1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 int mapcount; 156 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 158 current->comm, folio_pfn(folio)); 159 dump_page(&folio->page, "still mapped when deleted"); 160 dump_stack(); 161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 162 163 mapcount = page_mapcount(&folio->page); 164 if (mapping_exiting(mapping) && 165 folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the folio is unmapped, 169 * and we'd prefer not to leak it: if we're wrong, 170 * some other bad page check should catch it later. 171 */ 172 page_mapcount_reset(&folio->page); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data. 197 * 198 * This fixes dirty accounting after removing the folio entirely 199 * but leaves the dirty flag set: it has no effect for truncated 200 * folio and anyway will be cleared before returning folio to 201 * buddy allocator. 202 */ 203 if (WARN_ON_ONCE(folio_test_dirty(folio))) 204 folio_account_cleaned(folio, mapping, 205 inode_to_wb(mapping->host)); 206 } 207 208 /* 209 * Delete a page from the page cache and free it. Caller has to make 210 * sure the page is locked and that nobody else uses it - or that usage 211 * is safe. The caller must hold the i_pages lock. 212 */ 213 void __filemap_remove_folio(struct folio *folio, void *shadow) 214 { 215 struct address_space *mapping = folio->mapping; 216 217 trace_mm_filemap_delete_from_page_cache(folio); 218 filemap_unaccount_folio(mapping, folio); 219 page_cache_delete(mapping, folio, shadow); 220 } 221 222 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 223 { 224 void (*freepage)(struct page *); 225 int refs = 1; 226 227 freepage = mapping->a_ops->freepage; 228 if (freepage) 229 freepage(&folio->page); 230 231 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 232 refs = folio_nr_pages(folio); 233 folio_put_refs(folio, refs); 234 } 235 236 /** 237 * filemap_remove_folio - Remove folio from page cache. 238 * @folio: The folio. 239 * 240 * This must be called only on folios that are locked and have been 241 * verified to be in the page cache. It will never put the folio into 242 * the free list because the caller has a reference on the page. 243 */ 244 void filemap_remove_folio(struct folio *folio) 245 { 246 struct address_space *mapping = folio->mapping; 247 248 BUG_ON(!folio_test_locked(folio)); 249 spin_lock(&mapping->host->i_lock); 250 xa_lock_irq(&mapping->i_pages); 251 __filemap_remove_folio(folio, NULL); 252 xa_unlock_irq(&mapping->i_pages); 253 if (mapping_shrinkable(mapping)) 254 inode_add_lru(mapping->host); 255 spin_unlock(&mapping->host->i_lock); 256 257 filemap_free_folio(mapping, folio); 258 } 259 260 /* 261 * page_cache_delete_batch - delete several folios from page cache 262 * @mapping: the mapping to which folios belong 263 * @fbatch: batch of folios to delete 264 * 265 * The function walks over mapping->i_pages and removes folios passed in 266 * @fbatch from the mapping. The function expects @fbatch to be sorted 267 * by page index and is optimised for it to be dense. 268 * It tolerates holes in @fbatch (mapping entries at those indices are not 269 * modified). 270 * 271 * The function expects the i_pages lock to be held. 272 */ 273 static void page_cache_delete_batch(struct address_space *mapping, 274 struct folio_batch *fbatch) 275 { 276 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 277 long total_pages = 0; 278 int i = 0; 279 struct folio *folio; 280 281 mapping_set_update(&xas, mapping); 282 xas_for_each(&xas, folio, ULONG_MAX) { 283 if (i >= folio_batch_count(fbatch)) 284 break; 285 286 /* A swap/dax/shadow entry got inserted? Skip it. */ 287 if (xa_is_value(folio)) 288 continue; 289 /* 290 * A page got inserted in our range? Skip it. We have our 291 * pages locked so they are protected from being removed. 292 * If we see a page whose index is higher than ours, it 293 * means our page has been removed, which shouldn't be 294 * possible because we're holding the PageLock. 295 */ 296 if (folio != fbatch->folios[i]) { 297 VM_BUG_ON_FOLIO(folio->index > 298 fbatch->folios[i]->index, folio); 299 continue; 300 } 301 302 WARN_ON_ONCE(!folio_test_locked(folio)); 303 304 folio->mapping = NULL; 305 /* Leave folio->index set: truncation lookup relies on it */ 306 307 i++; 308 xas_store(&xas, NULL); 309 total_pages += folio_nr_pages(folio); 310 } 311 mapping->nrpages -= total_pages; 312 } 313 314 void delete_from_page_cache_batch(struct address_space *mapping, 315 struct folio_batch *fbatch) 316 { 317 int i; 318 319 if (!folio_batch_count(fbatch)) 320 return; 321 322 spin_lock(&mapping->host->i_lock); 323 xa_lock_irq(&mapping->i_pages); 324 for (i = 0; i < folio_batch_count(fbatch); i++) { 325 struct folio *folio = fbatch->folios[i]; 326 327 trace_mm_filemap_delete_from_page_cache(folio); 328 filemap_unaccount_folio(mapping, folio); 329 } 330 page_cache_delete_batch(mapping, fbatch); 331 xa_unlock_irq(&mapping->i_pages); 332 if (mapping_shrinkable(mapping)) 333 inode_add_lru(mapping->host); 334 spin_unlock(&mapping->host->i_lock); 335 336 for (i = 0; i < folio_batch_count(fbatch); i++) 337 filemap_free_folio(mapping, fbatch->folios[i]); 338 } 339 340 int filemap_check_errors(struct address_space *mapping) 341 { 342 int ret = 0; 343 /* Check for outstanding write errors */ 344 if (test_bit(AS_ENOSPC, &mapping->flags) && 345 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 346 ret = -ENOSPC; 347 if (test_bit(AS_EIO, &mapping->flags) && 348 test_and_clear_bit(AS_EIO, &mapping->flags)) 349 ret = -EIO; 350 return ret; 351 } 352 EXPORT_SYMBOL(filemap_check_errors); 353 354 static int filemap_check_and_keep_errors(struct address_space *mapping) 355 { 356 /* Check for outstanding write errors */ 357 if (test_bit(AS_EIO, &mapping->flags)) 358 return -EIO; 359 if (test_bit(AS_ENOSPC, &mapping->flags)) 360 return -ENOSPC; 361 return 0; 362 } 363 364 /** 365 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 366 * @mapping: address space structure to write 367 * @wbc: the writeback_control controlling the writeout 368 * 369 * Call writepages on the mapping using the provided wbc to control the 370 * writeout. 371 * 372 * Return: %0 on success, negative error code otherwise. 373 */ 374 int filemap_fdatawrite_wbc(struct address_space *mapping, 375 struct writeback_control *wbc) 376 { 377 int ret; 378 379 if (!mapping_can_writeback(mapping) || 380 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 381 return 0; 382 383 wbc_attach_fdatawrite_inode(wbc, mapping->host); 384 ret = do_writepages(mapping, wbc); 385 wbc_detach_inode(wbc); 386 return ret; 387 } 388 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 389 390 /** 391 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 392 * @mapping: address space structure to write 393 * @start: offset in bytes where the range starts 394 * @end: offset in bytes where the range ends (inclusive) 395 * @sync_mode: enable synchronous operation 396 * 397 * Start writeback against all of a mapping's dirty pages that lie 398 * within the byte offsets <start, end> inclusive. 399 * 400 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 401 * opposed to a regular memory cleansing writeback. The difference between 402 * these two operations is that if a dirty page/buffer is encountered, it must 403 * be waited upon, and not just skipped over. 404 * 405 * Return: %0 on success, negative error code otherwise. 406 */ 407 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 408 loff_t end, int sync_mode) 409 { 410 struct writeback_control wbc = { 411 .sync_mode = sync_mode, 412 .nr_to_write = LONG_MAX, 413 .range_start = start, 414 .range_end = end, 415 }; 416 417 return filemap_fdatawrite_wbc(mapping, &wbc); 418 } 419 420 static inline int __filemap_fdatawrite(struct address_space *mapping, 421 int sync_mode) 422 { 423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 424 } 425 426 int filemap_fdatawrite(struct address_space *mapping) 427 { 428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 429 } 430 EXPORT_SYMBOL(filemap_fdatawrite); 431 432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 433 loff_t end) 434 { 435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite_range); 438 439 /** 440 * filemap_flush - mostly a non-blocking flush 441 * @mapping: target address_space 442 * 443 * This is a mostly non-blocking flush. Not suitable for data-integrity 444 * purposes - I/O may not be started against all dirty pages. 445 * 446 * Return: %0 on success, negative error code otherwise. 447 */ 448 int filemap_flush(struct address_space *mapping) 449 { 450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 451 } 452 EXPORT_SYMBOL(filemap_flush); 453 454 /** 455 * filemap_range_has_page - check if a page exists in range. 456 * @mapping: address space within which to check 457 * @start_byte: offset in bytes where the range starts 458 * @end_byte: offset in bytes where the range ends (inclusive) 459 * 460 * Find at least one page in the range supplied, usually used to check if 461 * direct writing in this range will trigger a writeback. 462 * 463 * Return: %true if at least one page exists in the specified range, 464 * %false otherwise. 465 */ 466 bool filemap_range_has_page(struct address_space *mapping, 467 loff_t start_byte, loff_t end_byte) 468 { 469 struct page *page; 470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 471 pgoff_t max = end_byte >> PAGE_SHIFT; 472 473 if (end_byte < start_byte) 474 return false; 475 476 rcu_read_lock(); 477 for (;;) { 478 page = xas_find(&xas, max); 479 if (xas_retry(&xas, page)) 480 continue; 481 /* Shadow entries don't count */ 482 if (xa_is_value(page)) 483 continue; 484 /* 485 * We don't need to try to pin this page; we're about to 486 * release the RCU lock anyway. It is enough to know that 487 * there was a page here recently. 488 */ 489 break; 490 } 491 rcu_read_unlock(); 492 493 return page != NULL; 494 } 495 EXPORT_SYMBOL(filemap_range_has_page); 496 497 static void __filemap_fdatawait_range(struct address_space *mapping, 498 loff_t start_byte, loff_t end_byte) 499 { 500 pgoff_t index = start_byte >> PAGE_SHIFT; 501 pgoff_t end = end_byte >> PAGE_SHIFT; 502 struct pagevec pvec; 503 int nr_pages; 504 505 if (end_byte < start_byte) 506 return; 507 508 pagevec_init(&pvec); 509 while (index <= end) { 510 unsigned i; 511 512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 513 end, PAGECACHE_TAG_WRITEBACK); 514 if (!nr_pages) 515 break; 516 517 for (i = 0; i < nr_pages; i++) { 518 struct page *page = pvec.pages[i]; 519 520 wait_on_page_writeback(page); 521 ClearPageError(page); 522 } 523 pagevec_release(&pvec); 524 cond_resched(); 525 } 526 } 527 528 /** 529 * filemap_fdatawait_range - wait for writeback to complete 530 * @mapping: address space structure to wait for 531 * @start_byte: offset in bytes where the range starts 532 * @end_byte: offset in bytes where the range ends (inclusive) 533 * 534 * Walk the list of under-writeback pages of the given address space 535 * in the given range and wait for all of them. Check error status of 536 * the address space and return it. 537 * 538 * Since the error status of the address space is cleared by this function, 539 * callers are responsible for checking the return value and handling and/or 540 * reporting the error. 541 * 542 * Return: error status of the address space. 543 */ 544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 545 loff_t end_byte) 546 { 547 __filemap_fdatawait_range(mapping, start_byte, end_byte); 548 return filemap_check_errors(mapping); 549 } 550 EXPORT_SYMBOL(filemap_fdatawait_range); 551 552 /** 553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 554 * @mapping: address space structure to wait for 555 * @start_byte: offset in bytes where the range starts 556 * @end_byte: offset in bytes where the range ends (inclusive) 557 * 558 * Walk the list of under-writeback pages of the given address space in the 559 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 560 * this function does not clear error status of the address space. 561 * 562 * Use this function if callers don't handle errors themselves. Expected 563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 564 * fsfreeze(8) 565 */ 566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 567 loff_t start_byte, loff_t end_byte) 568 { 569 __filemap_fdatawait_range(mapping, start_byte, end_byte); 570 return filemap_check_and_keep_errors(mapping); 571 } 572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 573 574 /** 575 * file_fdatawait_range - wait for writeback to complete 576 * @file: file pointing to address space structure to wait for 577 * @start_byte: offset in bytes where the range starts 578 * @end_byte: offset in bytes where the range ends (inclusive) 579 * 580 * Walk the list of under-writeback pages of the address space that file 581 * refers to, in the given range and wait for all of them. Check error 582 * status of the address space vs. the file->f_wb_err cursor and return it. 583 * 584 * Since the error status of the file is advanced by this function, 585 * callers are responsible for checking the return value and handling and/or 586 * reporting the error. 587 * 588 * Return: error status of the address space vs. the file->f_wb_err cursor. 589 */ 590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 591 { 592 struct address_space *mapping = file->f_mapping; 593 594 __filemap_fdatawait_range(mapping, start_byte, end_byte); 595 return file_check_and_advance_wb_err(file); 596 } 597 EXPORT_SYMBOL(file_fdatawait_range); 598 599 /** 600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 601 * @mapping: address space structure to wait for 602 * 603 * Walk the list of under-writeback pages of the given address space 604 * and wait for all of them. Unlike filemap_fdatawait(), this function 605 * does not clear error status of the address space. 606 * 607 * Use this function if callers don't handle errors themselves. Expected 608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 609 * fsfreeze(8) 610 * 611 * Return: error status of the address space. 