_FLAG_EXCLUSIVE) { 1098 if (test_bit(key->bit_nr, &key->folio->flags)) 1099 return -1; 1100 if (flags & WQ_FLAG_CUSTOM) { 1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1102 return -1; 1103 flags |= WQ_FLAG_DONE; 1104 } 1105 } 1106 1107 /* 1108 * We are holding the wait-queue lock, but the waiter that 1109 * is waiting for this will be checking the flags without 1110 * any locking. 1111 * 1112 * So update the flags atomically, and wake up the waiter 1113 * afterwards to avoid any races. This store-release pairs 1114 * with the load-acquire in folio_wait_bit_common(). 1115 */ 1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1117 wake_up_state(wait->private, mode); 1118 1119 /* 1120 * Ok, we have successfully done what we're waiting for, 1121 * and we can unconditionally remove the wait entry. 1122 * 1123 * Note that this pairs with the "finish_wait()" in the 1124 * waiter, and has to be the absolute last thing we do. 1125 * After this list_del_init(&wait->entry) the wait entry 1126 * might be de-allocated and the process might even have 1127 * exited. 1128 */ 1129 list_del_init_careful(&wait->entry); 1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1131 } 1132 1133 static void folio_wake_bit(struct folio *folio, int bit_nr) 1134 { 1135 wait_queue_head_t *q = folio_waitqueue(folio); 1136 struct wait_page_key key; 1137 unsigned long flags; 1138 wait_queue_entry_t bookmark; 1139 1140 key.folio = folio; 1141 key.bit_nr = bit_nr; 1142 key.page_match = 0; 1143 1144 bookmark.flags = 0; 1145 bookmark.private = NULL; 1146 bookmark.func = NULL; 1147 INIT_LIST_HEAD(&bookmark.entry); 1148 1149 spin_lock_irqsave(&q->lock, flags); 1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1151 1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1153 /* 1154 * Take a breather from holding the lock, 1155 * allow pages that finish wake up asynchronously 1156 * to acquire the lock and remove themselves 1157 * from wait queue 1158 */ 1159 spin_unlock_irqrestore(&q->lock, flags); 1160 cpu_relax(); 1161 spin_lock_irqsave(&q->lock, flags); 1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1163 } 1164 1165 /* 1166 * It's possible to miss clearing waiters here, when we woke our page 1167 * waiters, but the hashed waitqueue has waiters for other pages on it. 1168 * That's okay, it's a rare case. The next waker will clear it. 1169 * 1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1171 * other), the flag may be cleared in the course of freeing the page; 1172 * but that is not required for correctness. 1173 */ 1174 if (!waitqueue_active(q) || !key.page_match) 1175 folio_clear_waiters(folio); 1176 1177 spin_unlock_irqrestore(&q->lock, flags); 1178 } 1179 1180 static void folio_wake(struct folio *folio, int bit) 1181 { 1182 if (!folio_test_waiters(folio)) 1183 return; 1184 folio_wake_bit(folio, bit); 1185 } 1186 1187 /* 1188 * A choice of three behaviors for folio_wait_bit_common(): 1189 */ 1190 enum behavior { 1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1192 * __folio_lock() waiting on then setting PG_locked. 1193 */ 1194 SHARED, /* Hold ref to page and check the bit when woken, like 1195 * folio_wait_writeback() waiting on PG_writeback. 1196 */ 1197 DROP, /* Drop ref to page before wait, no check when woken, 1198 * like folio_put_wait_locked() on PG_locked. 1199 */ 1200 }; 1201 1202 /* 1203 * Attempt to check (or get) the folio flag, and mark us done 1204 * if successful. 1205 */ 1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1207 struct wait_queue_entry *wait) 1208 { 1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1210 if (test_and_set_bit(bit_nr, &folio->flags)) 1211 return false; 1212 } else if (test_bit(bit_nr, &folio->flags)) 1213 return false; 1214 1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1216 return true; 1217 } 1218 1219 /* How many times do we accept lock stealing from under a waiter? */ 1220 int sysctl_page_lock_unfairness = 5; 1221 1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1223 int state, enum behavior behavior) 1224 { 1225 wait_queue_head_t *q = folio_waitqueue(folio); 1226 int unfairness = sysctl_page_lock_unfairness; 1227 struct wait_page_queue wait_page; 1228 wait_queue_entry_t *wait = &wait_page.wait; 1229 bool thrashing = false; 1230 bool delayacct = false; 1231 unsigned long pflags; 1232 1233 if (bit_nr == PG_locked && 1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1235 if (!folio_test_swapbacked(folio)) { 1236 delayacct_thrashing_start(); 1237 delayacct = true; 1238 } 1239 psi_memstall_enter(&pflags); 1240 thrashing = true; 1241 } 1242 1243 init_wait(wait); 1244 wait->func = wake_page_function; 1245 wait_page.folio = folio; 1246 wait_page.bit_nr = bit_nr; 1247 1248 repeat: 1249 wait->flags = 0; 1250 if (behavior == EXCLUSIVE) { 1251 wait->flags = WQ_FLAG_EXCLUSIVE; 1252 if (--unfairness < 0) 1253 wait->flags |= WQ_FLAG_CUSTOM; 1254 } 1255 1256 /* 1257 * Do one last check whether we can get the 1258 * page bit synchronously. 1259 * 1260 * Do the folio_set_waiters() marking before that 1261 * to let any waker we _just_ missed know they 1262 * need to wake us up (otherwise they'll never 1263 * even go to the slow case that looks at the 1264 * page queue), and add ourselves to the wait 1265 * queue if we need to sleep. 1266 * 1267 * This part needs to be done under the queue 1268 * lock to avoid races. 1269 */ 1270 spin_lock_irq(&q->lock); 1271 folio_set_waiters(folio); 1272 if (!folio_trylock_flag(folio, bit_nr, wait)) 1273 __add_wait_queue_entry_tail(q, wait); 1274 spin_unlock_irq(&q->lock); 1275 1276 /* 1277 * From now on, all the logic will be based on 1278 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1279 * see whether the page bit testing has already 1280 * been done by the wake function. 1281 * 1282 * We can drop our reference to the folio. 1283 */ 1284 if (behavior == DROP) 1285 folio_put(folio); 1286 1287 /* 1288 * Note that until the "finish_wait()", or until 1289 * we see the WQ_FLAG_WOKEN flag, we need to 1290 * be very careful with the 'wait->flags', because 1291 * we may race with a waker that sets them. 1292 */ 1293 for (;;) { 1294 unsigned int flags; 1295 1296 set_current_state(state); 1297 1298 /* Loop until we've been woken or interrupted */ 1299 flags = smp_load_acquire(&wait->flags); 1300 if (!(flags & WQ_FLAG_WOKEN)) { 1301 if (signal_pending_state(state, current)) 1302 break; 1303 1304 io_schedule(); 1305 continue; 1306 } 1307 1308 /* If we were non-exclusive, we're done */ 1309 if (behavior != EXCLUSIVE) 1310 break; 1311 1312 /* If the waker got the lock for us, we're done */ 1313 if (flags & WQ_FLAG_DONE) 1314 break; 1315 1316 /* 1317 * Otherwise, if we're getting the lock, we need to 1318 * try to get it ourselves. 1319 * 1320 * And if that fails, we'll have to retry this all. 1321 */ 1322 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1323 goto repeat; 1324 1325 wait->flags |= WQ_FLAG_DONE; 1326 break; 1327 } 1328 1329 /* 1330 * If a signal happened, this 'finish_wait()' may remove the last 1331 * waiter from the wait-queues, but the folio waiters bit will remain 1332 * set. That's ok. The next wakeup will take care of it, and trying 1333 * to do it here would be difficult and prone to races. 1334 */ 1335 finish_wait(q, wait); 1336 1337 if (thrashing) { 1338 if (delayacct) 1339 delayacct_thrashing_end(); 1340 psi_memstall_leave(&pflags); 1341 } 1342 1343 /* 1344 * NOTE! The wait->flags weren't stable until we've done the 1345 * 'finish_wait()', and we could have exited the loop above due 1346 * to a signal, and had a wakeup event happen after the signal 1347 * test but before the 'finish_wait()'. 1348 * 1349 * So only after the finish_wait() can we reliably determine 1350 * if we got woken up or not, so we can now figure out the final 1351 * return value based on that state without races. 1352 * 1353 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1354 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1355 */ 1356 if (behavior == EXCLUSIVE) 1357 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1358 1359 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1360 } 1361 1362 #ifdef CONFIG_MIGRATION 1363 /** 1364 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1365 * @entry: migration swap entry. 1366 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1367 * for pte entries, pass NULL for pmd entries. 1368 * @ptl: already locked ptl. This function will drop the lock. 1369 * 1370 * Wait for a migration entry referencing the given page to be removed. This is 1371 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1372 * this can be called without taking a reference on the page. Instead this 1373 * should be called while holding the ptl for the migration entry referencing 1374 * the page. 1375 * 1376 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1377 * 1378 * This follows the same logic as folio_wait_bit_common() so see the comments 1379 * there. 1380 */ 1381 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1382 spinlock_t *ptl) 1383 { 1384 struct wait_page_queue wait_page; 1385 wait_queue_entry_t *wait = &wait_page.wait; 1386 bool thrashing = false; 1387 bool delayacct = false; 1388 unsigned long pflags; 1389 wait_queue_head_t *q; 1390 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1391 1392 q = folio_waitqueue(folio); 1393 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1394 if (!folio_test_swapbacked(folio)) { 1395 delayacct_thrashing_start(); 1396 delayacct = true; 1397 } 1398 psi_memstall_enter(&pflags); 1399 thrashing = true; 1400 } 1401 1402 init_wait(wait); 1403 wait->func = wake_page_function; 1404 wait_page.folio = folio; 1405 wait_page.bit_nr = PG_locked; 1406 wait->flags = 0; 1407 1408 spin_lock_irq(&q->lock); 1409 folio_set_waiters(folio); 1410 if (!folio_trylock_flag(folio, PG_locked, wait)) 1411 __add_wait_queue_entry_tail(q, wait); 1412 spin_unlock_irq(&q->lock); 1413 1414 /* 1415 * If a migration entry exists for the page the migration path must hold 1416 * a valid reference to the page, and it must take the ptl to remove the 1417 * migration entry. So the page is valid until the ptl is dropped. 1418 */ 1419 if (ptep) 1420 pte_unmap_unlock(ptep, ptl); 1421 else 1422 spin_unlock(ptl); 1423 1424 for (;;) { 1425 unsigned int flags; 1426 1427 set_current_state(TASK_UNINTERRUPTIBLE); 1428 1429 /* Loop until we've been woken or interrupted */ 1430 flags = smp_load_acquire(&wait->flags); 1431 if (!