xref: /openbmc/linux/mm/filemap.c (revision ca79522c)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40 
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45 
46 #include <asm/mman.h>
47 
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59 
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex		(truncate_pagecache)
64  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock		(exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
74  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page		(access_process_vm)
78  *
79  *  ->i_mutex			(generic_file_buffered_write)
80  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock			(fs/fs-writeback.c)
84  *    ->mapping->tree_lock	(__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock		(vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock		(try_to_unmap_one)
94  *    ->private_lock		(try_to_unmap_one)
95  *    ->tree_lock		(try_to_unmap_one)
96  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
97  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
98  *    ->private_lock		(page_remove_rmap->set_page_dirty)
99  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109 
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	trace_mm_filemap_delete_from_page_cache(page);
120 	/*
121 	 * if we're uptodate, flush out into the cleancache, otherwise
122 	 * invalidate any existing cleancache entries.  We can't leave
123 	 * stale data around in the cleancache once our page is gone
124 	 */
125 	if (PageUptodate(page) && PageMappedToDisk(page))
126 		cleancache_put_page(page);
127 	else
128 		cleancache_invalidate_page(mapping, page);
129 
130 	radix_tree_delete(&mapping->page_tree, page->index);
131 	page->mapping = NULL;
132 	/* Leave page->index set: truncation lookup relies upon it */
133 	mapping->nrpages--;
134 	__dec_zone_page_state(page, NR_FILE_PAGES);
135 	if (PageSwapBacked(page))
136 		__dec_zone_page_state(page, NR_SHMEM);
137 	BUG_ON(page_mapped(page));
138 
139 	/*
140 	 * Some filesystems seem to re-dirty the page even after
141 	 * the VM has canceled the dirty bit (eg ext3 journaling).
142 	 *
143 	 * Fix it up by doing a final dirty accounting check after
144 	 * having removed the page entirely.
145 	 */
146 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 		dec_zone_page_state(page, NR_FILE_DIRTY);
148 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 	}
150 }
151 
152 /**
153  * delete_from_page_cache - delete page from page cache
154  * @page: the page which the kernel is trying to remove from page cache
155  *
156  * This must be called only on pages that have been verified to be in the page
157  * cache and locked.  It will never put the page into the free list, the caller
158  * has a reference on the page.
159  */
160 void delete_from_page_cache(struct page *page)
161 {
162 	struct address_space *mapping = page->mapping;
163 	void (*freepage)(struct page *);
164 
165 	BUG_ON(!PageLocked(page));
166 
167 	freepage = mapping->a_ops->freepage;
168 	spin_lock_irq(&mapping->tree_lock);
169 	__delete_from_page_cache(page);
170 	spin_unlock_irq(&mapping->tree_lock);
171 	mem_cgroup_uncharge_cache_page(page);
172 
173 	if (freepage)
174 		freepage(page);
175 	page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178 
179 static int sleep_on_page(void *word)
180 {
181 	io_schedule();
182 	return 0;
183 }
184 
185 static int sleep_on_page_killable(void *word)
186 {
187 	sleep_on_page(word);
188 	return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190 
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 	int ret = 0;
194 	/* Check for outstanding write errors */
195 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 		ret = -ENOSPC;
197 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 		ret = -EIO;
199 	return ret;
200 }
201 
202 /**
203  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204  * @mapping:	address space structure to write
205  * @start:	offset in bytes where the range starts
206  * @end:	offset in bytes where the range ends (inclusive)
207  * @sync_mode:	enable synchronous operation
208  *
209  * Start writeback against all of a mapping's dirty pages that lie
210  * within the byte offsets <start, end> inclusive.
211  *
212  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213  * opposed to a regular memory cleansing writeback.  The difference between
214  * these two operations is that if a dirty page/buffer is encountered, it must
215  * be waited upon, and not just skipped over.
216  */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end, int sync_mode)
219 {
220 	int ret;
221 	struct writeback_control wbc = {
222 		.sync_mode = sync_mode,
223 		.nr_to_write = LONG_MAX,
224 		.range_start = start,
225 		.range_end = end,
226 	};
227 
228 	if (!mapping_cap_writeback_dirty(mapping))
229 		return 0;
230 
231 	ret = do_writepages(mapping, &wbc);
232 	return ret;
233 }
234 
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 	int sync_mode)
237 {
238 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240 
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246 
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 				loff_t end)
249 {
250 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253 
254 /**
255  * filemap_flush - mostly a non-blocking flush
256  * @mapping:	target address_space
257  *
258  * This is a mostly non-blocking flush.  Not suitable for data-integrity
259  * purposes - I/O may not be started against all dirty pages.
260  */
261 int filemap_flush(struct address_space *mapping)
262 {
263 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266 
267 /**
268  * filemap_fdatawait_range - wait for writeback to complete
269  * @mapping:		address space structure to wait for
270  * @start_byte:		offset in bytes where the range starts
271  * @end_byte:		offset in bytes where the range ends (inclusive)
272  *
273  * Walk the list of under-writeback pages of the given address space
274  * in the given range and wait for all of them.
275  */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 			    loff_t end_byte)
278 {
279 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 	struct pagevec pvec;
282 	int nr_pages;
283 	int ret2, ret = 0;
284 
285 	if (end_byte < start_byte)
286 		goto out;
287 
288 	pagevec_init(&pvec, 0);
289 	while ((index <= end) &&
290 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 			PAGECACHE_TAG_WRITEBACK,
292 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 		unsigned i;
294 
295 		for (i = 0; i < nr_pages; i++) {
296 			struct page *page = pvec.pages[i];
297 
298 			/* until radix tree lookup accepts end_index */
299 			if (page->index > end)
300 				continue;
301 
302 			wait_on_page_writeback(page);
303 			if (TestClearPageError(page))
304 				ret = -EIO;
305 		}
306 		pagevec_release(&pvec);
307 		cond_resched();
308 	}
309 out:
310 	ret2 = filemap_check_errors(mapping);
311 	if (!ret)
312 		ret = ret2;
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317 
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 	loff_t i_size = i_size_read(mapping->host);
328 
329 	if (i_size == 0)
330 		return 0;
331 
332 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335 
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 	int err = 0;
339 
340 	if (mapping->nrpages) {
341 		err = filemap_fdatawrite(mapping);
342 		/*
343 		 * Even if the above returned error, the pages may be
344 		 * written partially (e.g. -ENOSPC), so we wait for it.
345 		 * But the -EIO is special case, it may indicate the worst
346 		 * thing (e.g. bug) happened, so we avoid waiting for it.
347 		 */
348 		if (err != -EIO) {
349 			int err2 = filemap_fdatawait(mapping);
350 			if (!err)
351 				err = err2;
352 		}
353 	} else {
354 		err = filemap_check_errors(mapping);
355 	}
356 	return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359 
360 /**
361  * filemap_write_and_wait_range - write out & wait on a file range
362  * @mapping:	the address_space for the pages
363  * @lstart:	offset in bytes where the range starts
364  * @lend:	offset in bytes where the range ends (inclusive)
365  *
366  * Write out and wait upon file offsets lstart->lend, inclusive.
367  *
368  * Note that `lend' is inclusive (describes the last byte to be written) so
369  * that this function can be used to write to the very end-of-file (end = -1).
370  */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 				 loff_t lstart, loff_t lend)
373 {
374 	int err = 0;
375 
376 	if (mapping->nrpages) {
377 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 						 WB_SYNC_ALL);
379 		/* See comment of filemap_write_and_wait() */
380 		if (err != -EIO) {
381 			int err2 = filemap_fdatawait_range(mapping,
382 						lstart, lend);
383 			if (!err)
384 				err = err2;
385 		}
386 	} else {
387 		err = filemap_check_errors(mapping);
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392 
393 /**
394  * replace_page_cache_page - replace a pagecache page with a new one
395  * @old:	page to be replaced
396  * @new:	page to replace with
397  * @gfp_mask:	allocation mode
398  *
399  * This function replaces a page in the pagecache with a new one.  On
400  * success it acquires the pagecache reference for the new page and
401  * drops it for the old page.  Both the old and new pages must be
402  * locked.  This function does not add the new page to the LRU, the
403  * caller must do that.
404  *
405  * The remove + add is atomic.  The only way this function can fail is
406  * memory allocation failure.
407  */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 	int error;
411 
412 	VM_BUG_ON(!PageLocked(old));
413 	VM_BUG_ON(!PageLocked(new));
414 	VM_BUG_ON(new->mapping);
415 
416 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 	if (!error) {
418 		struct address_space *mapping = old->mapping;
419 		void (*freepage)(struct page *);
420 
421 		pgoff_t offset = old->index;
422 		freepage = mapping->a_ops->freepage;
423 
424 		page_cache_get(new);
425 		new->mapping = mapping;
426 		new->index = offset;
427 
428 		spin_lock_irq(&mapping->tree_lock);
429 		__delete_from_page_cache(old);
430 		error = radix_tree_insert(&mapping->page_tree, offset, new);
431 		BUG_ON(error);
432 		mapping->nrpages++;
433 		__inc_zone_page_state(new, NR_FILE_PAGES);
434 		if (PageSwapBacked(new))
435 			__inc_zone_page_state(new, NR_SHMEM);
436 		spin_unlock_irq(&mapping->tree_lock);
437 		/* mem_cgroup codes must not be called under tree_lock */
438 		mem_cgroup_replace_page_cache(old, new);
439 		radix_tree_preload_end();
440 		if (freepage)
441 			freepage(old);
442 		page_cache_release(old);
443 	}
444 
445 	return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448 
449 /**
450  * add_to_page_cache_locked - add a locked page to the pagecache
451  * @page:	page to add
452  * @mapping:	the page's address_space
453  * @offset:	page index
454  * @gfp_mask:	page allocation mode
455  *
456  * This function is used to add a page to the pagecache. It must be locked.
