xref: /openbmc/linux/mm/filemap.c (revision cb325ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct folio *folio, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, folio->index);
128 	long nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!folio_test_hugetlb(folio)) {
134 		xas_set_order(&xas, folio->index, folio_order(folio));
135 		nr = folio_nr_pages(folio);
136 	}
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		int mapcount;
156 
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		mapcount = page_mapcount(&folio->page);
164 		if (mapping_exiting(mapping) &&
165 		    folio_ref_count(folio) >= mapcount + 2) {
166 			/*
167 			 * All vmas have already been torn down, so it's
168 			 * a good bet that actually the folio is unmapped,
169 			 * and we'd prefer not to leak it: if we're wrong,
170 			 * some other bad page check should catch it later.
171 			 */
172 			page_mapcount_reset(&folio->page);
173 			folio_ref_sub(folio, mapcount);
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data.
197 	 *
198 	 * This fixes dirty accounting after removing the folio entirely
199 	 * but leaves the dirty flag set: it has no effect for truncated
200 	 * folio and anyway will be cleared before returning folio to
201 	 * buddy allocator.
202 	 */
203 	if (WARN_ON_ONCE(folio_test_dirty(folio)))
204 		folio_account_cleaned(folio, mapping,
205 					inode_to_wb(mapping->host));
206 }
207 
208 /*
209  * Delete a page from the page cache and free it. Caller has to make
210  * sure the page is locked and that nobody else uses it - or that usage
211  * is safe.  The caller must hold the i_pages lock.
212  */
213 void __filemap_remove_folio(struct folio *folio, void *shadow)
214 {
215 	struct address_space *mapping = folio->mapping;
216 
217 	trace_mm_filemap_delete_from_page_cache(folio);
218 	filemap_unaccount_folio(mapping, folio);
219 	page_cache_delete(mapping, folio, shadow);
220 }
221 
222 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
223 {
224 	void (*freepage)(struct page *);
225 	int refs = 1;
226 
227 	freepage = mapping->a_ops->freepage;
228 	if (freepage)
229 		freepage(&folio->page);
230 
231 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
232 		refs = folio_nr_pages(folio);
233 	folio_put_refs(folio, refs);
234 }
235 
236 /**
237  * filemap_remove_folio - Remove folio from page cache.
238  * @folio: The folio.
239  *
240  * This must be called only on folios that are locked and have been
241  * verified to be in the page cache.  It will never put the folio into
242  * the free list because the caller has a reference on the page.
243  */
244 void filemap_remove_folio(struct folio *folio)
245 {
246 	struct address_space *mapping = folio->mapping;
247 
248 	BUG_ON(!folio_test_locked(folio));
249 	spin_lock(&mapping->host->i_lock);
250 	xa_lock_irq(&mapping->i_pages);
251 	__filemap_remove_folio(folio, NULL);
252 	xa_unlock_irq(&mapping->i_pages);
253 	if (mapping_shrinkable(mapping))
254 		inode_add_lru(mapping->host);
255 	spin_unlock(&mapping->host->i_lock);
256 
257 	filemap_free_folio(mapping, folio);
258 }
259 
260 /*
261  * page_cache_delete_batch - delete several folios from page cache
262  * @mapping: the mapping to which folios belong
263  * @fbatch: batch of folios to delete
264  *
265  * The function walks over mapping->i_pages and removes folios passed in
266  * @fbatch from the mapping. The function expects @fbatch to be sorted
267  * by page index and is optimised for it to be dense.
268  * It tolerates holes in @fbatch (mapping entries at those indices are not
269  * modified).
270  *
271  * The function expects the i_pages lock to be held.
272  */
273 static void page_cache_delete_batch(struct address_space *mapping,
274 			     struct folio_batch *fbatch)
275 {
276 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
277 	long total_pages = 0;
278 	int i = 0;
279 	struct folio *folio;
280 
281 	mapping_set_update(&xas, mapping);
282 	xas_for_each(&xas, folio, ULONG_MAX) {
283 		if (i >= folio_batch_count(fbatch))
284 			break;
285 
286 		/* A swap/dax/shadow entry got inserted? Skip it. */
287 		if (xa_is_value(folio))
288 			continue;
289 		/*
290 		 * A page got inserted in our range? Skip it. We have our
291 		 * pages locked so they are protected from being removed.
292 		 * If we see a page whose index is higher than ours, it
293 		 * means our page has been removed, which shouldn't be
294 		 * possible because we're holding the PageLock.
295 		 */
296 		if (folio != fbatch->folios[i]) {
297 			VM_BUG_ON_FOLIO(folio->index >
298 					fbatch->folios[i]->index, folio);
299 			continue;
300 		}
301 
302 		WARN_ON_ONCE(!folio_test_locked(folio));
303 
304 		folio->mapping = NULL;
305 		/* Leave folio->index set: truncation lookup relies on it */
306 
307 		i++;
308 		xas_store(&xas, NULL);
309 		total_pages += folio_nr_pages(folio);
310 	}
311 	mapping->nrpages -= total_pages;
312 }
313 
314 void delete_from_page_cache_batch(struct address_space *mapping,
315 				  struct folio_batch *fbatch)
316 {
317 	int i;
318 
319 	if (!folio_batch_count(fbatch))
320 		return;
321 
322 	spin_lock(&mapping->host->i_lock);
323 	xa_lock_irq(&mapping->i_pages);
324 	for (i = 0; i < folio_batch_count(fbatch); i++) {
325 		struct folio *folio = fbatch->folios[i];
326 
327 		trace_mm_filemap_delete_from_page_cache(folio);
328 		filemap_unaccount_folio(mapping, folio);
329 	}
330 	page_cache_delete_batch(mapping, fbatch);
331 	xa_unlock_irq(&mapping->i_pages);
332 	if (mapping_shrinkable(mapping))
333 		inode_add_lru(mapping->host);
334 	spin_unlock(&mapping->host->i_lock);
335 
336 	for (i = 0; i < folio_batch_count(fbatch); i++)
337 		filemap_free_folio(mapping, fbatch->folios[i]);
338 }
339 
340 int filemap_check_errors(struct address_space *mapping)
341 {
342 	int ret = 0;
343 	/* Check for outstanding write errors */
344 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
345 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
346 		ret = -ENOSPC;
347 	if (test_bit(AS_EIO, &mapping->flags) &&
348 	    test_and_clear_bit(AS_EIO, &mapping->flags))
349 		ret = -EIO;
350 	return ret;
351 }
352 EXPORT_SYMBOL(filemap_check_errors);
353 
354 static int filemap_check_and_keep_errors(struct address_space *mapping)
355 {
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_EIO, &mapping->flags))
358 		return -EIO;
359 	if (test_bit(AS_ENOSPC, &mapping->flags))
360 		return -ENOSPC;
361 	return 0;
362 }
363 
364 /**
365  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
366  * @mapping:	address space structure to write
367  * @wbc:	the writeback_control controlling the writeout
368  *
369  * Call writepages on the mapping using the provided wbc to control the
370  * writeout.
371  *
372  * Return: %0 on success, negative error code otherwise.
373  */
374 int filemap_fdatawrite_wbc(struct address_space *mapping,
375 			   struct writeback_control *wbc)
376 {
377 	int ret;
378 
379 	if (!mapping_can_writeback(mapping) ||
380 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
381 		return 0;
382 
383 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
384 	ret = do_writepages(mapping, wbc);
385 	wbc_detach_inode(wbc);
386 	return ret;
387 }
388 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
389 
390 /**
391  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
392  * @mapping:	address space structure to write
393  * @start:	offset in bytes where the range starts
394  * @end:	offset in bytes where the range ends (inclusive)
395  * @sync_mode:	enable synchronous operation
396  *
397  * Start writeback against all of a mapping's dirty pages that lie
398  * within the byte offsets <start, end> inclusive.
399  *
400  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
401  * opposed to a regular memory cleansing writeback.  The difference between
402  * these two operations is that if a dirty page/buffer is encountered, it must
403  * be waited upon, and not just skipped over.
404  *
405  * Return: %0 on success, negative error code otherwise.
406  */
407 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 				loff_t end, int sync_mode)
409 {
410 	struct writeback_control wbc = {
411 		.sync_mode = sync_mode,
412 		.nr_to_write = LONG_MAX,
413 		.range_start = start,
414 		.range_end = end,
415 	};
416 
417 	return filemap_fdatawrite_wbc(mapping, &wbc);
418 }
419 
420 static inline int __filemap_fdatawrite(struct address_space *mapping,
421 	int sync_mode)
422 {
423 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
424 }
425 
426 int filemap_fdatawrite(struct address_space *mapping)
427 {
428 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429 }
430 EXPORT_SYMBOL(filemap_fdatawrite);
431 
432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 				loff_t end)
434 {
435 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite_range);
438 
439 /**
440  * filemap_flush - mostly a non-blocking flush
441  * @mapping:	target address_space
442  *
443  * This is a mostly non-blocking flush.  Not suitable for data-integrity
444  * purposes - I/O may not be started against all dirty pages.
445  *
446  * Return: %0 on success, negative error code otherwise.
447  */
448 int filemap_flush(struct address_space *mapping)
449 {
450 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451 }
452 EXPORT_SYMBOL(filemap_flush);
453 
454 /**
455  * filemap_range_has_page - check if a page exists in range.
456  * @mapping:           address space within which to check
457  * @start_byte:        offset in bytes where the range starts
458  * @end_byte:          offset in bytes where the range ends (inclusive)
459  *
460  * Find at least one page in the range supplied, usually used to check if
461  * direct writing in this range will trigger a writeback.
462  *
463  * Return: %true if at least one page exists in the specified range,
464  * %false otherwise.
465  */
466 bool filemap_range_has_page(struct address_space *mapping,
467 			   loff_t start_byte, loff_t end_byte)
468 {
469 	struct page *page;
470 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 	pgoff_t max = end_byte >> PAGE_SHIFT;
472 
473 	if (end_byte < start_byte)
474 		return false;
475 
476 	rcu_read_lock();
477 	for (;;) {
478 		page = xas_find(&xas, max);
479 		if (xas_retry(&xas, page))
480 			continue;
481 		/* Shadow entries don't count */
482 		if (xa_is_value(page))
483 			continue;
484 		/*
485 		 * We don't need to try to pin this page; we're about to
486 		 * release the RCU lock anyway.  It is enough to know that
487 		 * there was a page here recently.
488 		 */
489 		break;
490 	}
491 	rcu_read_unlock();
492 
493 	return page != NULL;
494 }
495 EXPORT_SYMBOL(filemap_range_has_page);
496 
497 static void __filemap_fdatawait_range(struct address_space *mapping,
498 				     loff_t start_byte, loff_t end_byte)
499 {
500 	pgoff_t index = start_byte >> PAGE_SHIFT;
501 	pgoff_t end = end_byte >> PAGE_SHIFT;
502 	struct pagevec pvec;
503 	int nr_pages;
504 
505 	if (end_byte < start_byte)
506 		return;
507 
508 	pagevec_init(&pvec);
509 	while (index <= end) {
510 		unsigned i;
511 
512 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 				end, PAGECACHE_TAG_WRITEBACK);
514 		if (!nr_pages)
515 			break;
516 
517 		for (i = 0; i < nr_pages; i++) {
518 			struct page *page = pvec.pages[i];
519 
520 			wait_on_page_writeback(page);
521 			ClearPageError(page);
522 		}
523 		pagevec_release(&pvec);
524 		cond_resched();
525 	}
526 }
527 
528 /**
529  * filemap_fdatawait_range - wait for writeback to complete
530  * @mapping:		address space structure to wait for
531  * @start_byte:		offset in bytes where the range starts
532  * @end_byte:		offset in bytes where the range ends (inclusive)
533  *
534  * Walk the list of under-writeback pages of the given address space
535  * in the given range and wait for all of them.  Check error status of
536  * the address space and return it.
537  *
538  * Since the error status of the address space is cleared by this function,
539  * callers are responsible for checking the return value and handling and/or
540  * reporting the error.
541  *
542  * Return: error status of the address space.
543  */
544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 			    loff_t end_byte)
546 {
547 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
548 	return filemap_check_errors(mapping);
549 }
550 EXPORT_SYMBOL(filemap_fdatawait_range);
551 
552 /**
553  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554  * @mapping:		address space structure to wait for
555  * @start_byte:		offset in bytes where the range starts
556  * @end_byte:		offset in bytes where the range ends (inclusive)
557  *
558  * Walk the list of under-writeback pages of the given address space in the
559  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
560  * this function does not clear error status of the address space.
561  *
562  * Use this function if callers don't handle errors themselves.  Expected
563  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564  * fsfreeze(8)
565  */
566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 		loff_t start_byte, loff_t end_byte)
568 {
569 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
570 	return filemap_check_and_keep_errors(mapping);
571 }
572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
573 
574 /**
575  * file_fdatawait_range - wait for writeback to complete
576  * @file:		file pointing to address space structure to wait for
577  * @start_byte:		offset in bytes where the range starts
578  * @end_byte:		offset in bytes where the range ends (inclusive)
579  *
580  * Walk the list of under-writeback pages of the address space that file
581  * refers to, in the given range and wait for all of them.  Check error
582  * status of the address space vs. the file->f_wb_err cursor and return it.
583  *
584  * Since the error status of the file is advanced by this function,
585  * callers are responsible for checking the return value and handling and/or
586  * reporting the error.
587  *
588  * Return: error status of the address space vs. the file->f_wb_err cursor.
589  */
590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
591 {
592 	struct address_space *mapping = file->f_mapping;
593 
594 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
595 	return file_check_and_advance_wb_err(file);
596 }
597 EXPORT_SYMBOL(file_fdatawait_range);
598 
599 /**
600  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601  * @mapping: address space structure to wait for
602  *
603  * Walk the list of under-writeback pages of the given address space
604  * and wait for all of them.  Unlike filemap_fdatawait(), this function
605  * does not clear error status of the address space.
606  *
607  * Use this function if callers don't handle errors themselves.  Expected
608  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609  * fsfreeze(8)
610  *
611  * Return: error status of the address space.
612  */
613 int filemap_fdatawait_keep_errors(struct address_space *mapping)
614 {
615 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
616 	return filemap_check_and_keep_errors(mapping);
617 }
618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
619 
620 /* Returns true if writeback might be needed or already in progress. */
621 static bool mapping_needs_writeback(struct address_space *mapping)
622 {
623 	return mapping->nrpages;
624 }
625 
626 bool filemap_range_has_writeback(struct address_space *mapping,
627 				 loff_t start_byte, loff_t end_byte)
628 {
629 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
630 	pgoff_t max = end_byte >> PAGE_SHIFT;
631 	struct page *page;
632 
633 	if (end_byte < start_byte)
634 		return false;
635 
636 	rcu_read_lock();
637 	xas_for_each(&xas, page, max) {
638 		if (xas_retry(&xas, page))
639 			continue;
640 		if (xa_is_value(page))
641 			continue;
642 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
643 			break;
644 	}
645 	rcu_read_unlock();
646 	return page != NULL;
647 }
648 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
649 
650 /**
651  * filemap_write_and_wait_range - write out & wait on a file range
652  * @mapping:	the address_space for the pages
653  * @lstart:	offset in bytes where the range starts
654  * @lend:	offset in bytes where the range ends (inclusive)
655  *
656  * Write out and wait upon file offsets lstart->lend, inclusive.