(flags & WQ_FLAG_WOKEN)) { 1432 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1433 break; 1434 1435 io_schedule(); 1436 continue; 1437 } 1438 break; 1439 } 1440 1441 finish_wait(q, wait); 1442 1443 if (thrashing) { 1444 if (delayacct) 1445 delayacct_thrashing_end(); 1446 psi_memstall_leave(&pflags); 1447 } 1448 } 1449 #endif 1450 1451 void folio_wait_bit(struct folio *folio, int bit_nr) 1452 { 1453 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1454 } 1455 EXPORT_SYMBOL(folio_wait_bit); 1456 1457 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1458 { 1459 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1460 } 1461 EXPORT_SYMBOL(folio_wait_bit_killable); 1462 1463 /** 1464 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1465 * @folio: The folio to wait for. 1466 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1467 * 1468 * The caller should hold a reference on @folio. They expect the page to 1469 * become unlocked relatively soon, but do not wish to hold up migration 1470 * (for example) by holding the reference while waiting for the folio to 1471 * come unlocked. After this function returns, the caller should not 1472 * dereference @folio. 1473 * 1474 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1475 */ 1476 int folio_put_wait_locked(struct folio *folio, int state) 1477 { 1478 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1479 } 1480 1481 /** 1482 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1483 * @folio: Folio defining the wait queue of interest 1484 * @waiter: Waiter to add to the queue 1485 * 1486 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1487 */ 1488 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1489 { 1490 wait_queue_head_t *q = folio_waitqueue(folio); 1491 unsigned long flags; 1492 1493 spin_lock_irqsave(&q->lock, flags); 1494 __add_wait_queue_entry_tail(q, waiter); 1495 folio_set_waiters(folio); 1496 spin_unlock_irqrestore(&q->lock, flags); 1497 } 1498 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1499 1500 #ifndef clear_bit_unlock_is_negative_byte 1501 1502 /* 1503 * PG_waiters is the high bit in the same byte as PG_lock. 1504 * 1505 * On x86 (and on many other architectures), we can clear PG_lock and 1506 * test the sign bit at the same time. But if the architecture does 1507 * not support that special operation, we just do this all by hand 1508 * instead. 1509 * 1510 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1511 * being cleared, but a memory barrier should be unnecessary since it is 1512 * in the same byte as PG_locked. 1513 */ 1514 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1515 { 1516 clear_bit_unlock(nr, mem); 1517 /* smp_mb__after_atomic(); */ 1518 return test_bit(PG_waiters, mem); 1519 } 1520 1521 #endif 1522 1523 /** 1524 * folio_unlock - Unlock a locked folio. 1525 * @folio: The folio. 1526 * 1527 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1528 * 1529 * Context: May be called from interrupt or process context. May not be 1530 * called from NMI context. 1531 */ 1532 void folio_unlock(struct folio *folio) 1533 { 1534 /* Bit 7 allows x86 to check the byte's sign bit */ 1535 BUILD_BUG_ON(PG_waiters != 7); 1536 BUILD_BUG_ON(PG_locked > 7); 1537 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1538 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1539 folio_wake_bit(folio, PG_locked); 1540 } 1541 EXPORT_SYMBOL(folio_unlock); 1542 1543 /** 1544 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1545 * @folio: The folio. 1546 * 1547 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1548 * it. The folio reference held for PG_private_2 being set is released. 1549 * 1550 * This is, for example, used when a netfs folio is being written to a local 1551 * disk cache, thereby allowing writes to the cache for the same folio to be 1552 * serialised. 1553 */ 1554 void folio_end_private_2(struct folio *folio) 1555 { 1556 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1557 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1558 folio_wake_bit(folio, PG_private_2); 1559 folio_put(folio); 1560 } 1561 EXPORT_SYMBOL(folio_end_private_2); 1562 1563 /** 1564 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1565 * @folio: The folio to wait on. 1566 * 1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1568 */ 1569 void folio_wait_private_2(struct folio *folio) 1570 { 1571 while (folio_test_private_2(folio)) 1572 folio_wait_bit(folio, PG_private_2); 1573 } 1574 EXPORT_SYMBOL(folio_wait_private_2); 1575 1576 /** 1577 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1578 * @folio: The folio to wait on. 1579 * 1580 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1581 * fatal signal is received by the calling task. 1582 * 1583 * Return: 1584 * - 0 if successful. 1585 * - -EINTR if a fatal signal was encountered. 1586 */ 1587 int folio_wait_private_2_killable(struct folio *folio) 1588 { 1589 int ret = 0; 1590 1591 while (folio_test_private_2(folio)) { 1592 ret = folio_wait_bit_killable(folio, PG_private_2); 1593 if (ret < 0) 1594 break; 1595 } 1596 1597 return ret; 1598 } 1599 EXPORT_SYMBOL(folio_wait_private_2_killable); 1600 1601 /** 1602 * folio_end_writeback - End writeback against a folio. 1603 * @folio: The folio. 1604 */ 1605 void folio_end_writeback(struct folio *folio) 1606 { 1607 /* 1608 * folio_test_clear_reclaim() could be used here but it is an 1609 * atomic operation and overkill in this particular case. Failing 1610 * to shuffle a folio marked for immediate reclaim is too mild 1611 * a gain to justify taking an atomic operation penalty at the 1612 * end of every folio writeback. 1613 */ 1614 if (folio_test_reclaim(folio)) { 1615 folio_clear_reclaim(folio); 1616 folio_rotate_reclaimable(folio); 1617 } 1618 1619 /* 1620 * Writeback does not hold a folio reference of its own, relying 1621 * on truncation to wait for the clearing of PG_writeback. 1622 * But here we must make sure that the folio is not freed and 1623 * reused before the folio_wake(). 1624 */ 1625 folio_get(folio); 1626 if (!__folio_end_writeback(folio)) 1627 BUG(); 1628 1629 smp_mb__after_atomic(); 1630 folio_wake(folio, PG_writeback); 1631 acct_reclaim_writeback(folio); 1632 folio_put(folio); 1633 } 1634 EXPORT_SYMBOL(folio_end_writeback); 1635 1636 /* 1637 * After completing I/O on a page, call this routine to update the page 1638 * flags appropriately 1639 */ 1640 void page_endio(struct page *page, bool is_write, int err) 1641 { 1642 if (!is_write) { 1643 if (!err) { 1644 SetPageUptodate(page); 1645 } else { 1646 ClearPageUptodate(page); 1647 SetPageError(page); 1648 } 1649 unlock_page(page); 1650 } else { 1651 if (err) { 1652 struct address_space *mapping; 1653 1654 SetPageError(page); 1655 mapping = page_mapping(page); 1656 if (mapping) 1657 mapping_set_error(mapping, err); 1658 } 1659 end_page_writeback(page); 1660 } 1661 } 1662 EXPORT_SYMBOL_GPL(page_endio); 1663 1664 /** 1665 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1666 * @folio: The folio to lock 1667 */ 1668 void __folio_lock(struct folio *folio) 1669 { 1670 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1671 EXCLUSIVE); 1672 } 1673 EXPORT_SYMBOL(__folio_lock); 1674 1675 int __folio_lock_killable(struct folio *folio) 1676 { 1677 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1678 EXCLUSIVE); 1679 } 1680 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1681 1682 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1683 { 1684 struct wait_queue_head *q = folio_waitqueue(folio); 1685 int ret = 0; 1686 1687 wait->folio = folio; 1688 wait->bit_nr = PG_locked; 1689 1690 spin_lock_irq(&q->lock); 1691 __add_wait_queue_entry_tail(q, &wait->wait); 1692 folio_set_waiters(folio); 1693 ret = !folio_trylock(folio); 1694 /* 1695 * If we were successful now, we know we're still on the 1696 * waitqueue as we're still under the lock. This means it's 1697 * safe to remove and return success, we know the callback 1698 * isn't going to trigger. 1699 */ 1700 if (!ret) 1701 __remove_wait_queue(q, &wait->wait); 1702 else 1703 ret = -EIOCBQUEUED; 1704 spin_unlock_irq(&q->lock); 1705 return ret; 1706 } 1707 1708 /* 1709 * Return values: 1710 * true - folio is locked; mmap_lock is still held. 1711 * false - folio is not locked. 1712 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1713 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1714 * which case mmap_lock is still held. 1715 * 1716 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1717 * with the folio locked and the mmap_lock unperturbed. 1718 */ 1719 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1720 unsigned int flags) 1721 { 1722 if (fault_flag_allow_retry_first(flags)) { 1723 /* 1724 * CAUTION! In this case, mmap_lock is not released 1725 * even though return 0. 1726 */ 1727 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1728 return false; 1729 1730 mmap_read_unlock(mm); 1731 if (flags & FAULT_FLAG_KILLABLE) 1732 folio_wait_locked_killable(folio); 1733 else 1734 folio_wait_locked(folio); 1735 return false; 1736 } 1737 if (flags & FAULT_FLAG_KILLABLE) { 1738 bool ret; 1739 1740 ret = __folio_lock_killable(folio); 1741 if (ret) { 1742 mmap_read_unlock(mm); 1743 return false; 1744 } 1745 } else { 1746 __folio_lock(folio); 1747 } 1748 1749 return true; 1750 } 1751 1752 /** 1753 * page_cache_next_miss() - Find the next gap in the page cache. 1754 * @mapping: Mapping. 1755 * @index: Index. 1756 * @max_scan: Maximum range to search. 1757 * 1758 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1759 * gap with the lowest index. 1760 * 1761 * This function may be called under the rcu_read_lock. However, this will 1762 * not atomically search a snapshot of the cache at a single point in time. 1763 * For example, if a gap is created at index 5, then subsequently a gap is 1764 * created at index 10, page_cache_next_miss covering both indices may 1765 * return 10 if called under the rcu_read_lock. 1766 * 1767 * Return: The index of the gap if found, otherwise an index outside the 1768 * range specified (in which case 'return - index >= max_scan' will be true). 1769 * In the rare case of index wrap-around, 0 will be returned. 1770 */ 1771 pgoff_t page_cache_next_miss(struct address_space *mapping, 1772 pgoff_t index, unsigned long max_scan) 1773 { 1774 XA_STATE(xas, &mapping->i_pages, index); 1775 1776 while (max_scan--) { 1777 void *entry = xas_next(&xas); 1778 if (!entry || xa_is_value(entry)) 1779 break; 1780 if (xas.xa_index == 0) 1781 break; 1782 } 1783 1784 return xas.xa_index; 1785 } 1786 EXPORT_SYMBOL(page_cache_next_miss); 1787 1788 /** 1789 * page_cache_prev_miss() - Find the previous gap in the page cache. 1790 * @mapping: Mapping. 1791 * @index: Index. 1792 * @max_scan: Maximum range to search. 1793 * 1794 * Search the range [max(index - max_scan + 1, 0), index] for the 1795 * gap with the highest index. 1796 * 1797 * This function may be called under the rcu_read_lock. However, this will 1798 * not atomically search a snapshot of the cache at a single point in time. 1799 * For example, if a gap is created at index 10, then subsequently a gap is 1800 * created at index 5, page_cache_prev_miss() covering both indices may 1801 * return 5 if called under the rcu_read_lock. 1802 * 1803 * Return: The index of the gap if found, otherwise an index outside the 1804 * range specified (in which case 'index - return >= max_scan' will be true). 1805 * In the rare case of wrap-around, ULONG_MAX will be returned. 