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 		pgoff_t offset, gfp_t gfp_mask)
461 {
462 	int error;
463 
464 	VM_BUG_ON(!PageLocked(page));
465 	VM_BUG_ON(PageSwapBacked(page));
466 
467 	error = mem_cgroup_cache_charge(page, current->mm,
468 					gfp_mask & GFP_RECLAIM_MASK);
469 	if (error)
470 		goto out;
471 
472 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473 	if (error == 0) {
474 		page_cache_get(page);
475 		page->mapping = mapping;
476 		page->index = offset;
477 
478 		spin_lock_irq(&mapping->tree_lock);
479 		error = radix_tree_insert(&mapping->page_tree, offset, page);
480 		if (likely(!error)) {
481 			mapping->nrpages++;
482 			__inc_zone_page_state(page, NR_FILE_PAGES);
483 			spin_unlock_irq(&mapping->tree_lock);
484 			trace_mm_filemap_add_to_page_cache(page);
485 		} else {
486 			page->mapping = NULL;
487 			/* Leave page->index set: truncation relies upon it */
488 			spin_unlock_irq(&mapping->tree_lock);
489 			mem_cgroup_uncharge_cache_page(page);
490 			page_cache_release(page);
491 		}
492 		radix_tree_preload_end();
493 	} else
494 		mem_cgroup_uncharge_cache_page(page);
495 out:
496 	return error;
497 }
498 EXPORT_SYMBOL(add_to_page_cache_locked);
499 
500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501 				pgoff_t offset, gfp_t gfp_mask)
502 {
503 	int ret;
504 
505 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
506 	if (ret == 0)
507 		lru_cache_add_file(page);
508 	return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511 
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515 	int n;
516 	struct page *page;
517 
518 	if (cpuset_do_page_mem_spread()) {
519 		unsigned int cpuset_mems_cookie;
520 		do {
521 			cpuset_mems_cookie = get_mems_allowed();
522 			n = cpuset_mem_spread_node();
523 			page = alloc_pages_exact_node(n, gfp, 0);
524 		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525 
526 		return page;
527 	}
528 	return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532 
533 /*
534  * In order to wait for pages to become available there must be
535  * waitqueues associated with pages. By using a hash table of
536  * waitqueues where the bucket discipline is to maintain all
537  * waiters on the same queue and wake all when any of the pages
538  * become available, and for the woken contexts to check to be
539  * sure the appropriate page became available, this saves space
540  * at a cost of "thundering herd" phenomena during rare hash
541  * collisions.
542  */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545 	const struct zone *zone = page_zone(page);
546 
547 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549 
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554 
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558 
559 	if (test_bit(bit_nr, &page->flags))
560 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 							TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564 
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568 
569 	if (!test_bit(bit_nr, &page->flags))
570 		return 0;
571 
572 	return __wait_on_bit(page_waitqueue(page), &wait,
573 			     sleep_on_page_killable, TASK_KILLABLE);
574 }
575 
576 /**
577  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578  * @page: Page defining the wait queue of interest
579  * @waiter: Waiter to add to the queue
580  *
581  * Add an arbitrary @waiter to the wait queue for the nominated @page.
582  */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585 	wait_queue_head_t *q = page_waitqueue(page);
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&q->lock, flags);
589 	__add_wait_queue(q, waiter);
590 	spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593 
594 /**
595  * unlock_page - unlock a locked page
596  * @page: the page
597  *
598  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600  * mechananism between PageLocked pages and PageWriteback pages is shared.
601  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602  *
603  * The mb is necessary to enforce ordering between the clear_bit and the read
604  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605  */
606 void unlock_page(struct page *page)
607 {
608 	VM_BUG_ON(!PageLocked(page));
609 	clear_bit_unlock(PG_locked, &page->flags);
610 	smp_mb__after_clear_bit();
611 	wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614 
615 /**
616  * end_page_writeback - end writeback against a page
617  * @page: the page
618  */
619 void end_page_writeback(struct page *page)
620 {
621 	if (TestClearPageReclaim(page))
622 		rotate_reclaimable_page(page);
623 
624 	if (!test_clear_page_writeback(page))
625 		BUG();
626 
627 	smp_mb__after_clear_bit();
628 	wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631 
632 /**
633  * __lock_page - get a lock on the page, assuming we need to sleep to get it
634  * @page: the page to lock
635  */
636 void __lock_page(struct page *page)
637 {
638 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639 
640 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641 							TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644 
645 int __lock_page_killable(struct page *page)
646 {
647 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648 
649 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
650 					sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653 
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 			 unsigned int flags)
656 {
657 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
658 		/*
659 		 * CAUTION! In this case, mmap_sem is not released
660 		 * even though return 0.
661 		 */
662 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 			return 0;
664 
665 		up_read(&mm->mmap_sem);
666 		if (flags & FAULT_FLAG_KILLABLE)
667 			wait_on_page_locked_killable(page);
668 		else
669 			wait_on_page_locked(page);
670 		return 0;
671 	} else {
672 		if (flags & FAULT_FLAG_KILLABLE) {
673 			int ret;
674 
675 			ret = __lock_page_killable(page);
676 			if (ret) {
677 				up_read(&mm->mmap_sem);
678 				return 0;
679 			}
680 		} else
681 			__lock_page(page);
682 		return 1;
683 	}
684 }
685 
686 /**
687  * find_get_page - find and get a page reference
688  * @mapping: the address_space to search
689  * @offset: the page index
690  *
691  * Is there a pagecache struct page at the given (mapping, offset) tuple?
692  * If yes, increment its refcount and return it; if no, return NULL.
693  */
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
695 {
696 	void **pagep;
697 	struct page *page;
698 
699 	rcu_read_lock();
700 repeat:
701 	page = NULL;
702 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 	if (pagep) {
704 		page = radix_tree_deref_slot(pagep);
705 		if (unlikely(!page))
706 			goto out;
707 		if (radix_tree_exception(page)) {
708 			if (radix_tree_deref_retry(page))
709 				goto repeat;
710 			/*
711 			 * Otherwise, shmem/tmpfs must be storing a swap entry
712 			 * here as an exceptional entry: so return it without
713 			 * attempting to raise page count.
714 			 */
715 			goto out;
716 		}
717 		if (!page_cache_get_speculative(page))
718 			goto repeat;
719 
720 		/*
721 		 * Has the page moved?
722 		 * This is part of the lockless pagecache protocol. See
723 		 * include/linux/pagemap.h for details.
724 		 */
725 		if (unlikely(page != *pagep)) {
726 			page_cache_release(page);
727 			goto repeat;
728 		}
729 	}
730 out:
731 	rcu_read_unlock();
732 
733 	return page;
734 }
735 EXPORT_SYMBOL(find_get_page);
736 
737 /**
738  * find_lock_page - locate, pin and lock a pagecache page
739  * @mapping: the address_space to search
740  * @offset: the page index
741  *
742  * Locates the desired pagecache page, locks it, increments its reference
743  * count and returns its address.
744  *
745  * Returns zero if the page was not present. find_lock_page() may sleep.
746  */
747 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
748 {
749 	struct page *page;
750 
751 repeat:
752 	page = find_get_page(mapping, offset);
753 	if (page && !radix_tree_exception(page)) {
754 		lock_page(page);
755 		/* Has the page been truncated? */
756 		if (unlikely(page->mapping != mapping)) {
757 			unlock_page(page);
758 			page_cache_release(page);
759 			goto repeat;
760 		}
761 		VM_BUG_ON(page->index != offset);
762 	}
763 	return page;
764 }
765 EXPORT_SYMBOL(find_lock_page);
766 
767 /**
768  * find_or_create_page - locate or add a pagecache page
769  * @mapping: the page's address_space
770  * @index: the page's index into the mapping
771  * @gfp_mask: page allocation mode
772  *
773  * Locates a page in the pagecache.  If the page is not present, a new page
774  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
775  * LRU list.  The returned page is locked and has its reference count
776  * incremented.
777  *
778  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
779  * allocation!
780  *
781  * find_or_create_page() returns the desired page's address, or zero on
782  * memory exhaustion.
783  */
784 struct page *find_or_create_page(struct address_space *mapping,
785 		pgoff_t index, gfp_t gfp_mask)
786 {
787 	struct page *page;
788 	int err;
789 repeat:
790 	page = find_lock_page(mapping, index);
791 	if (!page) {
792 		page = __page_cache_alloc(gfp_mask);
793 		if (!page)
794 			return NULL;
795 		/*
796 		 * We want a regular kernel memory (not highmem or DMA etc)
797 		 * allocation for the radix tree nodes, but we need to honour
798 		 * the context-specific requirements the caller has asked for.
799 		 * GFP_RECLAIM_MASK collects those requirements.
800 		 */
801 		err = add_to_page_cache_lru(page, mapping, index,
802 			(gfp_mask & GFP_RECLAIM_MASK));
803 		if (unlikely(err)) {
804 			page_cache_release(page);
805 			page = NULL;
806 			if (err == -EEXIST)
807 				goto repeat;
808 		}
809 	}
810 	return page;
811 }
812 EXPORT_SYMBOL(find_or_create_page);
813 
814 /**
815  * find_get_pages - gang pagecache lookup
816  * @mapping:	The address_space to search
817  * @start:	The starting page index
818  * @nr_pages:	The maximum number of pages
819  * @pages:	Where the resulting pages are placed
820  *
821  * find_get_pages() will search for and return a group of up to
822  * @nr_pages pages in the mapping.  The pages are placed at @pages.