612 */ 613 int filemap_fdatawait_keep_errors(struct address_space *mapping) 614 { 615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 616 return filemap_check_and_keep_errors(mapping); 617 } 618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 619 620 /* Returns true if writeback might be needed or already in progress. */ 621 static bool mapping_needs_writeback(struct address_space *mapping) 622 { 623 return mapping->nrpages; 624 } 625 626 bool filemap_range_has_writeback(struct address_space *mapping, 627 loff_t start_byte, loff_t end_byte) 628 { 629 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 630 pgoff_t max = end_byte >> PAGE_SHIFT; 631 struct page *page; 632 633 if (end_byte < start_byte) 634 return false; 635 636 rcu_read_lock(); 637 xas_for_each(&xas, page, max) { 638 if (xas_retry(&xas, page)) 639 continue; 640 if (xa_is_value(page)) 641 continue; 642 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 643 break; 644 } 645 rcu_read_unlock(); 646 return page != NULL; 647 } 648 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 649 650 /** 651 * filemap_write_and_wait_range - write out & wait on a file range 652 * @mapping: the address_space for the pages 653 * @lstart: offset in bytes where the range starts 654 * @lend: offset in bytes where the range ends (inclusive) 655 * 656 * Write out and wait upon file offsets lstart->lend, inclusive. 657 * 658 * Note that @lend is inclusive (describes the last byte to be written) so 659 * that this function can be used to write to the very end-of-file (end = -1). 660 * 661 * Return: error status of the address space. 662 */ 663 int filemap_write_and_wait_range(struct address_space *mapping, 664 loff_t lstart, loff_t lend) 665 { 666 int err = 0; 667 668 if (mapping_needs_writeback(mapping)) { 669 err = __filemap_fdatawrite_range(mapping, lstart, lend, 670 WB_SYNC_ALL); 671 /* 672 * Even if the above returned error, the pages may be 673 * written partially (e.g. -ENOSPC), so we wait for it. 674 * But the -EIO is special case, it may indicate the worst 675 * thing (e.g. bug) happened, so we avoid waiting for it. 676 */ 677 if (err != -EIO) { 678 int err2 = filemap_fdatawait_range(mapping, 679 lstart, lend); 680 if (!err) 681 err = err2; 682 } else { 683 /* Clear any previously stored errors */ 684 filemap_check_errors(mapping); 685 } 686 } else { 687 err = filemap_check_errors(mapping); 688 } 689 return err; 690 } 691 EXPORT_SYMBOL(filemap_write_and_wait_range); 692 693 void __filemap_set_wb_err(struct address_space *mapping, int err) 694 { 695 errseq_t eseq = errseq_set(&mapping->wb_err, err); 696 697 trace_filemap_set_wb_err(mapping, eseq); 698 } 699 EXPORT_SYMBOL(__filemap_set_wb_err); 700 701 /** 702 * file_check_and_advance_wb_err - report wb error (if any) that was previously 703 * and advance wb_err to current one 704 * @file: struct file on which the error is being reported 705 * 706 * When userland calls fsync (or something like nfsd does the equivalent), we 707 * want to report any writeback errors that occurred since the last fsync (or 708 * since the file was opened if there haven't been any). 709 * 710 * Grab the wb_err from the mapping. If it matches what we have in the file, 711 * then just quickly return 0. The file is all caught up. 712 * 713 * If it doesn't match, then take the mapping value, set the "seen" flag in 714 * it and try to swap it into place. If it works, or another task beat us 715 * to it with the new value, then update the f_wb_err and return the error 716 * portion. The error at this point must be reported via proper channels 717 * (a'la fsync, or NFS COMMIT operation, etc.). 718 * 719 * While we handle mapping->wb_err with atomic operations, the f_wb_err 720 * value is protected by the f_lock since we must ensure that it reflects 721 * the latest value swapped in for this file descriptor. 722 * 723 * Return: %0 on success, negative error code otherwise. 724 */ 725 int file_check_and_advance_wb_err(struct file *file) 726 { 727 int err = 0; 728 errseq_t old = READ_ONCE(file->f_wb_err); 729 struct address_space *mapping = file->f_mapping; 730 731 /* Locklessly handle the common case where nothing has changed */ 732 if (errseq_check(&mapping->wb_err, old)) { 733 /* Something changed, must use slow path */ 734 spin_lock(&file->f_lock); 735 old = file->f_wb_err; 736 err = errseq_check_and_advance(&mapping->wb_err, 737 &file->f_wb_err); 738 trace_file_check_and_advance_wb_err(file, old); 739 spin_unlock(&file->f_lock); 740 } 741 742 /* 743 * We're mostly using this function as a drop in replacement for 744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 745 * that the legacy code would have had on these flags. 746 */ 747 clear_bit(AS_EIO, &mapping->flags); 748 clear_bit(AS_ENOSPC, &mapping->flags); 749 return err; 750 } 751 EXPORT_SYMBOL(file_check_and_advance_wb_err); 752 753 /** 754 * file_write_and_wait_range - write out & wait on a file range 755 * @file: file pointing to address_space with pages 756 * @lstart: offset in bytes where the range starts 757 * @lend: offset in bytes where the range ends (inclusive) 758 * 759 * Write out and wait upon file offsets lstart->lend, inclusive. 760 * 761 * Note that @lend is inclusive (describes the last byte to be written) so 762 * that this function can be used to write to the very end-of-file (end = -1). 763 * 764 * After writing out and waiting on the data, we check and advance the 765 * f_wb_err cursor to the latest value, and return any errors detected there. 766 * 767 * Return: %0 on success, negative error code otherwise. 768 */ 769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 770 { 771 int err = 0, err2; 772 struct address_space *mapping = file->f_mapping; 773 774 if (mapping_needs_writeback(mapping)) { 775 err = __filemap_fdatawrite_range(mapping, lstart, lend, 776 WB_SYNC_ALL); 777 /* See comment of filemap_write_and_wait() */ 778 if (err != -EIO) 779 __filemap_fdatawait_range(mapping, lstart, lend); 780 } 781 err2 = file_check_and_advance_wb_err(file); 782 if (!err) 783 err = err2; 784 return err; 785 } 786 EXPORT_SYMBOL(file_write_and_wait_range); 787 788 /** 789 * replace_page_cache_page - replace a pagecache page with a new one 790 * @old: page to be replaced 791 * @new: page to replace with 792 * 793 * This function replaces a page in the pagecache with a new one. On 794 * success it acquires the pagecache reference for the new page and 795 * drops it for the old page. Both the old and new pages must be 796 * locked. This function does not add the new page to the LRU, the 797 * caller must do that. 798 * 799 * The remove + add is atomic. This function cannot fail. 800 */ 801 void replace_page_cache_page(struct page *old, struct page *new) 802 { 803 struct folio *fold = page_folio(old); 804 struct folio *fnew = page_folio(new); 805 struct address_space *mapping = old->mapping; 806 void (*freepage)(struct page *) = mapping->a_ops->freepage; 807 pgoff_t offset = old->index; 808 XA_STATE(xas, &mapping->i_pages, offset); 809 810 VM_BUG_ON_PAGE(!PageLocked(old), old); 811 VM_BUG_ON_PAGE(!PageLocked(new), new); 812 VM_BUG_ON_PAGE(new->mapping, new); 813 814 get_page(new); 815 new->mapping = mapping; 816 new->index = offset; 817 818 mem_cgroup_migrate(fold, fnew); 819 820 xas_lock_irq(&xas); 821 xas_store(&xas, new); 822 823 old->mapping = NULL; 824 /* hugetlb pages do not participate in page cache accounting. */ 825 if (!PageHuge(old)) 826 __dec_lruvec_page_state(old, NR_FILE_PAGES); 827 if (!PageHuge(new)) 828 __inc_lruvec_page_state(new, NR_FILE_PAGES); 829 if (PageSwapBacked(old)) 830 __dec_lruvec_page_state(old, NR_SHMEM); 831 if (PageSwapBacked(new)) 832 __inc_lruvec_page_state(new, NR_SHMEM); 833 xas_unlock_irq(&xas); 834 if (freepage) 835 freepage(old); 836 put_page(old); 837 } 838 EXPORT_SYMBOL_GPL(replace_page_cache_page); 839 840 noinline int __filemap_add_folio(struct address_space *mapping, 841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 842 { 843 XA_STATE(xas, &mapping->i_pages, index); 844 int huge = folio_test_hugetlb(folio); 845 int error; 846 bool charged = false; 847 848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 850 mapping_set_update(&xas, mapping); 851 852 folio_get(folio); 853 folio->mapping = mapping; 854 folio->index = index; 855 856 if (!huge) { 857 error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 goto error; 861 charged = true; 862 } 863 864 gfp &= GFP_RECLAIM_MASK; 865 866 do { 867 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 868 void *entry, *old = NULL; 869 870 if (order > folio_order(folio)) 871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 872 order, gfp); 873 xas_lock_irq(&xas); 874 xas_for_each_conflict(&xas, entry) { 875 old = entry; 876 if (!xa_is_value(entry)) { 877 xas_set_err(&xas, -EEXIST); 878 goto unlock; 879 } 880 } 881 882 if (old) { 883 if (shadowp) 884 *shadowp = old; 885 /* entry may have been split before we acquired lock */ 886 order = xa_get_order(xas.xa, xas.xa_index); 887 if (order > folio_order(folio)) { 888 xas_split(&xas, old, order); 889 xas_reset(&xas); 890 } 891 } 892 893 xas_store(&xas, folio); 894 if (xas_error(&xas)) 895 goto unlock; 896 897 mapping->nrpages++; 898 899 /* hugetlb pages do not participate in page cache accounting */ 900 if (!huge) 901 __lruvec_stat_add_folio(folio, NR_FILE_PAGES); 902 unlock: 903 xas_unlock_irq(&xas); 904 } while (xas_nomem(&xas, gfp)); 905 906 if (xas_error(&xas)) { 907 error = xas_error(&xas); 908 if (charged) 909 mem_cgroup_uncharge(folio); 910 goto error; 911 } 912 913 trace_mm_filemap_add_to_page_cache(folio); 914 return 0; 915 error: 916 folio->mapping = NULL; 917 /* Leave page->index set: truncation relies upon it */ 918 folio_put(folio); 919 return error; 920 } 921 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 922 923 /** 924 * add_to_page_cache_locked - add a locked page to the pagecache 925 * @page: page to add 926 * @mapping: the page's address_space 927 * @offset: page index 928 * @gfp_mask: page allocation mode 929 * 930 * This function is used to add a page to the pagecache. It must be locked. 931 * This function does not add the page to the LRU. The caller must do that. 932 * 933 * Return: %0 on success, negative error code otherwise. 934 */ 935 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 936 pgoff_t offset, gfp_t gfp_mask) 937 { 938 return __filemap_add_folio(mapping, page_folio(page), offset, 939 gfp_mask, NULL); 940 } 941 EXPORT_SYMBOL(add_to_page_cache_locked); 942 943 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 944 pgoff_t index, gfp_t gfp) 945 { 946 void *shadow = NULL; 947 int ret; 948 949 __folio_set_locked(folio); 950 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 951 if (unlikely(ret)) 952 __folio_clear_locked(folio); 953 else { 954 /* 955 * The folio might have been evicted from cache only 956 * recently, in which case it should be activated like 957 * any other repeatedly accessed folio. 958 * The exception is folios getting rewritten; evicting other 959 * data from the working set, only to cache data that will 960 * get overwritten with something else, is a waste of memory. 961 */ 962 WARN_ON_ONCE(folio_test_active(folio)); 963 if (!(gfp & __GFP_WRITE) && shadow) 964 workingset_refault(folio, shadow); 965 folio_add_lru(folio); 966 } 967 return ret; 968 } 969 EXPORT_SYMBOL_GPL(filemap_add_folio); 970 971 #ifdef CONFIG_NUMA 972 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 973 { 974 int n; 975 struct folio *folio; 976 977 if (cpuset_do_page_mem_spread()) { 978 unsigned int cpuset_mems_cookie; 979 do { 980 cpuset_mems_cookie = read_mems_allowed_begin(); 981 n = cpuset_mem_spread_node(); 982 folio = __folio_alloc_node(gfp, order, n); 983 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 984 985 return folio; 986 } 987 return folio_alloc(gfp, order); 988 } 989 EXPORT_SYMBOL(filemap_alloc_folio); 990 #endif 991 992 /* 993 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 994 * 995 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 996 * 997 * @mapping1: the first mapping to lock 998 * @mapping2: the second mapping to lock 999 */ 1000 void filemap_invalidate_lock_two(struct address_space *mapping1, 1001 struct address_space *mapping2) 1002 { 1003 if (mapping1 > mapping2) 1004 swap(mapping1, mapping2); 1005 if (mapping1) 1006 down_write(&mapping1->invalidate_lock); 1007 if (mapping2 && mapping1 != mapping2) 1008 down_write_nested(&mapping2->invalidate_lock, 1); 1009 } 1010 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1011 1012 /* 1013 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1014 * 1015 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1016 * 1017 * @mapping1: the first mapping to unlock 1018 * @mapping2: the second mapping to unlock 1019 */ 1020 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1021 struct address_space *mapping2) 1022 { 1023 if (mapping1) 1024 up_write(&mapping1->invalidate_lock); 1025 if (mapping2 && mapping1 != mapping2) 1026 up_write(&mapping2->invalidate_lock); 1027 } 1028 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1029 1030 /* 1031 * In order to wait for pages to become available there must be 1032 * waitqueues associated with pages. By using a hash table of 1033 * waitqueues where the bucket discipline is to maintain all 1034 * waiters on the same queue and wake all when any of the pages 1035 * become available, and for the woken contexts to check to be 1036 * sure the appropriate page became available, this saves space 1037 * at a cost of "thundering herd" phenomena during rare hash 1038 * collisions. 1039 */ 1040 #define PAGE_WAIT_TABLE_BITS 8 1041 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1042 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1043 1044 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1045 { 1046 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1047 } 1048 1049 void __init pagecache_init(void) 1050 { 1051 int i; 1052 1053 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1054 init_waitqueue_head(&folio_wait_table[i]); 1055 1056 page_writeback_init(); 1057 1058 /* 1059 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date, 1060 * and splice's page_cache_pipe_buf_confirm() needs to see that. 1061 */ 1062 SetPageUptodate(ZERO_PAGE(0)); 1063 } 1064 1065 /* 1066 * The page wait code treats the "wait->flags" somewhat unusually, because 1067 * we have multiple different kinds of waits, not just the usual "exclusive" 1068 * one. 1069 * 1070 * We have: 1071 * 1072 * (a) no special bits set: 1073 * 1074 * We're just waiting for the bit to be released, and when a waker 1075 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1076 * and remove it from the wait queue. 1077 * 1078 * Simple and straightforward. 1079 * 1080 * (b) WQ_FLAG_EXCLUSIVE: 1081 * 1082 * The waiter is waiting to get the lock, and only one waiter should 1083 * be woken up to avoid any thundering herd behavior. We'll set the 1084 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1085 * 1086 * This is the traditional exclusive wait. 1087 * 1088 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1089 * 1090 * The waiter is waiting to get the bit, and additionally wants the 1091 * lock to be transferred to it for fair lock behavior. If the lock 1092 * cannot be taken, we stop walking the wait queue without waking 1093 * the waiter. 