657  *
658  * Note that @lend is inclusive (describes the last byte to be written) so
659  * that this function can be used to write to the very end-of-file (end = -1).
660  *
661  * Return: error status of the address space.
662  */
663 int filemap_write_and_wait_range(struct address_space *mapping,
664 				 loff_t lstart, loff_t lend)
665 {
666 	int err = 0;
667 
668 	if (mapping_needs_writeback(mapping)) {
669 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
670 						 WB_SYNC_ALL);
671 		/*
672 		 * Even if the above returned error, the pages may be
673 		 * written partially (e.g. -ENOSPC), so we wait for it.
674 		 * But the -EIO is special case, it may indicate the worst
675 		 * thing (e.g. bug) happened, so we avoid waiting for it.
676 		 */
677 		if (err != -EIO) {
678 			int err2 = filemap_fdatawait_range(mapping,
679 						lstart, lend);
680 			if (!err)
681 				err = err2;
682 		} else {
683 			/* Clear any previously stored errors */
684 			filemap_check_errors(mapping);
685 		}
686 	} else {
687 		err = filemap_check_errors(mapping);
688 	}
689 	return err;
690 }
691 EXPORT_SYMBOL(filemap_write_and_wait_range);
692 
693 void __filemap_set_wb_err(struct address_space *mapping, int err)
694 {
695 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
696 
697 	trace_filemap_set_wb_err(mapping, eseq);
698 }
699 EXPORT_SYMBOL(__filemap_set_wb_err);
700 
701 /**
702  * file_check_and_advance_wb_err - report wb error (if any) that was previously
703  * 				   and advance wb_err to current one
704  * @file: struct file on which the error is being reported
705  *
706  * When userland calls fsync (or something like nfsd does the equivalent), we
707  * want to report any writeback errors that occurred since the last fsync (or
708  * since the file was opened if there haven't been any).
709  *
710  * Grab the wb_err from the mapping. If it matches what we have in the file,
711  * then just quickly return 0. The file is all caught up.
712  *
713  * If it doesn't match, then take the mapping value, set the "seen" flag in
714  * it and try to swap it into place. If it works, or another task beat us
715  * to it with the new value, then update the f_wb_err and return the error
716  * portion. The error at this point must be reported via proper channels
717  * (a'la fsync, or NFS COMMIT operation, etc.).
718  *
719  * While we handle mapping->wb_err with atomic operations, the f_wb_err
720  * value is protected by the f_lock since we must ensure that it reflects
721  * the latest value swapped in for this file descriptor.
722  *
723  * Return: %0 on success, negative error code otherwise.
724  */
725 int file_check_and_advance_wb_err(struct file *file)
726 {
727 	int err = 0;
728 	errseq_t old = READ_ONCE(file->f_wb_err);
729 	struct address_space *mapping = file->f_mapping;
730 
731 	/* Locklessly handle the common case where nothing has changed */
732 	if (errseq_check(&mapping->wb_err, old)) {
733 		/* Something changed, must use slow path */
734 		spin_lock(&file->f_lock);
735 		old = file->f_wb_err;
736 		err = errseq_check_and_advance(&mapping->wb_err,
737 						&file->f_wb_err);
738 		trace_file_check_and_advance_wb_err(file, old);
739 		spin_unlock(&file->f_lock);
740 	}
741 
742 	/*
743 	 * We're mostly using this function as a drop in replacement for
744 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 	 * that the legacy code would have had on these flags.
746 	 */
747 	clear_bit(AS_EIO, &mapping->flags);
748 	clear_bit(AS_ENOSPC, &mapping->flags);
749 	return err;
750 }
751 EXPORT_SYMBOL(file_check_and_advance_wb_err);
752 
753 /**
754  * file_write_and_wait_range - write out & wait on a file range
755  * @file:	file pointing to address_space with pages
756  * @lstart:	offset in bytes where the range starts
757  * @lend:	offset in bytes where the range ends (inclusive)
758  *
759  * Write out and wait upon file offsets lstart->lend, inclusive.
760  *
761  * Note that @lend is inclusive (describes the last byte to be written) so
762  * that this function can be used to write to the very end-of-file (end = -1).
763  *
764  * After writing out and waiting on the data, we check and advance the
765  * f_wb_err cursor to the latest value, and return any errors detected there.
766  *
767  * Return: %0 on success, negative error code otherwise.
768  */
769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770 {
771 	int err = 0, err2;
772 	struct address_space *mapping = file->f_mapping;
773 
774 	if (mapping_needs_writeback(mapping)) {
775 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 						 WB_SYNC_ALL);
777 		/* See comment of filemap_write_and_wait() */
778 		if (err != -EIO)
779 			__filemap_fdatawait_range(mapping, lstart, lend);
780 	}
781 	err2 = file_check_and_advance_wb_err(file);
782 	if (!err)
783 		err = err2;
784 	return err;
785 }
786 EXPORT_SYMBOL(file_write_and_wait_range);
787 
788 /**
789  * replace_page_cache_page - replace a pagecache page with a new one
790  * @old:	page to be replaced
791  * @new:	page to replace with
792  *
793  * This function replaces a page in the pagecache with a new one.  On
794  * success it acquires the pagecache reference for the new page and
795  * drops it for the old page.  Both the old and new pages must be
796  * locked.  This function does not add the new page to the LRU, the
797  * caller must do that.
798  *
799  * The remove + add is atomic.  This function cannot fail.
800  */
801 void replace_page_cache_page(struct page *old, struct page *new)
802 {
803 	struct folio *fold = page_folio(old);
804 	struct folio *fnew = page_folio(new);
805 	struct address_space *mapping = old->mapping;
806 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
807 	pgoff_t offset = old->index;
808 	XA_STATE(xas, &mapping->i_pages, offset);
809 
810 	VM_BUG_ON_PAGE(!PageLocked(old), old);
811 	VM_BUG_ON_PAGE(!PageLocked(new), new);
812 	VM_BUG_ON_PAGE(new->mapping, new);
813 
814 	get_page(new);
815 	new->mapping = mapping;
816 	new->index = offset;
817 
818 	mem_cgroup_migrate(fold, fnew);
819 
820 	xas_lock_irq(&xas);
821 	xas_store(&xas, new);
822 
823 	old->mapping = NULL;
824 	/* hugetlb pages do not participate in page cache accounting. */
825 	if (!PageHuge(old))
826 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
827 	if (!PageHuge(new))
828 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
829 	if (PageSwapBacked(old))
830 		__dec_lruvec_page_state(old, NR_SHMEM);
831 	if (PageSwapBacked(new))
832 		__inc_lruvec_page_state(new, NR_SHMEM);
833 	xas_unlock_irq(&xas);
834 	if (freepage)
835 		freepage(old);
836 	put_page(old);
837 }
838 EXPORT_SYMBOL_GPL(replace_page_cache_page);
839 
840 noinline int __filemap_add_folio(struct address_space *mapping,
841 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
842 {
843 	XA_STATE(xas, &mapping->i_pages, index);
844 	int huge = folio_test_hugetlb(folio);
845 	int error;
846 	bool charged = false;
847 
848 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
850 	mapping_set_update(&xas, mapping);
851 
852 	folio_get(folio);
853 	folio->mapping = mapping;
854 	folio->index = index;
855 
856 	if (!huge) {
857 		error = mem_cgroup_charge(folio, NULL, gfp);
858 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 		if (error)
860 			goto error;
861 		charged = true;
862 	}
863 
864 	gfp &= GFP_RECLAIM_MASK;
865 
866 	do {
867 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
868 		void *entry, *old = NULL;
869 
870 		if (order > folio_order(folio))
871 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
872 					order, gfp);
873 		xas_lock_irq(&xas);
874 		xas_for_each_conflict(&xas, entry) {
875 			old = entry;
876 			if (!xa_is_value(entry)) {
877 				xas_set_err(&xas, -EEXIST);
878 				goto unlock;
879 			}
880 		}
881 
882 		if (old) {
883 			if (shadowp)
884 				*shadowp = old;
885 			/* entry may have been split before we acquired lock */
886 			order = xa_get_order(xas.xa, xas.xa_index);
887 			if (order > folio_order(folio)) {
888 				xas_split(&xas, old, order);
889 				xas_reset(&xas);
890 			}
891 		}
892 
893 		xas_store(&xas, folio);
894 		if (xas_error(&xas))
895 			goto unlock;
896 
897 		mapping->nrpages++;
898 
899 		/* hugetlb pages do not participate in page cache accounting */
900 		if (!huge)
901 			__lruvec_stat_add_folio(folio, NR_FILE_PAGES);
902 unlock:
903 		xas_unlock_irq(&xas);
904 	} while (xas_nomem(&xas, gfp));
905 
906 	if (xas_error(&xas)) {
907 		error = xas_error(&xas);
908 		if (charged)
909 			mem_cgroup_uncharge(folio);
910 		goto error;
911 	}
912 
913 	trace_mm_filemap_add_to_page_cache(folio);
914 	return 0;
915 error:
916 	folio->mapping = NULL;
917 	/* Leave page->index set: truncation relies upon it */
918 	folio_put(folio);
919 	return error;
920 }
921 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
922 
923 /**
924  * add_to_page_cache_locked - add a locked page to the pagecache
925  * @page:	page to add
926  * @mapping:	the page's address_space
927  * @offset:	page index
928  * @gfp_mask:	page allocation mode
929  *
930  * This function is used to add a page to the pagecache. It must be locked.
931  * This function does not add the page to the LRU.  The caller must do that.
932  *
933  * Return: %0 on success, negative error code otherwise.
934  */
935 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
936 		pgoff_t offset, gfp_t gfp_mask)
937 {
938 	return __filemap_add_folio(mapping, page_folio(page), offset,
939 					  gfp_mask, NULL);
940 }
941 EXPORT_SYMBOL(add_to_page_cache_locked);
942 
943 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
944 				pgoff_t index, gfp_t gfp)
945 {
946 	void *shadow = NULL;
947 	int ret;
948 
949 	__folio_set_locked(folio);
950 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
951 	if (unlikely(ret))
952 		__folio_clear_locked(folio);
953 	else {
954 		/*
955 		 * The folio might have been evicted from cache only
956 		 * recently, in which case it should be activated like
957 		 * any other repeatedly accessed folio.
958 		 * The exception is folios getting rewritten; evicting other
959 		 * data from the working set, only to cache data that will
960 		 * get overwritten with something else, is a waste of memory.
961 		 */
962 		WARN_ON_ONCE(folio_test_active(folio));
963 		if (!(gfp & __GFP_WRITE) && shadow)
964 			workingset_refault(folio, shadow);
965 		folio_add_lru(folio);
966 	}
967 	return ret;
968 }
969 EXPORT_SYMBOL_GPL(filemap_add_folio);
970 
971 #ifdef CONFIG_NUMA
972 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
973 {
974 	int n;
975 	struct folio *folio;
976 
977 	if (cpuset_do_page_mem_spread()) {
978 		unsigned int cpuset_mems_cookie;
979 		do {
980 			cpuset_mems_cookie = read_mems_allowed_begin();
981 			n = cpuset_mem_spread_node();
982 			folio = __folio_alloc_node(gfp, order, n);
983 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
984 
985 		return folio;
986 	}
987 	return folio_alloc(gfp, order);
988 }
989 EXPORT_SYMBOL(filemap_alloc_folio);
990 #endif
991 
992 /*
993  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
994  *
995  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
996  *
997  * @mapping1: the first mapping to lock
998  * @mapping2: the second mapping to lock
999  */
1000 void filemap_invalidate_lock_two(struct address_space *mapping1,
1001 				 struct address_space *mapping2)
1002 {
1003 	if (mapping1 > mapping2)
1004 		swap(mapping1, mapping2);
1005 	if (mapping1)
1006 		down_write(&mapping1->invalidate_lock);
1007 	if (mapping2 && mapping1 != mapping2)
1008 		down_write_nested(&mapping2->invalidate_lock, 1);
1009 }
1010 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1011 
1012 /*
1013  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1014  *
1015  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1016  *
1017  * @mapping1: the first mapping to unlock
1018  * @mapping2: the second mapping to unlock
1019  */
1020 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1021 				   struct address_space *mapping2)
1022 {
1023 	if (mapping1)
1024 		up_write(&mapping1->invalidate_lock);
1025 	if (mapping2 && mapping1 != mapping2)
1026 		up_write(&mapping2->invalidate_lock);
1027 }
1028 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1029 
1030 /*
1031  * In order to wait for pages to become available there must be
1032  * waitqueues associated with pages. By using a hash table of
1033  * waitqueues where the bucket discipline is to maintain all
1034  * waiters on the same queue and wake all when any of the pages
1035  * become available, and for the woken contexts to check to be
1036  * sure the appropriate page became available, this saves space
1037  * at a cost of "thundering herd" phenomena during rare hash
1038  * collisions.
1039  */
1040 #define PAGE_WAIT_TABLE_BITS 8
1041 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1042 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1043 
1044 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1045 {
1046 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1047 }
1048 
1049 void __init pagecache_init(void)
1050 {
1051 	int i;
1052 
1053 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1054 		init_waitqueue_head(&folio_wait_table[i]);
1055 
1056 	page_writeback_init();
1057 
1058 	/*
1059 	 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date,
1060 	 * and splice's page_cache_pipe_buf_confirm() needs to see that.
1061 	 */
1062 	SetPageUptodate(ZERO_PAGE(0));
1063 }
1064 
1065 /*
1066  * The page wait code treats the "wait->flags" somewhat unusually, because
1067  * we have multiple different kinds of waits, not just the usual "exclusive"
1068  * one.
1069  *
1070  * We have:
1071  *
1072  *  (a) no special bits set:
1073  *
1074  *	We're just waiting for the bit to be released, and when a waker
1075  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1076  *	and remove it from the wait queue.
1077  *
1078  *	Simple and straightforward.
1079  *
1080  *  (b) WQ_FLAG_EXCLUSIVE:
1081  *
1082  *	The waiter is waiting to get the lock, and only one waiter should
1083  *	be woken up to avoid any thundering herd behavior. We'll set the
1084  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1085  *
1086  *	This is the traditional exclusive wait.
1087  *
1088  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1089  *
1090  *	The waiter is waiting to get the bit, and additionally wants the
1091  *	lock to be transferred to it for fair lock behavior. If the lock
1092  *	cannot be taken, we stop walking the wait queue without waking
1093  *	the waiter.
1094  *
1095  *	This is the "fair lock handoff" case, and in addition to setting
1096  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1097  *	that it now has the lock.
1098  */
1099 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1100 {
1101 	unsigned int flags;
1102 	struct wait_page_key *key = arg;
1103 	struct wait_page_queue *wait_page
1104 		= container_of(wait, struct wait_page_queue, wait);
1105 
1106 	if (!wake_page_match(wait_page, key))
1107 		return 0;
1108 
1109 	/*
1110 	 * If it's a lock handoff wait, we get the bit for it, and
1111 	 * stop walking (and do not wake it up) if we can't.
1112 	 */
1113 	flags = wait->flags;
1114 	if (flags & WQ_FLAG_EXCLUSIVE) {
1115 		if (test_bit(key->bit_nr, &key->folio->flags))
1116 			return -1;
1117 		if (flags & WQ_FLAG_CUSTOM) {
1118 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1119 				return -1;
1120 			flags |= WQ_FLAG_DONE;
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * We are holding the wait-queue lock, but the waiter that
1126 	 * is waiting for this will be checking the flags without
1127 	 * any locking.
