1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 105 * ->inode->i_lock (zap_pte_range->set_page_dirty) 106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 107 * 108 * ->i_mmap_rwsem 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 */ 111 112 static void page_cache_tree_delete(struct address_space *mapping, 113 struct page *page, void *shadow) 114 { 115 struct radix_tree_node *node; 116 unsigned long index; 117 unsigned int offset; 118 unsigned int tag; 119 void **slot; 120 121 VM_BUG_ON(!PageLocked(page)); 122 123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 124 125 if (shadow) { 126 mapping->nrshadows++; 127 /* 128 * Make sure the nrshadows update is committed before 129 * the nrpages update so that final truncate racing 130 * with reclaim does not see both counters 0 at the 131 * same time and miss a shadow entry. 132 */ 133 smp_wmb(); 134 } 135 mapping->nrpages--; 136 137 if (!node) { 138 /* Clear direct pointer tags in root node */ 139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 140 radix_tree_replace_slot(slot, shadow); 141 return; 142 } 143 144 /* Clear tree tags for the removed page */ 145 index = page->index; 146 offset = index & RADIX_TREE_MAP_MASK; 147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 148 if (test_bit(offset, node->tags[tag])) 149 radix_tree_tag_clear(&mapping->page_tree, index, tag); 150 } 151 152 /* Delete page, swap shadow entry */ 153 radix_tree_replace_slot(slot, shadow); 154 workingset_node_pages_dec(node); 155 if (shadow) 156 workingset_node_shadows_inc(node); 157 else 158 if (__radix_tree_delete_node(&mapping->page_tree, node)) 159 return; 160 161 /* 162 * Track node that only contains shadow entries. 163 * 164 * Avoid acquiring the list_lru lock if already tracked. The 165 * list_empty() test is safe as node->private_list is 166 * protected by mapping->tree_lock. 167 */ 168 if (!workingset_node_pages(node) && 169 list_empty(&node->private_list)) { 170 node->private_data = mapping; 171 list_lru_add(&workingset_shadow_nodes, &node->private_list); 172 } 173 } 174 175 /* 176 * Delete a page from the page cache and free it. Caller has to make 177 * sure the page is locked and that nobody else uses it - or that usage 178 * is safe. The caller must hold the mapping's tree_lock. 179 */ 180 void __delete_from_page_cache(struct page *page, void *shadow) 181 { 182 struct address_space *mapping = page->mapping; 183 184 trace_mm_filemap_delete_from_page_cache(page); 185 /* 186 * if we're uptodate, flush out into the cleancache, otherwise 187 * invalidate any existing cleancache entries. We can't leave 188 * stale data around in the cleancache once our page is gone 189 */ 190 if (PageUptodate(page) && PageMappedToDisk(page)) 191 cleancache_put_page(page); 192 else 193 cleancache_invalidate_page(mapping, page); 194 195 page_cache_tree_delete(mapping, page, shadow); 196 197 page->mapping = NULL; 198 /* Leave page->index set: truncation lookup relies upon it */ 199 200 __dec_zone_page_state(page, NR_FILE_PAGES); 201 if (PageSwapBacked(page)) 202 __dec_zone_page_state(page, NR_SHMEM); 203 BUG_ON(page_mapped(page)); 204 205 /* 206 * Some filesystems seem to re-dirty the page even after 207 * the VM has canceled the dirty bit (eg ext3 journaling). 208 * 209 * Fix it up by doing a final dirty accounting check after 210 * having removed the page entirely. 211 */ 212 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 213 dec_zone_page_state(page, NR_FILE_DIRTY); 214 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 215 } 216 } 217 218 /** 219 * delete_from_page_cache - delete page from page cache 220 * @page: the page which the kernel is trying to remove from page cache 221 * 222 * This must be called only on pages that have been verified to be in the page 223 * cache and locked. It will never put the page into the free list, the caller 224 * has a reference on the page. 225 */ 226 void delete_from_page_cache(struct page *page) 227 { 228 struct address_space *mapping = page->mapping; 229 void (*freepage)(struct page *); 230 231 BUG_ON(!PageLocked(page)); 232 233 freepage = mapping->a_ops->freepage; 234 spin_lock_irq(&mapping->tree_lock); 235 __delete_from_page_cache(page, NULL); 236 spin_unlock_irq(&mapping->tree_lock); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241 } 242 EXPORT_SYMBOL(delete_from_page_cache); 243 244 static int filemap_check_errors(struct address_space *mapping) 245 { 246 int ret = 0; 247 /* Check for outstanding write errors */ 248 if (test_bit(AS_ENOSPC, &mapping->flags) && 249 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 250 ret = -ENOSPC; 251 if (test_bit(AS_EIO, &mapping->flags) && 252 test_and_clear_bit(AS_EIO, &mapping->flags)) 253 ret = -EIO; 254 return ret; 255 } 256 257 /** 258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 259 * @mapping: address space structure to write 260 * @start: offset in bytes where the range starts 261 * @end: offset in bytes where the range ends (inclusive) 262 * @sync_mode: enable synchronous operation 263 * 264 * Start writeback against all of a mapping's dirty pages that lie 265 * within the byte offsets <start, end> inclusive. 266 * 267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 268 * opposed to a regular memory cleansing writeback. The difference between 269 * these two operations is that if a dirty page/buffer is encountered, it must 270 * be waited upon, and not just skipped over. 271 */ 272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 273 loff_t end, int sync_mode) 274 { 275 int ret; 276 struct writeback_control wbc = { 277 .sync_mode = sync_mode, 278 .nr_to_write = LONG_MAX, 279 .range_start = start, 280 .range_end = end, 281 }; 282 283 if (!mapping_cap_writeback_dirty(mapping)) 284 return 0; 285 286 ret = do_writepages(mapping, &wbc); 287 return ret; 288 } 289 290 static inline int __filemap_fdatawrite(struct address_space *mapping, 291 int sync_mode) 292 { 293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 294 } 295 296 int filemap_fdatawrite(struct address_space *mapping) 297 { 298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 299 } 300 EXPORT_SYMBOL(filemap_fdatawrite); 301 302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 303 loff_t end) 304 { 305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 306 } 307 EXPORT_SYMBOL(filemap_fdatawrite_range); 308 309 /** 310 * filemap_flush - mostly a non-blocking flush 311 * @mapping: target address_space 312 * 313 * This is a mostly non-blocking flush. Not suitable for data-integrity 314 * purposes - I/O may not be started against all dirty pages. 315 */ 316 int filemap_flush(struct address_space *mapping) 317 { 318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 319 } 320 EXPORT_SYMBOL(filemap_flush); 321 322 /** 323 * filemap_fdatawait_range - wait for writeback to complete 324 * @mapping: address space structure to wait for 325 * @start_byte: offset in bytes where the range starts 326 * @end_byte: offset in bytes where the range ends (inclusive) 327 * 328 * Walk the list of under-writeback pages of the given address space 329 * in the given range and wait for all of them. 330 */ 331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 332 loff_t end_byte) 333 { 334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 336 struct pagevec pvec; 337 int nr_pages; 338 int ret2, ret = 0; 339 340 if (end_byte < start_byte) 341 goto out; 342 343 pagevec_init(&pvec, 0); 344 while ((index <= end) && 345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 346 PAGECACHE_TAG_WRITEBACK, 347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 348 unsigned i; 349 350 for (i = 0; i < nr_pages; i++) { 351 struct page *page = pvec.pages[i]; 352 353 /* until radix tree lookup accepts end_index */ 354 if (page->index > end) 355 continue; 356 357 wait_on_page_writeback(page); 358 if (TestClearPageError(page)) 359 ret = -EIO; 360 } 361 pagevec_release(&pvec); 362 cond_resched(); 363 } 364 out: 365 ret2 = filemap_check_errors(mapping); 366 if (!ret) 367 ret = ret2; 368 369 return ret; 370 } 371 EXPORT_SYMBOL(filemap_fdatawait_range); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return filemap_fdatawait_range(mapping, 0, i_size - 1); 388 } 389 EXPORT_SYMBOL(filemap_fdatawait); 390 391 int filemap_write_and_wait(struct address_space *mapping) 392 { 393 int err = 0; 394 395 if (mapping->nrpages) { 396 err = filemap_fdatawrite(mapping); 397 /* 398 * Even if the above returned error, the pages may be 399 * written partially (e.g. -ENOSPC), so we wait for it. 400 * But the -EIO is special case, it may indicate the worst 401 * thing (e.g. bug) happened, so we avoid waiting for it. 402 */ 403 if (err != -EIO) { 404 int err2 = filemap_fdatawait(mapping); 405 if (!err) 406 err = err2; 407 } 408 } else { 409 err = filemap_check_errors(mapping); 410 } 411 return err; 412 } 413 EXPORT_SYMBOL(filemap_write_and_wait); 414 415 /** 416 * filemap_write_and_wait_range - write out & wait on a file range 417 * @mapping: the address_space for the pages 418 * @lstart: offset in bytes where the range starts 419 * @lend: offset in bytes where the range ends (inclusive) 420 * 421 * Write out and wait upon file offsets lstart->lend, inclusive. 422 * 423 * Note that `lend' is inclusive (describes the last byte to be written) so 424 * that this function can be used to write to the very end-of-file (end = -1). 