1094 * 1095 * This is the "fair lock handoff" case, and in addition to setting 1096 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1097 * that it now has the lock. 1098 */ 1099 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1100 { 1101 unsigned int flags; 1102 struct wait_page_key *key = arg; 1103 struct wait_page_queue *wait_page 1104 = container_of(wait, struct wait_page_queue, wait); 1105 1106 if (!wake_page_match(wait_page, key)) 1107 return 0; 1108 1109 /* 1110 * If it's a lock handoff wait, we get the bit for it, and 1111 * stop walking (and do not wake it up) if we can't. 1112 */ 1113 flags = wait->flags; 1114 if (flags & WQ_FLAG_EXCLUSIVE) { 1115 if (test_bit(key->bit_nr, &key->folio->flags)) 1116 return -1; 1117 if (flags & WQ_FLAG_CUSTOM) { 1118 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1119 return -1; 1120 flags |= WQ_FLAG_DONE; 1121 } 1122 } 1123 1124 /* 1125 * We are holding the wait-queue lock, but the waiter that 1126 * is waiting for this will be checking the flags without 1127 * any locking. 1128 * 1129 * So update the flags atomically, and wake up the waiter 1130 * afterwards to avoid any races. This store-release pairs 1131 * with the load-acquire in folio_wait_bit_common(). 1132 */ 1133 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1134 wake_up_state(wait->private, mode); 1135 1136 /* 1137 * Ok, we have successfully done what we're waiting for, 1138 * and we can unconditionally remove the wait entry. 1139 * 1140 * Note that this pairs with the "finish_wait()" in the 1141 * waiter, and has to be the absolute last thing we do. 1142 * After this list_del_init(&wait->entry) the wait entry 1143 * might be de-allocated and the process might even have 1144 * exited. 1145 */ 1146 list_del_init_careful(&wait->entry); 1147 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1148 } 1149 1150 static void folio_wake_bit(struct folio *folio, int bit_nr) 1151 { 1152 wait_queue_head_t *q = folio_waitqueue(folio); 1153 struct wait_page_key key; 1154 unsigned long flags; 1155 wait_queue_entry_t bookmark; 1156 1157 key.folio = folio; 1158 key.bit_nr = bit_nr; 1159 key.page_match = 0; 1160 1161 bookmark.flags = 0; 1162 bookmark.private = NULL; 1163 bookmark.func = NULL; 1164 INIT_LIST_HEAD(&bookmark.entry); 1165 1166 spin_lock_irqsave(&q->lock, flags); 1167 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1168 1169 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1170 /* 1171 * Take a breather from holding the lock, 1172 * allow pages that finish wake up asynchronously 1173 * to acquire the lock and remove themselves 1174 * from wait queue 1175 */ 1176 spin_unlock_irqrestore(&q->lock, flags); 1177 cpu_relax(); 1178 spin_lock_irqsave(&q->lock, flags); 1179 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1180 } 1181 1182 /* 1183 * It is possible for other pages to have collided on the waitqueue 1184 * hash, so in that case check for a page match. That prevents a long- 1185 * term waiter 1186 * 1187 * It is still possible to miss a case here, when we woke page waiters 1188 * and removed them from the waitqueue, but there are still other 1189 * page waiters. 1190 */ 1191 if (!waitqueue_active(q) || !key.page_match) { 1192 folio_clear_waiters(folio); 1193 /* 1194 * It's possible to miss clearing Waiters here, when we woke 1195 * our page waiters, but the hashed waitqueue has waiters for 1196 * other pages on it. 1197 * 1198 * That's okay, it's a rare case. The next waker will clear it. 1199 */ 1200 } 1201 spin_unlock_irqrestore(&q->lock, flags); 1202 } 1203 1204 static void folio_wake(struct folio *folio, int bit) 1205 { 1206 if (!folio_test_waiters(folio)) 1207 return; 1208 folio_wake_bit(folio, bit); 1209 } 1210 1211 /* 1212 * A choice of three behaviors for folio_wait_bit_common(): 1213 */ 1214 enum behavior { 1215 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1216 * __folio_lock() waiting on then setting PG_locked. 1217 */ 1218 SHARED, /* Hold ref to page and check the bit when woken, like 1219 * folio_wait_writeback() waiting on PG_writeback. 1220 */ 1221 DROP, /* Drop ref to page before wait, no check when woken, 1222 * like folio_put_wait_locked() on PG_locked. 1223 */ 1224 }; 1225 1226 /* 1227 * Attempt to check (or get) the folio flag, and mark us done 1228 * if successful. 1229 */ 1230 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1231 struct wait_queue_entry *wait) 1232 { 1233 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1234 if (test_and_set_bit(bit_nr, &folio->flags)) 1235 return false; 1236 } else if (test_bit(bit_nr, &folio->flags)) 1237 return false; 1238 1239 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1240 return true; 1241 } 1242 1243 /* How many times do we accept lock stealing from under a waiter? */ 1244 int sysctl_page_lock_unfairness = 5; 1245 1246 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1247 int state, enum behavior behavior) 1248 { 1249 wait_queue_head_t *q = folio_waitqueue(folio); 1250 int unfairness = sysctl_page_lock_unfairness; 1251 struct wait_page_queue wait_page; 1252 wait_queue_entry_t *wait = &wait_page.wait; 1253 bool thrashing = false; 1254 bool delayacct = false; 1255 unsigned long pflags; 1256 1257 if (bit_nr == PG_locked && 1258 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1259 if (!folio_test_swapbacked(folio)) { 1260 delayacct_thrashing_start(); 1261 delayacct = true; 1262 } 1263 psi_memstall_enter(&pflags); 1264 thrashing = true; 1265 } 1266 1267 init_wait(wait); 1268 wait->func = wake_page_function; 1269 wait_page.folio = folio; 1270 wait_page.bit_nr = bit_nr; 1271 1272 repeat: 1273 wait->flags = 0; 1274 if (behavior == EXCLUSIVE) { 1275 wait->flags = WQ_FLAG_EXCLUSIVE; 1276 if (--unfairness < 0) 1277 wait->flags |= WQ_FLAG_CUSTOM; 1278 } 1279 1280 /* 1281 * Do one last check whether we can get the 1282 * page bit synchronously. 1283 * 1284 * Do the folio_set_waiters() marking before that 1285 * to let any waker we _just_ missed know they 1286 * need to wake us up (otherwise they'll never 1287 * even go to the slow case that looks at the 1288 * page queue), and add ourselves to the wait 1289 * queue if we need to sleep. 1290 * 1291 * This part needs to be done under the queue 1292 * lock to avoid races. 1293 */ 1294 spin_lock_irq(&q->lock); 1295 folio_set_waiters(folio); 1296 if (!folio_trylock_flag(folio, bit_nr, wait)) 1297 __add_wait_queue_entry_tail(q, wait); 1298 spin_unlock_irq(&q->lock); 1299 1300 /* 1301 * From now on, all the logic will be based on 1302 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1303 * see whether the page bit testing has already 1304 * been done by the wake function. 1305 * 1306 * We can drop our reference to the folio. 1307 */ 1308 if (behavior == DROP) 1309 folio_put(folio); 1310 1311 /* 1312 * Note that until the "finish_wait()", or until 1313 * we see the WQ_FLAG_WOKEN flag, we need to 1314 * be very careful with the 'wait->flags', because 1315 * we may race with a waker that sets them. 1316 */ 1317 for (;;) { 1318 unsigned int flags; 1319 1320 set_current_state(state); 1321 1322 /* Loop until we've been woken or interrupted */ 1323 flags = smp_load_acquire(&wait->flags); 1324 if (!(flags & WQ_FLAG_WOKEN)) { 1325 if (signal_pending_state(state, current)) 1326 break; 1327 1328 io_schedule(); 1329 continue; 1330 } 1331 1332 /* If we were non-exclusive, we're done */ 1333 if (behavior != EXCLUSIVE) 1334 break; 1335 1336 /* If the waker got the lock for us, we're done */ 1337 if (flags & WQ_FLAG_DONE) 1338 break; 1339 1340 /* 1341 * Otherwise, if we're getting the lock, we need to 1342 * try to get it ourselves. 1343 * 1344 * And if that fails, we'll have to retry this all. 1345 */ 1346 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1347 goto repeat; 1348 1349 wait->flags |= WQ_FLAG_DONE; 1350 break; 1351 } 1352 1353 /* 1354 * If a signal happened, this 'finish_wait()' may remove the last 1355 * waiter from the wait-queues, but the folio waiters bit will remain 1356 * set. That's ok. The next wakeup will take care of it, and trying 1357 * to do it here would be difficult and prone to races. 1358 */ 1359 finish_wait(q, wait); 1360 1361 if (thrashing) { 1362 if (delayacct) 1363 delayacct_thrashing_end(); 1364 psi_memstall_leave(&pflags); 1365 } 1366 1367 /* 1368 * NOTE! The wait->flags weren't stable until we've done the 1369 * 'finish_wait()', and we could have exited the loop above due 1370 * to a signal, and had a wakeup event happen after the signal 1371 * test but before the 'finish_wait()'. 1372 * 1373 * So only after the finish_wait() can we reliably determine 1374 * if we got woken up or not, so we can now figure out the final 1375 * return value based on that state without races. 1376 * 1377 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1378 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1379 */ 1380 if (behavior == EXCLUSIVE) 1381 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1382 1383 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1384 } 1385 1386 #ifdef CONFIG_MIGRATION 1387 /** 1388 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1389 * @entry: migration swap entry. 1390 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1391 * for pte entries, pass NULL for pmd entries. 1392 * @ptl: already locked ptl. This function will drop the lock. 1393 * 1394 * Wait for a migration entry referencing the given page to be removed. This is 1395 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1396 * this can be called without taking a reference on the page. Instead this 1397 * should be called while holding the ptl for the migration entry referencing 1398 * the page. 1399 * 1400 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1401 * 1402 * This follows the same logic as folio_wait_bit_common() so see the comments 1403 * there. 1404 */ 1405 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1406 spinlock_t *ptl) 1407 { 1408 struct wait_page_queue wait_page; 1409 wait_queue_entry_t *wait = &wait_page.wait; 1410 bool thrashing = false; 1411 bool delayacct = false; 1412 unsigned long pflags; 1413 wait_queue_head_t *q; 1414 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1415 1416 q = folio_waitqueue(folio); 1417 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1418 if (!folio_test_swapbacked(folio)) { 1419 delayacct_thrashing_start(); 1420 delayacct = true; 1421 } 1422 psi_memstall_enter(&pflags); 1423 thrashing = true; 1424 } 1425 1426 init_wait(wait); 1427 wait->func = wake_page_function; 1428 wait_page.folio = folio; 1429 wait_page.bit_nr = PG_locked; 1430 wait->flags = 0; 1431 1432 spin_lock_irq(&q->lock); 1433 folio_set_waiters(folio); 1434 if (!folio_trylock_flag(folio, PG_locked, wait)) 1435 __add_wait_queue_entry_tail(q, wait); 1436 spin_unlock_irq(&q->lock); 1437 1438 /* 1439 * If a migration entry exists for the page the migration path must hold 1440 * a valid reference to the page, and it must take the ptl to remove the 1441 * migration entry. So the page is valid until the ptl is dropped. 1442 */ 1443 if (ptep) 1444 pte_unmap_unlock(ptep, ptl); 1445 else 1446 spin_unlock(ptl); 1447 1448 for (;;) { 1449 unsigned int flags; 1450 1451 set_current_state(TASK_UNINTERRUPTIBLE); 1452 1453 /* Loop until we've been woken or interrupted */ 1454 flags = smp_load_acquire(&wait->flags); 1455 if (!(flags & WQ_FLAG_WOKEN)) { 1456 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1457 break; 1458 1459 io_schedule(); 1460 continue; 1461 } 1462 break; 1463 } 1464 1465 finish_wait(q, wait); 1466 1467 if (thrashing) { 1468 if (delayacct) 1469 delayacct_thrashing_end(); 1470 psi_memstall_leave(&pflags); 1471 } 1472 } 1473 #endif 1474 1475 void folio_wait_bit(struct folio *folio, int bit_nr) 1476 { 1477 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1478 } 1479 EXPORT_SYMBOL(folio_wait_bit); 1480 1481 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1482 { 1483 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1484 } 1485 EXPORT_SYMBOL(folio_wait_bit_killable); 1486 1487 /** 1488 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1489 * @folio: The folio to wait for. 1490 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1491 * 1492 * The caller should hold a reference on @folio. They expect the page to 1493 * become unlocked relatively soon, but do not wish to hold up migration 1494 * (for example) by holding the reference while waiting for the folio to 1495 * come unlocked. After this function returns, the caller should not 1496 * dereference @folio. 1497 * 1498 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1499 */ 1500 int folio_put_wait_locked(struct folio *folio, int state) 1501 { 1502 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1503 } 1504 1505 /** 1506 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1507 * @folio: Folio defining the wait queue of interest 1508 * @waiter: Waiter to add to the queue 1509 * 1510 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1511 */ 1512 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1513 { 1514 wait_queue_head_t *q = folio_waitqueue(folio); 1515 unsigned long flags; 1516 1517 spin_lock_irqsave(&q->lock, flags); 1518 __add_wait_queue_entry_tail(q, waiter); 1519 folio_set_waiters(folio); 1520 spin_unlock_irqrestore(&q->lock, flags); 1521 } 1522 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1523 1524 #ifndef clear_bit_unlock_is_negative_byte 1525 1526 /* 1527 * PG_waiters is the high bit in the same byte as PG_lock. 1528 * 1529 * On x86 (and on many other architectures), we can clear PG_lock and 1530 * test the sign bit at the same time. But if the architecture does 1531 * not support that special operation, we just do this all by hand 1532 * instead. 1533 * 1534 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1535 * being cleared, but a memory barrier should be unnecessary since it is 1536 * in the same byte as PG_locked. 1537 */ 1538 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1539 { 1540 clear_bit_unlock(nr, mem); 1541 /* smp_mb__after_atomic(); */ 1542 return test_bit(PG_waiters, mem); 1543 } 1544 1545 #endif 1546 1547 /** 1548 * folio_unlock - Unlock a locked folio. 1549 * @folio: The folio. 1550 * 1551 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1552 * 1553 * Context: May be called from interrupt or process context. May not be 1554 * called from NMI context. 1555 */ 1556 void folio_unlock(struct folio *folio) 1557 { 1558 /* Bit 7 allows x86 to check the byte's sign bit */ 1559 BUILD_BUG_ON(PG_waiters != 7); 1560 BUILD_BUG_ON(PG_locked > 7); 1561 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1562 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1563 folio_wake_bit(folio, PG_locked); 1564 } 1565 EXPORT_SYMBOL(folio_unlock); 1566 1567 /** 1568 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1569 * @folio: The folio. 