1128 	 *
1129 	 * So update the flags atomically, and wake up the waiter
1130 	 * afterwards to avoid any races. This store-release pairs
1131 	 * with the load-acquire in folio_wait_bit_common().
1132 	 */
1133 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1134 	wake_up_state(wait->private, mode);
1135 
1136 	/*
1137 	 * Ok, we have successfully done what we're waiting for,
1138 	 * and we can unconditionally remove the wait entry.
1139 	 *
1140 	 * Note that this pairs with the "finish_wait()" in the
1141 	 * waiter, and has to be the absolute last thing we do.
1142 	 * After this list_del_init(&wait->entry) the wait entry
1143 	 * might be de-allocated and the process might even have
1144 	 * exited.
1145 	 */
1146 	list_del_init_careful(&wait->entry);
1147 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1148 }
1149 
1150 static void folio_wake_bit(struct folio *folio, int bit_nr)
1151 {
1152 	wait_queue_head_t *q = folio_waitqueue(folio);
1153 	struct wait_page_key key;
1154 	unsigned long flags;
1155 	wait_queue_entry_t bookmark;
1156 
1157 	key.folio = folio;
1158 	key.bit_nr = bit_nr;
1159 	key.page_match = 0;
1160 
1161 	bookmark.flags = 0;
1162 	bookmark.private = NULL;
1163 	bookmark.func = NULL;
1164 	INIT_LIST_HEAD(&bookmark.entry);
1165 
1166 	spin_lock_irqsave(&q->lock, flags);
1167 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1168 
1169 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1170 		/*
1171 		 * Take a breather from holding the lock,
1172 		 * allow pages that finish wake up asynchronously
1173 		 * to acquire the lock and remove themselves
1174 		 * from wait queue
1175 		 */
1176 		spin_unlock_irqrestore(&q->lock, flags);
1177 		cpu_relax();
1178 		spin_lock_irqsave(&q->lock, flags);
1179 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1180 	}
1181 
1182 	/*
1183 	 * It is possible for other pages to have collided on the waitqueue
1184 	 * hash, so in that case check for a page match. That prevents a long-
1185 	 * term waiter
1186 	 *
1187 	 * It is still possible to miss a case here, when we woke page waiters
1188 	 * and removed them from the waitqueue, but there are still other
1189 	 * page waiters.
1190 	 */
1191 	if (!waitqueue_active(q) || !key.page_match) {
1192 		folio_clear_waiters(folio);
1193 		/*
1194 		 * It's possible to miss clearing Waiters here, when we woke
1195 		 * our page waiters, but the hashed waitqueue has waiters for
1196 		 * other pages on it.
1197 		 *
1198 		 * That's okay, it's a rare case. The next waker will clear it.
1199 		 */
1200 	}
1201 	spin_unlock_irqrestore(&q->lock, flags);
1202 }
1203 
1204 static void folio_wake(struct folio *folio, int bit)
1205 {
1206 	if (!folio_test_waiters(folio))
1207 		return;
1208 	folio_wake_bit(folio, bit);
1209 }
1210 
1211 /*
1212  * A choice of three behaviors for folio_wait_bit_common():
1213  */
1214 enum behavior {
1215 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1216 			 * __folio_lock() waiting on then setting PG_locked.
1217 			 */
1218 	SHARED,		/* Hold ref to page and check the bit when woken, like
1219 			 * folio_wait_writeback() waiting on PG_writeback.
1220 			 */
1221 	DROP,		/* Drop ref to page before wait, no check when woken,
1222 			 * like folio_put_wait_locked() on PG_locked.
1223 			 */
1224 };
1225 
1226 /*
1227  * Attempt to check (or get) the folio flag, and mark us done
1228  * if successful.
1229  */
1230 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1231 					struct wait_queue_entry *wait)
1232 {
1233 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1234 		if (test_and_set_bit(bit_nr, &folio->flags))
1235 			return false;
1236 	} else if (test_bit(bit_nr, &folio->flags))
1237 		return false;
1238 
1239 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1240 	return true;
1241 }
1242 
1243 /* How many times do we accept lock stealing from under a waiter? */
1244 int sysctl_page_lock_unfairness = 5;
1245 
1246 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1247 		int state, enum behavior behavior)
1248 {
1249 	wait_queue_head_t *q = folio_waitqueue(folio);
1250 	int unfairness = sysctl_page_lock_unfairness;
1251 	struct wait_page_queue wait_page;
1252 	wait_queue_entry_t *wait = &wait_page.wait;
1253 	bool thrashing = false;
1254 	bool delayacct = false;
1255 	unsigned long pflags;
1256 
1257 	if (bit_nr == PG_locked &&
1258 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1259 		if (!folio_test_swapbacked(folio)) {
1260 			delayacct_thrashing_start();
1261 			delayacct = true;
1262 		}
1263 		psi_memstall_enter(&pflags);
1264 		thrashing = true;
1265 	}
1266 
1267 	init_wait(wait);
1268 	wait->func = wake_page_function;
1269 	wait_page.folio = folio;
1270 	wait_page.bit_nr = bit_nr;
1271 
1272 repeat:
1273 	wait->flags = 0;
1274 	if (behavior == EXCLUSIVE) {
1275 		wait->flags = WQ_FLAG_EXCLUSIVE;
1276 		if (--unfairness < 0)
1277 			wait->flags |= WQ_FLAG_CUSTOM;
1278 	}
1279 
1280 	/*
1281 	 * Do one last check whether we can get the
1282 	 * page bit synchronously.
1283 	 *
1284 	 * Do the folio_set_waiters() marking before that
1285 	 * to let any waker we _just_ missed know they
1286 	 * need to wake us up (otherwise they'll never
1287 	 * even go to the slow case that looks at the
1288 	 * page queue), and add ourselves to the wait
1289 	 * queue if we need to sleep.
1290 	 *
1291 	 * This part needs to be done under the queue
1292 	 * lock to avoid races.
1293 	 */
1294 	spin_lock_irq(&q->lock);
1295 	folio_set_waiters(folio);
1296 	if (!folio_trylock_flag(folio, bit_nr, wait))
1297 		__add_wait_queue_entry_tail(q, wait);
1298 	spin_unlock_irq(&q->lock);
1299 
1300 	/*
1301 	 * From now on, all the logic will be based on
1302 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1303 	 * see whether the page bit testing has already
1304 	 * been done by the wake function.
1305 	 *
1306 	 * We can drop our reference to the folio.
1307 	 */
1308 	if (behavior == DROP)
1309 		folio_put(folio);
1310 
1311 	/*
1312 	 * Note that until the "finish_wait()", or until
1313 	 * we see the WQ_FLAG_WOKEN flag, we need to
1314 	 * be very careful with the 'wait->flags', because
1315 	 * we may race with a waker that sets them.
1316 	 */
1317 	for (;;) {
1318 		unsigned int flags;
1319 
1320 		set_current_state(state);
1321 
1322 		/* Loop until we've been woken or interrupted */
1323 		flags = smp_load_acquire(&wait->flags);
1324 		if (!(flags & WQ_FLAG_WOKEN)) {
1325 			if (signal_pending_state(state, current))
1326 				break;
1327 
1328 			io_schedule();
1329 			continue;
1330 		}
1331 
1332 		/* If we were non-exclusive, we're done */
1333 		if (behavior != EXCLUSIVE)
1334 			break;
1335 
1336 		/* If the waker got the lock for us, we're done */
1337 		if (flags & WQ_FLAG_DONE)
1338 			break;
1339 
1340 		/*
1341 		 * Otherwise, if we're getting the lock, we need to
1342 		 * try to get it ourselves.
1343 		 *
1344 		 * And if that fails, we'll have to retry this all.
1345 		 */
1346 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1347 			goto repeat;
1348 
1349 		wait->flags |= WQ_FLAG_DONE;
1350 		break;
1351 	}
1352 
1353 	/*
1354 	 * If a signal happened, this 'finish_wait()' may remove the last
1355 	 * waiter from the wait-queues, but the folio waiters bit will remain
1356 	 * set. That's ok. The next wakeup will take care of it, and trying
1357 	 * to do it here would be difficult and prone to races.
1358 	 */
1359 	finish_wait(q, wait);
1360 
1361 	if (thrashing) {
1362 		if (delayacct)
1363 			delayacct_thrashing_end();
1364 		psi_memstall_leave(&pflags);
1365 	}
1366 
1367 	/*
1368 	 * NOTE! The wait->flags weren't stable until we've done the
1369 	 * 'finish_wait()', and we could have exited the loop above due
1370 	 * to a signal, and had a wakeup event happen after the signal
1371 	 * test but before the 'finish_wait()'.
1372 	 *
1373 	 * So only after the finish_wait() can we reliably determine
1374 	 * if we got woken up or not, so we can now figure out the final
1375 	 * return value based on that state without races.
1376 	 *
1377 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1378 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1379 	 */
1380 	if (behavior == EXCLUSIVE)
1381 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1382 
1383 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1384 }
1385 
1386 #ifdef CONFIG_MIGRATION
1387 /**
1388  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1389  * @entry: migration swap entry.
1390  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1391  *        for pte entries, pass NULL for pmd entries.
1392  * @ptl: already locked ptl. This function will drop the lock.
1393  *
1394  * Wait for a migration entry referencing the given page to be removed. This is
1395  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1396  * this can be called without taking a reference on the page. Instead this
1397  * should be called while holding the ptl for the migration entry referencing
1398  * the page.
1399  *
1400  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1401  *
1402  * This follows the same logic as folio_wait_bit_common() so see the comments
1403  * there.
1404  */
1405 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1406 				spinlock_t *ptl)
1407 {
1408 	struct wait_page_queue wait_page;
1409 	wait_queue_entry_t *wait = &wait_page.wait;
1410 	bool thrashing = false;
1411 	bool delayacct = false;
1412 	unsigned long pflags;
1413 	wait_queue_head_t *q;
1414 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1415 
1416 	q = folio_waitqueue(folio);
1417 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1418 		if (!folio_test_swapbacked(folio)) {
1419 			delayacct_thrashing_start();
1420 			delayacct = true;
1421 		}
1422 		psi_memstall_enter(&pflags);
1423 		thrashing = true;
1424 	}
1425 
1426 	init_wait(wait);
1427 	wait->func = wake_page_function;
1428 	wait_page.folio = folio;
1429 	wait_page.bit_nr = PG_locked;
1430 	wait->flags = 0;
1431 
1432 	spin_lock_irq(&q->lock);
1433 	folio_set_waiters(folio);
1434 	if (!folio_trylock_flag(folio, PG_locked, wait))
1435 		__add_wait_queue_entry_tail(q, wait);
1436 	spin_unlock_irq(&q->lock);
1437 
1438 	/*
1439 	 * If a migration entry exists for the page the migration path must hold
1440 	 * a valid reference to the page, and it must take the ptl to remove the
1441 	 * migration entry. So the page is valid until the ptl is dropped.
1442 	 */
1443 	if (ptep)
1444 		pte_unmap_unlock(ptep, ptl);
1445 	else
1446 		spin_unlock(ptl);
1447 
1448 	for (;;) {
1449 		unsigned int flags;
1450 
1451 		set_current_state(TASK_UNINTERRUPTIBLE);
1452 
1453 		/* Loop until we've been woken or interrupted */
1454 		flags = smp_load_acquire(&wait->flags);
1455 		if (!(flags & WQ_FLAG_WOKEN)) {
1456 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1457 				break;
1458 
1459 			io_schedule();
1460 			continue;
1461 		}
1462 		break;
1463 	}
1464 
1465 	finish_wait(q, wait);
1466 
1467 	if (thrashing) {
1468 		if (delayacct)
1469 			delayacct_thrashing_end();
1470 		psi_memstall_leave(&pflags);
1471 	}
1472 }
1473 #endif
1474 
1475 void folio_wait_bit(struct folio *folio, int bit_nr)
1476 {
1477 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1478 }
1479 EXPORT_SYMBOL(folio_wait_bit);
1480 
1481 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1482 {
1483 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1484 }
1485 EXPORT_SYMBOL(folio_wait_bit_killable);
1486 
1487 /**
1488  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1489  * @folio: The folio to wait for.
1490  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1491  *
1492  * The caller should hold a reference on @folio.  They expect the page to
1493  * become unlocked relatively soon, but do not wish to hold up migration
1494  * (for example) by holding the reference while waiting for the folio to
1495  * come unlocked.  After this function returns, the caller should not
1496  * dereference @folio.
1497  *
1498  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1499  */
1500 int folio_put_wait_locked(struct folio *folio, int state)
1501 {
1502 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1503 }
1504 
1505 /**
1506  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1507  * @folio: Folio defining the wait queue of interest
1508  * @waiter: Waiter to add to the queue
1509  *
1510  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1511  */
1512 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1513 {
1514 	wait_queue_head_t *q = folio_waitqueue(folio);
1515 	unsigned long flags;
1516 
1517 	spin_lock_irqsave(&q->lock, flags);
1518 	__add_wait_queue_entry_tail(q, waiter);
1519 	folio_set_waiters(folio);
1520 	spin_unlock_irqrestore(&q->lock, flags);
1521 }
1522 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1523 
1524 #ifndef clear_bit_unlock_is_negative_byte
1525 
1526 /*
1527  * PG_waiters is the high bit in the same byte as PG_lock.
1528  *
1529  * On x86 (and on many other architectures), we can clear PG_lock and
1530  * test the sign bit at the same time. But if the architecture does
1531  * not support that special operation, we just do this all by hand
1532  * instead.
1533  *
1534  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1535  * being cleared, but a memory barrier should be unnecessary since it is
1536  * in the same byte as PG_locked.
1537  */
1538 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1539 {
1540 	clear_bit_unlock(nr, mem);
1541 	/* smp_mb__after_atomic(); */
1542 	return test_bit(PG_waiters, mem);
1543 }
1544 
1545 #endif
1546 
1547 /**
1548  * folio_unlock - Unlock a locked folio.
1549  * @folio: The folio.
1550  *
1551  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1552  *
1553  * Context: May be called from interrupt or process context.  May not be
1554  * called from NMI context.
1555  */
1556 void folio_unlock(struct folio *folio)
1557 {
1558 	/* Bit 7 allows x86 to check the byte's sign bit */
1559 	BUILD_BUG_ON(PG_waiters != 7);
1560 	BUILD_BUG_ON(PG_locked > 7);
1561 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1562 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1563 		folio_wake_bit(folio, PG_locked);
1564 }
1565 EXPORT_SYMBOL(folio_unlock);
1566 
1567 /**
1568  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1569  * @folio: The folio.
1570  *
1571  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1572  * it.  The folio reference held for PG_private_2 being set is released.
1573  *
1574  * This is, for example, used when a netfs folio is being written to a local
1575  * disk cache, thereby allowing writes to the cache for the same folio to be
1576  * serialised.
1577  */
1578 void folio_end_private_2(struct folio *folio)
1579 {
1580 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1581 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1582 	folio_wake_bit(folio, PG_private_2);
1583 	folio_put(folio);
1584 }
1585 EXPORT_SYMBOL(folio_end_private_2);
1586 
1587 /**
1588  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1589  * @folio: The folio to wait on.
1590  *
1591  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1592  */
1593 void folio_wait_private_2(struct folio *folio)
1594 {
1595 	while (folio_test_private_2(folio))
1596 		folio_wait_bit(folio, PG_private_2);
1597 }
1598 EXPORT_SYMBOL(folio_wait_private_2);
1599 
1600 /**
1601  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1602  * @folio: The folio to wait on.