823  * find_get_pages() takes a reference against the returned pages.
824  *
825  * The search returns a group of mapping-contiguous pages with ascending
826  * indexes.  There may be holes in the indices due to not-present pages.
827  *
828  * find_get_pages() returns the number of pages which were found.
829  */
830 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
831 			    unsigned int nr_pages, struct page **pages)
832 {
833 	struct radix_tree_iter iter;
834 	void **slot;
835 	unsigned ret = 0;
836 
837 	if (unlikely(!nr_pages))
838 		return 0;
839 
840 	rcu_read_lock();
841 restart:
842 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
843 		struct page *page;
844 repeat:
845 		page = radix_tree_deref_slot(slot);
846 		if (unlikely(!page))
847 			continue;
848 
849 		if (radix_tree_exception(page)) {
850 			if (radix_tree_deref_retry(page)) {
851 				/*
852 				 * Transient condition which can only trigger
853 				 * when entry at index 0 moves out of or back
854 				 * to root: none yet gotten, safe to restart.
855 				 */
856 				WARN_ON(iter.index);
857 				goto restart;
858 			}
859 			/*
860 			 * Otherwise, shmem/tmpfs must be storing a swap entry
861 			 * here as an exceptional entry: so skip over it -
862 			 * we only reach this from invalidate_mapping_pages().
863 			 */
864 			continue;
865 		}
866 
867 		if (!page_cache_get_speculative(page))
868 			goto repeat;
869 
870 		/* Has the page moved? */
871 		if (unlikely(page != *slot)) {
872 			page_cache_release(page);
873 			goto repeat;
874 		}
875 
876 		pages[ret] = page;
877 		if (++ret == nr_pages)
878 			break;
879 	}
880 
881 	rcu_read_unlock();
882 	return ret;
883 }
884 
885 /**
886  * find_get_pages_contig - gang contiguous pagecache lookup
887  * @mapping:	The address_space to search
888  * @index:	The starting page index
889  * @nr_pages:	The maximum number of pages
890  * @pages:	Where the resulting pages are placed
891  *
892  * find_get_pages_contig() works exactly like find_get_pages(), except
893  * that the returned number of pages are guaranteed to be contiguous.
894  *
895  * find_get_pages_contig() returns the number of pages which were found.
896  */
897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 			       unsigned int nr_pages, struct page **pages)
899 {
900 	struct radix_tree_iter iter;
901 	void **slot;
902 	unsigned int ret = 0;
903 
904 	if (unlikely(!nr_pages))
905 		return 0;
906 
907 	rcu_read_lock();
908 restart:
909 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
910 		struct page *page;
911 repeat:
912 		page = radix_tree_deref_slot(slot);
913 		/* The hole, there no reason to continue */
914 		if (unlikely(!page))
915 			break;
916 
917 		if (radix_tree_exception(page)) {
918 			if (radix_tree_deref_retry(page)) {
919 				/*
920 				 * Transient condition which can only trigger
921 				 * when entry at index 0 moves out of or back
922 				 * to root: none yet gotten, safe to restart.
923 				 */
924 				goto restart;
925 			}
926 			/*
927 			 * Otherwise, shmem/tmpfs must be storing a swap entry
928 			 * here as an exceptional entry: so stop looking for
929 			 * contiguous pages.
930 			 */
931 			break;
932 		}
933 
934 		if (!page_cache_get_speculative(page))
935 			goto repeat;
936 
937 		/* Has the page moved? */
938 		if (unlikely(page != *slot)) {
939 			page_cache_release(page);
940 			goto repeat;
941 		}
942 
943 		/*
944 		 * must check mapping and index after taking the ref.
945 		 * otherwise we can get both false positives and false
946 		 * negatives, which is just confusing to the caller.
947 		 */
948 		if (page->mapping == NULL || page->index != iter.index) {
949 			page_cache_release(page);
950 			break;
951 		}
952 
953 		pages[ret] = page;
954 		if (++ret == nr_pages)
955 			break;
956 	}
957 	rcu_read_unlock();
958 	return ret;
959 }
960 EXPORT_SYMBOL(find_get_pages_contig);
961 
962 /**
963  * find_get_pages_tag - find and return pages that match @tag
964  * @mapping:	the address_space to search
965  * @index:	the starting page index
966  * @tag:	the tag index
967  * @nr_pages:	the maximum number of pages
968  * @pages:	where the resulting pages are placed
969  *
970  * Like find_get_pages, except we only return pages which are tagged with
971  * @tag.   We update @index to index the next page for the traversal.
972  */
973 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
974 			int tag, unsigned int nr_pages, struct page **pages)
975 {
976 	struct radix_tree_iter iter;
977 	void **slot;
978 	unsigned ret = 0;
979 
980 	if (unlikely(!nr_pages))
981 		return 0;
982 
983 	rcu_read_lock();
984 restart:
985 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
986 				   &iter, *index, tag) {
987 		struct page *page;
988 repeat:
989 		page = radix_tree_deref_slot(slot);
990 		if (unlikely(!page))
991 			continue;
992 
993 		if (radix_tree_exception(page)) {
994 			if (radix_tree_deref_retry(page)) {
995 				/*
996 				 * Transient condition which can only trigger
997 				 * when entry at index 0 moves out of or back
998 				 * to root: none yet gotten, safe to restart.
999 				 */
1000 				goto restart;
1001 			}
1002 			/*
1003 			 * This function is never used on a shmem/tmpfs
1004 			 * mapping, so a swap entry won't be found here.
1005 			 */
1006 			BUG();
1007 		}
1008 
1009 		if (!page_cache_get_speculative(page))
1010 			goto repeat;
1011 
1012 		/* Has the page moved? */
1013 		if (unlikely(page != *slot)) {
1014 			page_cache_release(page);
1015 			goto repeat;
1016 		}
1017 
1018 		pages[ret] = page;
1019 		if (++ret == nr_pages)
1020 			break;
1021 	}
1022 
1023 	rcu_read_unlock();
1024 
1025 	if (ret)
1026 		*index = pages[ret - 1]->index + 1;
1027 
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL(find_get_pages_tag);
1031 
1032 /**
1033  * grab_cache_page_nowait - returns locked page at given index in given cache
1034  * @mapping: target address_space
1035  * @index: the page index
1036  *
1037  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1038  * This is intended for speculative data generators, where the data can
1039  * be regenerated if the page couldn't be grabbed.  This routine should
1040  * be safe to call while holding the lock for another page.
1041  *
1042  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1043  * and deadlock against the caller's locked page.
1044  */
1045 struct page *
1046 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1047 {
1048 	struct page *page = find_get_page(mapping, index);
1049 
1050 	if (page) {
1051 		if (trylock_page(page))
1052 			return page;
1053 		page_cache_release(page);
1054 		return NULL;
1055 	}
1056 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1057 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1058 		page_cache_release(page);
1059 		page = NULL;
1060 	}
1061 	return page;
1062 }
1063 EXPORT_SYMBOL(grab_cache_page_nowait);
1064 
1065 /*
1066  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1067  * a _large_ part of the i/o request. Imagine the worst scenario:
1068  *
1069  *      ---R__________________________________________B__________
1070  *         ^ reading here                             ^ bad block(assume 4k)
1071  *
1072  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1073  * => failing the whole request => read(R) => read(R+1) =>
1074  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1075  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1076  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1077  *
1078  * It is going insane. Fix it by quickly scaling down the readahead size.
1079  */
1080 static void shrink_readahead_size_eio(struct file *filp,
1081 					struct file_ra_state *ra)
1082 {
1083 	ra->ra_pages /= 4;
1084 }
1085 
1086 /**
1087  * do_generic_file_read - generic file read routine
1088  * @filp:	the file to read
1089  * @ppos:	current file position
1090  * @desc:	read_descriptor
1091  * @actor:	read method
1092  *
1093  * This is a generic file read routine, and uses the
1094  * mapping->a_ops->readpage() function for the actual low-level stuff.
1095  *
1096  * This is really ugly. But the goto's actually try to clarify some
1097  * of the logic when it comes to error handling etc.
1098  */
1099 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1100 		read_descriptor_t *desc, read_actor_t actor)
1101 {
1102 	struct address_space *mapping = filp->f_mapping;
1103 	struct inode *inode = mapping->host;
1104 	struct file_ra_state *ra = &filp->f_ra;
1105 	pgoff_t index;
1106 	pgoff_t last_index;
1107 	pgoff_t prev_index;
1108 	unsigned long offset;      /* offset into pagecache page */
1109 	unsigned int prev_offset;
1110 	int error;
1111 
1112 	index = *ppos >> PAGE_CACHE_SHIFT;
1113 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1114 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1115 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1116 	offset = *ppos & ~PAGE_CACHE_MASK;
1117 
1118 	for (;;) {
1119 		struct page *page;
1120 		pgoff_t end_index;
1121 		loff_t isize;
1122 		unsigned long nr, ret;
1123 
1124 		cond_resched();
1125 find_page:
1126 		page = find_get_page(mapping, index);
1127 		if (!page) {
1128 			page_cache_sync_readahead(mapping,
1129 					ra, filp,
1130 					index, last_index - index);
1131 			page = find_get_page(mapping, index);
1132 			if (unlikely(page == NULL))
1133 				goto no_cached_page;
1134 		}
1135 		if (PageReadahead(page)) {
1136 			page_cache_async_readahead(mapping,
1137 					ra, filp, page,
1138 					index, last_index - index);
1139 		}
1140 		if (!PageUptodate(page)) {
1141 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1142 					!mapping->a_ops->is_partially_uptodate)
1143 				goto page_not_up_to_date;
1144 			if (!trylock_page(page))
1145 				goto page_not_up_to_date;
1146 			/* Did it get truncated before we got the lock? */
1147 			if (!page->mapping)
1148 				goto page_not_up_to_date_locked;
1149 			if (!mapping->a_ops->is_partially_uptodate(page,
1150 								desc, offset))
1151 				goto page_not_up_to_date_locked;
1152 			unlock_page(page);
1153 		}
1154 page_ok:
1155 		/*
1156 		 * i_size must be checked after we know the page is Uptodate.