1570 * 1571 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1572 * it. The folio reference held for PG_private_2 being set is released. 1573 * 1574 * This is, for example, used when a netfs folio is being written to a local 1575 * disk cache, thereby allowing writes to the cache for the same folio to be 1576 * serialised. 1577 */ 1578 void folio_end_private_2(struct folio *folio) 1579 { 1580 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1581 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1582 folio_wake_bit(folio, PG_private_2); 1583 folio_put(folio); 1584 } 1585 EXPORT_SYMBOL(folio_end_private_2); 1586 1587 /** 1588 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1589 * @folio: The folio to wait on. 1590 * 1591 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1592 */ 1593 void folio_wait_private_2(struct folio *folio) 1594 { 1595 while (folio_test_private_2(folio)) 1596 folio_wait_bit(folio, PG_private_2); 1597 } 1598 EXPORT_SYMBOL(folio_wait_private_2); 1599 1600 /** 1601 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1602 * @folio: The folio to wait on. 1603 * 1604 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1605 * fatal signal is received by the calling task. 1606 * 1607 * Return: 1608 * - 0 if successful. 1609 * - -EINTR if a fatal signal was encountered. 1610 */ 1611 int folio_wait_private_2_killable(struct folio *folio) 1612 { 1613 int ret = 0; 1614 1615 while (folio_test_private_2(folio)) { 1616 ret = folio_wait_bit_killable(folio, PG_private_2); 1617 if (ret < 0) 1618 break; 1619 } 1620 1621 return ret; 1622 } 1623 EXPORT_SYMBOL(folio_wait_private_2_killable); 1624 1625 /** 1626 * folio_end_writeback - End writeback against a folio. 1627 * @folio: The folio. 1628 */ 1629 void folio_end_writeback(struct folio *folio) 1630 { 1631 /* 1632 * folio_test_clear_reclaim() could be used here but it is an 1633 * atomic operation and overkill in this particular case. Failing 1634 * to shuffle a folio marked for immediate reclaim is too mild 1635 * a gain to justify taking an atomic operation penalty at the 1636 * end of every folio writeback. 1637 */ 1638 if (folio_test_reclaim(folio)) { 1639 folio_clear_reclaim(folio); 1640 folio_rotate_reclaimable(folio); 1641 } 1642 1643 /* 1644 * Writeback does not hold a folio reference of its own, relying 1645 * on truncation to wait for the clearing of PG_writeback. 1646 * But here we must make sure that the folio is not freed and 1647 * reused before the folio_wake(). 1648 */ 1649 folio_get(folio); 1650 if (!__folio_end_writeback(folio)) 1651 BUG(); 1652 1653 smp_mb__after_atomic(); 1654 folio_wake(folio, PG_writeback); 1655 acct_reclaim_writeback(folio); 1656 folio_put(folio); 1657 } 1658 EXPORT_SYMBOL(folio_end_writeback); 1659 1660 /* 1661 * After completing I/O on a page, call this routine to update the page 1662 * flags appropriately 1663 */ 1664 void page_endio(struct page *page, bool is_write, int err) 1665 { 1666 if (!is_write) { 1667 if (!err) { 1668 SetPageUptodate(page); 1669 } else { 1670 ClearPageUptodate(page); 1671 SetPageError(page); 1672 } 1673 unlock_page(page); 1674 } else { 1675 if (err) { 1676 struct address_space *mapping; 1677 1678 SetPageError(page); 1679 mapping = page_mapping(page); 1680 if (mapping) 1681 mapping_set_error(mapping, err); 1682 } 1683 end_page_writeback(page); 1684 } 1685 } 1686 EXPORT_SYMBOL_GPL(page_endio); 1687 1688 /** 1689 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1690 * @folio: The folio to lock 1691 */ 1692 void __folio_lock(struct folio *folio) 1693 { 1694 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1695 EXCLUSIVE); 1696 } 1697 EXPORT_SYMBOL(__folio_lock); 1698 1699 int __folio_lock_killable(struct folio *folio) 1700 { 1701 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1702 EXCLUSIVE); 1703 } 1704 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1705 1706 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1707 { 1708 struct wait_queue_head *q = folio_waitqueue(folio); 1709 int ret = 0; 1710 1711 wait->folio = folio; 1712 wait->bit_nr = PG_locked; 1713 1714 spin_lock_irq(&q->lock); 1715 __add_wait_queue_entry_tail(q, &wait->wait); 1716 folio_set_waiters(folio); 1717 ret = !folio_trylock(folio); 1718 /* 1719 * If we were successful now, we know we're still on the 1720 * waitqueue as we're still under the lock. This means it's 1721 * safe to remove and return success, we know the callback 1722 * isn't going to trigger. 1723 */ 1724 if (!ret) 1725 __remove_wait_queue(q, &wait->wait); 1726 else 1727 ret = -EIOCBQUEUED; 1728 spin_unlock_irq(&q->lock); 1729 return ret; 1730 } 1731 1732 /* 1733 * Return values: 1734 * true - folio is locked; mmap_lock is still held. 1735 * false - folio is not locked. 1736 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1737 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1738 * which case mmap_lock is still held. 1739 * 1740 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1741 * with the folio locked and the mmap_lock unperturbed. 1742 */ 1743 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1744 unsigned int flags) 1745 { 1746 if (fault_flag_allow_retry_first(flags)) { 1747 /* 1748 * CAUTION! In this case, mmap_lock is not released 1749 * even though return 0. 1750 */ 1751 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1752 return false; 1753 1754 mmap_read_unlock(mm); 1755 if (flags & FAULT_FLAG_KILLABLE) 1756 folio_wait_locked_killable(folio); 1757 else 1758 folio_wait_locked(folio); 1759 return false; 1760 } 1761 if (flags & FAULT_FLAG_KILLABLE) { 1762 bool ret; 1763 1764 ret = __folio_lock_killable(folio); 1765 if (ret) { 1766 mmap_read_unlock(mm); 1767 return false; 1768 } 1769 } else { 1770 __folio_lock(folio); 1771 } 1772 1773 return true; 1774 } 1775 1776 /** 1777 * page_cache_next_miss() - Find the next gap in the page cache. 1778 * @mapping: Mapping. 1779 * @index: Index. 1780 * @max_scan: Maximum range to search. 1781 * 1782 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1783 * gap with the lowest index. 1784 * 1785 * This function may be called under the rcu_read_lock. However, this will 1786 * not atomically search a snapshot of the cache at a single point in time. 1787 * For example, if a gap is created at index 5, then subsequently a gap is 1788 * created at index 10, page_cache_next_miss covering both indices may 1789 * return 10 if called under the rcu_read_lock. 1790 * 1791 * Return: The index of the gap if found, otherwise an index outside the 1792 * range specified (in which case 'return - index >= max_scan' will be true). 1793 * In the rare case of index wrap-around, 0 will be returned. 1794 */ 1795 pgoff_t page_cache_next_miss(struct address_space *mapping, 1796 pgoff_t index, unsigned long max_scan) 1797 { 1798 XA_STATE(xas, &mapping->i_pages, index); 1799 1800 while (max_scan--) { 1801 void *entry = xas_next(&xas); 1802 if (!entry || xa_is_value(entry)) 1803 break; 1804 if (xas.xa_index == 0) 1805 break; 1806 } 1807 1808 return xas.xa_index; 1809 } 1810 EXPORT_SYMBOL(page_cache_next_miss); 1811 1812 /** 1813 * page_cache_prev_miss() - Find the previous gap in the page cache. 1814 * @mapping: Mapping. 1815 * @index: Index. 1816 * @max_scan: Maximum range to search. 1817 * 1818 * Search the range [max(index - max_scan + 1, 0), index] for the 1819 * gap with the highest index. 1820 * 1821 * This function may be called under the rcu_read_lock. However, this will 1822 * not atomically search a snapshot of the cache at a single point in time. 1823 * For example, if a gap is created at index 10, then subsequently a gap is 1824 * created at index 5, page_cache_prev_miss() covering both indices may 1825 * return 5 if called under the rcu_read_lock. 1826 * 1827 * Return: The index of the gap if found, otherwise an index outside the 1828 * range specified (in which case 'index - return >= max_scan' will be true). 1829 * In the rare case of wrap-around, ULONG_MAX will be returned. 1830 */ 1831 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1832 pgoff_t index, unsigned long max_scan) 1833 { 1834 XA_STATE(xas, &mapping->i_pages, index); 1835 1836 while (max_scan--) { 1837 void *entry = xas_prev(&xas); 1838 if (!entry || xa_is_value(entry)) 1839 break; 1840 if (xas.xa_index == ULONG_MAX) 1841 break; 1842 } 1843 1844 return xas.xa_index; 1845 } 1846 EXPORT_SYMBOL(page_cache_prev_miss); 1847 1848 /* 1849 * Lockless page cache protocol: 1850 * On the lookup side: 1851 * 1. Load the folio from i_pages 1852 * 2. Increment the refcount if it's not zero 1853 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1854 * 1855 * On the removal side: 1856 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1857 * B. Remove the page from i_pages 1858 * C. Return the page to the page allocator 1859 * 1860 * This means that any page may have its reference count temporarily 1861 * increased by a speculative page cache (or fast GUP) lookup as it can 1862 * be allocated by another user before the RCU grace period expires. 1863 * Because the refcount temporarily acquired here may end up being the 1864 * last refcount on the page, any page allocation must be freeable by 1865 * folio_put(). 1866 */ 1867 1868 /* 1869 * mapping_get_entry - Get a page cache entry. 1870 * @mapping: the address_space to search 1871 * @index: The page cache index. 1872 * 1873 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1874 * it is returned with an increased refcount. If it is a shadow entry 1875 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1876 * it is returned without further action. 1877 * 1878 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1879 */ 1880 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1881 { 1882 XA_STATE(xas, &mapping->i_pages, index); 1883 struct folio *folio; 1884 1885 rcu_read_lock(); 1886 repeat: 1887 xas_reset(&xas); 1888 folio = xas_load(&xas); 1889 if (xas_retry(&xas, folio)) 1890 goto repeat; 1891 /* 1892 * A shadow entry of a recently evicted page, or a swap entry from 1893 * shmem/tmpfs. Return it without attempting to raise page count. 1894 */ 1895 if (!folio || xa_is_value(folio)) 1896 goto out; 1897 1898 if (!folio_try_get_rcu(folio)) 1899 goto repeat; 1900 1901 if (unlikely(folio != xas_reload(&xas))) { 1902 folio_put(folio); 1903 goto repeat; 1904 } 1905 out: 1906 rcu_read_unlock(); 1907 1908 return folio; 1909 } 1910 1911 /** 1912 * __filemap_get_folio - Find and get a reference to a folio. 1913 * @mapping: The address_space to search. 1914 * @index: The page index. 1915 * @fgp_flags: %FGP flags modify how the folio is returned. 1916 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1917 * 1918 * Looks up the page cache entry at @mapping & @index. 1919 * 1920 * @fgp_flags can be zero or more of these flags: 1921 * 1922 * * %FGP_ACCESSED - The folio will be marked accessed. 1923 * * %FGP_LOCK - The folio is returned locked. 1924 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1925 * instead of allocating a new folio to replace it. 1926 * * %FGP_CREAT - If no page is present then a new page is allocated using 1927 * @gfp and added to the page cache and the VM's LRU list. 1928 * The page is returned locked and with an increased refcount. 1929 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1930 * page is already in cache. If the page was allocated, unlock it before 1931 * returning so the caller can do the same dance. 1932 * * %FGP_WRITE - The page will be written to by the caller. 1933 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1934 * * %FGP_NOWAIT - Don't get blocked by page lock. 1935 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1936 * 1937 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1938 * if the %GFP flags specified for %FGP_CREAT are atomic. 1939 * 1940 * If there is a page cache page, it is returned with an increased refcount. 1941 * 1942 * Return: The found folio or %NULL otherwise. 1943 */ 1944 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1945 int fgp_flags, gfp_t gfp) 1946 { 1947 struct folio *folio; 1948 1949 repeat: 1950 folio = mapping_get_entry(mapping, index); 1951 if (xa_is_value(folio)) { 1952 if (fgp_flags & FGP_ENTRY) 1953 return folio; 1954 folio = NULL; 1955 } 1956 if (!folio) 1957 goto no_page; 1958 1959 if (fgp_flags & FGP_LOCK) { 1960 if (fgp_flags & FGP_NOWAIT) { 1961 if (!folio_trylock(folio)) { 1962 folio_put(folio); 1963 return NULL; 1964 } 1965 } else { 1966 folio_lock(folio); 1967 } 1968 1969 /* Has the page been truncated? */ 1970 if (unlikely(folio->mapping != mapping)) { 1971 folio_unlock(folio); 1972 folio_put(folio); 1973 goto repeat; 1974 } 1975 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1976 } 1977 1978 if (fgp_flags & FGP_ACCESSED) 1979 folio_mark_accessed(folio); 1980 else if (fgp_flags & FGP_WRITE) { 1981 /* Clear idle flag for buffer write */ 1982 if (folio_test_idle(folio)) 1983 folio_clear_idle(folio); 1984 } 1985 1986 if (fgp_flags & FGP_STABLE) 1987 folio_wait_stable(folio); 1988 no_page: 1989 if (!folio && (fgp_flags & FGP_CREAT)) { 1990 int err; 1991 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1992 gfp |= __GFP_WRITE; 1993 if (fgp_flags & FGP_NOFS) 1994 gfp &= ~__GFP_FS; 1995 1996 folio = filemap_alloc_folio(gfp, 0); 1997 if (!folio) 1998 return NULL; 1999 2000 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 2001 fgp_flags |= FGP_LOCK; 2002 2003 /* Init accessed so avoid atomic mark_page_accessed later */ 2004 if (fgp_flags & FGP_ACCESSED) 2005 __folio_set_referenced(folio); 2006 2007 err = filemap_add_folio(mapping, folio, index, gfp); 2008 if (unlikely(err)) { 2009 folio_put(folio); 2010 folio = NULL; 2011 if (err == -EEXIST) 2012 goto repeat; 2013 } 2014 2015 /* 2016 * filemap_add_folio locks the page, and for mmap 2017 * we expect an unlocked page. 2018 */ 2019 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2020 folio_unlock(folio); 2021 } 2022 2023 return folio; 2024 } 2025 EXPORT_SYMBOL(__filemap_get_folio); 2026 2027 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2028 xa_mark_t mark) 2029 { 2030 struct folio *folio; 2031 2032 retry: 2033 if (mark == XA_PRESENT) 2034 folio = xas_find(xas, max); 2035 else 2036 folio = xas_find_marked(xas, max, mark); 2037 2038 if (xas_retry(xas, folio)) 2039 goto retry; 2040 /* 2041 * A shadow entry of a recently evicted page, a swap 2042 * entry from shmem/tmpfs or a DAX entry. Return it 2043 * without attempting to raise page count. 2044 */ 2045 if (!folio || xa_is_value(folio)) 2046 return folio; 2047 2048 if (!folio_try_get_rcu(folio)) 2049 goto reset; 2050 2051 if (unlikely(folio != xas_reload(xas))) { 2052 folio_put(folio); 2053 goto reset; 2054 } 2055 2056 return folio; 2057 reset: 2058 xas_reset(xas); 2059 goto retry; 2060 } 2061 2062 /** 2063 * find_get_entries - gang pagecache lookup 2064 * @mapping: The address_space to search 2065 * @start: The starting page cache index 2066 * @end: The final page index (inclusive). 