1603  *
1604  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1605  * fatal signal is received by the calling task.
1606  *
1607  * Return:
1608  * - 0 if successful.
1609  * - -EINTR if a fatal signal was encountered.
1610  */
1611 int folio_wait_private_2_killable(struct folio *folio)
1612 {
1613 	int ret = 0;
1614 
1615 	while (folio_test_private_2(folio)) {
1616 		ret = folio_wait_bit_killable(folio, PG_private_2);
1617 		if (ret < 0)
1618 			break;
1619 	}
1620 
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL(folio_wait_private_2_killable);
1624 
1625 /**
1626  * folio_end_writeback - End writeback against a folio.
1627  * @folio: The folio.
1628  */
1629 void folio_end_writeback(struct folio *folio)
1630 {
1631 	/*
1632 	 * folio_test_clear_reclaim() could be used here but it is an
1633 	 * atomic operation and overkill in this particular case. Failing
1634 	 * to shuffle a folio marked for immediate reclaim is too mild
1635 	 * a gain to justify taking an atomic operation penalty at the
1636 	 * end of every folio writeback.
1637 	 */
1638 	if (folio_test_reclaim(folio)) {
1639 		folio_clear_reclaim(folio);
1640 		folio_rotate_reclaimable(folio);
1641 	}
1642 
1643 	/*
1644 	 * Writeback does not hold a folio reference of its own, relying
1645 	 * on truncation to wait for the clearing of PG_writeback.
1646 	 * But here we must make sure that the folio is not freed and
1647 	 * reused before the folio_wake().
1648 	 */
1649 	folio_get(folio);
1650 	if (!__folio_end_writeback(folio))
1651 		BUG();
1652 
1653 	smp_mb__after_atomic();
1654 	folio_wake(folio, PG_writeback);
1655 	acct_reclaim_writeback(folio);
1656 	folio_put(folio);
1657 }
1658 EXPORT_SYMBOL(folio_end_writeback);
1659 
1660 /*
1661  * After completing I/O on a page, call this routine to update the page
1662  * flags appropriately
1663  */
1664 void page_endio(struct page *page, bool is_write, int err)
1665 {
1666 	if (!is_write) {
1667 		if (!err) {
1668 			SetPageUptodate(page);
1669 		} else {
1670 			ClearPageUptodate(page);
1671 			SetPageError(page);
1672 		}
1673 		unlock_page(page);
1674 	} else {
1675 		if (err) {
1676 			struct address_space *mapping;
1677 
1678 			SetPageError(page);
1679 			mapping = page_mapping(page);
1680 			if (mapping)
1681 				mapping_set_error(mapping, err);
1682 		}
1683 		end_page_writeback(page);
1684 	}
1685 }
1686 EXPORT_SYMBOL_GPL(page_endio);
1687 
1688 /**
1689  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1690  * @folio: The folio to lock
1691  */
1692 void __folio_lock(struct folio *folio)
1693 {
1694 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1695 				EXCLUSIVE);
1696 }
1697 EXPORT_SYMBOL(__folio_lock);
1698 
1699 int __folio_lock_killable(struct folio *folio)
1700 {
1701 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1702 					EXCLUSIVE);
1703 }
1704 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1705 
1706 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1707 {
1708 	struct wait_queue_head *q = folio_waitqueue(folio);
1709 	int ret = 0;
1710 
1711 	wait->folio = folio;
1712 	wait->bit_nr = PG_locked;
1713 
1714 	spin_lock_irq(&q->lock);
1715 	__add_wait_queue_entry_tail(q, &wait->wait);
1716 	folio_set_waiters(folio);
1717 	ret = !folio_trylock(folio);
1718 	/*
1719 	 * If we were successful now, we know we're still on the
1720 	 * waitqueue as we're still under the lock. This means it's
1721 	 * safe to remove and return success, we know the callback
1722 	 * isn't going to trigger.
1723 	 */
1724 	if (!ret)
1725 		__remove_wait_queue(q, &wait->wait);
1726 	else
1727 		ret = -EIOCBQUEUED;
1728 	spin_unlock_irq(&q->lock);
1729 	return ret;
1730 }
1731 
1732 /*
1733  * Return values:
1734  * true - folio is locked; mmap_lock is still held.
1735  * false - folio is not locked.
1736  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1737  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1738  *     which case mmap_lock is still held.
1739  *
1740  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1741  * with the folio locked and the mmap_lock unperturbed.
1742  */
1743 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1744 			 unsigned int flags)
1745 {
1746 	if (fault_flag_allow_retry_first(flags)) {
1747 		/*
1748 		 * CAUTION! In this case, mmap_lock is not released
1749 		 * even though return 0.
1750 		 */
1751 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1752 			return false;
1753 
1754 		mmap_read_unlock(mm);
1755 		if (flags & FAULT_FLAG_KILLABLE)
1756 			folio_wait_locked_killable(folio);
1757 		else
1758 			folio_wait_locked(folio);
1759 		return false;
1760 	}
1761 	if (flags & FAULT_FLAG_KILLABLE) {
1762 		bool ret;
1763 
1764 		ret = __folio_lock_killable(folio);
1765 		if (ret) {
1766 			mmap_read_unlock(mm);
1767 			return false;
1768 		}
1769 	} else {
1770 		__folio_lock(folio);
1771 	}
1772 
1773 	return true;
1774 }
1775 
1776 /**
1777  * page_cache_next_miss() - Find the next gap in the page cache.
1778  * @mapping: Mapping.
1779  * @index: Index.
1780  * @max_scan: Maximum range to search.
1781  *
1782  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1783  * gap with the lowest index.
1784  *
1785  * This function may be called under the rcu_read_lock.  However, this will
1786  * not atomically search a snapshot of the cache at a single point in time.
1787  * For example, if a gap is created at index 5, then subsequently a gap is
1788  * created at index 10, page_cache_next_miss covering both indices may
1789  * return 10 if called under the rcu_read_lock.
1790  *
1791  * Return: The index of the gap if found, otherwise an index outside the
1792  * range specified (in which case 'return - index >= max_scan' will be true).
1793  * In the rare case of index wrap-around, 0 will be returned.
1794  */
1795 pgoff_t page_cache_next_miss(struct address_space *mapping,
1796 			     pgoff_t index, unsigned long max_scan)
1797 {
1798 	XA_STATE(xas, &mapping->i_pages, index);
1799 
1800 	while (max_scan--) {
1801 		void *entry = xas_next(&xas);
1802 		if (!entry || xa_is_value(entry))
1803 			break;
1804 		if (xas.xa_index == 0)
1805 			break;
1806 	}
1807 
1808 	return xas.xa_index;
1809 }
1810 EXPORT_SYMBOL(page_cache_next_miss);
1811 
1812 /**
1813  * page_cache_prev_miss() - Find the previous gap in the page cache.
1814  * @mapping: Mapping.
1815  * @index: Index.
1816  * @max_scan: Maximum range to search.
1817  *
1818  * Search the range [max(index - max_scan + 1, 0), index] for the
1819  * gap with the highest index.
1820  *
1821  * This function may be called under the rcu_read_lock.  However, this will
1822  * not atomically search a snapshot of the cache at a single point in time.
1823  * For example, if a gap is created at index 10, then subsequently a gap is
1824  * created at index 5, page_cache_prev_miss() covering both indices may
1825  * return 5 if called under the rcu_read_lock.
1826  *
1827  * Return: The index of the gap if found, otherwise an index outside the
1828  * range specified (in which case 'index - return >= max_scan' will be true).
1829  * In the rare case of wrap-around, ULONG_MAX will be returned.
1830  */
1831 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1832 			     pgoff_t index, unsigned long max_scan)
1833 {
1834 	XA_STATE(xas, &mapping->i_pages, index);
1835 
1836 	while (max_scan--) {
1837 		void *entry = xas_prev(&xas);
1838 		if (!entry || xa_is_value(entry))
1839 			break;
1840 		if (xas.xa_index == ULONG_MAX)
1841 			break;
1842 	}
1843 
1844 	return xas.xa_index;
1845 }
1846 EXPORT_SYMBOL(page_cache_prev_miss);
1847 
1848 /*
1849  * Lockless page cache protocol:
1850  * On the lookup side:
1851  * 1. Load the folio from i_pages
1852  * 2. Increment the refcount if it's not zero
1853  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1854  *
1855  * On the removal side:
1856  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1857  * B. Remove the page from i_pages
1858  * C. Return the page to the page allocator
1859  *
1860  * This means that any page may have its reference count temporarily
1861  * increased by a speculative page cache (or fast GUP) lookup as it can
1862  * be allocated by another user before the RCU grace period expires.
1863  * Because the refcount temporarily acquired here may end up being the
1864  * last refcount on the page, any page allocation must be freeable by
1865  * folio_put().
1866  */
1867 
1868 /*
1869  * mapping_get_entry - Get a page cache entry.
1870  * @mapping: the address_space to search
1871  * @index: The page cache index.
1872  *
1873  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1874  * it is returned with an increased refcount.  If it is a shadow entry
1875  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1876  * it is returned without further action.
1877  *
1878  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1879  */
1880 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1881 {
1882 	XA_STATE(xas, &mapping->i_pages, index);
1883 	struct folio *folio;
1884 
1885 	rcu_read_lock();
1886 repeat:
1887 	xas_reset(&xas);
1888 	folio = xas_load(&xas);
1889 	if (xas_retry(&xas, folio))
1890 		goto repeat;
1891 	/*
1892 	 * A shadow entry of a recently evicted page, or a swap entry from
1893 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1894 	 */
1895 	if (!folio || xa_is_value(folio))
1896 		goto out;
1897 
1898 	if (!folio_try_get_rcu(folio))
1899 		goto repeat;
1900 
1901 	if (unlikely(folio != xas_reload(&xas))) {
1902 		folio_put(folio);
1903 		goto repeat;
1904 	}
1905 out:
1906 	rcu_read_unlock();
1907 
1908 	return folio;
1909 }
1910 
1911 /**
1912  * __filemap_get_folio - Find and get a reference to a folio.
1913  * @mapping: The address_space to search.
1914  * @index: The page index.
1915  * @fgp_flags: %FGP flags modify how the folio is returned.
1916  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1917  *
1918  * Looks up the page cache entry at @mapping & @index.
1919  *
1920  * @fgp_flags can be zero or more of these flags:
1921  *
1922  * * %FGP_ACCESSED - The folio will be marked accessed.
1923  * * %FGP_LOCK - The folio is returned locked.
1924  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1925  *   instead of allocating a new folio to replace it.
1926  * * %FGP_CREAT - If no page is present then a new page is allocated using
1927  *   @gfp and added to the page cache and the VM's LRU list.
1928  *   The page is returned locked and with an increased refcount.
1929  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1930  *   page is already in cache.  If the page was allocated, unlock it before
1931  *   returning so the caller can do the same dance.
1932  * * %FGP_WRITE - The page will be written to by the caller.
1933  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1934  * * %FGP_NOWAIT - Don't get blocked by page lock.
1935  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1936  *
1937  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1938  * if the %GFP flags specified for %FGP_CREAT are atomic.
1939  *
1940  * If there is a page cache page, it is returned with an increased refcount.
1941  *
1942  * Return: The found folio or %NULL otherwise.
1943  */
1944 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1945 		int fgp_flags, gfp_t gfp)
1946 {
1947 	struct folio *folio;
1948 
1949 repeat:
1950 	folio = mapping_get_entry(mapping, index);
1951 	if (xa_is_value(folio)) {
1952 		if (fgp_flags & FGP_ENTRY)
1953 			return folio;
1954 		folio = NULL;
1955 	}
1956 	if (!folio)
1957 		goto no_page;
1958 
1959 	if (fgp_flags & FGP_LOCK) {
1960 		if (fgp_flags & FGP_NOWAIT) {
1961 			if (!folio_trylock(folio)) {
1962 				folio_put(folio);
1963 				return NULL;
1964 			}
1965 		} else {
1966 			folio_lock(folio);
1967 		}
1968 
1969 		/* Has the page been truncated? */
1970 		if (unlikely(folio->mapping != mapping)) {
1971 			folio_unlock(folio);
1972 			folio_put(folio);
1973 			goto repeat;
1974 		}
1975 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1976 	}
1977 
1978 	if (fgp_flags & FGP_ACCESSED)
1979 		folio_mark_accessed(folio);
1980 	else if (fgp_flags & FGP_WRITE) {
1981 		/* Clear idle flag for buffer write */
1982 		if (folio_test_idle(folio))
1983 			folio_clear_idle(folio);
1984 	}
1985 
1986 	if (fgp_flags & FGP_STABLE)
1987 		folio_wait_stable(folio);
1988 no_page:
1989 	if (!folio && (fgp_flags & FGP_CREAT)) {
1990 		int err;
1991 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1992 			gfp |= __GFP_WRITE;
1993 		if (fgp_flags & FGP_NOFS)
1994 			gfp &= ~__GFP_FS;
1995 
1996 		folio = filemap_alloc_folio(gfp, 0);
1997 		if (!folio)
1998 			return NULL;
1999 
2000 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2001 			fgp_flags |= FGP_LOCK;
2002 
2003 		/* Init accessed so avoid atomic mark_page_accessed later */
2004 		if (fgp_flags & FGP_ACCESSED)
2005 			__folio_set_referenced(folio);
2006 
2007 		err = filemap_add_folio(mapping, folio, index, gfp);
2008 		if (unlikely(err)) {
2009 			folio_put(folio);
2010 			folio = NULL;
2011 			if (err == -EEXIST)
2012 				goto repeat;
2013 		}
2014 
2015 		/*
2016 		 * filemap_add_folio locks the page, and for mmap
2017 		 * we expect an unlocked page.
2018 		 */
2019 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2020 			folio_unlock(folio);
2021 	}
2022 
2023 	return folio;
2024 }
2025 EXPORT_SYMBOL(__filemap_get_folio);
2026 
2027 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2028 		xa_mark_t mark)
2029 {
2030 	struct folio *folio;
2031 
2032 retry:
2033 	if (mark == XA_PRESENT)
2034 		folio = xas_find(xas, max);
2035 	else
2036 		folio = xas_find_marked(xas, max, mark);
2037 
2038 	if (xas_retry(xas, folio))
2039 		goto retry;
2040 	/*
2041 	 * A shadow entry of a recently evicted page, a swap
2042 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2043 	 * without attempting to raise page count.
2044 	 */
2045 	if (!folio || xa_is_value(folio))
2046 		return folio;
2047 
2048 	if (!folio_try_get_rcu(folio))
2049 		goto reset;
2050 
2051 	if (unlikely(folio != xas_reload(xas))) {
2052 		folio_put(folio);
2053 		goto reset;
2054 	}
2055 
2056 	return folio;
2057 reset:
2058 	xas_reset(xas);
2059 	goto retry;
2060 }
2061 
2062 /**
2063  * find_get_entries - gang pagecache lookup
2064  * @mapping:	The address_space to search
2065  * @start:	The starting page cache index
2066  * @end:	The final page index (inclusive).
2067  * @fbatch:	Where the resulting entries are placed.
2068  * @indices:	The cache indices corresponding to the entries in @entries
2069  *
2070  * find_get_entries() will search for and return a batch of entries in
2071  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2072  * takes a reference on any actual folios it returns.