1157 		 *
1158 		 * Checking i_size after the check allows us to calculate
1159 		 * the correct value for "nr", which means the zero-filled
1160 		 * part of the page is not copied back to userspace (unless
1161 		 * another truncate extends the file - this is desired though).
1162 		 */
1163 
1164 		isize = i_size_read(inode);
1165 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1166 		if (unlikely(!isize || index > end_index)) {
1167 			page_cache_release(page);
1168 			goto out;
1169 		}
1170 
1171 		/* nr is the maximum number of bytes to copy from this page */
1172 		nr = PAGE_CACHE_SIZE;
1173 		if (index == end_index) {
1174 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1175 			if (nr <= offset) {
1176 				page_cache_release(page);
1177 				goto out;
1178 			}
1179 		}
1180 		nr = nr - offset;
1181 
1182 		/* If users can be writing to this page using arbitrary
1183 		 * virtual addresses, take care about potential aliasing
1184 		 * before reading the page on the kernel side.
1185 		 */
1186 		if (mapping_writably_mapped(mapping))
1187 			flush_dcache_page(page);
1188 
1189 		/*
1190 		 * When a sequential read accesses a page several times,
1191 		 * only mark it as accessed the first time.
1192 		 */
1193 		if (prev_index != index || offset != prev_offset)
1194 			mark_page_accessed(page);
1195 		prev_index = index;
1196 
1197 		/*
1198 		 * Ok, we have the page, and it's up-to-date, so
1199 		 * now we can copy it to user space...
1200 		 *
1201 		 * The actor routine returns how many bytes were actually used..
1202 		 * NOTE! This may not be the same as how much of a user buffer
1203 		 * we filled up (we may be padding etc), so we can only update
1204 		 * "pos" here (the actor routine has to update the user buffer
1205 		 * pointers and the remaining count).
1206 		 */
1207 		ret = actor(desc, page, offset, nr);
1208 		offset += ret;
1209 		index += offset >> PAGE_CACHE_SHIFT;
1210 		offset &= ~PAGE_CACHE_MASK;
1211 		prev_offset = offset;
1212 
1213 		page_cache_release(page);
1214 		if (ret == nr && desc->count)
1215 			continue;
1216 		goto out;
1217 
1218 page_not_up_to_date:
1219 		/* Get exclusive access to the page ... */
1220 		error = lock_page_killable(page);
1221 		if (unlikely(error))
1222 			goto readpage_error;
1223 
1224 page_not_up_to_date_locked:
1225 		/* Did it get truncated before we got the lock? */
1226 		if (!page->mapping) {
1227 			unlock_page(page);
1228 			page_cache_release(page);
1229 			continue;
1230 		}
1231 
1232 		/* Did somebody else fill it already? */
1233 		if (PageUptodate(page)) {
1234 			unlock_page(page);
1235 			goto page_ok;
1236 		}
1237 
1238 readpage:
1239 		/*
1240 		 * A previous I/O error may have been due to temporary
1241 		 * failures, eg. multipath errors.
1242 		 * PG_error will be set again if readpage fails.
1243 		 */
1244 		ClearPageError(page);
1245 		/* Start the actual read. The read will unlock the page. */
1246 		error = mapping->a_ops->readpage(filp, page);
1247 
1248 		if (unlikely(error)) {
1249 			if (error == AOP_TRUNCATED_PAGE) {
1250 				page_cache_release(page);
1251 				goto find_page;
1252 			}
1253 			goto readpage_error;
1254 		}
1255 
1256 		if (!PageUptodate(page)) {
1257 			error = lock_page_killable(page);
1258 			if (unlikely(error))
1259 				goto readpage_error;
1260 			if (!PageUptodate(page)) {
1261 				if (page->mapping == NULL) {
1262 					/*
1263 					 * invalidate_mapping_pages got it
1264 					 */
1265 					unlock_page(page);
1266 					page_cache_release(page);
1267 					goto find_page;
1268 				}
1269 				unlock_page(page);
1270 				shrink_readahead_size_eio(filp, ra);
1271 				error = -EIO;
1272 				goto readpage_error;
1273 			}
1274 			unlock_page(page);
1275 		}
1276 
1277 		goto page_ok;
1278 
1279 readpage_error:
1280 		/* UHHUH! A synchronous read error occurred. Report it */
1281 		desc->error = error;
1282 		page_cache_release(page);
1283 		goto out;
1284 
1285 no_cached_page:
1286 		/*
1287 		 * Ok, it wasn't cached, so we need to create a new
1288 		 * page..
1289 		 */
1290 		page = page_cache_alloc_cold(mapping);
1291 		if (!page) {
1292 			desc->error = -ENOMEM;
1293 			goto out;
1294 		}
1295 		error = add_to_page_cache_lru(page, mapping,
1296 						index, GFP_KERNEL);
1297 		if (error) {
1298 			page_cache_release(page);
1299 			if (error == -EEXIST)
1300 				goto find_page;
1301 			desc->error = error;
1302 			goto out;
1303 		}
1304 		goto readpage;
1305 	}
1306 
1307 out:
1308 	ra->prev_pos = prev_index;
1309 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1310 	ra->prev_pos |= prev_offset;
1311 
1312 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1313 	file_accessed(filp);
1314 }
1315 
1316 int file_read_actor(read_descriptor_t *desc, struct page *page,
1317 			unsigned long offset, unsigned long size)
1318 {
1319 	char *kaddr;
1320 	unsigned long left, count = desc->count;
1321 
1322 	if (size > count)
1323 		size = count;
1324 
1325 	/*
1326 	 * Faults on the destination of a read are common, so do it before
1327 	 * taking the kmap.
1328 	 */
1329 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1330 		kaddr = kmap_atomic(page);
1331 		left = __copy_to_user_inatomic(desc->arg.buf,
1332 						kaddr + offset, size);
1333 		kunmap_atomic(kaddr);
1334 		if (left == 0)
1335 			goto success;
1336 	}
1337 
1338 	/* Do it the slow way */
1339 	kaddr = kmap(page);
1340 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1341 	kunmap(page);
1342 
1343 	if (left) {
1344 		size -= left;
1345 		desc->error = -EFAULT;
1346 	}
1347 success:
1348 	desc->count = count - size;
1349 	desc->written += size;
1350 	desc->arg.buf += size;
1351 	return size;
1352 }
1353 
1354 /*
1355  * Performs necessary checks before doing a write
1356  * @iov:	io vector request
1357  * @nr_segs:	number of segments in the iovec
1358  * @count:	number of bytes to write
1359  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1360  *
1361  * Adjust number of segments and amount of bytes to write (nr_segs should be
1362  * properly initialized first). Returns appropriate error code that caller
1363  * should return or zero in case that write should be allowed.
1364  */
1365 int generic_segment_checks(const struct iovec *iov,
1366 			unsigned long *nr_segs, size_t *count, int access_flags)
1367 {
1368 	unsigned long   seg;
1369 	size_t cnt = 0;
1370 	for (seg = 0; seg < *nr_segs; seg++) {
1371 		const struct iovec *iv = &iov[seg];
1372 
1373 		/*
1374 		 * If any segment has a negative length, or the cumulative
1375 		 * length ever wraps negative then return -EINVAL.
1376 		 */
1377 		cnt += iv->iov_len;
1378 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1379 			return -EINVAL;
1380 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1381 			continue;
1382 		if (seg == 0)
1383 			return -EFAULT;
1384 		*nr_segs = seg;
1385 		cnt -= iv->iov_len;	/* This segment is no good */
1386 		break;
1387 	}
1388 	*count = cnt;
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL(generic_segment_checks);
1392 
1393 /**
1394  * generic_file_aio_read - generic filesystem read routine
1395  * @iocb:	kernel I/O control block
1396  * @iov:	io vector request
1397  * @nr_segs:	number of segments in the iovec
1398  * @pos:	current file position
1399  *
1400  * This is the "read()" routine for all filesystems
1401  * that can use the page cache directly.