425 */ 426 int filemap_write_and_wait_range(struct address_space *mapping, 427 loff_t lstart, loff_t lend) 428 { 429 int err = 0; 430 431 if (mapping->nrpages) { 432 err = __filemap_fdatawrite_range(mapping, lstart, lend, 433 WB_SYNC_ALL); 434 /* See comment of filemap_write_and_wait() */ 435 if (err != -EIO) { 436 int err2 = filemap_fdatawait_range(mapping, 437 lstart, lend); 438 if (!err) 439 err = err2; 440 } 441 } else { 442 err = filemap_check_errors(mapping); 443 } 444 return err; 445 } 446 EXPORT_SYMBOL(filemap_write_and_wait_range); 447 448 /** 449 * replace_page_cache_page - replace a pagecache page with a new one 450 * @old: page to be replaced 451 * @new: page to replace with 452 * @gfp_mask: allocation mode 453 * 454 * This function replaces a page in the pagecache with a new one. On 455 * success it acquires the pagecache reference for the new page and 456 * drops it for the old page. Both the old and new pages must be 457 * locked. This function does not add the new page to the LRU, the 458 * caller must do that. 459 * 460 * The remove + add is atomic. The only way this function can fail is 461 * memory allocation failure. 462 */ 463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 464 { 465 int error; 466 467 VM_BUG_ON_PAGE(!PageLocked(old), old); 468 VM_BUG_ON_PAGE(!PageLocked(new), new); 469 VM_BUG_ON_PAGE(new->mapping, new); 470 471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 472 if (!error) { 473 struct address_space *mapping = old->mapping; 474 void (*freepage)(struct page *); 475 476 pgoff_t offset = old->index; 477 freepage = mapping->a_ops->freepage; 478 479 page_cache_get(new); 480 new->mapping = mapping; 481 new->index = offset; 482 483 spin_lock_irq(&mapping->tree_lock); 484 __delete_from_page_cache(old, NULL); 485 error = radix_tree_insert(&mapping->page_tree, offset, new); 486 BUG_ON(error); 487 mapping->nrpages++; 488 __inc_zone_page_state(new, NR_FILE_PAGES); 489 if (PageSwapBacked(new)) 490 __inc_zone_page_state(new, NR_SHMEM); 491 spin_unlock_irq(&mapping->tree_lock); 492 mem_cgroup_migrate(old, new, true); 493 radix_tree_preload_end(); 494 if (freepage) 495 freepage(old); 496 page_cache_release(old); 497 } 498 499 return error; 500 } 501 EXPORT_SYMBOL_GPL(replace_page_cache_page); 502 503 static int page_cache_tree_insert(struct address_space *mapping, 504 struct page *page, void **shadowp) 505 { 506 struct radix_tree_node *node; 507 void **slot; 508 int error; 509 510 error = __radix_tree_create(&mapping->page_tree, page->index, 511 &node, &slot); 512 if (error) 513 return error; 514 if (*slot) { 515 void *p; 516 517 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 518 if (!radix_tree_exceptional_entry(p)) 519 return -EEXIST; 520 if (shadowp) 521 *shadowp = p; 522 mapping->nrshadows--; 523 if (node) 524 workingset_node_shadows_dec(node); 525 } 526 radix_tree_replace_slot(slot, page); 527 mapping->nrpages++; 528 if (node) { 529 workingset_node_pages_inc(node); 530 /* 531 * Don't track node that contains actual pages. 532 * 533 * Avoid acquiring the list_lru lock if already 534 * untracked. The list_empty() test is safe as 535 * node->private_list is protected by 536 * mapping->tree_lock. 537 */ 538 if (!list_empty(&node->private_list)) 539 list_lru_del(&workingset_shadow_nodes, 540 &node->private_list); 541 } 542 return 0; 543 } 544 545 static int __add_to_page_cache_locked(struct page *page, 546 struct address_space *mapping, 547 pgoff_t offset, gfp_t gfp_mask, 548 void **shadowp) 549 { 550 int huge = PageHuge(page); 551 struct mem_cgroup *memcg; 552 int error; 553 554 VM_BUG_ON_PAGE(!PageLocked(page), page); 555 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 556 557 if (!huge) { 558 error = mem_cgroup_try_charge(page, current->mm, 559 gfp_mask, &memcg); 560 if (error) 561 return error; 562 } 563 564 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 565 if (error) { 566 if (!huge) 567 mem_cgroup_cancel_charge(page, memcg); 568 return error; 569 } 570 571 page_cache_get(page); 572 page->mapping = mapping; 573 page->index = offset; 574 575 spin_lock_irq(&mapping->tree_lock); 576 error = page_cache_tree_insert(mapping, page, shadowp); 577 radix_tree_preload_end(); 578 if (unlikely(error)) 579 goto err_insert; 580 __inc_zone_page_state(page, NR_FILE_PAGES); 581 spin_unlock_irq(&mapping->tree_lock); 582 if (!huge) 583 mem_cgroup_commit_charge(page, memcg, false); 584 trace_mm_filemap_add_to_page_cache(page); 585 return 0; 586 err_insert: 587 page->mapping = NULL; 588 /* Leave page->index set: truncation relies upon it */ 589 spin_unlock_irq(&mapping->tree_lock); 590 if (!huge) 591 mem_cgroup_cancel_charge(page, memcg); 592 page_cache_release(page); 593 return error; 594 } 595 596 /** 597 * add_to_page_cache_locked - add a locked page to the pagecache 598 * @page: page to add 599 * @mapping: the page's address_space 600 * @offset: page index 601 * @gfp_mask: page allocation mode 602 * 603 * This function is used to add a page to the pagecache. It must be locked. 604 * This function does not add the page to the LRU. The caller must do that. 605 */ 606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 607 pgoff_t offset, gfp_t gfp_mask) 608 { 609 return __add_to_page_cache_locked(page, mapping, offset, 610 gfp_mask, NULL); 611 } 612 EXPORT_SYMBOL(add_to_page_cache_locked); 613 614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 615 pgoff_t offset, gfp_t gfp_mask) 616 { 617 void *shadow = NULL; 618 int ret; 619 620 __set_page_locked(page); 621 ret = __add_to_page_cache_locked(page, mapping, offset, 622 gfp_mask, &shadow); 623 if (unlikely(ret)) 624 __clear_page_locked(page); 625 else { 626 /* 627 * The page might have been evicted from cache only 628 * recently, in which case it should be activated like 629 * any other repeatedly accessed page. 630 */ 631 if (shadow && workingset_refault(shadow)) { 632 SetPageActive(page); 633 workingset_activation(page); 634 } else 635 ClearPageActive(page); 636 lru_cache_add(page); 637 } 638 return ret; 639 } 640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 641 642 #ifdef CONFIG_NUMA 643 struct page *__page_cache_alloc(gfp_t gfp) 644 { 645 int n; 646 struct page *page; 647 648 if (cpuset_do_page_mem_spread()) { 649 unsigned int cpuset_mems_cookie; 650 do { 651 cpuset_mems_cookie = read_mems_allowed_begin(); 652 n = cpuset_mem_spread_node(); 653 page = alloc_pages_exact_node(n, gfp, 0); 654 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 655 656 return page; 657 } 658 return alloc_pages(gfp, 0); 659 } 660 EXPORT_SYMBOL(__page_cache_alloc); 661 #endif 662 663 /* 664 * In order to wait for pages to become available there must be 665 * waitqueues associated with pages. By using a hash table of 666 * waitqueues where the bucket discipline is to maintain all 667 * waiters on the same queue and wake all when any of the pages 668 * become available, and for the woken contexts to check to be 669 * sure the appropriate page became available, this saves space 670 * at a cost of "thundering herd" phenomena during rare hash 671 * collisions. 672 */ 673 wait_queue_head_t *page_waitqueue(struct page *page) 674 { 675 const struct zone *zone = page_zone(page); 676 677 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 678 } 679 EXPORT_SYMBOL(page_waitqueue); 680 681 void wait_on_page_bit(struct page *page, int bit_nr) 682 { 683 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 684 685 if (test_bit(bit_nr, &page->flags)) 686 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 687 TASK_UNINTERRUPTIBLE); 688 } 689 EXPORT_SYMBOL(wait_on_page_bit); 690 691 int wait_on_page_bit_killable(struct page *page, int bit_nr) 692 { 693 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 694 695 if (!test_bit(bit_nr, &page->flags)) 696 return 0; 697 698 return __wait_on_bit(page_waitqueue(page), &wait, 699 bit_wait_io, TASK_KILLABLE); 700 } 701 702 int wait_on_page_bit_killable_timeout(struct page *page, 703 int bit_nr, unsigned long timeout) 704 { 705 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 706 707 wait.key.timeout = jiffies + timeout; 708 if (!test_bit(bit_nr, &page->flags)) 709 return 0; 710 return __wait_on_bit(page_waitqueue(page), &wait, 711 bit_wait_io_timeout, TASK_KILLABLE); 712 } 713 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout); 714 715 /** 716 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 717 * @page: Page defining the wait queue of interest 718 * @waiter: Waiter to add to the queue 719 * 720 * Add an arbitrary @waiter to the wait queue for the nominated @page. 721 */ 722 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 723 { 724 wait_queue_head_t *q = page_waitqueue(page); 725 unsigned long flags; 726 727 spin_lock_irqsave(&q->lock, flags); 728 __add_wait_queue(q, waiter); 729 spin_unlock_irqrestore(&q->lock, flags); 730 } 731 EXPORT_SYMBOL_GPL(add_page_wait_queue); 732 733 /** 734 * unlock_page - unlock a locked page 735 * @page: the page 736 * 737 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 738 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 739 * mechanism between PageLocked pages and PageWriteback pages is shared. 