1806 */ 1807 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1808 pgoff_t index, unsigned long max_scan) 1809 { 1810 XA_STATE(xas, &mapping->i_pages, index); 1811 1812 while (max_scan--) { 1813 void *entry = xas_prev(&xas); 1814 if (!entry || xa_is_value(entry)) 1815 break; 1816 if (xas.xa_index == ULONG_MAX) 1817 break; 1818 } 1819 1820 return xas.xa_index; 1821 } 1822 EXPORT_SYMBOL(page_cache_prev_miss); 1823 1824 /* 1825 * Lockless page cache protocol: 1826 * On the lookup side: 1827 * 1. Load the folio from i_pages 1828 * 2. Increment the refcount if it's not zero 1829 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1830 * 1831 * On the removal side: 1832 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1833 * B. Remove the page from i_pages 1834 * C. Return the page to the page allocator 1835 * 1836 * This means that any page may have its reference count temporarily 1837 * increased by a speculative page cache (or fast GUP) lookup as it can 1838 * be allocated by another user before the RCU grace period expires. 1839 * Because the refcount temporarily acquired here may end up being the 1840 * last refcount on the page, any page allocation must be freeable by 1841 * folio_put(). 1842 */ 1843 1844 /* 1845 * mapping_get_entry - Get a page cache entry. 1846 * @mapping: the address_space to search 1847 * @index: The page cache index. 1848 * 1849 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1850 * it is returned with an increased refcount. If it is a shadow entry 1851 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1852 * it is returned without further action. 1853 * 1854 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1855 */ 1856 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1857 { 1858 XA_STATE(xas, &mapping->i_pages, index); 1859 struct folio *folio; 1860 1861 rcu_read_lock(); 1862 repeat: 1863 xas_reset(&xas); 1864 folio = xas_load(&xas); 1865 if (xas_retry(&xas, folio)) 1866 goto repeat; 1867 /* 1868 * A shadow entry of a recently evicted page, or a swap entry from 1869 * shmem/tmpfs. Return it without attempting to raise page count. 1870 */ 1871 if (!folio || xa_is_value(folio)) 1872 goto out; 1873 1874 if (!folio_try_get_rcu(folio)) 1875 goto repeat; 1876 1877 if (unlikely(folio != xas_reload(&xas))) { 1878 folio_put(folio); 1879 goto repeat; 1880 } 1881 out: 1882 rcu_read_unlock(); 1883 1884 return folio; 1885 } 1886 1887 /** 1888 * __filemap_get_folio - Find and get a reference to a folio. 1889 * @mapping: The address_space to search. 1890 * @index: The page index. 1891 * @fgp_flags: %FGP flags modify how the folio is returned. 1892 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1893 * 1894 * Looks up the page cache entry at @mapping & @index. 1895 * 1896 * @fgp_flags can be zero or more of these flags: 1897 * 1898 * * %FGP_ACCESSED - The folio will be marked accessed. 1899 * * %FGP_LOCK - The folio is returned locked. 1900 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1901 * instead of allocating a new folio to replace it. 1902 * * %FGP_CREAT - If no page is present then a new page is allocated using 1903 * @gfp and added to the page cache and the VM's LRU list. 1904 * The page is returned locked and with an increased refcount. 1905 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1906 * page is already in cache. If the page was allocated, unlock it before 1907 * returning so the caller can do the same dance. 1908 * * %FGP_WRITE - The page will be written to by the caller. 1909 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1910 * * %FGP_NOWAIT - Don't get blocked by page lock. 1911 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1912 * 1913 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1914 * if the %GFP flags specified for %FGP_CREAT are atomic. 1915 * 1916 * If there is a page cache page, it is returned with an increased refcount. 1917 * 1918 * Return: The found folio or %NULL otherwise. 1919 */ 1920 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1921 int fgp_flags, gfp_t gfp) 1922 { 1923 struct folio *folio; 1924 1925 repeat: 1926 folio = mapping_get_entry(mapping, index); 1927 if (xa_is_value(folio)) { 1928 if (fgp_flags & FGP_ENTRY) 1929 return folio; 1930 folio = NULL; 1931 } 1932 if (!folio) 1933 goto no_page; 1934 1935 if (fgp_flags & FGP_LOCK) { 1936 if (fgp_flags & FGP_NOWAIT) { 1937 if (!folio_trylock(folio)) { 1938 folio_put(folio); 1939 return NULL; 1940 } 1941 } else { 1942 folio_lock(folio); 1943 } 1944 1945 /* Has the page been truncated? */ 1946 if (unlikely(folio->mapping != mapping)) { 1947 folio_unlock(folio); 1948 folio_put(folio); 1949 goto repeat; 1950 } 1951 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1952 } 1953 1954 if (fgp_flags & FGP_ACCESSED) 1955 folio_mark_accessed(folio); 1956 else if (fgp_flags & FGP_WRITE) { 1957 /* Clear idle flag for buffer write */ 1958 if (folio_test_idle(folio)) 1959 folio_clear_idle(folio); 1960 } 1961 1962 if (fgp_flags & FGP_STABLE) 1963 folio_wait_stable(folio); 1964 no_page: 1965 if (!folio && (fgp_flags & FGP_CREAT)) { 1966 int err; 1967 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1968 gfp |= __GFP_WRITE; 1969 if (fgp_flags & FGP_NOFS) 1970 gfp &= ~__GFP_FS; 1971 if (fgp_flags & FGP_NOWAIT) { 1972 gfp &= ~GFP_KERNEL; 1973 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1974 } 1975 1976 folio = filemap_alloc_folio(gfp, 0); 1977 if (!folio) 1978 return NULL; 1979 1980 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1981 fgp_flags |= FGP_LOCK; 1982 1983 /* Init accessed so avoid atomic mark_page_accessed later */ 1984 if (fgp_flags & FGP_ACCESSED) 1985 __folio_set_referenced(folio); 1986 1987 err = filemap_add_folio(mapping, folio, index, gfp); 1988 if (unlikely(err)) { 1989 folio_put(folio); 1990 folio = NULL; 1991 if (err == -EEXIST) 1992 goto repeat; 1993 } 1994 1995 /* 1996 * filemap_add_folio locks the page, and for mmap 1997 * we expect an unlocked page. 1998 */ 1999 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2000 folio_unlock(folio); 2001 } 2002 2003 return folio; 2004 } 2005 EXPORT_SYMBOL(__filemap_get_folio); 2006 2007 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2008 xa_mark_t mark) 2009 { 2010 struct folio *folio; 2011 2012 retry: 2013 if (mark == XA_PRESENT) 2014 folio = xas_find(xas, max); 2015 else 2016 folio = xas_find_marked(xas, max, mark); 2017 2018 if (xas_retry(xas, folio)) 2019 goto retry; 2020 /* 2021 * A shadow entry of a recently evicted page, a swap 2022 * entry from shmem/tmpfs or a DAX entry. Return it 2023 * without attempting to raise page count. 2024 */ 2025 if (!folio || xa_is_value(folio)) 2026 return folio; 2027 2028 if (!folio_try_get_rcu(folio)) 2029 goto reset; 2030 2031 if (unlikely(folio != xas_reload(xas))) { 2032 folio_put(folio); 2033 goto reset; 2034 } 2035 2036 return folio; 2037 reset: 2038 xas_reset(xas); 2039 goto retry; 2040 } 2041 2042 /** 2043 * find_get_entries - gang pagecache lookup 2044 * @mapping: The address_space to search 2045 * @start: The starting page cache index 2046 * @end: The final page index (inclusive). 2047 * @fbatch: Where the resulting entries are placed. 2048 * @indices: The cache indices corresponding to the entries in @entries 2049 * 2050 * find_get_entries() will search for and return a batch of entries in 2051 * the mapping. The entries are placed in @fbatch. find_get_entries() 2052 * takes a reference on any actual folios it returns. 2053 * 2054 * The entries have ascending indexes. The indices may not be consecutive 2055 * due to not-present entries or large folios. 2056 * 2057 * Any shadow entries of evicted folios, or swap entries from 2058 * shmem/tmpfs, are included in the returned array. 2059 * 2060 * Return: The number of entries which were found. 2061 */ 2062 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2063 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2064 { 2065 XA_STATE(xas, &mapping->i_pages, start); 2066 struct folio *folio; 2067 2068 rcu_read_lock(); 2069 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2070 indices[fbatch->nr] = xas.xa_index; 2071 if (!folio_batch_add(fbatch, folio)) 2072 break; 2073 } 2074 rcu_read_unlock(); 2075 2076 return folio_batch_count(fbatch); 2077 } 2078 2079 /** 2080 * find_lock_entries - Find a batch of pagecache entries. 2081 * @mapping: The address_space to search. 2082 * @start: The starting page cache index. 2083 * @end: The final page index (inclusive). 2084 * @fbatch: Where the resulting entries are placed. 2085 * @indices: The cache indices of the entries in @fbatch. 2086 * 2087 * find_lock_entries() will return a batch of entries from @mapping. 2088 * Swap, shadow and DAX entries are included. Folios are returned 2089 * locked and with an incremented refcount. Folios which are locked 2090 * by somebody else or under writeback are skipped. Folios which are 2091 * partially outside the range are not returned. 2092 * 2093 * The entries have ascending indexes. The indices may not be consecutive 2094 * due to not-present entries, large folios, folios which could not be 2095 * locked or folios under writeback. 2096 * 2097 * Return: The number of entries which were found. 2098 */ 2099 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2100 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2101 { 2102 XA_STATE(xas, &mapping->i_pages, start); 2103 struct folio *folio; 2104 2105 rcu_read_lock(); 2106 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2107 if (!xa_is_value(folio)) { 2108 if (folio->index < start) 2109 goto put; 2110 if (folio->index + folio_nr_pages(folio) - 1 > end) 2111 goto put; 2112 if (!folio_trylock(folio)) 2113 goto put; 2114 if (folio->mapping != mapping || 2115 folio_test_writeback(folio)) 2116 goto unlock; 2117 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2118 folio); 2119 } 2120 indices[fbatch->nr] = xas.xa_index; 2121 if (!folio_batch_add(fbatch, folio)) 2122 break; 2123 continue; 2124 unlock: 2125 folio_unlock(folio); 2126 put: 2127 folio_put(folio); 2128 } 2129 rcu_read_unlock(); 2130 2131 return folio_batch_count(fbatch); 2132 } 2133 2134 /** 2135 * filemap_get_folios - Get a batch of folios 2136 * @mapping: The address_space to search 2137 * @start: The starting page index 2138 * @end: The final page index (inclusive) 2139 * @fbatch: The batch to fill. 2140 * 2141 * Search for and return a batch of folios in the mapping starting at 2142 * index @start and up to index @end (inclusive). The folios are returned 2143 * in @fbatch with an elevated reference count. 2144 * 2145 * The first folio may start before @start; if it does, it will contain 2146 * @start. The final folio may extend beyond @end; if it does, it will 2147 * contain @end. The folios have ascending indices. There may be gaps 2148 * between the folios if there are indices which have no folio in the 2149 * page cache. If folios are added to or removed from the page cache 2150 * while this is running, they may or may not be found by this call. 2151 * 2152 * Return: The number of folios which were found. 