1402  */
1403 ssize_t
1404 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1405 		unsigned long nr_segs, loff_t pos)
1406 {
1407 	struct file *filp = iocb->ki_filp;
1408 	ssize_t retval;
1409 	unsigned long seg = 0;
1410 	size_t count;
1411 	loff_t *ppos = &iocb->ki_pos;
1412 
1413 	count = 0;
1414 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1415 	if (retval)
1416 		return retval;
1417 
1418 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1419 	if (filp->f_flags & O_DIRECT) {
1420 		loff_t size;
1421 		struct address_space *mapping;
1422 		struct inode *inode;
1423 
1424 		mapping = filp->f_mapping;
1425 		inode = mapping->host;
1426 		if (!count)
1427 			goto out; /* skip atime */
1428 		size = i_size_read(inode);
1429 		if (pos < size) {
1430 			retval = filemap_write_and_wait_range(mapping, pos,
1431 					pos + iov_length(iov, nr_segs) - 1);
1432 			if (!retval) {
1433 				retval = mapping->a_ops->direct_IO(READ, iocb,
1434 							iov, pos, nr_segs);
1435 			}
1436 			if (retval > 0) {
1437 				*ppos = pos + retval;
1438 				count -= retval;
1439 			}
1440 
1441 			/*
1442 			 * Btrfs can have a short DIO read if we encounter
1443 			 * compressed extents, so if there was an error, or if
1444 			 * we've already read everything we wanted to, or if
1445 			 * there was a short read because we hit EOF, go ahead
1446 			 * and return.  Otherwise fallthrough to buffered io for
1447 			 * the rest of the read.
1448 			 */
1449 			if (retval < 0 || !count || *ppos >= size) {
1450 				file_accessed(filp);
1451 				goto out;
1452 			}
1453 		}
1454 	}
1455 
1456 	count = retval;
1457 	for (seg = 0; seg < nr_segs; seg++) {
1458 		read_descriptor_t desc;
1459 		loff_t offset = 0;
1460 
1461 		/*
1462 		 * If we did a short DIO read we need to skip the section of the
1463 		 * iov that we've already read data into.
1464 		 */
1465 		if (count) {
1466 			if (count > iov[seg].iov_len) {
1467 				count -= iov[seg].iov_len;
1468 				continue;
1469 			}
1470 			offset = count;
1471 			count = 0;
1472 		}
1473 
1474 		desc.written = 0;
1475 		desc.arg.buf = iov[seg].iov_base + offset;
1476 		desc.count = iov[seg].iov_len - offset;
1477 		if (desc.count == 0)
1478 			continue;
1479 		desc.error = 0;
1480 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1481 		retval += desc.written;
1482 		if (desc.error) {
1483 			retval = retval ?: desc.error;
1484 			break;
1485 		}
1486 		if (desc.count > 0)
1487 			break;
1488 	}
1489 out:
1490 	return retval;
1491 }
1492 EXPORT_SYMBOL(generic_file_aio_read);
1493 
1494 #ifdef CONFIG_MMU
1495 /**
1496  * page_cache_read - adds requested page to the page cache if not already there
1497  * @file:	file to read
1498  * @offset:	page index
1499  *
1500  * This adds the requested page to the page cache if it isn't already there,
1501  * and schedules an I/O to read in its contents from disk.
1502  */
1503 static int page_cache_read(struct file *file, pgoff_t offset)
1504 {
1505 	struct address_space *mapping = file->f_mapping;
1506 	struct page *page;
1507 	int ret;
1508 
1509 	do {
1510 		page = page_cache_alloc_cold(mapping);
1511 		if (!page)
1512 			return -ENOMEM;
1513 
1514 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1515 		if (ret == 0)
1516 			ret = mapping->a_ops->readpage(file, page);
1517 		else if (ret == -EEXIST)
1518 			ret = 0; /* losing race to add is OK */
1519 
1520 		page_cache_release(page);
1521 
1522 	} while (ret == AOP_TRUNCATED_PAGE);
1523 
1524 	return ret;
1525 }
1526 
1527 #define MMAP_LOTSAMISS  (100)
1528 
1529 /*
1530  * Synchronous readahead happens when we don't even find
1531  * a page in the page cache at all.
1532  */
1533 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1534 				   struct file_ra_state *ra,
1535 				   struct file *file,
1536 				   pgoff_t offset)
1537 {
1538 	unsigned long ra_pages;
1539 	struct address_space *mapping = file->f_mapping;
1540 
1541 	/* If we don't want any read-ahead, don't bother */
1542 	if (VM_RandomReadHint(vma))
1543 		return;
1544 	if (!ra->ra_pages)
1545 		return;
1546 
1547 	if (VM_SequentialReadHint(vma)) {
1548 		page_cache_sync_readahead(mapping, ra, file, offset,
1549 					  ra->ra_pages);
1550 		return;
1551 	}
1552 
1553 	/* Avoid banging the cache line if not needed */
1554 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1555 		ra->mmap_miss++;
1556 
1557 	/*
1558 	 * Do we miss much more than hit in this file? If so,
1559 	 * stop bothering with read-ahead. It will only hurt.
1560 	 */
1561 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1562 		return;
1563 
1564 	/*
1565 	 * mmap read-around
1566 	 */
1567 	ra_pages = max_sane_readahead(ra->ra_pages);
1568 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1569 	ra->size = ra_pages;
1570 	ra->async_size = ra_pages / 4;
1571 	ra_submit(ra, mapping, file);
1572 }
1573 
1574 /*
1575  * Asynchronous readahead happens when we find the page and PG_readahead,
1576  * so we want to possibly extend the readahead further..
1577  */
1578 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1579 				    struct file_ra_state *ra,
1580 				    struct file *file,
1581 				    struct page *page,
1582 				    pgoff_t offset)
1583 {
1584 	struct address_space *mapping = file->f_mapping;
1585 
1586 	/* If we don't want any read-ahead, don't bother */
1587 	if (VM_RandomReadHint(vma))
1588 		return;
1589 	if (ra->mmap_miss > 0)
1590 		ra->mmap_miss--;
1591 	if (PageReadahead(page))
1592 		page_cache_async_readahead(mapping, ra, file,
1593 					   page, offset, ra->ra_pages);
1594 }
1595 
1596 /**
1597  * filemap_fault - read in file data for page fault handling
1598  * @vma:	vma in which the fault was taken
1599  * @vmf:	struct vm_fault containing details of the fault
1600  *
1601  * filemap_fault() is invoked via the vma operations vector for a
1602  * mapped memory region to read in file data during a page fault.
1603  *
1604  * The goto's are kind of ugly, but this streamlines the normal case of having
1605  * it in the page cache, and handles the special cases reasonably without
1606  * having a lot of duplicated code.
1607  */
1608 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609 {
1610 	int error;
1611 	struct file *file = vma->vm_file;
1612 	struct address_space *mapping = file->f_mapping;
1613 	struct file_ra_state *ra = &file->f_ra;
1614 	struct inode *inode = mapping->host;
1615 	pgoff_t offset = vmf->pgoff;
1616 	struct page *page;
1617 	pgoff_t size;
1618 	int ret = 0;
1619 
1620 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1621 	if (offset >= size)
1622 		return VM_FAULT_SIGBUS;
1623 
1624 	/*
1625 	 * Do we have something in the page cache already?
1626 	 */
1627 	page = find_get_page(mapping, offset);
1628 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1629 		/*
1630 		 * We found the page, so try async readahead before
1631 		 * waiting for the lock.
1632 		 */
1633 		do_async_mmap_readahead(vma, ra, file, page, offset);
1634 	} else if (!page) {
1635 		/* No page in the page cache at all */
1636 		do_sync_mmap_readahead(vma, ra, file, offset);
1637 		count_vm_event(PGMAJFAULT);
1638 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1639 		ret = VM_FAULT_MAJOR;
1640 retry_find:
1641 		page = find_get_page(mapping, offset);
1642 		if (!page)
1643 			goto no_cached_page;
1644 	}
1645 
1646 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1647 		page_cache_release(page);
1648 		return ret | VM_FAULT_RETRY;
1649 	}
1650 
1651 	/* Did it get truncated? */
1652 	if (unlikely(page->mapping != mapping)) {
1653 		unlock_page(page);
1654 		put_page(page);
1655 		goto retry_find;
1656 	}
1657 	VM_BUG_ON(page->index != offset);
1658 
1659 	/*
1660 	 * We have a locked page in the page cache, now we need to check
1661 	 * that it's up-to-date. If not, it is going to be due to an error.
1662 	 */
1663 	if (unlikely(!PageUptodate(page)))
1664 		goto page_not_uptodate;
1665 
1666 	/*
1667 	 * Found the page and have a reference on it.
1668 	 * We must recheck i_size under page lock.
1669 	 */
1670 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1671 	if (unlikely(offset >= size)) {
1672 		unlock_page(page);
1673 		page_cache_release(page);
1674 		return VM_FAULT_SIGBUS;
1675 	}
1676 
1677 	vmf->page = page;
1678 	return ret | VM_FAULT_LOCKED;
1679 
1680 no_cached_page:
1681 	/*
1682 	 * We're only likely to ever get here if MADV_RANDOM is in
1683 	 * effect.
1684 	 */
1685 	error = page_cache_read(file, offset);
1686 
1687 	/*
1688 	 * The page we want has now been added to the page cache.
1689 	 * In the unlikely event that someone removed it in the
1690 	 * meantime, we'll just come back here and read it again.
1691 	 */
1692 	if (error >= 0)
1693 		goto retry_find;
1694 
1695 	/*
1696 	 * An error return from page_cache_read can result if the
1697 	 * system is low on memory, or a problem occurs while trying
1698 	 * to schedule I/O.
1699 	 */
1700 	if (error == -ENOMEM)
1701 		return VM_FAULT_OOM;
1702 	return VM_FAULT_SIGBUS;
1703 
1704 page_not_uptodate:
1705 	/*
1706 	 * Umm, take care of errors if the page isn't up-to-date.
1707 	 * Try to re-read it _once_. We do this synchronously,
1708 	 * because there really aren't any performance issues here
1709 	 * and we need to check for errors.