2067 * @fbatch: Where the resulting entries are placed. 2068 * @indices: The cache indices corresponding to the entries in @entries 2069 * 2070 * find_get_entries() will search for and return a batch of entries in 2071 * the mapping. The entries are placed in @fbatch. find_get_entries() 2072 * takes a reference on any actual folios it returns. 2073 * 2074 * The entries have ascending indexes. The indices may not be consecutive 2075 * due to not-present entries or large folios. 2076 * 2077 * Any shadow entries of evicted folios, or swap entries from 2078 * shmem/tmpfs, are included in the returned array. 2079 * 2080 * Return: The number of entries which were found. 2081 */ 2082 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2083 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2084 { 2085 XA_STATE(xas, &mapping->i_pages, start); 2086 struct folio *folio; 2087 2088 rcu_read_lock(); 2089 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2090 indices[fbatch->nr] = xas.xa_index; 2091 if (!folio_batch_add(fbatch, folio)) 2092 break; 2093 } 2094 rcu_read_unlock(); 2095 2096 return folio_batch_count(fbatch); 2097 } 2098 2099 /** 2100 * find_lock_entries - Find a batch of pagecache entries. 2101 * @mapping: The address_space to search. 2102 * @start: The starting page cache index. 2103 * @end: The final page index (inclusive). 2104 * @fbatch: Where the resulting entries are placed. 2105 * @indices: The cache indices of the entries in @fbatch. 2106 * 2107 * find_lock_entries() will return a batch of entries from @mapping. 2108 * Swap, shadow and DAX entries are included. Folios are returned 2109 * locked and with an incremented refcount. Folios which are locked 2110 * by somebody else or under writeback are skipped. Folios which are 2111 * partially outside the range are not returned. 2112 * 2113 * The entries have ascending indexes. The indices may not be consecutive 2114 * due to not-present entries, large folios, folios which could not be 2115 * locked or folios under writeback. 2116 * 2117 * Return: The number of entries which were found. 2118 */ 2119 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2120 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2121 { 2122 XA_STATE(xas, &mapping->i_pages, start); 2123 struct folio *folio; 2124 2125 rcu_read_lock(); 2126 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2127 if (!xa_is_value(folio)) { 2128 if (folio->index < start) 2129 goto put; 2130 if (folio->index + folio_nr_pages(folio) - 1 > end) 2131 goto put; 2132 if (!folio_trylock(folio)) 2133 goto put; 2134 if (folio->mapping != mapping || 2135 folio_test_writeback(folio)) 2136 goto unlock; 2137 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2138 folio); 2139 } 2140 indices[fbatch->nr] = xas.xa_index; 2141 if (!folio_batch_add(fbatch, folio)) 2142 break; 2143 continue; 2144 unlock: 2145 folio_unlock(folio); 2146 put: 2147 folio_put(folio); 2148 } 2149 rcu_read_unlock(); 2150 2151 return folio_batch_count(fbatch); 2152 } 2153 2154 static inline 2155 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2156 { 2157 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2158 return false; 2159 if (index >= max) 2160 return false; 2161 return index < folio->index + folio_nr_pages(folio) - 1; 2162 } 2163 2164 /** 2165 * find_get_pages_range - gang pagecache lookup 2166 * @mapping: The address_space to search 2167 * @start: The starting page index 2168 * @end: The final page index (inclusive) 2169 * @nr_pages: The maximum number of pages 2170 * @pages: Where the resulting pages are placed 2171 * 2172 * find_get_pages_range() will search for and return a group of up to @nr_pages 2173 * pages in the mapping starting at index @start and up to index @end 2174 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2175 * a reference against the returned pages. 2176 * 2177 * The search returns a group of mapping-contiguous pages with ascending 2178 * indexes. There may be holes in the indices due to not-present pages. 2179 * We also update @start to index the next page for the traversal. 2180 * 2181 * Return: the number of pages which were found. If this number is 2182 * smaller than @nr_pages, the end of specified range has been 2183 * reached. 2184 */ 2185 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2186 pgoff_t end, unsigned int nr_pages, 2187 struct page **pages) 2188 { 2189 XA_STATE(xas, &mapping->i_pages, *start); 2190 struct folio *folio; 2191 unsigned ret = 0; 2192 2193 if (unlikely(!nr_pages)) 2194 return 0; 2195 2196 rcu_read_lock(); 2197 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2198 /* Skip over shadow, swap and DAX entries */ 2199 if (xa_is_value(folio)) 2200 continue; 2201 2202 again: 2203 pages[ret] = folio_file_page(folio, xas.xa_index); 2204 if (++ret == nr_pages) { 2205 *start = xas.xa_index + 1; 2206 goto out; 2207 } 2208 if (folio_more_pages(folio, xas.xa_index, end)) { 2209 xas.xa_index++; 2210 folio_ref_inc(folio); 2211 goto again; 2212 } 2213 } 2214 2215 /* 2216 * We come here when there is no page beyond @end. We take care to not 2217 * overflow the index @start as it confuses some of the callers. This 2218 * breaks the iteration when there is a page at index -1 but that is 2219 * already broken anyway. 2220 */ 2221 if (end == (pgoff_t)-1) 2222 *start = (pgoff_t)-1; 2223 else 2224 *start = end + 1; 2225 out: 2226 rcu_read_unlock(); 2227 2228 return ret; 2229 } 2230 2231 /** 2232 * find_get_pages_contig - gang contiguous pagecache lookup 2233 * @mapping: The address_space to search 2234 * @index: The starting page index 2235 * @nr_pages: The maximum number of pages 2236 * @pages: Where the resulting pages are placed 2237 * 2238 * find_get_pages_contig() works exactly like find_get_pages_range(), 2239 * except that the returned number of pages are guaranteed to be 2240 * contiguous. 2241 * 2242 * Return: the number of pages which were found. 2243 */ 2244 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2245 unsigned int nr_pages, struct page **pages) 2246 { 2247 XA_STATE(xas, &mapping->i_pages, index); 2248 struct folio *folio; 2249 unsigned int ret = 0; 2250 2251 if (unlikely(!nr_pages)) 2252 return 0; 2253 2254 rcu_read_lock(); 2255 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2256 if (xas_retry(&xas, folio)) 2257 continue; 2258 /* 2259 * If the entry has been swapped out, we can stop looking. 2260 * No current caller is looking for DAX entries. 2261 */ 2262 if (xa_is_value(folio)) 2263 break; 2264 2265 if (!folio_try_get_rcu(folio)) 2266 goto retry; 2267 2268 if (unlikely(folio != xas_reload(&xas))) 2269 goto put_page; 2270 2271 again: 2272 pages[ret] = folio_file_page(folio, xas.xa_index); 2273 if (++ret == nr_pages) 2274 break; 2275 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2276 xas.xa_index++; 2277 folio_ref_inc(folio); 2278 goto again; 2279 } 2280 continue; 2281 put_page: 2282 folio_put(folio); 2283 retry: 2284 xas_reset(&xas); 2285 } 2286 rcu_read_unlock(); 2287 return ret; 2288 } 2289 EXPORT_SYMBOL(find_get_pages_contig); 2290 2291 /** 2292 * find_get_pages_range_tag - Find and return head pages matching @tag. 2293 * @mapping: the address_space to search 2294 * @index: the starting page index 2295 * @end: The final page index (inclusive) 2296 * @tag: the tag index 2297 * @nr_pages: the maximum number of pages 2298 * @pages: where the resulting pages are placed 2299 * 2300 * Like find_get_pages_range(), except we only return head pages which are 2301 * tagged with @tag. @index is updated to the index immediately after the 2302 * last page we return, ready for the next iteration. 2303 * 2304 * Return: the number of pages which were found. 2305 */ 2306 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2307 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2308 struct page **pages) 2309 { 2310 XA_STATE(xas, &mapping->i_pages, *index); 2311 struct folio *folio; 2312 unsigned ret = 0; 2313 2314 if (unlikely(!nr_pages)) 2315 return 0; 2316 2317 rcu_read_lock(); 2318 while ((folio = find_get_entry(&xas, end, tag))) { 2319 /* 2320 * Shadow entries should never be tagged, but this iteration 2321 * is lockless so there is a window for page reclaim to evict 2322 * a page we saw tagged. Skip over it. 2323 */ 2324 if (xa_is_value(folio)) 2325 continue; 2326 2327 pages[ret] = &folio->page; 2328 if (++ret == nr_pages) { 2329 *index = folio->index + folio_nr_pages(folio); 2330 goto out; 2331 } 2332 } 2333 2334 /* 2335 * We come here when we got to @end. We take care to not overflow the 2336 * index @index as it confuses some of the callers. This breaks the 2337 * iteration when there is a page at index -1 but that is already 2338 * broken anyway. 2339 */ 2340 if (end == (pgoff_t)-1) 2341 *index = (pgoff_t)-1; 2342 else 2343 *index = end + 1; 2344 out: 2345 rcu_read_unlock(); 2346 2347 return ret; 2348 } 2349 EXPORT_SYMBOL(find_get_pages_range_tag); 2350 2351 /* 2352 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2353 * a _large_ part of the i/o request. Imagine the worst scenario: 2354 * 2355 * ---R__________________________________________B__________ 2356 * ^ reading here ^ bad block(assume 4k) 2357 * 2358 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2359 * => failing the whole request => read(R) => read(R+1) => 2360 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2361 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2362 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2363 * 2364 * It is going insane. Fix it by quickly scaling down the readahead size. 2365 */ 2366 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2367 { 2368 ra->ra_pages /= 4; 2369 } 2370 2371 /* 2372 * filemap_get_read_batch - Get a batch of folios for read 2373 * 2374 * Get a batch of folios which represent a contiguous range of bytes in 2375 * the file. No exceptional entries will be returned. If @index is in 2376 * the middle of a folio, the entire folio will be returned. The last 2377 * folio in the batch may have the readahead flag set or the uptodate flag 2378 * clear so that the caller can take the appropriate action. 2379 */ 2380 static void filemap_get_read_batch(struct address_space *mapping, 2381 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2382 { 2383 XA_STATE(xas, &mapping->i_pages, index); 2384 struct folio *folio; 2385 2386 rcu_read_lock(); 2387 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2388 if (xas_retry(&xas, folio)) 2389 continue; 2390 if (xas.xa_index > max || xa_is_value(folio)) 2391 break; 2392 if (!folio_try_get_rcu(folio)) 2393 goto retry; 2394 2395 if (unlikely(folio != xas_reload(&xas))) 2396 goto put_folio; 2397 2398 if (!folio_batch_add(fbatch, folio)) 2399 break; 2400 if (!folio_test_uptodate(folio)) 2401 break; 2402 if (folio_test_readahead(folio)) 2403 break; 2404 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2405 continue; 2406 put_folio: 2407 folio_put(folio); 2408 retry: 2409 xas_reset(&xas); 2410 } 2411 rcu_read_unlock(); 2412 } 2413 2414 static int filemap_read_folio(struct file *file, struct address_space *mapping, 2415 struct folio *folio) 2416 { 2417 int error; 2418 2419 /* 2420 * A previous I/O error may have been due to temporary failures, 2421 * eg. multipath errors. PG_error will be set again if readpage 2422 * fails. 2423 */ 2424 folio_clear_error(folio); 2425 /* Start the actual read. The read will unlock the page. */ 2426 error = mapping->a_ops->readpage(file, &folio->page); 2427 if (error) 2428 return error; 2429 2430 error = folio_wait_locked_killable(folio); 2431 if (error) 2432 return error; 2433 if (folio_test_uptodate(folio)) 2434 return 0; 2435 shrink_readahead_size_eio(&file->f_ra); 2436 return -EIO; 2437 } 2438 2439 static bool filemap_range_uptodate(struct address_space *mapping, 2440 loff_t pos, struct iov_iter *iter, struct folio *folio) 2441 { 2442 int count; 2443 2444 if (folio_test_uptodate(folio)) 2445 return true; 2446 /* pipes can't handle partially uptodate pages */ 2447 if (iov_iter_is_pipe(iter)) 2448 return false; 2449 if (!mapping->a_ops->is_partially_uptodate) 2450 return false; 2451 if (mapping->host->i_blkbits >= folio_shift(folio)) 2452 return false; 2453 2454 count = iter->count; 2455 if (folio_pos(folio) > pos) { 2456 count -= folio_pos(folio) - pos; 2457 pos = 0; 2458 } else { 2459 pos -= folio_pos(folio); 2460 } 2461 2462 return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count); 2463 } 2464 2465 static int filemap_update_page(struct kiocb *iocb, 2466 struct address_space *mapping, struct iov_iter *iter, 2467 struct folio *folio) 2468 { 2469 int error; 2470 2471 if (iocb->ki_flags & IOCB_NOWAIT) { 2472 if (!filemap_invalidate_trylock_shared(mapping)) 2473 return -EAGAIN; 2474 } else { 2475 filemap_invalidate_lock_shared(mapping); 2476 } 2477 2478 if (!folio_trylock(folio)) { 2479 error = -EAGAIN; 2480 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2481 goto unlock_mapping; 2482 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2483 filemap_invalidate_unlock_shared(mapping); 2484 /* 2485 * This is where we usually end up waiting for a 2486 * previously submitted readahead to finish. 2487 */ 2488 folio_put_wait_locked(folio, TASK_KILLABLE); 2489 return AOP_TRUNCATED_PAGE; 2490 } 2491 error = __folio_lock_async(folio, iocb->ki_waitq); 2492 if (error) 2493 goto unlock_mapping; 2494 } 2495 2496 error = AOP_TRUNCATED_PAGE; 2497 if (!folio->mapping) 2498 goto unlock; 2499 2500 error = 0; 2501 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2502 goto unlock; 2503 2504 error = -EAGAIN; 2505 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2506 goto unlock; 2507 2508 error = filemap_read_folio(iocb->ki_filp, mapping, folio); 2509 goto unlock_mapping; 2510 unlock: 2511 folio_unlock(folio); 2512 unlock_mapping: 2513 filemap_invalidate_unlock_shared(mapping); 2514 if (error == AOP_TRUNCATED_PAGE) 2515 folio_put(folio); 2516 return error; 2517 } 2518 2519 static int filemap_create_folio(struct file *file, 2520 struct address_space *mapping, pgoff_t index, 2521 struct folio_batch *fbatch) 2522 { 2523 struct folio *folio; 2524 int error; 2525 2526 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2527 if (!folio) 2528 return -ENOMEM; 2529 2530 /* 2531 * Protect against truncate / hole punch. Grabbing invalidate_lock 2532 * here assures we cannot instantiate and bring uptodate new 2533 * pagecache folios after evicting page cache during truncate 2534 * and before actually freeing blocks. Note that we could 2535 * release invalidate_lock after inserting the folio into 2536 * the page cache as the locked folio would then be enough to 2537 * synchronize with hole punching. But there are code paths 2538 * such as filemap_update_page() filling in partially uptodate 2539 * pages or ->readpages() that need to hold invalidate_lock 2540 * while mapping blocks for IO so let's hold the lock here as 2541 * well to keep locking rules simple. 