2153 * We also update @start to index the next folio for the traversal. 2154 */ 2155 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2156 pgoff_t end, struct folio_batch *fbatch) 2157 { 2158 XA_STATE(xas, &mapping->i_pages, *start); 2159 struct folio *folio; 2160 2161 rcu_read_lock(); 2162 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2163 /* Skip over shadow, swap and DAX entries */ 2164 if (xa_is_value(folio)) 2165 continue; 2166 if (!folio_batch_add(fbatch, folio)) { 2167 unsigned long nr = folio_nr_pages(folio); 2168 2169 if (folio_test_hugetlb(folio)) 2170 nr = 1; 2171 *start = folio->index + nr; 2172 goto out; 2173 } 2174 } 2175 2176 /* 2177 * We come here when there is no page beyond @end. We take care to not 2178 * overflow the index @start as it confuses some of the callers. This 2179 * breaks the iteration when there is a page at index -1 but that is 2180 * already broken anyway. 2181 */ 2182 if (end == (pgoff_t)-1) 2183 *start = (pgoff_t)-1; 2184 else 2185 *start = end + 1; 2186 out: 2187 rcu_read_unlock(); 2188 2189 return folio_batch_count(fbatch); 2190 } 2191 EXPORT_SYMBOL(filemap_get_folios); 2192 2193 static inline 2194 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2195 { 2196 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2197 return false; 2198 if (index >= max) 2199 return false; 2200 return index < folio->index + folio_nr_pages(folio) - 1; 2201 } 2202 2203 /** 2204 * find_get_pages_contig - gang contiguous pagecache lookup 2205 * @mapping: The address_space to search 2206 * @index: The starting page index 2207 * @nr_pages: The maximum number of pages 2208 * @pages: Where the resulting pages are placed 2209 * 2210 * find_get_pages_contig() works exactly like find_get_pages_range(), 2211 * except that the returned number of pages are guaranteed to be 2212 * contiguous. 2213 * 2214 * Return: the number of pages which were found. 2215 */ 2216 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2217 unsigned int nr_pages, struct page **pages) 2218 { 2219 XA_STATE(xas, &mapping->i_pages, index); 2220 struct folio *folio; 2221 unsigned int ret = 0; 2222 2223 if (unlikely(!nr_pages)) 2224 return 0; 2225 2226 rcu_read_lock(); 2227 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2228 if (xas_retry(&xas, folio)) 2229 continue; 2230 /* 2231 * If the entry has been swapped out, we can stop looking. 2232 * No current caller is looking for DAX entries. 2233 */ 2234 if (xa_is_value(folio)) 2235 break; 2236 2237 if (!folio_try_get_rcu(folio)) 2238 goto retry; 2239 2240 if (unlikely(folio != xas_reload(&xas))) 2241 goto put_page; 2242 2243 again: 2244 pages[ret] = folio_file_page(folio, xas.xa_index); 2245 if (++ret == nr_pages) 2246 break; 2247 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2248 xas.xa_index++; 2249 folio_ref_inc(folio); 2250 goto again; 2251 } 2252 continue; 2253 put_page: 2254 folio_put(folio); 2255 retry: 2256 xas_reset(&xas); 2257 } 2258 rcu_read_unlock(); 2259 return ret; 2260 } 2261 EXPORT_SYMBOL(find_get_pages_contig); 2262 2263 /** 2264 * find_get_pages_range_tag - Find and return head pages matching @tag. 2265 * @mapping: the address_space to search 2266 * @index: the starting page index 2267 * @end: The final page index (inclusive) 2268 * @tag: the tag index 2269 * @nr_pages: the maximum number of pages 2270 * @pages: where the resulting pages are placed 2271 * 2272 * Like find_get_pages_range(), except we only return head pages which are 2273 * tagged with @tag. @index is updated to the index immediately after the 2274 * last page we return, ready for the next iteration. 2275 * 2276 * Return: the number of pages which were found. 2277 */ 2278 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2279 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2280 struct page **pages) 2281 { 2282 XA_STATE(xas, &mapping->i_pages, *index); 2283 struct folio *folio; 2284 unsigned ret = 0; 2285 2286 if (unlikely(!nr_pages)) 2287 return 0; 2288 2289 rcu_read_lock(); 2290 while ((folio = find_get_entry(&xas, end, tag))) { 2291 /* 2292 * Shadow entries should never be tagged, but this iteration 2293 * is lockless so there is a window for page reclaim to evict 2294 * a page we saw tagged. Skip over it. 2295 */ 2296 if (xa_is_value(folio)) 2297 continue; 2298 2299 pages[ret] = &folio->page; 2300 if (++ret == nr_pages) { 2301 *index = folio->index + folio_nr_pages(folio); 2302 goto out; 2303 } 2304 } 2305 2306 /* 2307 * We come here when we got to @end. We take care to not overflow the 2308 * index @index as it confuses some of the callers. This breaks the 2309 * iteration when there is a page at index -1 but that is already 2310 * broken anyway. 2311 */ 2312 if (end == (pgoff_t)-1) 2313 *index = (pgoff_t)-1; 2314 else 2315 *index = end + 1; 2316 out: 2317 rcu_read_unlock(); 2318 2319 return ret; 2320 } 2321 EXPORT_SYMBOL(find_get_pages_range_tag); 2322 2323 /* 2324 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2325 * a _large_ part of the i/o request. Imagine the worst scenario: 2326 * 2327 * ---R__________________________________________B__________ 2328 * ^ reading here ^ bad block(assume 4k) 2329 * 2330 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2331 * => failing the whole request => read(R) => read(R+1) => 2332 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2333 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2334 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2335 * 2336 * It is going insane. Fix it by quickly scaling down the readahead size. 2337 */ 2338 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2339 { 2340 ra->ra_pages /= 4; 2341 } 2342 2343 /* 2344 * filemap_get_read_batch - Get a batch of folios for read 2345 * 2346 * Get a batch of folios which represent a contiguous range of bytes in 2347 * the file. No exceptional entries will be returned. If @index is in 2348 * the middle of a folio, the entire folio will be returned. The last 2349 * folio in the batch may have the readahead flag set or the uptodate flag 2350 * clear so that the caller can take the appropriate action. 2351 */ 2352 static void filemap_get_read_batch(struct address_space *mapping, 2353 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2354 { 2355 XA_STATE(xas, &mapping->i_pages, index); 2356 struct folio *folio; 2357 2358 rcu_read_lock(); 2359 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2360 if (xas_retry(&xas, folio)) 2361 continue; 2362 if (xas.xa_index > max || xa_is_value(folio)) 2363 break; 2364 if (xa_is_sibling(folio)) 2365 break; 2366 if (!folio_try_get_rcu(folio)) 2367 goto retry; 2368 2369 if (unlikely(folio != xas_reload(&xas))) 2370 goto put_folio; 2371 2372 if (!folio_batch_add(fbatch, folio)) 2373 break; 2374 if (!folio_test_uptodate(folio)) 2375 break; 2376 if (folio_test_readahead(folio)) 2377 break; 2378 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2379 continue; 2380 put_folio: 2381 folio_put(folio); 2382 retry: 2383 xas_reset(&xas); 2384 } 2385 rcu_read_unlock(); 2386 } 2387 2388 static int filemap_read_folio(struct file *file, filler_t filler, 2389 struct folio *folio) 2390 { 2391 int error; 2392 2393 /* 2394 * A previous I/O error may have been due to temporary failures, 2395 * eg. multipath errors. PG_error will be set again if read_folio 2396 * fails. 2397 */ 2398 folio_clear_error(folio); 2399 /* Start the actual read. The read will unlock the page. */ 2400 error = filler(file, folio); 2401 if (error) 2402 return error; 2403 2404 error = folio_wait_locked_killable(folio); 2405 if (error) 2406 return error; 2407 if (folio_test_uptodate(folio)) 2408 return 0; 2409 if (file) 2410 shrink_readahead_size_eio(&file->f_ra); 2411 return -EIO; 2412 } 2413 2414 static bool filemap_range_uptodate(struct address_space *mapping, 2415 loff_t pos, struct iov_iter *iter, struct folio *folio) 2416 { 2417 int count; 2418 2419 if (folio_test_uptodate(folio)) 2420 return true; 2421 /* pipes can't handle partially uptodate pages */ 2422 if (iov_iter_is_pipe(iter)) 2423 return false; 2424 if (!mapping->a_ops->is_partially_uptodate) 2425 return false; 2426 if (mapping->host->i_blkbits >= folio_shift(folio)) 2427 return false; 2428 2429 count = iter->count; 2430 if (folio_pos(folio) > pos) { 2431 count -= folio_pos(folio) - pos; 2432 pos = 0; 2433 } else { 2434 pos -= folio_pos(folio); 2435 } 2436 2437 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2438 } 2439 2440 static int filemap_update_page(struct kiocb *iocb, 2441 struct address_space *mapping, struct iov_iter *iter, 2442 struct folio *folio) 2443 { 2444 int error; 2445 2446 if (iocb->ki_flags & IOCB_NOWAIT) { 2447 if (!filemap_invalidate_trylock_shared(mapping)) 2448 return -EAGAIN; 2449 } else { 2450 filemap_invalidate_lock_shared(mapping); 2451 } 2452 2453 if (!folio_trylock(folio)) { 2454 error = -EAGAIN; 2455 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2456 goto unlock_mapping; 2457 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2458 filemap_invalidate_unlock_shared(mapping); 2459 /* 2460 * This is where we usually end up waiting for a 2461 * previously submitted readahead to finish. 2462 */ 2463 folio_put_wait_locked(folio, TASK_KILLABLE); 2464 return AOP_TRUNCATED_PAGE; 2465 } 2466 error = __folio_lock_async(folio, iocb->ki_waitq); 2467 if (error) 2468 goto unlock_mapping; 2469 } 2470 2471 error = AOP_TRUNCATED_PAGE; 2472 if (!folio->mapping) 2473 goto unlock; 2474 2475 error = 0; 2476 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2477 goto unlock; 2478 2479 error = -EAGAIN; 2480 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2481 goto unlock; 2482 2483 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2484 folio); 2485 goto unlock_mapping; 2486 unlock: 2487 folio_unlock(folio); 2488 unlock_mapping: 2489 filemap_invalidate_unlock_shared(mapping); 2490 if (error == AOP_TRUNCATED_PAGE) 2491 folio_put(folio); 2492 return error; 2493 } 2494 2495 static int filemap_create_folio(struct file *file, 2496 struct address_space *mapping, pgoff_t index, 2497 struct folio_batch *fbatch) 2498 { 2499 struct folio *folio; 2500 int error; 2501 2502 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2503 if (!folio) 2504 return -ENOMEM; 2505 2506 /* 2507 * Protect against truncate / hole punch. Grabbing invalidate_lock 2508 * here assures we cannot instantiate and bring uptodate new 2509 * pagecache folios after evicting page cache during truncate 2510 * and before actually freeing blocks. Note that we could 2511 * release invalidate_lock after inserting the folio into 2512 * the page cache as the locked folio would then be enough to 2513 * synchronize with hole punching. But there are code paths 2514 * such as filemap_update_page() filling in partially uptodate 2515 * pages or ->readahead() that need to hold invalidate_lock 2516 * while mapping blocks for IO so let's hold the lock here as 2517 * well to keep locking rules simple. 