2073  *
2074  * The entries have ascending indexes.  The indices may not be consecutive
2075  * due to not-present entries or large folios.
2076  *
2077  * Any shadow entries of evicted folios, or swap entries from
2078  * shmem/tmpfs, are included in the returned array.
2079  *
2080  * Return: The number of entries which were found.
2081  */
2082 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2083 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2084 {
2085 	XA_STATE(xas, &mapping->i_pages, start);
2086 	struct folio *folio;
2087 
2088 	rcu_read_lock();
2089 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2090 		indices[fbatch->nr] = xas.xa_index;
2091 		if (!folio_batch_add(fbatch, folio))
2092 			break;
2093 	}
2094 	rcu_read_unlock();
2095 
2096 	return folio_batch_count(fbatch);
2097 }
2098 
2099 /**
2100  * find_lock_entries - Find a batch of pagecache entries.
2101  * @mapping:	The address_space to search.
2102  * @start:	The starting page cache index.
2103  * @end:	The final page index (inclusive).
2104  * @fbatch:	Where the resulting entries are placed.
2105  * @indices:	The cache indices of the entries in @fbatch.
2106  *
2107  * find_lock_entries() will return a batch of entries from @mapping.
2108  * Swap, shadow and DAX entries are included.  Folios are returned
2109  * locked and with an incremented refcount.  Folios which are locked
2110  * by somebody else or under writeback are skipped.  Folios which are
2111  * partially outside the range are not returned.
2112  *
2113  * The entries have ascending indexes.  The indices may not be consecutive
2114  * due to not-present entries, large folios, folios which could not be
2115  * locked or folios under writeback.
2116  *
2117  * Return: The number of entries which were found.
2118  */
2119 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2120 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2121 {
2122 	XA_STATE(xas, &mapping->i_pages, start);
2123 	struct folio *folio;
2124 
2125 	rcu_read_lock();
2126 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2127 		if (!xa_is_value(folio)) {
2128 			if (folio->index < start)
2129 				goto put;
2130 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2131 				goto put;
2132 			if (!folio_trylock(folio))
2133 				goto put;
2134 			if (folio->mapping != mapping ||
2135 			    folio_test_writeback(folio))
2136 				goto unlock;
2137 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2138 					folio);
2139 		}
2140 		indices[fbatch->nr] = xas.xa_index;
2141 		if (!folio_batch_add(fbatch, folio))
2142 			break;
2143 		continue;
2144 unlock:
2145 		folio_unlock(folio);
2146 put:
2147 		folio_put(folio);
2148 	}
2149 	rcu_read_unlock();
2150 
2151 	return folio_batch_count(fbatch);
2152 }
2153 
2154 static inline
2155 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2156 {
2157 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2158 		return false;
2159 	if (index >= max)
2160 		return false;
2161 	return index < folio->index + folio_nr_pages(folio) - 1;
2162 }
2163 
2164 /**
2165  * find_get_pages_range - gang pagecache lookup
2166  * @mapping:	The address_space to search
2167  * @start:	The starting page index
2168  * @end:	The final page index (inclusive)
2169  * @nr_pages:	The maximum number of pages
2170  * @pages:	Where the resulting pages are placed
2171  *
2172  * find_get_pages_range() will search for and return a group of up to @nr_pages
2173  * pages in the mapping starting at index @start and up to index @end
2174  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2175  * a reference against the returned pages.
2176  *
2177  * The search returns a group of mapping-contiguous pages with ascending
2178  * indexes.  There may be holes in the indices due to not-present pages.
2179  * We also update @start to index the next page for the traversal.
2180  *
2181  * Return: the number of pages which were found. If this number is
2182  * smaller than @nr_pages, the end of specified range has been
2183  * reached.
2184  */
2185 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2186 			      pgoff_t end, unsigned int nr_pages,
2187 			      struct page **pages)
2188 {
2189 	XA_STATE(xas, &mapping->i_pages, *start);
2190 	struct folio *folio;
2191 	unsigned ret = 0;
2192 
2193 	if (unlikely(!nr_pages))
2194 		return 0;
2195 
2196 	rcu_read_lock();
2197 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2198 		/* Skip over shadow, swap and DAX entries */
2199 		if (xa_is_value(folio))
2200 			continue;
2201 
2202 again:
2203 		pages[ret] = folio_file_page(folio, xas.xa_index);
2204 		if (++ret == nr_pages) {
2205 			*start = xas.xa_index + 1;
2206 			goto out;
2207 		}
2208 		if (folio_more_pages(folio, xas.xa_index, end)) {
2209 			xas.xa_index++;
2210 			folio_ref_inc(folio);
2211 			goto again;
2212 		}
2213 	}
2214 
2215 	/*
2216 	 * We come here when there is no page beyond @end. We take care to not
2217 	 * overflow the index @start as it confuses some of the callers. This
2218 	 * breaks the iteration when there is a page at index -1 but that is
2219 	 * already broken anyway.
2220 	 */
2221 	if (end == (pgoff_t)-1)
2222 		*start = (pgoff_t)-1;
2223 	else
2224 		*start = end + 1;
2225 out:
2226 	rcu_read_unlock();
2227 
2228 	return ret;
2229 }
2230 
2231 /**
2232  * find_get_pages_contig - gang contiguous pagecache lookup
2233  * @mapping:	The address_space to search
2234  * @index:	The starting page index
2235  * @nr_pages:	The maximum number of pages
2236  * @pages:	Where the resulting pages are placed
2237  *
2238  * find_get_pages_contig() works exactly like find_get_pages_range(),
2239  * except that the returned number of pages are guaranteed to be
2240  * contiguous.
2241  *
2242  * Return: the number of pages which were found.
2243  */
2244 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2245 			       unsigned int nr_pages, struct page **pages)
2246 {
2247 	XA_STATE(xas, &mapping->i_pages, index);
2248 	struct folio *folio;
2249 	unsigned int ret = 0;
2250 
2251 	if (unlikely(!nr_pages))
2252 		return 0;
2253 
2254 	rcu_read_lock();
2255 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2256 		if (xas_retry(&xas, folio))
2257 			continue;
2258 		/*
2259 		 * If the entry has been swapped out, we can stop looking.
2260 		 * No current caller is looking for DAX entries.
2261 		 */
2262 		if (xa_is_value(folio))
2263 			break;
2264 
2265 		if (!folio_try_get_rcu(folio))
2266 			goto retry;
2267 
2268 		if (unlikely(folio != xas_reload(&xas)))
2269 			goto put_page;
2270 
2271 again:
2272 		pages[ret] = folio_file_page(folio, xas.xa_index);
2273 		if (++ret == nr_pages)
2274 			break;
2275 		if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2276 			xas.xa_index++;
2277 			folio_ref_inc(folio);
2278 			goto again;
2279 		}
2280 		continue;
2281 put_page:
2282 		folio_put(folio);
2283 retry:
2284 		xas_reset(&xas);
2285 	}
2286 	rcu_read_unlock();
2287 	return ret;
2288 }
2289 EXPORT_SYMBOL(find_get_pages_contig);
2290 
2291 /**
2292  * find_get_pages_range_tag - Find and return head pages matching @tag.
2293  * @mapping:	the address_space to search
2294  * @index:	the starting page index
2295  * @end:	The final page index (inclusive)
2296  * @tag:	the tag index
2297  * @nr_pages:	the maximum number of pages
2298  * @pages:	where the resulting pages are placed
2299  *
2300  * Like find_get_pages_range(), except we only return head pages which are
2301  * tagged with @tag.  @index is updated to the index immediately after the
2302  * last page we return, ready for the next iteration.
2303  *
2304  * Return: the number of pages which were found.
2305  */
2306 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2307 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2308 			struct page **pages)
2309 {
2310 	XA_STATE(xas, &mapping->i_pages, *index);
2311 	struct folio *folio;
2312 	unsigned ret = 0;
2313 
2314 	if (unlikely(!nr_pages))
2315 		return 0;
2316 
2317 	rcu_read_lock();
2318 	while ((folio = find_get_entry(&xas, end, tag))) {
2319 		/*
2320 		 * Shadow entries should never be tagged, but this iteration
2321 		 * is lockless so there is a window for page reclaim to evict
2322 		 * a page we saw tagged.  Skip over it.
2323 		 */
2324 		if (xa_is_value(folio))
2325 			continue;
2326 
2327 		pages[ret] = &folio->page;
2328 		if (++ret == nr_pages) {
2329 			*index = folio->index + folio_nr_pages(folio);
2330 			goto out;
2331 		}
2332 	}
2333 
2334 	/*
2335 	 * We come here when we got to @end. We take care to not overflow the
2336 	 * index @index as it confuses some of the callers. This breaks the
2337 	 * iteration when there is a page at index -1 but that is already
2338 	 * broken anyway.
2339 	 */
2340 	if (end == (pgoff_t)-1)
2341 		*index = (pgoff_t)-1;
2342 	else
2343 		*index = end + 1;
2344 out:
2345 	rcu_read_unlock();
2346 
2347 	return ret;
2348 }
2349 EXPORT_SYMBOL(find_get_pages_range_tag);
2350 
2351 /*
2352  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2353  * a _large_ part of the i/o request. Imagine the worst scenario:
2354  *
2355  *      ---R__________________________________________B__________
2356  *         ^ reading here                             ^ bad block(assume 4k)
2357  *
2358  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2359  * => failing the whole request => read(R) => read(R+1) =>
2360  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2361  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2362  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2363  *
2364  * It is going insane. Fix it by quickly scaling down the readahead size.
2365  */
2366 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2367 {
2368 	ra->ra_pages /= 4;
2369 }
2370 
2371 /*
2372  * filemap_get_read_batch - Get a batch of folios for read
2373  *
2374  * Get a batch of folios which represent a contiguous range of bytes in
2375  * the file.  No exceptional entries will be returned.  If @index is in
2376  * the middle of a folio, the entire folio will be returned.  The last
2377  * folio in the batch may have the readahead flag set or the uptodate flag
2378  * clear so that the caller can take the appropriate action.
2379  */
2380 static void filemap_get_read_batch(struct address_space *mapping,
2381 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2382 {
2383 	XA_STATE(xas, &mapping->i_pages, index);
2384 	struct folio *folio;
2385 
2386 	rcu_read_lock();
2387 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2388 		if (xas_retry(&xas, folio))
2389 			continue;
2390 		if (xas.xa_index > max || xa_is_value(folio))
2391 			break;
2392 		if (!folio_try_get_rcu(folio))
2393 			goto retry;
2394 
2395 		if (unlikely(folio != xas_reload(&xas)))
2396 			goto put_folio;
2397 
2398 		if (!folio_batch_add(fbatch, folio))
2399 			break;
2400 		if (!folio_test_uptodate(folio))
2401 			break;
2402 		if (folio_test_readahead(folio))
2403 			break;
2404 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2405 		continue;
2406 put_folio:
2407 		folio_put(folio);
2408 retry:
2409 		xas_reset(&xas);
2410 	}
2411 	rcu_read_unlock();
2412 }
2413 
2414 static int filemap_read_folio(struct file *file, struct address_space *mapping,
2415 		struct folio *folio)
2416 {
2417 	int error;
2418 
2419 	/*
2420 	 * A previous I/O error may have been due to temporary failures,
2421 	 * eg. multipath errors.  PG_error will be set again if readpage
2422 	 * fails.
2423 	 */
2424 	folio_clear_error(folio);
2425 	/* Start the actual read. The read will unlock the page. */
2426 	error = mapping->a_ops->readpage(file, &folio->page);
2427 	if (error)
2428 		return error;
2429 
2430 	error = folio_wait_locked_killable(folio);
2431 	if (error)
2432 		return error;
2433 	if (folio_test_uptodate(folio))
2434 		return 0;
2435 	shrink_readahead_size_eio(&file->f_ra);
2436 	return -EIO;
2437 }
2438 
2439 static bool filemap_range_uptodate(struct address_space *mapping,
2440 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2441 {
2442 	int count;
2443 
2444 	if (folio_test_uptodate(folio))
2445 		return true;
2446 	/* pipes can't handle partially uptodate pages */
2447 	if (iov_iter_is_pipe(iter))
2448 		return false;
2449 	if (!mapping->a_ops->is_partially_uptodate)
2450 		return false;
2451 	if (mapping->host->i_blkbits >= folio_shift(folio))
2452 		return false;
2453 
2454 	count = iter->count;
2455 	if (folio_pos(folio) > pos) {
2456 		count -= folio_pos(folio) - pos;
2457 		pos = 0;
2458 	} else {
2459 		pos -= folio_pos(folio);
2460 	}
2461 
2462 	return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count);
2463 }
2464 
2465 static int filemap_update_page(struct kiocb *iocb,
2466 		struct address_space *mapping, struct iov_iter *iter,
2467 		struct folio *folio)
2468 {
2469 	int error;
2470 
2471 	if (iocb->ki_flags & IOCB_NOWAIT) {
2472 		if (!filemap_invalidate_trylock_shared(mapping))
2473 			return -EAGAIN;
2474 	} else {
2475 		filemap_invalidate_lock_shared(mapping);
2476 	}
2477 
2478 	if (!folio_trylock(folio)) {
2479 		error = -EAGAIN;
2480 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2481 			goto unlock_mapping;
2482 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2483 			filemap_invalidate_unlock_shared(mapping);
2484 			/*
2485 			 * This is where we usually end up waiting for a
2486 			 * previously submitted readahead to finish.
2487 			 */
2488 			folio_put_wait_locked(folio, TASK_KILLABLE);
2489 			return AOP_TRUNCATED_PAGE;
2490 		}
2491 		error = __folio_lock_async(folio, iocb->ki_waitq);
2492 		if (error)
2493 			goto unlock_mapping;
2494 	}
2495 
2496 	error = AOP_TRUNCATED_PAGE;
2497 	if (!folio->mapping)
2498 		goto unlock;
2499 
2500 	error = 0;
2501 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2502 		goto unlock;
2503 
2504 	error = -EAGAIN;
2505 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2506 		goto unlock;
2507 
2508 	error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2509 	goto unlock_mapping;
2510 unlock:
2511 	folio_unlock(folio);
2512 unlock_mapping:
2513 	filemap_invalidate_unlock_shared(mapping);
2514 	if (error == AOP_TRUNCATED_PAGE)
2515 		folio_put(folio);
2516 	return error;
2517 }
2518 
2519 static int filemap_create_folio(struct file *file,
2520 		struct address_space *mapping, pgoff_t index,
2521 		struct folio_batch *fbatch)
2522 {
2523 	struct folio *folio;
2524 	int error;
2525 
2526 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2527 	if (!folio)
2528 		return -ENOMEM;
2529 
2530 	/*
2531 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2532 	 * here assures we cannot instantiate and bring uptodate new
2533 	 * pagecache folios after evicting page cache during truncate
2534 	 * and before actually freeing blocks.	Note that we could
2535 	 * release invalidate_lock after inserting the folio into
2536 	 * the page cache as the locked folio would then be enough to
2537 	 * synchronize with hole punching. But there are code paths
2538 	 * such as filemap_update_page() filling in partially uptodate
2539 	 * pages or ->readpages() that need to hold invalidate_lock
2540 	 * while mapping blocks for IO so let's hold the lock here as
2541 	 * well to keep locking rules simple.