2542 */ 2543 filemap_invalidate_lock_shared(mapping); 2544 error = filemap_add_folio(mapping, folio, index, 2545 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2546 if (error == -EEXIST) 2547 error = AOP_TRUNCATED_PAGE; 2548 if (error) 2549 goto error; 2550 2551 error = filemap_read_folio(file, mapping, folio); 2552 if (error) 2553 goto error; 2554 2555 filemap_invalidate_unlock_shared(mapping); 2556 folio_batch_add(fbatch, folio); 2557 return 0; 2558 error: 2559 filemap_invalidate_unlock_shared(mapping); 2560 folio_put(folio); 2561 return error; 2562 } 2563 2564 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2565 struct address_space *mapping, struct folio *folio, 2566 pgoff_t last_index) 2567 { 2568 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2569 2570 if (iocb->ki_flags & IOCB_NOIO) 2571 return -EAGAIN; 2572 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2573 return 0; 2574 } 2575 2576 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2577 struct folio_batch *fbatch) 2578 { 2579 struct file *filp = iocb->ki_filp; 2580 struct address_space *mapping = filp->f_mapping; 2581 struct file_ra_state *ra = &filp->f_ra; 2582 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2583 pgoff_t last_index; 2584 struct folio *folio; 2585 int err = 0; 2586 2587 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2588 retry: 2589 if (fatal_signal_pending(current)) 2590 return -EINTR; 2591 2592 filemap_get_read_batch(mapping, index, last_index, fbatch); 2593 if (!folio_batch_count(fbatch)) { 2594 if (iocb->ki_flags & IOCB_NOIO) 2595 return -EAGAIN; 2596 page_cache_sync_readahead(mapping, ra, filp, index, 2597 last_index - index); 2598 filemap_get_read_batch(mapping, index, last_index, fbatch); 2599 } 2600 if (!folio_batch_count(fbatch)) { 2601 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2602 return -EAGAIN; 2603 err = filemap_create_folio(filp, mapping, 2604 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2605 if (err == AOP_TRUNCATED_PAGE) 2606 goto retry; 2607 return err; 2608 } 2609 2610 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2611 if (folio_test_readahead(folio)) { 2612 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2613 if (err) 2614 goto err; 2615 } 2616 if (!folio_test_uptodate(folio)) { 2617 if ((iocb->ki_flags & IOCB_WAITQ) && 2618 folio_batch_count(fbatch) > 1) 2619 iocb->ki_flags |= IOCB_NOWAIT; 2620 err = filemap_update_page(iocb, mapping, iter, folio); 2621 if (err) 2622 goto err; 2623 } 2624 2625 return 0; 2626 err: 2627 if (err < 0) 2628 folio_put(folio); 2629 if (likely(--fbatch->nr)) 2630 return 0; 2631 if (err == AOP_TRUNCATED_PAGE) 2632 goto retry; 2633 return err; 2634 } 2635 2636 /** 2637 * filemap_read - Read data from the page cache. 2638 * @iocb: The iocb to read. 2639 * @iter: Destination for the data. 2640 * @already_read: Number of bytes already read by the caller. 2641 * 2642 * Copies data from the page cache. If the data is not currently present, 2643 * uses the readahead and readpage address_space operations to fetch it. 2644 * 2645 * Return: Total number of bytes copied, including those already read by 2646 * the caller. If an error happens before any bytes are copied, returns 2647 * a negative error number. 2648 */ 2649 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2650 ssize_t already_read) 2651 { 2652 struct file *filp = iocb->ki_filp; 2653 struct file_ra_state *ra = &filp->f_ra; 2654 struct address_space *mapping = filp->f_mapping; 2655 struct inode *inode = mapping->host; 2656 struct folio_batch fbatch; 2657 int i, error = 0; 2658 bool writably_mapped; 2659 loff_t isize, end_offset; 2660 2661 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2662 return 0; 2663 if (unlikely(!iov_iter_count(iter))) 2664 return 0; 2665 2666 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2667 folio_batch_init(&fbatch); 2668 2669 do { 2670 cond_resched(); 2671 2672 /* 2673 * If we've already successfully copied some data, then we 2674 * can no longer safely return -EIOCBQUEUED. Hence mark 2675 * an async read NOWAIT at that point. 2676 */ 2677 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2678 iocb->ki_flags |= IOCB_NOWAIT; 2679 2680 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2681 break; 2682 2683 error = filemap_get_pages(iocb, iter, &fbatch); 2684 if (error < 0) 2685 break; 2686 2687 /* 2688 * i_size must be checked after we know the pages are Uptodate. 2689 * 2690 * Checking i_size after the check allows us to calculate 2691 * the correct value for "nr", which means the zero-filled 2692 * part of the page is not copied back to userspace (unless 2693 * another truncate extends the file - this is desired though). 2694 */ 2695 isize = i_size_read(inode); 2696 if (unlikely(iocb->ki_pos >= isize)) 2697 goto put_folios; 2698 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2699 2700 /* 2701 * Once we start copying data, we don't want to be touching any 2702 * cachelines that might be contended: 2703 */ 2704 writably_mapped = mapping_writably_mapped(mapping); 2705 2706 /* 2707 * When a sequential read accesses a page several times, only 2708 * mark it as accessed the first time. 2709 */ 2710 if (iocb->ki_pos >> PAGE_SHIFT != 2711 ra->prev_pos >> PAGE_SHIFT) 2712 folio_mark_accessed(fbatch.folios[0]); 2713 2714 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2715 struct folio *folio = fbatch.folios[i]; 2716 size_t fsize = folio_size(folio); 2717 size_t offset = iocb->ki_pos & (fsize - 1); 2718 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2719 fsize - offset); 2720 size_t copied; 2721 2722 if (end_offset < folio_pos(folio)) 2723 break; 2724 if (i > 0) 2725 folio_mark_accessed(folio); 2726 /* 2727 * If users can be writing to this folio using arbitrary 2728 * virtual addresses, take care of potential aliasing 2729 * before reading the folio on the kernel side. 2730 */ 2731 if (writably_mapped) 2732 flush_dcache_folio(folio); 2733 2734 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2735 2736 already_read += copied; 2737 iocb->ki_pos += copied; 2738 ra->prev_pos = iocb->ki_pos; 2739 2740 if (copied < bytes) { 2741 error = -EFAULT; 2742 break; 2743 } 2744 } 2745 put_folios: 2746 for (i = 0; i < folio_batch_count(&fbatch); i++) 2747 folio_put(fbatch.folios[i]); 2748 folio_batch_init(&fbatch); 2749 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2750 2751 file_accessed(filp); 2752 2753 return already_read ? already_read : error; 2754 } 2755 EXPORT_SYMBOL_GPL(filemap_read); 2756 2757 /** 2758 * generic_file_read_iter - generic filesystem read routine 2759 * @iocb: kernel I/O control block 2760 * @iter: destination for the data read 2761 * 2762 * This is the "read_iter()" routine for all filesystems 2763 * that can use the page cache directly. 2764 * 2765 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2766 * be returned when no data can be read without waiting for I/O requests 2767 * to complete; it doesn't prevent readahead. 2768 * 2769 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2770 * requests shall be made for the read or for readahead. When no data 2771 * can be read, -EAGAIN shall be returned. When readahead would be 2772 * triggered, a partial, possibly empty read shall be returned. 2773 * 2774 * Return: 2775 * * number of bytes copied, even for partial reads 2776 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2777 */ 2778 ssize_t 2779 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2780 { 2781 size_t count = iov_iter_count(iter); 2782 ssize_t retval = 0; 2783 2784 if (!count) 2785 return 0; /* skip atime */ 2786 2787 if (iocb->ki_flags & IOCB_DIRECT) { 2788 struct file *file = iocb->ki_filp; 2789 struct address_space *mapping = file->f_mapping; 2790 struct inode *inode = mapping->host; 2791 2792 if (iocb->ki_flags & IOCB_NOWAIT) { 2793 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2794 iocb->ki_pos + count - 1)) 2795 return -EAGAIN; 2796 } else { 2797 retval = filemap_write_and_wait_range(mapping, 2798 iocb->ki_pos, 2799 iocb->ki_pos + count - 1); 2800 if (retval < 0) 2801 return retval; 2802 } 2803 2804 file_accessed(file); 2805 2806 retval = mapping->a_ops->direct_IO(iocb, iter); 2807 if (retval >= 0) { 2808 iocb->ki_pos += retval; 2809 count -= retval; 2810 } 2811 if (retval != -EIOCBQUEUED) 2812 iov_iter_revert(iter, count - iov_iter_count(iter)); 2813 2814 /* 2815 * Btrfs can have a short DIO read if we encounter 2816 * compressed extents, so if there was an error, or if 2817 * we've already read everything we wanted to, or if 2818 * there was a short read because we hit EOF, go ahead 2819 * and return. Otherwise fallthrough to buffered io for 2820 * the rest of the read. Buffered reads will not work for 2821 * DAX files, so don't bother trying. 2822 */ 2823 if (retval < 0 || !count || IS_DAX(inode)) 2824 return retval; 2825 if (iocb->ki_pos >= i_size_read(inode)) 2826 return retval; 2827 } 2828 2829 return filemap_read(iocb, iter, retval); 2830 } 2831 EXPORT_SYMBOL(generic_file_read_iter); 2832 2833 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2834 struct address_space *mapping, struct folio *folio, 2835 loff_t start, loff_t end, bool seek_data) 2836 { 2837 const struct address_space_operations *ops = mapping->a_ops; 2838 size_t offset, bsz = i_blocksize(mapping->host); 2839 2840 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2841 return seek_data ? start : end; 2842 if (!ops->is_partially_uptodate) 2843 return seek_data ? end : start; 2844 2845 xas_pause(xas); 2846 rcu_read_unlock(); 2847 folio_lock(folio); 2848 if (unlikely(folio->mapping != mapping)) 2849 goto unlock; 2850 2851 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2852 2853 do { 2854 if (ops->is_partially_uptodate(&folio->page, offset, bsz) == 2855 seek_data) 2856 break; 2857 start = (start + bsz) & ~(bsz - 1); 2858 offset += bsz; 2859 } while (offset < folio_size(folio)); 2860 unlock: 2861 folio_unlock(folio); 2862 rcu_read_lock(); 2863 return start; 2864 } 2865 2866 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2867 { 2868 if (xa_is_value(folio)) 2869 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2870 return folio_size(folio); 2871 } 2872 2873 /** 2874 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2875 * @mapping: Address space to search. 2876 * @start: First byte to consider. 2877 * @end: Limit of search (exclusive). 2878 * @whence: Either SEEK_HOLE or SEEK_DATA. 2879 * 2880 * If the page cache knows which blocks contain holes and which blocks 2881 * contain data, your filesystem can use this function to implement 2882 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2883 * entirely memory-based such as tmpfs, and filesystems which support 2884 * unwritten extents. 2885 * 2886 * Return: The requested offset on success, or -ENXIO if @whence specifies 2887 * SEEK_DATA and there is no data after @start. There is an implicit hole 2888 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2889 * and @end contain data. 2890 */ 2891 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2892 loff_t end, int whence) 2893 { 2894 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2895 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2896 bool seek_data = (whence == SEEK_DATA); 2897 struct folio *folio; 2898 2899 if (end <= start) 2900 return -ENXIO; 2901 2902 rcu_read_lock(); 2903 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2904 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2905 size_t seek_size; 2906 2907 if (start < pos) { 2908 if (!seek_data) 2909 goto unlock; 2910 start = pos; 2911 } 2912 2913 seek_size = seek_folio_size(&xas, folio); 2914 pos = round_up((u64)pos + 1, seek_size); 2915 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2916 seek_data); 2917 if (start < pos) 2918 goto unlock; 2919 if (start >= end) 2920 break; 2921 if (seek_size > PAGE_SIZE) 2922 xas_set(&xas, pos >> PAGE_SHIFT); 2923 if (!xa_is_value(folio)) 2924 folio_put(folio); 2925 } 2926 if (seek_data) 2927 start = -ENXIO; 2928 unlock: 2929 rcu_read_unlock(); 2930 if (folio && !xa_is_value(folio)) 2931 folio_put(folio); 2932 if (start > end) 2933 return end; 2934 return start; 2935 } 2936 2937 #ifdef CONFIG_MMU 2938 #define MMAP_LOTSAMISS (100) 2939 /* 2940 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2941 * @vmf - the vm_fault for this fault. 2942 * @folio - the folio to lock. 2943 * @fpin - the pointer to the file we may pin (or is already pinned). 2944 * 2945 * This works similar to lock_folio_or_retry in that it can drop the 2946 * mmap_lock. It differs in that it actually returns the folio locked 2947 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2948 * to drop the mmap_lock then fpin will point to the pinned file and 2949 * needs to be fput()'ed at a later point. 2950 */ 2951 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2952 struct file **fpin) 2953 { 2954 if (folio_trylock(folio)) 2955 return 1; 2956 2957 /* 2958 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2959 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2960 * is supposed to work. We have way too many special cases.. 