2518 */ 2519 filemap_invalidate_lock_shared(mapping); 2520 error = filemap_add_folio(mapping, folio, index, 2521 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2522 if (error == -EEXIST) 2523 error = AOP_TRUNCATED_PAGE; 2524 if (error) 2525 goto error; 2526 2527 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2528 if (error) 2529 goto error; 2530 2531 filemap_invalidate_unlock_shared(mapping); 2532 folio_batch_add(fbatch, folio); 2533 return 0; 2534 error: 2535 filemap_invalidate_unlock_shared(mapping); 2536 folio_put(folio); 2537 return error; 2538 } 2539 2540 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2541 struct address_space *mapping, struct folio *folio, 2542 pgoff_t last_index) 2543 { 2544 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2545 2546 if (iocb->ki_flags & IOCB_NOIO) 2547 return -EAGAIN; 2548 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2549 return 0; 2550 } 2551 2552 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2553 struct folio_batch *fbatch) 2554 { 2555 struct file *filp = iocb->ki_filp; 2556 struct address_space *mapping = filp->f_mapping; 2557 struct file_ra_state *ra = &filp->f_ra; 2558 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2559 pgoff_t last_index; 2560 struct folio *folio; 2561 int err = 0; 2562 2563 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2564 retry: 2565 if (fatal_signal_pending(current)) 2566 return -EINTR; 2567 2568 filemap_get_read_batch(mapping, index, last_index, fbatch); 2569 if (!folio_batch_count(fbatch)) { 2570 if (iocb->ki_flags & IOCB_NOIO) 2571 return -EAGAIN; 2572 page_cache_sync_readahead(mapping, ra, filp, index, 2573 last_index - index); 2574 filemap_get_read_batch(mapping, index, last_index, fbatch); 2575 } 2576 if (!folio_batch_count(fbatch)) { 2577 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2578 return -EAGAIN; 2579 err = filemap_create_folio(filp, mapping, 2580 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2581 if (err == AOP_TRUNCATED_PAGE) 2582 goto retry; 2583 return err; 2584 } 2585 2586 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2587 if (folio_test_readahead(folio)) { 2588 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2589 if (err) 2590 goto err; 2591 } 2592 if (!folio_test_uptodate(folio)) { 2593 if ((iocb->ki_flags & IOCB_WAITQ) && 2594 folio_batch_count(fbatch) > 1) 2595 iocb->ki_flags |= IOCB_NOWAIT; 2596 err = filemap_update_page(iocb, mapping, iter, folio); 2597 if (err) 2598 goto err; 2599 } 2600 2601 return 0; 2602 err: 2603 if (err < 0) 2604 folio_put(folio); 2605 if (likely(--fbatch->nr)) 2606 return 0; 2607 if (err == AOP_TRUNCATED_PAGE) 2608 goto retry; 2609 return err; 2610 } 2611 2612 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2613 { 2614 unsigned int shift = folio_shift(folio); 2615 2616 return (pos1 >> shift == pos2 >> shift); 2617 } 2618 2619 /** 2620 * filemap_read - Read data from the page cache. 2621 * @iocb: The iocb to read. 2622 * @iter: Destination for the data. 2623 * @already_read: Number of bytes already read by the caller. 2624 * 2625 * Copies data from the page cache. If the data is not currently present, 2626 * uses the readahead and read_folio address_space operations to fetch it. 2627 * 2628 * Return: Total number of bytes copied, including those already read by 2629 * the caller. If an error happens before any bytes are copied, returns 2630 * a negative error number. 2631 */ 2632 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2633 ssize_t already_read) 2634 { 2635 struct file *filp = iocb->ki_filp; 2636 struct file_ra_state *ra = &filp->f_ra; 2637 struct address_space *mapping = filp->f_mapping; 2638 struct inode *inode = mapping->host; 2639 struct folio_batch fbatch; 2640 int i, error = 0; 2641 bool writably_mapped; 2642 loff_t isize, end_offset; 2643 2644 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2645 return 0; 2646 if (unlikely(!iov_iter_count(iter))) 2647 return 0; 2648 2649 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2650 folio_batch_init(&fbatch); 2651 2652 do { 2653 cond_resched(); 2654 2655 /* 2656 * If we've already successfully copied some data, then we 2657 * can no longer safely return -EIOCBQUEUED. Hence mark 2658 * an async read NOWAIT at that point. 2659 */ 2660 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2661 iocb->ki_flags |= IOCB_NOWAIT; 2662 2663 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2664 break; 2665 2666 error = filemap_get_pages(iocb, iter, &fbatch); 2667 if (error < 0) 2668 break; 2669 2670 /* 2671 * i_size must be checked after we know the pages are Uptodate. 2672 * 2673 * Checking i_size after the check allows us to calculate 2674 * the correct value for "nr", which means the zero-filled 2675 * part of the page is not copied back to userspace (unless 2676 * another truncate extends the file - this is desired though). 2677 */ 2678 isize = i_size_read(inode); 2679 if (unlikely(iocb->ki_pos >= isize)) 2680 goto put_folios; 2681 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2682 2683 /* 2684 * Once we start copying data, we don't want to be touching any 2685 * cachelines that might be contended: 2686 */ 2687 writably_mapped = mapping_writably_mapped(mapping); 2688 2689 /* 2690 * When a read accesses the same folio several times, only 2691 * mark it as accessed the first time. 2692 */ 2693 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2694 fbatch.folios[0])) 2695 folio_mark_accessed(fbatch.folios[0]); 2696 2697 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2698 struct folio *folio = fbatch.folios[i]; 2699 size_t fsize = folio_size(folio); 2700 size_t offset = iocb->ki_pos & (fsize - 1); 2701 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2702 fsize - offset); 2703 size_t copied; 2704 2705 if (end_offset < folio_pos(folio)) 2706 break; 2707 if (i > 0) 2708 folio_mark_accessed(folio); 2709 /* 2710 * If users can be writing to this folio using arbitrary 2711 * virtual addresses, take care of potential aliasing 2712 * before reading the folio on the kernel side. 2713 */ 2714 if (writably_mapped) 2715 flush_dcache_folio(folio); 2716 2717 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2718 2719 already_read += copied; 2720 iocb->ki_pos += copied; 2721 ra->prev_pos = iocb->ki_pos; 2722 2723 if (copied < bytes) { 2724 error = -EFAULT; 2725 break; 2726 } 2727 } 2728 put_folios: 2729 for (i = 0; i < folio_batch_count(&fbatch); i++) 2730 folio_put(fbatch.folios[i]); 2731 folio_batch_init(&fbatch); 2732 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2733 2734 file_accessed(filp); 2735 2736 return already_read ? already_read : error; 2737 } 2738 EXPORT_SYMBOL_GPL(filemap_read); 2739 2740 /** 2741 * generic_file_read_iter - generic filesystem read routine 2742 * @iocb: kernel I/O control block 2743 * @iter: destination for the data read 2744 * 2745 * This is the "read_iter()" routine for all filesystems 2746 * that can use the page cache directly. 2747 * 2748 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2749 * be returned when no data can be read without waiting for I/O requests 2750 * to complete; it doesn't prevent readahead. 2751 * 2752 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2753 * requests shall be made for the read or for readahead. When no data 2754 * can be read, -EAGAIN shall be returned. When readahead would be 2755 * triggered, a partial, possibly empty read shall be returned. 2756 * 2757 * Return: 2758 * * number of bytes copied, even for partial reads 2759 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2760 */ 2761 ssize_t 2762 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2763 { 2764 size_t count = iov_iter_count(iter); 2765 ssize_t retval = 0; 2766 2767 if (!count) 2768 return 0; /* skip atime */ 2769 2770 if (iocb->ki_flags & IOCB_DIRECT) { 2771 struct file *file = iocb->ki_filp; 2772 struct address_space *mapping = file->f_mapping; 2773 struct inode *inode = mapping->host; 2774 2775 if (iocb->ki_flags & IOCB_NOWAIT) { 2776 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2777 iocb->ki_pos + count - 1)) 2778 return -EAGAIN; 2779 } else { 2780 retval = filemap_write_and_wait_range(mapping, 2781 iocb->ki_pos, 2782 iocb->ki_pos + count - 1); 2783 if (retval < 0) 2784 return retval; 2785 } 2786 2787 file_accessed(file); 2788 2789 retval = mapping->a_ops->direct_IO(iocb, iter); 2790 if (retval >= 0) { 2791 iocb->ki_pos += retval; 2792 count -= retval; 2793 } 2794 if (retval != -EIOCBQUEUED) 2795 iov_iter_revert(iter, count - iov_iter_count(iter)); 2796 2797 /* 2798 * Btrfs can have a short DIO read if we encounter 2799 * compressed extents, so if there was an error, or if 2800 * we've already read everything we wanted to, or if 2801 * there was a short read because we hit EOF, go ahead 2802 * and return. Otherwise fallthrough to buffered io for 2803 * the rest of the read. Buffered reads will not work for 2804 * DAX files, so don't bother trying. 2805 */ 2806 if (retval < 0 || !count || IS_DAX(inode)) 2807 return retval; 2808 if (iocb->ki_pos >= i_size_read(inode)) 2809 return retval; 2810 } 2811 2812 return filemap_read(iocb, iter, retval); 2813 } 2814 EXPORT_SYMBOL(generic_file_read_iter); 2815 2816 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2817 struct address_space *mapping, struct folio *folio, 2818 loff_t start, loff_t end, bool seek_data) 2819 { 2820 const struct address_space_operations *ops = mapping->a_ops; 2821 size_t offset, bsz = i_blocksize(mapping->host); 2822 2823 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2824 return seek_data ? start : end; 2825 if (!ops->is_partially_uptodate) 2826 return seek_data ? end : start; 2827 2828 xas_pause(xas); 2829 rcu_read_unlock(); 2830 folio_lock(folio); 2831 if (unlikely(folio->mapping != mapping)) 2832 goto unlock; 2833 2834 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2835 2836 do { 2837 if (ops->is_partially_uptodate(folio, offset, bsz) == 2838 seek_data) 2839 break; 2840 start = (start + bsz) & ~(bsz - 1); 2841 offset += bsz; 2842 } while (offset < folio_size(folio)); 2843 unlock: 2844 folio_unlock(folio); 2845 rcu_read_lock(); 2846 return start; 2847 } 2848 2849 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2850 { 2851 if (xa_is_value(folio)) 2852 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2853 return folio_size(folio); 2854 } 2855 2856 /** 2857 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2858 * @mapping: Address space to search. 2859 * @start: First byte to consider. 2860 * @end: Limit of search (exclusive). 2861 * @whence: Either SEEK_HOLE or SEEK_DATA. 2862 * 2863 * If the page cache knows which blocks contain holes and which blocks 2864 * contain data, your filesystem can use this function to implement 2865 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2866 * entirely memory-based such as tmpfs, and filesystems which support 2867 * unwritten extents. 