740 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 741 * 742 * The mb is necessary to enforce ordering between the clear_bit and the read 743 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 744 */ 745 void unlock_page(struct page *page) 746 { 747 VM_BUG_ON_PAGE(!PageLocked(page), page); 748 clear_bit_unlock(PG_locked, &page->flags); 749 smp_mb__after_atomic(); 750 wake_up_page(page, PG_locked); 751 } 752 EXPORT_SYMBOL(unlock_page); 753 754 /** 755 * end_page_writeback - end writeback against a page 756 * @page: the page 757 */ 758 void end_page_writeback(struct page *page) 759 { 760 /* 761 * TestClearPageReclaim could be used here but it is an atomic 762 * operation and overkill in this particular case. Failing to 763 * shuffle a page marked for immediate reclaim is too mild to 764 * justify taking an atomic operation penalty at the end of 765 * ever page writeback. 766 */ 767 if (PageReclaim(page)) { 768 ClearPageReclaim(page); 769 rotate_reclaimable_page(page); 770 } 771 772 if (!test_clear_page_writeback(page)) 773 BUG(); 774 775 smp_mb__after_atomic(); 776 wake_up_page(page, PG_writeback); 777 } 778 EXPORT_SYMBOL(end_page_writeback); 779 780 /* 781 * After completing I/O on a page, call this routine to update the page 782 * flags appropriately 783 */ 784 void page_endio(struct page *page, int rw, int err) 785 { 786 if (rw == READ) { 787 if (!err) { 788 SetPageUptodate(page); 789 } else { 790 ClearPageUptodate(page); 791 SetPageError(page); 792 } 793 unlock_page(page); 794 } else { /* rw == WRITE */ 795 if (err) { 796 SetPageError(page); 797 if (page->mapping) 798 mapping_set_error(page->mapping, err); 799 } 800 end_page_writeback(page); 801 } 802 } 803 EXPORT_SYMBOL_GPL(page_endio); 804 805 /** 806 * __lock_page - get a lock on the page, assuming we need to sleep to get it 807 * @page: the page to lock 808 */ 809 void __lock_page(struct page *page) 810 { 811 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 812 813 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io, 814 TASK_UNINTERRUPTIBLE); 815 } 816 EXPORT_SYMBOL(__lock_page); 817 818 int __lock_page_killable(struct page *page) 819 { 820 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 821 822 return __wait_on_bit_lock(page_waitqueue(page), &wait, 823 bit_wait_io, TASK_KILLABLE); 824 } 825 EXPORT_SYMBOL_GPL(__lock_page_killable); 826 827 /* 828 * Return values: 829 * 1 - page is locked; mmap_sem is still held. 830 * 0 - page is not locked. 831 * mmap_sem has been released (up_read()), unless flags had both 832 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 833 * which case mmap_sem is still held. 834 * 835 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 836 * with the page locked and the mmap_sem unperturbed. 837 */ 838 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 839 unsigned int flags) 840 { 841 if (flags & FAULT_FLAG_ALLOW_RETRY) { 842 /* 843 * CAUTION! In this case, mmap_sem is not released 844 * even though return 0. 845 */ 846 if (flags & FAULT_FLAG_RETRY_NOWAIT) 847 return 0; 848 849 up_read(&mm->mmap_sem); 850 if (flags & FAULT_FLAG_KILLABLE) 851 wait_on_page_locked_killable(page); 852 else 853 wait_on_page_locked(page); 854 return 0; 855 } else { 856 if (flags & FAULT_FLAG_KILLABLE) { 857 int ret; 858 859 ret = __lock_page_killable(page); 860 if (ret) { 861 up_read(&mm->mmap_sem); 862 return 0; 863 } 864 } else 865 __lock_page(page); 866 return 1; 867 } 868 } 869 870 /** 871 * page_cache_next_hole - find the next hole (not-present entry) 872 * @mapping: mapping 873 * @index: index 874 * @max_scan: maximum range to search 875 * 876 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 877 * lowest indexed hole. 878 * 879 * Returns: the index of the hole if found, otherwise returns an index 880 * outside of the set specified (in which case 'return - index >= 881 * max_scan' will be true). In rare cases of index wrap-around, 0 will 882 * be returned. 883 * 884 * page_cache_next_hole may be called under rcu_read_lock. However, 885 * like radix_tree_gang_lookup, this will not atomically search a 886 * snapshot of the tree at a single point in time. For example, if a 887 * hole is created at index 5, then subsequently a hole is created at 888 * index 10, page_cache_next_hole covering both indexes may return 10 889 * if called under rcu_read_lock. 890 */ 891 pgoff_t page_cache_next_hole(struct address_space *mapping, 892 pgoff_t index, unsigned long max_scan) 893 { 894 unsigned long i; 895 896 for (i = 0; i < max_scan; i++) { 897 struct page *page; 898 899 page = radix_tree_lookup(&mapping->page_tree, index); 900 if (!page || radix_tree_exceptional_entry(page)) 901 break; 902 index++; 903 if (index == 0) 904 break; 905 } 906 907 return index; 908 } 909 EXPORT_SYMBOL(page_cache_next_hole); 910 911 /** 912 * page_cache_prev_hole - find the prev hole (not-present entry) 913 * @mapping: mapping 914 * @index: index 915 * @max_scan: maximum range to search 916 * 917 * Search backwards in the range [max(index-max_scan+1, 0), index] for 918 * the first hole. 919 * 920 * Returns: the index of the hole if found, otherwise returns an index 921 * outside of the set specified (in which case 'index - return >= 922 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 923 * will be returned. 924 * 925 * page_cache_prev_hole may be called under rcu_read_lock. However, 926 * like radix_tree_gang_lookup, this will not atomically search a 927 * snapshot of the tree at a single point in time. For example, if a 928 * hole is created at index 10, then subsequently a hole is created at 929 * index 5, page_cache_prev_hole covering both indexes may return 5 if 930 * called under rcu_read_lock. 931 */ 932 pgoff_t page_cache_prev_hole(struct address_space *mapping, 933 pgoff_t index, unsigned long max_scan) 934 { 935 unsigned long i; 936 937 for (i = 0; i < max_scan; i++) { 938 struct page *page; 939 940 page = radix_tree_lookup(&mapping->page_tree, index); 941 if (!page || radix_tree_exceptional_entry(page)) 942 break; 943 index--; 944 if (index == ULONG_MAX) 945 break; 946 } 947 948 return index; 949 } 950 EXPORT_SYMBOL(page_cache_prev_hole); 951 952 /** 953 * find_get_entry - find and get a page cache entry 954 * @mapping: the address_space to search 955 * @offset: the page cache index 956 * 957 * Looks up the page cache slot at @mapping & @offset. If there is a 958 * page cache page, it is returned with an increased refcount. 959 * 960 * If the slot holds a shadow entry of a previously evicted page, or a 961 * swap entry from shmem/tmpfs, it is returned. 962 * 963 * Otherwise, %NULL is returned. 964 */ 965 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 966 { 967 void **pagep; 968 struct page *page; 969 970 rcu_read_lock(); 971 repeat: 972 page = NULL; 973 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 974 if (pagep) { 975 page = radix_tree_deref_slot(pagep); 976 if (unlikely(!page)) 977 goto out; 978 if (radix_tree_exception(page)) { 979 if (radix_tree_deref_retry(page)) 980 goto repeat; 981 /* 982 * A shadow entry of a recently evicted page, 983 * or a swap entry from shmem/tmpfs. Return 984 * it without attempting to raise page count. 985 */ 986 goto out; 987 } 988 if (!page_cache_get_speculative(page)) 989 goto repeat; 990 991 /* 992 * Has the page moved? 993 * This is part of the lockless pagecache protocol. See 994 * include/linux/pagemap.h for details. 995 */ 996 if (unlikely(page != *pagep)) { 997 page_cache_release(page); 998 goto repeat; 999 } 1000 } 1001 out: 1002 rcu_read_unlock(); 1003 1004 return page; 1005 } 1006 EXPORT_SYMBOL(find_get_entry); 1007 1008 /** 1009 * find_lock_entry - locate, pin and lock a page cache entry 1010 * @mapping: the address_space to search 1011 * @offset: the page cache index 1012 * 1013 * Looks up the page cache slot at @mapping & @offset. If there is a 1014 * page cache page, it is returned locked and with an increased 1015 * refcount. 1016 * 1017 * If the slot holds a shadow entry of a previously evicted page, or a 1018 * swap entry from shmem/tmpfs, it is returned. 1019 * 1020 * Otherwise, %NULL is returned. 1021 * 1022 * find_lock_entry() may sleep. 1023 */ 1024 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1025 { 1026 struct page *page; 1027 1028 repeat: 1029 page = find_get_entry(mapping, offset); 1030 if (page && !radix_tree_exception(page)) { 1031 lock_page(page); 1032 /* Has the page been truncated? */ 1033 if (unlikely(page->mapping != mapping)) { 1034 unlock_page(page); 1035 page_cache_release(page); 1036 goto repeat; 1037 } 1038 VM_BUG_ON_PAGE(page->index != offset, page); 1039 } 1040 return page; 1041 } 1042 EXPORT_SYMBOL(find_lock_entry); 1043 1044 /** 1045 * pagecache_get_page - find and get a page reference 1046 * @mapping: the address_space to search 1047 * @offset: the page index 1048 * @fgp_flags: PCG flags 1049 * @gfp_mask: gfp mask to use for the page cache data page allocation 1050 * 1051 * Looks up the page cache slot at @mapping & @offset. 1052 * 1053 * PCG flags modify how the page is returned. 1054 * 1055 * FGP_ACCESSED: the page will be marked accessed 1056 * FGP_LOCK: Page is return locked 1057 * FGP_CREAT: If page is not present then a new page is allocated using 1058 * @gfp_mask and added to the page cache and the VM's LRU 1059 * list. The page is returned locked and with an increased 1060 * refcount. Otherwise, %NULL is returned. 1061 * 1062 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1063 * if the GFP flags specified for FGP_CREAT are atomic. 1064 * 1065 * If there is a page cache page, it is returned with an increased refcount. 