2961 */ 2962 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2963 return 0; 2964 2965 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2966 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2967 if (__folio_lock_killable(folio)) { 2968 /* 2969 * We didn't have the right flags to drop the mmap_lock, 2970 * but all fault_handlers only check for fatal signals 2971 * if we return VM_FAULT_RETRY, so we need to drop the 2972 * mmap_lock here and return 0 if we don't have a fpin. 2973 */ 2974 if (*fpin == NULL) 2975 mmap_read_unlock(vmf->vma->vm_mm); 2976 return 0; 2977 } 2978 } else 2979 __folio_lock(folio); 2980 2981 return 1; 2982 } 2983 2984 /* 2985 * Synchronous readahead happens when we don't even find a page in the page 2986 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2987 * to drop the mmap sem we return the file that was pinned in order for us to do 2988 * that. If we didn't pin a file then we return NULL. The file that is 2989 * returned needs to be fput()'ed when we're done with it. 2990 */ 2991 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2992 { 2993 struct file *file = vmf->vma->vm_file; 2994 struct file_ra_state *ra = &file->f_ra; 2995 struct address_space *mapping = file->f_mapping; 2996 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2997 struct file *fpin = NULL; 2998 unsigned int mmap_miss; 2999 3000 /* If we don't want any read-ahead, don't bother */ 3001 if (vmf->vma->vm_flags & VM_RAND_READ) 3002 return fpin; 3003 if (!ra->ra_pages) 3004 return fpin; 3005 3006 if (vmf->vma->vm_flags & VM_SEQ_READ) { 3007 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3008 page_cache_sync_ra(&ractl, ra->ra_pages); 3009 return fpin; 3010 } 3011 3012 /* Avoid banging the cache line if not needed */ 3013 mmap_miss = READ_ONCE(ra->mmap_miss); 3014 if (mmap_miss < MMAP_LOTSAMISS * 10) 3015 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3016 3017 /* 3018 * Do we miss much more than hit in this file? If so, 3019 * stop bothering with read-ahead. It will only hurt. 3020 */ 3021 if (mmap_miss > MMAP_LOTSAMISS) 3022 return fpin; 3023 3024 /* 3025 * mmap read-around 3026 */ 3027 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3028 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3029 ra->size = ra->ra_pages; 3030 ra->async_size = ra->ra_pages / 4; 3031 ractl._index = ra->start; 3032 do_page_cache_ra(&ractl, ra->size, ra->async_size); 3033 return fpin; 3034 } 3035 3036 /* 3037 * Asynchronous readahead happens when we find the page and PG_readahead, 3038 * so we want to possibly extend the readahead further. We return the file that 3039 * was pinned if we have to drop the mmap_lock in order to do IO. 3040 */ 3041 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3042 struct folio *folio) 3043 { 3044 struct file *file = vmf->vma->vm_file; 3045 struct file_ra_state *ra = &file->f_ra; 3046 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3047 struct file *fpin = NULL; 3048 unsigned int mmap_miss; 3049 3050 /* If we don't want any read-ahead, don't bother */ 3051 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3052 return fpin; 3053 3054 mmap_miss = READ_ONCE(ra->mmap_miss); 3055 if (mmap_miss) 3056 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3057 3058 if (folio_test_readahead(folio)) { 3059 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3060 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3061 } 3062 return fpin; 3063 } 3064 3065 /** 3066 * filemap_fault - read in file data for page fault handling 3067 * @vmf: struct vm_fault containing details of the fault 3068 * 3069 * filemap_fault() is invoked via the vma operations vector for a 3070 * mapped memory region to read in file data during a page fault. 3071 * 3072 * The goto's are kind of ugly, but this streamlines the normal case of having 3073 * it in the page cache, and handles the special cases reasonably without 3074 * having a lot of duplicated code. 3075 * 3076 * vma->vm_mm->mmap_lock must be held on entry. 3077 * 3078 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3079 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3080 * 3081 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3082 * has not been released. 3083 * 3084 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3085 * 3086 * Return: bitwise-OR of %VM_FAULT_ codes. 3087 */ 3088 vm_fault_t filemap_fault(struct vm_fault *vmf) 3089 { 3090 int error; 3091 struct file *file = vmf->vma->vm_file; 3092 struct file *fpin = NULL; 3093 struct address_space *mapping = file->f_mapping; 3094 struct inode *inode = mapping->host; 3095 pgoff_t max_idx, index = vmf->pgoff; 3096 struct folio *folio; 3097 vm_fault_t ret = 0; 3098 bool mapping_locked = false; 3099 3100 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3101 if (unlikely(index >= max_idx)) 3102 return VM_FAULT_SIGBUS; 3103 3104 /* 3105 * Do we have something in the page cache already? 3106 */ 3107 folio = filemap_get_folio(mapping, index); 3108 if (likely(folio)) { 3109 /* 3110 * We found the page, so try async readahead before waiting for 3111 * the lock. 3112 */ 3113 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3114 fpin = do_async_mmap_readahead(vmf, folio); 3115 if (unlikely(!folio_test_uptodate(folio))) { 3116 filemap_invalidate_lock_shared(mapping); 3117 mapping_locked = true; 3118 } 3119 } else { 3120 /* No page in the page cache at all */ 3121 count_vm_event(PGMAJFAULT); 3122 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3123 ret = VM_FAULT_MAJOR; 3124 fpin = do_sync_mmap_readahead(vmf); 3125 retry_find: 3126 /* 3127 * See comment in filemap_create_folio() why we need 3128 * invalidate_lock 3129 */ 3130 if (!mapping_locked) { 3131 filemap_invalidate_lock_shared(mapping); 3132 mapping_locked = true; 3133 } 3134 folio = __filemap_get_folio(mapping, index, 3135 FGP_CREAT|FGP_FOR_MMAP, 3136 vmf->gfp_mask); 3137 if (!folio) { 3138 if (fpin) 3139 goto out_retry; 3140 filemap_invalidate_unlock_shared(mapping); 3141 return VM_FAULT_OOM; 3142 } 3143 } 3144 3145 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3146 goto out_retry; 3147 3148 /* Did it get truncated? */ 3149 if (unlikely(folio->mapping != mapping)) { 3150 folio_unlock(folio); 3151 folio_put(folio); 3152 goto retry_find; 3153 } 3154 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3155 3156 /* 3157 * We have a locked page in the page cache, now we need to check 3158 * that it's up-to-date. If not, it is going to be due to an error. 3159 */ 3160 if (unlikely(!folio_test_uptodate(folio))) { 3161 /* 3162 * The page was in cache and uptodate and now it is not. 3163 * Strange but possible since we didn't hold the page lock all 3164 * the time. Let's drop everything get the invalidate lock and 3165 * try again. 3166 */ 3167 if (!mapping_locked) { 3168 folio_unlock(folio); 3169 folio_put(folio); 3170 goto retry_find; 3171 } 3172 goto page_not_uptodate; 3173 } 3174 3175 /* 3176 * We've made it this far and we had to drop our mmap_lock, now is the 3177 * time to return to the upper layer and have it re-find the vma and 3178 * redo the fault. 3179 */ 3180 if (fpin) { 3181 folio_unlock(folio); 3182 goto out_retry; 3183 } 3184 if (mapping_locked) 3185 filemap_invalidate_unlock_shared(mapping); 3186 3187 /* 3188 * Found the page and have a reference on it. 3189 * We must recheck i_size under page lock. 3190 */ 3191 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3192 if (unlikely(index >= max_idx)) { 3193 folio_unlock(folio); 3194 folio_put(folio); 3195 return VM_FAULT_SIGBUS; 3196 } 3197 3198 vmf->page = folio_file_page(folio, index); 3199 return ret | VM_FAULT_LOCKED; 3200 3201 page_not_uptodate: 3202 /* 3203 * Umm, take care of errors if the page isn't up-to-date. 3204 * Try to re-read it _once_. We do this synchronously, 3205 * because there really aren't any performance issues here 3206 * and we need to check for errors. 3207 */ 3208 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3209 error = filemap_read_folio(file, mapping, folio); 3210 if (fpin) 3211 goto out_retry; 3212 folio_put(folio); 3213 3214 if (!error || error == AOP_TRUNCATED_PAGE) 3215 goto retry_find; 3216 filemap_invalidate_unlock_shared(mapping); 3217 3218 return VM_FAULT_SIGBUS; 3219 3220 out_retry: 3221 /* 3222 * We dropped the mmap_lock, we need to return to the fault handler to 3223 * re-find the vma and come back and find our hopefully still populated 3224 * page. 3225 */ 3226 if (folio) 3227 folio_put(folio); 3228 if (mapping_locked) 3229 filemap_invalidate_unlock_shared(mapping); 3230 if (fpin) 3231 fput(fpin); 3232 return ret | VM_FAULT_RETRY; 3233 } 3234 EXPORT_SYMBOL(filemap_fault); 3235 3236 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3237 { 3238 struct mm_struct *mm = vmf->vma->vm_mm; 3239 3240 /* Huge page is mapped? No need to proceed. */ 3241 if (pmd_trans_huge(*vmf->pmd)) { 3242 unlock_page(page); 3243 put_page(page); 3244 return true; 3245 } 3246 3247 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3248 vm_fault_t ret = do_set_pmd(vmf, page); 3249 if (!ret) { 3250 /* The page is mapped successfully, reference consumed. */ 3251 unlock_page(page); 3252 return true; 3253 } 3254 } 3255 3256 if (pmd_none(*vmf->pmd)) 3257 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3258 3259 /* See comment in handle_pte_fault() */ 3260 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3261 unlock_page(page); 3262 put_page(page); 3263 return true; 3264 } 3265 3266 return false; 3267 } 3268 3269 static struct folio *next_uptodate_page(struct folio *folio, 3270 struct address_space *mapping, 3271 struct xa_state *xas, pgoff_t end_pgoff) 3272 { 3273 unsigned long max_idx; 3274 3275 do { 3276 if (!folio) 3277 return NULL; 3278 if (xas_retry(xas, folio)) 3279 continue; 3280 if (xa_is_value(folio)) 3281 continue; 3282 if (folio_test_locked(folio)) 3283 continue; 3284 if (!folio_try_get_rcu(folio)) 3285 continue; 3286 /* Has the page moved or been split? */ 3287 if (unlikely(folio != xas_reload(xas))) 3288 goto skip; 3289 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3290 goto skip; 3291 if (!folio_trylock(folio)) 3292 goto skip; 3293 if (folio->mapping != mapping) 3294 goto unlock; 3295 if (!folio_test_uptodate(folio)) 3296 goto unlock; 3297 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3298 if (xas->xa_index >= max_idx) 3299 goto unlock; 3300 return folio; 3301 unlock: 3302 folio_unlock(folio); 3303 skip: 3304 folio_put(folio); 3305 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3306 3307 return NULL; 3308 } 3309 3310 static inline struct folio *first_map_page(struct address_space *mapping, 3311 struct xa_state *xas, 3312 pgoff_t end_pgoff) 3313 { 3314 return next_uptodate_page(xas_find(xas, end_pgoff), 3315 mapping, xas, end_pgoff); 3316 } 3317 3318 static inline struct folio *next_map_page(struct address_space *mapping, 3319 struct xa_state *xas, 3320 pgoff_t end_pgoff) 3321 { 3322 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3323 mapping, xas, end_pgoff); 3324 } 3325 3326 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3327 pgoff_t start_pgoff, pgoff_t end_pgoff) 3328 { 3329 struct vm_area_struct *vma = vmf->vma; 3330 struct file *file = vma->vm_file; 3331 struct address_space *mapping = file->f_mapping; 3332 pgoff_t last_pgoff = start_pgoff; 3333 unsigned long addr; 3334 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3335 struct folio *folio; 3336 struct page *page; 3337 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3338 vm_fault_t ret = 0; 3339 3340 rcu_read_lock(); 3341 folio = first_map_page(mapping, &xas, end_pgoff); 3342 if (!folio) 3343 goto out; 3344 3345 if (filemap_map_pmd(vmf, &folio->page)) { 3346 ret = VM_FAULT_NOPAGE; 3347 goto out; 3348 } 3349 3350 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3351 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3352 do { 3353 again: 3354 page = folio_file_page(folio, xas.xa_index); 3355 if (PageHWPoison(page)) 3356 goto unlock; 3357 3358 if (mmap_miss > 0) 3359 mmap_miss--; 3360 3361 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3362 vmf->pte += xas.xa_index - last_pgoff; 3363 last_pgoff = xas.xa_index; 3364 3365 if (!pte_none(*vmf->pte)) 3366 goto unlock; 3367 3368 /* We're about to handle the fault */ 3369 if (vmf->address == addr) 3370 ret = VM_FAULT_NOPAGE; 3371 3372 do_set_pte(vmf, page, addr); 3373 /* no need to invalidate: a not-present page won't be cached */ 3374 update_mmu_cache(vma, addr, vmf->pte); 3375 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3376 xas.xa_index++; 3377 folio_ref_inc(folio); 3378 goto again; 3379 } 3380 folio_unlock(folio); 3381 continue; 3382 unlock: 3383 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3384 xas.xa_index++; 3385 goto again; 3386 } 3387 folio_unlock(folio); 3388 folio_put(folio); 3389 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3390 pte_unmap_unlock(vmf->pte, vmf->ptl); 3391 out: 3392 rcu_read_unlock(); 3393 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3394 return ret; 3395 } 3396 EXPORT_SYMBOL(filemap_map_pages); 3397 3398 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3399 { 3400 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3401 struct folio *folio = page_folio(vmf->page); 3402 vm_fault_t ret = VM_FAULT_LOCKED; 3403 3404 sb_start_pagefault(mapping->host->i_sb); 3405 file_update_time(vmf->vma->vm_file); 3406 folio_lock(folio); 3407 if (folio->mapping != mapping) { 3408 folio_unlock(folio); 3409 ret = VM_FAULT_NOPAGE; 3410 goto out; 3411 } 3412 /* 3413 * We mark the folio dirty already here so that when freeze is in 3414 * progress, we are guaranteed that writeback during freezing will 3415 * see the dirty folio and writeprotect it again. 3416 */ 3417 folio_mark_dirty(folio); 3418 folio_wait_stable(folio); 3419 out: 3420 sb_end_pagefault(mapping->host->i_sb); 3421 return ret; 3422 } 3423 3424 const struct vm_operations_struct generic_file_vm_ops = { 3425 .fault = filemap_fault, 3426 .map_pages = filemap_map_pages, 3427 .page_mkwrite = filemap_page_mkwrite, 3428 }; 3429 3430 /* This is used for a general mmap of a disk file */ 3431 3432 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3433 { 3434 struct address_space *mapping = file->f_mapping; 3435 3436 if (!mapping->a_ops->readpage) 3437 return -ENOEXEC; 3438 file_accessed(file); 3439 vma->vm_ops = &generic_file_vm_ops; 3440 return 0; 3441 } 3442 3443 /* 3444 * This is for filesystems which do not implement ->writepage. 3445 */ 3446 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3447 { 3448 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3449 return -EINVAL; 3450 return generic_file_mmap(file, vma); 3451 } 3452 #else 3453 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3454 { 3455 return VM_FAULT_SIGBUS; 3456 } 3457 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3458 { 3459 return -ENOSYS; 3460 } 3461 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3462 { 3463 return -ENOSYS; 3464 } 3465 #endif /* CONFIG_MMU */ 3466 3467 EXPORT_SYMBOL(filemap_page_mkwrite); 3468 EXPORT_SYMBOL(generic_file_mmap); 3469 EXPORT_SYMBOL(generic_file_readonly_mmap); 3470 3471 static struct folio *do_read_cache_folio(struct address_space *mapping, 3472 pgoff_t index, filler_t filler, void *data, gfp_t gfp) 3473 { 3474 struct folio *folio; 3475 int err; 3476 repeat: 3477 folio = filemap_get_folio(mapping, index); 3478 if (!folio) { 3479 folio = filemap_alloc_folio(gfp, 0); 3480 if (!folio) 3481 return ERR_PTR(-ENOMEM); 3482 err = filemap_add_folio(mapping, folio, index, gfp); 3483 if (unlikely(err)) { 3484 folio_put(folio); 3485 if (err == -EEXIST) 3486 goto repeat; 3487 /* Presumably ENOMEM for xarray node */ 3488 return ERR_PTR(err); 3489 } 3490 3491 filler: 3492 if (filler) 3493 err = filler(data, &folio->page); 3494 else 3495 err = mapping->a_ops->readpage(data, &folio->page); 3496 3497 if (err < 0) { 3498 folio_put(folio); 3499 return ERR_PTR(err); 3500 } 3501 3502 folio_wait_locked(folio); 3503 if (!folio_test_uptodate(folio)) { 3504 folio_put(folio); 3505 return ERR_PTR(-EIO); 3506 } 3507 3508 goto out; 3509 } 3510 if (folio_test_uptodate(folio)) 3511 goto out; 3512 3513 if (!folio_trylock(folio)) { 3514 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3515 goto repeat; 3516 } 3517 3518 /* Folio was truncated from mapping */ 3519 if (!folio->mapping) { 3520 folio_unlock(folio); 3521 folio_put(folio); 3522 goto repeat; 3523 } 3524 3525 /* Someone else locked and filled the page in a very small window */ 3526 if (folio_test_uptodate(folio)) { 3527 folio_unlock(folio); 3528 goto out; 3529 } 3530 3531 /* 3532 * A previous I/O error may have been due to temporary 3533 * failures. 