1710 	 */
1711 	ClearPageError(page);
1712 	error = mapping->a_ops->readpage(file, page);
1713 	if (!error) {
1714 		wait_on_page_locked(page);
1715 		if (!PageUptodate(page))
1716 			error = -EIO;
1717 	}
1718 	page_cache_release(page);
1719 
1720 	if (!error || error == AOP_TRUNCATED_PAGE)
1721 		goto retry_find;
1722 
1723 	/* Things didn't work out. Return zero to tell the mm layer so. */
1724 	shrink_readahead_size_eio(file, ra);
1725 	return VM_FAULT_SIGBUS;
1726 }
1727 EXPORT_SYMBOL(filemap_fault);
1728 
1729 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1730 {
1731 	struct page *page = vmf->page;
1732 	struct inode *inode = file_inode(vma->vm_file);
1733 	int ret = VM_FAULT_LOCKED;
1734 
1735 	sb_start_pagefault(inode->i_sb);
1736 	file_update_time(vma->vm_file);
1737 	lock_page(page);
1738 	if (page->mapping != inode->i_mapping) {
1739 		unlock_page(page);
1740 		ret = VM_FAULT_NOPAGE;
1741 		goto out;
1742 	}
1743 	/*
1744 	 * We mark the page dirty already here so that when freeze is in
1745 	 * progress, we are guaranteed that writeback during freezing will
1746 	 * see the dirty page and writeprotect it again.
1747 	 */
1748 	set_page_dirty(page);
1749 	wait_for_stable_page(page);
1750 out:
1751 	sb_end_pagefault(inode->i_sb);
1752 	return ret;
1753 }
1754 EXPORT_SYMBOL(filemap_page_mkwrite);
1755 
1756 const struct vm_operations_struct generic_file_vm_ops = {
1757 	.fault		= filemap_fault,
1758 	.page_mkwrite	= filemap_page_mkwrite,
1759 	.remap_pages	= generic_file_remap_pages,
1760 };
1761 
1762 /* This is used for a general mmap of a disk file */
1763 
1764 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1765 {
1766 	struct address_space *mapping = file->f_mapping;
1767 
1768 	if (!mapping->a_ops->readpage)
1769 		return -ENOEXEC;
1770 	file_accessed(file);
1771 	vma->vm_ops = &generic_file_vm_ops;
1772 	return 0;
1773 }
1774 
1775 /*
1776  * This is for filesystems which do not implement ->writepage.
1777  */
1778 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1779 {
1780 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1781 		return -EINVAL;
1782 	return generic_file_mmap(file, vma);
1783 }
1784 #else
1785 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1786 {
1787 	return -ENOSYS;
1788 }
1789 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1790 {
1791 	return -ENOSYS;
1792 }
1793 #endif /* CONFIG_MMU */
1794 
1795 EXPORT_SYMBOL(generic_file_mmap);
1796 EXPORT_SYMBOL(generic_file_readonly_mmap);
1797 
1798 static struct page *__read_cache_page(struct address_space *mapping,
1799 				pgoff_t index,
1800 				int (*filler)(void *, struct page *),
1801 				void *data,
1802 				gfp_t gfp)
1803 {
1804 	struct page *page;
1805 	int err;
1806 repeat:
1807 	page = find_get_page(mapping, index);
1808 	if (!page) {
1809 		page = __page_cache_alloc(gfp | __GFP_COLD);
1810 		if (!page)
1811 			return ERR_PTR(-ENOMEM);
1812 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1813 		if (unlikely(err)) {
1814 			page_cache_release(page);
1815 			if (err == -EEXIST)
1816 				goto repeat;
1817 			/* Presumably ENOMEM for radix tree node */
1818 			return ERR_PTR(err);
1819 		}
1820 		err = filler(data, page);
1821 		if (err < 0) {
1822 			page_cache_release(page);
1823 			page = ERR_PTR(err);
1824 		}
1825 	}
1826 	return page;
1827 }
1828 
1829 static struct page *do_read_cache_page(struct address_space *mapping,
1830 				pgoff_t index,
1831 				int (*filler)(void *, struct page *),
1832 				void *data,
1833 				gfp_t gfp)
1834 
1835 {
1836 	struct page *page;
1837 	int err;
1838 
1839 retry:
1840 	page = __read_cache_page(mapping, index, filler, data, gfp);
1841 	if (IS_ERR(page))
1842 		return page;
1843 	if (PageUptodate(page))
1844 		goto out;
1845 
1846 	lock_page(page);
1847 	if (!page->mapping) {
1848 		unlock_page(page);
1849 		page_cache_release(page);
1850 		goto retry;
1851 	}
1852 	if (PageUptodate(page)) {
1853 		unlock_page(page);
1854 		goto out;
1855 	}
1856 	err = filler(data, page);
1857 	if (err < 0) {
1858 		page_cache_release(page);
1859 		return ERR_PTR(err);
1860 	}
1861 out:
1862 	mark_page_accessed(page);
1863 	return page;
1864 }
1865 
1866 /**
1867  * read_cache_page_async - read into page cache, fill it if needed
1868  * @mapping:	the page's address_space
1869  * @index:	the page index
1870  * @filler:	function to perform the read
1871  * @data:	first arg to filler(data, page) function, often left as NULL
1872  *
1873  * Same as read_cache_page, but don't wait for page to become unlocked
1874  * after submitting it to the filler.
1875  *
1876  * Read into the page cache. If a page already exists, and PageUptodate() is
1877  * not set, try to fill the page but don't wait for it to become unlocked.
1878  *
1879  * If the page does not get brought uptodate, return -EIO.
1880  */
1881 struct page *read_cache_page_async(struct address_space *mapping,
1882 				pgoff_t index,
1883 				int (*filler)(void *, struct page *),
1884 				void *data)
1885 {
1886 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1887 }
1888 EXPORT_SYMBOL(read_cache_page_async);
1889 
1890 static struct page *wait_on_page_read(struct page *page)
1891 {
1892 	if (!IS_ERR(page)) {
1893 		wait_on_page_locked(page);
1894 		if (!PageUptodate(page)) {
1895 			page_cache_release(page);
1896 			page = ERR_PTR(-EIO);
1897 		}
1898 	}
1899 	return page;
1900 }
1901 
1902 /**
1903  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1904  * @mapping:	the page's address_space
1905  * @index:	the page index
1906  * @gfp:	the page allocator flags to use if allocating
1907  *
1908  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1909  * any new page allocations done using the specified allocation flags.
1910  *
1911  * If the page does not get brought uptodate, return -EIO.
1912  */
1913 struct page *read_cache_page_gfp(struct address_space *mapping,
1914 				pgoff_t index,
1915 				gfp_t gfp)
1916 {
1917 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1918 
1919 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1920 }
1921 EXPORT_SYMBOL(read_cache_page_gfp);
1922 
1923 /**
1924  * read_cache_page - read into page cache, fill it if needed
1925  * @mapping:	the page's address_space
1926  * @index:	the page index
1927  * @filler:	function to perform the read
1928  * @data:	first arg to filler(data, page) function, often left as NULL
1929  *
1930  * Read into the page cache. If a page already exists, and PageUptodate() is
1931  * not set, try to fill the page then wait for it to become unlocked.
1932  *
1933  * If the page does not get brought uptodate, return -EIO.
1934  */
1935 struct page *read_cache_page(struct address_space *mapping,
1936 				pgoff_t index,
1937 				int (*filler)(void *, struct page *),
1938 				void *data)
1939 {
1940 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1941 }
1942 EXPORT_SYMBOL(read_cache_page);
1943 
1944 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1945 			const struct iovec *iov, size_t base, size_t bytes)
1946 {
1947 	size_t copied = 0, left = 0;
1948 
1949 	while (bytes) {
1950 		char __user *buf = iov->iov_base + base;
1951 		int copy = min(bytes, iov->iov_len - base);
1952 
1953 		base = 0;
1954 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1955 		copied += copy;
1956 		bytes -= copy;
1957 		vaddr += copy;
1958 		iov++;
1959 
1960 		if (unlikely(left))
1961 			break;
1962 	}
1963 	return copied - left;
1964 }
1965 
1966 /*
1967  * Copy as much as we can into the page and return the number of bytes which
1968  * were successfully copied.  If a fault is encountered then return the number of
1969  * bytes which were copied.
1970  */
1971 size_t iov_iter_copy_from_user_atomic(struct page *page,
1972 		struct iov_iter *i, unsigned long offset, size_t bytes)
1973 {
1974 	char *kaddr;
1975 	size_t copied;
1976 
1977 	BUG_ON(!in_atomic());
1978 	kaddr = kmap_atomic(page);
1979 	if (likely(i->nr_segs == 1)) {
1980 		int left;
1981 		char __user *buf = i->iov->iov_base + i->iov_offset;
1982 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1983 		copied = bytes - left;
1984 	} else {
1985 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1986 						i->iov, i->iov_offset, bytes);
1987 	}
1988 	kunmap_atomic(kaddr);
1989 
1990 	return copied;
1991 }
1992 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1993 
1994 /*
1995  * This has the same sideeffects and return value as
1996  * iov_iter_copy_from_user_atomic().
1997  * The difference is that it attempts to resolve faults.
1998  * Page must not be locked.