2868 * 2869 * Return: The requested offset on success, or -ENXIO if @whence specifies 2870 * SEEK_DATA and there is no data after @start. There is an implicit hole 2871 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2872 * and @end contain data. 2873 */ 2874 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2875 loff_t end, int whence) 2876 { 2877 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2878 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2879 bool seek_data = (whence == SEEK_DATA); 2880 struct folio *folio; 2881 2882 if (end <= start) 2883 return -ENXIO; 2884 2885 rcu_read_lock(); 2886 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2887 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2888 size_t seek_size; 2889 2890 if (start < pos) { 2891 if (!seek_data) 2892 goto unlock; 2893 start = pos; 2894 } 2895 2896 seek_size = seek_folio_size(&xas, folio); 2897 pos = round_up((u64)pos + 1, seek_size); 2898 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2899 seek_data); 2900 if (start < pos) 2901 goto unlock; 2902 if (start >= end) 2903 break; 2904 if (seek_size > PAGE_SIZE) 2905 xas_set(&xas, pos >> PAGE_SHIFT); 2906 if (!xa_is_value(folio)) 2907 folio_put(folio); 2908 } 2909 if (seek_data) 2910 start = -ENXIO; 2911 unlock: 2912 rcu_read_unlock(); 2913 if (folio && !xa_is_value(folio)) 2914 folio_put(folio); 2915 if (start > end) 2916 return end; 2917 return start; 2918 } 2919 2920 #ifdef CONFIG_MMU 2921 #define MMAP_LOTSAMISS (100) 2922 /* 2923 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2924 * @vmf - the vm_fault for this fault. 2925 * @folio - the folio to lock. 2926 * @fpin - the pointer to the file we may pin (or is already pinned). 2927 * 2928 * This works similar to lock_folio_or_retry in that it can drop the 2929 * mmap_lock. It differs in that it actually returns the folio locked 2930 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2931 * to drop the mmap_lock then fpin will point to the pinned file and 2932 * needs to be fput()'ed at a later point. 2933 */ 2934 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2935 struct file **fpin) 2936 { 2937 if (folio_trylock(folio)) 2938 return 1; 2939 2940 /* 2941 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2942 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2943 * is supposed to work. We have way too many special cases.. 2944 */ 2945 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2946 return 0; 2947 2948 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2949 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2950 if (__folio_lock_killable(folio)) { 2951 /* 2952 * We didn't have the right flags to drop the mmap_lock, 2953 * but all fault_handlers only check for fatal signals 2954 * if we return VM_FAULT_RETRY, so we need to drop the 2955 * mmap_lock here and return 0 if we don't have a fpin. 2956 */ 2957 if (*fpin == NULL) 2958 mmap_read_unlock(vmf->vma->vm_mm); 2959 return 0; 2960 } 2961 } else 2962 __folio_lock(folio); 2963 2964 return 1; 2965 } 2966 2967 /* 2968 * Synchronous readahead happens when we don't even find a page in the page 2969 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2970 * to drop the mmap sem we return the file that was pinned in order for us to do 2971 * that. If we didn't pin a file then we return NULL. The file that is 2972 * returned needs to be fput()'ed when we're done with it. 2973 */ 2974 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2975 { 2976 struct file *file = vmf->vma->vm_file; 2977 struct file_ra_state *ra = &file->f_ra; 2978 struct address_space *mapping = file->f_mapping; 2979 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2980 struct file *fpin = NULL; 2981 unsigned long vm_flags = vmf->vma->vm_flags; 2982 unsigned int mmap_miss; 2983 2984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2985 /* Use the readahead code, even if readahead is disabled */ 2986 if (vm_flags & VM_HUGEPAGE) { 2987 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2988 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 2989 ra->size = HPAGE_PMD_NR; 2990 /* 2991 * Fetch two PMD folios, so we get the chance to actually 2992 * readahead, unless we've been told not to. 2993 */ 2994 if (!(vm_flags & VM_RAND_READ)) 2995 ra->size *= 2; 2996 ra->async_size = HPAGE_PMD_NR; 2997 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 2998 return fpin; 2999 } 3000 #endif 3001 3002 /* If we don't want any read-ahead, don't bother */ 3003 if (vm_flags & VM_RAND_READ) 3004 return fpin; 3005 if (!ra->ra_pages) 3006 return fpin; 3007 3008 if (vm_flags & VM_SEQ_READ) { 3009 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3010 page_cache_sync_ra(&ractl, ra->ra_pages); 3011 return fpin; 3012 } 3013 3014 /* Avoid banging the cache line if not needed */ 3015 mmap_miss = READ_ONCE(ra->mmap_miss); 3016 if (mmap_miss < MMAP_LOTSAMISS * 10) 3017 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3018 3019 /* 3020 * Do we miss much more than hit in this file? If so, 3021 * stop bothering with read-ahead. It will only hurt. 3022 */ 3023 if (mmap_miss > MMAP_LOTSAMISS) 3024 return fpin; 3025 3026 /* 3027 * mmap read-around 3028 */ 3029 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3030 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3031 ra->size = ra->ra_pages; 3032 ra->async_size = ra->ra_pages / 4; 3033 ractl._index = ra->start; 3034 page_cache_ra_order(&ractl, ra, 0); 3035 return fpin; 3036 } 3037 3038 /* 3039 * Asynchronous readahead happens when we find the page and PG_readahead, 3040 * so we want to possibly extend the readahead further. We return the file that 3041 * was pinned if we have to drop the mmap_lock in order to do IO. 3042 */ 3043 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3044 struct folio *folio) 3045 { 3046 struct file *file = vmf->vma->vm_file; 3047 struct file_ra_state *ra = &file->f_ra; 3048 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3049 struct file *fpin = NULL; 3050 unsigned int mmap_miss; 3051 3052 /* If we don't want any read-ahead, don't bother */ 3053 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3054 return fpin; 3055 3056 mmap_miss = READ_ONCE(ra->mmap_miss); 3057 if (mmap_miss) 3058 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3059 3060 if (folio_test_readahead(folio)) { 3061 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3062 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3063 } 3064 return fpin; 3065 } 3066 3067 /** 3068 * filemap_fault - read in file data for page fault handling 3069 * @vmf: struct vm_fault containing details of the fault 3070 * 3071 * filemap_fault() is invoked via the vma operations vector for a 3072 * mapped memory region to read in file data during a page fault. 3073 * 3074 * The goto's are kind of ugly, but this streamlines the normal case of having 3075 * it in the page cache, and handles the special cases reasonably without 3076 * having a lot of duplicated code. 3077 * 3078 * vma->vm_mm->mmap_lock must be held on entry. 3079 * 3080 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3081 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3082 * 3083 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3084 * has not been released. 3085 * 3086 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3087 * 3088 * Return: bitwise-OR of %VM_FAULT_ codes. 3089 */ 3090 vm_fault_t filemap_fault(struct vm_fault *vmf) 3091 { 3092 int error; 3093 struct file *file = vmf->vma->vm_file; 3094 struct file *fpin = NULL; 3095 struct address_space *mapping = file->f_mapping; 3096 struct inode *inode = mapping->host; 3097 pgoff_t max_idx, index = vmf->pgoff; 3098 struct folio *folio; 3099 vm_fault_t ret = 0; 3100 bool mapping_locked = false; 3101 3102 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3103 if (unlikely(index >= max_idx)) 3104 return VM_FAULT_SIGBUS; 3105 3106 /* 3107 * Do we have something in the page cache already? 3108 */ 3109 folio = filemap_get_folio(mapping, index); 3110 if (likely(folio)) { 3111 /* 3112 * We found the page, so try async readahead before waiting for 3113 * the lock. 3114 */ 3115 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3116 fpin = do_async_mmap_readahead(vmf, folio); 3117 if (unlikely(!folio_test_uptodate(folio))) { 3118 filemap_invalidate_lock_shared(mapping); 3119 mapping_locked = true; 3120 } 3121 } else { 3122 /* No page in the page cache at all */ 3123 count_vm_event(PGMAJFAULT); 3124 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3125 ret = VM_FAULT_MAJOR; 3126 fpin = do_sync_mmap_readahead(vmf); 3127 retry_find: 3128 /* 3129 * See comment in filemap_create_folio() why we need 3130 * invalidate_lock 3131 */ 3132 if (!mapping_locked) { 3133 filemap_invalidate_lock_shared(mapping); 3134 mapping_locked = true; 3135 } 3136 folio = __filemap_get_folio(mapping, index, 3137 FGP_CREAT|FGP_FOR_MMAP, 3138 vmf->gfp_mask); 3139 if (!folio) { 3140 if (fpin) 3141 goto out_retry; 3142 filemap_invalidate_unlock_shared(mapping); 3143 return VM_FAULT_OOM; 3144 } 3145 } 3146 3147 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3148 goto out_retry; 3149 3150 /* Did it get truncated? */ 3151 if (unlikely(folio->mapping != mapping)) { 3152 folio_unlock(folio); 3153 folio_put(folio); 3154 goto retry_find; 3155 } 3156 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3157 3158 /* 3159 * We have a locked page in the page cache, now we need to check 3160 * that it's up-to-date. If not, it is going to be due to an error. 3161 */ 3162 if (unlikely(!folio_test_uptodate(folio))) { 3163 /* 3164 * The page was in cache and uptodate and now it is not. 3165 * Strange but possible since we didn't hold the page lock all 3166 * the time. Let's drop everything get the invalidate lock and 3167 * try again. 3168 */ 3169 if (!mapping_locked) { 3170 folio_unlock(folio); 3171 folio_put(folio); 3172 goto retry_find; 3173 } 3174 goto page_not_uptodate; 3175 } 3176 3177 /* 3178 * We've made it this far and we had to drop our mmap_lock, now is the 3179 * time to return to the upper layer and have it re-find the vma and 3180 * redo the fault. 3181 */ 3182 if (fpin) { 3183 folio_unlock(folio); 3184 goto out_retry; 3185 } 3186 if (mapping_locked) 3187 filemap_invalidate_unlock_shared(mapping); 3188 3189 /* 3190 * Found the page and have a reference on it. 3191 * We must recheck i_size under page lock. 3192 */ 3193 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3194 if (unlikely(index >= max_idx)) { 3195 folio_unlock(folio); 3196 folio_put(folio); 3197 return VM_FAULT_SIGBUS; 3198 } 3199 3200 vmf->page = folio_file_page(folio, index); 3201 return ret | VM_FAULT_LOCKED; 3202 3203 page_not_uptodate: 3204 /* 3205 * Umm, take care of errors if the page isn't up-to-date. 3206 * Try to re-read it _once_. We do this synchronously, 3207 * because there really aren't any performance issues here 3208 * and we need to check for errors. 