1066 */ 1067 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1068 int fgp_flags, gfp_t gfp_mask) 1069 { 1070 struct page *page; 1071 1072 repeat: 1073 page = find_get_entry(mapping, offset); 1074 if (radix_tree_exceptional_entry(page)) 1075 page = NULL; 1076 if (!page) 1077 goto no_page; 1078 1079 if (fgp_flags & FGP_LOCK) { 1080 if (fgp_flags & FGP_NOWAIT) { 1081 if (!trylock_page(page)) { 1082 page_cache_release(page); 1083 return NULL; 1084 } 1085 } else { 1086 lock_page(page); 1087 } 1088 1089 /* Has the page been truncated? */ 1090 if (unlikely(page->mapping != mapping)) { 1091 unlock_page(page); 1092 page_cache_release(page); 1093 goto repeat; 1094 } 1095 VM_BUG_ON_PAGE(page->index != offset, page); 1096 } 1097 1098 if (page && (fgp_flags & FGP_ACCESSED)) 1099 mark_page_accessed(page); 1100 1101 no_page: 1102 if (!page && (fgp_flags & FGP_CREAT)) { 1103 int err; 1104 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1105 gfp_mask |= __GFP_WRITE; 1106 if (fgp_flags & FGP_NOFS) 1107 gfp_mask &= ~__GFP_FS; 1108 1109 page = __page_cache_alloc(gfp_mask); 1110 if (!page) 1111 return NULL; 1112 1113 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1114 fgp_flags |= FGP_LOCK; 1115 1116 /* Init accessed so avoid atomic mark_page_accessed later */ 1117 if (fgp_flags & FGP_ACCESSED) 1118 __SetPageReferenced(page); 1119 1120 err = add_to_page_cache_lru(page, mapping, offset, 1121 gfp_mask & GFP_RECLAIM_MASK); 1122 if (unlikely(err)) { 1123 page_cache_release(page); 1124 page = NULL; 1125 if (err == -EEXIST) 1126 goto repeat; 1127 } 1128 } 1129 1130 return page; 1131 } 1132 EXPORT_SYMBOL(pagecache_get_page); 1133 1134 /** 1135 * find_get_entries - gang pagecache lookup 1136 * @mapping: The address_space to search 1137 * @start: The starting page cache index 1138 * @nr_entries: The maximum number of entries 1139 * @entries: Where the resulting entries are placed 1140 * @indices: The cache indices corresponding to the entries in @entries 1141 * 1142 * find_get_entries() will search for and return a group of up to 1143 * @nr_entries entries in the mapping. The entries are placed at 1144 * @entries. find_get_entries() takes a reference against any actual 1145 * pages it returns. 1146 * 1147 * The search returns a group of mapping-contiguous page cache entries 1148 * with ascending indexes. There may be holes in the indices due to 1149 * not-present pages. 1150 * 1151 * Any shadow entries of evicted pages, or swap entries from 1152 * shmem/tmpfs, are included in the returned array. 1153 * 1154 * find_get_entries() returns the number of pages and shadow entries 1155 * which were found. 1156 */ 1157 unsigned find_get_entries(struct address_space *mapping, 1158 pgoff_t start, unsigned int nr_entries, 1159 struct page **entries, pgoff_t *indices) 1160 { 1161 void **slot; 1162 unsigned int ret = 0; 1163 struct radix_tree_iter iter; 1164 1165 if (!nr_entries) 1166 return 0; 1167 1168 rcu_read_lock(); 1169 restart: 1170 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1171 struct page *page; 1172 repeat: 1173 page = radix_tree_deref_slot(slot); 1174 if (unlikely(!page)) 1175 continue; 1176 if (radix_tree_exception(page)) { 1177 if (radix_tree_deref_retry(page)) 1178 goto restart; 1179 /* 1180 * A shadow entry of a recently evicted page, 1181 * or a swap entry from shmem/tmpfs. Return 1182 * it without attempting to raise page count. 1183 */ 1184 goto export; 1185 } 1186 if (!page_cache_get_speculative(page)) 1187 goto repeat; 1188 1189 /* Has the page moved? */ 1190 if (unlikely(page != *slot)) { 1191 page_cache_release(page); 1192 goto repeat; 1193 } 1194 export: 1195 indices[ret] = iter.index; 1196 entries[ret] = page; 1197 if (++ret == nr_entries) 1198 break; 1199 } 1200 rcu_read_unlock(); 1201 return ret; 1202 } 1203 1204 /** 1205 * find_get_pages - gang pagecache lookup 1206 * @mapping: The address_space to search 1207 * @start: The starting page index 1208 * @nr_pages: The maximum number of pages 1209 * @pages: Where the resulting pages are placed 1210 * 1211 * find_get_pages() will search for and return a group of up to 1212 * @nr_pages pages in the mapping. The pages are placed at @pages. 1213 * find_get_pages() takes a reference against the returned pages. 1214 * 1215 * The search returns a group of mapping-contiguous pages with ascending 1216 * indexes. There may be holes in the indices due to not-present pages. 1217 * 1218 * find_get_pages() returns the number of pages which were found. 1219 */ 1220 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1221 unsigned int nr_pages, struct page **pages) 1222 { 1223 struct radix_tree_iter iter; 1224 void **slot; 1225 unsigned ret = 0; 1226 1227 if (unlikely(!nr_pages)) 1228 return 0; 1229 1230 rcu_read_lock(); 1231 restart: 1232 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1233 struct page *page; 1234 repeat: 1235 page = radix_tree_deref_slot(slot); 1236 if (unlikely(!page)) 1237 continue; 1238 1239 if (radix_tree_exception(page)) { 1240 if (radix_tree_deref_retry(page)) { 1241 /* 1242 * Transient condition which can only trigger 1243 * when entry at index 0 moves out of or back 1244 * to root: none yet gotten, safe to restart. 1245 */ 1246 WARN_ON(iter.index); 1247 goto restart; 1248 } 1249 /* 1250 * A shadow entry of a recently evicted page, 1251 * or a swap entry from shmem/tmpfs. Skip 1252 * over it. 1253 */ 1254 continue; 1255 } 1256 1257 if (!page_cache_get_speculative(page)) 1258 goto repeat; 1259 1260 /* Has the page moved? */ 1261 if (unlikely(page != *slot)) { 1262 page_cache_release(page); 1263 goto repeat; 1264 } 1265 1266 pages[ret] = page; 1267 if (++ret == nr_pages) 1268 break; 1269 } 1270 1271 rcu_read_unlock(); 1272 return ret; 1273 } 1274 1275 /** 1276 * find_get_pages_contig - gang contiguous pagecache lookup 1277 * @mapping: The address_space to search 1278 * @index: The starting page index 1279 * @nr_pages: The maximum number of pages 1280 * @pages: Where the resulting pages are placed 1281 * 1282 * find_get_pages_contig() works exactly like find_get_pages(), except 1283 * that the returned number of pages are guaranteed to be contiguous. 1284 * 1285 * find_get_pages_contig() returns the number of pages which were found. 1286 */ 1287 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1288 unsigned int nr_pages, struct page **pages) 1289 { 1290 struct radix_tree_iter iter; 1291 void **slot; 1292 unsigned int ret = 0; 1293 1294 if (unlikely(!nr_pages)) 1295 return 0; 1296 1297 rcu_read_lock(); 1298 restart: 1299 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1300 struct page *page; 1301 repeat: 1302 page = radix_tree_deref_slot(slot); 1303 /* The hole, there no reason to continue */ 1304 if (unlikely(!page)) 1305 break; 1306 1307 if (radix_tree_exception(page)) { 1308 if (radix_tree_deref_retry(page)) { 1309 /* 1310 * Transient condition which can only trigger 1311 * when entry at index 0 moves out of or back 1312 * to root: none yet gotten, safe to restart. 1313 */ 1314 goto restart; 1315 } 1316 /* 1317 * A shadow entry of a recently evicted page, 1318 * or a swap entry from shmem/tmpfs. Stop 1319 * looking for contiguous pages. 1320 */ 1321 break; 1322 } 1323 1324 if (!page_cache_get_speculative(page)) 1325 goto repeat; 1326 1327 /* Has the page moved? */ 1328 if (unlikely(page != *slot)) { 1329 page_cache_release(page); 1330 goto repeat; 1331 } 1332 1333 /* 1334 * must check mapping and index after taking the ref. 1335 * otherwise we can get both false positives and false 1336 * negatives, which is just confusing to the caller. 1337 */ 1338 if (page->mapping == NULL || page->index != iter.index) { 1339 page_cache_release(page); 1340 break; 1341 } 1342 1343 pages[ret] = page; 1344 if (++ret == nr_pages) 1345 break; 1346 } 1347 rcu_read_unlock(); 1348 return ret; 1349 } 1350 EXPORT_SYMBOL(find_get_pages_contig); 1351 1352 /** 1353 * find_get_pages_tag - find and return pages that match @tag 1354 * @mapping: the address_space to search 1355 * @index: the starting page index 1356 * @tag: the tag index 1357 * @nr_pages: the maximum number of pages 1358 * @pages: where the resulting pages are placed 1359 * 1360 * Like find_get_pages, except we only return pages which are tagged with 1361 * @tag. We update @index to index the next page for the traversal. 1362 */ 1363 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1364 int tag, unsigned int nr_pages, struct page **pages) 1365 { 1366 struct radix_tree_iter iter; 1367 void **slot; 1368 unsigned ret = 0; 1369 1370 if (unlikely(!nr_pages)) 1371 return 0; 1372 1373 rcu_read_lock(); 1374 restart: 1375 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1376 &iter, *index, tag) { 1377 struct page *page; 1378 repeat: 1379 page = radix_tree_deref_slot(slot); 1380 if (unlikely(!page)) 1381 continue; 1382 1383 if (radix_tree_exception(page)) { 1384 if (radix_tree_deref_retry(page)) { 1385 /* 1386 * Transient condition which can only trigger 1387 * when entry at index 0 moves out of or back 1388 * to root: none yet gotten, safe to restart. 1389 */ 1390 goto restart; 1391 } 1392 /* 1393 * A shadow entry of a recently evicted page. 1394 * 1395 * Those entries should never be tagged, but 1396 * this tree walk is lockless and the tags are 1397 * looked up in bulk, one radix tree node at a 1398 * time, so there is a sizable window for page 1399 * reclaim to evict a page we saw tagged. 