1999  */
2000 size_t iov_iter_copy_from_user(struct page *page,
2001 		struct iov_iter *i, unsigned long offset, size_t bytes)
2002 {
2003 	char *kaddr;
2004 	size_t copied;
2005 
2006 	kaddr = kmap(page);
2007 	if (likely(i->nr_segs == 1)) {
2008 		int left;
2009 		char __user *buf = i->iov->iov_base + i->iov_offset;
2010 		left = __copy_from_user(kaddr + offset, buf, bytes);
2011 		copied = bytes - left;
2012 	} else {
2013 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2014 						i->iov, i->iov_offset, bytes);
2015 	}
2016 	kunmap(page);
2017 	return copied;
2018 }
2019 EXPORT_SYMBOL(iov_iter_copy_from_user);
2020 
2021 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2022 {
2023 	BUG_ON(i->count < bytes);
2024 
2025 	if (likely(i->nr_segs == 1)) {
2026 		i->iov_offset += bytes;
2027 		i->count -= bytes;
2028 	} else {
2029 		const struct iovec *iov = i->iov;
2030 		size_t base = i->iov_offset;
2031 		unsigned long nr_segs = i->nr_segs;
2032 
2033 		/*
2034 		 * The !iov->iov_len check ensures we skip over unlikely
2035 		 * zero-length segments (without overruning the iovec).
2036 		 */
2037 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2038 			int copy;
2039 
2040 			copy = min(bytes, iov->iov_len - base);
2041 			BUG_ON(!i->count || i->count < copy);
2042 			i->count -= copy;
2043 			bytes -= copy;
2044 			base += copy;
2045 			if (iov->iov_len == base) {
2046 				iov++;
2047 				nr_segs--;
2048 				base = 0;
2049 			}
2050 		}
2051 		i->iov = iov;
2052 		i->iov_offset = base;
2053 		i->nr_segs = nr_segs;
2054 	}
2055 }
2056 EXPORT_SYMBOL(iov_iter_advance);
2057 
2058 /*
2059  * Fault in the first iovec of the given iov_iter, to a maximum length
2060  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2061  * accessed (ie. because it is an invalid address).
2062  *
2063  * writev-intensive code may want this to prefault several iovecs -- that
2064  * would be possible (callers must not rely on the fact that _only_ the
2065  * first iovec will be faulted with the current implementation).
2066  */
2067 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2068 {
2069 	char __user *buf = i->iov->iov_base + i->iov_offset;
2070 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2071 	return fault_in_pages_readable(buf, bytes);
2072 }
2073 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2074 
2075 /*
2076  * Return the count of just the current iov_iter segment.
2077  */
2078 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2079 {
2080 	const struct iovec *iov = i->iov;
2081 	if (i->nr_segs == 1)
2082 		return i->count;
2083 	else
2084 		return min(i->count, iov->iov_len - i->iov_offset);
2085 }
2086 EXPORT_SYMBOL(iov_iter_single_seg_count);
2087 
2088 /*
2089  * Performs necessary checks before doing a write
2090  *
2091  * Can adjust writing position or amount of bytes to write.
2092  * Returns appropriate error code that caller should return or
2093  * zero in case that write should be allowed.
2094  */
2095 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2096 {
2097 	struct inode *inode = file->f_mapping->host;
2098 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2099 
2100         if (unlikely(*pos < 0))
2101                 return -EINVAL;
2102 
2103 	if (!isblk) {
2104 		/* FIXME: this is for backwards compatibility with 2.4 */
2105 		if (file->f_flags & O_APPEND)
2106                         *pos = i_size_read(inode);
2107 
2108 		if (limit != RLIM_INFINITY) {
2109 			if (*pos >= limit) {
2110 				send_sig(SIGXFSZ, current, 0);
2111 				return -EFBIG;
2112 			}
2113 			if (*count > limit - (typeof(limit))*pos) {
2114 				*count = limit - (typeof(limit))*pos;
2115 			}
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * LFS rule
2121 	 */
2122 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2123 				!(file->f_flags & O_LARGEFILE))) {
2124 		if (*pos >= MAX_NON_LFS) {
2125 			return -EFBIG;
2126 		}
2127 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2128 			*count = MAX_NON_LFS - (unsigned long)*pos;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * Are we about to exceed the fs block limit ?
2134 	 *
2135 	 * If we have written data it becomes a short write.  If we have
2136 	 * exceeded without writing data we send a signal and return EFBIG.
2137 	 * Linus frestrict idea will clean these up nicely..
2138 	 */
2139 	if (likely(!isblk)) {
2140 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2141 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2142 				return -EFBIG;
2143 			}
2144 			/* zero-length writes at ->s_maxbytes are OK */
2145 		}
2146 
2147 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2148 			*count = inode->i_sb->s_maxbytes - *pos;
2149 	} else {
2150 #ifdef CONFIG_BLOCK
2151 		loff_t isize;
2152 		if (bdev_read_only(I_BDEV(inode)))
2153 			return -EPERM;
2154 		isize = i_size_read(inode);
2155 		if (*pos >= isize) {
2156 			if (*count || *pos > isize)
2157 				return -ENOSPC;
2158 		}
2159 
2160 		if (*pos + *count > isize)
2161 			*count = isize - *pos;
2162 #else
2163 		return -EPERM;
2164 #endif
2165 	}
2166 	return 0;
2167 }
2168 EXPORT_SYMBOL(generic_write_checks);
2169 
2170 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2171 				loff_t pos, unsigned len, unsigned flags,
2172 				struct page **pagep, void **fsdata)
2173 {
2174 	const struct address_space_operations *aops = mapping->a_ops;
2175 
2176 	return aops->write_begin(file, mapping, pos, len, flags,
2177 							pagep, fsdata);
2178 }
2179 EXPORT_SYMBOL(pagecache_write_begin);
2180 
2181 int pagecache_write_end(struct file *file, struct address_space *mapping,
2182 				loff_t pos, unsigned len, unsigned copied,
2183 				struct page *page, void *fsdata)
2184 {
2185 	const struct address_space_operations *aops = mapping->a_ops;
2186 
2187 	mark_page_accessed(page);
2188 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2189 }
2190 EXPORT_SYMBOL(pagecache_write_end);
2191 
2192 ssize_t
2193 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2194 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2195 		size_t count, size_t ocount)
2196 {
2197 	struct file	*file = iocb->ki_filp;
2198 	struct address_space *mapping = file->f_mapping;
2199 	struct inode	*inode = mapping->host;
2200 	ssize_t		written;
2201 	size_t		write_len;
2202 	pgoff_t		end;
2203 
2204 	if (count != ocount)
2205 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2206 
2207 	write_len = iov_length(iov, *nr_segs);
2208 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2209 
2210 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2211 	if (written)
2212 		goto out;
2213 
2214 	/*
2215 	 * After a write we want buffered reads to be sure to go to disk to get
2216 	 * the new data.  We invalidate clean cached page from the region we're
2217 	 * about to write.  We do this *before* the write so that we can return
2218 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2219 	 */
2220 	if (mapping->nrpages) {
2221 		written = invalidate_inode_pages2_range(mapping,
2222 					pos >> PAGE_CACHE_SHIFT, end);
2223 		/*
2224 		 * If a page can not be invalidated, return 0 to fall back
2225 		 * to buffered write.
2226 		 */
2227 		if (written) {
2228 			if (written == -EBUSY)
2229 				return 0;
2230 			goto out;
2231 		}
2232 	}
2233 
2234 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2235 
2236 	/*
2237 	 * Finally, try again to invalidate clean pages which might have been
2238 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2239 	 * if the source of the write was an mmap'ed region of the file
2240 	 * we're writing.  Either one is a pretty crazy thing to do,
2241 	 * so we don't support it 100%.  If this invalidation
2242 	 * fails, tough, the write still worked...
2243 	 */
2244 	if (mapping->nrpages) {
2245 		invalidate_inode_pages2_range(mapping,
2246 					      pos >> PAGE_CACHE_SHIFT, end);
2247 	}
2248 
2249 	if (written > 0) {
2250 		pos += written;
2251 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2252 			i_size_write(inode, pos);
2253 			mark_inode_dirty(inode);
2254 		}
2255 		*ppos = pos;
2256 	}
2257 out:
2258 	return written;
2259 }
2260 EXPORT_SYMBOL(generic_file_direct_write);
2261 
2262 /*
2263  * Find or create a page at the given pagecache position. Return the locked
2264  * page. This function is specifically for buffered writes.
2265  */
2266 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2267 					pgoff_t index, unsigned flags)
2268 {
2269 	int status;
2270 	gfp_t gfp_mask;
2271 	struct page *page;
2272 	gfp_t gfp_notmask = 0;
2273 
2274 	gfp_mask = mapping_gfp_mask(mapping);
2275 	if (mapping_cap_account_dirty(mapping))
2276 		gfp_mask |= __GFP_WRITE;
2277 	if (flags & AOP_FLAG_NOFS)
2278 		gfp_notmask = __GFP_FS;
2279 repeat:
2280 	page = find_lock_page(mapping, index);
2281 	if (page)
2282 		goto found;
2283 
2284 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2285 	if (!page)
2286 		return NULL;
2287 	status = add_to_page_cache_lru(page, mapping, index,
2288 						GFP_KERNEL & ~gfp_notmask);
2289 	if (unlikely(status)) {
2290 		page_cache_release(page);
2291 		if (status == -EEXIST)
2292 			goto repeat;
2293 		return NULL;
2294 	}
2295 found:
2296 	wait_for_stable_page(page);
2297 	return page;
2298 }
2299 EXPORT_SYMBOL(grab_cache_page_write_begin);
2300 
2301 static ssize_t generic_perform_write(struct file *file,
2302 				struct iov_iter *i, loff_t pos)
2303 {
2304 	struct address_space *mapping = file->f_mapping;
2305 	const struct address_space_operations *a_ops = mapping->a_ops;
2306 	long status = 0;
2307 	ssize_t written = 0;
2308 	unsigned int flags = 0;
2309 
2310 	/*
2311 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2312 	 */
2313 	if (segment_eq(get_fs(), KERNEL_DS))
2314 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2315 
2316 	do {
2317 		struct page *page;
2318 		unsigned long offset;	/* Offset into pagecache page */
2319 		unsigned long bytes;	/* Bytes to write to page */
2320 		size_t copied;		/* Bytes copied from user */
2321 		void *fsdata;
2322 
2323 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2324 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2325 						iov_iter_count(i));
2326 
2327 again:
2328 		/*
2329 		 * Bring in the user page that we will copy from _first_.