2542 	 */
2543 	filemap_invalidate_lock_shared(mapping);
2544 	error = filemap_add_folio(mapping, folio, index,
2545 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2546 	if (error == -EEXIST)
2547 		error = AOP_TRUNCATED_PAGE;
2548 	if (error)
2549 		goto error;
2550 
2551 	error = filemap_read_folio(file, mapping, folio);
2552 	if (error)
2553 		goto error;
2554 
2555 	filemap_invalidate_unlock_shared(mapping);
2556 	folio_batch_add(fbatch, folio);
2557 	return 0;
2558 error:
2559 	filemap_invalidate_unlock_shared(mapping);
2560 	folio_put(folio);
2561 	return error;
2562 }
2563 
2564 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2565 		struct address_space *mapping, struct folio *folio,
2566 		pgoff_t last_index)
2567 {
2568 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2569 
2570 	if (iocb->ki_flags & IOCB_NOIO)
2571 		return -EAGAIN;
2572 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2573 	return 0;
2574 }
2575 
2576 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2577 		struct folio_batch *fbatch)
2578 {
2579 	struct file *filp = iocb->ki_filp;
2580 	struct address_space *mapping = filp->f_mapping;
2581 	struct file_ra_state *ra = &filp->f_ra;
2582 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2583 	pgoff_t last_index;
2584 	struct folio *folio;
2585 	int err = 0;
2586 
2587 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2588 retry:
2589 	if (fatal_signal_pending(current))
2590 		return -EINTR;
2591 
2592 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2593 	if (!folio_batch_count(fbatch)) {
2594 		if (iocb->ki_flags & IOCB_NOIO)
2595 			return -EAGAIN;
2596 		page_cache_sync_readahead(mapping, ra, filp, index,
2597 				last_index - index);
2598 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2599 	}
2600 	if (!folio_batch_count(fbatch)) {
2601 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2602 			return -EAGAIN;
2603 		err = filemap_create_folio(filp, mapping,
2604 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2605 		if (err == AOP_TRUNCATED_PAGE)
2606 			goto retry;
2607 		return err;
2608 	}
2609 
2610 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2611 	if (folio_test_readahead(folio)) {
2612 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2613 		if (err)
2614 			goto err;
2615 	}
2616 	if (!folio_test_uptodate(folio)) {
2617 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2618 		    folio_batch_count(fbatch) > 1)
2619 			iocb->ki_flags |= IOCB_NOWAIT;
2620 		err = filemap_update_page(iocb, mapping, iter, folio);
2621 		if (err)
2622 			goto err;
2623 	}
2624 
2625 	return 0;
2626 err:
2627 	if (err < 0)
2628 		folio_put(folio);
2629 	if (likely(--fbatch->nr))
2630 		return 0;
2631 	if (err == AOP_TRUNCATED_PAGE)
2632 		goto retry;
2633 	return err;
2634 }
2635 
2636 /**
2637  * filemap_read - Read data from the page cache.
2638  * @iocb: The iocb to read.
2639  * @iter: Destination for the data.
2640  * @already_read: Number of bytes already read by the caller.
2641  *
2642  * Copies data from the page cache.  If the data is not currently present,
2643  * uses the readahead and readpage address_space operations to fetch it.
2644  *
2645  * Return: Total number of bytes copied, including those already read by
2646  * the caller.  If an error happens before any bytes are copied, returns
2647  * a negative error number.
2648  */
2649 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2650 		ssize_t already_read)
2651 {
2652 	struct file *filp = iocb->ki_filp;
2653 	struct file_ra_state *ra = &filp->f_ra;
2654 	struct address_space *mapping = filp->f_mapping;
2655 	struct inode *inode = mapping->host;
2656 	struct folio_batch fbatch;
2657 	int i, error = 0;
2658 	bool writably_mapped;
2659 	loff_t isize, end_offset;
2660 
2661 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2662 		return 0;
2663 	if (unlikely(!iov_iter_count(iter)))
2664 		return 0;
2665 
2666 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2667 	folio_batch_init(&fbatch);
2668 
2669 	do {
2670 		cond_resched();
2671 
2672 		/*
2673 		 * If we've already successfully copied some data, then we
2674 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2675 		 * an async read NOWAIT at that point.
2676 		 */
2677 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2678 			iocb->ki_flags |= IOCB_NOWAIT;
2679 
2680 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2681 			break;
2682 
2683 		error = filemap_get_pages(iocb, iter, &fbatch);
2684 		if (error < 0)
2685 			break;
2686 
2687 		/*
2688 		 * i_size must be checked after we know the pages are Uptodate.
2689 		 *
2690 		 * Checking i_size after the check allows us to calculate
2691 		 * the correct value for "nr", which means the zero-filled
2692 		 * part of the page is not copied back to userspace (unless
2693 		 * another truncate extends the file - this is desired though).
2694 		 */
2695 		isize = i_size_read(inode);
2696 		if (unlikely(iocb->ki_pos >= isize))
2697 			goto put_folios;
2698 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2699 
2700 		/*
2701 		 * Once we start copying data, we don't want to be touching any
2702 		 * cachelines that might be contended:
2703 		 */
2704 		writably_mapped = mapping_writably_mapped(mapping);
2705 
2706 		/*
2707 		 * When a sequential read accesses a page several times, only
2708 		 * mark it as accessed the first time.
2709 		 */
2710 		if (iocb->ki_pos >> PAGE_SHIFT !=
2711 		    ra->prev_pos >> PAGE_SHIFT)
2712 			folio_mark_accessed(fbatch.folios[0]);
2713 
2714 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2715 			struct folio *folio = fbatch.folios[i];
2716 			size_t fsize = folio_size(folio);
2717 			size_t offset = iocb->ki_pos & (fsize - 1);
2718 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2719 					     fsize - offset);
2720 			size_t copied;
2721 
2722 			if (end_offset < folio_pos(folio))
2723 				break;
2724 			if (i > 0)
2725 				folio_mark_accessed(folio);
2726 			/*
2727 			 * If users can be writing to this folio using arbitrary
2728 			 * virtual addresses, take care of potential aliasing
2729 			 * before reading the folio on the kernel side.
2730 			 */
2731 			if (writably_mapped)
2732 				flush_dcache_folio(folio);
2733 
2734 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2735 
2736 			already_read += copied;
2737 			iocb->ki_pos += copied;
2738 			ra->prev_pos = iocb->ki_pos;
2739 
2740 			if (copied < bytes) {
2741 				error = -EFAULT;
2742 				break;
2743 			}
2744 		}
2745 put_folios:
2746 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2747 			folio_put(fbatch.folios[i]);
2748 		folio_batch_init(&fbatch);
2749 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2750 
2751 	file_accessed(filp);
2752 
2753 	return already_read ? already_read : error;
2754 }
2755 EXPORT_SYMBOL_GPL(filemap_read);
2756 
2757 /**
2758  * generic_file_read_iter - generic filesystem read routine
2759  * @iocb:	kernel I/O control block
2760  * @iter:	destination for the data read
2761  *
2762  * This is the "read_iter()" routine for all filesystems
2763  * that can use the page cache directly.
2764  *
2765  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2766  * be returned when no data can be read without waiting for I/O requests
2767  * to complete; it doesn't prevent readahead.
2768  *
2769  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2770  * requests shall be made for the read or for readahead.  When no data
2771  * can be read, -EAGAIN shall be returned.  When readahead would be
2772  * triggered, a partial, possibly empty read shall be returned.
2773  *
2774  * Return:
2775  * * number of bytes copied, even for partial reads
2776  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2777  */
2778 ssize_t
2779 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2780 {
2781 	size_t count = iov_iter_count(iter);
2782 	ssize_t retval = 0;
2783 
2784 	if (!count)
2785 		return 0; /* skip atime */
2786 
2787 	if (iocb->ki_flags & IOCB_DIRECT) {
2788 		struct file *file = iocb->ki_filp;
2789 		struct address_space *mapping = file->f_mapping;
2790 		struct inode *inode = mapping->host;
2791 
2792 		if (iocb->ki_flags & IOCB_NOWAIT) {
2793 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2794 						iocb->ki_pos + count - 1))
2795 				return -EAGAIN;
2796 		} else {
2797 			retval = filemap_write_and_wait_range(mapping,
2798 						iocb->ki_pos,
2799 					        iocb->ki_pos + count - 1);
2800 			if (retval < 0)
2801 				return retval;
2802 		}
2803 
2804 		file_accessed(file);
2805 
2806 		retval = mapping->a_ops->direct_IO(iocb, iter);
2807 		if (retval >= 0) {
2808 			iocb->ki_pos += retval;
2809 			count -= retval;
2810 		}
2811 		if (retval != -EIOCBQUEUED)
2812 			iov_iter_revert(iter, count - iov_iter_count(iter));
2813 
2814 		/*
2815 		 * Btrfs can have a short DIO read if we encounter
2816 		 * compressed extents, so if there was an error, or if
2817 		 * we've already read everything we wanted to, or if
2818 		 * there was a short read because we hit EOF, go ahead
2819 		 * and return.  Otherwise fallthrough to buffered io for
2820 		 * the rest of the read.  Buffered reads will not work for
2821 		 * DAX files, so don't bother trying.
2822 		 */
2823 		if (retval < 0 || !count || IS_DAX(inode))
2824 			return retval;
2825 		if (iocb->ki_pos >= i_size_read(inode))
2826 			return retval;
2827 	}
2828 
2829 	return filemap_read(iocb, iter, retval);
2830 }
2831 EXPORT_SYMBOL(generic_file_read_iter);
2832 
2833 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2834 		struct address_space *mapping, struct folio *folio,
2835 		loff_t start, loff_t end, bool seek_data)
2836 {
2837 	const struct address_space_operations *ops = mapping->a_ops;
2838 	size_t offset, bsz = i_blocksize(mapping->host);
2839 
2840 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2841 		return seek_data ? start : end;
2842 	if (!ops->is_partially_uptodate)
2843 		return seek_data ? end : start;
2844 
2845 	xas_pause(xas);
2846 	rcu_read_unlock();
2847 	folio_lock(folio);
2848 	if (unlikely(folio->mapping != mapping))
2849 		goto unlock;
2850 
2851 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2852 
2853 	do {
2854 		if (ops->is_partially_uptodate(&folio->page, offset, bsz) ==
2855 							seek_data)
2856 			break;
2857 		start = (start + bsz) & ~(bsz - 1);
2858 		offset += bsz;
2859 	} while (offset < folio_size(folio));
2860 unlock:
2861 	folio_unlock(folio);
2862 	rcu_read_lock();
2863 	return start;
2864 }
2865 
2866 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2867 {
2868 	if (xa_is_value(folio))
2869 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2870 	return folio_size(folio);
2871 }
2872 
2873 /**
2874  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2875  * @mapping: Address space to search.
2876  * @start: First byte to consider.
2877  * @end: Limit of search (exclusive).
2878  * @whence: Either SEEK_HOLE or SEEK_DATA.
2879  *
2880  * If the page cache knows which blocks contain holes and which blocks
2881  * contain data, your filesystem can use this function to implement
2882  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2883  * entirely memory-based such as tmpfs, and filesystems which support
2884  * unwritten extents.
2885  *
2886  * Return: The requested offset on success, or -ENXIO if @whence specifies
2887  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2888  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2889  * and @end contain data.
2890  */
2891 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2892 		loff_t end, int whence)
2893 {
2894 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2895 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2896 	bool seek_data = (whence == SEEK_DATA);
2897 	struct folio *folio;
2898 
2899 	if (end <= start)
2900 		return -ENXIO;
2901 
2902 	rcu_read_lock();
2903 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2904 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2905 		size_t seek_size;
2906 
2907 		if (start < pos) {
2908 			if (!seek_data)
2909 				goto unlock;
2910 			start = pos;
2911 		}
2912 
2913 		seek_size = seek_folio_size(&xas, folio);
2914 		pos = round_up((u64)pos + 1, seek_size);
2915 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2916 				seek_data);
2917 		if (start < pos)
2918 			goto unlock;
2919 		if (start >= end)
2920 			break;
2921 		if (seek_size > PAGE_SIZE)
2922 			xas_set(&xas, pos >> PAGE_SHIFT);
2923 		if (!xa_is_value(folio))
2924 			folio_put(folio);
2925 	}
2926 	if (seek_data)
2927 		start = -ENXIO;
2928 unlock:
2929 	rcu_read_unlock();
2930 	if (folio && !xa_is_value(folio))
2931 		folio_put(folio);
2932 	if (start > end)
2933 		return end;
2934 	return start;
2935 }
2936 
2937 #ifdef CONFIG_MMU
2938 #define MMAP_LOTSAMISS  (100)
2939 /*
2940  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2941  * @vmf - the vm_fault for this fault.
2942  * @folio - the folio to lock.
2943  * @fpin - the pointer to the file we may pin (or is already pinned).
2944  *
2945  * This works similar to lock_folio_or_retry in that it can drop the
2946  * mmap_lock.  It differs in that it actually returns the folio locked
2947  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2948  * to drop the mmap_lock then fpin will point to the pinned file and
2949  * needs to be fput()'ed at a later point.
2950  */
2951 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2952 				     struct file **fpin)
2953 {
2954 	if (folio_trylock(folio))
2955 		return 1;
2956 
2957 	/*
2958 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2959 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2960 	 * is supposed to work. We have way too many special cases..
2961 	 */
2962 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2963 		return 0;
2964 
2965 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2966 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2967 		if (__folio_lock_killable(folio)) {
2968 			/*
2969 			 * We didn't have the right flags to drop the mmap_lock,
2970 			 * but all fault_handlers only check for fatal signals
2971 			 * if we return VM_FAULT_RETRY, so we need to drop the
2972 			 * mmap_lock here and return 0 if we don't have a fpin.
2973 			 */
2974 			if (*fpin == NULL)
2975 				mmap_read_unlock(vmf->vma->vm_mm);
2976 			return 0;
2977 		}
2978 	} else
2979 		__folio_lock(folio);
2980 
2981 	return 1;
2982 }
2983 
2984 /*
2985  * Synchronous readahead happens when we don't even find a page in the page
2986  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2987  * to drop the mmap sem we return the file that was pinned in order for us to do
2988  * that.  If we didn't pin a file then we return NULL.  The file that is
2989  * returned needs to be fput()'ed when we're done with it.
2990  */
2991 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2992 {
2993 	struct file *file = vmf->vma->vm_file;
2994 	struct file_ra_state *ra = &file->f_ra;
2995 	struct address_space *mapping = file->f_mapping;
2996 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2997 	struct file *fpin = NULL;
2998 	unsigned int mmap_miss;
2999 
3000 	/* If we don't want any read-ahead, don't bother */
3001 	if (vmf->vma->vm_flags & VM_RAND_READ)
3002 		return fpin;
3003 	if (!ra->ra_pages)
3004 		return fpin;
3005 
3006 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
3007 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3008 		page_cache_sync_ra(&ractl, ra->ra_pages);
3009 		return fpin;
3010 	}
3011 
3012 	/* Avoid banging the cache line if not needed */
3013 	mmap_miss = READ_ONCE(ra->mmap_miss);
3014 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3015 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3016 
3017 	/*
3018 	 * Do we miss much more than hit in this file? If so,
3019 	 * stop bothering with read-ahead. It will only hurt.
3020 	 */
3021 	if (mmap_miss > MMAP_LOTSAMISS)
3022 		return fpin;
3023 
3024 	/*
3025 	 * mmap read-around
3026 	 */
3027 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3028 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3029 	ra->size = ra->ra_pages;
3030 	ra->async_size = ra->ra_pages / 4;
3031 	ractl._index = ra->start;
3032 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
3033 	return fpin;
3034 }
3035 
3036 /*
3037  * Asynchronous readahead happens when we find the page and PG_readahead,
3038  * so we want to possibly extend the readahead further.  We return the file that
3039  * was pinned if we have to drop the mmap_lock in order to do IO.