1400 * 1401 * Skip over it. 1402 */ 1403 continue; 1404 } 1405 1406 if (!page_cache_get_speculative(page)) 1407 goto repeat; 1408 1409 /* Has the page moved? */ 1410 if (unlikely(page != *slot)) { 1411 page_cache_release(page); 1412 goto repeat; 1413 } 1414 1415 pages[ret] = page; 1416 if (++ret == nr_pages) 1417 break; 1418 } 1419 1420 rcu_read_unlock(); 1421 1422 if (ret) 1423 *index = pages[ret - 1]->index + 1; 1424 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(find_get_pages_tag); 1428 1429 /* 1430 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1431 * a _large_ part of the i/o request. Imagine the worst scenario: 1432 * 1433 * ---R__________________________________________B__________ 1434 * ^ reading here ^ bad block(assume 4k) 1435 * 1436 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1437 * => failing the whole request => read(R) => read(R+1) => 1438 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1439 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1440 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1441 * 1442 * It is going insane. Fix it by quickly scaling down the readahead size. 1443 */ 1444 static void shrink_readahead_size_eio(struct file *filp, 1445 struct file_ra_state *ra) 1446 { 1447 ra->ra_pages /= 4; 1448 } 1449 1450 /** 1451 * do_generic_file_read - generic file read routine 1452 * @filp: the file to read 1453 * @ppos: current file position 1454 * @iter: data destination 1455 * @written: already copied 1456 * 1457 * This is a generic file read routine, and uses the 1458 * mapping->a_ops->readpage() function for the actual low-level stuff. 1459 * 1460 * This is really ugly. But the goto's actually try to clarify some 1461 * of the logic when it comes to error handling etc. 1462 */ 1463 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1464 struct iov_iter *iter, ssize_t written) 1465 { 1466 struct address_space *mapping = filp->f_mapping; 1467 struct inode *inode = mapping->host; 1468 struct file_ra_state *ra = &filp->f_ra; 1469 pgoff_t index; 1470 pgoff_t last_index; 1471 pgoff_t prev_index; 1472 unsigned long offset; /* offset into pagecache page */ 1473 unsigned int prev_offset; 1474 int error = 0; 1475 1476 index = *ppos >> PAGE_CACHE_SHIFT; 1477 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1478 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1479 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1480 offset = *ppos & ~PAGE_CACHE_MASK; 1481 1482 for (;;) { 1483 struct page *page; 1484 pgoff_t end_index; 1485 loff_t isize; 1486 unsigned long nr, ret; 1487 1488 cond_resched(); 1489 find_page: 1490 page = find_get_page(mapping, index); 1491 if (!page) { 1492 page_cache_sync_readahead(mapping, 1493 ra, filp, 1494 index, last_index - index); 1495 page = find_get_page(mapping, index); 1496 if (unlikely(page == NULL)) 1497 goto no_cached_page; 1498 } 1499 if (PageReadahead(page)) { 1500 page_cache_async_readahead(mapping, 1501 ra, filp, page, 1502 index, last_index - index); 1503 } 1504 if (!PageUptodate(page)) { 1505 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1506 !mapping->a_ops->is_partially_uptodate) 1507 goto page_not_up_to_date; 1508 if (!trylock_page(page)) 1509 goto page_not_up_to_date; 1510 /* Did it get truncated before we got the lock? */ 1511 if (!page->mapping) 1512 goto page_not_up_to_date_locked; 1513 if (!mapping->a_ops->is_partially_uptodate(page, 1514 offset, iter->count)) 1515 goto page_not_up_to_date_locked; 1516 unlock_page(page); 1517 } 1518 page_ok: 1519 /* 1520 * i_size must be checked after we know the page is Uptodate. 1521 * 1522 * Checking i_size after the check allows us to calculate 1523 * the correct value for "nr", which means the zero-filled 1524 * part of the page is not copied back to userspace (unless 1525 * another truncate extends the file - this is desired though). 1526 */ 1527 1528 isize = i_size_read(inode); 1529 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1530 if (unlikely(!isize || index > end_index)) { 1531 page_cache_release(page); 1532 goto out; 1533 } 1534 1535 /* nr is the maximum number of bytes to copy from this page */ 1536 nr = PAGE_CACHE_SIZE; 1537 if (index == end_index) { 1538 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1539 if (nr <= offset) { 1540 page_cache_release(page); 1541 goto out; 1542 } 1543 } 1544 nr = nr - offset; 1545 1546 /* If users can be writing to this page using arbitrary 1547 * virtual addresses, take care about potential aliasing 1548 * before reading the page on the kernel side. 1549 */ 1550 if (mapping_writably_mapped(mapping)) 1551 flush_dcache_page(page); 1552 1553 /* 1554 * When a sequential read accesses a page several times, 1555 * only mark it as accessed the first time. 1556 */ 1557 if (prev_index != index || offset != prev_offset) 1558 mark_page_accessed(page); 1559 prev_index = index; 1560 1561 /* 1562 * Ok, we have the page, and it's up-to-date, so 1563 * now we can copy it to user space... 1564 */ 1565 1566 ret = copy_page_to_iter(page, offset, nr, iter); 1567 offset += ret; 1568 index += offset >> PAGE_CACHE_SHIFT; 1569 offset &= ~PAGE_CACHE_MASK; 1570 prev_offset = offset; 1571 1572 page_cache_release(page); 1573 written += ret; 1574 if (!iov_iter_count(iter)) 1575 goto out; 1576 if (ret < nr) { 1577 error = -EFAULT; 1578 goto out; 1579 } 1580 continue; 1581 1582 page_not_up_to_date: 1583 /* Get exclusive access to the page ... */ 1584 error = lock_page_killable(page); 1585 if (unlikely(error)) 1586 goto readpage_error; 1587 1588 page_not_up_to_date_locked: 1589 /* Did it get truncated before we got the lock? */ 1590 if (!page->mapping) { 1591 unlock_page(page); 1592 page_cache_release(page); 1593 continue; 1594 } 1595 1596 /* Did somebody else fill it already? */ 1597 if (PageUptodate(page)) { 1598 unlock_page(page); 1599 goto page_ok; 1600 } 1601 1602 readpage: 1603 /* 1604 * A previous I/O error may have been due to temporary 1605 * failures, eg. multipath errors. 1606 * PG_error will be set again if readpage fails. 1607 */ 1608 ClearPageError(page); 1609 /* Start the actual read. The read will unlock the page. */ 1610 error = mapping->a_ops->readpage(filp, page); 1611 1612 if (unlikely(error)) { 1613 if (error == AOP_TRUNCATED_PAGE) { 1614 page_cache_release(page); 1615 error = 0; 1616 goto find_page; 1617 } 1618 goto readpage_error; 1619 } 1620 1621 if (!PageUptodate(page)) { 1622 error = lock_page_killable(page); 1623 if (unlikely(error)) 1624 goto readpage_error; 1625 if (!PageUptodate(page)) { 1626 if (page->mapping == NULL) { 1627 /* 1628 * invalidate_mapping_pages got it 1629 */ 1630 unlock_page(page); 1631 page_cache_release(page); 1632 goto find_page; 1633 } 1634 unlock_page(page); 1635 shrink_readahead_size_eio(filp, ra); 1636 error = -EIO; 1637 goto readpage_error; 1638 } 1639 unlock_page(page); 1640 } 1641 1642 goto page_ok; 1643 1644 readpage_error: 1645 /* UHHUH! A synchronous read error occurred. Report it */ 1646 page_cache_release(page); 1647 goto out; 1648 1649 no_cached_page: 1650 /* 1651 * Ok, it wasn't cached, so we need to create a new 1652 * page.. 1653 */ 1654 page = page_cache_alloc_cold(mapping); 1655 if (!page) { 1656 error = -ENOMEM; 1657 goto out; 1658 } 1659 error = add_to_page_cache_lru(page, mapping, 1660 index, GFP_KERNEL); 1661 if (error) { 1662 page_cache_release(page); 1663 if (error == -EEXIST) { 1664 error = 0; 1665 goto find_page; 1666 } 1667 goto out; 1668 } 1669 goto readpage; 1670 } 1671 1672 out: 1673 ra->prev_pos = prev_index; 1674 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1675 ra->prev_pos |= prev_offset; 1676 1677 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1678 file_accessed(filp); 1679 return written ? written : error; 1680 } 1681 1682 /** 1683 * generic_file_read_iter - generic filesystem read routine 1684 * @iocb: kernel I/O control block 1685 * @iter: destination for the data read 1686 * 1687 * This is the "read_iter()" routine for all filesystems 1688 * that can use the page cache directly. 1689 */ 1690 ssize_t 1691 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1692 { 1693 struct file *file = iocb->ki_filp; 1694 ssize_t retval = 0; 1695 loff_t *ppos = &iocb->ki_pos; 1696 loff_t pos = *ppos; 1697 1698 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1699 if (file->f_flags & O_DIRECT) { 1700 struct address_space *mapping = file->f_mapping; 1701 struct inode *inode = mapping->host; 1702 size_t count = iov_iter_count(iter); 1703 loff_t size; 1704 1705 if (!count) 1706 goto out; /* skip atime */ 1707 size = i_size_read(inode); 1708 retval = filemap_write_and_wait_range(mapping, pos, 1709 pos + count - 1); 1710 if (!retval) { 1711 struct iov_iter data = *iter; 1712 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos); 1713 } 1714 1715 if (retval > 0) { 1716 *ppos = pos + retval; 1717 iov_iter_advance(iter, retval); 1718 } 1719 1720 /* 1721 * Btrfs can have a short DIO read if we encounter 1722 * compressed extents, so if there was an error, or if 1723 * we've already read everything we wanted to, or if 1724 * there was a short read because we hit EOF, go ahead 1725 * and return. Otherwise fallthrough to buffered io for 1726 * the rest of the read. 1727 */ 1728 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) { 1729 file_accessed(file); 1730 goto out; 1731 } 1732 } 1733 1734 retval = do_generic_file_read(file, ppos, iter, retval); 1735 out: 1736 return retval; 1737 } 1738 EXPORT_SYMBOL(generic_file_read_iter); 