2330 		 * Otherwise there's a nasty deadlock on copying from the
2331 		 * same page as we're writing to, without it being marked
2332 		 * up-to-date.
2333 		 *
2334 		 * Not only is this an optimisation, but it is also required
2335 		 * to check that the address is actually valid, when atomic
2336 		 * usercopies are used, below.
2337 		 */
2338 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2339 			status = -EFAULT;
2340 			break;
2341 		}
2342 
2343 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2344 						&page, &fsdata);
2345 		if (unlikely(status))
2346 			break;
2347 
2348 		if (mapping_writably_mapped(mapping))
2349 			flush_dcache_page(page);
2350 
2351 		pagefault_disable();
2352 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2353 		pagefault_enable();
2354 		flush_dcache_page(page);
2355 
2356 		mark_page_accessed(page);
2357 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2358 						page, fsdata);
2359 		if (unlikely(status < 0))
2360 			break;
2361 		copied = status;
2362 
2363 		cond_resched();
2364 
2365 		iov_iter_advance(i, copied);
2366 		if (unlikely(copied == 0)) {
2367 			/*
2368 			 * If we were unable to copy any data at all, we must
2369 			 * fall back to a single segment length write.
2370 			 *
2371 			 * If we didn't fallback here, we could livelock
2372 			 * because not all segments in the iov can be copied at
2373 			 * once without a pagefault.
2374 			 */
2375 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2376 						iov_iter_single_seg_count(i));
2377 			goto again;
2378 		}
2379 		pos += copied;
2380 		written += copied;
2381 
2382 		balance_dirty_pages_ratelimited(mapping);
2383 		if (fatal_signal_pending(current)) {
2384 			status = -EINTR;
2385 			break;
2386 		}
2387 	} while (iov_iter_count(i));
2388 
2389 	return written ? written : status;
2390 }
2391 
2392 ssize_t
2393 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2394 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2395 		size_t count, ssize_t written)
2396 {
2397 	struct file *file = iocb->ki_filp;
2398 	ssize_t status;
2399 	struct iov_iter i;
2400 
2401 	iov_iter_init(&i, iov, nr_segs, count, written);
2402 	status = generic_perform_write(file, &i, pos);
2403 
2404 	if (likely(status >= 0)) {
2405 		written += status;
2406 		*ppos = pos + status;
2407   	}
2408 
2409 	return written ? written : status;
2410 }
2411 EXPORT_SYMBOL(generic_file_buffered_write);
2412 
2413 /**
2414  * __generic_file_aio_write - write data to a file
2415  * @iocb:	IO state structure (file, offset, etc.)
2416  * @iov:	vector with data to write
2417  * @nr_segs:	number of segments in the vector
2418  * @ppos:	position where to write
2419  *
2420  * This function does all the work needed for actually writing data to a
2421  * file. It does all basic checks, removes SUID from the file, updates
2422  * modification times and calls proper subroutines depending on whether we
2423  * do direct IO or a standard buffered write.
2424  *
2425  * It expects i_mutex to be grabbed unless we work on a block device or similar
2426  * object which does not need locking at all.
2427  *
2428  * This function does *not* take care of syncing data in case of O_SYNC write.
2429  * A caller has to handle it. This is mainly due to the fact that we want to
2430  * avoid syncing under i_mutex.
2431  */
2432 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2433 				 unsigned long nr_segs, loff_t *ppos)
2434 {
2435 	struct file *file = iocb->ki_filp;
2436 	struct address_space * mapping = file->f_mapping;
2437 	size_t ocount;		/* original count */
2438 	size_t count;		/* after file limit checks */
2439 	struct inode 	*inode = mapping->host;
2440 	loff_t		pos;
2441 	ssize_t		written;
2442 	ssize_t		err;
2443 
2444 	ocount = 0;
2445 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2446 	if (err)
2447 		return err;
2448 
2449 	count = ocount;
2450 	pos = *ppos;
2451 
2452 	/* We can write back this queue in page reclaim */
2453 	current->backing_dev_info = mapping->backing_dev_info;
2454 	written = 0;
2455 
2456 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2457 	if (err)
2458 		goto out;
2459 
2460 	if (count == 0)
2461 		goto out;
2462 
2463 	err = file_remove_suid(file);
2464 	if (err)
2465 		goto out;
2466 
2467 	err = file_update_time(file);
2468 	if (err)
2469 		goto out;
2470 
2471 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2472 	if (unlikely(file->f_flags & O_DIRECT)) {
2473 		loff_t endbyte;
2474 		ssize_t written_buffered;
2475 
2476 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2477 							ppos, count, ocount);
2478 		if (written < 0 || written == count)
2479 			goto out;
2480 		/*
2481 		 * direct-io write to a hole: fall through to buffered I/O
2482 		 * for completing the rest of the request.
2483 		 */
2484 		pos += written;
2485 		count -= written;
2486 		written_buffered = generic_file_buffered_write(iocb, iov,
2487 						nr_segs, pos, ppos, count,
2488 						written);
2489 		/*
2490 		 * If generic_file_buffered_write() retuned a synchronous error
2491 		 * then we want to return the number of bytes which were
2492 		 * direct-written, or the error code if that was zero.  Note
2493 		 * that this differs from normal direct-io semantics, which
2494 		 * will return -EFOO even if some bytes were written.
2495 		 */
2496 		if (written_buffered < 0) {
2497 			err = written_buffered;
2498 			goto out;
2499 		}
2500 
2501 		/*
2502 		 * We need to ensure that the page cache pages are written to
2503 		 * disk and invalidated to preserve the expected O_DIRECT
2504 		 * semantics.
2505 		 */
2506 		endbyte = pos + written_buffered - written - 1;
2507 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2508 		if (err == 0) {
2509 			written = written_buffered;
2510 			invalidate_mapping_pages(mapping,
2511 						 pos >> PAGE_CACHE_SHIFT,
2512 						 endbyte >> PAGE_CACHE_SHIFT);
2513 		} else {
2514 			/*
2515 			 * We don't know how much we wrote, so just return
2516 			 * the number of bytes which were direct-written
2517 			 */
2518 		}
2519 	} else {
2520 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2521 				pos, ppos, count, written);
2522 	}
2523 out:
2524 	current->backing_dev_info = NULL;
2525 	return written ? written : err;
2526 }
2527 EXPORT_SYMBOL(__generic_file_aio_write);
2528 
2529 /**
2530  * generic_file_aio_write - write data to a file
2531  * @iocb:	IO state structure
2532  * @iov:	vector with data to write
2533  * @nr_segs:	number of segments in the vector
2534  * @pos:	position in file where to write
2535  *
2536  * This is a wrapper around __generic_file_aio_write() to be used by most
2537  * filesystems. It takes care of syncing the file in case of O_SYNC file
2538  * and acquires i_mutex as needed.
2539  */
2540 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2541 		unsigned long nr_segs, loff_t pos)
2542 {
2543 	struct file *file = iocb->ki_filp;
2544 	struct inode *inode = file->f_mapping->host;
2545 	ssize_t ret;
2546 
2547 	BUG_ON(iocb->ki_pos != pos);
2548 
2549 	mutex_lock(&inode->i_mutex);
2550 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2551 	mutex_unlock(&inode->i_mutex);
2552 
2553 	if (ret > 0 || ret == -EIOCBQUEUED) {
2554 		ssize_t err;
2555 
2556 		err = generic_write_sync(file, pos, ret);
2557 		if (err < 0 && ret > 0)
2558 			ret = err;
2559 	}
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(generic_file_aio_write);
2563 
2564 /**
2565  * try_to_release_page() - release old fs-specific metadata on a page
2566  *
2567  * @page: the page which the kernel is trying to free
2568  * @gfp_mask: memory allocation flags (and I/O mode)
2569  *
2570  * The address_space is to try to release any data against the page
2571  * (presumably at page->private).  If the release was successful, return `1'.
2572  * Otherwise return zero.
2573  *
2574  * This may also be called if PG_fscache is set on a page, indicating that the
2575  * page is known to the local caching routines.
2576  *
2577  * The @gfp_mask argument specifies whether I/O may be performed to release
2578  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2579  *
2580  */
2581 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2582 {
2583 	struct address_space * const mapping = page->mapping;
2584 
2585 	BUG_ON(!PageLocked(page));
2586 	if (PageWriteback(page))
2587 		return 0;
2588 
2589 	if (mapping && mapping->a_ops->releasepage)
2590 		return mapping->a_ops->releasepage(page, gfp_mask);
2591 	return try_to_free_buffers(page);
2592 }
2593 
2594 EXPORT_SYMBOL(try_to_release_page);
2595