3040  */
3041 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3042 					    struct folio *folio)
3043 {
3044 	struct file *file = vmf->vma->vm_file;
3045 	struct file_ra_state *ra = &file->f_ra;
3046 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3047 	struct file *fpin = NULL;
3048 	unsigned int mmap_miss;
3049 
3050 	/* If we don't want any read-ahead, don't bother */
3051 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3052 		return fpin;
3053 
3054 	mmap_miss = READ_ONCE(ra->mmap_miss);
3055 	if (mmap_miss)
3056 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3057 
3058 	if (folio_test_readahead(folio)) {
3059 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3060 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3061 	}
3062 	return fpin;
3063 }
3064 
3065 /**
3066  * filemap_fault - read in file data for page fault handling
3067  * @vmf:	struct vm_fault containing details of the fault
3068  *
3069  * filemap_fault() is invoked via the vma operations vector for a
3070  * mapped memory region to read in file data during a page fault.
3071  *
3072  * The goto's are kind of ugly, but this streamlines the normal case of having
3073  * it in the page cache, and handles the special cases reasonably without
3074  * having a lot of duplicated code.
3075  *
3076  * vma->vm_mm->mmap_lock must be held on entry.
3077  *
3078  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3079  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3080  *
3081  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3082  * has not been released.
3083  *
3084  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3085  *
3086  * Return: bitwise-OR of %VM_FAULT_ codes.
3087  */
3088 vm_fault_t filemap_fault(struct vm_fault *vmf)
3089 {
3090 	int error;
3091 	struct file *file = vmf->vma->vm_file;
3092 	struct file *fpin = NULL;
3093 	struct address_space *mapping = file->f_mapping;
3094 	struct inode *inode = mapping->host;
3095 	pgoff_t max_idx, index = vmf->pgoff;
3096 	struct folio *folio;
3097 	vm_fault_t ret = 0;
3098 	bool mapping_locked = false;
3099 
3100 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3101 	if (unlikely(index >= max_idx))
3102 		return VM_FAULT_SIGBUS;
3103 
3104 	/*
3105 	 * Do we have something in the page cache already?
3106 	 */
3107 	folio = filemap_get_folio(mapping, index);
3108 	if (likely(folio)) {
3109 		/*
3110 		 * We found the page, so try async readahead before waiting for
3111 		 * the lock.
3112 		 */
3113 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3114 			fpin = do_async_mmap_readahead(vmf, folio);
3115 		if (unlikely(!folio_test_uptodate(folio))) {
3116 			filemap_invalidate_lock_shared(mapping);
3117 			mapping_locked = true;
3118 		}
3119 	} else {
3120 		/* No page in the page cache at all */
3121 		count_vm_event(PGMAJFAULT);
3122 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3123 		ret = VM_FAULT_MAJOR;
3124 		fpin = do_sync_mmap_readahead(vmf);
3125 retry_find:
3126 		/*
3127 		 * See comment in filemap_create_folio() why we need
3128 		 * invalidate_lock
3129 		 */
3130 		if (!mapping_locked) {
3131 			filemap_invalidate_lock_shared(mapping);
3132 			mapping_locked = true;
3133 		}
3134 		folio = __filemap_get_folio(mapping, index,
3135 					  FGP_CREAT|FGP_FOR_MMAP,
3136 					  vmf->gfp_mask);
3137 		if (!folio) {
3138 			if (fpin)
3139 				goto out_retry;
3140 			filemap_invalidate_unlock_shared(mapping);
3141 			return VM_FAULT_OOM;
3142 		}
3143 	}
3144 
3145 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3146 		goto out_retry;
3147 
3148 	/* Did it get truncated? */
3149 	if (unlikely(folio->mapping != mapping)) {
3150 		folio_unlock(folio);
3151 		folio_put(folio);
3152 		goto retry_find;
3153 	}
3154 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3155 
3156 	/*
3157 	 * We have a locked page in the page cache, now we need to check
3158 	 * that it's up-to-date. If not, it is going to be due to an error.
3159 	 */
3160 	if (unlikely(!folio_test_uptodate(folio))) {
3161 		/*
3162 		 * The page was in cache and uptodate and now it is not.
3163 		 * Strange but possible since we didn't hold the page lock all
3164 		 * the time. Let's drop everything get the invalidate lock and
3165 		 * try again.
3166 		 */
3167 		if (!mapping_locked) {
3168 			folio_unlock(folio);
3169 			folio_put(folio);
3170 			goto retry_find;
3171 		}
3172 		goto page_not_uptodate;
3173 	}
3174 
3175 	/*
3176 	 * We've made it this far and we had to drop our mmap_lock, now is the
3177 	 * time to return to the upper layer and have it re-find the vma and
3178 	 * redo the fault.
3179 	 */
3180 	if (fpin) {
3181 		folio_unlock(folio);
3182 		goto out_retry;
3183 	}
3184 	if (mapping_locked)
3185 		filemap_invalidate_unlock_shared(mapping);
3186 
3187 	/*
3188 	 * Found the page and have a reference on it.
3189 	 * We must recheck i_size under page lock.
3190 	 */
3191 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3192 	if (unlikely(index >= max_idx)) {
3193 		folio_unlock(folio);
3194 		folio_put(folio);
3195 		return VM_FAULT_SIGBUS;
3196 	}
3197 
3198 	vmf->page = folio_file_page(folio, index);
3199 	return ret | VM_FAULT_LOCKED;
3200 
3201 page_not_uptodate:
3202 	/*
3203 	 * Umm, take care of errors if the page isn't up-to-date.
3204 	 * Try to re-read it _once_. We do this synchronously,
3205 	 * because there really aren't any performance issues here
3206 	 * and we need to check for errors.
3207 	 */
3208 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3209 	error = filemap_read_folio(file, mapping, folio);
3210 	if (fpin)
3211 		goto out_retry;
3212 	folio_put(folio);
3213 
3214 	if (!error || error == AOP_TRUNCATED_PAGE)
3215 		goto retry_find;
3216 	filemap_invalidate_unlock_shared(mapping);
3217 
3218 	return VM_FAULT_SIGBUS;
3219 
3220 out_retry:
3221 	/*
3222 	 * We dropped the mmap_lock, we need to return to the fault handler to
3223 	 * re-find the vma and come back and find our hopefully still populated
3224 	 * page.
3225 	 */
3226 	if (folio)
3227 		folio_put(folio);
3228 	if (mapping_locked)
3229 		filemap_invalidate_unlock_shared(mapping);
3230 	if (fpin)
3231 		fput(fpin);
3232 	return ret | VM_FAULT_RETRY;
3233 }
3234 EXPORT_SYMBOL(filemap_fault);
3235 
3236 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3237 {
3238 	struct mm_struct *mm = vmf->vma->vm_mm;
3239 
3240 	/* Huge page is mapped? No need to proceed. */
3241 	if (pmd_trans_huge(*vmf->pmd)) {
3242 		unlock_page(page);
3243 		put_page(page);
3244 		return true;
3245 	}
3246 
3247 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3248 		vm_fault_t ret = do_set_pmd(vmf, page);
3249 		if (!ret) {
3250 			/* The page is mapped successfully, reference consumed. */
3251 			unlock_page(page);
3252 			return true;
3253 		}
3254 	}
3255 
3256 	if (pmd_none(*vmf->pmd))
3257 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3258 
3259 	/* See comment in handle_pte_fault() */
3260 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3261 		unlock_page(page);
3262 		put_page(page);
3263 		return true;
3264 	}
3265 
3266 	return false;
3267 }
3268 
3269 static struct folio *next_uptodate_page(struct folio *folio,
3270 				       struct address_space *mapping,
3271 				       struct xa_state *xas, pgoff_t end_pgoff)
3272 {
3273 	unsigned long max_idx;
3274 
3275 	do {
3276 		if (!folio)
3277 			return NULL;
3278 		if (xas_retry(xas, folio))
3279 			continue;
3280 		if (xa_is_value(folio))
3281 			continue;
3282 		if (folio_test_locked(folio))
3283 			continue;
3284 		if (!folio_try_get_rcu(folio))
3285 			continue;
3286 		/* Has the page moved or been split? */
3287 		if (unlikely(folio != xas_reload(xas)))
3288 			goto skip;
3289 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3290 			goto skip;
3291 		if (!folio_trylock(folio))
3292 			goto skip;
3293 		if (folio->mapping != mapping)
3294 			goto unlock;
3295 		if (!folio_test_uptodate(folio))
3296 			goto unlock;
3297 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3298 		if (xas->xa_index >= max_idx)
3299 			goto unlock;
3300 		return folio;
3301 unlock:
3302 		folio_unlock(folio);
3303 skip:
3304 		folio_put(folio);
3305 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3306 
3307 	return NULL;
3308 }
3309 
3310 static inline struct folio *first_map_page(struct address_space *mapping,
3311 					  struct xa_state *xas,
3312 					  pgoff_t end_pgoff)
3313 {
3314 	return next_uptodate_page(xas_find(xas, end_pgoff),
3315 				  mapping, xas, end_pgoff);
3316 }
3317 
3318 static inline struct folio *next_map_page(struct address_space *mapping,
3319 					 struct xa_state *xas,
3320 					 pgoff_t end_pgoff)
3321 {
3322 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3323 				  mapping, xas, end_pgoff);
3324 }
3325 
3326 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3327 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3328 {
3329 	struct vm_area_struct *vma = vmf->vma;
3330 	struct file *file = vma->vm_file;
3331 	struct address_space *mapping = file->f_mapping;
3332 	pgoff_t last_pgoff = start_pgoff;
3333 	unsigned long addr;
3334 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3335 	struct folio *folio;
3336 	struct page *page;
3337 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3338 	vm_fault_t ret = 0;
3339 
3340 	rcu_read_lock();
3341 	folio = first_map_page(mapping, &xas, end_pgoff);
3342 	if (!folio)
3343 		goto out;
3344 
3345 	if (filemap_map_pmd(vmf, &folio->page)) {
3346 		ret = VM_FAULT_NOPAGE;
3347 		goto out;
3348 	}
3349 
3350 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3351 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3352 	do {
3353 again:
3354 		page = folio_file_page(folio, xas.xa_index);
3355 		if (PageHWPoison(page))
3356 			goto unlock;
3357 
3358 		if (mmap_miss > 0)
3359 			mmap_miss--;
3360 
3361 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3362 		vmf->pte += xas.xa_index - last_pgoff;
3363 		last_pgoff = xas.xa_index;
3364 
3365 		if (!pte_none(*vmf->pte))
3366 			goto unlock;
3367 
3368 		/* We're about to handle the fault */
3369 		if (vmf->address == addr)
3370 			ret = VM_FAULT_NOPAGE;
3371 
3372 		do_set_pte(vmf, page, addr);
3373 		/* no need to invalidate: a not-present page won't be cached */
3374 		update_mmu_cache(vma, addr, vmf->pte);
3375 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3376 			xas.xa_index++;
3377 			folio_ref_inc(folio);
3378 			goto again;
3379 		}
3380 		folio_unlock(folio);
3381 		continue;
3382 unlock:
3383 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3384 			xas.xa_index++;
3385 			goto again;
3386 		}
3387 		folio_unlock(folio);
3388 		folio_put(folio);
3389 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3390 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3391 out:
3392 	rcu_read_unlock();
3393 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3394 	return ret;
3395 }
3396 EXPORT_SYMBOL(filemap_map_pages);
3397 
3398 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3399 {
3400 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3401 	struct folio *folio = page_folio(vmf->page);
3402 	vm_fault_t ret = VM_FAULT_LOCKED;
3403 
3404 	sb_start_pagefault(mapping->host->i_sb);
3405 	file_update_time(vmf->vma->vm_file);
3406 	folio_lock(folio);
3407 	if (folio->mapping != mapping) {
3408 		folio_unlock(folio);
3409 		ret = VM_FAULT_NOPAGE;
3410 		goto out;
3411 	}
3412 	/*
3413 	 * We mark the folio dirty already here so that when freeze is in
3414 	 * progress, we are guaranteed that writeback during freezing will
3415 	 * see the dirty folio and writeprotect it again.
3416 	 */
3417 	folio_mark_dirty(folio);
3418 	folio_wait_stable(folio);
3419 out:
3420 	sb_end_pagefault(mapping->host->i_sb);
3421 	return ret;
3422 }
3423 
3424 const struct vm_operations_struct generic_file_vm_ops = {
3425 	.fault		= filemap_fault,
3426 	.map_pages	= filemap_map_pages,
3427 	.page_mkwrite	= filemap_page_mkwrite,
3428 };
3429 
3430 /* This is used for a general mmap of a disk file */
3431 
3432 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3433 {
3434 	struct address_space *mapping = file->f_mapping;
3435 
3436 	if (!mapping->a_ops->readpage)
3437 		return -ENOEXEC;
3438 	file_accessed(file);
3439 	vma->vm_ops = &generic_file_vm_ops;
3440 	return 0;
3441 }
3442 
3443 /*
3444  * This is for filesystems which do not implement ->writepage.
3445  */
3446 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3447 {
3448 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3449 		return -EINVAL;
3450 	return generic_file_mmap(file, vma);
3451 }
3452 #else
3453 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3454 {
3455 	return VM_FAULT_SIGBUS;
3456 }
3457 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3458 {
3459 	return -ENOSYS;
3460 }
3461 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3462 {
3463 	return -ENOSYS;
3464 }
3465 #endif /* CONFIG_MMU */
3466 
3467 EXPORT_SYMBOL(filemap_page_mkwrite);
3468 EXPORT_SYMBOL(generic_file_mmap);
3469 EXPORT_SYMBOL(generic_file_readonly_mmap);
3470 
3471 static struct folio *do_read_cache_folio(struct address_space *mapping,
3472 		pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3473 {
3474 	struct folio *folio;
3475 	int err;
3476 repeat:
3477 	folio = filemap_get_folio(mapping, index);
3478 	if (!folio) {
3479 		folio = filemap_alloc_folio(gfp, 0);
3480 		if (!folio)
3481 			return ERR_PTR(-ENOMEM);
3482 		err = filemap_add_folio(mapping, folio, index, gfp);
3483 		if (unlikely(err)) {
3484 			folio_put(folio);
3485 			if (err == -EEXIST)
3486 				goto repeat;
3487 			/* Presumably ENOMEM for xarray node */
3488 			return ERR_PTR(err);
3489 		}
3490 
3491 filler:
3492 		if (filler)
3493 			err = filler(data, &folio->page);
3494 		else
3495 			err = mapping->a_ops->readpage(data, &folio->page);
3496 
3497 		if (err < 0) {
3498 			folio_put(folio);
3499 			return ERR_PTR(err);
3500 		}
3501 
3502 		folio_wait_locked(folio);
3503 		if (!folio_test_uptodate(folio)) {
3504 			folio_put(folio);
3505 			return ERR_PTR(-EIO);
3506 		}
3507 
3508 		goto out;
3509 	}
3510 	if (folio_test_uptodate(folio))
3511 		goto out;
3512 
3513 	if (!folio_trylock(folio)) {
3514 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3515 		goto repeat;
3516 	}
3517 
3518 	/* Folio was truncated from mapping */
3519 	if (!folio->mapping) {
3520 		folio_unlock(folio);
3521 		folio_put(folio);
3522 		goto repeat;
3523 	}
3524 
3525 	/* Someone else locked and filled the page in a very small window */
3526 	if (folio_test_uptodate(folio)) {
3527 		folio_unlock(folio);
3528 		goto out;
3529 	}
3530 
3531 	/*
3532 	 * A previous I/O error may have been due to temporary
3533 	 * failures.