1739 1740 #ifdef CONFIG_MMU 1741 /** 1742 * page_cache_read - adds requested page to the page cache if not already there 1743 * @file: file to read 1744 * @offset: page index 1745 * 1746 * This adds the requested page to the page cache if it isn't already there, 1747 * and schedules an I/O to read in its contents from disk. 1748 */ 1749 static int page_cache_read(struct file *file, pgoff_t offset) 1750 { 1751 struct address_space *mapping = file->f_mapping; 1752 struct page *page; 1753 int ret; 1754 1755 do { 1756 page = page_cache_alloc_cold(mapping); 1757 if (!page) 1758 return -ENOMEM; 1759 1760 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1761 if (ret == 0) 1762 ret = mapping->a_ops->readpage(file, page); 1763 else if (ret == -EEXIST) 1764 ret = 0; /* losing race to add is OK */ 1765 1766 page_cache_release(page); 1767 1768 } while (ret == AOP_TRUNCATED_PAGE); 1769 1770 return ret; 1771 } 1772 1773 #define MMAP_LOTSAMISS (100) 1774 1775 /* 1776 * Synchronous readahead happens when we don't even find 1777 * a page in the page cache at all. 1778 */ 1779 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1780 struct file_ra_state *ra, 1781 struct file *file, 1782 pgoff_t offset) 1783 { 1784 unsigned long ra_pages; 1785 struct address_space *mapping = file->f_mapping; 1786 1787 /* If we don't want any read-ahead, don't bother */ 1788 if (vma->vm_flags & VM_RAND_READ) 1789 return; 1790 if (!ra->ra_pages) 1791 return; 1792 1793 if (vma->vm_flags & VM_SEQ_READ) { 1794 page_cache_sync_readahead(mapping, ra, file, offset, 1795 ra->ra_pages); 1796 return; 1797 } 1798 1799 /* Avoid banging the cache line if not needed */ 1800 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1801 ra->mmap_miss++; 1802 1803 /* 1804 * Do we miss much more than hit in this file? If so, 1805 * stop bothering with read-ahead. It will only hurt. 1806 */ 1807 if (ra->mmap_miss > MMAP_LOTSAMISS) 1808 return; 1809 1810 /* 1811 * mmap read-around 1812 */ 1813 ra_pages = max_sane_readahead(ra->ra_pages); 1814 ra->start = max_t(long, 0, offset - ra_pages / 2); 1815 ra->size = ra_pages; 1816 ra->async_size = ra_pages / 4; 1817 ra_submit(ra, mapping, file); 1818 } 1819 1820 /* 1821 * Asynchronous readahead happens when we find the page and PG_readahead, 1822 * so we want to possibly extend the readahead further.. 1823 */ 1824 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1825 struct file_ra_state *ra, 1826 struct file *file, 1827 struct page *page, 1828 pgoff_t offset) 1829 { 1830 struct address_space *mapping = file->f_mapping; 1831 1832 /* If we don't want any read-ahead, don't bother */ 1833 if (vma->vm_flags & VM_RAND_READ) 1834 return; 1835 if (ra->mmap_miss > 0) 1836 ra->mmap_miss--; 1837 if (PageReadahead(page)) 1838 page_cache_async_readahead(mapping, ra, file, 1839 page, offset, ra->ra_pages); 1840 } 1841 1842 /** 1843 * filemap_fault - read in file data for page fault handling 1844 * @vma: vma in which the fault was taken 1845 * @vmf: struct vm_fault containing details of the fault 1846 * 1847 * filemap_fault() is invoked via the vma operations vector for a 1848 * mapped memory region to read in file data during a page fault. 1849 * 1850 * The goto's are kind of ugly, but this streamlines the normal case of having 1851 * it in the page cache, and handles the special cases reasonably without 1852 * having a lot of duplicated code. 1853 * 1854 * vma->vm_mm->mmap_sem must be held on entry. 1855 * 1856 * If our return value has VM_FAULT_RETRY set, it's because 1857 * lock_page_or_retry() returned 0. 1858 * The mmap_sem has usually been released in this case. 1859 * See __lock_page_or_retry() for the exception. 1860 * 1861 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 1862 * has not been released. 1863 * 1864 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 1865 */ 1866 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1867 { 1868 int error; 1869 struct file *file = vma->vm_file; 1870 struct address_space *mapping = file->f_mapping; 1871 struct file_ra_state *ra = &file->f_ra; 1872 struct inode *inode = mapping->host; 1873 pgoff_t offset = vmf->pgoff; 1874 struct page *page; 1875 loff_t size; 1876 int ret = 0; 1877 1878 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1879 if (offset >= size >> PAGE_CACHE_SHIFT) 1880 return VM_FAULT_SIGBUS; 1881 1882 /* 1883 * Do we have something in the page cache already? 1884 */ 1885 page = find_get_page(mapping, offset); 1886 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1887 /* 1888 * We found the page, so try async readahead before 1889 * waiting for the lock. 1890 */ 1891 do_async_mmap_readahead(vma, ra, file, page, offset); 1892 } else if (!page) { 1893 /* No page in the page cache at all */ 1894 do_sync_mmap_readahead(vma, ra, file, offset); 1895 count_vm_event(PGMAJFAULT); 1896 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1897 ret = VM_FAULT_MAJOR; 1898 retry_find: 1899 page = find_get_page(mapping, offset); 1900 if (!page) 1901 goto no_cached_page; 1902 } 1903 1904 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1905 page_cache_release(page); 1906 return ret | VM_FAULT_RETRY; 1907 } 1908 1909 /* Did it get truncated? */ 1910 if (unlikely(page->mapping != mapping)) { 1911 unlock_page(page); 1912 put_page(page); 1913 goto retry_find; 1914 } 1915 VM_BUG_ON_PAGE(page->index != offset, page); 1916 1917 /* 1918 * We have a locked page in the page cache, now we need to check 1919 * that it's up-to-date. If not, it is going to be due to an error. 1920 */ 1921 if (unlikely(!PageUptodate(page))) 1922 goto page_not_uptodate; 1923 1924 /* 1925 * Found the page and have a reference on it. 1926 * We must recheck i_size under page lock. 1927 */ 1928 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1929 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1930 unlock_page(page); 1931 page_cache_release(page); 1932 return VM_FAULT_SIGBUS; 1933 } 1934 1935 vmf->page = page; 1936 return ret | VM_FAULT_LOCKED; 1937 1938 no_cached_page: 1939 /* 1940 * We're only likely to ever get here if MADV_RANDOM is in 1941 * effect. 1942 */ 1943 error = page_cache_read(file, offset); 1944 1945 /* 1946 * The page we want has now been added to the page cache. 1947 * In the unlikely event that someone removed it in the 1948 * meantime, we'll just come back here and read it again. 1949 */ 1950 if (error >= 0) 1951 goto retry_find; 1952 1953 /* 1954 * An error return from page_cache_read can result if the 1955 * system is low on memory, or a problem occurs while trying 1956 * to schedule I/O. 1957 */ 1958 if (error == -ENOMEM) 1959 return VM_FAULT_OOM; 1960 return VM_FAULT_SIGBUS; 1961 1962 page_not_uptodate: 1963 /* 1964 * Umm, take care of errors if the page isn't up-to-date. 1965 * Try to re-read it _once_. We do this synchronously, 1966 * because there really aren't any performance issues here 1967 * and we need to check for errors. 1968 */ 1969 ClearPageError(page); 1970 error = mapping->a_ops->readpage(file, page); 1971 if (!error) { 1972 wait_on_page_locked(page); 1973 if (!PageUptodate(page)) 1974 error = -EIO; 1975 } 1976 page_cache_release(page); 1977 1978 if (!error || error == AOP_TRUNCATED_PAGE) 1979 goto retry_find; 1980 1981 /* Things didn't work out. Return zero to tell the mm layer so. */ 1982 shrink_readahead_size_eio(file, ra); 1983 return VM_FAULT_SIGBUS; 1984 } 1985 EXPORT_SYMBOL(filemap_fault); 1986 1987 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1988 { 1989 struct radix_tree_iter iter; 1990 void **slot; 1991 struct file *file = vma->vm_file; 1992 struct address_space *mapping = file->f_mapping; 1993 loff_t size; 1994 struct page *page; 1995 unsigned long address = (unsigned long) vmf->virtual_address; 1996 unsigned long addr; 1997 pte_t *pte; 1998 1999 rcu_read_lock(); 2000 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 2001 if (iter.index > vmf->max_pgoff) 2002 break; 2003 repeat: 2004 page = radix_tree_deref_slot(slot); 2005 if (unlikely(!page)) 2006 goto next; 2007 if (radix_tree_exception(page)) { 2008 if (radix_tree_deref_retry(page)) 2009 break; 2010 else 2011 goto next; 2012 } 2013 2014 if (!page_cache_get_speculative(page)) 2015 goto repeat; 2016 2017 /* Has the page moved? */ 2018 if (unlikely(page != *slot)) { 2019 page_cache_release(page); 2020 goto repeat; 2021 } 2022 2023 if (!PageUptodate(page) || 2024 PageReadahead(page) || 2025 PageHWPoison(page)) 2026 goto skip; 2027 if (!trylock_page(page)) 2028 goto skip; 2029 2030 if (page->mapping != mapping || !PageUptodate(page)) 2031 goto unlock; 2032 2033 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2034 if (page->index >= size >> PAGE_CACHE_SHIFT) 2035 goto unlock; 2036 2037 pte = vmf->pte + page->index - vmf->pgoff; 2038 if (!pte_none(*pte)) 2039 goto unlock; 2040 2041 if (file->f_ra.mmap_miss > 0) 2042 file->f_ra.mmap_miss--; 2043 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2044 do_set_pte(vma, addr, page, pte, false, false); 2045 unlock_page(page); 2046 goto next; 2047 unlock: 2048 unlock_page(page); 2049 skip: 2050 page_cache_release(page); 2051 next: 2052 if (iter.index == vmf->max_pgoff) 2053 break; 2054 } 2055 rcu_read_unlock(); 2056 } 2057 EXPORT_SYMBOL(filemap_map_pages); 2058 2059 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2060 { 2061 struct page *page = vmf->page; 2062 struct inode *inode = file_inode(vma->vm_file); 2063 int ret = VM_FAULT_LOCKED; 2064 2065 sb_start_pagefault(inode->i_sb); 2066 file_update_time(vma->vm_file); 2067 lock_page(page); 2068 if (page->mapping != inode->i_mapping) { 2069 unlock_page(page); 2070 ret = VM_FAULT_NOPAGE; 2071 goto out; 2072 } 2073 /* 2074 * We mark the page dirty already here so that when freeze is in 2075 * progress, we are guaranteed that writeback during freezing will 2076 * see the dirty page and writeprotect it again. 