3534 * Clear page error before actual read, PG_error will be 3535 * set again if read page fails. 3536 */ 3537 folio_clear_error(folio); 3538 goto filler; 3539 3540 out: 3541 folio_mark_accessed(folio); 3542 return folio; 3543 } 3544 3545 /** 3546 * read_cache_folio - read into page cache, fill it if needed 3547 * @mapping: the page's address_space 3548 * @index: the page index 3549 * @filler: function to perform the read 3550 * @data: first arg to filler(data, page) function, often left as NULL 3551 * 3552 * Read into the page cache. If a page already exists, and PageUptodate() is 3553 * not set, try to fill the page and wait for it to become unlocked. 3554 * 3555 * If the page does not get brought uptodate, return -EIO. 3556 * 3557 * The function expects mapping->invalidate_lock to be already held. 3558 * 3559 * Return: up to date page on success, ERR_PTR() on failure. 3560 */ 3561 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3562 filler_t filler, void *data) 3563 { 3564 return do_read_cache_folio(mapping, index, filler, data, 3565 mapping_gfp_mask(mapping)); 3566 } 3567 EXPORT_SYMBOL(read_cache_folio); 3568 3569 static struct page *do_read_cache_page(struct address_space *mapping, 3570 pgoff_t index, filler_t *filler, void *data, gfp_t gfp) 3571 { 3572 struct folio *folio; 3573 3574 folio = do_read_cache_folio(mapping, index, filler, data, gfp); 3575 if (IS_ERR(folio)) 3576 return &folio->page; 3577 return folio_file_page(folio, index); 3578 } 3579 3580 struct page *read_cache_page(struct address_space *mapping, 3581 pgoff_t index, filler_t *filler, void *data) 3582 { 3583 return do_read_cache_page(mapping, index, filler, data, 3584 mapping_gfp_mask(mapping)); 3585 } 3586 EXPORT_SYMBOL(read_cache_page); 3587 3588 /** 3589 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3590 * @mapping: the page's address_space 3591 * @index: the page index 3592 * @gfp: the page allocator flags to use if allocating 3593 * 3594 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3595 * any new page allocations done using the specified allocation flags. 3596 * 3597 * If the page does not get brought uptodate, return -EIO. 3598 * 3599 * The function expects mapping->invalidate_lock to be already held. 3600 * 3601 * Return: up to date page on success, ERR_PTR() on failure. 3602 */ 3603 struct page *read_cache_page_gfp(struct address_space *mapping, 3604 pgoff_t index, 3605 gfp_t gfp) 3606 { 3607 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3608 } 3609 EXPORT_SYMBOL(read_cache_page_gfp); 3610 3611 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3612 loff_t pos, unsigned len, unsigned flags, 3613 struct page **pagep, void **fsdata) 3614 { 3615 const struct address_space_operations *aops = mapping->a_ops; 3616 3617 return aops->write_begin(file, mapping, pos, len, flags, 3618 pagep, fsdata); 3619 } 3620 EXPORT_SYMBOL(pagecache_write_begin); 3621 3622 int pagecache_write_end(struct file *file, struct address_space *mapping, 3623 loff_t pos, unsigned len, unsigned copied, 3624 struct page *page, void *fsdata) 3625 { 3626 const struct address_space_operations *aops = mapping->a_ops; 3627 3628 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3629 } 3630 EXPORT_SYMBOL(pagecache_write_end); 3631 3632 /* 3633 * Warn about a page cache invalidation failure during a direct I/O write. 3634 */ 3635 void dio_warn_stale_pagecache(struct file *filp) 3636 { 3637 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3638 char pathname[128]; 3639 char *path; 3640 3641 errseq_set(&filp->f_mapping->wb_err, -EIO); 3642 if (__ratelimit(&_rs)) { 3643 path = file_path(filp, pathname, sizeof(pathname)); 3644 if (IS_ERR(path)) 3645 path = "(unknown)"; 3646 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3647 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3648 current->comm); 3649 } 3650 } 3651 3652 ssize_t 3653 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3654 { 3655 struct file *file = iocb->ki_filp; 3656 struct address_space *mapping = file->f_mapping; 3657 struct inode *inode = mapping->host; 3658 loff_t pos = iocb->ki_pos; 3659 ssize_t written; 3660 size_t write_len; 3661 pgoff_t end; 3662 3663 write_len = iov_iter_count(from); 3664 end = (pos + write_len - 1) >> PAGE_SHIFT; 3665 3666 if (iocb->ki_flags & IOCB_NOWAIT) { 3667 /* If there are pages to writeback, return */ 3668 if (filemap_range_has_page(file->f_mapping, pos, 3669 pos + write_len - 1)) 3670 return -EAGAIN; 3671 } else { 3672 written = filemap_write_and_wait_range(mapping, pos, 3673 pos + write_len - 1); 3674 if (written) 3675 goto out; 3676 } 3677 3678 /* 3679 * After a write we want buffered reads to be sure to go to disk to get 3680 * the new data. We invalidate clean cached page from the region we're 3681 * about to write. We do this *before* the write so that we can return 3682 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3683 */ 3684 written = invalidate_inode_pages2_range(mapping, 3685 pos >> PAGE_SHIFT, end); 3686 /* 3687 * If a page can not be invalidated, return 0 to fall back 3688 * to buffered write. 3689 */ 3690 if (written) { 3691 if (written == -EBUSY) 3692 return 0; 3693 goto out; 3694 } 3695 3696 written = mapping->a_ops->direct_IO(iocb, from); 3697 3698 /* 3699 * Finally, try again to invalidate clean pages which might have been 3700 * cached by non-direct readahead, or faulted in by get_user_pages() 3701 * if the source of the write was an mmap'ed region of the file 3702 * we're writing. Either one is a pretty crazy thing to do, 3703 * so we don't support it 100%. If this invalidation 3704 * fails, tough, the write still worked... 3705 * 3706 * Most of the time we do not need this since dio_complete() will do 3707 * the invalidation for us. However there are some file systems that 3708 * do not end up with dio_complete() being called, so let's not break 3709 * them by removing it completely. 3710 * 3711 * Noticeable example is a blkdev_direct_IO(). 3712 * 3713 * Skip invalidation for async writes or if mapping has no pages. 3714 */ 3715 if (written > 0 && mapping->nrpages && 3716 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3717 dio_warn_stale_pagecache(file); 3718 3719 if (written > 0) { 3720 pos += written; 3721 write_len -= written; 3722 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3723 i_size_write(inode, pos); 3724 mark_inode_dirty(inode); 3725 } 3726 iocb->ki_pos = pos; 3727 } 3728 if (written != -EIOCBQUEUED) 3729 iov_iter_revert(from, write_len - iov_iter_count(from)); 3730 out: 3731 return written; 3732 } 3733 EXPORT_SYMBOL(generic_file_direct_write); 3734 3735 ssize_t generic_perform_write(struct file *file, 3736 struct iov_iter *i, loff_t pos) 3737 { 3738 struct address_space *mapping = file->f_mapping; 3739 const struct address_space_operations *a_ops = mapping->a_ops; 3740 long status = 0; 3741 ssize_t written = 0; 3742 unsigned int flags = 0; 3743 3744 do { 3745 struct page *page; 3746 unsigned long offset; /* Offset into pagecache page */ 3747 unsigned long bytes; /* Bytes to write to page */ 3748 size_t copied; /* Bytes copied from user */ 3749 void *fsdata; 3750 3751 offset = (pos & (PAGE_SIZE - 1)); 3752 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3753 iov_iter_count(i)); 3754 3755 again: 3756 /* 3757 * Bring in the user page that we will copy from _first_. 3758 * Otherwise there's a nasty deadlock on copying from the 3759 * same page as we're writing to, without it being marked 3760 * up-to-date. 3761 */ 3762 if (unlikely(fault_in_iov_iter_readable(i, bytes))) { 3763 status = -EFAULT; 3764 break; 3765 } 3766 3767 if (fatal_signal_pending(current)) { 3768 status = -EINTR; 3769 break; 3770 } 3771 3772 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3773 &page, &fsdata); 3774 if (unlikely(status < 0)) 3775 break; 3776 3777 if (mapping_writably_mapped(mapping)) 3778 flush_dcache_page(page); 3779 3780 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3781 flush_dcache_page(page); 3782 3783 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3784 page, fsdata); 3785 if (unlikely(status != copied)) { 3786 iov_iter_revert(i, copied - max(status, 0L)); 3787 if (unlikely(status < 0)) 3788 break; 3789 } 3790 cond_resched(); 3791 3792 if (unlikely(status == 0)) { 3793 /* 3794 * A short copy made ->write_end() reject the 3795 * thing entirely. Might be memory poisoning 3796 * halfway through, might be a race with munmap, 3797 * might be severe memory pressure. 3798 */ 3799 if (copied) 3800 bytes = copied; 3801 goto again; 3802 } 3803 pos += status; 3804 written += status; 3805 3806 balance_dirty_pages_ratelimited(mapping); 3807 } while (iov_iter_count(i)); 3808 3809 return written ? written : status; 3810 } 3811 EXPORT_SYMBOL(generic_perform_write); 3812 3813 /** 3814 * __generic_file_write_iter - write data to a file 3815 * @iocb: IO state structure (file, offset, etc.) 3816 * @from: iov_iter with data to write 3817 * 3818 * This function does all the work needed for actually writing data to a 3819 * file. It does all basic checks, removes SUID from the file, updates 3820 * modification times and calls proper subroutines depending on whether we 3821 * do direct IO or a standard buffered write. 3822 * 3823 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3824 * object which does not need locking at all. 3825 * 3826 * This function does *not* take care of syncing data in case of O_SYNC write. 3827 * A caller has to handle it. This is mainly due to the fact that we want to 3828 * avoid syncing under i_rwsem. 3829 * 3830 * Return: 3831 * * number of bytes written, even for truncated writes 3832 * * negative error code if no data has been written at all 3833 */ 3834 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3835 { 3836 struct file *file = iocb->ki_filp; 3837 struct address_space *mapping = file->f_mapping; 3838 struct inode *inode = mapping->host; 3839 ssize_t written = 0; 3840 ssize_t err; 3841 ssize_t status; 3842 3843 /* We can write back this queue in page reclaim */ 3844 current->backing_dev_info = inode_to_bdi(inode); 3845 err = file_remove_privs(file); 3846 if (err) 3847 goto out; 3848 3849 err = file_update_time(file); 3850 if (err) 3851 goto out; 3852 3853 if (iocb->ki_flags & IOCB_DIRECT) { 3854 loff_t pos, endbyte; 3855 3856 written = generic_file_direct_write(iocb, from); 3857 /* 3858 * If the write stopped short of completing, fall back to 3859 * buffered writes. Some filesystems do this for writes to 3860 * holes, for example. For DAX files, a buffered write will 3861 * not succeed (even if it did, DAX does not handle dirty 3862 * page-cache pages correctly). 3863 */ 3864 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3865 goto out; 3866 3867 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3868 /* 3869 * If generic_perform_write() returned a synchronous error 3870 * then we want to return the number of bytes which were 3871 * direct-written, or the error code if that was zero. Note 3872 * that this differs from normal direct-io semantics, which 3873 * will return -EFOO even if some bytes were written. 3874 */ 3875 if (unlikely(status < 0)) { 3876 err = status; 3877 goto out; 3878 } 3879 /* 3880 * We need to ensure that the page cache pages are written to 3881 * disk and invalidated to preserve the expected O_DIRECT 3882 * semantics. 3883 */ 3884 endbyte = pos + status - 1; 3885 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3886 if (err == 0) { 3887 iocb->ki_pos = endbyte + 1; 3888 written += status; 3889 invalidate_mapping_pages(mapping, 3890 pos >> PAGE_SHIFT, 3891 endbyte >> PAGE_SHIFT); 3892 } else { 3893 /* 3894 * We don't know how much we wrote, so just return 3895 * the number of bytes which were direct-written 3896 */ 3897 } 3898 } else { 3899 written = generic_perform_write(file, from, iocb->ki_pos); 3900 if (likely(written > 0)) 3901 iocb->ki_pos += written; 3902 } 3903 out: 3904 current->backing_dev_info = NULL; 3905 return written ? written : err; 3906 } 3907 EXPORT_SYMBOL(__generic_file_write_iter); 3908 3909 /** 3910 * generic_file_write_iter - write data to a file 3911 * @iocb: IO state structure 3912 * @from: iov_iter with data to write 3913 * 3914 * This is a wrapper around __generic_file_write_iter() to be used by most 3915 * filesystems. It takes care of syncing the file in case of O_SYNC file 3916 * and acquires i_rwsem as needed. 3917 * Return: 3918 * * negative error code if no data has been written at all of 3919 * vfs_fsync_range() failed for a synchronous write 3920 * * number of bytes written, even for truncated writes 3921 */ 3922 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3923 { 3924 struct file *file = iocb->ki_filp; 3925 struct inode *inode = file->f_mapping->host; 3926 ssize_t ret; 3927 3928 inode_lock(inode); 3929 ret = generic_write_checks(iocb, from); 3930 if (ret > 0) 3931 ret = __generic_file_write_iter(iocb, from); 3932 inode_unlock(inode); 3933 3934 if (ret > 0) 3935 ret = generic_write_sync(iocb, ret); 3936 return ret; 3937 } 3938 EXPORT_SYMBOL(generic_file_write_iter); 3939 3940 /** 3941 * filemap_release_folio() - Release fs-specific metadata on a folio. 3942 * @folio: The folio which the kernel is trying to free. 3943 * @gfp: Memory allocation flags (and I/O mode). 3944 * 3945 * The address_space is trying to release any data attached to a folio 3946 * (presumably at folio->private). 3947 * 3948 * This will also be called if the private_2 flag is set on a page, 3949 * indicating that the folio has other metadata associated with it. 3950 * 3951 * The @gfp argument specifies whether I/O may be performed to release 3952 * this page (__GFP_IO), and whether the call may block 3953 * (__GFP_RECLAIM & __GFP_FS). 3954 * 3955 * Return: %true if the release was successful, otherwise %false. 3956 */ 3957 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3958 { 3959 struct address_space * const mapping = folio->mapping; 3960 3961 BUG_ON(!folio_test_locked(folio)); 3962 if (folio_test_writeback(folio)) 3963 return false; 3964 3965 if (mapping && mapping->a_ops->releasepage) 3966 return mapping->a_ops->releasepage(&folio->page, gfp); 3967 return try_to_free_buffers(&folio->page); 3968 } 3969 EXPORT_SYMBOL(filemap_release_folio); 3970