3209 */ 3210 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3211 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3212 if (fpin) 3213 goto out_retry; 3214 folio_put(folio); 3215 3216 if (!error || error == AOP_TRUNCATED_PAGE) 3217 goto retry_find; 3218 filemap_invalidate_unlock_shared(mapping); 3219 3220 return VM_FAULT_SIGBUS; 3221 3222 out_retry: 3223 /* 3224 * We dropped the mmap_lock, we need to return to the fault handler to 3225 * re-find the vma and come back and find our hopefully still populated 3226 * page. 3227 */ 3228 if (folio) 3229 folio_put(folio); 3230 if (mapping_locked) 3231 filemap_invalidate_unlock_shared(mapping); 3232 if (fpin) 3233 fput(fpin); 3234 return ret | VM_FAULT_RETRY; 3235 } 3236 EXPORT_SYMBOL(filemap_fault); 3237 3238 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3239 { 3240 struct mm_struct *mm = vmf->vma->vm_mm; 3241 3242 /* Huge page is mapped? No need to proceed. */ 3243 if (pmd_trans_huge(*vmf->pmd)) { 3244 unlock_page(page); 3245 put_page(page); 3246 return true; 3247 } 3248 3249 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3250 vm_fault_t ret = do_set_pmd(vmf, page); 3251 if (!ret) { 3252 /* The page is mapped successfully, reference consumed. */ 3253 unlock_page(page); 3254 return true; 3255 } 3256 } 3257 3258 if (pmd_none(*vmf->pmd)) 3259 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3260 3261 /* See comment in handle_pte_fault() */ 3262 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3263 unlock_page(page); 3264 put_page(page); 3265 return true; 3266 } 3267 3268 return false; 3269 } 3270 3271 static struct folio *next_uptodate_page(struct folio *folio, 3272 struct address_space *mapping, 3273 struct xa_state *xas, pgoff_t end_pgoff) 3274 { 3275 unsigned long max_idx; 3276 3277 do { 3278 if (!folio) 3279 return NULL; 3280 if (xas_retry(xas, folio)) 3281 continue; 3282 if (xa_is_value(folio)) 3283 continue; 3284 if (folio_test_locked(folio)) 3285 continue; 3286 if (!folio_try_get_rcu(folio)) 3287 continue; 3288 /* Has the page moved or been split? */ 3289 if (unlikely(folio != xas_reload(xas))) 3290 goto skip; 3291 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3292 goto skip; 3293 if (!folio_trylock(folio)) 3294 goto skip; 3295 if (folio->mapping != mapping) 3296 goto unlock; 3297 if (!folio_test_uptodate(folio)) 3298 goto unlock; 3299 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3300 if (xas->xa_index >= max_idx) 3301 goto unlock; 3302 return folio; 3303 unlock: 3304 folio_unlock(folio); 3305 skip: 3306 folio_put(folio); 3307 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3308 3309 return NULL; 3310 } 3311 3312 static inline struct folio *first_map_page(struct address_space *mapping, 3313 struct xa_state *xas, 3314 pgoff_t end_pgoff) 3315 { 3316 return next_uptodate_page(xas_find(xas, end_pgoff), 3317 mapping, xas, end_pgoff); 3318 } 3319 3320 static inline struct folio *next_map_page(struct address_space *mapping, 3321 struct xa_state *xas, 3322 pgoff_t end_pgoff) 3323 { 3324 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3325 mapping, xas, end_pgoff); 3326 } 3327 3328 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3329 pgoff_t start_pgoff, pgoff_t end_pgoff) 3330 { 3331 struct vm_area_struct *vma = vmf->vma; 3332 struct file *file = vma->vm_file; 3333 struct address_space *mapping = file->f_mapping; 3334 pgoff_t last_pgoff = start_pgoff; 3335 unsigned long addr; 3336 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3337 struct folio *folio; 3338 struct page *page; 3339 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3340 vm_fault_t ret = 0; 3341 3342 rcu_read_lock(); 3343 folio = first_map_page(mapping, &xas, end_pgoff); 3344 if (!folio) 3345 goto out; 3346 3347 if (filemap_map_pmd(vmf, &folio->page)) { 3348 ret = VM_FAULT_NOPAGE; 3349 goto out; 3350 } 3351 3352 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3354 do { 3355 again: 3356 page = folio_file_page(folio, xas.xa_index); 3357 if (PageHWPoison(page)) 3358 goto unlock; 3359 3360 if (mmap_miss > 0) 3361 mmap_miss--; 3362 3363 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3364 vmf->pte += xas.xa_index - last_pgoff; 3365 last_pgoff = xas.xa_index; 3366 3367 /* 3368 * NOTE: If there're PTE markers, we'll leave them to be 3369 * handled in the specific fault path, and it'll prohibit the 3370 * fault-around logic. 3371 */ 3372 if (!pte_none(*vmf->pte)) 3373 goto unlock; 3374 3375 /* We're about to handle the fault */ 3376 if (vmf->address == addr) 3377 ret = VM_FAULT_NOPAGE; 3378 3379 do_set_pte(vmf, page, addr); 3380 /* no need to invalidate: a not-present page won't be cached */ 3381 update_mmu_cache(vma, addr, vmf->pte); 3382 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3383 xas.xa_index++; 3384 folio_ref_inc(folio); 3385 goto again; 3386 } 3387 folio_unlock(folio); 3388 continue; 3389 unlock: 3390 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3391 xas.xa_index++; 3392 goto again; 3393 } 3394 folio_unlock(folio); 3395 folio_put(folio); 3396 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3397 pte_unmap_unlock(vmf->pte, vmf->ptl); 3398 out: 3399 rcu_read_unlock(); 3400 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3401 return ret; 3402 } 3403 EXPORT_SYMBOL(filemap_map_pages); 3404 3405 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3406 { 3407 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3408 struct folio *folio = page_folio(vmf->page); 3409 vm_fault_t ret = VM_FAULT_LOCKED; 3410 3411 sb_start_pagefault(mapping->host->i_sb); 3412 file_update_time(vmf->vma->vm_file); 3413 folio_lock(folio); 3414 if (folio->mapping != mapping) { 3415 folio_unlock(folio); 3416 ret = VM_FAULT_NOPAGE; 3417 goto out; 3418 } 3419 /* 3420 * We mark the folio dirty already here so that when freeze is in 3421 * progress, we are guaranteed that writeback during freezing will 3422 * see the dirty folio and writeprotect it again. 3423 */ 3424 folio_mark_dirty(folio); 3425 folio_wait_stable(folio); 3426 out: 3427 sb_end_pagefault(mapping->host->i_sb); 3428 return ret; 3429 } 3430 3431 const struct vm_operations_struct generic_file_vm_ops = { 3432 .fault = filemap_fault, 3433 .map_pages = filemap_map_pages, 3434 .page_mkwrite = filemap_page_mkwrite, 3435 }; 3436 3437 /* This is used for a general mmap of a disk file */ 3438 3439 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3440 { 3441 struct address_space *mapping = file->f_mapping; 3442 3443 if (!mapping->a_ops->read_folio) 3444 return -ENOEXEC; 3445 file_accessed(file); 3446 vma->vm_ops = &generic_file_vm_ops; 3447 return 0; 3448 } 3449 3450 /* 3451 * This is for filesystems which do not implement ->writepage. 3452 */ 3453 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3454 { 3455 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3456 return -EINVAL; 3457 return generic_file_mmap(file, vma); 3458 } 3459 #else 3460 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3461 { 3462 return VM_FAULT_SIGBUS; 3463 } 3464 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3465 { 3466 return -ENOSYS; 3467 } 3468 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3469 { 3470 return -ENOSYS; 3471 } 3472 #endif /* CONFIG_MMU */ 3473 3474 EXPORT_SYMBOL(filemap_page_mkwrite); 3475 EXPORT_SYMBOL(generic_file_mmap); 3476 EXPORT_SYMBOL(generic_file_readonly_mmap); 3477 3478 static struct folio *do_read_cache_folio(struct address_space *mapping, 3479 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3480 { 3481 struct folio *folio; 3482 int err; 3483 3484 if (!filler) 3485 filler = mapping->a_ops->read_folio; 3486 repeat: 3487 folio = filemap_get_folio(mapping, index); 3488 if (!folio) { 3489 folio = filemap_alloc_folio(gfp, 0); 3490 if (!folio) 3491 return ERR_PTR(-ENOMEM); 3492 err = filemap_add_folio(mapping, folio, index, gfp); 3493 if (unlikely(err)) { 3494 folio_put(folio); 3495 if (err == -EEXIST) 3496 goto repeat; 3497 /* Presumably ENOMEM for xarray node */ 3498 return ERR_PTR(err); 3499 } 3500 3501 goto filler; 3502 } 3503 if (folio_test_uptodate(folio)) 3504 goto out; 3505 3506 if (!folio_trylock(folio)) { 3507 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3508 goto repeat; 3509 } 3510 3511 /* Folio was truncated from mapping */ 3512 if (!folio->mapping) { 3513 folio_unlock(folio); 3514 folio_put(folio); 3515 goto repeat; 3516 } 3517 3518 /* Someone else locked and filled the page in a very small window */ 3519 if (folio_test_uptodate(folio)) { 3520 folio_unlock(folio); 3521 goto out; 3522 } 3523 3524 filler: 3525 err = filemap_read_folio(file, filler, folio); 3526 if (err) { 3527 folio_put(folio); 3528 if (err == AOP_TRUNCATED_PAGE) 3529 goto repeat; 3530 return ERR_PTR(err); 3531 } 3532 3533 out: 3534 folio_mark_accessed(folio); 3535 return folio; 3536 } 3537 3538 /** 3539 * read_cache_folio - Read into page cache, fill it if needed. 3540 * @mapping: The address_space to read from. 3541 * @index: The index to read. 3542 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3543 * @file: Passed to filler function, may be NULL if not required. 3544 * 3545 * Read one page into the page cache. If it succeeds, the folio returned 3546 * will contain @index, but it may not be the first page of the folio. 3547 * 3548 * If the filler function returns an error, it will be returned to the 3549 * caller. 3550 * 3551 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3552 * Return: An uptodate folio on success, ERR_PTR() on failure. 3553 */ 3554 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3555 filler_t filler, struct file *file) 3556 { 3557 return do_read_cache_folio(mapping, index, filler, file, 3558 mapping_gfp_mask(mapping)); 3559 } 3560 EXPORT_SYMBOL(read_cache_folio); 3561 3562 static struct page *do_read_cache_page(struct address_space *mapping, 3563 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3564 { 3565 struct folio *folio; 3566 3567 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3568 if (IS_ERR(folio)) 3569 return &folio->page; 3570 return folio_file_page(folio, index); 3571 } 3572 3573 struct page *read_cache_page(struct address_space *mapping, 3574 pgoff_t index, filler_t *filler, struct file *file) 3575 { 3576 return do_read_cache_page(mapping, index, filler, file, 3577 mapping_gfp_mask(mapping)); 3578 } 3579 EXPORT_SYMBOL(read_cache_page); 3580 3581 /** 3582 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3583 * @mapping: the page's address_space 3584 * @index: the page index 3585 * @gfp: the page allocator flags to use if allocating 3586 * 3587 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3588 * any new page allocations done using the specified allocation flags. 3589 * 3590 * If the page does not get brought uptodate, return -EIO. 3591 * 3592 * The function expects mapping->invalidate_lock to be already held. 3593 * 3594 * Return: up to date page on success, ERR_PTR() on failure. 3595 */ 3596 struct page *read_cache_page_gfp(struct address_space *mapping, 3597 pgoff_t index, 3598 gfp_t gfp) 3599 { 3600 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3601 } 3602 EXPORT_SYMBOL(read_cache_page_gfp); 3603 3604 /* 3605 * Warn about a page cache invalidation failure during a direct I/O write. 