2077 */ 2078 set_page_dirty(page); 2079 wait_for_stable_page(page); 2080 out: 2081 sb_end_pagefault(inode->i_sb); 2082 return ret; 2083 } 2084 EXPORT_SYMBOL(filemap_page_mkwrite); 2085 2086 const struct vm_operations_struct generic_file_vm_ops = { 2087 .fault = filemap_fault, 2088 .map_pages = filemap_map_pages, 2089 .page_mkwrite = filemap_page_mkwrite, 2090 .remap_pages = generic_file_remap_pages, 2091 }; 2092 2093 /* This is used for a general mmap of a disk file */ 2094 2095 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2096 { 2097 struct address_space *mapping = file->f_mapping; 2098 2099 if (!mapping->a_ops->readpage) 2100 return -ENOEXEC; 2101 file_accessed(file); 2102 vma->vm_ops = &generic_file_vm_ops; 2103 return 0; 2104 } 2105 2106 /* 2107 * This is for filesystems which do not implement ->writepage. 2108 */ 2109 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2110 { 2111 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2112 return -EINVAL; 2113 return generic_file_mmap(file, vma); 2114 } 2115 #else 2116 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2117 { 2118 return -ENOSYS; 2119 } 2120 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2121 { 2122 return -ENOSYS; 2123 } 2124 #endif /* CONFIG_MMU */ 2125 2126 EXPORT_SYMBOL(generic_file_mmap); 2127 EXPORT_SYMBOL(generic_file_readonly_mmap); 2128 2129 static struct page *wait_on_page_read(struct page *page) 2130 { 2131 if (!IS_ERR(page)) { 2132 wait_on_page_locked(page); 2133 if (!PageUptodate(page)) { 2134 page_cache_release(page); 2135 page = ERR_PTR(-EIO); 2136 } 2137 } 2138 return page; 2139 } 2140 2141 static struct page *__read_cache_page(struct address_space *mapping, 2142 pgoff_t index, 2143 int (*filler)(void *, struct page *), 2144 void *data, 2145 gfp_t gfp) 2146 { 2147 struct page *page; 2148 int err; 2149 repeat: 2150 page = find_get_page(mapping, index); 2151 if (!page) { 2152 page = __page_cache_alloc(gfp | __GFP_COLD); 2153 if (!page) 2154 return ERR_PTR(-ENOMEM); 2155 err = add_to_page_cache_lru(page, mapping, index, gfp); 2156 if (unlikely(err)) { 2157 page_cache_release(page); 2158 if (err == -EEXIST) 2159 goto repeat; 2160 /* Presumably ENOMEM for radix tree node */ 2161 return ERR_PTR(err); 2162 } 2163 err = filler(data, page); 2164 if (err < 0) { 2165 page_cache_release(page); 2166 page = ERR_PTR(err); 2167 } else { 2168 page = wait_on_page_read(page); 2169 } 2170 } 2171 return page; 2172 } 2173 2174 static struct page *do_read_cache_page(struct address_space *mapping, 2175 pgoff_t index, 2176 int (*filler)(void *, struct page *), 2177 void *data, 2178 gfp_t gfp) 2179 2180 { 2181 struct page *page; 2182 int err; 2183 2184 retry: 2185 page = __read_cache_page(mapping, index, filler, data, gfp); 2186 if (IS_ERR(page)) 2187 return page; 2188 if (PageUptodate(page)) 2189 goto out; 2190 2191 lock_page(page); 2192 if (!page->mapping) { 2193 unlock_page(page); 2194 page_cache_release(page); 2195 goto retry; 2196 } 2197 if (PageUptodate(page)) { 2198 unlock_page(page); 2199 goto out; 2200 } 2201 err = filler(data, page); 2202 if (err < 0) { 2203 page_cache_release(page); 2204 return ERR_PTR(err); 2205 } else { 2206 page = wait_on_page_read(page); 2207 if (IS_ERR(page)) 2208 return page; 2209 } 2210 out: 2211 mark_page_accessed(page); 2212 return page; 2213 } 2214 2215 /** 2216 * read_cache_page - read into page cache, fill it if needed 2217 * @mapping: the page's address_space 2218 * @index: the page index 2219 * @filler: function to perform the read 2220 * @data: first arg to filler(data, page) function, often left as NULL 2221 * 2222 * Read into the page cache. If a page already exists, and PageUptodate() is 2223 * not set, try to fill the page and wait for it to become unlocked. 2224 * 2225 * If the page does not get brought uptodate, return -EIO. 2226 */ 2227 struct page *read_cache_page(struct address_space *mapping, 2228 pgoff_t index, 2229 int (*filler)(void *, struct page *), 2230 void *data) 2231 { 2232 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2233 } 2234 EXPORT_SYMBOL(read_cache_page); 2235 2236 /** 2237 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2238 * @mapping: the page's address_space 2239 * @index: the page index 2240 * @gfp: the page allocator flags to use if allocating 2241 * 2242 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2243 * any new page allocations done using the specified allocation flags. 2244 * 2245 * If the page does not get brought uptodate, return -EIO. 2246 */ 2247 struct page *read_cache_page_gfp(struct address_space *mapping, 2248 pgoff_t index, 2249 gfp_t gfp) 2250 { 2251 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2252 2253 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2254 } 2255 EXPORT_SYMBOL(read_cache_page_gfp); 2256 2257 /* 2258 * Performs necessary checks before doing a write 2259 * 2260 * Can adjust writing position or amount of bytes to write. 2261 * Returns appropriate error code that caller should return or 2262 * zero in case that write should be allowed. 2263 */ 2264 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2265 { 2266 struct inode *inode = file->f_mapping->host; 2267 unsigned long limit = rlimit(RLIMIT_FSIZE); 2268 2269 if (unlikely(*pos < 0)) 2270 return -EINVAL; 2271 2272 if (!isblk) { 2273 /* FIXME: this is for backwards compatibility with 2.4 */ 2274 if (file->f_flags & O_APPEND) 2275 *pos = i_size_read(inode); 2276 2277 if (limit != RLIM_INFINITY) { 2278 if (*pos >= limit) { 2279 send_sig(SIGXFSZ, current, 0); 2280 return -EFBIG; 2281 } 2282 if (*count > limit - (typeof(limit))*pos) { 2283 *count = limit - (typeof(limit))*pos; 2284 } 2285 } 2286 } 2287 2288 /* 2289 * LFS rule 2290 */ 2291 if (unlikely(*pos + *count > MAX_NON_LFS && 2292 !(file->f_flags & O_LARGEFILE))) { 2293 if (*pos >= MAX_NON_LFS) { 2294 return -EFBIG; 2295 } 2296 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2297 *count = MAX_NON_LFS - (unsigned long)*pos; 2298 } 2299 } 2300 2301 /* 2302 * Are we about to exceed the fs block limit ? 2303 * 2304 * If we have written data it becomes a short write. If we have 2305 * exceeded without writing data we send a signal and return EFBIG. 2306 * Linus frestrict idea will clean these up nicely.. 2307 */ 2308 if (likely(!isblk)) { 2309 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2310 if (*count || *pos > inode->i_sb->s_maxbytes) { 2311 return -EFBIG; 2312 } 2313 /* zero-length writes at ->s_maxbytes are OK */ 2314 } 2315 2316 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2317 *count = inode->i_sb->s_maxbytes - *pos; 2318 } else { 2319 #ifdef CONFIG_BLOCK 2320 loff_t isize; 2321 if (bdev_read_only(I_BDEV(inode))) 2322 return -EPERM; 2323 isize = i_size_read(inode); 2324 if (*pos >= isize) { 2325 if (*count || *pos > isize) 2326 return -ENOSPC; 2327 } 2328 2329 if (*pos + *count > isize) 2330 *count = isize - *pos; 2331 #else 2332 return -EPERM; 2333 #endif 2334 } 2335 return 0; 2336 } 2337 EXPORT_SYMBOL(generic_write_checks); 2338 2339 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2340 loff_t pos, unsigned len, unsigned flags, 2341 struct page **pagep, void **fsdata) 2342 { 2343 const struct address_space_operations *aops = mapping->a_ops; 2344 2345 return aops->write_begin(file, mapping, pos, len, flags, 2346 pagep, fsdata); 2347 } 2348 EXPORT_SYMBOL(pagecache_write_begin); 2349 2350 int pagecache_write_end(struct file *file, struct address_space *mapping, 2351 loff_t pos, unsigned len, unsigned copied, 2352 struct page *page, void *fsdata) 2353 { 2354 const struct address_space_operations *aops = mapping->a_ops; 2355 2356 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2357 } 2358 EXPORT_SYMBOL(pagecache_write_end); 2359 2360 ssize_t 2361 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2362 { 2363 struct file *file = iocb->ki_filp; 2364 struct address_space *mapping = file->f_mapping; 2365 struct inode *inode = mapping->host; 2366 ssize_t written; 2367 size_t write_len; 2368 pgoff_t end; 2369 struct iov_iter data; 2370 2371 write_len = iov_iter_count(from); 2372 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2373 2374 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2375 if (written) 2376 goto out; 2377 2378 /* 2379 * After a write we want buffered reads to be sure to go to disk to get 2380 * the new data. We invalidate clean cached page from the region we're 2381 * about to write. We do this *before* the write so that we can return 2382 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2383 */ 2384 if (mapping->nrpages) { 2385 written = invalidate_inode_pages2_range(mapping, 2386 pos >> PAGE_CACHE_SHIFT, end); 2387 /* 2388 * If a page can not be invalidated, return 0 to fall back 2389 * to buffered write. 