3534 	 * Clear page error before actual read, PG_error will be
3535 	 * set again if read page fails.
3536 	 */
3537 	folio_clear_error(folio);
3538 	goto filler;
3539 
3540 out:
3541 	folio_mark_accessed(folio);
3542 	return folio;
3543 }
3544 
3545 /**
3546  * read_cache_folio - read into page cache, fill it if needed
3547  * @mapping:	the page's address_space
3548  * @index:	the page index
3549  * @filler:	function to perform the read
3550  * @data:	first arg to filler(data, page) function, often left as NULL
3551  *
3552  * Read into the page cache. If a page already exists, and PageUptodate() is
3553  * not set, try to fill the page and wait for it to become unlocked.
3554  *
3555  * If the page does not get brought uptodate, return -EIO.
3556  *
3557  * The function expects mapping->invalidate_lock to be already held.
3558  *
3559  * Return: up to date page on success, ERR_PTR() on failure.
3560  */
3561 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3562 		filler_t filler, void *data)
3563 {
3564 	return do_read_cache_folio(mapping, index, filler, data,
3565 			mapping_gfp_mask(mapping));
3566 }
3567 EXPORT_SYMBOL(read_cache_folio);
3568 
3569 static struct page *do_read_cache_page(struct address_space *mapping,
3570 		pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3571 {
3572 	struct folio *folio;
3573 
3574 	folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3575 	if (IS_ERR(folio))
3576 		return &folio->page;
3577 	return folio_file_page(folio, index);
3578 }
3579 
3580 struct page *read_cache_page(struct address_space *mapping,
3581 				pgoff_t index, filler_t *filler, void *data)
3582 {
3583 	return do_read_cache_page(mapping, index, filler, data,
3584 			mapping_gfp_mask(mapping));
3585 }
3586 EXPORT_SYMBOL(read_cache_page);
3587 
3588 /**
3589  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3590  * @mapping:	the page's address_space
3591  * @index:	the page index
3592  * @gfp:	the page allocator flags to use if allocating
3593  *
3594  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3595  * any new page allocations done using the specified allocation flags.
3596  *
3597  * If the page does not get brought uptodate, return -EIO.
3598  *
3599  * The function expects mapping->invalidate_lock to be already held.
3600  *
3601  * Return: up to date page on success, ERR_PTR() on failure.
3602  */
3603 struct page *read_cache_page_gfp(struct address_space *mapping,
3604 				pgoff_t index,
3605 				gfp_t gfp)
3606 {
3607 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3608 }
3609 EXPORT_SYMBOL(read_cache_page_gfp);
3610 
3611 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3612 				loff_t pos, unsigned len, unsigned flags,
3613 				struct page **pagep, void **fsdata)
3614 {
3615 	const struct address_space_operations *aops = mapping->a_ops;
3616 
3617 	return aops->write_begin(file, mapping, pos, len, flags,
3618 							pagep, fsdata);
3619 }
3620 EXPORT_SYMBOL(pagecache_write_begin);
3621 
3622 int pagecache_write_end(struct file *file, struct address_space *mapping,
3623 				loff_t pos, unsigned len, unsigned copied,
3624 				struct page *page, void *fsdata)
3625 {
3626 	const struct address_space_operations *aops = mapping->a_ops;
3627 
3628 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3629 }
3630 EXPORT_SYMBOL(pagecache_write_end);
3631 
3632 /*
3633  * Warn about a page cache invalidation failure during a direct I/O write.
3634  */
3635 void dio_warn_stale_pagecache(struct file *filp)
3636 {
3637 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3638 	char pathname[128];
3639 	char *path;
3640 
3641 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3642 	if (__ratelimit(&_rs)) {
3643 		path = file_path(filp, pathname, sizeof(pathname));
3644 		if (IS_ERR(path))
3645 			path = "(unknown)";
3646 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3647 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3648 			current->comm);
3649 	}
3650 }
3651 
3652 ssize_t
3653 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3654 {
3655 	struct file	*file = iocb->ki_filp;
3656 	struct address_space *mapping = file->f_mapping;
3657 	struct inode	*inode = mapping->host;
3658 	loff_t		pos = iocb->ki_pos;
3659 	ssize_t		written;
3660 	size_t		write_len;
3661 	pgoff_t		end;
3662 
3663 	write_len = iov_iter_count(from);
3664 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3665 
3666 	if (iocb->ki_flags & IOCB_NOWAIT) {
3667 		/* If there are pages to writeback, return */
3668 		if (filemap_range_has_page(file->f_mapping, pos,
3669 					   pos + write_len - 1))
3670 			return -EAGAIN;
3671 	} else {
3672 		written = filemap_write_and_wait_range(mapping, pos,
3673 							pos + write_len - 1);
3674 		if (written)
3675 			goto out;
3676 	}
3677 
3678 	/*
3679 	 * After a write we want buffered reads to be sure to go to disk to get
3680 	 * the new data.  We invalidate clean cached page from the region we're
3681 	 * about to write.  We do this *before* the write so that we can return
3682 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3683 	 */
3684 	written = invalidate_inode_pages2_range(mapping,
3685 					pos >> PAGE_SHIFT, end);
3686 	/*
3687 	 * If a page can not be invalidated, return 0 to fall back
3688 	 * to buffered write.
3689 	 */
3690 	if (written) {
3691 		if (written == -EBUSY)
3692 			return 0;
3693 		goto out;
3694 	}
3695 
3696 	written = mapping->a_ops->direct_IO(iocb, from);
3697 
3698 	/*
3699 	 * Finally, try again to invalidate clean pages which might have been
3700 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3701 	 * if the source of the write was an mmap'ed region of the file
3702 	 * we're writing.  Either one is a pretty crazy thing to do,
3703 	 * so we don't support it 100%.  If this invalidation
3704 	 * fails, tough, the write still worked...
3705 	 *
3706 	 * Most of the time we do not need this since dio_complete() will do
3707 	 * the invalidation for us. However there are some file systems that
3708 	 * do not end up with dio_complete() being called, so let's not break
3709 	 * them by removing it completely.
3710 	 *
3711 	 * Noticeable example is a blkdev_direct_IO().
3712 	 *
3713 	 * Skip invalidation for async writes or if mapping has no pages.
3714 	 */
3715 	if (written > 0 && mapping->nrpages &&
3716 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3717 		dio_warn_stale_pagecache(file);
3718 
3719 	if (written > 0) {
3720 		pos += written;
3721 		write_len -= written;
3722 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3723 			i_size_write(inode, pos);
3724 			mark_inode_dirty(inode);
3725 		}
3726 		iocb->ki_pos = pos;
3727 	}
3728 	if (written != -EIOCBQUEUED)
3729 		iov_iter_revert(from, write_len - iov_iter_count(from));
3730 out:
3731 	return written;
3732 }
3733 EXPORT_SYMBOL(generic_file_direct_write);
3734 
3735 ssize_t generic_perform_write(struct file *file,
3736 				struct iov_iter *i, loff_t pos)
3737 {
3738 	struct address_space *mapping = file->f_mapping;
3739 	const struct address_space_operations *a_ops = mapping->a_ops;
3740 	long status = 0;
3741 	ssize_t written = 0;
3742 	unsigned int flags = 0;
3743 
3744 	do {
3745 		struct page *page;
3746 		unsigned long offset;	/* Offset into pagecache page */
3747 		unsigned long bytes;	/* Bytes to write to page */
3748 		size_t copied;		/* Bytes copied from user */
3749 		void *fsdata;
3750 
3751 		offset = (pos & (PAGE_SIZE - 1));
3752 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3753 						iov_iter_count(i));
3754 
3755 again:
3756 		/*
3757 		 * Bring in the user page that we will copy from _first_.
3758 		 * Otherwise there's a nasty deadlock on copying from the
3759 		 * same page as we're writing to, without it being marked
3760 		 * up-to-date.
3761 		 */
3762 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3763 			status = -EFAULT;
3764 			break;
3765 		}
3766 
3767 		if (fatal_signal_pending(current)) {
3768 			status = -EINTR;
3769 			break;
3770 		}
3771 
3772 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3773 						&page, &fsdata);
3774 		if (unlikely(status < 0))
3775 			break;
3776 
3777 		if (mapping_writably_mapped(mapping))
3778 			flush_dcache_page(page);
3779 
3780 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3781 		flush_dcache_page(page);
3782 
3783 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3784 						page, fsdata);
3785 		if (unlikely(status != copied)) {
3786 			iov_iter_revert(i, copied - max(status, 0L));
3787 			if (unlikely(status < 0))
3788 				break;
3789 		}
3790 		cond_resched();
3791 
3792 		if (unlikely(status == 0)) {
3793 			/*
3794 			 * A short copy made ->write_end() reject the
3795 			 * thing entirely.  Might be memory poisoning
3796 			 * halfway through, might be a race with munmap,
3797 			 * might be severe memory pressure.
3798 			 */
3799 			if (copied)
3800 				bytes = copied;
3801 			goto again;
3802 		}
3803 		pos += status;
3804 		written += status;
3805 
3806 		balance_dirty_pages_ratelimited(mapping);
3807 	} while (iov_iter_count(i));
3808 
3809 	return written ? written : status;
3810 }
3811 EXPORT_SYMBOL(generic_perform_write);
3812 
3813 /**
3814  * __generic_file_write_iter - write data to a file
3815  * @iocb:	IO state structure (file, offset, etc.)
3816  * @from:	iov_iter with data to write
3817  *
3818  * This function does all the work needed for actually writing data to a
3819  * file. It does all basic checks, removes SUID from the file, updates
3820  * modification times and calls proper subroutines depending on whether we
3821  * do direct IO or a standard buffered write.
3822  *
3823  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3824  * object which does not need locking at all.
3825  *
3826  * This function does *not* take care of syncing data in case of O_SYNC write.
3827  * A caller has to handle it. This is mainly due to the fact that we want to
3828  * avoid syncing under i_rwsem.
3829  *
3830  * Return:
3831  * * number of bytes written, even for truncated writes
3832  * * negative error code if no data has been written at all
3833  */
3834 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3835 {
3836 	struct file *file = iocb->ki_filp;
3837 	struct address_space *mapping = file->f_mapping;
3838 	struct inode 	*inode = mapping->host;
3839 	ssize_t		written = 0;
3840 	ssize_t		err;
3841 	ssize_t		status;
3842 
3843 	/* We can write back this queue in page reclaim */
3844 	current->backing_dev_info = inode_to_bdi(inode);
3845 	err = file_remove_privs(file);
3846 	if (err)
3847 		goto out;
3848 
3849 	err = file_update_time(file);
3850 	if (err)
3851 		goto out;
3852 
3853 	if (iocb->ki_flags & IOCB_DIRECT) {
3854 		loff_t pos, endbyte;
3855 
3856 		written = generic_file_direct_write(iocb, from);
3857 		/*
3858 		 * If the write stopped short of completing, fall back to
3859 		 * buffered writes.  Some filesystems do this for writes to
3860 		 * holes, for example.  For DAX files, a buffered write will
3861 		 * not succeed (even if it did, DAX does not handle dirty
3862 		 * page-cache pages correctly).
3863 		 */
3864 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3865 			goto out;
3866 
3867 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3868 		/*
3869 		 * If generic_perform_write() returned a synchronous error
3870 		 * then we want to return the number of bytes which were
3871 		 * direct-written, or the error code if that was zero.  Note
3872 		 * that this differs from normal direct-io semantics, which
3873 		 * will return -EFOO even if some bytes were written.
3874 		 */
3875 		if (unlikely(status < 0)) {
3876 			err = status;
3877 			goto out;
3878 		}
3879 		/*
3880 		 * We need to ensure that the page cache pages are written to
3881 		 * disk and invalidated to preserve the expected O_DIRECT
3882 		 * semantics.
3883 		 */
3884 		endbyte = pos + status - 1;
3885 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3886 		if (err == 0) {
3887 			iocb->ki_pos = endbyte + 1;
3888 			written += status;
3889 			invalidate_mapping_pages(mapping,
3890 						 pos >> PAGE_SHIFT,
3891 						 endbyte >> PAGE_SHIFT);
3892 		} else {
3893 			/*
3894 			 * We don't know how much we wrote, so just return
3895 			 * the number of bytes which were direct-written
3896 			 */
3897 		}
3898 	} else {
3899 		written = generic_perform_write(file, from, iocb->ki_pos);
3900 		if (likely(written > 0))
3901 			iocb->ki_pos += written;
3902 	}
3903 out:
3904 	current->backing_dev_info = NULL;
3905 	return written ? written : err;
3906 }
3907 EXPORT_SYMBOL(__generic_file_write_iter);
3908 
3909 /**
3910  * generic_file_write_iter - write data to a file
3911  * @iocb:	IO state structure
3912  * @from:	iov_iter with data to write
3913  *
3914  * This is a wrapper around __generic_file_write_iter() to be used by most
3915  * filesystems. It takes care of syncing the file in case of O_SYNC file
3916  * and acquires i_rwsem as needed.
3917  * Return:
3918  * * negative error code if no data has been written at all of
3919  *   vfs_fsync_range() failed for a synchronous write
3920  * * number of bytes written, even for truncated writes
3921  */
3922 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3923 {
3924 	struct file *file = iocb->ki_filp;
3925 	struct inode *inode = file->f_mapping->host;
3926 	ssize_t ret;
3927 
3928 	inode_lock(inode);
3929 	ret = generic_write_checks(iocb, from);
3930 	if (ret > 0)
3931 		ret = __generic_file_write_iter(iocb, from);
3932 	inode_unlock(inode);
3933 
3934 	if (ret > 0)
3935 		ret = generic_write_sync(iocb, ret);
3936 	return ret;
3937 }
3938 EXPORT_SYMBOL(generic_file_write_iter);
3939 
3940 /**
3941  * filemap_release_folio() - Release fs-specific metadata on a folio.
3942  * @folio: The folio which the kernel is trying to free.
3943  * @gfp: Memory allocation flags (and I/O mode).
3944  *
3945  * The address_space is trying to release any data attached to a folio
3946  * (presumably at folio->private).
3947  *
3948  * This will also be called if the private_2 flag is set on a page,
3949  * indicating that the folio has other metadata associated with it.
3950  *
3951  * The @gfp argument specifies whether I/O may be performed to release
3952  * this page (__GFP_IO), and whether the call may block
3953  * (__GFP_RECLAIM & __GFP_FS).
3954  *
3955  * Return: %true if the release was successful, otherwise %false.
3956  */
3957 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3958 {
3959 	struct address_space * const mapping = folio->mapping;
3960 
3961 	BUG_ON(!folio_test_locked(folio));
3962 	if (folio_test_writeback(folio))
3963 		return false;
3964 
3965 	if (mapping && mapping->a_ops->releasepage)
3966 		return mapping->a_ops->releasepage(&folio->page, gfp);
3967 	return try_to_free_buffers(&folio->page);
3968 }
3969 EXPORT_SYMBOL(filemap_release_folio);
3970