3606 */ 3607 void dio_warn_stale_pagecache(struct file *filp) 3608 { 3609 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3610 char pathname[128]; 3611 char *path; 3612 3613 errseq_set(&filp->f_mapping->wb_err, -EIO); 3614 if (__ratelimit(&_rs)) { 3615 path = file_path(filp, pathname, sizeof(pathname)); 3616 if (IS_ERR(path)) 3617 path = "(unknown)"; 3618 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3619 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3620 current->comm); 3621 } 3622 } 3623 3624 ssize_t 3625 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3626 { 3627 struct file *file = iocb->ki_filp; 3628 struct address_space *mapping = file->f_mapping; 3629 struct inode *inode = mapping->host; 3630 loff_t pos = iocb->ki_pos; 3631 ssize_t written; 3632 size_t write_len; 3633 pgoff_t end; 3634 3635 write_len = iov_iter_count(from); 3636 end = (pos + write_len - 1) >> PAGE_SHIFT; 3637 3638 if (iocb->ki_flags & IOCB_NOWAIT) { 3639 /* If there are pages to writeback, return */ 3640 if (filemap_range_has_page(file->f_mapping, pos, 3641 pos + write_len - 1)) 3642 return -EAGAIN; 3643 } else { 3644 written = filemap_write_and_wait_range(mapping, pos, 3645 pos + write_len - 1); 3646 if (written) 3647 goto out; 3648 } 3649 3650 /* 3651 * After a write we want buffered reads to be sure to go to disk to get 3652 * the new data. We invalidate clean cached page from the region we're 3653 * about to write. We do this *before* the write so that we can return 3654 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3655 */ 3656 written = invalidate_inode_pages2_range(mapping, 3657 pos >> PAGE_SHIFT, end); 3658 /* 3659 * If a page can not be invalidated, return 0 to fall back 3660 * to buffered write. 3661 */ 3662 if (written) { 3663 if (written == -EBUSY) 3664 return 0; 3665 goto out; 3666 } 3667 3668 written = mapping->a_ops->direct_IO(iocb, from); 3669 3670 /* 3671 * Finally, try again to invalidate clean pages which might have been 3672 * cached by non-direct readahead, or faulted in by get_user_pages() 3673 * if the source of the write was an mmap'ed region of the file 3674 * we're writing. Either one is a pretty crazy thing to do, 3675 * so we don't support it 100%. If this invalidation 3676 * fails, tough, the write still worked... 3677 * 3678 * Most of the time we do not need this since dio_complete() will do 3679 * the invalidation for us. However there are some file systems that 3680 * do not end up with dio_complete() being called, so let's not break 3681 * them by removing it completely. 3682 * 3683 * Noticeable example is a blkdev_direct_IO(). 3684 * 3685 * Skip invalidation for async writes or if mapping has no pages. 3686 */ 3687 if (written > 0 && mapping->nrpages && 3688 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3689 dio_warn_stale_pagecache(file); 3690 3691 if (written > 0) { 3692 pos += written; 3693 write_len -= written; 3694 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3695 i_size_write(inode, pos); 3696 mark_inode_dirty(inode); 3697 } 3698 iocb->ki_pos = pos; 3699 } 3700 if (written != -EIOCBQUEUED) 3701 iov_iter_revert(from, write_len - iov_iter_count(from)); 3702 out: 3703 return written; 3704 } 3705 EXPORT_SYMBOL(generic_file_direct_write); 3706 3707 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3708 { 3709 struct file *file = iocb->ki_filp; 3710 loff_t pos = iocb->ki_pos; 3711 struct address_space *mapping = file->f_mapping; 3712 const struct address_space_operations *a_ops = mapping->a_ops; 3713 long status = 0; 3714 ssize_t written = 0; 3715 3716 do { 3717 struct page *page; 3718 unsigned long offset; /* Offset into pagecache page */ 3719 unsigned long bytes; /* Bytes to write to page */ 3720 size_t copied; /* Bytes copied from user */ 3721 void *fsdata; 3722 3723 offset = (pos & (PAGE_SIZE - 1)); 3724 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3725 iov_iter_count(i)); 3726 3727 again: 3728 /* 3729 * Bring in the user page that we will copy from _first_. 3730 * Otherwise there's a nasty deadlock on copying from the 3731 * same page as we're writing to, without it being marked 3732 * up-to-date. 3733 */ 3734 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3735 status = -EFAULT; 3736 break; 3737 } 3738 3739 if (fatal_signal_pending(current)) { 3740 status = -EINTR; 3741 break; 3742 } 3743 3744 status = a_ops->write_begin(file, mapping, pos, bytes, 3745 &page, &fsdata); 3746 if (unlikely(status < 0)) 3747 break; 3748 3749 if (mapping_writably_mapped(mapping)) 3750 flush_dcache_page(page); 3751 3752 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3753 flush_dcache_page(page); 3754 3755 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3756 page, fsdata); 3757 if (unlikely(status != copied)) { 3758 iov_iter_revert(i, copied - max(status, 0L)); 3759 if (unlikely(status < 0)) 3760 break; 3761 } 3762 cond_resched(); 3763 3764 if (unlikely(status == 0)) { 3765 /* 3766 * A short copy made ->write_end() reject the 3767 * thing entirely. Might be memory poisoning 3768 * halfway through, might be a race with munmap, 3769 * might be severe memory pressure. 3770 */ 3771 if (copied) 3772 bytes = copied; 3773 goto again; 3774 } 3775 pos += status; 3776 written += status; 3777 3778 balance_dirty_pages_ratelimited(mapping); 3779 } while (iov_iter_count(i)); 3780 3781 return written ? written : status; 3782 } 3783 EXPORT_SYMBOL(generic_perform_write); 3784 3785 /** 3786 * __generic_file_write_iter - write data to a file 3787 * @iocb: IO state structure (file, offset, etc.) 3788 * @from: iov_iter with data to write 3789 * 3790 * This function does all the work needed for actually writing data to a 3791 * file. It does all basic checks, removes SUID from the file, updates 3792 * modification times and calls proper subroutines depending on whether we 3793 * do direct IO or a standard buffered write. 3794 * 3795 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3796 * object which does not need locking at all. 3797 * 3798 * This function does *not* take care of syncing data in case of O_SYNC write. 3799 * A caller has to handle it. This is mainly due to the fact that we want to 3800 * avoid syncing under i_rwsem. 3801 * 3802 * Return: 3803 * * number of bytes written, even for truncated writes 3804 * * negative error code if no data has been written at all 3805 */ 3806 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3807 { 3808 struct file *file = iocb->ki_filp; 3809 struct address_space *mapping = file->f_mapping; 3810 struct inode *inode = mapping->host; 3811 ssize_t written = 0; 3812 ssize_t err; 3813 ssize_t status; 3814 3815 /* We can write back this queue in page reclaim */ 3816 current->backing_dev_info = inode_to_bdi(inode); 3817 err = file_remove_privs(file); 3818 if (err) 3819 goto out; 3820 3821 err = file_update_time(file); 3822 if (err) 3823 goto out; 3824 3825 if (iocb->ki_flags & IOCB_DIRECT) { 3826 loff_t pos, endbyte; 3827 3828 written = generic_file_direct_write(iocb, from); 3829 /* 3830 * If the write stopped short of completing, fall back to 3831 * buffered writes. Some filesystems do this for writes to 3832 * holes, for example. For DAX files, a buffered write will 3833 * not succeed (even if it did, DAX does not handle dirty 3834 * page-cache pages correctly). 3835 */ 3836 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3837 goto out; 3838 3839 pos = iocb->ki_pos; 3840 status = generic_perform_write(iocb, from); 3841 /* 3842 * If generic_perform_write() returned a synchronous error 3843 * then we want to return the number of bytes which were 3844 * direct-written, or the error code if that was zero. Note 3845 * that this differs from normal direct-io semantics, which 3846 * will return -EFOO even if some bytes were written. 3847 */ 3848 if (unlikely(status < 0)) { 3849 err = status; 3850 goto out; 3851 } 3852 /* 3853 * We need to ensure that the page cache pages are written to 3854 * disk and invalidated to preserve the expected O_DIRECT 3855 * semantics. 3856 */ 3857 endbyte = pos + status - 1; 3858 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3859 if (err == 0) { 3860 iocb->ki_pos = endbyte + 1; 3861 written += status; 3862 invalidate_mapping_pages(mapping, 3863 pos >> PAGE_SHIFT, 3864 endbyte >> PAGE_SHIFT); 3865 } else { 3866 /* 3867 * We don't know how much we wrote, so just return 3868 * the number of bytes which were direct-written 3869 */ 3870 } 3871 } else { 3872 written = generic_perform_write(iocb, from); 3873 if (likely(written > 0)) 3874 iocb->ki_pos += written; 3875 } 3876 out: 3877 current->backing_dev_info = NULL; 3878 return written ? written : err; 3879 } 3880 EXPORT_SYMBOL(__generic_file_write_iter); 3881 3882 /** 3883 * generic_file_write_iter - write data to a file 3884 * @iocb: IO state structure 3885 * @from: iov_iter with data to write 3886 * 3887 * This is a wrapper around __generic_file_write_iter() to be used by most 3888 * filesystems. It takes care of syncing the file in case of O_SYNC file 3889 * and acquires i_rwsem as needed. 3890 * Return: 3891 * * negative error code if no data has been written at all of 3892 * vfs_fsync_range() failed for a synchronous write 3893 * * number of bytes written, even for truncated writes 3894 */ 3895 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3896 { 3897 struct file *file = iocb->ki_filp; 3898 struct inode *inode = file->f_mapping->host; 3899 ssize_t ret; 3900 3901 inode_lock(inode); 3902 ret = generic_write_checks(iocb, from); 3903 if (ret > 0) 3904 ret = __generic_file_write_iter(iocb, from); 3905 inode_unlock(inode); 3906 3907 if (ret > 0) 3908 ret = generic_write_sync(iocb, ret); 3909 return ret; 3910 } 3911 EXPORT_SYMBOL(generic_file_write_iter); 3912 3913 /** 3914 * filemap_release_folio() - Release fs-specific metadata on a folio. 3915 * @folio: The folio which the kernel is trying to free. 3916 * @gfp: Memory allocation flags (and I/O mode). 3917 * 3918 * The address_space is trying to release any data attached to a folio 3919 * (presumably at folio->private). 3920 * 3921 * This will also be called if the private_2 flag is set on a page, 3922 * indicating that the folio has other metadata associated with it. 3923 * 3924 * The @gfp argument specifies whether I/O may be performed to release 3925 * this page (__GFP_IO), and whether the call may block 3926 * (__GFP_RECLAIM & __GFP_FS). 3927 * 3928 * Return: %true if the release was successful, otherwise %false. 3929 */ 3930 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3931 { 3932 struct address_space * const mapping = folio->mapping; 3933 3934 BUG_ON(!folio_test_locked(folio)); 3935 if (folio_test_writeback(folio)) 3936 return false; 3937 3938 if (mapping && mapping->a_ops->release_folio) 3939 return mapping->a_ops->release_folio(folio, gfp); 3940 return try_to_free_buffers(folio); 3941 } 3942 EXPORT_SYMBOL(filemap_release_folio); 3943