2390 */ 2391 if (written) { 2392 if (written == -EBUSY) 2393 return 0; 2394 goto out; 2395 } 2396 } 2397 2398 data = *from; 2399 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos); 2400 2401 /* 2402 * Finally, try again to invalidate clean pages which might have been 2403 * cached by non-direct readahead, or faulted in by get_user_pages() 2404 * if the source of the write was an mmap'ed region of the file 2405 * we're writing. Either one is a pretty crazy thing to do, 2406 * so we don't support it 100%. If this invalidation 2407 * fails, tough, the write still worked... 2408 */ 2409 if (mapping->nrpages) { 2410 invalidate_inode_pages2_range(mapping, 2411 pos >> PAGE_CACHE_SHIFT, end); 2412 } 2413 2414 if (written > 0) { 2415 pos += written; 2416 iov_iter_advance(from, written); 2417 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2418 i_size_write(inode, pos); 2419 mark_inode_dirty(inode); 2420 } 2421 iocb->ki_pos = pos; 2422 } 2423 out: 2424 return written; 2425 } 2426 EXPORT_SYMBOL(generic_file_direct_write); 2427 2428 /* 2429 * Find or create a page at the given pagecache position. Return the locked 2430 * page. This function is specifically for buffered writes. 2431 */ 2432 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2433 pgoff_t index, unsigned flags) 2434 { 2435 struct page *page; 2436 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2437 2438 if (flags & AOP_FLAG_NOFS) 2439 fgp_flags |= FGP_NOFS; 2440 2441 page = pagecache_get_page(mapping, index, fgp_flags, 2442 mapping_gfp_mask(mapping)); 2443 if (page) 2444 wait_for_stable_page(page); 2445 2446 return page; 2447 } 2448 EXPORT_SYMBOL(grab_cache_page_write_begin); 2449 2450 ssize_t generic_perform_write(struct file *file, 2451 struct iov_iter *i, loff_t pos) 2452 { 2453 struct address_space *mapping = file->f_mapping; 2454 const struct address_space_operations *a_ops = mapping->a_ops; 2455 long status = 0; 2456 ssize_t written = 0; 2457 unsigned int flags = 0; 2458 2459 /* 2460 * Copies from kernel address space cannot fail (NFSD is a big user). 2461 */ 2462 if (!iter_is_iovec(i)) 2463 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2464 2465 do { 2466 struct page *page; 2467 unsigned long offset; /* Offset into pagecache page */ 2468 unsigned long bytes; /* Bytes to write to page */ 2469 size_t copied; /* Bytes copied from user */ 2470 void *fsdata; 2471 2472 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2473 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2474 iov_iter_count(i)); 2475 2476 again: 2477 /* 2478 * Bring in the user page that we will copy from _first_. 2479 * Otherwise there's a nasty deadlock on copying from the 2480 * same page as we're writing to, without it being marked 2481 * up-to-date. 2482 * 2483 * Not only is this an optimisation, but it is also required 2484 * to check that the address is actually valid, when atomic 2485 * usercopies are used, below. 2486 */ 2487 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2488 status = -EFAULT; 2489 break; 2490 } 2491 2492 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2493 &page, &fsdata); 2494 if (unlikely(status < 0)) 2495 break; 2496 2497 if (mapping_writably_mapped(mapping)) 2498 flush_dcache_page(page); 2499 2500 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2501 flush_dcache_page(page); 2502 2503 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2504 page, fsdata); 2505 if (unlikely(status < 0)) 2506 break; 2507 copied = status; 2508 2509 cond_resched(); 2510 2511 iov_iter_advance(i, copied); 2512 if (unlikely(copied == 0)) { 2513 /* 2514 * If we were unable to copy any data at all, we must 2515 * fall back to a single segment length write. 2516 * 2517 * If we didn't fallback here, we could livelock 2518 * because not all segments in the iov can be copied at 2519 * once without a pagefault. 2520 */ 2521 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2522 iov_iter_single_seg_count(i)); 2523 goto again; 2524 } 2525 pos += copied; 2526 written += copied; 2527 2528 balance_dirty_pages_ratelimited(mapping); 2529 if (fatal_signal_pending(current)) { 2530 status = -EINTR; 2531 break; 2532 } 2533 } while (iov_iter_count(i)); 2534 2535 return written ? written : status; 2536 } 2537 EXPORT_SYMBOL(generic_perform_write); 2538 2539 /** 2540 * __generic_file_write_iter - write data to a file 2541 * @iocb: IO state structure (file, offset, etc.) 2542 * @from: iov_iter with data to write 2543 * 2544 * This function does all the work needed for actually writing data to a 2545 * file. It does all basic checks, removes SUID from the file, updates 2546 * modification times and calls proper subroutines depending on whether we 2547 * do direct IO or a standard buffered write. 2548 * 2549 * It expects i_mutex to be grabbed unless we work on a block device or similar 2550 * object which does not need locking at all. 2551 * 2552 * This function does *not* take care of syncing data in case of O_SYNC write. 2553 * A caller has to handle it. This is mainly due to the fact that we want to 2554 * avoid syncing under i_mutex. 2555 */ 2556 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2557 { 2558 struct file *file = iocb->ki_filp; 2559 struct address_space * mapping = file->f_mapping; 2560 struct inode *inode = mapping->host; 2561 loff_t pos = iocb->ki_pos; 2562 ssize_t written = 0; 2563 ssize_t err; 2564 ssize_t status; 2565 size_t count = iov_iter_count(from); 2566 2567 /* We can write back this queue in page reclaim */ 2568 current->backing_dev_info = mapping->backing_dev_info; 2569 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2570 if (err) 2571 goto out; 2572 2573 if (count == 0) 2574 goto out; 2575 2576 iov_iter_truncate(from, count); 2577 2578 err = file_remove_suid(file); 2579 if (err) 2580 goto out; 2581 2582 err = file_update_time(file); 2583 if (err) 2584 goto out; 2585 2586 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2587 if (unlikely(file->f_flags & O_DIRECT)) { 2588 loff_t endbyte; 2589 2590 written = generic_file_direct_write(iocb, from, pos); 2591 if (written < 0 || written == count) 2592 goto out; 2593 2594 /* 2595 * direct-io write to a hole: fall through to buffered I/O 2596 * for completing the rest of the request. 2597 */ 2598 pos += written; 2599 count -= written; 2600 2601 status = generic_perform_write(file, from, pos); 2602 /* 2603 * If generic_perform_write() returned a synchronous error 2604 * then we want to return the number of bytes which were 2605 * direct-written, or the error code if that was zero. Note 2606 * that this differs from normal direct-io semantics, which 2607 * will return -EFOO even if some bytes were written. 2608 */ 2609 if (unlikely(status < 0)) { 2610 err = status; 2611 goto out; 2612 } 2613 iocb->ki_pos = pos + status; 2614 /* 2615 * We need to ensure that the page cache pages are written to 2616 * disk and invalidated to preserve the expected O_DIRECT 2617 * semantics. 2618 */ 2619 endbyte = pos + status - 1; 2620 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2621 if (err == 0) { 2622 written += status; 2623 invalidate_mapping_pages(mapping, 2624 pos >> PAGE_CACHE_SHIFT, 2625 endbyte >> PAGE_CACHE_SHIFT); 2626 } else { 2627 /* 2628 * We don't know how much we wrote, so just return 2629 * the number of bytes which were direct-written 2630 */ 2631 } 2632 } else { 2633 written = generic_perform_write(file, from, pos); 2634 if (likely(written >= 0)) 2635 iocb->ki_pos = pos + written; 2636 } 2637 out: 2638 current->backing_dev_info = NULL; 2639 return written ? written : err; 2640 } 2641 EXPORT_SYMBOL(__generic_file_write_iter); 2642 2643 /** 2644 * generic_file_write_iter - write data to a file 2645 * @iocb: IO state structure 2646 * @from: iov_iter with data to write 2647 * 2648 * This is a wrapper around __generic_file_write_iter() to be used by most 2649 * filesystems. It takes care of syncing the file in case of O_SYNC file 2650 * and acquires i_mutex as needed. 2651 */ 2652 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2653 { 2654 struct file *file = iocb->ki_filp; 2655 struct inode *inode = file->f_mapping->host; 2656 ssize_t ret; 2657 2658 mutex_lock(&inode->i_mutex); 2659 ret = __generic_file_write_iter(iocb, from); 2660 mutex_unlock(&inode->i_mutex); 2661 2662 if (ret > 0) { 2663 ssize_t err; 2664 2665 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2666 if (err < 0) 2667 ret = err; 2668 } 2669 return ret; 2670 } 2671 EXPORT_SYMBOL(generic_file_write_iter); 2672 2673 /** 2674 * try_to_release_page() - release old fs-specific metadata on a page 2675 * 2676 * @page: the page which the kernel is trying to free 2677 * @gfp_mask: memory allocation flags (and I/O mode) 2678 * 2679 * The address_space is to try to release any data against the page 2680 * (presumably at page->private). If the release was successful, return `1'. 2681 * Otherwise return zero. 2682 * 2683 * This may also be called if PG_fscache is set on a page, indicating that the 2684 * page is known to the local caching routines. 2685 * 2686 * The @gfp_mask argument specifies whether I/O may be performed to release 2687 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2688 * 2689 */ 2690 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2691 { 2692 struct address_space * const mapping = page->mapping; 2693 2694 BUG_ON(!PageLocked(page)); 2695 if (PageWriteback(page)) 2696 return 0; 2697 2698 if (mapping && mapping->a_ops->releasepage) 2699 return mapping->a_ops->releasepage(page, gfp_mask); 2700 return try_to_free_buffers(page); 2701 } 2702 2703 EXPORT_SYMBOL(try_to_release_page); 2704